WO2021062844A1 - 一种用于确定电池的极化电压的装置、方法及相关设备 - Google Patents

一种用于确定电池的极化电压的装置、方法及相关设备 Download PDF

Info

Publication number
WO2021062844A1
WO2021062844A1 PCT/CN2019/109773 CN2019109773W WO2021062844A1 WO 2021062844 A1 WO2021062844 A1 WO 2021062844A1 CN 2019109773 W CN2019109773 W CN 2019109773W WO 2021062844 A1 WO2021062844 A1 WO 2021062844A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current
time
time intervals
impedance
Prior art date
Application number
PCT/CN2019/109773
Other languages
English (en)
French (fr)
Inventor
范团宝
丁悦通
李娟�
李阳兴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980100074.3A priority Critical patent/CN114341655B/zh
Priority to PCT/CN2019/109773 priority patent/WO2021062844A1/zh
Publication of WO2021062844A1 publication Critical patent/WO2021062844A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of electronic technology, and in particular to a device, method and related equipment for determining the polarization voltage of a battery.
  • FIG. 1 is a schematic diagram of the equivalent circuit of an existing battery, where R(t) is the equivalent polarization impedance when the battery has current flowing through it (that is, the resistance that the current flows through the battery).
  • OCV Open Circuit Voltage
  • the battery polarization impedance is modeled exponentially through polarization multi-level decomposition, and the battery polarization impedance is decomposed into multi-level polarization impedance R1, ⁇ 1, R2, ⁇ 2 R3, ⁇ 3..., and when the battery polarization voltage Vp needs to be calculated, these multi-stage polarization impedance parameters and the current I are used for the reverse calculation.
  • the formula is as follows:
  • Vp(t) is the polarization voltage on the battery that changes with time t and the current I
  • R1 is the real part of the first-order polarization impedance of the battery's polarization impedance
  • ⁇ 1 is the first-order
  • R2 is the real part of the second-order polarization impedance
  • ⁇ 2 is the time constant of the second-order polarization impedance model, and so on, the higher the order, the more accurate the calculated Vp(t) high.
  • the above calculation scheme has the following defects:
  • FIG. 1 is a graph of the polarization voltage and time of the existing battery discharge, where V1, V2, and V3 are the first-order, second-order, and third-order polarization impedances in the above calculation scheme, respectively.
  • the polarization voltage component of Vp V1+V2+V3, it can be seen from the figure that the error between the calculated Vp and the measured battery polarization voltage is relatively large.
  • MIPS central processing unit
  • the embodiments of the present invention provide a device, a method and related equipment for determining the polarization voltage of a battery, which can reduce the calculation amount of the polarization voltage while ensuring the accuracy of the calculation of the polarization voltage of the battery.
  • an embodiment of the present invention provides a device for determining the polarization voltage of a battery, which may include: a current sampling module and a processor; wherein, the current sampling module is coupled to the battery for monitoring the The current of the battery obtains a monitoring result, and feeds back the monitoring result to the processor; the processor, coupled to the current sampling module, is configured to: obtain a relationship table of the battery, the relationship table including the The N time intervals of the battery under K first currents I and the corresponding N first impedance changes, K is an integer greater than or equal to 1, and N is an integer greater than 1, according to the monitoring results, determine all The currents corresponding to the multiple time intervals of the battery before the target time t, and the multiple second impedance changes corresponding to the multiple time intervals are determined according to the relationship table; respectively corresponding to the multiple time intervals Calculate the polarization voltage of the battery at the target time t.
  • the polarization resistance can be calculated by the ratio of the polarization voltage to the current, when the polarization voltage needs to be calculated, the polarization voltage can be obtained through the reverse calculation of the polarization impedance parameters and the current current obtained in the modeling stage.
  • the embodiment of the present invention has a reduced amount of calculation and low power consumption.
  • the polarization voltage of the battery at a certain time (such as the target time t) is regarded as a certain value before the target time t.
  • the cumulative sum of several polarization voltage components (the product of current and impedance change) that affect the polarization voltage at the target time t within the time period. Therefore, by using the polarization impedance parameters in the pre-established relationship table (including the multiple first impedance changes corresponding to the battery under different currents), it is determined that the battery corresponds to the multiple time intervals before the target time t.
  • the calculation amount of the battery at the target time t is reduced, which consumes less MIPS resources and power consumption Low, optimized the calculation model of the polarization voltage, and improved the calculation efficiency of the polarization voltage.
  • the processor is further configured to: calculate the terminal voltage VBAT of the battery at the target time t according to the polarization voltage and the terminal voltage VBAT of the battery at the target time t.
  • Open circuit voltage OCV the battery open circuit voltage OCV is calculated to further realize the terminal switch-on strategy, Battery power calculation, battery power supply capability prediction and other functions.
  • the device further includes a memory, which is coupled with the processor, and is configured to store the relationship table; and the processor is specifically configured to obtain the The relationship table of the battery.
  • the relationship table used to calculate the battery polarization voltage is stored in the memory of the device, so that the device can directly read the relationship table from the local memory when the device needs to calculate the battery polarization voltage. That's it.
  • the processor is specifically configured to: based on a formula Calculate the polarization voltage V P of the battery at the target time t; where I0 is the current value of the battery at the target time t, and ⁇ r T1 is based on the K first currents that match the I0
  • the polarization voltage of the battery at the target time t is regarded as multiple time intervals before the target time t.
  • the average current in the interval corresponds to the impedance change, and finally the product of the average current in multiple time intervals before the target time t and the corresponding impedance change is accumulated to obtain the polarization voltage of the battery at the target time t, where ,
  • the N time intervals Tn in the relationship table include multiple time intervals T(t,n) before the target time t, that is, X time intervals before the target time t.
  • T(t,n) is N time intervals A subset of Tn.
  • the multiple time intervals have a gradually increasing trend, that is, the first time interval T(t,1) has the shortest duration, For example, 0.1s, so when specifically calculating the polarization voltage component in the first time interval, the instantaneous current at the target time t can be used instead of the average current in the time interval for calculation to reduce the calculation difficulty.
  • the processor is further configured to: determine the temperature of the battery within the multiple time intervals, and determine the corresponding temperature of the battery at the target time t remaining battery.
  • the processor considering that the polarization voltage of the battery is also affected by the ambient temperature and the remaining power SOC of the battery, in the process of calculating the polarization voltage of the battery, the current ambient temperature and the battery are further determined. The current remaining power SOC of the battery is used to further accurately calculate the polarization voltage of the battery at the target time t.
  • the relationship table includes that the battery is at different temperatures, corresponding to different remaining power, and The N time intervals and the corresponding N first impedance changes under each first current I; the processor is specifically configured to: based on the formula Calculate the polarization voltage V P of the battery at the target time t; where I0 is the current value of the battery at the target time t, and ⁇ r(Temp, SOC, T1) is based on the temperature of the battery at Temp and the current remaining The amount of electricity is
  • the polarization voltage of the battery at the target time t is regarded as X time intervals before the target time t.
  • the cumulative sum of the X polarization voltage components (the product of current and impedance change) affected by the polarization voltage, and taking into account factors such as temperature and remaining power, the calculation accuracy of the polarization voltage is higher.
  • the relationship table contains the corresponding impedance changes in the N time intervals when the battery is at different temperatures, different remaining power, and different currents.
  • the current corresponding to the battery in X time intervals ⁇ T(t,n), n 1, 2, 3...X ⁇ before the target time t, and according to the battery
  • the product of the current in X time intervals before t and the impedance change is accumulated to obtain the polarization voltage at the target time t, where the N time intervals Tn in the relationship table include multiple time intervals T before the target time t (t,n), that is, X time intervals T(t,n) before the target time t is a subset of N time intervals Tn.
  • the current in each time interval before the target time t can be calculated more finely, for example, multi-point sampling of the current in each time interval , And file multiple current sampling results to one of K currents I, and then determine according to the proportion of current sampling points corresponding to each current in the time interval (that is, the duty cycle) Corresponding to the first impedance change amount, and calculate the second impedance change amount that finally participates in the polarization voltage calculation based on the first impedance change amount.
  • the second impedance change amount may be obtained by linear fitting according to the corresponding first impedance change amount, or obtained after multiplying by an aging coefficient.
  • the N time intervals have a gradually increasing trend. That is, the first time interval Tn has the shortest duration, such as 0.1s, based on the characteristic that the greater the impedance change in the time interval closer to the target time t, that is, the corresponding T(t,1) duration is the shortest, so in the specific calculation
  • the instantaneous current at the target time t can be used instead of the average current in the time interval for calculation to reduce the calculation difficulty.
  • the relationship table further includes the aging coefficients a corresponding to the N first impedance changes at each first current I in the K first currents I; the processor Specifically used for: according to the respective currents of the battery in the multiple time intervals, and the N first impedance changes and the corresponding aging coefficient a at each first current I in the relationship table, Calculate the plurality of second impedance changes corresponding to the plurality of time intervals respectively.
  • the relationship table may also include the aging corresponding to each first impedance change.
  • the device further includes a current source and a voltage sampling module; the current source is respectively coupled to the processor and the battery, and is used to generate all signals under the control of the processor.
  • the L second currents of the battery, L is an integer greater than or equal to 1; the voltage sampling module, connected in parallel with the battery, is used for each second current I in the L second currents I,
  • the terminal voltage VBAT of the battery is sampled at M time intervals to obtain multiple sampling terminal voltages, and multiple sampling terminal voltages corresponding to each second current I are fed back to the processor, the M time
  • the sampling interval is a subset of the N time sampling intervals;
  • the processor is further configured to calculate each second current I according to the multiple sampling terminal voltages corresponding to each second current I
  • the M terminal voltage changes corresponding to the M time intervals; based on each of the second currents I and the M terminal voltage changes, calculating the M of each of the second currents I M third impedance changes corresponding to the time interval; based on the M time intervals and
  • the current source and voltage sampling module contained in the device for determining the polarization voltage of the battery in the embodiment of the present invention corresponds to the online measurement of the aging coefficient of the battery in the device, considering that the current source of the device itself can be a battery
  • the current generated is limited and may not be consistent with the K currents corresponding to the relationship table generation stage (such as the laboratory modeling stage). Therefore, when measuring or updating the aging coefficient, you can measure the impedance change under certain current values (second current), and then fit the current value in the relationship table (first current) by linear fitting.
  • the aging coefficient in the relationship table is updated through the online measurement method, so as to further improve Calculate the accuracy of the battery polarization voltage.
  • the duration corresponding to the N time intervals gradually increases. Since the battery is polarized at a certain current value, the change in the polarization voltage is non-linear, that is, when the current is constant, the impedance change corresponding to the change in the polarization voltage is also non-linear. of. However, under the non-linear characteristics of impedance changes, through studying its change characteristics, it is found that the non-linear changes are also regular to follow. For example, within a certain time interval, that is, within a certain period of time, the impedance changes It can be considered linear.
  • the effective time period (the time period that affects the polarization voltage at the target time t) is divided into N time intervals, and the division is based on as much as possible at each time of the N time intervals.
  • the impedance change rate remains unchanged (for example, the curve segment between two inflection points in the impedance change curve).
  • reasonable selection of N time intervals can ensure that the impedance changes within the respective time intervals are linear as much as possible.
  • the embodiment of the present invention uses the above method to ensure the accuracy of calculating the polarization voltage in a linear operation manner, while reducing the amount of calculation, optimizing the calculation model, and improving the calculation efficiency.
  • the impedance change is larger in the time interval closer to the target time t, and the impedance change is smaller in the time interval farther from the target time t.
  • the greater the impedance change that is, the greater the impedance ratio change rate, the smaller the The measurement is performed in time intervals.
  • the measurement will be performed at a larger time interval. Therefore, the time period corresponding to the N time intervals is gradually increasing.
  • an embodiment of the present invention provides a method for determining the polarization voltage of a battery, which may include: monitoring the current of the battery to obtain a monitoring result; The N time intervals under K first currents I and the corresponding N first impedance changes, K is an integer greater than or equal to 1, and N is an integer greater than 1.
  • the monitoring result it is determined that the battery is The currents corresponding to the multiple time intervals before the target time t, and the multiple second impedance changes respectively corresponding to the multiple time intervals are determined according to the relationship table; the currents respectively corresponding to the multiple time intervals, and The plurality of second impedance changes calculate the polarization voltage of the battery at the target time t.
  • the method further includes: calculating the open circuit voltage of the battery at the target time t according to the polarization voltage and the terminal voltage VBAT of the battery at the target time t OCV.
  • the calculating the polarization voltage of the battery at the target time t according to the currents corresponding to the multiple time intervals and the multiple second impedance changes includes: based on a formula Calculate the polarization voltage V P of the battery at the target time t; where I0 is the current value of the battery at the target time t, and ⁇ r T1 is based on the K first currents that match the I0
  • the method further includes: determining the temperature of the battery in the multiple time intervals, and determining the remaining power corresponding to the battery at the target time t .
  • the relationship table includes that the battery is at different temperatures, corresponding to different remaining power, and
  • the polarization voltage of the battery at the target time t includes: based on the formula Calculate the polarization voltage V P of the battery at the target time t; where I0 is the current value of the battery at the target time
  • the relationship table further includes the aging coefficients a corresponding to the N first impedance changes at each first current I in the K first currents I;
  • the determination of the plurality of second impedance changes corresponding to the plurality of time intervals by the relationship table includes: according to the currents corresponding to the battery in the plurality of time intervals, and each of the second impedance changes in the relationship table
  • the N first impedance changes and the corresponding aging coefficient a under a current I are calculated, and the multiple second impedance changes respectively corresponding to the multiple time intervals are calculated.
  • the method further includes: generating L second currents of the battery, where L is an integer greater than or equal to 1, and for each of the L second currents I
  • the second current I is to sample the terminal voltage VBAT of the battery according to M time intervals to obtain multiple sampling terminal voltages, where the M time sampling intervals are a subset of the N time sampling intervals;
  • the plurality of sampling terminal voltages corresponding to the second current I are respectively calculated for the M terminal voltage changes corresponding to the M time intervals under each second current I;
  • the M third impedance changes corresponding to the M time intervals under each second current I are calculated; based on the M third impedance changes under each second current I
  • the time interval and the corresponding M third impedance changes, and the N time intervals and the corresponding N first impedance changes under the K first currents I update each of the first currents
  • the N first impedance changes respectively correspond to the aging coefficient a.
  • the duration corresponding to the N time intervals gradually increases.
  • an embodiment of the present invention provides a device for determining the polarization voltage of a battery, which may include: a first obtaining unit, configured to obtain a relationship table of the battery, the relationship table including that the batteries are in K The N time intervals and the corresponding N first impedance changes under the first current I, K is an integer greater than or equal to 1, and N is an integer greater than 1.
  • the first determining unit is used to determine the value of the battery according to the The current monitoring result determines the currents corresponding to the multiple time intervals of the battery before the target time t, and determines the multiple second impedance changes corresponding to the multiple time intervals according to the relationship table;
  • first The calculation unit is configured to calculate the polarization voltage of the battery at the target time t according to the currents corresponding to the multiple time intervals and the multiple second impedance changes.
  • the device further includes: a second calculation unit, configured to calculate the current of the battery according to the polarization voltage and the terminal voltage VBAT of the battery at the target time t.
  • the open circuit voltage OCV at the target time t is a second calculation unit, configured to calculate the current of the battery according to the polarization voltage and the terminal voltage VBAT of the battery at the target time t.
  • the open circuit voltage OCV at the target time t is a second calculation unit, configured to calculate the current of the battery according to the polarization voltage and the terminal voltage VBAT of the battery at the target time t.
  • the first calculation unit is specifically configured to: based on a formula Calculate the polarization voltage V P of the battery at the target time t; where I0 is the current value of the battery at the target time t, and ⁇ r T1 is based on the K first currents that match the I0
  • the device further includes: a second determining unit, configured to determine the temperature of the battery within the multiple time intervals; and a third determining unit, configured to determine the temperature of the battery The remaining power corresponding to the battery at the target time t.
  • the relationship table includes that the battery is at different temperatures, corresponding to different remaining power, and The N time intervals and the corresponding N first impedance changes under each first current I; the first calculation unit is specifically configured to: based on the formula Calculate the polarization voltage V P of the battery at the target time t; where I0 is the current value of the battery at the target time t, and ⁇ r(Temp, SOC, T1) is based on the temperature of the battery at Temp and the current remaining The amount of
  • the relationship table further includes the aging coefficients a corresponding to the N first impedance changes at each first current I in the K first currents I;
  • the determining unit is specifically configured to: according to the respective currents of the battery in the multiple time intervals, and the N first impedance changes and the corresponding aging at each first current I in the relationship table
  • the coefficient a is to calculate the plurality of second impedance changes corresponding to the plurality of time intervals respectively.
  • the device further includes: a second obtaining unit, which obtains the results obtained by sampling the battery at each second current I of the L second currents I at M time intervals
  • a second obtaining unit which obtains the results obtained by sampling the battery at each second current I of the L second currents I at M time intervals
  • L is an integer greater than or equal to 1
  • the M time sampling intervals are a subset of the N time sampling intervals
  • the third calculation unit is configured to perform according to each second current I Corresponding to the plurality of sampling terminal voltages, respectively calculating the M terminal voltage changes corresponding to the M time intervals under each second current I
  • the fourth calculation unit is configured to calculate based on each second current I I and the M terminal voltage changes, calculating the M third impedance changes corresponding to the M time intervals under each second current I
  • an update unit for calculating the M third impedance changes based on each second current I
  • the duration corresponding to the N time intervals gradually increases.
  • an embodiment of the present invention provides a polarization voltage modeling device, which may include: an adjustable current source component, a voltage sampling module, and a processor; wherein, the adjustable current source component is connected in series with the battery and used For generating K first currents I of the battery, K is an integer greater than or equal to 1; the voltage sampling module, connected in parallel with the battery, is used to target each of the K first currents I A current I, sampling the terminal voltage VBAT of the battery at N time intervals to obtain multiple sampling terminal voltages, and feeding back multiple sampling terminal voltages corresponding to each first current I to the processor, N is greater than An integer of 1; the processor, coupled with the voltage sampling module, is configured to calculate the N terminal voltages corresponding to the N time intervals according to the multiple sampling terminal voltages corresponding to each first current I Changes; based on each of the first current I and the N terminal voltage changes, calculate the N first impedance changes corresponding to the N time intervals; establish that the battery is in the K first The relationship table between the N
  • the processor is specifically configured to: based on a formula Calculate the polarization voltage V P of the battery at the target time t; where I0 is the current value of the battery at the target time t, and ⁇ r T1 is based on the K first currents that match the I0
  • the processor is further configured to: for the case where the current on the battery is each first current I of the K first currents I, determine that the battery The temperature at the N time intervals, and the remaining power corresponding to the battery at the end of the N time intervals is determined.
  • the processor is specifically configured to: establish that the battery is at different temperatures and corresponding to different remaining power, and the N time intervals and corresponding values at the K first currents I The relationship table of the N first impedance changes.
  • the relationship table includes that the battery is at different temperatures, corresponding to different remaining power, and The N time intervals and the corresponding N first impedance changes under each first current I; the processor is specifically configured to: based on the formula Calculate the polarization voltage V P of the battery at the target time t; where I0 is the current value of the battery at the target time t, and ⁇ r(Temp, SOC, T1) is based on the temperature of the battery at Temp and the current remaining The amount of electricity is
  • the device further includes a memory coupled to the processor; the processor is further configured to store the relationship table in the memory.
  • the battery is connected in series with the target resistance; the device further includes a current sampling module, the current sampling module is connected in parallel with the target resistance, and is configured to measure the voltage across the target resistance Sampling to sample the current flowing through the battery.
  • the device further includes a timing control module, which is electrically connected to the voltage sampling module and the current sampling module, and is used to control the voltage sampling module and the current sampling module.
  • the current sampling module performs sampling according to the N time intervals respectively.
  • the device further includes an interface circuit, the interface circuit is electrically connected to the voltage sampling module and the current sampling module, respectively, for connecting the voltage sampling module and the current sampling module The sampling data fed back by the module is sent to the processor.
  • the adjustable current source assembly is connected in series with the battery, and is used to discharge K types of current I to the battery.
  • the duration corresponding to the N time intervals gradually increases.
  • an embodiment of the present invention provides a polarization voltage modeling method, which may include:
  • the terminal voltage VBAT of the battery is sampled at N time intervals to obtain multiple sampling terminal voltages, where N is greater than 1.
  • Respectively calculating the N terminal voltage changes corresponding to the N time intervals according to the multiple sampling terminal voltages corresponding to each of the first currents I;
  • the relationship table is used to calculate the polarization voltage of the battery: including:
  • the relational table is used based on the formula Calculate the polarization voltage V P of the battery at the target time t; where I0 is the current value of the battery at the target time t, and ⁇ r T1 is based on the K first currents that match the I0
  • the method further includes: for the case where the current on the battery is each of the K first currents I, determining that the battery is in the The temperature within the N time intervals, and the remaining power corresponding to the battery at the end of the N time intervals is determined.
  • the establishing the relationship table between the N time intervals and the corresponding N first impedance changes of the battery under the K first currents I includes:
  • a relationship table is established between the N time intervals and the corresponding N first impedance changes under the K first currents I when the battery is at different temperatures and corresponding to different remaining power.
  • the relationship table includes that the battery is at different temperatures, corresponding to different remaining power, and The N time intervals and the corresponding N first impedance changes under each first current I; the relationship table is used to calculate the polarization voltage of the battery: including:
  • the method further includes storing the relationship table.
  • the duration corresponding to the N time intervals gradually increases.
  • the present application provides a terminal, which has the function of implementing any one of the methods for determining the polarization voltage of the battery in the second aspect described above.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the present application provides a terminal, the terminal including any one of the devices for determining the polarization voltage of the battery in the first aspect described above.
  • the terminal may also include a memory for coupling with the device for determining the polarization voltage of the battery, and storing necessary program instructions and data of the processor in the device for determining the polarization voltage of the battery.
  • the terminal may also include a communication interface for the terminal to communicate with other devices or communication networks.
  • the present application provides a computer storage medium that stores a computer program.
  • the computer program is executed by the device for determining the polarization voltage of the battery, the computer program is used to determine the polarization voltage of the battery.
  • the device can execute the process of the method for determining the polarization voltage of the battery as described in any one of the above-mentioned second aspects.
  • an embodiment of the present invention provides a computer program, the computer program including instructions, when the computer program is executed by the device for determining the polarization voltage of the battery, the device for determining the polarization voltage of the battery is executed.
  • the device can execute the process of the method for determining the polarization voltage of the battery according to any one of the foregoing second aspects.
  • the present application provides a chip system including any one of the devices for determining the polarization voltage of the battery in the first aspect described above.
  • the chip system further includes a memory for storing necessary or related program instructions and data of the processor in the device for determining the polarization voltage of the battery.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • Fig. 1 is a schematic diagram of an equivalent circuit of a conventional battery
  • Figure 2 is a graph of the polarization voltage and time of a conventional battery discharge
  • FIG. 3 is a schematic diagram of a system architecture of an application scenario for calculating battery polarization voltage according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a system architecture of another application scenario for calculating the polarization voltage of a battery provided by an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a polarization voltage modeling device provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a device for determining the polarization voltage of a battery provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another device for determining the polarization voltage of a battery provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the impedance of a battery changing with time under constant current according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a time sequence relationship between a modeling phase and a polarization voltage calculation phase according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the impedance of another battery changing with time under constant current according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the correspondence between the actual current value corresponding to the target time t and the impedance change provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of determining the impedance change corresponding to I_(T(t,n)) according to the relationship table provided by an embodiment of the present invention
  • FIG. 13 is a schematic diagram of another correspondence between the time interval before the target time t and the impedance change provided by an embodiment of the present invention.
  • FIG. 14 is another schematic diagram of determining the impedance change corresponding to I_(T(t,n)) according to the relationship table provided by an embodiment of the present invention.
  • 16 is a schematic diagram of another correspondence between the time interval before the target time t and the impedance change provided by an embodiment of the present invention.
  • FIG. 17 is another schematic diagram of determining the impedance change corresponding to I_(T(t,n)) according to the relationship table provided by an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of the relationship between aging coefficient measurement based on a trapezoidal current source according to an embodiment of the present invention.
  • 19 is a schematic diagram of determining the amount of impedance change by linear fitting temperature and remaining power provided by an embodiment of the present invention.
  • FIG. 20 is a schematic flowchart of a polarization voltage modeling method provided by an embodiment of the present invention.
  • 21 is a schematic flowchart of a method for determining the polarization voltage of a battery according to an embodiment of the present invention.
  • FIG. 22 is a schematic structural diagram of another device for determining the polarization voltage of a battery provided by an embodiment of the present invention.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • Integrated Circuit that is, IC chip, is an integrated circuit formed by a large number of microelectronic components (transistors, resistors, capacitors, etc.) on a plastic base to make a chip.
  • the full name is resistance-capacitance circuit (Resistor-Capacitance circuit), namely RC circuit.
  • the primary RC circuit consists of a resistor and a capacitor. According to the arrangement of resistance and capacitance, it can be divided into RC series circuit and RC parallel circuit; simple RC parallel connection cannot resonate, because resistance does not store energy, LC parallel connection can resonate.
  • RC circuits are widely used in analog circuits and pulse digital circuits. If RC parallel circuits are connected in series in the circuit, they can attenuate low-frequency signals. If they are connected in parallel in the circuit, they can attenuate high-frequency signals, that is, filtering.
  • Impedance In a circuit with resistance, inductance and capacitance, the hindrance to the current in the circuit is called impedance. Impedance is often represented by Z, which is a complex number. The real part is called resistance, and the imaginary part is called reactance. The hindering effect of capacitance on alternating current in the circuit is called capacitive reactance, and the hindering effect of inductance on alternating current in the circuit is called For inductive reactance, the obstructive effect of capacitance and inductance on alternating current in a circuit is collectively called reactance. The unit of impedance is ohm.
  • MIPS Million Instructions Per Second
  • Duty ratio refers to the ratio of the power-on time to the total time in a pulse cycle.
  • the duty cycle has the following meanings in the telecommunications field: for example, the duty cycle of a pulse sequence with a pulse width of 1 ⁇ s and a signal period of 4 ⁇ s is 0.25.
  • the duty cycle refers to the ratio of the time corresponding to a certain magnitude of current to the time interval in a time interval.
  • the current source that is, the ideal current source, is a model abstracted from the actual power source. Its terminal button can always provide a certain current to the outside regardless of the voltage across it.
  • the current source has two basic properties. : First, whether the current it provides is a fixed value I or a certain time function I(t) has nothing to do with the voltage at both ends. Second, the current of the current source itself is determined, and the voltage across it is arbitrary. Since the current of the current source is fixed, the current source cannot be disconnected. When the current source is connected in series with the resistor, the effect of the external circuit is the same as that of a single current source.
  • FIG. 3 is a schematic diagram of a system architecture of an application scenario for calculating battery polarization voltage provided by an embodiment of the present invention.
  • the system architecture includes at least one server 10 and a plurality of terminals 20, where the server 10 may include
  • the polarization voltage modeling device 101 in this application is used by the server 10 to generate the relationship table in this application during the modeling phase; the terminal 20 may include the battery determination in this application
  • the device 201 for determining the polarization voltage of the battery can calculate the polarization voltage of the battery in the terminal by linear operation according to the relationship table provided by the polarization voltage modeling device 101.
  • the server 10 performs batch pre-installation of firmware for other terminals 20 of the same model as the terminal.
  • the firmware may include the relationship table used for calculating the battery polarization voltage in the present application, and the relationship table is stored in the internal storage unit 202 of the terminal 20, such as a read-only memory (Read-Only Memory, ROM), that is, This is the place where the system firmware and software of the terminal 20 are installed by default, and these firmware (including the relationship table) cannot be read and written at will before the root authority is obtained.
  • ROM Read-Only Memory
  • the terminal 20 can use the device 201 for determining the polarization voltage of the battery to calculate the polarization voltage of the battery 203 coupled to it using the relationship table stored in the storage unit 202, so that the battery 203 can be calculated. Power supply capacity forecast or battery management. It can be understood that the above relationship table may also be stored in the internal memory of the device 201 for determining the polarization voltage of the battery, which is not specifically limited in the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a system architecture of another application scenario for calculating the polarization voltage of a battery provided by an embodiment of the present invention.
  • the terminal 20 can connect to the wireless network through the wireless communication link 30 provided by the mobile communication unit 204.
  • An access network (Radio Access Network, RAN) 40 is connected to the Internet to interact with the polarization voltage modeling device 101 in the server 10.
  • RAN Radio Access Network
  • the server 10 remotely updates or upgrades the relationship table stored in the storage unit 202 of the terminal 20 via the Internet. That is, after the terminal 20 leaves the factory, it can access the wireless access network 40 through the wireless communication link 30 provided by the mobile communication unit 204, thereby accessing the Internet to download the information provided by the polarization voltage modeling device 101 in the server 10
  • the updated relationship table, and the relationship table stored in the storage unit 202 is replaced and upgraded.
  • the terminal 20 does not store the relationship table before leaving the factory, and does not have the relevant function of calculating the battery polarization voltage, it can also be retrieved through the above-mentioned upgrade method. Further, the terminal 20 can also upgrade other firmware or software in this way to improve the terminal system.
  • system architectures corresponding to the foregoing application scenarios are only a few exemplary implementations in the embodiments of the present invention, and the application scenarios and corresponding system architectures in the embodiments of the present invention include but are not limited to the foregoing.
  • FIG. 5 is a schematic structural diagram of a polarization voltage modeling device provided by an embodiment of the present invention.
  • the device 101 can be used to generate a relationship table during the polarization voltage modeling stage, and can specifically include an adjustable current source.
  • Each module can be a circuit structure, and the above structure can be located in one or more ICs. among them,
  • the adjustable current source assembly 1011 is connected in series with the battery 203 and is used to generate K first currents I flowing through the battery 203, where K is an integer greater than or equal to 1.
  • the adjustable current source component 1011 may be a component composed of a plurality of fixed constant current sources, or a variable ladder-shaped current source, which is used to generate a plurality of different sizes of the current source flowing through the battery 203.
  • a current For example, assuming that the battery has a capacity of 1000mA, the K first currents can be 200mA, 0.15C, 0.4C, and 1C, respectively, where 0.15C, 0.4C, and 1C are 150mA, 400mA, and 1000mA, respectively.
  • the adjustable current source component 1011 can charge the battery 203 with K first currents, or can discharge the battery 203 with K first currents, that is, the K first currents mentioned above can refer to charging currents or charging currents.
  • the discharge current which can be set according to the actual calculation scenario of the battery polarization voltage. It is understandable that the magnitudes of the above K first currents can be selected differently according to different types or different capacities of batteries, that is, the value of K and the value of the first current I are not specifically limited in the embodiment of the present invention.
  • the voltage sampling module 1012 can sample voltages at (N+1) moments corresponding to N time intervals to obtain (N+1) sampling terminal voltages, for example, at t0, t1, t2, t3, At t4...tN-1, tN, the terminal voltage is sampled respectively, that is, N time intervals Tn respectively correspond to the time periods t0 ⁇ t1, t1 ⁇ t2, t2 ⁇ t3, t3 ⁇ t4...tN-1 ⁇ tN.
  • the actual output terminal voltage change is caused by the electrode polarization of the battery, that is, the terminal voltage accumulated by the battery at the current moment.
  • the amount of change is the polarization voltage of the battery at the current moment. Since the ratio of the polarization voltage to the current can be calculated as the polarization impedance, in the modeling phase, it is possible to measure the impact of the polarization voltage at the time of measurement under different conditions (such as different temperatures, remaining power, and current) of the battery.
  • the terminal voltage change in the effective time period is used to calculate the corresponding polarization impedance parameter; when the polarization voltage needs to be calculated, it can be based on the actual current of the battery 203 in the above effective time period and the polarization impedance corresponding to the actual current Calculate the polarization voltage by reverse calculation.
  • the change in the polarization voltage is non-linear, that is, when the current is constant, the change in the polarization voltage corresponds to the change in impedance. It is also non-linear. However, under the non-linear characteristics of impedance changes, through studying its change characteristics, it is found that the non-linear changes are also regular to follow.
  • the effective time period (the time period that affects the polarization voltage at the measurement time such as t0) is divided into N time intervals, and the division is based on each of the N time intervals as much as possible.
  • N time intervals ensure that the impedance change rate remains unchanged (for example, the curve segment between two inflection points in the impedance change curve).
  • N time intervals are reasonably selected to ensure that the impedance changes within the respective time intervals are linear as much as possible.
  • the embodiment of the present invention uses the above method to ensure the accuracy of the subsequent calculation of the polarization voltage in a linear operation manner, while reducing the amount of calculation, optimizing the calculation model, and improving the calculation efficiency.
  • the impedance change is as linear as possible. It is understandable that in the generation stage of the relationship table, the greater the impedance change, that is, the greater the impedance ratio change rate, the shorter the time will be Measurements are performed at intervals.
  • the measurement will be performed at a larger time interval. Therefore, the time period corresponding to the N time intervals is gradually increasing. For example, within the effective time period of 20 minutes, start with the initial sampling time t0 as 0, and set N time intervals as 0 ⁇ 0.1s, 0.1s ⁇ 0.5s, 0.5s ⁇ 1.5s, 1.5s ⁇ 3s, 3s ⁇ 5s, 5s ⁇ 15s,...,500s ⁇ 1200s.
  • the processor 1013 coupled with the voltage sampling module 1012, is configured to calculate the N terminals corresponding to the N time intervals according to the multiple sampling terminal voltages corresponding to each first current I sampled by the voltage sampling module 1012 Voltage change; based on each of the first current I and the N terminal voltage changes, calculate the N first impedance changes corresponding to the N time intervals; establish that the battery is in the K type A relationship table between the N time intervals and the corresponding N first impedance changes under a current I; wherein the relationship table is used to calculate the polarization voltage of the battery.
  • the processor 1013 After the processor 1013 receives the sampling terminal voltage fed back by the voltage sampling module 1012, according to the sampling terminal voltage and the corresponding sampling time, it calculates the corresponding terminal voltage changes in N time intervals, and then according to the current adjustable The current generated by the current source component 1011 to the battery can be calculated to obtain the corresponding N first impedance changes in N time intervals under the current, where one time interval corresponds to one first impedance change. That is, the relationship table contains the N first impedance changes corresponding to the N time intervals under each first current I in the above K first currents. So far, the processor 1013 generates the The linear impedance modeling parameter is the relationship table.
  • the processor 1013 is further configured to: for each first current I flowing through the battery 203 (that is, each first current among the K first currents) , Determine the temperature of the battery 203 in the N time intervals, and the corresponding remaining power SOC at the end of the N time intervals. Since the battery 203 is also affected by temperature and the remaining power SOC during the charging or discharging process, the processor 1013 further detects that the battery 203 is at K at different temperatures and different remaining power SOCs during the generation stage of the relationship table.
  • the first impedance changes in the N time intervals under the first current I respectively correspond to the first impedance changes, thereby establishing that the battery 203 is at different temperatures and corresponding to different remaining power, and all of the K first currents I
  • the relationship table between the N time intervals and the corresponding N first impedance changes In this way, in the subsequent stage of calculating the polarization voltage, the polarization voltage can be calculated more accurately according to the temperature of the battery, the remaining power SOC, and the actual current.
  • the processor 1013 may determine the temperature of the battery through a temperature sensing module inside the battery 203, and calculate the remaining power of the battery 203 according to the magnitude and duration of the charging/discharging current of the battery 203.
  • the apparatus 101 further includes a memory 1014 coupled to the processor 1013; the processor 1013 is further configured to store the relationship table in the memory 1014.
  • the memory 1014 may be a read only memory (Read Only Memory, ROM) or a non-power-down volatile memory, such as a programmable ROM (Programmable ROM, PROM), an erasable programmable ROM (Erasable Programmable ROM, EPROM), and a power-off volatile memory.
  • Erase programmable ROM ElectricallyErasableProgrammableROM, EEPROM
  • flash ROM FLASH ROM
  • the memory 1014 may also store other related firmware in the terminal 20.
  • the battery 203 is connected in series with the target resistor 1016; the device 101 further includes a current sampling module 1015, which is connected in parallel with the target resistor 1016 for detecting the voltage across the target resistor 1016 , To sample the current flowing through the battery 203.
  • the current sampling module 1015 can feed back the sampling current corresponding to the above-mentioned voltage sampling module 1012 when the terminal voltage is sampled to the processor 1013, so that the processor 1013 can calculate the first impedance change in the corresponding time interval.
  • the current sampling module 1015 can also ensure that the adjustable current source assembly 1011 is accurate when generating the K first currents on the battery, that is, it detects whether the current passing through the battery 203 is the same as the adjustable battery source assembly 1011 as the battery 203. The first current generated is consistent. To ensure the accuracy of the calculation of the first impedance change.
  • the device 101 further includes a timing control module 1017, which is electrically connected to the voltage sampling module 1012 and the current sampling module 1015, respectively, for controlling the voltage sampling module 1012 and the current sampling module 1015, respectively Sampling is performed according to the N time intervals.
  • the timing control module 1017 can control the voltage sampling module 1012 and the current sampling module 1015 to perform voltage or current sampling according to N preset time intervals.
  • the device 101 further includes an interface circuit 1018, which is electrically connected to the voltage sampling module 1012 and the current sampling module 1015, respectively, and is used for sampling feedback from the voltage sampling module 1012 and the current sampling module 1015.
  • the terminal voltage and the sampling current are sent to the processor 1013 respectively.
  • the interface circuit 1018 can be regarded as a logic circuit that functions as a connection between the processor 1013, the voltage sampling module 1012 and the current sampling module 1015, and is used to interact with the sampling terminal voltage and the sampling current of the battery.
  • the structure of the polarization voltage modeling device 101 described above is only an exemplary implementation provided by the embodiment of the present invention, as long as it can realize the function of each functional module in the voltage modeling device 101 described above, thereby generating the above-mentioned voltage modeling device 101.
  • the device structure for linearly calculating the relationship table of the polarization voltage belongs to the protection category of this application.
  • FIG. 6 is a schematic structural diagram of a device for determining the polarization voltage of a battery according to an embodiment of the present invention.
  • the device 201 for determining the polarization voltage of the battery can be used to calculate the polarization of the battery.
  • the voltage may specifically include a current sampling module 2011 and a processor 2012; optionally, as shown in FIG. 7,
  • FIG. 7 is a schematic structural diagram of another device for determining the polarization voltage of a battery according to an embodiment of the present invention.
  • the device 201 may further include a memory 2013, a current source 2014, and a voltage sampling module 2015, where each part in FIG. 6 or FIG. 7 may be a circuit structure, and the above structure may be located in one or more ICs.
  • the current sampling module 2011 is located in one IC, the processor 2012 is located in another IC, and the memory 2013 is located in the third IC.
  • the current source 2014 and the voltage sampling module 2015 may be located in the same or different ICs as the current sampling module 2011.
  • Each circuit structure may include at least one of a digital or analog circuit, for example, a digital-analog hybrid circuit.
  • the current sampling module 2011 is coupled with the battery 203, and is used to monitor the current of the battery 203 to obtain a monitoring result, and feed back the monitoring result to the processor 2012. It is understandable that the battery 203 in the embodiment of the present invention and the battery 203 detected by the polarization voltage modeling device 101 in FIG. 5 refer to batteries of the same model or the same electrode polarization characteristics, and may not refer to the same battery. . It should be noted that, although different constant currents are generated for the battery 203 in the modeling stage of the polarization voltage modeling device 101, the current of the battery 203 may be unstable and change in real time during the actual use of the battery 203. Therefore, when the current sampling module 2011 needs to calculate the polarization voltage of the battery 203, it collects the current of the corresponding time interval so as to determine the corresponding impedance change according to the current, thereby calculating the polarization voltage.
  • the processor 2012 coupled to the current sampling module 2011, is configured to obtain a relationship table of the battery 203, the relationship table including N time intervals of the battery 203 under K first currents I and corresponding N first impedance changes K is an integer greater than or equal to 1, and N is an integer greater than 1.
  • K is an integer greater than or equal to 1
  • N is an integer greater than 1.
  • determine the current corresponding to the battery 203 at multiple time intervals before the target time t determine the current according to the relationship table.
  • the multiple second impedance changes corresponding to the multiple time intervals respectively; and the polarization voltage of the battery 203 at the target time t is calculated according to the currents corresponding to the multiple time intervals and the multiple second impedance changes respectively.
  • the polarization voltage is calculated according to the current collected by the current sampling module 2011 and the impedance change corresponding to the time interval at different currents in the relationship table.
  • the multiple time intervals are the N time intervals, that is, there is a one-to-one correspondence between the time interval in the modeling phase and the time interval in the polarization voltage calculation phase.
  • the polarization voltage of the battery at a certain time (such as the target time t) is regarded as being within a certain period of time before the target time t.
  • the cumulative sum of several polarization voltage components (the product of current and impedance change) that affect the polarization voltage at the target time t. Therefore, by using the polarization impedance parameters (including multiple first impedance changes corresponding to the battery under different currents) in the pre-established relationship table of the polarization voltage modeling device 101 in FIG.
  • the embodiment of the present invention calculates the polarization voltage, linear calculation is performed based on the corresponding relationship between the current I, the time interval, and the impedance change in the relationship table (for example, the current in different time intervals is multiplied by the impedance change and then Cumulative).
  • the calculation amount of the embodiment of the present invention is reduced, thereby consuming less MIPS resources, lower power consumption, and optimizing the calculation model of the polarization voltage. Improved the calculation efficiency of polarization voltage.
  • the processor 2012 is further configured to: calculate the open circuit voltage OCV of the battery at the target time t according to the polarization voltage and the terminal voltage VBAT of the battery 203 at the target time t .
  • the battery open circuit voltage OCV battery terminal voltage VBAT + battery polarization voltage Vp
  • the battery open circuit voltage OCV is calculated to further realize the terminal switch-on strategy, Battery power calculation, battery power supply capability prediction and other functions.
  • the device 201 further includes a memory 2013, which is coupled with the processor 2012, and is configured to store the relationship table; the processor 2012 is specifically configured to obtain the relationship table of the battery 203 from the memory 2013 .
  • the relationship table for calculating the battery polarization voltage is stored in the memory 2013 of the device 201, so that the device 201 can directly read from the local memory 2013 when the device 201 needs to calculate the battery polarization voltage. Just export the relationship table.
  • the processor 2012 is specifically used for:
  • the N time intervals Tn in the relationship table include multiple time intervals T(t,n) before the target time t, that is, before the target time t X time intervals T(t,n) are a subset of N time intervals Tn.
  • the second impedance changes corresponding to X time intervals T(t,n) can be calculated according to the first impedance changes corresponding to part or all of the N time intervals Tn in the relationship table. the amount.
  • the first current I is respectively I1, I2, I3, and I4
  • the N time intervals are respectively T1, T2, T3, T4, ... T17
  • the corresponding first impedance changes are ⁇ R T1 , ⁇ R T2 , ⁇ R T3 respectively , ⁇ R T4 — ⁇ R T17 .
  • the polarization voltage of the battery 203 at the target time t is regarded as X time intervals before the target time t.
  • the average current in the interval corresponds to the impedance change
  • the product of the average current in X time intervals before the target time t and the corresponding impedance change is accumulated to obtain the polarization voltage of the battery 203 at the target time t
  • the N time intervals Tn in the relationship table correspond to X time intervals T(t,n) before the target time t, that is, T(t,n) and Tn Are equal in duration.
  • the X time intervals gradually increase from the target time t, that is, corresponding to T(t, 1 )
  • the shortest time is like 0.1s. Therefore, when calculating the polarization voltage component in the first time interval, the instantaneous current at the target time t can be used instead of the average current in the time interval for calculation to reduce the calculation difficulty.
  • the processor 2012 is further configured to determine the temperature of the battery 203 within the multiple time intervals, and determine the remaining power corresponding to the battery 203 at the target time t.
  • the processor 2012 considering that the polarization voltage of the battery 203 is also affected by the ambient temperature and the remaining battery power SOC, in the process of calculating the polarization voltage of the battery, the current environment of the battery 203 is further determined. The temperature and the current remaining power SOC of the battery 203 are used to further accurately calculate the polarization voltage of the battery 203 at the target time t.
  • the polarization voltage of the battery 203 at the target time t is regarded as X time intervals before the target time t.
  • the cumulative sum of X polarization voltage components (the product of current and impedance change) affected by the polarization voltage of t, and taking into account factors such as temperature and remaining power, the calculation accuracy of the polarization voltage is higher.
  • the relationship The N time intervals Tn in the table include multiple time intervals T(t,n) before the target time t, that is, multiple time intervals T(t,n) before the target time t are N time intervals Tn Subset.
  • the relationship table contains the impedance changes corresponding to the battery 203 at different temperatures, different remaining power, and different currents in the N time intervals.
  • the current in each time interval before the target time t can be calculated in a more detailed manner. For example, multi-point sampling is performed on the current in each time interval, and the multiple current sampling results are respectively archived to one of K types of current I, and then according to the number of current sampling points corresponding to each current at that time The ratio of the accounted for in the interval (that is, the duty cycle) is determined to correspond to the first impedance change, and the second impedance change that finally participates in the polarization voltage calculation is calculated according to the first impedance change.
  • the second impedance change amount may be obtained by linear fitting according to the corresponding first impedance change amount, or obtained after multiplying by an aging coefficient.
  • the N time intervals have a gradually increasing trend, that is, the first time interval Tn has the shortest duration, such as 0.1s. Based on the characteristic that the impedance change in the time interval closer to the target time t is larger, it is also That is, the corresponding T(t,1) duration is the shortest. Therefore, when calculating the polarization voltage component in the first time interval, the instantaneous current at the target time t can be used instead of the average current in the time interval to calculate. Reduce the difficulty of calculation.
  • the relationship table further includes the aging coefficients a corresponding to the N first impedance changes under each first current I in the K first currents I; the processor 2012 specifically It is used to calculate the corresponding currents of the battery 203 in the multiple time intervals, and the N first impedance changes and the corresponding aging coefficient a at each first current I in the relationship table.
  • the plurality of second impedance changes corresponding to the plurality of time intervals respectively.
  • the relationship table may also include the corresponding corresponding to each first impedance change.
  • the device 201 further includes a current source 2014 and a voltage sampling module 2015; the current source 2014 is respectively coupled to the processor 2012 and the battery 203, and is used to generate the L of the battery 203 under the control of the processor 2012
  • the second current, L is an integer greater than or equal to 1.
  • the current source 2014 is a ladder current source.
  • the voltage sampling module 2015 connected in parallel with the battery 203, is configured to sample the terminal voltage VBAT of the battery according to M time intervals for each second current I in the L second currents I to obtain multiple sampling terminals Voltage, and feed back multiple sampling terminal voltages corresponding to each second current I to the processor, the M time sampling intervals are a subset of the N time sampling intervals, that is, N time sampling intervals
  • the processor 2012 is further configured to calculate the M corresponding to the M time intervals under each second current I according to the multiple sampling terminal voltages corresponding to each second current I Each terminal voltage change; based on each second current I and the M terminal voltage changes, calculate the M third impedance changes corresponding to the M time intervals under each second current I ⁇ ; Based on the M time intervals and the corresponding M third impedance changes under each second current I, and the N time intervals and the corresponding K first currents I The N first impedance changes are used to update the aging coefficient a corresponding to the N first impedance changes under each first current.
  • the current source 2014 and the voltage sampling module 2015 contained in the device 201 for determining the polarization voltage of the battery in the embodiment of the present invention correspond to the on-line measurement of the battery aging coefficient in the device 201, and the planned voltage modeling device The function and operation of 101 are similar. Considering that the current source 2014 of the device 201 itself can generate a limited amount or type of current for the battery, it may be inconsistent with the K types of currents corresponding to the relationship table generation stage (such as the laboratory modeling stage).
  • the aging coefficient in the relationship table is updated through the online measurement method to facilitate further Improve the accuracy of calculating battery polarization voltage.
  • the duration corresponding to the N time intervals gradually increases. Since the battery is polarized at a certain current value, the change in the polarization voltage is non-linear, that is, when the current is constant, the impedance change corresponding to the change in the polarization voltage is also non-linear. of. However, under the non-linear characteristics of impedance changes, through studying its change characteristics, it is found that the non-linear changes are also regular to follow. For example, within a certain time interval, that is, within a certain period of time, the impedance changes It can be considered linear.
  • the effective time period (the time period that affects the polarization voltage at the target time t) is divided into N time intervals, and the division is based on as much as possible at each time of the N time intervals.
  • the impedance change rate remains unchanged (for example, the curve segment between two inflection points in the impedance change curve).
  • reasonable selection of N time intervals can ensure that the impedance changes within the respective time intervals are linear as much as possible.
  • the embodiment of the present invention uses the above method to ensure the accuracy of calculating the polarization voltage in a linear operation manner, while reducing the amount of calculation, optimizing the calculation model, and improving the calculation efficiency.
  • the impedance change is larger in the time interval closer to the target time t, and the impedance change is smaller in the time interval farther from the target time t.
  • the greater the impedance change that is, the greater the impedance ratio change rate, the smaller the The measurement is performed in time intervals.
  • the measurement will be performed at a larger time interval. Therefore, the time period corresponding to the N time intervals is gradually increasing.
  • FIG. 8 is a schematic diagram of the impedance of a battery changing with time under constant current according to an embodiment of the present invention; combined with the structure of the polarization voltage modeling device 101 in FIG. 5, in FIG. 8, if the polarization is The voltage modeling device 101 starts to measure the battery terminal voltage from time t0, then the N time intervals T1, T2, T3, T4,..., TN correspond to the time period corresponding to the time-based sequence t0 ⁇ t1, t1 ⁇ t2 , T2 ⁇ t3, t3 ⁇ t4...t(N-1) ⁇ tN, corresponding to (N+1) times.
  • the voltage sampling module 1012 in the polarization voltage modeling device 101 obtains (N+1) sampling terminal voltages according to the above-mentioned (N+1) time t0, t1, t2, t3, ... tN, respectively, Vbat(t0) , Vbat(t1), Vbat(t2), Vbat(t3),...Vbat(tN).
  • the N time intervals T1, T2, T3, T4,..., TN can be calculated separately for each of the K types of currents.
  • the first impedance changes ⁇ R T1 , ⁇ R T2 , ⁇ R T3 , ⁇ R T4 , ..., ⁇ R TN .
  • N time intervals Tn corresponding to the N first impedance variation referred to as ⁇ R T1, ⁇ R T2, ⁇ R T3 , ⁇ R T4, «, ⁇ R TN for convenience of distinction, while the In the subsequent calculation of the polarization voltage, the second impedance change calculated according to the corresponding first impedance change is recorded as ⁇ r T1 , ⁇ r T2 , ⁇ r T3 , ⁇ r T4 , ..., ⁇ r TN , and will not be repeated in the following.
  • the calculated impedance change is ⁇ R T2
  • ⁇ R T2 (Vbat(t2)-Vbat(t1))/I
  • FIG. 9 is a schematic diagram of the timing relationship between the modeling phase and the polarization voltage calculation phase according to an embodiment of the present invention. It can be seen from FIG. 9 that the modeling of the polarization voltage modeling device 101 At this stage, the voltage sampling module 1012 samples the terminal voltage in N time intervals T1, T2, T3, ...
  • the impedance changes corresponding to the N time intervals are ⁇ R T1 , ⁇ R T2 , ⁇ R T3 , ⁇ R T4 ,..., ⁇ R TN ; while the device 201 for determining the polarization voltage of the battery determines the polarization voltage Vp(t) of the battery 203 at the target time t, it is first necessary to determine the phase before the target time t After the multiple time intervals, the impedance change corresponding to each time interval is determined according to the corresponding currents in the multiple time intervals, and finally the polarization voltage at the target time t is calculated.
  • the remaining power SOC at the target time t corresponds to the remaining power at time TN in the modeling phase, for example, the current battery 203 If the remaining power is 50%, then it corresponds to the relationship table to find the impedance change when the remaining power is 50% at the time of TN.
  • FIG. 10 is a schematic diagram of the impedance of another battery changing with time under constant current according to an embodiment of the present invention
  • the first impedance change corresponding to the time interval T(t,1) is the first impedance change ⁇ R T1 corresponding to the time interval T1 in the modeling phase
  • the time interval T( The first impedance change corresponding to t,2) is the first impedance change ⁇ R T2 corresponding to the time interval T2 of the modeling stage
  • the first impedance change corresponding to the time interval T(t,3) is the modeling stage a first impedance change amount [Delta] R corresponding to the time interval T3 T3
  • the time interval T (t, N) corresponding to a first variation of the impedance change amount [Delta] R is the impedance of the first modeling phase corresponding to a time interval TN TN .
  • the current of the battery 203 before the target time t is usually not constant, but changes in real time
  • the ⁇ R T1 and ⁇ R T2 calculated in the modeling stage , ⁇ R T3 , ⁇ R T4 , ..., ⁇ R TN are a series of impedance changes under a certain current I (in an ideal state, it can be considered as a constant current).
  • FIG. 11 is a schematic diagram of the corresponding relationship between the actual current value corresponding to the target time t and the impedance change provided by an embodiment of the present invention.
  • T(t,n) time intervals
  • FIG. 12 is a schematic diagram of determining the impedance change corresponding to I T(t, n) according to the relationship table provided by an embodiment of the present invention.
  • K is equal to 4
  • the average current in this time interval can also be considered as the instantaneous current at the target time t , That is, I0 in the aforementioned formula 1 in this application. At this time, it is only necessary to find the corresponding ⁇ R T1 according to the size of I0.
  • FIG. 13 is another schematic diagram of the correspondence between the time interval before the target time t and the impedance change provided by the embodiment of the present invention.
  • N the monitoring results of the battery 203 are filed in a more detailed manner, and the actual current sampling value I(t′) in each time interval is matched with one or more first currents, so that the polarization voltage is The calculation result is more accurate.
  • the dotted line in the upper part is the multiple actual current sampling values I(t′) in the monitoring result, and the solid line part is the matched at least one first current (in Fig. 13 with two first current I1 and I2 are examples).
  • the current sampling module 2011 samples 10 current values in real time at T(t,1), and K types are the first In the current, K is equal to 4.
  • the current value is sampled 10 times, and 4 of them are The current sampling value (such as 158mA, 165mA, 155mA, 149mA) is classified into the I2 file, that is, the current sampling value closer to 160mA among the current sampling values is classified into the 160mA file, and the 6 current sampling values (such as 50mA, 58mA) , 64mA, 70mA, 65mA, 77mA) are classified into the I1 file, that is, the current sampling value closer to the 60mA among the current sampling values is classified into the 60mA file. As shown in FIG. 14, FIG.
  • FIG. 14 is another schematic diagram of determining the impedance change corresponding to I T(t, n) according to the relationship table provided by an embodiment of the present invention.
  • X N
  • the corresponding first impedance changes in the time interval T(t,1) are respectively calculated according to the first impedance change ⁇ R T1 corresponding to the current I2 (such as multiplying by The second impedance change ⁇ r(T1, I2) (see the lower part of Figure 13) and the first impedance change ⁇ R T1 corresponding to the current I1 are calculated (e.g.
  • the second impedance change ⁇ r(T1, I1) (see the lower part of Fig. 13); in the same way, assume that the time interval T(t, 2), assuming that the time interval is 0.5s, and the current sampling module 2011 has sampled the current value 30 times, then 18 of the current sampling values (such as 50mA, 60mA, 70mA, 60mA, 45mA, etc.) are classified into I1 , Which is to classify the current sampling value closer to 60mA in the current sampling value to 60mA, and classify 12 current sampling values (such as 150mA, 160mA, 170mA, 120mA, 145mA, etc.) into I2, that is, current sampling The current sampling value closer to 160mA among the values is classified into the 160mA file.
  • the current sampling values such as 50mA, 60mA, 70mA, 60mA, 45mA, etc.
  • the corresponding second impedance changes in the time interval T(t,2) are respectively, according to the current I1 corresponding to the first
  • the impedance change ⁇ R T2 is calculated (such as multiplying by the aging coefficient a or performing linear fitting, etc.).
  • the second impedance change ⁇ r(T2, I1) (see the lower part of Figure 13), and corresponding to the current I2
  • the first impedance change ⁇ R T2 is calculated (for example, multiplied by the aging coefficient a or linear fitting, etc.) to obtain the second impedance change ⁇ r(T2, I2) (see the lower part of Fig. 13).
  • T(t, 2) in the above example, there are a total of 30 current sampling values, of which 18 current sampling values match I1 and 12 current sampling values match I2, then I(T(t, 2), I1) corresponds to the average current value of the above-mentioned 18 actual current sampling values, I(T(t, 2), I2) corresponds to the average value of the above-mentioned 12 actual current sampling values, and because in the time interval T( In t, 2), the number of current sampling values matching the first current I3 and the first current I4 can be regarded as 0, that is, no current sampling value matches the two gears, so in the time interval T(t,2) It can be considered that I(T(t, 2), I3) and I(T(t, 2), I4) correspond to duty ratio ratio
  • each time interval T is two types, namely I1 and I2, but in actual situations, each time interval T may be The number and type of the first current corresponding to (t, n) may be different.
  • FIG. 16 is a schematic diagram of another corresponding relationship between the time interval before the target time t and the impedance change provided by an embodiment of the present invention.
  • X N
  • the difference between Fig. 16 and Fig. 13 is that since the time length in T(t,1) before the target time t is short (the shortest among N time intervals), the average current in this time interval can also be considered as the target
  • the instantaneous current at time t is I0 in the aforementioned formula 2 in this application.
  • FIG. 17 FIG. 17, FIG.
  • FIG. 17 is another schematic diagram of determining the impedance change corresponding to I T (t, n) according to the relationship table provided by an embodiment of the present invention.
  • the battery 203 is in the time interval T (t, 1
  • the corresponding second impedance change in) is the second impedance change calculated (such as multiplying by the aging coefficient a or performing linear fitting, etc.) according to the first impedance change ⁇ R T1 filed under I1 according to the instantaneous current at the target time t
  • the amount ⁇ r T1 is another schematic diagram of determining the impedance change corresponding to I T (t, n) according to the relationship table provided by an embodiment of the present invention.
  • the battery 203 is in the time interval T (t, 1
  • the corresponding second impedance change in) is the second impedance change calculated (such as multiplying by the aging coefficient a or performing linear fitting, etc.) according to the first impedance change ⁇ R T1 filed under I1 according to the instantaneous current
  • FIG. 18 is a schematic diagram of the relationship between aging coefficient measurement based on a trapezoidal current source provided by an embodiment of the present invention.
  • the upper part of FIG. 18 is the current source 2014 in the device 201 for determining the polarization voltage of the battery.
  • the lower part in FIG. 18 is the measurement of the terminal voltage VBAT of the battery for each of the above-mentioned L types of second currents. Among them, between time 0 and time 4 is for the second current I1.
  • the measurement of the change in the terminal power of the battery in 4 time intervals is the measurement of the change in the terminal power of the battery in the 3 time intervals for the second current I2 between time 4 and time 7.
  • the time is the measurement of the change in the terminal power of the battery for 3 time intervals of the second current I3, and the measurement of the change in the terminal power of the battery for 2 time intervals of the second current I4 between time 10 and time 12 . That is, for different second currents I, the corresponding M time intervals may be the same or different.
  • the M time intervals are a subset of the N time sampling intervals, that is, the number of M and N may be different, but each time interval of the M time intervals is One of the M time intervals is consistent. According to the VBAT voltage sampled by the above-mentioned trapezoidal current, the vector modeling aging coefficient can be calculated.
  • Aging coefficient a(k, Tn) ( ⁇ V(Tn)/Ik)/ ⁇ R(Tn,Ik), k represents the k-th first current among the K first currents, and Tn represents the N times For the nth time interval in the interval, a(k, Tn) represents the aging coefficient for the nth time interval under the first current Ik.
  • the specific calculation method can be through the second current I(l) in Fig.
  • the second impedance change the corresponding aging coefficient a(k, Tn) ⁇ the corresponding first impedance change, that is, the second impedance change actually involved in the calculation of the polarization voltage is Multiply the resistance change amount corresponding to the first group of resistance changes by the aging coefficient.
  • FIG. 19 is a schematic diagram of determining impedance change by linear fitting temperature and remaining power provided by an embodiment of the present invention.
  • the temperature temp and remaining power SOC corresponding to battery 203 are not corresponding to the relationship table
  • the current temperature and SOC are fitted between two temperatures in the relationship table by two-dimensional linear fitting, and the current remaining power SOC is fitted between the two remaining power levels in the relationship table .
  • ⁇ R(Temp m-1 ,SOC m ,Ik), ⁇ R(Temp m ,SOC m ,Ik), ⁇ R(Temp m-1 ,SOC m-1 ,Ik), ⁇ R(Temp m , SOC m-1 , Ik) are the four combinations of temperatures Temp m-1 , Temp m, and remaining power SOC m and SOC m-1 that already exist in the relationship table, which can be found in the relationship table The parameters of temperature and remaining power, and the current Temp and SOC of the battery 203 cannot be found in the relationship table.
  • ⁇ R(Temp m-1 ,SOC m ,Ik), ⁇ R(Temp m ,SOC m ,Ik), ⁇ R(Temp m-1 ,SOC m-1 ,Ik), ⁇ R(Temp m ,SOC m-1 , Ik) is the first impedance change corresponding to the battery temperature Temp, the current remaining power is SOC, the current is Ik, and the time interval Tn, and ⁇ r(Temp, SOC, Ik) is based on the above
  • a second impedance change calculated from the impedance change that is, when the first impedance change determined from the relationship table may not directly participate in the calculation of the polarization voltage, it is finally finalized after certain transformations and calculations. Determine the second impedance change that needs to be involved in the calculation.
  • the voltage sampling module 1012 detects the terminal voltage VBAT of the battery 203 at rest (>30 minutes), which is recorded as VBAT(t0).
  • ⁇ R TN (VBAT(t(N-1))-VBAT(tN))/I
  • related parameters can refer to the following setting methods:
  • the processor 2012 reads the relationship table ⁇ R (Tempi, SOCj, Ik) from the memory 2013
  • the processor 2012 Based on the relationship table ⁇ R(Tempi, SOCj, Ik), the processor 2012 obtains the vector ⁇ r(Temp, SOC, Ik) at the temperature Temp and the remaining power SOC corresponding to the battery 203 at the target time t through two-dimensional linear fitting:
  • the processor 2012 calculates the average current I (T (t, n), Ik) and its duty ratio ratio (T (t, n), Ik) in each time interval.
  • the processor 2012 calculates the battery polarization voltage:
  • the device 201 for calculating the polarization voltage can not only update the aging coefficient through the online measurement method corresponding to FIG. 18, but also adopt the following methods to model the aging automatic correction vector of the battery 203:
  • the vector table is corrected to ⁇ R(Tempi, SOCj, Ik) ⁇ a(Tempi, SOCj).
  • the device for determining the polarization voltage of the battery in the present application is suitable for nickel-hydrogen batteries, nickel-cadmium batteries, lithium-ion batteries, lithium polymer batteries, lead-acid batteries, etc. All types of rechargeable batteries.
  • FIG. 20 is a schematic flowchart of a polarization voltage modeling method provided by an embodiment of the present invention.
  • the polarization voltage modeling method is applicable to any of the polarization voltage modeling in FIG. 5 above.
  • the method may include the following steps S2001 to S2004, where:
  • Step S2001 For the case where the current on the battery is each of the K first currents I, the terminal voltage VBAT of the battery is sampled at N time intervals to obtain multiple sampling terminal voltages, where N is An integer greater than 1;
  • Step S2002 Calculate the N terminal voltage changes corresponding to the N time intervals according to the multiple sampling terminal voltages corresponding to each of the first currents I;
  • Step S2003 Calculate N first impedance changes corresponding to the N time intervals based on each first current I and the N terminal voltage changes;
  • Step S2004 Establish a relationship table between the N time intervals of the battery under the K first currents I and the corresponding N first impedance changes; wherein the relationship table is used to calculate the battery The polarization voltage.
  • the relationship table is used to calculate the polarization voltage of the battery: including:
  • the relational table is used based on the formula Calculate the polarization voltage V P of the battery at the target time t; where I0 is the current value of the battery at the target time t, and ⁇ r T1 is based on the K first currents that match the I0
  • the method further includes: for the case where the current on the battery is each of the K first currents I, determining that the battery is in the The temperature within the N time intervals, and the remaining power corresponding to the battery at the end of the N time intervals is determined.
  • the establishing the relationship table between the N time intervals and the corresponding N first impedance changes of the battery under the K first currents I includes:
  • a relationship table is established between the N time intervals and the corresponding N first impedance changes under the K first currents I when the battery is at different temperatures and corresponding to different remaining power.
  • the relationship table includes that the battery is at different temperatures, corresponding to different remaining power, and The N time intervals and the corresponding N first impedance changes under each first current I; the relationship table is used to calculate the polarization voltage of the battery: including:
  • the method further includes storing the relationship table.
  • the duration corresponding to the N time intervals gradually increases.
  • FIG. 21 is a schematic flowchart of a method for determining the polarization voltage of a battery according to an embodiment of the present invention.
  • the safe processing method is applicable to any of the above-mentioned FIG. 6 or FIG. 7 for determining
  • the method may include the following steps S2011-step S2014, wherein,
  • Step S2011 monitor the current of the battery to obtain a monitoring result
  • Step S2012 Obtain a relationship table of the battery, the relationship table including N time intervals of the battery under K first currents I and the corresponding N first impedance changes, K is greater than or equal to 1.
  • An integer of, N is an integer greater than 1;
  • Step S2013 According to the monitoring result, determine the current corresponding to the multiple time intervals of the battery before the target time t, and determine the multiple second impedance changes respectively corresponding to the multiple time intervals according to the relationship table the amount;
  • Step S2014 Calculate the polarization voltage of the battery at the target time t according to the currents corresponding to the multiple time intervals and the multiple second impedance changes.
  • the method further includes:
  • the calculating the polarization voltage of the battery at the target time t according to the respective currents corresponding to the multiple time intervals and the multiple second impedance changes includes:
  • I0 is the current value of the battery at the target time t
  • ⁇ r T1 is calculated according to the first impedance change corresponding to the time interval T1 under the first current I matching the I0 among the K first currents
  • the method further includes:
  • the relationship table includes that the battery is at different temperatures, corresponding to different remaining power, and
  • the polarization voltage of the battery at the target time t includes: based on the formula Calculate the polarization voltage V P of the battery at the target time t; where,
  • I0 is the current value of the battery at the target time t
  • ⁇ r(Temp, SOC, T1) is based on the temperature of the battery at Temp and the current remaining power at SOC.
  • the second impedance change calculated from the first impedance change corresponding to the time interval T1 under the first current I matched by I0, I(T(t,n), Ik) is the battery in the time interval T(t, At least one first current Ik matched by the current in n), the ratio(T(t,n),Ik) is the I(T(t,n),Ik) in the time interval T(t,n)
  • the duty cycle in ⁇ r(Temp, SOC, Ik, Tn) is calculated based on the first impedance change corresponding to the time interval Tn when the battery temperature is Temp, the current remaining power is SOC, the current is Ik, and the time interval Tn The second change in impedance.
  • the relationship table further includes the aging coefficients a corresponding to the N first impedance changes at each first current I in the K first currents I;
  • the determination of the plurality of second impedance changes corresponding to the plurality of time intervals by the relationship table includes:
  • the N first impedance changes at each first current I in the relationship table and the corresponding aging coefficient a, calculate the multiple Each time interval corresponds to the plurality of second impedance changes.
  • the method further includes:
  • the terminal voltage VBAT of the battery is sampled at M time intervals to obtain multiple sampling terminal voltages, and the M time sampling intervals are the A subset of N time sampling intervals, that is, all or only part of the N time sampling intervals;
  • the first impedance change is to update the aging coefficient a corresponding to the N first impedance changes under each first current.
  • the duration corresponding to the N time intervals gradually increases.
  • FIG. 22 is a schematic structural diagram of another device for determining the polarization voltage of a battery according to an embodiment of the present invention.
  • the device 50 for determining the polarization voltage of a battery may correspond to FIG. 3 or FIG. 4 ⁇ 201.
  • the apparatus 50 may be implemented by software or hardware or a combination thereof, and it may specifically include a processor, such as the processor in FIG. 6 or FIG. 7, or may be software running on the processor, or may be implemented by a combination of software or hardware.
  • the device 50 may include a first obtaining unit 501, a first determining unit 502, and a first calculating unit 503, wherein the detailed description of each unit is as follows.
  • the first acquiring unit 501 is configured to acquire a relationship table of the battery, the relationship table including N time intervals and corresponding N first impedance changes of the battery under K first currents I, K is greater than Or an integer equal to 1, and N is an integer greater than 1;
  • the first determining unit 502 is configured to determine the currents corresponding to the multiple time intervals of the battery before the target time t according to the monitoring result of the battery current, and determine the multiple time intervals according to the relationship table A plurality of corresponding second impedance changes;
  • the first calculation unit 503 is configured to calculate the polarization voltage of the battery at the target time t according to the currents corresponding to the multiple time intervals and the multiple second impedance changes.
  • the device 50 further includes:
  • the second calculation unit 504 is configured to calculate the open circuit voltage OCV of the battery at the target time t according to the polarization voltage and the terminal voltage VBAT of the battery at the target time t.
  • the first calculation unit is specifically configured to: based on a formula Calculate the polarization voltage V P of the battery at the target time t; where,
  • I0 is the current value of the battery at the target time t
  • ⁇ r T1 is calculated according to the first impedance change corresponding to the time interval T1 under the first current I matching the I0 among the K first currents
  • the device further includes:
  • the second determining unit 505 is configured to determine the temperature of the battery in the multiple time intervals
  • the third determining unit 506 is configured to determine the remaining power of the battery at the target time t.
  • the relationship table includes that the battery is at different temperatures, corresponding to different remaining power, and The N time intervals and the corresponding N first impedance changes under each first current I; the first calculation unit is specifically configured to: based on the formula Calculate the polarization voltage V P of the battery at the target time t;
  • I0 is the current value of the battery at the target time t
  • ⁇ r(Temp, SOC, T1) is based on the temperature of the battery at Temp and the current remaining power at SOC.
  • the second impedance change calculated from the first impedance change corresponding to the time interval T1 under the first current I matched by I0, I(T(t,n), Ik) is the battery in the time interval T(t, At least one first current Ik matched by the current in n), the ratio(T(t,n),Ik) is the I(T(t,n),Ik) in the time interval T(t,n)
  • the duty cycle in ⁇ r(Temp, SOC, Ik, Tn) is calculated based on the first impedance change corresponding to the time interval Tn when the battery temperature is Temp, the current remaining power is SOC, the current is Ik, and the time interval Tn The second change in impedance.
  • the relationship table further includes the aging coefficients a corresponding to the N first impedance changes at each first current I in the K first currents I; Determine the unit, specifically used for:
  • the N first impedance changes at each first current I in the relationship table and the corresponding aging coefficient a, calculate the multiple Each time interval corresponds to the plurality of second impedance changes.
  • the device further includes:
  • the second acquiring unit 507 acquires multiple sampling terminal voltages obtained by sampling the battery at M time intervals under each second current I of the L second currents I, where L is an integer greater than or equal to 1, and The M time sampling intervals are a subset of the N time sampling intervals;
  • the third calculation unit 508 is configured to calculate the M terminal voltage changes corresponding to the M time intervals under each second current I according to the multiple sampling terminal voltages corresponding to each second current I the amount;
  • the fourth calculation unit 509 is configured to calculate the M thirds corresponding to the M time intervals under each second current I based on each of the second currents I and the M terminal voltage changes. Impedance change;
  • the update unit 510 is configured to be based on the M time intervals and the corresponding M third impedance changes under each second current I, and the N times under the K first currents I The interval and the corresponding N first impedance changes are updated to update the aging coefficient a corresponding to the N first impedance changes at each first current.
  • each functional unit in the device 50 for determining the polarization voltage of the battery described in the embodiment of the present invention can be referred to the device embodiment described in FIGS. 6-7 or the previous method embodiment. Related descriptions will not be repeated here.
  • Each unit can be software. Hardware or a combination of implementations. When a unit is implemented by software, it can include a software program, which is stored in a memory and can be executed by a processor.
  • An embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium can store a software program, and when the program is executed, it can implement any of the battery polarization voltage modeling methods described in the above method embodiments. Or part or all of the steps in the method of determining the polarization voltage of the battery.
  • the embodiment of the present invention further provides a computer program, the computer program includes instructions, when the computer program is executed by the computer, the computer can execute any method for modeling the polarization voltage of the battery or method for determining the polarization voltage of the battery Some or all of the steps.
  • the disclosed device may be implemented in other ways.
  • the device embodiments described above are only illustrative, for example, the division of the above-mentioned units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the above integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc., specifically a processor in a computer device) execute all or part of the steps of the foregoing methods of the various embodiments of the present application.
  • the aforementioned storage media may include: U disk, mobile hard disk, magnetic disk, optical disk, read-only memory (Read-Only Memory, abbreviation: ROM) or Random Access Memory (Random Access Memory, abbreviation: RAM), etc.
  • U disk mobile hard disk
  • magnetic disk magnetic disk
  • optical disk read-only memory
  • Read-Only Memory abbreviation: ROM
  • Random Access Memory Random Access Memory

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

一种用于确定电池(203)的极化电压的装置(201)、方法及相关设备,其中的装置(201)可应用于智能终端、智能车载等领域,装置(201)可包括电流采样模块(2011)和处理器(2012);电流采样模块(2011),与电池(203)耦合,用于监测电池(203)的电流得到监测结果,并反馈监测结果至处理器(2012);处理器(2012),耦合于电流采样模块(2011),用于:获取电池(203)的关系表;根据监测结果,确定电池(203)在目标时刻t之前的多个时间间隔分别对应的电流,以及根据关系表确定多个时间间隔分别对应的多个第二阻抗变化量(S2013);根据多个时间间隔分别对应的电流以及多个第二阻抗变化量计算电池(203)在目标时刻t的极化电压(S2014)。可以减少极化电压的计算量,提升极化电压的计算效率。

Description

一种用于确定电池的极化电压的装置、方法及相关设备 技术领域
本申请涉及电子技术领域,尤其涉及一种用于确定电池的极化电压的装置、方法及相关设备。
背景技术
当电池有电流通过,使电极偏离了平衡电极电位的现象,称为电极极化。电池极化现象在常见电池如铅酸电池、锂电池、镍氢电池中均存在,在电池供电系统中,将电池内部发生极化所产生的电压记为极化电压Vp。如图1所示,图1为现有的一种电池的等效电路示意图,其中,R(t)为电池有电流通过时的等效极化阻抗(即电流流过电池内部所受到的阻力,包括欧姆内阻和极化内阻,其数值包括实部和虚部),电池开路电压(Open Circuit Voltage,OCV)为电池的理想电压,而在电池实际使用中,由于存在极化电压Vp,电池实际输出的端电压VBAT低于OCV,也即是图1中的R(t)两端的电压VBAT=OCV-Vp。
由于在电池电量管理、电池供电能力检测、电池安全保护等应用中,均依赖电池当前极化电压Vp。例如,在移动嵌入式设备(包括移动终端)中,终端开关机策略、电池电量计算、电池供电能力预测等功能均基于电池OCV电压计算,而OCV=VBAT+Vp,而VBAT可以通过测量准确得到,因此,精确检测电池极化电压Vp尤为重要。
在一种现有的电池极化电压计算方案中,通过极化多阶分解对电池极化阻抗进行指数建模,将电池极化阻抗分解为多阶极化阻抗R1、τ1、R2、τ2、R3、τ3……,而在需要计算电池极化电压Vp时,使用这些多阶极化阻抗参数及电流I进行反向计算,公式如下:
Figure PCTCN2019109773-appb-000001
其中,结合图1所示,Vp(t)为电池上随着时间t以及电流I变化而变化的极化电压,R1为电池极化阻抗的一阶极化阻抗的实部,τ1为一阶极化阻抗模型的时间常数;R2为二阶极化阻抗的实部,τ2为二阶极化阻抗模型的时间常数,以此类推,阶数越高,计算出的Vp(t)的精度越高。而通过测量不同t对应的电流I,最终可以计算得到多阶极化阻抗参数R1、τ1、R2、τ2、R3、τ3……,当需要计算电池极化电压时,则将电流I、时间t和上述多阶极化阻抗参数代入到上述公式中计算得到电池的极化电压。但是,上述计算方案存在如下缺陷:
1、多阶极化阻抗计算误差较大。即使采用3阶极化模型(阶数越高计算越复杂),由于高阶指数运算,所解极化阻抗参数误差较大,进而由分解后的极化阻抗参数计算极化电压时误差较大。如图2所示,图2为现有的电池放电的极化电压和时间的曲线图,其中,V1、V2、V3为上述计算方案中的一阶、二阶、三阶极化阻抗分别对应的极化电压分量,而Vp=V1+V2+V3,从图中可以看出计算得到的Vp与实测电池极化电压之间误差较大。
2、在线计算量大、消耗每秒百万条指令(Million Instructions Per Second,MIPS)较大、功耗大。即终端在线计算电池极化电压时,由于指数运算需要消耗大量处理器(central processing unit,CPU)MIPS资源,功耗高。
综上,亟需提供一种可以精确计算电池极化电压且计算量小、功耗低的解决方案。
发明内容
本发明实施例提供一种用于确定电池的极化电压的装置、方法及相关设备,可以在保证电池极化电压计算精确度的同时,降低极化电压计算量。
第一方面,本发明实施例提供了一种用于确定电池的极化电压的装置,可包括:电流采样模块和处理器;其中,所述电流采样模块,与电池耦合,用于监测所述电池的电流得到监测结果,并反馈所述监测结果至所述处理器;所述处理器,耦合于所述电流采样模块,用于:获取所述电池的关系表,所述关系表包括所述电池分别在K种第一电流I下的N个时间间隔和对应的N个第一阻抗变化量,K为大于或者等于1的整数,N为大于1的整数;根据所述监测结果,确定所述电池在目标时刻t之前的多个时间间隔分别对应的电流,以及根据所述关系表确定所述多个时间间隔分别对应的多个第二阻抗变化量;根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算所述电池在所述目标时刻t的极化电压。
由于极化电压与电流的比值可算得极化阻抗,因此,在需要计算极化电压时,可通过建模阶段得到的极化阻抗的参数及当前电流,反向计算得到极化电压,相较于现有技术中的根据极化阻抗参数进行指数运算来说,本发明实施例的计算量减小、功耗低。
具体地,在本发明实施例中,基于极化电压产生的原理和极化电压的曲线特性,将电池在某时刻(如目标时刻t)的极化电压看作是该目标时刻t之前的一定时长内、对该目标时刻t的极化电压产生影响的若干个极化电压分量(电流与阻抗变化量的乘积)的累加总和。因此,通过利用预先建立好的关系表中的极化阻抗参数(包括电池在不同电流下分别对应的多个第一阻抗变化量),确定电池在目标时刻t之前的多个时间间隔中分别对应的第二阻抗变化量,并进一步根据各个时间间隔内的第二阻抗变化量和对应的电流,计算电池在目标时刻t的极化电压,计算量被减小、从而消耗MIPS资源小、功耗低,优化了极化电压的计算模型,提升了极化电压的计算效率。
在一种可能的实现方式中,所述处理器,还用于:根据所述极化电压和所述电池在所述目标t时刻的端电压VBAT,计算所述电池在所述目标时刻t的开路电压OCV。本发明实施例,基于上述线性运算方式计算得到的极化电压,并根据公式电池开路电压OCV=电池端电压VBAT+电池极化电压Vp,计算得到电池的开路电压OCV以进一步实现终端开关机策略、电池电量计算、电池供电能力预测等功能。
在一种可能的实现方式中,所述装置还包括存储器,所述存储器与所述处理器耦合,用于存储所述关系表;所述处理器,具体用于从所述存储器中获取所述电池的所述关系表。本发明实施例中,通过将用于计算电池极化电压的关系表存储在装置的存储器中,以便于该装置在需要计算电池极化电压时,可直接从本地的存储器中读出该关系表即可。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述处理器具体用于:基于公式
Figure PCTCN2019109773-appb-000002
计算所述电池在所述目标时刻t的极化电压V P;其中,I0为所述电池在目标时刻t的电流值,Δr T1为根据所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算 得到的第二阻抗变化量;I T(t,n)为时间间隔T(t,n)内的电流的平均值;Δr Tn为根据所述K种第一电流中与I T(t,n)匹配的第一电流I下的时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。本发明实施例中,基于极化电压产生的原理和极化电压的曲线特性,将电池在目标时刻t的极化电压看作是该目标时刻t之前的多个时间间隔、对该目标时刻t的极化电压产生影响的多个极化电压分量(电流与阻抗变化量的乘积)的累加总和。具体地,通过确定该目标时刻t之前的多个时间间隔{T(t,n),n=1、2、3……X}内分别对应的平均电流,再基于关系表确定该多个时间间隔内的平均电流分别对应的阻抗变化量,最终将目标时刻t之前的多个时间间隔内的平均电流与对应的阻抗变化量的乘积进行累加,得到电池在目标时刻t的极化电压,其中,关系表中的N个时间间隔Tn包括目标时间t之前的多个时间间隔T(t,n),也即是目标时间t之前的X个时间间隔T(t,n)为N个时间间隔Tn的子集。可选的,基于离目标时刻t越近的时间间隔内阻抗变化量越大的特性,所述多个时间间隔呈逐渐增大趋势,即第一个时间间隔T(t,1)时长最短,如0.1s,因此在具体计算第一个时间间隔内的极化电压分量时,可以利用目标时刻t的瞬时电流而非该时间间隔内的平均电流进行计算,以减小计算难度。
在一种可能的实现方式中,所述处理器,还用于:确定所述电池在所述多个时间间隔内所处的温度,以及确定所述电池在所述目标时刻t时所对应的剩余电量。本发明实施例中,考虑到电池的极化电压还受到环境温度、电池的剩余电量SOC的影响,因此在计算电池的极化电压的过程中,还进一步确定该电池当前所处的环境温度以及该电池当前的剩余电量SOC,以便于进一步精准的计算电池在目标时刻t的极化电压。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述K种第一电流中的第k种第一电流表示为Ik,k=1、2、3……K;所述关系表包括所述电池处于不同温度、对应不同剩余电量下、在所述每一第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量;所述处理器具体用于:基于公式
Figure PCTCN2019109773-appb-000003
Figure PCTCN2019109773-appb-000004
计算所述电池在目标时刻t的极化电压V P;其中,I0为所述电池在目标时刻t的电流值,Δr(Temp,SOC,T1)为根据所述电池在温度为Temp、当前剩余电量为SOC下、在所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量,I(T(t,n),Ik)为所述电池在时间间隔T(t,n)内与第一电流Ik匹配的电流的平均值,ratio(T(t,n),Ik)为所述I(T(t,n),Ik)在时间间隔T(t,n)内的占空比,Δr(Temp,SOC,Ik,Tn)为根据所述电池在温度为Temp、当前剩余电量为SOC、电流为Ik下、时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
本发明实施例中,基于极化电压产生的原理和极化电压的曲线特性,将电池在目标时刻t的极化电压看作是该目标时刻t之前的X个时间间隔、对该目标时刻t的极化电压产生影响的X个极化电压分量(电流与阻抗变化量的乘积)的累加总和,并且考虑到温度、剩余电量等因素,极化电压的计算精准度更高。具体地,关系表中包含了电池处于不同温度、 不同剩余电量、不同电流下在所述N个时间间隔内分别对应的阻抗变化量。在电池的极化电压的计算阶段,确定电池在目标时刻t之前的X个时间间隔{T(t,n),n=1、2、3……X}内分别对应的电流,并依据电池在目标时刻t时的剩余电量、X个时间间隔{T(t,n),n=1、2、3……X}内分别对应的温度、电流确定对应的阻抗变化量,最终将目标时刻t之前的X个时间间隔内的电流与阻抗变化量的乘积进行累加,得到目标时刻t的极化电压,其中,关系表中的N个时间间隔Tn包括目标时间t之前的多个时间间隔T(t,n),也即是目标时间t之前的X个时间间隔T(t,n)为N个时间间隔Tn的子集。并且,在根据关系表确定对应的阻抗变化量时,可对目标时刻t之前的每一个时间间隔内的电流进行更为细化的计算,例如,对每个时间间隔内的电流进行多点采样,并将多个电流采样结果分别归档到K种电流I中的一种,然后根据各档电流对应的电流采样点的个数在该时间间隔内的占的比例(即占空比),确定对应第一阻抗变化量,以及依据该第一阻抗变化量计算最终参与极化电压运算的第二阻抗变化量。比如该第二阻抗变化量可以是依据对应的第一阻抗变化量经过线性拟合得到的、或者是乘以老化系数后得到的,可选的,所述N个时间间隔呈逐渐增大趋势,即第一个时间间隔Tn时长最短,如0.1s,基于离目标时刻t越近的时间间隔内阻抗变化量越大的特性,也即是对应T(t,1)时长最短,因此在具体计算第一个时间间隔内的极化电压分量时,可以利用目标时刻t的瞬时电流而非该时间间隔内的平均电流进行计算,以减小计算难度。
在一种可能的实现方式中,所述关系表还包括所述K种第一电流I中每一第一电流I下的N个第一阻抗变化量分别对应的老化系数a;所述处理器具体用于:根据所述电池在所述多个时间间隔分别对应的电流,以及所述关系表中所述每一第一电流I下的N个第一阻抗变化量和对应的老化系数a,计算所述多个时间间隔分别对应的所述多个第二阻抗变化量。本发明实施例,考虑到电池在多次充放电之后存在老化现象,并且老化现象对于电池的极化电压会产生影响,因此,关系表中还可以包括每个第一阻抗变化量分别对应的老化系数,依据关系表中每一第一电流I下的N个第一阻抗变化量和对应的老化系数a,确定目标时刻t之前的多个时间间隔内的电流以及该电流下对应的老化系数,并计算所述多个时间间隔分别对应的多个第二阻抗变化量,例如,第二阻抗变化量=老化系数a×第一阻抗变化量。
在一种可能的实现方式中,所述装置还包括电流源和电压采样模块;所述电流源,分别与所述处理器以及所述电池耦合,用于在所述处理器的控制下产生所述电池的L种第二电流,L为大于或者等于1的整数;所述电压采样模块,与所述电池并联,用于针对所述L种第二电流I中的每一第二电流I,按照M个时间间隔对所述电池的端电压VBAT进行采样得到多个采样端电压,并反馈所述每一第二电流I对应的多个采样端电压至所述处理器,所述M个时间采样间隔为所述N个时间采样间隔的子集;所述处理器,还用于根据所述每一第二电流I对应的多个采样端电压,分别计算所述每一第二电流I下的所述M个时间间隔对应的M个端电压变化量;基于所述每一第二电流I和所述M个端电压变化量,计算所述每一第二电流I下的所述M个时间间隔对应的M个第三阻抗变化量;基于所述每一第二电流I下的所述M个时间间隔和对应的M个第三阻抗变化量,以及所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量,更新所述每一第一电流下的N个第 一阻抗变化量分别对应的老化系数a。通过本发明实施例中用于确定电池的极化电压的装置自身包含的电流源和电压采样模块,对应用于装置中的电池进老化系数的在线测量,考虑到装置本身的电流源能为电池产生的电流大小有限,可能与关系表生成阶段(如实验室建模阶段)对应的K种电流不一致。因此,在测量或者更新老化系数时,可以通过测量某几种电流值(第二电流)下的阻抗变化量,再通过线性拟合的方式拟合到关系表中的电流值(第一电流)下的阻抗变化量,从而计算得到对应的老化系数,并基于某一个或者某几个老化系数,更新关系表中所有阻抗变化量的老化系数。本发明实施例,考虑到电池在多次充放电之后存在老化现象,并且老化现象对于电池的极化电压会产生影响,因此,通过在线测量方法,更新关系表中的老化系数,以便于进一步提升计算电池极化电压的精确性。
在一种可能的实现方式中,所述N个时间间隔对应的时长逐渐增加。由于电池在某一电流值下发生极化时,其极化电压的大小变化是非线性的,也即是说当电流大小不变的情况下,该极化电压的变化对应的阻抗变化也是非线性的。而在阻抗变化非线性的特性下,通过研究其变化特性发现,其非线性的变化也是有规律可循,例如,在某个时间间隔内也即是某一个特定的时间段内,其阻抗变化可以认为是线性的。因此,本发明实施例通过将有效时间段(对目标时刻t的极化电压产生影响的时间段)划分为N个时间间隔,并且划分依据为尽可能的在该N个时间间隔的每一时间间隔内,保证其阻抗变化率不变(例如阻抗变化曲线中的两个拐点之间的曲线段)。也即是说,在关系表中,合理的选取N个时间间隔,可以尽可能的保证阻抗在各自时间间隔内的变化是线性的。所以在所述装置计算极化电压的阶段,可以依照关系表中的时间间隔,通过线性运算计算每一个时间间隔内的极化电压的分量(电流乘以阻抗变化量),并最终累加得到极化电压。如此一来,本发明实施例通过上述方式,在保证了以线性运算方式计算极化电压的准确性的同时,减小了计算量,优化了计算模型,提升了计算效率。需要说明的是,在确定所述N个时间间隔时,基于离目标时刻t越近的时间间隔内阻抗变化量越大、离目标时刻t越远的时间间隔内阻抗变化量越小的特性,为了保证在每个时间间隔内,其阻抗变化尽可能的为线性,可以理解的,在关系表的生成阶段,对于阻抗变化量越大即阻抗比变化率越大的阶段,会以更小的时间间隔进行测量,对于阻抗变化量越小即阻抗比变化率越小的阶段,会以更大的时间间隔进行测量,因此,呈现出N个时间间隔对应的时长逐渐增加的特征。
第二方面,本发明实施例提供了一种确定电池的极化电压的方法,可包括:监测电池的电流得到监测结果;获取所述电池的关系表,所述关系表包括所述电池分别在K种第一电流I下的N个时间间隔和对应的N个第一阻抗变化量,K为大于或者等于1的整数,N为大于1的整数;根据所述监测结果,确定所述电池在目标时刻t之前的多个时间间隔分别对应的电流,以及根据所述关系表确定所述多个时间间隔分别对应的多个第二阻抗变化量;根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算所述电池在所述目标时刻t的极化电压。
在一种可能的实现方式中,所述方法,还包括:根据所述极化电压和所述电池在所述目标t时刻的端电压VBAT,计算所述电池在所述目标时刻t的开路电压OCV。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多 个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算所述电池在所述目标时刻t的极化电压,包括:基于公式
Figure PCTCN2019109773-appb-000005
计算所述电池在所述目标时刻t的极化电压V P;其中,I0为所述电池在目标时刻t的电流值,Δr T1为根据所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量;I T(t,n)为时间间隔T(t,n)内的电流的平均值;Δr Tn为根据所述K种第一电流中与I T(t,n)匹配的第一电流I下的时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
在一种可能的实现方式中,所述方法,还包括:确定所述电池在所述多个时间间隔内所处的温度,以及确定所述电池在所述目标时刻t时所对应的剩余电量。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述K种第一电流中的第k种第一电流表示为Ik,k=1、2、3……K;所述关系表包括所述电池处于不同温度、对应不同剩余电量下、在所述每一第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量;所述根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算所述电池在所述目标时刻t的极化电压,包括:基于公式
Figure PCTCN2019109773-appb-000006
Figure PCTCN2019109773-appb-000007
计算所述电池在目标时刻t的极化电压V P;其中,I0为所述电池在目标时刻t的电流值,Δr(Temp,SOC,T1)为根据所述电池在温度为Temp、当前剩余电量为SOC下、在所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量,I(T(t,n),Ik)为所述电池在时间间隔T(t,n)内与第一电流Ik匹配的电流的平均值,ratio(T(t,n),Ik)为所述I(T(t,n),Ik)在时间间隔T(t,n)内的占空比,Δr(Temp,SOC,Ik,Tn)为根据所述电池在温度为Temp、当前剩余电量为SOC、电流为Ik下、时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
在一种可能的实现方式中,所述关系表还包括所述K种第一电流I中每一第一电流I下的N个第一阻抗变化量分别对应的老化系数a;所述根据所述关系表确定所述多个时间间隔分别对应的多个第二阻抗变化量,包括:根据所述电池在所述多个时间间隔分别对应的电流,以及所述关系表中所述每一第一电流I下的N个第一阻抗变化量和对应的老化系数a,计算所述多个时间间隔分别对应的所述多个第二阻抗变化量。
在一种可能的实现方式中,所述方法,还包括:产生所述电池的L种第二电流,L为大于或者等于1的整数;针对所述L种第二电流I中的每一第二电流I,按照M个时间间隔对所述电池的端电压VBAT进行采样得到多个采样端电压,所述M个时间采样间隔为所述N个时间采样间隔的子集;根据所述每一第二电流I对应的多个采样端电压,分别计算所述每一第二电流I下的所述M个时间间隔对应的M个端电压变化量;基于所述每一第二电流I和所述M个端电压变化量,计算所述每一第二电流I下的所述M个时间间隔对应的 M个第三阻抗变化量;基于所述每一第二电流I下的所述M个时间间隔和对应的M个第三阻抗变化量,以及所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量,更新所述每一第一电流下的N个第一阻抗变化量分别对应的老化系数a。
在一种可能的实现方式中,所述N个时间间隔对应的时长逐渐增加。
第三方面,本发明实施例提供了一种用于确定电池的极化电压的装置,可包括:第一获取单元,用于获取电池的关系表,所述关系表包括所述电池分别在K种第一电流I下的N个时间间隔和对应的N个第一阻抗变化量,K为大于或者等于1的整数,N为大于1的整数;第一确定单元,用于根据所述电池的电流的监测结果,确定所述电池在目标时刻t之前的多个时间间隔分别对应的电流,以及根据所述关系表确定所述多个时间间隔分别对应的多个第二阻抗变化量;第一计算单元,用于根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算所述电池在所述目标时刻t的极化电压。
在一种可能的实现方式中,所述装置,还包括:第二计算单元,用于根据所述极化电压和所述电池在所述目标t时刻的端电压VBAT,计算所述电池在所述目标时刻t的开路电压OCV。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述第一计算单元具体用于:基于公式
Figure PCTCN2019109773-appb-000008
计算所述电池在所述目标时刻t的极化电压V P;其中,I0为所述电池在目标时刻t的电流值,Δr T1为根据所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量;I T(t,n)为时间间隔T(t,n)内的电流的平均值;Δr Tn为根据所述K种第一电流中与I T(t,n)匹配的第一电流I下的时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
在一种可能的实现方式中,所述装置,还包括:第二确定单元,用于确定所述电池在所述多个时间间隔内所处的温度;第三确定单元,用于确定所述电池在所述目标时刻t时所对应的剩余电量。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述K种第一电流中的第k种第一电流表示为Ik,k=1、2、3……K;所述关系表包括所述电池处于不同温度、对应不同剩余电量下、在所述每一第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量;所述第一计算单元,具体用于:基于公式
Figure PCTCN2019109773-appb-000009
Figure PCTCN2019109773-appb-000010
计算所述电池在目标时刻t的极化电压V P;其中,I0为所述电池在目标时刻t的电流值,Δr(Temp,SOC,T1)为根据所述电池在温度为Temp、当前剩余电量为SOC下、在所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量,I(T(t,n),Ik)为所述电池在时间间隔T(t,n)内与第一 电流Ik匹配的电流的平均值,ratio(T(t,n),Ik)为所述I(T(t,n),Ik)在时间间隔T(t,n)内的占空比,Δr(Temp,SOC,Ik,Tn)为根据所述电池在温度为Temp、当前剩余电量为SOC、电流为Ik下、时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
在一种可能的实现方式中,所述关系表还包括所述K种第一电流I中每一第一电流I下的N个第一阻抗变化量分别对应的老化系数a;所述第一确定单元,具体用于:根据所述电池在所述多个时间间隔分别对应的电流,以及所述关系表中所述每一第一电流I下的N个第一阻抗变化量和对应的老化系数a,计算所述多个时间间隔分别对应的所述多个第二阻抗变化量。
在一种可能的实现方式中,所述装置,还包括:第二获取单元,获取所述电池在L种第二电流I中的每一第二电流I下按照M个时间间隔进行采样得到的多个采样端电压,L为大于或者等于1的整数,所述M个时间采样间隔为所述N个时间采样间隔的子集;第三计算单元,用于根据所述每一第二电流I对应的多个采样端电压,分别计算所述每一第二电流I下的所述M个时间间隔对应的M个端电压变化量;第四计算单元,用于基于所述每一第二电流I和所述M个端电压变化量,计算所述每一第二电流I下的所述M个时间间隔对应的M个第三阻抗变化量;更新单元,用于基于所述每一第二电流I下的所述M个时间间隔和对应的M个第三阻抗变化量,以及所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量,更新所述每一第一电流下的N个第一阻抗变化量分别对应的老化系数a。
在一种可能的实现方式中,所述N个时间间隔对应的时长逐渐增加。
第四方面,本发明实施例提供了一种极化电压建模装置,可包括:可调电流源组件、电压采样模块和处理器;其中,所述可调电流源组件,与电池串联,用于产生所述电池的K种第一电流I,K为大于或者等于1的整数;所述电压采样模块,与所述电池并联,用于针对所述K种第一电流I中的每一第一电流I,按照N个时间间隔对所述电池的端电压VBAT进行采样得到多个采样端电压,并反馈每一第一电流I对应的多个采样端电压至所述处理器,N为大于1的整数;所述处理器,与所述电压采样模块耦合,用于根据所述每一第一电流I对应的多个采样端电压,分别计算所述N个时间间隔对应的N个端电压变化量;基于所述每一第一电流I和所述N个端电压变化量,计算所述N个时间间隔对应的N个第一阻抗变化量;建立所述电池在所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量的关系表;其中,所述关系表用于计算所述电池的极化电压。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述处理器具体用于:基于公式
Figure PCTCN2019109773-appb-000011
计算所述电池在所述目标时刻t的极化电压V P;其中,I0为所述电池在目标时刻t的电流值,Δr T1为根据所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量;I T(t,n)为时间间隔T(t,n)内的电流的平均值;Δr Tn为根据所述K种第一电流中与I T(t,n)匹配的第一电流I下的时间间隔Tn对应的第一阻抗变化量计算得 到的第二阻抗变化量。
在一种可能的实现方式中,所述处理器,还用于:针对所述电池上的电流为所述K种第一电流I中的每一种第一电流I的情况,确定所述电池在所述N个时间间隔内所处的温度,以及确定所述电池在所述N个时间间隔结束时所对应的剩余电量。
在一种可能的实现方式中,所述处理器具体用于:建立所述电池处于不同温度、对应不同剩余电量下,在所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量的关系表。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述K种第一电流中的第k种第一电流表示为Ik,k=1、2、3……K;所述关系表包括所述电池处于不同温度、对应不同剩余电量下、在所述每一第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量;所述处理器具体用于:基于公式
Figure PCTCN2019109773-appb-000012
Figure PCTCN2019109773-appb-000013
计算所述电池在目标时刻t的极化电压V P;其中,I0为所述电池在目标时刻t的电流值,Δr(Temp,SOC,T1)为根据所述电池在温度为Temp、当前剩余电量为SOC下、在所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量,I(T(t,n),Ik)为所述电池在时间间隔T(t,n)内与第一电流Ik匹配的电流的平均值,ratio(T(t,n),Ik)为所述I(T(t,n),Ik)在时间间隔T(t,n)内的占空比,Δr(Temp,SOC,Ik,Tn)为根据所述电池在温度为Temp、当前剩余电量为SOC、电流为Ik下、时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
在一种可能的实现方式中,所述装置还包括耦合于所述处理器的存储器;所述处理器,还用于将所述关系表存储至所述存储器。
在一种可能的实现方式中,所述电池与目标电阻串联;所述装置还包括电流采样模块,所述电流采样模块与所述目标电阻并联,用于通过对所述目标电阻两端的电压进行采样,以对流经所述电池的电流进行采样。
在一种可能的实现方式中,所述装置还包括时序控制模块,所述时序控制模块与所述电压采样模块和所述电流采样模块分别电连接,用于控制所述电压采样模块和所述电流采样模块分别按照所述N个时间间隔进行采样。
在一种可能的实现方式中,所述装置还包括接口电路,所述接口电路与所述电压采样模块和所述电流采样模块分别电连接,用于将所述电压采样模块和所述电流采样模块反馈的采样数据发送至所述处理器。
在一种可能的实现方式中,所述可调电流源组件与所述电池串联,用于对所述电池进行K种电流I的放电。
在一种可能的实现方式中,所述N个时间间隔对应的时长逐渐增长。
第五方面,本发明实施例提供了一种极化电压建模方法,可包括:
针对电池上的电流为K种第一电流I中的每一第一电流I的情况,按照N个时间间隔 对所述电池的端电压VBAT进行采样得到多个采样端电压,N为大于1的整数;
根据所述每一第一电流I对应的多个采样端电压,分别计算所述N个时间间隔对应的N个端电压变化量;
基于所述每一第一电流I和所述N个端电压变化量,计算所述N个时间间隔对应的N个第一阻抗变化量;
建立所述电池在所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量的关系表;其中,所述关系表用于计算所述电池的极化电压。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述关系表用于计算所述电池的极化电压:包括:
所述关系表用于基于公式
Figure PCTCN2019109773-appb-000014
计算所述电池在所述目标时刻t的极化电压V P;其中,I0为所述电池在目标时刻t的电流值,Δr T1为根据所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量;I T(t,n)为时间间隔T(t,n)内的电流的平均值;Δr Tn为根据所述K种第一电流中与I T(t,n)匹配的第一电流I下的时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
在一种可能的实现方式中,所述方法还包括:针对所述电池上的电流为所述K种第一电流I中的每一种第一电流I的情况,确定所述电池在所述N个时间间隔内所处的温度,以及确定所述电池在所述N个时间间隔结束时所对应的剩余电量。
在一种可能的实现方式中,所述建立所述电池在所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量的关系表,包括:
建立所述电池处于不同温度、对应不同剩余电量下,在所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量的关系表。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述K种第一电流中的第k种第一电流表示为Ik,k=1、2、3……K;所述关系表包括所述电池处于不同温度、对应不同剩余电量下、在所述每一第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量;所述关系表用于计算所述电池的极化电压:包括:
基于公式
Figure PCTCN2019109773-appb-000015
Figure PCTCN2019109773-appb-000016
计算所述电池在目标时刻t的极化电压V P;其中,U0为所述电池在目标时刻t的电流值,Δr(Temp,SOC,T1)为根据所述电池在温度为Temp、当前剩余电量为SOC下、在所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量,I(T(t,n),Ik)为所述电池在时间间隔T(t,n)内与第一电流Ik匹配的电流的平均值,ratio(T(t,n),Ik)为所述I(T(t,n),Ik)在时间间隔T(t,n)内的占空比,Δr(Temp,SOC,Ik,Tn)为根据所述电池在温度为Temp、当前剩余电量为SOC、 电流为Ik下、时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
在一种可能的实现方式中,所述方法还包括,存储所述关系表。
在一种可能的实现方式中,所述N个时间间隔对应的时长逐渐增长。
第六方面,本申请提供一种终端,该终端具有实现上述第二方面中任意一种确定电池的极化电压的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第七方面,本申请提供一种终端,该终端包括上述第一方面中任意一种用于确定电池的极化电压的装置。该终端还可以包括存储器,存储器用于与该用于确定电池的极化电压的装置耦合,其保存该用于确定电池的极化电压的装置中处理器的必要的程序指令和数据。该终端还可以包括通信接口,用于该终端与其它设备或通信网络通信。
第八方面,本申请提供一种计算机存储介质,所述计算机存储介质存储有计算机程序,该计算机程序被用于确定电池的极化电压的装置执行时,使得该用于确定电池的极化电压的装置可以执行上述第二方面中任意一项所述的确定电池的极化电压的方法流程。
第九方面,本发明实施例提供了一种计算机程序,该计算机程序包括指令,当该计算机程序被用于确定电池的极化电压的装置执行时,使得该用于确定电池的极化电压的装置可以执行上述第二方面中任意一项所述的确定电池的极化电压的方法流程。
第十方面,本申请提供了一种芯片系统,该芯片系统包括上述第一方面中任意一种用于确定电池的极化电压的装置。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存所述用于确定电池的极化电压的装置中处理器的必要或相关的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其它分立器件。
附图说明
图1是现有的一种电池的等效电路示意图;
图2是现有的电池放电的极化电压和时间的曲线图;
图3是本发明实施例提供的一种计算电池极化电压的应用场景的系统架构示意图;
图4是本发明实施例提供的另一种计算电池极化电压的应用场景的系统架构示意图;
图5是本发明实施例提供的一种极化电压建模装置的结构示意图;
图6是本发明实施例提供的一种用于确定电池的极化电压的装置的结构示意图;
图7是本发明实施例提供的另一种用于确定电池的极化电压的装置的结构示意图;
图8是本发明实施例提供的一种电池的阻抗在恒流下随时间变化的示意图;
图9是本发明实施例提供的一种建模阶段与极化电压计算阶段的时序关系的示意图;
图10是本发明实施例提供的另一种电池的阻抗在恒流下随时间变化的示意图;
图11是本发明实施例提供的一种目标时刻t对应的实际电流值与阻抗变化量之间的对应关系的示意图;
图12是本发明实施例提供的一种根据关系表确定I_(T(t,n))对应的阻抗变化量的示意图;
图13是本发明实施例提供的另一种在目标时刻t之前的时间间隔与阻抗变化量之间的对应关系的示意图;
图14是本发明实施例提供的另一种根据关系表确定I_(T(t,n))对应的阻抗变化量的示意图;
图15是本发明实施例提供的又一种根据关系表确定I_(T(t,n))对应的阻抗变化量的示意图;
图16是本发明实施例提供的又一种在目标时刻t之前的时间间隔与阻抗变化量之间的对应关系的示意图;
图17是本发明实施例提供的又一种根据关系表确定I_(T(t,n))对应的阻抗变化量的示意图;
图18是本发明实施例提供的一种基于梯形电流源进行老化系数测量的关系示意图;
图19是本发明实施例提供的一种通过线性拟合温度和剩余电量确定阻抗变化量的示意图;
图20是本发明实施例提供的一种极化电压建模方法的流程示意图;
图21是本发明实施例提供的一种确定电池的极化电压的方法的流程示意图;
图22是本发明实施例提供的另一种用于确定电池的极化电压的装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例进行描述。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)集成电路(Integrated Circuit,IC),即IC芯片,是将大量的微电子元器件(晶体管、电阻、电容等)形成的集成电路放在一块塑基上,做成一块芯片。
(2)全称电阻-电容电路(Resistor-Capacitance circuit),即RC电路,一次RC电路由 一个电阻器和一个电容器组成。按电阻电容排布,可分为RC串联电路和RC并联电路;单纯RC并联不能谐振,因为电阻不储能,LC并联可以谐振。RC电路广泛应用于模拟电路、脉冲数字电路中,RC并联电路如果串联在电路中有衰减低频信号的作用,如果并联在电路中有衰减高频信号的作用,也就是滤波的作用。
(3)阻抗,在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实部称为电阻,虚部称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。阻抗的单位是欧姆。
(4)每秒百万条指令(Million Instructions Per Second,MIPS),是衡量CPU性能的指标。单字长定点指令平均执行速度的缩写,每秒处理的百万级的机器语言指令数。这是衡量CPU速度的一个指标。例如,Intel80386电脑可以每秒处理3百万到5百万机器语言指令,即可以说Intel80386是3到5MIPS的CPU。
(5)占空比(Duty Ratio)是指在一个脉冲循环内,通电时间相对于总时间所占的比例。占空比在电信领域中有如下含义:例如,脉冲宽度1μs,信号周期4μs的脉冲序列占空比为0.25。在本申请实施例中占空比是指在一个时间间隔内,某一种大小的电流所对应的时间相对于该时间间隔所占的比例。
(6)荷电状态(state of charge,SOC),也可称之为剩余电量,是指蓄电池使用一段时间或长期搁置不用后的剩余容量与其完全充电状态的容量的比值,常用百分数表示。其取值范围为0~1,当SOC=0时表示电池放电完全,当SOC=1时表示电池完全充满。
(7)库仑(C)是电量单位,安培是电流单位,用A表示;库仑=安培×秒,其定义如下:1A电流在1s内输运的电量,即1C=1As。0.5c-0.8c是500~800安培。在电流中,C是C是指电流和容量之间的关系,一般说0.1C就表示10AH的容量的电池的放电电流为1A。比如说1C放电,那么电流就是额定容量的1倍,例如,电池容量是5安时,1C就是5安,10C就是50安,0.1C就是0.5安,其中,1安时=1000毫安时。
(8)电流源,即理想电流源,是从实际电源抽象出来的一种模型,其端钮总能向外部提供一定的电流而不论其两端的电压为多少,电流源具有两个基本的性质:第一,它提供的电流是定值I或是一定的时间函数I(t)与两端的电压无关。第二,电流源自身电流是确定的,而它两端的电压是任意的。由于电流源的电流是固定的,所以电流源不能断路,电流源与电阻串联时其对外电路的效果与单个电流源的效果相同。
请参见图3,图3是本发明实施例提供的一种计算电池极化电压的应用场景的系统架构示意图,该系统架构中包括至少一个服务器10和多个终端20,其中,服务器10可包括本申请中的极化电压建模装置101,该极化电压建模装置101用于服务器10在建模阶段生成本申请中的所述关系表;终端20可包括本申请中的用于确定电池的极化电压的装置201,该确定电池的极化电压的装置201可根据极化电压建模装置101提供的关系表,利用线性运算方式计算该终端中的电池的极化电压。
例如,在终端20(如智能手机、电脑、车载、家电、可穿戴设备等)出厂之前,服务器10(如固件刷机服务器)对与该终端相同型号的其他终端20进行固件的批量预安装。 该固件中可包括本申请中的用于计算电池极化电压的关系表,该关系表存储在终端20的内部存储单元202中,如只读存储器(Read-Only Memory,ROM)中,也即是终端20的系统固件和软件默认安装的地方,且在没获得根(root)权限之前无法对这些固件(包括关系表)进行随意读写。在终端20出厂后,终端20可通过用于确定电池的极化电压的装置201,利用存储单元202中存储的关系表对与其耦合的电池203的极化电压进行计算,进而可以对该电池203的功供电能力进行预测或者进行电池管理等。可以理解的是,上述关系表也可以存储在用于确定电池的极化电压的装置201的内部存储器中,本发明实施例对此不作具体限定。
请参见图4,图4是本发明实施例提供的另一种计算电池极化电压的应用场景的系统架构示意图,终端20可通过移动通信单元204所提供的无线通信链路30接入到无线接入网(Radio Access Network,RAN)40,从而接入到互联网中与服务器10中的极化电压建模装置101进行交互。
例如,服务器10在终端20出厂后,通过互联网远程对终端20中存储单元202存储的关系表进行更新或升级等。即终端20在出厂后,可通过移动通信单元204所提供的无线通信链路30接入到无线接入网40,从而接入到互联网中下载服务器10中极化电压建模装置101所提供的更新的关系表,并对存储单元202中存储的关系表进行替换升级。此外,若终端20在出厂前未存储有关系表,以及不具有相关计算电池极化电压的功能,也可以通过上述升级方式,重新获得。进一步地,终端20也可以通过该方式对其他固件或软件进行升级,以完善终端系统。
可以理解的是,上述应用场景对应的系统架构只是本发明实施例中的几种示例性的实施方式,本发明实施例中的应用场景以及对应的系统架构包括但不仅限于上述。
基于上述图3和图4对应的系统架构,下面对本申请中所提供的用于生成关系表的极化电压建模装置101,以及使用上述关系表的用于计算极化电压的装置201的结构和功能进行描述。
请参见图5,图5是本发明实施例提供的一种极化电压建模装置的结构示意图,该装置101可用于在极化电压的建模阶段生成关系表,具体可包括可调电流源组件1011、电压采样模块1012和处理器1013;可选的,该装置101还可以包括存储器1014、电流采样模块1015、目标电阻1016、时序控制模块1017、接口电路1018。其中每个模块均可以是个电路结构,以上结构可位于一个或多个IC中。其中,
可调电流源组件1011,与电池203串联,用于产生流经该电池203的K种第一电流I,K为大于或者等于1的整数。可选的,可调电流源组件1011可为由多个固定恒流源组成的组件、也可以为一个可变的梯形电流源,用于产生流经该电池203上的多种不同大小的第一电流。比如,假设电池的容量为1000mA,K种第一电流可分别为200mA、0.15C、0.4C、1C,其中,0.15C、0.4C、1C分别为150mA、400mA、1000mA。可选的,可调电流源组件1011可以对电池203进行K种第一电流的充电,也可以对电池203进行K种第一电流的放电,即上述K种第一电流可以指充电电流也可以指放电电流,具体可依据电池极化电压的实际计算场景进行设置。可以理解的是,上述K种第一电流的大小可以依据不同类型或者 不同容量的电池进行不同的取值,即本发明实施例对K的取值以及第一电流I的取值不作具体限定。
电压采样模块1012,与电池203并联,用于针对流经电池203的电流为K种第一电流I中的每一第一电流I的情况下,按照N个时间间隔(即本申请中的Tn,n=1、2、3……X)对电池203的端电压VBAT进行采样得到多个采样端电压,并反馈每一第一电流I对应的多个采样端电压至处理器1013,N为大于1的整数。可选的,电压采样模块1012可在N个时间间隔对应的(N+1)个时刻分别进行电压的采样,得到(N+1)个采样端电压,例如在t0、t1、t2、t3、t4……tN-1、tN时刻分别进行端电压的采样,即N个时间间隔Tn分别对应时间段t0~t1,t1~t2,t2~t3,t3~t4……tN-1~tN。
由于,当电池203处于某一电流(理想情况下为恒流)下,其实际输出的端电压的变化量是由电池的电极极化引起的,也即是电池在当前时刻所累积的端电压的变化量即为电池在当前时刻的极化电压。而由于极化电压与电流的比值可算得极化阻抗,因此,在建模阶段,可以通过测量电池在不同状态(例如不同温度、剩余电量、电流)下对测量时刻的极化电压产生影响的有效时间段内的端电压变化量计算对应的极化阻抗的参数;当需要计算极化电压时,可根据电池203在上述有效时间段内的实际电流、以及与该实际电流对应的极化阻抗的参数,反向计算得到极化电压。进一步地,由于电池在某一电流值下发生极化时,其极化电压的大小变化是非线性的,也即是说当电流大小不变的情况下,该极化电压的变化对应的阻抗变化也是非线性的。而在阻抗变化非线性的特性下,通过研究其变化特性发现,其非线性的变化也是有规律可循,例如,在某个时间间隔内也即是某一个特定的时间段内,其阻抗变化可以认为是线性的。因此,本发明实施例通过将有效时间段(对测量时刻如上述t0的极化电压产生影响的时间段)划分为N个时间间隔,并且划分依据为尽可能的在该N个时间间隔的每一时间间隔内,保证其阻抗变化率不变(例如阻抗变化曲线中的两个拐点之间的曲线段)。也即是说,在生成关系表阶段,合理的选取N个时间间隔,可以尽可能的保证阻抗在各自时间间隔内的变化是线性的。如此一来,本发明实施例通过上述方式,在保证了后续可以以线性运算方式计算极化电压的准确性的同时,减小了计算量,优化了计算模型,提升了计算效率。需要说明的是,在确定所述N个时间间隔时,基于测量时刻t0越近的时间间隔内阻抗变化量越大、离测量时刻t0越远的时间间隔内阻抗变化量越小的特性,为了保证在每个时间间隔内,其阻抗变化尽可能的为线性,可以理解的,在关系表的生成阶段,对于阻抗变化量越大即阻抗比变化率越大的阶段,会以更小的时间间隔进行测量,对于阻抗变化量越小即阻抗比变化率越小的阶段,会以更大的时间间隔进行测量,因此,呈现出N个时间间隔对应的时长逐渐增加的特征。例如,在有效时间段20分钟内,以起始采样时刻t0为0开始,将N个时间间隔设置为0~0.1s、0.1s~0.5s、0.5s~1.5s、1.5s~3s、3s~5s、5s~15s、……、500s~1200s。
处理器1013,与电压采样模块1012耦合,用于根据电压采样模块1012采样得到的所述每一第一电流I对应的多个采样端电压,分别计算所述N个时间间隔对应的N个端电压变化量;基于所述每一第一电流I和所述N个端电压变化量,计算所述N个时间间隔对应的N个第一阻抗变化量;建立所述电池在所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量的关系表;其中,所述关系表用于计算所述电池的极化电压。具 体地,处理器1013在接收到电压采样模块1012反馈的采样端电压后,根据采样端电压以及对应的采样时刻,计算N个时间间隔内的分别对应的端电压变化量,再根据当前可调电流源组件1011对电池产生的电流,便可以计算获得该电流下N个时间间隔内的对应的N个第一阻抗变化量,其中,一个时间间隔对应一个第一阻抗变化量。即关系表中包含了上述K种第一电流中的每一第一电流I下的N个时间间隔所分别对应的N个第一阻抗变化量,至此,处理器1013生成了本发明实施例中的线性阻抗建模参数即关系表。
在一种可能的实现方式中,处理器1013还用于:针对流经电池203上的每一种第一电流I(即所述K种第一电流中的每一种第一电流)的情况,确定电池203在所述N个时间间隔内所处的温度,以及在所述N个时间间隔结束时所对应的剩余电量SOC。由于电池203在充电或放电过程中,还受到温度、剩余电量SOC的影响,因此,进一步地,处理器1013通过在关系表生成阶段,检测针对不同温度、不同剩余电量SOC下该电池203在K种第一电流I下的所述N个时间间隔内的分别对应的第一阻抗变化量,从而建立电池203处于不同温度、对应不同剩余电量下,在所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量的关系表。如此,在后续计算极化电压阶段,便可以依据电池所处的温度、剩余电量SOC以及实际电流,更为精准的计算极化电压。可选的,处理器1013可以通过电池203内部的温度传感模块确定电池的温度,以及根据电池203的充/放电的电流大小和时长,计算电池203的剩余电量。
在一种可能的实现方式中,装置101还包括耦合于处理器1013的存储器1014;处理器1013还用于将所述关系表存储至存储器1014。由于上述关系表需要在后续如服务器10为终端20刷机的阶段或者更新关系表阶段使用,因此需要被长期保存。所以,该存储器1014可以是只读存储器(Read Only Memory,ROM)或非掉电易失性存储器,如可编程ROM(ProgrammableROM,PROM)、可擦写可编程ROM(ErasableProgrammableROM,EPROM)、电可擦除可编程ROM(ElectricallyErasableProgrammableROM,EEPROM)、快速擦写ROM(FLASH ROM)等。进一步可选的,存储器1014中还可以存储终端20中的其他相关固件。
在一种可能的实现方式中,电池203与目标电阻1016串联;装置101还包括电流采样模块1015,该电流采样模块1015与目标电阻1016并联,用于通过对该目标电阻1016两端的电压进行检测,以对流经电池203的电流进行采样。该电流采样模块1015可以将上述电压采样模块1012在采样端电压时对应的采样电流反馈至处理器1013,以便于处理器1013计算对应的时间间隔内的第一阻抗变化量。进一步地,电流采样模块1015还可以确保可调电流源组件1011在产生电池上的K种第一电流时是准确无误的,即检测经过电池203的电流是否与可调电池源组件1011为电池203产生的第一电流一致。以保证第一阻抗变化量计算的准确性。
在一种可能的实现方式中,装置101还包括时序控制模块1017,该时序控制模块1017与电压采样模块1012和电流采样模块1015分别电连接,用于控制电压采样模块1012和电流采样模块1015分别按照所述N个时间间隔进行采样。该时序控制模块1017可以控制电压采样模块1012和电流采样模块1015按照预先设置的N个时间间隔进行电压或电流的采样。
在一种可能的实现方式中,装置101还包括接口电路1018,该接口电路1018与电压采样模块1012和电流采样模块1015分别电连接,用于将电压采样模块1012和电流采样模块1015反馈的采样端电压和采样电流分别发送至所述处理器1013。接口电路1018可认为是处理器1013与电压采样模块1012和电流采样模块1015之间起连接作用的逻辑电路,用于进行电池的采样端电压和采样电流的交互。
可以理解的是,上述极化电压建模装置101的结构只是本发明实施例提供的示例性的实施方式,只要是能够实现上述电压建模装置101中各个功能模块的功能,从而生成上述用于线性计算极化电压的关系表的装置结构,均属于本申请的保护范畴。
请参见图6,图6是本发明实施例提供的一种用于确定电池的极化电压的装置的结构示意图,该用于确定电池的极化电压的装置201,可用于计算电池的极化电压,具体可包括电流采样模块2011和处理器2012;可选的,如图7所示,图7是本发明实施例提供的另一种用于确定电池的极化电压的装置的结构示意图,该装置201还可以包括存储器2013、电流源2014和电压采样模块2015,其中,图6或图7中每个部分可以是电路结构,以上结构可位于一个或多个IC中。例如,电流采样模块2011位于一个IC中,处理器2012位于另一个IC中,存储器2013位于第三个IC中。电流源2014和电压采样模块2015可与电流采样模块2011位于相同或不同IC中。每个电路结构可以包括数字或模拟电路中的至少一个,例如包括数模混合电路。
电流采样模块2011,与电池203耦合,用于监测电池203的电流得到监测结果,并反馈所述监测结果至处理器2012。可以理解的是,本发明实施例中的电池203与图5中的极化电压建模装置101所检测的电池203是指型号相同或者电极极化特性相同的电池,可以并不是指同一个电池。需要说明的是,虽然在极化电压建模装置101的建模阶段是对电池203产生不同的恒流,但是在电池203的实际使用过程中,其电流可能是不稳定、会实时变化的。因此电流采样模块2011在需要计算电池203的极化电压时,采集对应时间间隔的电流以便于根据该电流确定对应的阻抗变化量,从而计算极化电压。
处理器2012,耦合于电流采样模块2011,用于获取电池203的关系表,所述关系表包括电池203分别在K种第一电流I下的N个时间间隔和对应的N个第一阻抗变化量,K为大于或者等于1的整数,N为大于1的整数;根据所述监测结果,确定电池203在目标时刻t之前的多个时间间隔分别对应的电流,以及根据所述关系表确定所述多个时间间隔分别对应的多个第二阻抗变化量;根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算电池203在目标时刻t的极化电压。在装置201中,通过依据电流采样模块2011采集的电流以及根据关系表中的不同电流下的时间间隔对应的阻抗变化量,来计算极化电压。可选的,所述多个时间间隔为所述N个时间间隔,即在建模阶段的时间间隔和计算极化电压阶段的时间间隔一一对应。
在本发明实施例中,基于极化电压产生的原理和极化电压的曲线特性,将电池在某时刻(如目标时刻t)的极化电压看作是该目标时刻t之前的一定时长内、对该目标时刻t的极化电压产生影响的若干个极化电压分量(电流与阻抗变化量的乘积)的累加总和。因此,通过利用图5中的极化电压建模装置101预先建立好的关系表中的极化阻抗参数(包括电 池在不同电流下分别对应的多个第一阻抗变化量),确定电池在目标时刻t之前的多个时间间隔中分别对应的第二阻抗变化量,并进一步根据各个时间间隔内的第二阻抗变化量和对应的电流,计算电池在目标时刻t的极化电压。其中,由于本发明实施例在计算极化电压时,是基于关系表中电流I、时间间隔和阻抗变化量的对应关系进行线性运算(例如,不同时间间隔内的电流与阻抗变化量相乘再累加)。因此,相较于现有技术中的根据极化阻抗参数进行指数运算来说,本发明实施例的计算量减小、从而消耗MIPS资源小、功耗低,优化了极化电压的计算模型,提升了极化电压的计算效率。
在一种可能的实现方式中,处理器2012还用于:根据所述极化电压和电池203在所述目标t时刻的端电压VBAT,计算所述电池在所述目标时刻t的开路电压OCV。本发明实施例,基于上述线性运算方式计算得到的极化电压,并根据公式电池开路电压OCV=电池端电压VBAT+电池极化电压Vp,计算得到电池的开路电压OCV以进一步实现终端开关机策略、电池电量计算、电池供电能力预测等功能。
在一种可能的实现方式中,装置201还包括存储器2013,存储器2013与处理器2012耦合,用于存储所述关系表;处理器2012具体用于从存储器2013中获取电池203的所述关系表。本发明实施例中,通过将用于计算电池极化电压的关系表存储在装置201的存储器2013中,以便于该装置201在需要计算电池极化电压时,可直接从本地的存储器2013中读出该关系表即可。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;处理器2012具体用于:
基于公式
Figure PCTCN2019109773-appb-000017
计算所述电池在所述目标时刻t的极化电压V P;其中,I0为所述电池在目标时刻t的电流值,Δr T1为根据所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量;I T(t,n)为时间间隔T(t,n)内的电流的平均值;Δr Tn为根据所述K种第一电流中与I T(t,n)匹配的第一电流I下的时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。为了便于描述,将上述公式记为公式1。在本申请中,在计算电池的极化电压的过程中,关系表中的N个时间间隔Tn包括目标时间t之前的多个时间间隔T(t,n),也即是目标时间t之前的X个时间间隔T(t,n)为N个时间间隔Tn的子集。换句话说,可以根据关系表中的N个时间间隔Tn中的部分或者全部的时间间隔所对应的第一阻抗变化量计算得到X个时间间隔T(t,n)分别对应的第二阻抗变化量。可选的,当X=N时,则所述多个时间间隔表示为T(t,n),n=1、2、3……N,且所述多个时间间隔与所述N个时间间隔相同,后述不再赘述。
如下表1所示,表1中包括了K种第一电流I中每一第一电流I的N个时间间隔分别对应的第一阻抗变化量,例如K=4,N=17,则K种第一电流I分别为I1、I2、I3和I4,N个时间间隔分别为T1、T2、T3、T4、……T17、对应的第一阻抗变化量则分别为ΔR T1、ΔR T2、ΔR T3、ΔR T4......ΔR T17
表1
Figure PCTCN2019109773-appb-000018
本发明实施例中,基于极化电压产生的原理和极化电压的曲线特性,将电池203在目标时刻t的极化电压看作是该目标时刻t之前的X个时间间隔、对该目标时刻t的极化电压产生影响的X个极化电压分量(电流与阻抗变化量的乘积)的累加总和。具体地,通过确定该目标时刻t之前的X个时间间隔{T(t,n),n=1、2、3……X}内分别对应的平均电流,再基于关系表确定该X个时间间隔内的平均电流分别对应的阻抗变化量,最终将目标时刻t之前的X个时间间隔内的平均电流与对应的阻抗变化量的乘积进行累加,得到电池203在目标时刻t的极化电压,其中,可选的,当X=N,则关系表中的N个时间间隔Tn与目标时间t之前的X个时间间隔T(t,n)一一对应,即T(t,n)与Tn的时长相等。进一步可选的,基于离目标时刻t越近的时间间隔内阻抗变化量越大的特性,所述X个时间间隔从目标时刻t开始呈逐渐增大趋势,也即是对应T(t,1)时长最短如0.1s,因此在具体计算第一个时间间隔内的极化电压分量时,可以利用目标时刻t的瞬时电流而非该时间间隔内的平均电流进行计算,以减小计算难度。
在一种可能的实现方式中,处理器2012,还用于:确定电池203在所述多个时间间隔内所处的温度,以及确定电池203在所述目标时刻t时所对应的剩余电量。本发明实施例中,考虑到电池203的极化电压还受到环境温度、电池的剩余电量SOC的影响,因此在计算电池的极化电压的过程中,还进一步确定该电池203当前所处的环境温度以及该电池203当前的剩余电量SOC,以便于进一步精准的计算电池203在目标时刻t的极化电压。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述K种第一电流中的第k种第一电流表示为Ik,k=1、2、3……K;所述关系表包括所述电池处于不同温度、对应不同剩余电量下、在所述每一第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量;处理器2012具体用于:
基于公式
Figure PCTCN2019109773-appb-000019
Figure PCTCN2019109773-appb-000020
计算所述电池在目标时刻t的极化电压V P;其中,I0为所述电池在目标时刻t的电流值,Δr(Temp,SOC,T1)为根据所述电池在温度为Temp、当前剩余电量为SOC下、在所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量,I(T(t,n),Ik)为所述电池在时间间隔T(t,n)内与第一 电流Ik匹配的电流的平均值,ratio(T(t,n),Ik)为所述I(T(t,n),Ik)在时间间隔T(t,n)内的占空比,Δr(Temp,SOC,Ik,Tn)为根据所述电池在温度为Temp、当前剩余电量为SOC、电流为Ik下、时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。为了便于描述,将上述公式记为公式2。
本发明实施例中,基于极化电压产生的原理和极化电压的曲线特性,将电池203在目标时刻t的极化电压看作是该目标时刻t之前的X个时间间隔、对该目标时刻t的极化电压产生影响的X个极化电压分量(电流与阻抗变化量的乘积)的累加总和,并且考虑到温度、剩余电量等因素,极化电压的计算精准度更高,其中,关系表中的N个时间间隔Tn包括目标时间t之前的多个时间间隔T(t,n),也即是目标时间t之前的多个时间间隔T(t,n)为N个时间间隔Tn的子集。具体地,关系表中包含了电池203处于不同温度、不同剩余电量、不同电流下在所述N个时间间隔内分别对应的阻抗变化量。在电池203的极化电压的计算阶段,确定电池203在目标时刻t之前的X个时间间隔{T(t,n),n=1、2、3……X}内分别对应的电流,并依据电池203在目标时刻t时的剩余电量、X个时间间隔{T(t,n),n=1、2、3……X}内分别对应的温度、电流确定对应的阻抗变化量,最终将目标时刻t之前的X个时间间隔内的电流与阻抗变化量的乘积进行累加,得到目标时刻t的极化电压。其中,在根据关系表确定对应的阻抗变化量时,可对目标时刻t之前的每一个时间间隔内的电流进行更为细化的计算。例如,对每个时间间隔内的电流进行多点采样,并将多个电流采样结果分别归档到K种电流I中的一种,然后根据各档电流对应的电流采样点的个数在该时间间隔内的占的比例(即占空比),确定对应第一阻抗变化量,以及依据该第一阻抗变化量计算最终参与极化电压运算的第二阻抗变化量。比如该第二阻抗变化量可以是依据对应的第一阻抗变化量经过线性拟合得到的、或者是乘以老化系数后得到的。可选的,所述N个时间间隔呈逐渐增大趋势,即第一个时间间隔Tn时长最短,如0.1s,基于离目标时刻t越近的时间间隔内阻抗变化量越大的特性,也即是对应T(t,1)时长最短,因此在具体计算第一个时间间隔内的极化电压分量时,可以利用目标时刻t的瞬时电流而非该时间间隔内的平均电流进行计算,以减小计算难度。
在一种可能的实现方式中,所述关系表还包括所述K种第一电流I中每一第一电流I下的N个第一阻抗变化量分别对应的老化系数a;处理器2012具体用于:根据电池203在所述多个时间间隔分别对应的电流,以及所述关系表中所述每一第一电流I下的N个第一阻抗变化量和对应的老化系数a,计算所述多个时间间隔分别对应的所述多个第二阻抗变化量。本发明实施例,考虑到电池203在多次充放电之后存在老化现象,并且老化现象对于电池的极化电压会产生影响,因此,关系表中还可以包括每个第一阻抗变化量分别对应的老化系数,依据关系表中每一第一电流I下的N个第一阻抗变化量和对应的老化系数a,确定目标时刻t之前的多个时间间隔内的电流以及该电流下对应的老化系数,并计算所述多个时间间隔分别对应的多个第二阻抗变化量,例如,第二阻抗变化量=老化系数a×第一阻抗变化量。
在一种可能的实现方式中,装置201还包括电流源2014和电压采样模块2015;电流源2014,分别与处理器2012以及电池203耦合,用于在处理器2012的控制下产生电池203的L种第二电流,L为大于或者等于1的整数。可选的,该电流源2014为梯形电流源。电 压采样模块2015,与电池203并联,用于针对所述L种第二电流I中的每一第二电流I,按照M个时间间隔对所述电池的端电压VBAT进行采样得到多个采样端电压,并反馈所述每一第二电流I对应的多个采样端电压至所述处理器,所述M个时间采样间隔为所述N个时间采样间隔的子集,即N个时间采样间隔的全部或部分;处理器2012,还用于根据所述每一第二电流I对应的多个采样端电压,分别计算所述每一第二电流I下的所述M个时间间隔对应的M个端电压变化量;基于所述每一第二电流I和所述M个端电压变化量,计算所述每一第二电流I下的所述M个时间间隔对应的M个第三阻抗变化量;基于所述每一第二电流I下的所述M个时间间隔和对应的M个第三阻抗变化量,以及所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量,更新所述每一第一电流下的N个第一阻抗变化量分别对应的老化系数a。通过本发明实施例中用于确定电池的极化电压的装置201自身包含的电流源2014和电压采样模块2015,对应用于装置201中的电池进老化系数的在线测量,与计划电压建模装置101的功能和操作类似,考虑到装置201本身的电流源2014能为电池产生的电流大小或种类有限,可能与关系表生成阶段(如实验室建模阶段)对应的K种电流不一致。因此,在测量或者更新老化系数时,可以通过测量某几种电流值(L种第二电流)下的阻抗变化量,再通过线性拟合的方式拟合到关系表中的电流值(K种第一电流)下的阻抗变化量,从而计算得到对应的老化系数,并基于某一个或者某几个老化系数,更新关系表中所有阻抗变化量的老化系数。本发明实施例,考虑到电池203在多次充放电之后存在老化现象,并且老化现象对于电池的极化电压会产生影响,因此,通过在线测量方法,更新关系表中的老化系数,以便于进一步提升计算电池极化电压的精确性。
在一种可能的实现方式中,所述N个时间间隔对应的时长逐渐增加。由于电池在某一电流值下发生极化时,其极化电压的大小变化是非线性的,也即是说当电流大小不变的情况下,该极化电压的变化对应的阻抗变化也是非线性的。而在阻抗变化非线性的特性下,通过研究其变化特性发现,其非线性的变化也是有规律可循,例如,在某个时间间隔内也即是某一个特定的时间段内,其阻抗变化可以认为是线性的。因此,本发明实施例通过将有效时间段(对目标时刻t的极化电压产生影响的时间段)划分为N个时间间隔,并且划分依据为尽可能的在该N个时间间隔的每一时间间隔内,保证其阻抗变化率不变(例如阻抗变化曲线中的两个拐点之间的曲线段)。也即是说,在关系表中,合理的选取N个时间间隔,可以尽可能的保证阻抗在各自时间间隔内的变化是线性的。所以在所述装置计算极化电压的阶段,可以依照关系表中的时间间隔,通过线性运算计算每一个时间间隔内的极化电压的分量(电流乘以阻抗变化量),并最终累加得到极化电压。如此一来,本发明实施例通过上述方式,在保证了以线性运算方式计算极化电压的准确性的同时,减小了计算量,优化了计算模型,提升了计算效率。需要说明的是,在确定所述N个时间间隔时,基于离目标时刻t越近的时间间隔内阻抗变化量越大、离目标时刻t越远的时间间隔内阻抗变化量越小的特性,为了保证在每个时间间隔内,其阻抗变化尽可能的为线性,可以理解的,在关系表的生成阶段,对于阻抗变化量越大即阻抗比变化率越大的阶段,会以更小的时间间隔进行测量,对于阻抗变化量越小即阻抗比变化率越小的阶段,会以更大的时间间隔进行测量,因此,呈现出N个时间间隔对应的时长逐渐增加的特征。
以下结合具体时序附图以及具体举例对上述极化电压建模装置101和用于确定电池的极化电压的装置201的功能进行进一步的示例性描述。
请参见图8,图8为本发明实施例提供的一种电池的阻抗在恒流下随时间变化的示意图;结合图5中极化电压建模装置101的结构,在图8中,若极化电压建模装置101从时刻t0开始进行电池端电压的测量,那么N个时间间隔T1、T2、T3、T4、……、TN基于时间的先后分队对应的时间段为t0~t1,t1~t2,t2~t3,t3~t4……t(N-1)~tN,即对应(N+1)个时刻。极化电压建模装置101中的电压采样模块1012按照上述(N+1)时刻t0、t1、t2、t3、……tN采样得到(N+1)个采样端电压,分别为Vbat(t0)、Vbat(t1)、Vbat(t2)、Vbat(t3)、……Vbat(tN)。根据第n个时间间隔Tn之间的端电压的差与当前第一电流的比值,便可以计算得到时间间隔Tn所对应的第一阻抗变化量,即ΔR Tn=(Vbat(tn)-Vbat(t[n-1]))/I。当在所述K种第一电流下分别利用上述方式进行测量,则可以分别计算K种电流中的每一第一电流下N个时间间隔T1、T2、T3、T4、……、TN分别对应的第一阻抗变化量ΔR T1、ΔR T2、ΔR T3、ΔR T4、……、ΔR TN。需要说明的是,在本申请中将N个时间间隔Tn对应的N个第一阻抗变化量记为ΔR T1、ΔR T2、ΔR T3、ΔR T4、……、ΔR TN,为了便于区分,而将后续在计算极化电压时依据对应第一阻抗变化量计算得到的第二阻抗变化量记为Δr T1、Δr T2、Δr T3、Δr T4、……、Δr TN,后续不再赘述。例如,在图8中,在第1个时间间隔T1对应的时间段t0~t1内,计算得到的第一阻抗变化量为ΔR T1,且ΔR T1=(Vbat(t1)-Vbat(t0))/I,在第2个时间间隔T2对应的时间段t1~t2内,计算得到的阻抗变化量为ΔR T2,且ΔR T2=(Vbat(t2)-Vbat(t1))/I,假设此时流经电池203的第一电流I为I1,那么I1下的第1个时间间隔T1对应的第一阻抗变化量则为ΔR T1=(Vbat(t1)-Vbat(t0))/I1,I1下的第2个时间间隔T2对应的第一阻抗变化量则为ΔR T2=(Vbat(t2)-Vbat(t1))/I1,以此类推,此处不再赘述。
请参见图9,图9为本发明实施例提供的一种建模阶段与极化电压计算阶段的时序关系的示意图;从图9中可以看出,在极化电压建模装置101的建模阶段,电压采样模块1012依据时间先后按照N个时间间隔T1、T2、T3、……TN进行端电压的采样,最终计算得到该N个时间间隔依次对应的阻抗变化量为ΔR T1、ΔR T2、ΔR T3、ΔR T4、……、ΔR TN;而在用于确定电池的极化电压的装置201确定电池203在目标时刻t的极化电压Vp(t)阶段,首先需要确定目标时刻t之前的所述多个时间间隔,然后再依据该多个时间间隔内分别对应的电流,确定每个时间间隔对应的阻抗变化量,最终计算得到目标时刻t的极化电压。由于在建模阶段,虽然是从t0开始到tN结束,但是该时间段内所有的采样端电压实际上是针对参考时刻t0进行的测量。原因在于,针对某一时刻来说,电池阻抗变化量Δr有“初始较大、逐渐变小、最终趋向于稳定(即Δr→0)”的变化特征,因此可以看出,针对t0时刻来说,与t0相距越近的时间间隔(即T1、T2、……)内的阻抗变化量对t0时刻的极化电压的影响越大(因为此时阻抗变化量大,因此与电流相乘后产生的极化电压的分量也越大),与t0相距越远的时间间隔(即TN、TN-1、TN-2、……)内的阻抗变化量对t0时刻的极化电压的影响越小(因为此时阻抗变化量小,因此与电流相乘后产生的极化电压的分量也越小),所以,在建模阶段,针对极化电压的参考时刻t0来说,离t0越近的时间间隔越小,且时间间隔逐渐增大、直到到达时刻tN(即认为此时电池的阻抗变化量不会再变化, 即此时可以认为从t0时刻开始,第一阻抗变化量从ΔR T1、ΔR T2、ΔR T3、ΔR T4、……一直到ΔR TN,且在tN时刻之后的变化量几乎可以忽略不计,甚至为0。因此,基于上述,在计算电池的极化电压阶段,如图9所示,图9中以X=N为例,假设目标时刻t为当前需要计算极化电压的时刻,那么在目标时刻t之前,从目标时刻t开始的第1个时间间隔为T(t,1),对应的时间段为t~t-(t 1-t 0);第二个时间间隔为T(t,1),对应的时间段为t~t-(t2-t1);第三个时间间隔为T(t,3),对应的时间段为t~t-(t3-t2);以此类推,第N个时间间隔为T(t,n),对应的时间段为t~t-(t N-t N-1)。其中,当将剩余电量SOC的因素考虑进来,则目标时刻t的剩余电量SOC对应建模阶段的时刻TN时的剩余电量,例如,当前电池203的剩余电量为50%,那么则对应到关系表中则查找在TN时刻剩余电量为50%的情况下的阻抗变化量。
请参见图10,图10为本发明实施例提供的另一种电池的阻抗在恒流下随时间变化的示意图;图10中以X=N为例,也即是说,在确定目标时刻t的极化电压Vp(t)的计算过程中,时间间隔T(t,1)对应的第一阻抗变化量即为建模阶段的时间间隔T1对应的第一阻抗变化量ΔR T1;时间间隔T(t,2)对应的第一阻抗变化量即为建模阶段的时间间隔T2对应的第一阻抗变化量ΔR T2;时间间隔T(t,3)对应的第一阻抗变化量即为建模阶段的时间间隔T3对应的第一阻抗变化量ΔR T3;以此类推,时间间隔T(t,N)对应的第一阻抗变化量即为建模阶段的时间间隔TN对应的第一阻抗变化量ΔR TN。由于在确定电池的极化电压Vp(t)时,电池203在目标时刻t之前的电流通常不是恒定不变的,而是实时变化的,而在建模阶段所计算得到的ΔR T1、ΔR T2、ΔR T3、ΔR T4、……、ΔR TN,是分别针对某一种电流I(理想状态下可认为是恒流)下的一系列阻抗变化量。因此,在实际计算极化电压Vp(t)时,本发明实施例是通过对目标时刻t之前的N个时间间隔T(t,n),n=1、2、3、……、N内的各个时间间隔内的实际电流分别查找对应的Δr,从而进行每个时间间隔T(t,n)内的极化电压分量的计算。
请参见图11,图11为本发明实施例提供的一种目标时刻t对应的实际电流值与阻抗变化量之间的对应关系的示意图,图11中以X=N为例,在图11中,上半部分的虚线为电流采样模块2011在目标时刻t之前的N个时间间隔(T(t,n),n=1、2、3、……、N)内对电池203进行监测的监测结果,即多个实际电流采样值I(t′),实线部分则为各个时间间隔T(t,n)内的的平均电流I T(t,n)。经过上述图11中所描述的确定各个时间间隔T(t,n)内的平均电流I T(t,n)后,则可以从关系表中,查找与该电流平均值所匹配的第一电流I。如图12所示,图12为本发明实施例提供的一种根据关系表确定I T(t,n)对应的阻抗变化量的示意图,同样,以X=N为例,假设K种第一电流中K等于4,4种第一电流分别为I1=60mA、I2=160mA、I3=200mA、I4=400mA,在时间间隔T(t,2)内,实际电流采样值分别为220mA、209mA、198mA、195mA,那么经过计算该时间间隔T(t,2)内的平均电流等于(220+209+198+195)/4=205.5mA,此时处理器2012查找关系表可知,该205.5mA与200mA最接近,因此与该时间间隔T(t,2)所匹配的I T(t,2)则为I3=200mA,进一步处理器2012可以通过关系表中查找I3下的第2个时间间隔T2所对应的第一阻抗变化量ΔR T2,进一步地,依据该ΔR T2可以进一步计算(如乘以老化系数a或者进行线性拟合等)得到对应的第二阻抗变化量Δr T2;同理,在时间间隔T(t,3)内,实际电流采样值分别为180mA、185mA、 175mA、160mA,那么经过计算该时间间隔T(t,3)内的平均电流等于(180+185+175+160)/4=175mA,那么此时处理器2012查找关系表可知,该175mA与160mA最接近,因此确定与该时间间隔T(t,3)所匹配的I T(t,3)则为I2=160mA,进一步处理器2012可以通过关系表中查找I2下的第3个时间间隔T3所对应的第一阻抗变化量ΔR T3,进一步地,依据该ΔR T3可以进一步计算(如乘以老化系数a或者进行线性拟合等)得到对应的第二阻抗变化量Δr T3。以此类推,最终可以确定N个时间间隔T(t,n),n=1、2、3、……、N分别对应的第二阻抗变化量Δr T1、Δr T2、Δr T3、……、Δr TN,其他时间间隔T(t,n)对应的第二阻抗变化量的确定过程不再详细描述。可选的,由于目标时刻t之前的T(t,1)内由于时长较短(在N个时间间隔中最短),因此,也可以认为该时间间隔内的平均电流为目标时刻t的瞬时电流,也即是本申请中前述公式1中的即I0,此时,只需要根据I0的大小查找对应的ΔR T1即可。
如图13所示,图13为本发明实施例提供的另一种在目标时刻t之前的时间间隔与阻抗变化量之间的对应关系的示意图,图13中以X=N为例,区别于上述图11与图12对应的实施例,在该实施例中,将电流采样模块2011在目标时刻t之前的N个时间间隔(T(t,n),n=1、2、3、……、N)内对电池203进行监测的监测结果进行更为细化的归档,为每个时间间隔内的实际电流采样值I(t′)匹配一个或多个第一电流,使得极化电压的计算结果更为精准。在图13中,上半部分的虚线为监测结果中的多个实际电流采样值I(t′),实线部分则为所匹配的至少一个第一电流(图13中以2个第一电流I1和I2为例)。以目标时刻t之前以t为起始的第一个时间间隔T(t,1)为例,假设电流采样模块2011在T(t,1)实时采样的电流值有10个,K种第一电流中K等于4,4种第一电流分别为I1=60mA、I2=160mA、I3=200mA、I4=400mA,假设该时间间隔为0.1s,进行了10次电流值的采样,而其中4个电流采样值(如158mA、165mA、155mA、149mA)归类到I2档,即将电流采样值中离160mA中更近的电流采样值归类到160mA档,而6个电流采样值(如50mA、58mA、64mA、70mA、65mA、77mA)归类到I1档,即将电流采样值中离60mA中更近的电流采样值归类到60mA档。如图14所示,图14为本发明实施例提供的另一种根据关系表确定I T(t,n)对应的阻抗变化量的示意图,同样,以X=N为例,基于上述电流采样值归档后的结果,最终可确定,在时间间隔T(t,1)内对应的第一阻抗变化量分别为,根据电流为I2下对应的第一阻抗变化量ΔR T1计算得到(如乘以老化系数a或者进行线性拟合等)的第二阻抗变化量Δr(T1,I2)(见图13中下半部分)、以及电流为I1下对应的第一阻抗变化量ΔR T1计算得到(如乘以老化系数a或者进行线性拟合等)的第二阻抗变化量Δr(T1,I1)(见图13中下半部分);同理,假设在目标时刻t之前的时间间隔T(t,2)内,假设该时间间隔为0.5s,电流采样模块2011进行了30次电流值的采样,那么将其中18个电流采样值(如50mA、60mA、70mA、60mA、45mA等)归类到I1,即将电流采样值中离60mA中更近的电流采样值归类到60mA这一档,将12个电流采样值(如150mA、160mA、170mA、120mA、145mA等)归类到I2,即将电流采样值中离160mA中更近的电流采样值归类到160mA这一档。如图14中所示,基于上述电流采样值归档后的结果,最终可确定,在时间间隔T(t,2) 内对应的第二阻抗变化量分别为,根据电流为I1下对应的第一阻抗变化量ΔR T2计算得到(如乘以老化系数a或者进行线性拟合等)的第二阻抗变化量Δr(T2,I1)(见图13中下半部分)、以及根据电流为I2下对应的第一阻抗变化量ΔR T2计算得到(如乘以老化系数a或者进行线性拟合等)的第二阻抗变化量Δr(T2,I2)(见图13中下半部分)。而针对N个时间间隔T(t,n),n=1、2、3、……、N中的每个时间间隔内参与运算的电流I(T(t,n),Ik),则为归档后的在该电流档位下的实际平均电流。例如,在上述举例的时间间隔T(t,2)内,一共有30个电流采样值,其中18个电流采样值与I1匹配,12个电流采样值与I2匹配,那么I(T(t,2),I1)则对应上述18个实际电流采样值的电流平均值,I(T(t,2),I2)则对应上述12个实际电流采样值的平均值,且由于在时间间隔T(t,2)内,与第一电流I3和第一电流I4所匹配的电流采样值个数可认为0,即没有电流采样值匹配到该两档,因此在该时间间隔T(t,2)内可认为I(T(t,2),I3)以及I(T(t,2),I4)分别对应的占空比ratio(T(t,2),I3)、ratio(T(t,2),I4)均为0,而I(T(t,2),I1)以及I(T(t,2),I2)分别对应的占空比ratio(T(t,2),I1)、ratio(T(t,2),I2)则分别为18/30=0.6、12/30=0.4,以此类推,其他情况不再详细描述。最终,依据电池203在N个时间间隔T(t,1)、T(t,2)、T(t,3)……T(t,n)内的电流所匹配的档位、以及在该时间间隔内与该电流档位匹配的采样电流的平均值,以及每个档位在该时间间隔内的占空比,和对应的阻抗变化量的乘积,计算在各个时间间隔内的极化电压的分量。
可以理解的是,上述图13中对应的实施例中,每个时间间隔T(t,n)对应的第一电流均为两种即I1和I2,但是实际情况中,可能每个时间间隔T(t,n)内对应的第一电流的数量和种类可能不一样,如图15所示,图15为本发明实施例提供的又一种根据关系表确定I T(t,n)对应的阻抗变化量的示意图,同样,以X=N为例,图15中,时间间隔T(t,2)内的实际电流采样值归档后分别与第一电流I2和第一电流I3匹配,时间间隔T(t,3)内的实际电流采样值归档后分别与第一电流I3和第一电流I4匹配。
可选的,请参见图16,图16为本发明实施例提供的又一种在目标时刻t之前的时间间隔与阻抗变化量之间的对应关系的示意图,同样,以X=N为例,图16与图13的区别在于,由于目标时刻t之前的T(t,1)内的时长较短(在N个时间间隔中最短),因此,也可以认为该时间间隔内的平均电流为目标时刻t的瞬时电流,也即是本申请中前述公式2中的I0,此时,只需要根据I0的大小查找对应的第一阻抗变化量ΔR T1。如图17所示,图17为本发明实施例提供的又一种根据关系表确定I T(t,n)对应的阻抗变化量的示意图,此时,电池203在时间间隔T(t,1)内对应的第二阻抗变化量为根据目标时刻t的瞬时电流归档到I1下的第一阻抗变化量ΔR T1计算得到(如乘以老化系数a或者进行线性拟合等)的第二阻抗变化量Δr T1
请参见图18,图18为本发明实施例提供的一种基于梯形电流源进行老化系数测量的关系示意图,图18中上半部分为用于确定电池的极化电压的装置201中电流源2014提供的L种第二电流,假设L=4,并且该4种第二电流可以与所述K种第一电流相同也可以不 同,即L种第二电流和K种第一电流之间可以没有必然联系。图18中的下半部分为针对上述L种第二电流中的每一种第二电流,进行电池的端电压VBAT的测量,其中,在时刻0与时刻4之间是针对第二电流I1的4个时间间隔的电池的端电量变化量的测量,在时刻4到时刻7之间是针对第二电流I2的3个时间间隔的电池的端电量变化量的测量,在时刻7到时刻10之间是针对第二电流I3的3个时间间隔的电池的端电量变化量的测量,在时刻10到时刻12之间是针对第二电流I4的2个时间间隔的电池的端电量变化量的测量。也即是针对不同的第二电流I其对应的M个时间间隔可以相同也可以不同。且需要说明的是,所述M个时间间隔为所述N个时间采样间隔的子集,也即是M与N的数量可以不等,但是M个时间间隔中的每一个时间间隔均与所述M个时间间隔中的某一个时间间隔一致。根据上述梯形电流采样的VBAT电压,可计算矢量建模老化系数。
老化系数a(k,Tn)=(ΔV(Tn)/Ik)/ΔR(Tn,Ik),k代表所述K种第一电流中的第k种第一电流,Tn代表所述N个时间间隔中的第n个时间间隔,a(k,Tn)则表示针对第一电流Ik下的第n个时间间隔下的老化系数,具体计算方式可以通过图18中的第二电流I(l)下的与Tn对应的时间间隔之间的端电压差与I(l)比值(也即是本申请中的第三阻抗变化量),然后再进行线性拟合,得到ΔV(Tn)/I(k),即ΔV(Tn)/I(k)=(Ik/Il)ΔV(Tn)/I(l),其中k=1、2、3……K,l=1、2、3……L,最终获得Ik下的时间间隔Tn对应的老化系数。并且,在计算极化电压时,第二阻抗变化量=对应的老化系数a(k,Tn)×对应的第一阻抗变化量,也即是实际参与极化电压计算的第二阻抗变化量为将对应第一组抗变化量乘以老化系数后的阻抗变化量。
请参见图19,图19为本发明实施例提供的一种通过线性拟合温度和剩余电量确定阻抗变化量的示意图,当电池203对应的温度temp和剩余电量SOC在关系表中均未对应到匹配值时,则通过二维线性拟合的方式将当前温度和SOC拟合到关系表中某两个温度之间,以及将当前剩余电量SOC拟合到关系表中的两种剩余电量之间。如图18所示,ΔR(Temp m-1,SOC m,Ik)、ΔR(Temp m,SOC m,Ik)、ΔR(Temp m-1,SOC m-1,Ik)、ΔR(Temp m,SOC m-1,Ik)均是关系表中已经存在的温度Temp m-1、Temp m、和剩余电量SOC m、SOC m-1对应的四种组合方式,即是关系表中可以查到的温度和剩余电量的参数,而电池203当前的Temp和SOC不是关系表中可以查的到的。通过将ΔR(Temp,SOC m,Ik)、ΔR(Temp,SOC m-1,Ik)拟合得到了Δr(Temp,SOC,Ik);而对应的第二阻抗变化量的计算公式如下:
Figure PCTCN2019109773-appb-000021
为便于表述,将上述公式记为公式3,经过上述公式3可以将Δr(Temp,SOC,Ik,Tn)为根据所述电池在温度为Temp、当前剩余电量为SOC、电流为Ik下、时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。此处可以理解为ΔR(Temp m-1,SOC m,Ik)、ΔR(Temp m,SOC m,Ik)、ΔR(Temp m-1,SOC m-1,Ik)、ΔR(Temp m,SOC m-1,Ik)均为电池在温度为Temp、当前剩余电量为SOC、电流为Ik下、时间间隔Tn对应的第一阻抗变化量,而Δr(Temp,SOC,Ik)则是根据上述第一阻抗变化量计算得到的第二阻抗变化量,也即是,当从关系表中确定的第一阻抗变化量可能不会直接参与极化电压的计算,而是经过一定的转化和运算才最终确定需要参与计算的第二阻抗变化量。
基于上述,以下示例性描述基于极化阻抗变化量分解进行线性矢量建模的实例,以及产品在实际应用中计算极化电压的实例:
从极化电压建模转置101进行线性矢量建模的实例来讲,其各个功能模块执行如下操作:
A、电压采样模块1012检测静置(>30分钟)电池203的端电压VBAT,记VBAT(t0)。
B、可调电流源组件1011对电池203拉载不同恒流I(即K种第一电流I),电压采样模块1012采样电池203的端电压VBAT,记为VBAT(tn),n=0、1、2、3……N,采样时间持续20分钟以上。
D、处理器1013在不同温度Tempi、电量SOCj、放电电流Ik条件下,对电池203进行全面矢量建模,将电池极化阻抗在时间轴上进行增量分解,分解为阻抗增量矢量ΔR=(ΔR T1、ΔR T2、ΔR T3、……、ΔR TN),其中
ΔR T1=(VBAT(t0)-VBAT(t1))/I
ΔR T2=(VBAT(t1)-VBAT(t2))/I
……
ΔR TN=(VBAT(t(N-1))-VBAT(tN))/I
最终,处理器1013计算得到各个温度、各个剩余电量下的ΔR(Tempi,SOCj,Ik)=(ΔR T1、ΔR T2、ΔR T3、……、ΔR TN)。例如,相关参数可以参考以下设置方式:
(1)将温度设置为9个档,-20℃、-10℃、-5℃、0℃、5℃、10℃、25℃、40℃、55℃;
(2)将电流设置为4个档位,200mA、0.15C、0.4C、1C,即K=4;
(3)将剩余电量设置为20个档位:0、5%、10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、100%;
(4)将N个时间间隔设置为17个时间间隔:0.1s、0.5s、1.5s、3s、5s、15s、300s、500s、……直至20min结束;
针对上述不同的温度和剩余电量,也即是9×20=180种温度和剩余电量的组合各自对应一份表1,即每一种温度和剩余电量下均对应一张表1,此处可以对应180张表1,此处不作详述。
E、将上述阻抗增量矢量表ΔR(Tempi,SOCj,Ik)存入极化电压建模装置101的存储器1014中。
从计算极化电压的装置201计算极化电压的实例来讲,其各个功能模块执行如下操作:
A、处理器2012从存储器2013中读取关系表ΔR(Tempi,SOCj,Ik)
B、处理器2012基于关系表ΔR(Tempi,SOCj,Ik),通过二维线性拟合得到电池203在目标时刻t对应的温度Temp、剩余电量SOC下的矢量Δr(Temp,SOC,Ik):
Figure PCTCN2019109773-appb-000022
C、处理器2012计算各个时间间隔内的平均电流I(T(t,n),Ik)及其占空比ratio(T(t,n),Ik)。
D、处理器2012计算电池极化电压:
Figure PCTCN2019109773-appb-000023
E、处理器2012计算电池OCV电压,OCV=VBAT+Vp。
另外,用于计算极化电压的装置201除了可以通过上述图18对应的在线测量的方式更新老化系数外,还可以采取以下方法对电池203老化自动修正矢量建模:
A、通过电量进行开路电压OCV更新时,可以认定电量是准确的(误差小于1%)
B、在Tempi,SOCj条件下放电时,计算电池203矢量表老化系数a(Tempi,SOCj)=(OCV(SOC)-VBAT)/Vp,其中OCV(SOC)为基于SOC查表得到的OCV,VBAT为电池端电压,Vp为计算得到的极化电压。
C、则矢量表修正为ΔR(Tempi,SOCj,Ik)×a(Tempi,SOCj)。
需要说明的是,在本发明的各个实施例中,本申请中的确定电池的极化电压的装置适用于镍氢电池、镍镉电池、锂离子电池、锂聚合物电池、铅酸电池等几乎所有类型的充电电池。
请参见图20,图20是本发明实施例提供的一种极化电压建模方法的流程示意图,该极化电压建模方法方法,适用于上述图5中的任意一种极化电压建模装置101以及包含所述极化电压建模装置101的设备(如服务器10)。该方法可以包括以下步骤S2001-步骤S2004, 其中,
步骤S2001:针对电池上的电流为K种第一电流I中的每一第一电流I的情况,按照N个时间间隔对所述电池的端电压VBAT进行采样得到多个采样端电压,N为大于1的整数;
步骤S2002:根据所述每一第一电流I对应的多个采样端电压,分别计算所述N个时间间隔对应的N个端电压变化量;
步骤S2003:基于所述每一第一电流I和所述N个端电压变化量,计算所述N个时间间隔对应的N个第一阻抗变化量;
步骤S2004:建立所述电池在所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量的关系表;其中,所述关系表用于计算所述电池的极化电压。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述关系表用于计算所述电池的极化电压:包括:
所述关系表用于基于公式
Figure PCTCN2019109773-appb-000024
计算所述电池在所述目标时刻t的极化电压V P;其中,I0为所述电池在目标时刻t的电流值,Δr T1为根据所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量;I T(r,n)为时间间隔T(t,n)内的电流的平均值;Δr Tn为根据所述K种第一电流中与I T(t,n)匹配的第一电流I下的时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
在一种可能的实现方式中,所述方法还包括:针对所述电池上的电流为所述K种第一电流I中的每一种第一电流I的情况,确定所述电池在所述N个时间间隔内所处的温度,以及确定所述电池在所述N个时间间隔结束时所对应的剩余电量。
在一种可能的实现方式中,所述建立所述电池在所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量的关系表,包括:
建立所述电池处于不同温度、对应不同剩余电量下,在所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量的关系表。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述K种第一电流中的第k种第一电流表示为Ik,k=1、2、3……K;所述关系表包括所述电池处于不同温度、对应不同剩余电量下、在所述每一第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量;所述关系表用于计算所述电池的极化电压:包括:
基于公式
Figure PCTCN2019109773-appb-000025
Figure PCTCN2019109773-appb-000026
计算所述电池在目标时刻t的极化电压V P;其中,I0为所述电池在目标时刻t的电流值,Δr(Temp,SOC,T1)为根据所述电池在温度为Temp、当前剩余电量为SOC 下、在所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量,I(T(t,n),Ik)为所述电池在时间间隔T(t,n)内与第一电流Ik匹配的电流的平均值,ratio(T(t,n),Ik)为所述I(T(t,n),Ik)在时间间隔T(t,n)内的占空比,Δr(Temp,SOC,Ik,Tn)为根据所述电池在温度为Temp、当前剩余电量为SOC、电流为Ik下、时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
在一种可能的实现方式中,所述方法还包括,存储所述关系表。
在一种可能的实现方式中,所述N个时间间隔对应的时长逐渐增长。
需要说明的是,本发明实施例中所描述的极化电压建模方法的具体流程,可参见上述图1-图5中所述的装置实施例中的相关描述,此处不再赘述。
请参见图21,图21是本发明实施例提供的一种确定电池的极化电压的方法的流程示意图,该安全处理方法,适用于上述图6-或图7中的任意一种用于确定电池的极化电压的电子装置201以及包含所述用于确定电池的极化电压的电子装置201的设备(如智能终端、智能车载等)。该方法可以包括以下步骤S2011-步骤S2014,其中,
步骤S2011:监测电池的电流得到监测结果;
步骤S2012:获取所述电池的关系表,所述关系表包括所述电池分别在K种第一电流I下的N个时间间隔和对应的N个第一阻抗变化量,K为大于或者等于1的整数,N为大于1的整数;
步骤S2013:根据所述监测结果,确定所述电池在目标时刻t之前的多个时间间隔分别对应的电流,以及根据所述关系表确定所述多个时间间隔分别对应的多个第二阻抗变化量;
步骤S2014:根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算所述电池在所述目标时刻t的极化电压。
在一种可能的实现方式中,所述方法,还包括:
根据所述极化电压和所述电池在所述目标t时刻的端电压VBAT,计算所述电池在所述目标时刻t的开路电压OCV。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;
所述根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算所述电池在所述目标时刻t的极化电压,包括:
基于公式
Figure PCTCN2019109773-appb-000027
计算所述电池在所述目标时刻t的极化电压V P;其中,
I0为所述电池在目标时刻t的电流值,Δr T1为根据所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量;I T(t,n)为时间间隔T(t,n)内的平均电流;Δr Tn为根据所述K种第一电流中与I T(t,n)匹配的第一电流I下的Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
在一种可能的实现方式中,所述方法,还包括:
确定所述电池在所述多个时间间隔内所处的温度,以及
确定所述电池在所述目标时刻t时所对应的剩余电量。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述K种第一电流中的第k种第一电流表示为Ik,k=1、2、3……K;所述关系表包括所述电池处于不同温度、对应不同剩余电量下、在所述每一第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量;所述根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算所述电池在所述目标时刻t的极化电压,包括:基于公式
Figure PCTCN2019109773-appb-000028
Figure PCTCN2019109773-appb-000029
计算所述电池在目标时刻t的极化电压V P;其中,
I0为所述电池在目标时刻t的电流值,Δr(Temp,SOC,T1)为根据所述电池在温度为Temp、当前剩余电量为SOC下、在所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量,I(T(t,n),Ik)为所述电池在时间间隔T(t,n)内的电流所匹配的至少一种第一电流Ik,ratio(T(t,n),Ik)为所述I(T(t,n),Ik)在时间间隔T(t,n)内的占空比,Δr(Temp,SOC,Ik,Tn)为根据所述电池在温度为Temp、当前剩余电量为SOC、电流为Ik下、时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
在一种可能的实现方式中,所述关系表还包括所述K种第一电流I中每一第一电流I下的N个第一阻抗变化量分别对应的老化系数a;所述根据所述关系表确定所述多个时间间隔分别对应的多个第二阻抗变化量,包括:
根据所述电池在所述多个时间间隔分别对应的电流,以及所述关系表中所述每一第一电流I下的N个第一阻抗变化量和对应的老化系数a,计算所述多个时间间隔分别对应的所述多个第二阻抗变化量。
在一种可能的实现方式中,所述方法,还包括:
产生所述电池的L种第二电流,L为大于或者等于1的整数;
针对所述L种第二电流I中的每一第二电流I,按照M个时间间隔对所述电池的端电压VBAT进行采样得到多个采样端电压,所述M个时间采样间隔为所述N个时间采样间隔的子集,即N个时间采样间隔的全部或仅其中部分;
根据所述每一第二电流I对应的多个采样端电压,分别计算所述每一第二电流I下的所述M个时间间隔对应的M个端电压变化量;
基于所述每一第二电流I和所述M个端电压变化量,计算所述每一第二电流I下的所述M个时间间隔对应的M个第三阻抗变化量;
基于所述每一第二电流I下的所述M个时间间隔和对应的M个第三阻抗变化量,以及所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量,更新所述每一第一电流下的N个第一阻抗变化量分别对应的老化系数a。
在一种可能的实现方式中,所述N个时间间隔对应的时长逐渐增加。
需要说明的是,本发明实施例中所描述的用于确定电池的极化电压的方法的具体流程,可参见上述图6-图7中所述的装置实施例中的相关描述,此处不再赘述。
请参见图22,图22是本发明实施例提供的另一种用于确定电池的极化电压的装置的结构示意图,该用于确定电池的极化电压的装置50可对应于图3或图4中装置201。装置50可以软件或硬件或其结合来实现,其具体可包括处理器,如图6或图7中的处理器,或者可以运行于处理器之上的软件,或者可以软件或硬件结合实现。装置50可包括第一获取单元501、第一确定单元502、第一计算单元503,其中,各个单元的详细描述如下。
第一获取单元501,用于获取电池的关系表,所述关系表包括所述电池分别在K种第一电流I下的N个时间间隔和对应的N个第一阻抗变化量,K为大于或者等于1的整数,N为大于1的整数;
第一确定单元502,用于根据所述电池的电流的监测结果,确定所述电池在目标时刻t之前的多个时间间隔分别对应的电流,以及根据所述关系表确定所述多个时间间隔分别对应的多个第二阻抗变化量;
第一计算单元503,用于根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算所述电池在所述目标时刻t的极化电压。
在一种可能的实现方式中,装置50,还包括:
第二计算单元504,用于根据所述极化电压和所述电池在所述目标t时刻的端电压VBAT,计算所述电池在所述目标时刻t的开路电压OCV。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;
所述第一计算单元具体用于:基于公式
Figure PCTCN2019109773-appb-000030
计算所述电池在所述目标时刻t的极化电压V P;其中,
I0为所述电池在目标时刻t的电流值,Δr T1为根据所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量;I T(t,n)为时间间隔T(t,n)内的平均电流;Δr Tn为根据所述K种第一电流中与I T(t,n)匹配的第一电流I下的Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
在一种可能的实现方式中,所述装置,还包括:
第二确定单元505,用于确定所述电池在所述多个时间间隔内所处的温度;
第三确定单元506,用于确定所述电池在所述目标时刻t时所对应的剩余电量。
在一种可能的实现方式中,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述K种第一电流中的第k种第一电流表示为Ik,k=1、2、3……K;所述关系表包括所述电池处于不同温度、对应不同剩余电量下、在所述每一第一电流I下的所述N个时间 间隔和对应的N个第一阻抗变化量;所述第一计算单元,具体用于:基于公式
Figure PCTCN2019109773-appb-000031
Figure PCTCN2019109773-appb-000032
计算所述电池在目标时刻t的极化电压V P;其中,
I0为所述电池在目标时刻t的电流值,Δr(Temp,SOC,T1)为根据所述电池在温度为Temp、当前剩余电量为SOC下、在所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量,I(T(t,n),Ik)为所述电池在时间间隔T(t,n)内的电流所匹配的至少一种第一电流Ik,ratio(T(t,n),Ik)为所述I(T(t,n),Ik)在时间间隔T(t,n)内的占空比,Δr(Temp,SOC,Ik,Tn)为根据所述电池在温度为Temp、当前剩余电量为SOC、电流为Ik下、时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
在一种可能的实现方式中,所述关系表还包括所述K种第一电流I中每一第一电流I下的N个第一阻抗变化量分别对应的老化系数a;所述第一确定单元,具体用于:
根据所述电池在所述多个时间间隔分别对应的电流,以及所述关系表中所述每一第一电流I下的N个第一阻抗变化量和对应的老化系数a,计算所述多个时间间隔分别对应的所述多个第二阻抗变化量。
在一种可能的实现方式中,所述装置,还包括:
第二获取单元507,获取所述电池在L种第二电流I中的每一第二电流I下按照M个时间间隔进行采样得到的多个采样端电压,L为大于或者等于1的整数,所述M个时间采样间隔为所述N个时间采样间隔的子集;
第三计算单元508,用于根据所述每一第二电流I对应的多个采样端电压,分别计算所述每一第二电流I下的所述M个时间间隔对应的M个端电压变化量;
第四计算单元509,用于基于所述每一第二电流I和所述M个端电压变化量,计算所述每一第二电流I下的所述M个时间间隔对应的M个第三阻抗变化量;
更新单元510,用于基于所述每一第二电流I下的所述M个时间间隔和对应的M个第三阻抗变化量,以及所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量,更新所述每一第一电流下的N个第一阻抗变化量分别对应的老化系数a。
需要说明的是,本发明实施例中所描述的用于确定电池的极化电压的装置50中各功能单元的功能可参见上述图6-图7所述的装置实施例或之前方法实施例的相关描述,此处不再赘述。每个单元可以软件。硬件或其结合实现。当一个单元以软件实现,其可以包括软件程序,并存储于存储器内,且可被处理器执行。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有软件程序,该程序执行时,可以实现包括上述方法实施例中记载的任意一种电池的极化电压建模方法或确定电池的极化电压的方法的部分或全部步骤。
本发明实施例还提供一种计算机程序,该计算机程序包括指令,当该计算机程序被计算机执行时,使得计算机可以执行任意一种电池的极化电压建模方法或确定电池的极化电压的方法的部分或全部步骤。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分, 可以参见其它实施例的相关描述。需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可能可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必需的。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以为个人计算机、服务器或者网络设备等,具体可以是计算机设备中的处理器)执行本申请各个实施例上述方法的全部或部分步骤。其中,而前述的存储介质可包括:U盘、移动硬盘、磁碟、光盘、只读存储器(Read-Only Memory,缩写:ROM)或者随机存取存储器(Random Access Memory,缩写:RAM)等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (28)

  1. 一种用于确定电池的极化电压的装置,其特征在于,包括:电流采样模块和处理器;其中
    所述电流采样模块,与电池耦合,用于监测所述电池的电流得到监测结果,并反馈所述监测结果至所述处理器;
    所述处理器,耦合于所述电流采样模块,用于:
    获取所述电池的关系表,所述关系表包括所述电池分别在K种第一电流I下的N个时间间隔和对应的N个第一阻抗变化量,K为大于或者等于1的整数,N为大于1的整数;
    根据所述监测结果,确定所述电池在目标时刻t之前的多个时间间隔分别对应的电流,以及根据所述关系表确定所述多个时间间隔分别对应的多个第二阻抗变化量;
    根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算所述电池在所述目标时刻t的极化电压。
  2. 根据权利要求1所述的装置,其特征在于,所述处理器,还用于:
    根据所述极化电压和所述电池在所述目标t时刻的端电压VBAT,计算所述电池在所述目标时刻t的开路电压OCV。
  3. 根据权利要求1或2所述的装置,其特征在于,所述装置还包括存储器,所述存储器与所述处理器耦合,用于存储所述关系表;所述处理器,具体用于从所述存储器中获取所述电池的所述关系表。
  4. 根据权利要求1-3任意一项所述的装置,其特征在于,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;
    所述处理器具体用于:基于公式
    Figure PCTCN2019109773-appb-100001
    计算所述电池在所述目标时刻t的极化电压V P;其中,
    I0为所述电池在目标时刻t的电流值,Δr T1为根据所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量;I T(t,n)为时间间隔T(t,n)内的电流的平均值;Δr Tn为根据所述K种第一电流中与I T(t,n)匹配的第一电流I下的时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
  5. 根据权利要求1-3任意一项所述的装置,其特征在于,所述处理器,还用于:
    确定所述电池在所述多个时间间隔内所处的温度,以及
    确定所述电池在所述目标时刻t时所对应的剩余电量。
  6. 根据权利要求5所述的装置,其特征在于,所述N个时间间隔中的第n个时间间 隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述K种第一电流中的第k种第一电流表示为Ik,k=1、2、3……K;所述关系表包括所述电池处于不同温度、对应不同剩余电量下、在所述每一第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量;所述处理器具体用于:
    基于公式
    Figure PCTCN2019109773-appb-100002
    Figure PCTCN2019109773-appb-100003
    计算所述电池在目标时刻t的极化电压V P;其中,
    I0为所述电池在目标时刻t的电流值,Δr(Temp,SOC,T1)为根据所述电池在温度为Temp、当前剩余电量为SOC下、在所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量,I(T(t,n),Ik)为所述电池在时间间隔T(t,n)内与第一电流Ik匹配的电流的平均值,ratio(T(t,n),Ik)为所述I(T(t,n),Ik)在时间间隔T(t,n)内的占空比,Δr(Temp,SOC,Ik,Tn)为根据所述电池在温度为Temp、当前剩余电量为SOC、电流为Ik下、时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
  7. 根据权利要求1-6任意一项所述的装置,其特征在于,所述关系表还包括所述K种第一电流I中每一第一电流I下的N个第一阻抗变化量分别对应的老化系数a;所述处理器具体用于:
    根据所述电池在所述多个时间间隔分别对应的电流,以及所述关系表中所述每一第一电流I下的N个第一阻抗变化量和对应的老化系数a,计算所述多个时间间隔分别对应的所述多个第二阻抗变化量。
  8. 根据权利要求7任意一项所述的装置,其特征在于,所述装置还包括电流源和电压采样模块;
    所述电流源,分别与所述处理器以及所述电池耦合,用于在所述处理器的控制下产生所述电池的L种第二电流,L为大于或者等于1的整数;
    所述电压采样模块,与所述电池并联,用于针对所述L种第二电流I中的每一第二电流I,按照M个时间间隔对所述电池的端电压VBAT进行采样得到多个采样端电压,并反馈所述每一第二电流I对应的多个采样端电压至所述处理器,所述M个时间采样间隔为所述N个时间采样间隔的子集;
    所述处理器,还用于根据所述每一第二电流I对应的多个采样端电压,分别计算所述每一第二电流I下的所述M个时间间隔对应的M个端电压变化量;基于所述每一第二电流I和所述M个端电压变化量,计算所述每一第二电流I下的所述M个时间间隔对应的M个第三阻抗变化量;基于所述每一第二电流I下的所述M个时间间隔和对应的M个第三阻抗变化量,以及所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量,更新所述每一第一电流下的N个第一阻抗变化量分别对应的老化系数a。
  9. 根据权利要求1-8任意一项所述的装置,其特征在于,所述N个时间间隔对应的时长逐渐增加。
  10. 一种确定电池的极化电压的方法,其特征在于,包括:
    监测电池的电流得到监测结果;
    获取所述电池的关系表,所述关系表包括所述电池分别在K种第一电流I下的N个时间间隔和对应的N个第一阻抗变化量,K为大于或者等于1的整数,N为大于1的整数;
    根据所述监测结果,确定所述电池在目标时刻t之前的多个时间间隔分别对应的电流,以及根据所述关系表确定所述多个时间间隔分别对应的多个第二阻抗变化量;
    根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算所述电池在所述目标时刻t的极化电压。
  11. 根据权利要求10所述的方法,其特征在于,所述方法,还包括:
    根据所述极化电压和所述电池在所述目标t时刻的端电压VBAT,计算所述电池在所述目标时刻t的开路电压OCV。
  12. 根据权利要求10或11所述的方法,其特征在于,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;
    所述根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算所述电池在所述目标时刻t的极化电压,包括:
    基于公式
    Figure PCTCN2019109773-appb-100004
    计算所述电池在所述目标时刻t的极化电压V P;其中,
    I0为所述电池在目标时刻t的电流值,Δr T1为根据所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量;I T(t,n)为时间间隔T(t,n)内的电流的平均值;Δr Tn为根据所述K种第一电流中与I T(t,n)匹配的第一电流I下的时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
  13. 根据权利要求10或11所述的方法,其特征在于,所述方法,还包括:
    确定所述电池在所述多个时间间隔内所处的温度,以及
    确定所述电池在所述目标时刻t时所对应的剩余电量。
  14. 根据权利要求13所述的方法,其特征在于,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述K种第一电流中的第k种第一电流表示为Ik,k=1、2、3……K;所述关系表包括所述电池处于不同温度、对应不同剩余电量下、在所述每一第一 电流I下的所述N个时间间隔和对应的N个第一阻抗变化量;所述根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算所述电池在所述目标时刻t的极化电压,包括:基于公式
    Figure PCTCN2019109773-appb-100005
    Figure PCTCN2019109773-appb-100006
    计算所述电池在目标时刻t的极化电压V P;其中,
    I0为所述电池在目标时刻t的电流值,Δr(Temp,SOC,T1)为根据所述电池在温度为Temp、当前剩余电量为SOC下、在所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量,I(T(t,n),Ik)为所述电池在时间间隔T(t,n)内与第一电流Ik匹配的电流的平均值,ratio(T(t,n),Ik)为所述I(T(t,n),Ik)在时间间隔T(t,n)内的占空比,Δr(Temp,SOC,Ik,Tn)为根据所述电池在温度为Temp、当前剩余电量为SOC、电流为Ik下、时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
  15. 根据权利要求10-14任意一项所述的方法,其特征在于,所述关系表还包括所述K种第一电流I中每一第一电流I下的N个第一阻抗变化量分别对应的老化系数a;所述根据所述关系表确定所述多个时间间隔分别对应的多个第二阻抗变化量,包括:
    根据所述电池在所述多个时间间隔分别对应的电流,以及所述关系表中所述每一第一电流I下的N个第一阻抗变化量和对应的老化系数a,计算所述多个时间间隔分别对应的所述多个第二阻抗变化量。
  16. 根据权利要求15任意一项所述的方法,其特征在于,所述方法,还包括:
    产生所述电池的L种第二电流,L为大于或者等于1的整数;
    针对所述L种第二电流I中的每一第二电流I,按照M个时间间隔对所述电池的端电压VBAT进行采样得到多个采样端电压,所述M个时间采样间隔为所述N个时间采样间隔的子集;
    根据所述每一第二电流I对应的多个采样端电压,分别计算所述每一第二电流I下的所述M个时间间隔对应的M个端电压变化量;
    基于所述每一第二电流I和所述M个端电压变化量,计算所述每一第二电流I下的所述M个时间间隔对应的M个第三阻抗变化量;
    基于所述每一第二电流I下的所述M个时间间隔和对应的M个第三阻抗变化量,以及所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量,更新所述每一第一电流下的N个第一阻抗变化量分别对应的老化系数a。
  17. 根据权利要求10-16任意一项所述的方法,其特征在于,所述N个时间间隔对应的时长逐渐增加。
  18. 一种用于确定电池的极化电压的装置,其特征在于,包括:
    第一获取单元,用于获取电池的关系表,所述关系表包括所述电池分别在K种第一电 流I下的N个时间间隔和对应的N个第一阻抗变化量,K为大于或者等于1的整数,N为大于1的整数;
    第一确定单元,用于根据所述电池的电流的监测结果,确定所述电池在目标时刻t之前的多个时间间隔分别对应的电流,以及根据所述关系表确定所述多个时间间隔分别对应的多个第二阻抗变化量;
    第一计算单元,用于根据所述多个时间间隔分别对应的电流以及所述多个第二阻抗变化量计算所述电池在所述目标时刻t的极化电压。
  19. 根据权利要求18所述的装置,其特征在于,所述装置,还包括:
    第二计算单元,用于根据所述极化电压和所述电池在所述目标t时刻的端电压VBAT,计算所述电池在所述目标时刻t的开路电压OCV。
  20. 根据权利要求18或19所述的装置,其特征在于,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;
    所述第一计算单元具体用于:基于公式
    Figure PCTCN2019109773-appb-100007
    计算所述电池在所述目标时刻t的极化电压V P;其中,
    I0为所述电池在目标时刻t的电流值,Δr T1为根据所述K种第一电流中与所述I0匹配的第一电流I下的时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量;I T(t,n)为时间间隔T(t,n)内的电流的平均值;Δr Tn为根据所述K种第一电流中与I T(t,n)匹配的第一电流I下的时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
  21. 根据权利要求18或19所述的装置,其特征在于,所述装置,还包括:
    第二确定单元,用于确定所述电池在所述多个时间间隔内所处的温度;
    第三确定单元,用于确定所述电池在所述目标时刻t时所对应的剩余电量。
  22. 根据权利要求21所述的装置,其特征在于,所述N个时间间隔中的第n个时间间隔表示为Tn;所述多个时间间隔表示为T(t,n),n=1、2、3……X,T(t,n)为在所述目标时刻t之前、从时刻t开始的第n个时间间隔,X为所述多个时间间隔的数量,且X为小于或者等于N的正整数;所述K种第一电流中的第k种第一电流表示为Ik,k=1、2、3……K;所述关系表包括所述电池处于不同温度、对应不同剩余电量下、在所述每一第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量;所述第一计算单元,具体用于:基于公式
    Figure PCTCN2019109773-appb-100008
    Figure PCTCN2019109773-appb-100009
    计算所述电池在目标时刻t的极化电压V P;其中,
    I0为所述电池在目标时刻t的电流值,Δr(Temp,SOC,T1)为根据所述电池在温度为Temp、当前剩余电量为SOC下、在所述K种第一电流中与所述I0匹配的第一电流I下的 时间间隔T1对应的第一阻抗变化量计算得到的第二阻抗变化量,I(T(t,n),Ik)为所述电池在时间间隔T(t,n)内与第一电流Ik匹配的电流的平均值,ratio(T(t,n),Ik)为所述I(T(t,n),Ik)在时间间隔T(t,n)内的占空比,Δr(Temp,SOC,Ik,Tn)为根据所述电池在温度为Temp、当前剩余电量为SOC、电流为Ik下、时间间隔Tn对应的第一阻抗变化量计算得到的第二阻抗变化量。
  23. 根据权利要求18-22任意一项所述的装置,其特征在于,所述关系表还包括所述K种第一电流I中每一第一电流I下的N个第一阻抗变化量分别对应的老化系数a;所述第一确定单元,具体用于:
    根据所述电池在所述多个时间间隔分别对应的电流,以及所述关系表中所述每一第一电流I下的N个第一阻抗变化量和对应的老化系数a,计算所述多个时间间隔分别对应的所述多个第二阻抗变化量。
  24. 根据权利要求23任意一项所述的装置,其特征在于,所述装置,还包括:
    第二获取单元,获取所述电池在L种第二电流I中的每一第二电流I下按照M个时间间隔进行采样得到的多个采样端电压,L为大于或者等于1的整数,所述M个时间采样间隔为所述N个时间采样间隔的子集;
    第三计算单元,用于根据所述每一第二电流I对应的多个采样端电压,分别计算所述每一第二电流I下的所述M个时间间隔对应的M个端电压变化量;
    第四计算单元,用于基于所述每一第二电流I和所述M个端电压变化量,计算所述每一第二电流I下的所述M个时间间隔对应的M个第三阻抗变化量;
    更新单元,用于基于所述每一第二电流I下的所述M个时间间隔和对应的M个第三阻抗变化量,以及所述K种第一电流I下的所述N个时间间隔和对应的N个第一阻抗变化量,更新所述每一第一电流下的N个第一阻抗变化量分别对应的老化系数a。
  25. 根据权利要求18-24任意一项所述的装置,其特征在于,所述N个时间间隔对应的时长逐渐增加。
  26. 一种半导体芯片,其特征在于,包括如权利要求1至9任一项所述的装置,或者包括如权利要求18至24任一项所述的装置。
  27. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机程序,该计算机程序被用于确定电池的极化电压的装置执行时实现上述权利要求10-17任意一项所述的方法。
  28. 一种计算机程序,其特征在于,所述计算机程序包括指令,当所述计算机程序被用于确定电池的极化电压的装置执行时,使得所述安全元件执行如权利要求10-17中任意一项所述的方法。
PCT/CN2019/109773 2019-09-30 2019-09-30 一种用于确定电池的极化电压的装置、方法及相关设备 WO2021062844A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980100074.3A CN114341655B (zh) 2019-09-30 2019-09-30 一种用于确定电池的极化电压的装置、方法及相关设备
PCT/CN2019/109773 WO2021062844A1 (zh) 2019-09-30 2019-09-30 一种用于确定电池的极化电压的装置、方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109773 WO2021062844A1 (zh) 2019-09-30 2019-09-30 一种用于确定电池的极化电压的装置、方法及相关设备

Publications (1)

Publication Number Publication Date
WO2021062844A1 true WO2021062844A1 (zh) 2021-04-08

Family

ID=75337675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109773 WO2021062844A1 (zh) 2019-09-30 2019-09-30 一种用于确定电池的极化电压的装置、方法及相关设备

Country Status (2)

Country Link
CN (1) CN114341655B (zh)
WO (1) WO2021062844A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325413A (zh) * 2021-12-28 2022-04-12 湖北亿纬动力有限公司 一种动力电池soc修正方法、装置、设备及存储介质
CN115079014A (zh) * 2022-08-02 2022-09-20 广汽埃安新能源汽车有限公司 一种磷酸铁锂电池荷电状态的估算方法、装置及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223033A (ja) * 2000-02-07 2001-08-17 Hitachi Ltd 電池システム及び電池の状態検出方法
CN1565067A (zh) * 2001-12-27 2005-01-12 松下电动车辆能源股份有限公司 估计蓄电池极性电压的方法,估计蓄电池剩余电量的方法和装置,电池组系统,以及电动汽车
US20110156713A1 (en) * 2009-12-25 2011-06-30 Primearth Ev Energy Co., Ltd. Apparatus for calculating polarization voltage of secondary battery and apparatus for estimating state of charge of the same
CN103630726A (zh) * 2013-10-30 2014-03-12 惠州市亿能电子有限公司 一种bms休眠模式下电池极化电压的估算方法
CN105738815A (zh) * 2014-12-12 2016-07-06 国家电网公司 一种在线检测锂离子电池健康状态的方法
CN110120559A (zh) * 2019-05-10 2019-08-13 深圳猛犸电动科技有限公司 一种锂离子电池的充电方法、装置及终端设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU483194B2 (en) * 1972-06-09 1974-12-12 P.I.L. An improved battery charger
CN101051701B (zh) * 2007-03-01 2010-08-11 华为技术有限公司 一种蓄电池脉冲快速充电方法及充电系统
CN102866357B (zh) * 2011-07-06 2014-12-31 珠海全志科技股份有限公司 电池电量计量系统和方法
CN103616647B (zh) * 2013-12-09 2016-03-02 天津大学 一种用于电动汽车电池管理系统的电池剩余电量估计方法
BR112017004361B1 (pt) * 2014-09-05 2023-04-11 Ethicon Llc Sistema eletrônico para um instrumento cirúrgico
JP6455409B2 (ja) * 2015-03-06 2019-01-23 株式会社デンソー 電池状態推定装置
CN114977076A (zh) * 2017-01-17 2022-08-30 太阳能安吉科技有限公司 发电系统中的电弧检测及预防
JP6969464B2 (ja) * 2018-03-19 2021-11-24 トヨタ自動車株式会社 二次電池システムおよび二次電池の劣化状態推定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223033A (ja) * 2000-02-07 2001-08-17 Hitachi Ltd 電池システム及び電池の状態検出方法
CN1565067A (zh) * 2001-12-27 2005-01-12 松下电动车辆能源股份有限公司 估计蓄电池极性电压的方法,估计蓄电池剩余电量的方法和装置,电池组系统,以及电动汽车
US20110156713A1 (en) * 2009-12-25 2011-06-30 Primearth Ev Energy Co., Ltd. Apparatus for calculating polarization voltage of secondary battery and apparatus for estimating state of charge of the same
CN103630726A (zh) * 2013-10-30 2014-03-12 惠州市亿能电子有限公司 一种bms休眠模式下电池极化电压的估算方法
CN105738815A (zh) * 2014-12-12 2016-07-06 国家电网公司 一种在线检测锂离子电池健康状态的方法
CN110120559A (zh) * 2019-05-10 2019-08-13 深圳猛犸电动科技有限公司 一种锂离子电池的充电方法、装置及终端设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325413A (zh) * 2021-12-28 2022-04-12 湖北亿纬动力有限公司 一种动力电池soc修正方法、装置、设备及存储介质
CN114325413B (zh) * 2021-12-28 2023-06-30 湖北亿纬动力有限公司 一种动力电池soc修正方法、装置、设备及存储介质
CN115079014A (zh) * 2022-08-02 2022-09-20 广汽埃安新能源汽车有限公司 一种磷酸铁锂电池荷电状态的估算方法、装置及设备

Also Published As

Publication number Publication date
CN114341655A (zh) 2022-04-12
CN114341655B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
US10355321B2 (en) Method and device for detecting states of battery and battery pack
CN111812531B (zh) 电池状态检测方法、设备及存储介质
TWI419390B (zh) 電池裝置之剩餘容量與剩餘使用時間的估算方法
Xiong et al. A novel practical state of charge estimation method: an adaptive improved ampere‐hour method based on composite correction factor
CN109164391B (zh) 一种动力电池荷电状态在线估算方法及系统
CN105005000B (zh) 感测电池容量的系统和方法
CN108303651B (zh) 一种电池电量的测量方法及终端
CN107196371B (zh) 电池充电方法、装置、设备和存储介质
CN102084262A (zh) 电池状态监视装置
CN111239624A (zh) 一种电池容量校准方法、装置、电子设备及存储介质
WO2019184143A1 (zh) 一种电池充电方法、电池充电电路及充电器
JP2014068468A (ja) 充電制御装置
WO2021062844A1 (zh) 一种用于确定电池的极化电压的装置、方法及相关设备
CN115308616A (zh) Ocv-soc标定及估算方法、装置、介质和车辆
Lavety et al. A dynamic battery model and parameter extraction for discharge behavior of a valve regulated lead-acid battery
JP2014045626A (ja) 充電制御装置
CN109633451B (zh) 储能系统自轨迹参数标定方法及soc估算方法
CN116990691A (zh) 一种电池剩余满充时间的评估方法、装置、设备和介质
TW201816415A (zh) 一種可擴充模組化電池容量估測系統
CN116520167A (zh) 自调整零点的soc估算方法、装置、电子设备及存储介质
WO2022183459A1 (zh) 一种估算电池包soc的方法、装置及电池管理系统
CN104678216A (zh) 移动电源电路板能量或功率转化效率测试方法及装置
CN112327048B (zh) 用于电子设备的功率测试装置及方法
CN114189013A (zh) 一种充电装置、充电方法及计算机可读存储介质
CN109407005B (zh) 一种储能电池剩余电量的动静态校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948081

Country of ref document: EP

Kind code of ref document: A1