WO2019184143A1 - 一种电池充电方法、电池充电电路及充电器 - Google Patents

一种电池充电方法、电池充电电路及充电器 Download PDF

Info

Publication number
WO2019184143A1
WO2019184143A1 PCT/CN2018/095391 CN2018095391W WO2019184143A1 WO 2019184143 A1 WO2019184143 A1 WO 2019184143A1 CN 2018095391 W CN2018095391 W CN 2018095391W WO 2019184143 A1 WO2019184143 A1 WO 2019184143A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
charging current
charging
current
charge
Prior art date
Application number
PCT/CN2018/095391
Other languages
English (en)
French (fr)
Inventor
黄诗剑
Original Assignee
深圳市爱克斯达电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市爱克斯达电子有限公司 filed Critical 深圳市爱克斯达电子有限公司
Publication of WO2019184143A1 publication Critical patent/WO2019184143A1/zh

Links

Images

Classifications

    • H02J7/0077
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • H02J7/0091
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery charging technology, and in particular, to a battery charging method, a battery charging circuit, and a charger.
  • the existing battery chargers of the market are equipped with a plurality of charging current gear positions, and the respective charging current gear positions are adjustable, and the user applies different charging currents for charging by switching different charging current gear positions.
  • the user can switch the charging current gear position in the following two ways: 1. Switching the charging current gear position by pressing the button. 2. Select the charging current gear according to the length of the battery. The long-sized battery selects large current charging, and the short-sized battery selects small current charging.
  • An object of the embodiments of the present application is to provide a battery charging method, a battery charging circuit, and a charger that automatically select a suitable charging current to charge the battery.
  • the embodiment of the present application provides the following technical solutions:
  • an embodiment of the present application provides a battery charging method, including:
  • the first optimal charging current is selected to charge the battery according to a maximum charging current of the battery and a preset current.
  • the determining a charge and discharge rate of the battery includes:
  • the correlation coefficient being used to describe a correlation between an internal resistance of the battery and a charge and discharge rate
  • the charge and discharge rate of the battery is calculated based on the internal resistance of the battery and the correlation coefficient.
  • the determining the internal resistance of the battery includes:
  • the internal resistance of the battery is calculated based on the average value of the differential pressure and the charging current.
  • the determining the correlation coefficient of the battery includes:
  • the determining a battery capacity of the battery includes:
  • the method further includes:
  • the selecting the second optimal charging current to charge the battery according to the charging temperature and the first optimal charging current comprises:
  • the different low temperature small ranges correspond to different second maximum Excellent charging current
  • the high temperature large range between the second high temperature threshold and the first high temperature threshold is divided into a plurality of high temperature small ranges, and in the range of the first optimal charging current, the different high temperature small ranges correspond to different third maximum Excellent charging current;
  • the second optimal charging current or the third optimal charging current of the determined corresponding segment charges the battery.
  • the preset current includes a maximum preset current
  • Selecting a first optimal charging current to charge the battery according to a maximum charging current of the battery and a preset current including:
  • the maximum preset current is selected as a first optimal charging current, and the battery is charged;
  • the maximum charging current is selected as the first optimal charging current and the battery is charged.
  • an embodiment of the present application provides a battery charging circuit, including:
  • a power conversion module for supplying power to the battery
  • a voltage sampling module configured to be connected to the battery, wherein the voltage sampling module is configured to sample a voltage across the battery
  • a current sampling module for connecting to the battery, the current sampling module for sampling a charging current flowing through the battery;
  • a temperature sampling module for sampling a charging temperature of the battery
  • control module wherein the power conversion module, the voltage sampling module, the current sampling module, and the temperature sampling module are respectively connected;
  • the control module includes:
  • At least one processor At least one processor
  • the device can be used to perform the battery charging method of any of the above.
  • an embodiment of the present application provides a charger including the battery charging circuit.
  • the battery charging circuit, and the charger provided in various embodiments of the present application, first, a pulsed charging current is applied to charge the battery. Next, determine the battery capacity and charge and discharge rate of the battery. Again, the maximum charging current of the battery is calculated based on the battery capacity and charge and discharge rate of the battery. Finally, according to the maximum charging current of the battery and the preset current, the first optimal charging current is selected to charge the battery. Therefore, it can automatically select the first optimal charging current to charge the battery, and the operation is simple, the charging efficiency is high, and it is safe and reliable.
  • FIG. 1 is a circuit block diagram of a battery charging circuit according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of waveforms of a pulsed charging current and a battery voltage according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of adjustment of a battery charging circuit at high and low temperatures according to an embodiment of the present application
  • FIG. 4 is a circuit block diagram of a power conversion module according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a circuit of a battery charging circuit according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a control module according to an embodiment of the present application.
  • FIG. 7 is a schematic flow chart of a method for charging a battery according to an embodiment of the present application.
  • Figure 8 is a schematic flow chart of step 72 in Figure 7;
  • FIG. 9 is a schematic flow chart of step 722 of FIG. 8;
  • FIG. 10 is another schematic flowchart of step 722 in FIG. 8;
  • FIG. 11 is another schematic flowchart of step 72 in FIG. 7;
  • FIG. 12 is a schematic flow chart of a method for charging a battery according to another embodiment of the present application.
  • Figure 13 is a schematic flow chart of step 76 in Figure 12;
  • Figure 14 is a flow chart showing the step 74 of Figure 7 or Figure 12.
  • the embodiment of the present application provides a charger including a housing and a battery charging circuit housed in the housing.
  • the charger may have multiple charging current gear positions, each charging current gear position corresponding to different magnitudes of charging current, and the user switches the charging current gear position by dialing the button of the charger.
  • the charger also eliminates the need for a charging current gear that automatically detects and determines the optimal charging current to charge the battery.
  • FIG. 1 is a circuit block diagram of a battery charging circuit according to an embodiment of the present application.
  • the battery charging circuit 100 includes a power conversion module 11 , a voltage sampling module 12 , a current sampling module 13 , a temperature sampling module 14 , and a control module 15 .
  • the power conversion module 11 is used to provide power to the battery 16.
  • the power conversion module 11 is capable of converting an external power source into a power source suitable for the battery 16 and providing power to the battery 16.
  • the voltage sampling module 12 is used to connect to the battery 16, and the voltage sampling module 12 is used to sample the voltage across the battery 16.
  • the current sampling module 13 is for connection to a battery 16, and the current sampling module 13 is for sampling current flowing through the battery 16.
  • the temperature sampling module 14 is used to sample the charging temperature of the battery 16.
  • the control module 15 is connected to the power conversion module 11, the voltage sampling module 12, the current sampling module 13, and the temperature sampling module 14, respectively.
  • the control module 15 controls the power conversion module 11 according to the voltage across the battery 16 and the current flowing through the battery 16, so that the power conversion module 11 can reliably and stably supply power to the battery 16.
  • the control module 15 The power conversion module 11 can be further controlled according to the voltage across the battery 16, the current flowing through the battery 16, and the charging temperature of the battery 16, so that the power conversion module 11 can reliably and stably supply power to the battery 16 at any temperature.
  • the control module 15 can also determine the optimal charging current in advance, and then control the power conversion module 11 to supply power to the battery 16 with the optimal charging current.
  • the control module 15 applies a pulsed charging current to charge the battery, wherein the pulsed charging current includes n current periods of a pulse period of T and a duty cycle of D%. Is the pulse current of I test .
  • control module 15 is capable of generating a Pulse Width Modulation (PWM), wherein the number, period, duty cycle, and current amplitude of the PWM signal can be programmed by the user according to the detection needs.
  • PWM Pulse Width Modulation
  • control module 15 determines that the battery capacity of the battery 16 and the charge-discharge rate C capcity C rate, the battery capacity and battery 16 C capcity and charge-discharge rate C rate, calculate the maximum charging current of the battery 16 I chgmax.
  • I chg max C capcity * C rate
  • the control module 15 can calculate the maximum charging current I of the battery 16 . Chgmax .
  • the control module 15 selects the first optimal charging current to charge the battery according to the maximum charging current I chgmax of the battery 16 and the preset current.
  • the charger has a plurality of charging current gear positions, namely a large current gear position, a middle current gear position and a small current gear position, wherein the preset current corresponds to the charging current gear position of the charger, and therefore, the preset current
  • the maximum preset current, the medium preset current, and the small preset current may be included. Therefore, the control module 15 selects the first optimal charging current to charge the battery 16 according to the maximum charging current I chgmax of the battery 16 and the preset current.
  • the control module 15 determines whether the maximum charging current I chgmax of the battery 16 is greater than the maximum preset current.
  • the control module 16 selects the maximum charging current I chgmax as the first optimal charging current and charges the battery 16 , so that it can avoid the charging efficiency being low due to charging the battery with a relatively small current. .
  • the charger can automatically select the first optimal charging current to charge the battery, the operation is simple, the charging efficiency is high, and it is safe and reliable.
  • control module 15 determines the battery capacity in the battery 16 C capcity of the process, first, the control module 15 determines when the starting voltage V st and the battery 16 starts charging end voltage V end at the end of charging.
  • the control module 15 calculates the charging pressure difference ⁇ Vbat of the battery 16 based on the initial voltage Vst at the time when the battery 16 starts charging and the ending voltage Vend at the end of charging.
  • the first pulse period 1T 1T of the battery after the charging pulse period
  • the voltage rises to V st V h1
  • the charging current pulse corresponds to a high level V h1, corresponding to low V l1 .
  • the 2T pulse period after the battery is charged for the 2T pulse period, the voltage rises from V h1 to V h2 .
  • the high level of the pulsed charging current corresponds to V h2
  • the low level corresponds to V l2 .
  • the high level of the pulsed charging current corresponds to V hn .
  • the low level corresponds to V ln .
  • C capcity ⁇ U * C test / ⁇ Vbat
  • C test n * T * D% * I test
  • ⁇ U V full - V empty
  • the control module 15 calculates the battery capacity C of the battery 16 Capcity , where C capcity is the battery capacity of the battery, ⁇ U is the full differential pressure of the battery, n is the number of pulse cycles of the charging current, T is the pulse period, D% is the duty cycle, and I test is the pulsed charging current. V full is the full voltage of the battery, and V empty is the rated minimum voltage of the battery.
  • the control module 15 can determine the charge and discharge rate of the battery 16 in the following manner.
  • the control module 15 determines the charge-discharge rate of the battery 16 process, first, the control module 15 determines the internal resistance R of the battery 16 beta] i and correlation coefficient, the correlation coefficient for beta] describe the internal resistance of the battery 16 Correlation between R i and charge and discharge rate C rate .
  • the thickness of the separator can be reduced or the contact area between the separator and the positive and negative electrodes can be increased to accelerate the lithium ion exchange speed, thereby increasing the charge and discharge rate of the battery.
  • the internal resistance of the battery produced by the existing battery production process becomes small, that is, it is apparent that there is a linear correlation between the internal resistance of the battery and the charge and discharge rate, and the larger the internal resistance, the smaller the charge and discharge rate. The smaller the internal resistance, the larger the charge and discharge rate.
  • the correlation coefficient can be calculated by calculating the charge and discharge rate and the internal resistance of the battery according to the different battery specifications provided on the market, so as to more accurately calculate the current battery charge and discharge. Magnification.
  • the battery 16 corresponding to different acquired internal resistance R i and charge-discharge rate C rate, i and charge-discharge rate C rate, is calculated depending on the battery internal resistance R corresponding to the public
  • the coefficient ⁇ is correlated, and the common correlation coefficient ⁇ is used as the correlation coefficient ⁇ of the battery 16.
  • this embodiment provides a table of the relationship between the internal resistance and the charge and discharge rate of the following battery:
  • the correlation coefficient ⁇ is approximately equal to 55.
  • I chgmax ( ⁇ /R i )*1.2*n*T*D%*I test / ⁇ Vbat
  • control module 15 can select the first optimal charging current to charge the battery 16 according to the maximum charging current I chgmax of the battery 16 and the preset current.
  • the chemical reaction speed becomes slow, and it is necessary to limit the charging current to protect the battery.
  • the chemical reaction is too active, and it is also necessary to reduce the charging current to avoid the excessive reaction of the gas during the chemical reaction, causing the internal pressure to rise and causing the battery 16 to be bulged or damaged.
  • control module 15 determines the charging temperature through the temperature sampling module 14, and selects the second according to the charging temperature and the first optimal charging current.
  • the optimal charging current charges the battery 16.
  • the charger under the premise of obtaining the first optimal charging current, by combining the charging temperature, it can further obtain a second optimal charging current suitable for any temperature, thereby enabling the charger to reliably and stably charge the battery at any temperature. .
  • the control module 15 selects the second optimal charging current to charge the battery according to the charging temperature and the first optimal charging current.
  • the first low temperature threshold T L1 and the second low temperature threshold T are preset. L2 , the first high temperature threshold T H1 and the second high temperature threshold T H2 , the first low temperature threshold T L1 is greater than the second low temperature threshold T L2 , and the second high temperature threshold T H2 is greater than the first high temperature threshold T H1 .
  • the low temperature range between the first low temperature threshold T L1 and the second low temperature threshold T L2 is divided into a plurality of low temperature small ranges, and in the range of the first optimal charging current, the different low temperature small ranges correspond to different second most Excellent charging current.
  • the high temperature range between the second high temperature threshold T H2 and the first high temperature threshold T H1 is divided into a plurality of high temperature small ranges, and in the range of the first optimal charging current, the different high temperature small ranges correspond to different third most Excellent charging current.
  • the control module 15 determines the corresponding segment according to the corresponding segment low temperature range or high temperature small range corresponding to the charging temperature T1 when detecting that the charging temperature T1 is lower than the first low temperature threshold T L1 or higher than the first high temperature threshold T H1 .
  • the second optimal charging current or the third optimal charging current are the optimal charging current.
  • control module 15 determines the second optimal charging current or the third optimal charging current of the corresponding segment to charge the battery 16.
  • a low temperature range is between the first low temperature threshold T L1 and the second low temperature threshold T L2
  • a high temperature range is between the first high temperature threshold T H1 and the second high temperature threshold T H2
  • the first low temperature threshold T A normal temperature range is between L1 and the first high temperature threshold T H1 .
  • the low temperature range it is divided into three segments of low temperature range, t0 to t1, t1 to t2, and t2 to t3, where t0 is equivalent to the second low temperature threshold T L2 , and t3 is equivalent to the first low temperature threshold T L1 .
  • the different segments of the low temperature range correspond to different second optimal charging currents. Therefore, the second optimal charging current corresponding to the different segments of the low temperature range is different and smaller than the first optimal charging current. .
  • the control module 15 determines the low temperature range in which the charging temperature T1 is located according to the charging temperature T1, and further determines the second optimal charging current corresponding to the low temperature small range. .
  • the charging temperature T1 falls between t1 and t2, and the control module 15 charges the battery 16 with the second optimum charging current of the segment where t1 to t2 are located.
  • the high temperature range it is divided into three sections of low temperature range, t4 to t5, t5 to t6 and t6 to t7, where t4 is equivalent to the first high temperature threshold T H1 , t7 is equivalent to The second high temperature threshold T H2 .
  • the different segments of the high temperature range correspond to different second optimal charging currents. Therefore, the second optimal charging current corresponding to different segments of the high temperature range is different and smaller than the first optimal charging current. .
  • the control module 15 determines the high temperature small range in which the charging temperature T1 is located according to the charging temperature T1, and further determines the second optimal charging current corresponding to the high temperature small range.
  • the charging temperature T1 falls between t5 and t6, and the control module 15 charges the battery 16 with the second optimum charging current of the segment where t5 to t6 are located.
  • the control module 15 charges the battery 16 with the first optimal charging current.
  • control module 15 stops charging the battery 16 when the charging temperature is less than t0 or higher than t7.
  • the optimal charging current is selected to charge the battery, which is capable of reliably and stably charging the battery 16 at any temperature. Moreover, it is also possible to avoid a situation in which the charging temperature changes too frequently and the charging current is switched too frequently.
  • the power conversion module 11 includes a power interface 111, a step-down circuit 112, and a filter circuit 113.
  • the power interface 111 is for inputting an external power source, wherein the power interface 111 includes a suitable interface such as a USB interface.
  • the step-down circuit 112 is connected to the power interface 111, and the step-down circuit 112 is configured to step down the external power supply and provide the battery 16 with a step-down power supply.
  • the filter circuit 113 is connected to a node between the power supply interface 111 and the step-down circuit 112.
  • the filter circuit 113 is capable of filtering out harmonics included in the external power source.
  • control module 15 includes a first pulse port PWM1 and a second pulse port PWM2.
  • the step-down circuit 112 includes a first NMOS transistor Q1, a second NMOS transistor Q2, an inductor L1, and a first capacitor C1.
  • the drain of the first NMOS transistor Q1 is connected to the power interface 111, and the source and the second of the first NMOS transistor Q1.
  • the drain of the NMOS transistor Q2 and the end of the inductor L1 are both connected to the first node 5a.
  • the gate of the first NMOS transistor Q1 is connected to the first pulse port PWM1, and the other end of the inductor L1 is connected to one end of the first capacitor C1.
  • the first capacitor C1 The other end is grounded, the source of the second NMOS transistor Q2 is grounded, the gate of the second NMOS transistor Q2 is connected to the second pulse port PWM2, and the battery 16 is used to be connected to the first node 5a.
  • the filter circuit 113 includes a second capacitor C2. One end of the second capacitor C2 is connected to a node between the power interface 111 and the step-down circuit 112, and the other end of the second capacitor C2 is grounded.
  • the control module 15 includes a voltage sampling terminal Vchg.
  • the voltage sampling module 12 includes a first resistor R1, a second resistor R2, and a third capacitor C3. One end of the first resistor R1 is connected to the first node 5a, the other end of the first resistor R1, one end of the second resistor R2, and one end of the third capacitor C3.
  • the voltage sampling terminal Vchg is connected to the second node 5b, and the other end of the second resistor R2 and the other end of the third capacitor C3 are grounded.
  • the control module 15 includes a current sampling terminal Ichg.
  • the current sampling module 13 includes a third resistor R3, a fourth resistor R4, and a fourth capacitor C4. One end of the third resistor R3 and the fourth resistor R4 are connected to the third node 5c, and the other end of the third resistor R3 and the fourth capacitor C4. One end and the current sampling end Ichg are all connected to the fourth node 5d, and the other end of the fourth resistor R4 and the other end of the fourth capacitor C4 are grounded.
  • the control module 15 includes a reference voltage terminal Vref for outputting a reference voltage, and a temperature sampling terminal NTC for sampling the charging temperature.
  • the temperature sampling module 14 includes a negative temperature coefficient resistor RT1 and a fifth resistor R5.
  • One end of the fifth resistor R5 is connected to the reference voltage terminal Vref, and the other end of the fifth resistor R5 and the negative temperature coefficient resistor RT1 are connected to the temperature sampling terminal NTC. The other end of the temperature coefficient resistor RT1 is grounded.
  • K-stage downflow protection is set and the charging temperature is controlled.
  • Ichg K*(Vntc-Vtl)/(Vtlmin-Vtl) *I, where Vtlmin is the lowest allowable low temperature point of the battery, Vtl is the custom low temperature critical point, and I is the first optimal charging current at normal temperature.
  • the battery 16 can be freely separated from the charger. When charging is required, the battery 16 can be placed in the charger to complete the charging. After charging is complete, the user can remove the battery 16 from the charger.
  • the control module 15 outputs a pulse current through the first pulse port PWM1 and the second pulse port PWM2, wherein the PWM1 and the PWM2 are out of phase at the same frequency.
  • the control module 15 can be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a PLC, a field programmable gate array (FPGA), a single chip microcomputer, an ARM (Acorn RISC Machine) or other programmable logic device. , discrete gate or transistor logic, discrete hardware components, or any combination of these components. Also, control module 15 can be any conventional processor, controller, microcontroller or state machine. Control module 15 may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the control module 15 includes: at least one processor 151 and a memory 152 communicably coupled to the at least one processor 151; wherein, in FIG. 6, a processor 151 is taken as an example.
  • the processor 151 and the memory 152 may be connected by a bus or other means, as exemplified by a bus connection in FIG.
  • the memory 152 stores instructions executable by the at least one processor 151, the instructions being executed by the at least one processor 151 to enable the at least one processor 151 to perform the above or below Battery charging method.
  • an embodiment of the present application provides a battery charging method.
  • the functions corresponding to the battery charging methods of the following embodiments are stored in the form of instructions on the memory of the control module.
  • the processor of the control module accesses the memory.
  • Corresponding instructions are retrieved and executed to implement the functions corresponding to the battery charging methods of the various embodiments described below.
  • the memory as a non-transitory computer readable storage medium, can be used to store non-volatile software programs, non-volatile computer-executable programs, and modules, such as the steps corresponding to the battery charging methods of the embodiments described below.
  • the processor performs the functions of the steps corresponding to the battery charging method of the embodiments described below by running non-volatile software programs, instructions, and modules stored in the memory.
  • the memory may include a high speed random access memory, and may also include a non-volatile memory such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the memory optionally includes a memory remotely located relative to the processor, the remote memory being connectable to the processor over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the program instructions/modules are stored in the memory, and when executed by the one or more processors, perform a battery charging method in any of the above method embodiments, for example, performing FIG. 7 described in the following embodiments.
  • the battery charging method 700 includes:
  • Step 71 Apply a pulsed charging current to charge the battery
  • Step 72 determining a battery capacity and a charge and discharge rate of the battery
  • Step 73 Calculate a maximum charging current of the battery according to a battery capacity and a charging/discharging ratio of the battery;
  • Step 74 Select a first optimal charging current to charge the battery according to a maximum charging current of the battery and a preset current.
  • step 72 includes:
  • Step 722 determining an internal resistance of the battery and a correlation coefficient, and the correlation coefficient is used to describe a correlation between an internal resistance of the battery and a charge and discharge rate;
  • Step 724 Calculate the charge and discharge rate of the battery according to the internal resistance of the battery and the correlation coefficient.
  • step 722 includes:
  • Step 7221 calculating a high and low voltage difference between a high level and a low level in the charging current of each pulse period
  • Step 7223 counting the total differential pressure of the high and low pressure differences corresponding to each pulse period
  • Step 7225 calculating an average value of the differential pressure according to the total differential pressure and the number of pulse cycles of the charging current
  • Step 7227 Calculate the internal resistance of the battery according to the average value of the differential pressure and the charging current.
  • step 722 includes:
  • Step 7222 Acquire internal resistance and charge/discharge ratio corresponding to different batteries
  • Step 7224 Calculate a common correlation coefficient according to an internal resistance and a charge/discharge ratio corresponding to different batteries, and use a common correlation coefficient as a correlation coefficient of the battery.
  • step 72 includes:
  • Step 721 Determine an initial voltage when the battery starts charging and an ending voltage when the battery ends charging
  • Step 723 according to the initial voltage when the battery starts charging and the end voltage at the end of charging, calculate the charging pressure difference ⁇ Vbat of the battery;
  • C capcity is the battery capacity of the battery
  • ⁇ U is the full differential pressure of the battery
  • n is the number of pulse cycles of the charging current
  • T is the pulse period
  • D% is the duty cycle
  • I test is the pulsed charging current
  • V Full is the full voltage of the battery
  • V empty is the rated minimum voltage of the battery.
  • the battery charging method 700 further includes:
  • Step 75 Determine a charging temperature
  • Step 76 Select a second optimal charging current to charge the battery according to the charging temperature and the first optimal charging current.
  • step 76 includes:
  • Step 761 preset a first low temperature threshold, a second low temperature threshold, a first high temperature threshold, and a second high temperature threshold, the first low temperature threshold is greater than the second low temperature threshold, and the second high temperature threshold is greater than the first high temperature threshold;
  • Step 762 Divide the low temperature range between the first low temperature threshold and the second low temperature threshold into a plurality of low temperature small ranges.
  • the different low temperature small ranges correspond to different second optimal charging currents.
  • Step 763 Dividing the high temperature range between the second high temperature threshold and the first high temperature threshold into a plurality of high temperature small ranges.
  • the different high temperature small ranges correspond to different third optimal charging currents.
  • Step 764 when detecting that the charging temperature is lower than the first low temperature threshold or higher than the first high temperature threshold, determining a second optimal charging current of the corresponding segment according to the corresponding segment low temperature range or high temperature small range corresponding to the charging temperature.
  • Third optimal charging current when detecting that the charging temperature is lower than the first low temperature threshold or higher than the first high temperature threshold, determining a second optimal charging current of the corresponding segment according to the corresponding segment low temperature range or high temperature small range corresponding to the charging temperature. Third optimal charging current;
  • Step 765 determining a second optimal charging current or a third optimal charging current of the corresponding segment to charge the battery.
  • step 74 includes:
  • Step 741 Determine whether the maximum charging current of the battery is greater than a maximum preset current
  • Step 742 If greater than, select a maximum preset current as the first optimal charging current, and charge the battery;
  • Step 743 If less than, select the maximum charging current as the first optimal charging current and charge the battery.
  • the method embodiment and the product embodiment are based on the same concept, and the content of the method embodiment may refer to the product embodiment, and details are not described herein.
  • an embodiment of the present application provides a non-transitory computer readable storage medium storing computer executable instructions, the computer executable instructions A battery charging method for causing a battery charging circuit to perform the battery charging method according to any one of the above-described embodiments, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及电池充电技术领域,特别是涉及一种电池充电方法、电池充电电路及充电器。其中,该电池充电方法包括:施加脉冲式的充电电流为电池充电;确定电池的电池容量与充放电倍率;根据电池的电池容量与充放电倍率,计算出电池的最大充电电流;根据电池的最大充电电流与预设电流,选择第一最优充电电流为电池充电。因此,其能够自动选择第一最优充电电流为电池充电,操作简单,充电效率高并且安全可靠。

Description

一种电池充电方法、电池充电电路及充电器 技术领域
本申请涉及电池充电技术领域,特别是涉及一种电池充电方法、电池充电电路及充电器。
背景技术
现有市面的电池充电器配置有多种充电电流档位,各个充电电流档位可调,用户通过切换不同充电电流档位为电池施加不同的充电电流进行充电。
一般,用户可以通过以下两种方式切换充电电流档位:1、通过按键切换充电电流档位。2、根据电池的长度选择充电电流档位,长尺寸的电池选择大电流充电,短尺寸的电池选择小电流充电。
申请人在实现本申请的过程中,发现传统技术至少存在以下问题:若采用第1种方式充电,由于用户尚未清楚电池允许的最大充电电流,因此,用户容易未能够选择合适的最大充电电流为电池充电,例如,用户使用2A充电电流档位为1A的电池充电,长期如此会缩短电池使用寿命以及存在漏液、爆炸、起火等风险。若采用第2种方式充电,由于可能存在短电池的电池容量小,但是充放电倍率较高,由于选择小电流充电而造成充电效率低下。同理,由于可能存在长电池的电池容量大,但是充放电倍率较低,选择大电流充电而造成上述风险出现。
发明内容
本申请实施例一个目的旨在提供一种电池充电方法、电池充电电路及充电器,其自动选择合适充电电流为电池充电。
为解决上述技术问题,本申请实施例提供以下技术方案:
在第一方面,本申请实施例提供一种电池充电方法,包括:
施加脉冲式的充电电流为电池充电;
确定所述电池的电池容量与充放电倍率;
根据所述电池的电池容量与充放电倍率,计算出所述电池的最大充电电流;
根据所述电池的最大充电电流与预设电流,选择第一最优充电电流为所述电池充电。
可选地,所述确定所述电池的充放电倍率,包括:
确定所述电池的内阻与关联系数,所述关联系数用于描述所述电池的内阻与充放电倍率之间的相关性;
根据所述电池的内阻与关联系数,计算出所述电池的充放电倍率。
可选地,所述确定所述电池的内阻,包括:
计算出每个脉冲周期的充电电流中高电平与低电平之间的高低压差;
统计各个脉冲周期对应的所述高低压差的总压差;
根据所述总压差与所述充电电流的脉冲周期数量,计算出压差平均值;
根据所述压差平均值与所述充电电流,计算出所述电池的内阻。
可选地,所述确定所述电池的关联系数,包括:
获取不同电池对应的内阻与充放电倍率;
根据所述不同电池对应的内阻与充放电倍率,计算出公共的关联系数,并将所述公共的关联系数作为所述电池的关联系数。
可选地,所述确定所述电池的电池容量,包括:
确定所述电池开始充电时的起始电压与结束充电时的结束电压;
根据所述电池开始充电时的起始电压与结束充电时的结束电压,计算出所述电池的充电压差△Vbat;
根据公式:C capcity=△U*C test/△Vbat,C test=n*T*D%*I test,△U=V full-V empty,计算出所述电池的电池容量,其中,C capcity为所述电池的电池容量,△U为所述电池的满额压差,n为充电电流的脉冲周期数量,T为脉冲周期,D%为占空比,I test为为脉冲式的充电电流,V full为所述电池的充满电压,V empty为所述电池的额定最低电压。
可选地,在选择第一最优充电电流为所述电池充电之后,所述方法还包括:
确定充电温度;
根据所述充电温度与所述第一最优充电电流,选择第二最优充电电流为所述电池充电。
可选地,所述根据所述充电温度与所述第一最优充电电流,选择第二最优 充电电流为所述电池充电,包括:
预先设置第一低温阈值、第二低温阈值、第一高温阈值及第二高温阈值,所述第一低温阈值大于所述第二低温阈值,所述第二高温阈值大于所述第一高温阈值;
将所述第一低温阈值与所述第二低温阈值之间的低温大范围分成若干段低温小范围,在所述第一最优充电电流的范围内,不同段低温小范围对应不同第二最优充电电流;
将所述第二高温阈值与所述第一高温阈值之间的高温大范围分成若干段高温小范围,在所述第一最优充电电流的范围内,不同段高温小范围对应不同第三最优充电电流;
在检测到所述充电温度低于所述第一低温阈值或者高于所述第一高温阈值时,根据所述充电温度所对应的对应段低温小范围或高温小范围,确定对应段的第二最优充电电流或第三最优充电电流;
以确定的对应段的第二最优充电电流或第三最优充电电流为所述电池充电。
可选地,所述预设电流包括最大预设电流;
所述根据所述电池的最大充电电流与预设电流,选择第一最优充电电流为所述电池充电,包括:
判断所述电池的最大充电电流是否大于所述最大预设电流;
若大于,选择所述最大预设电流为第一最优充电电流,并为所述电池充电;
若小于,选择所述最大充电电流为第一最优充电电流,并为所述电池充电。
在第二方面,本申请实施例提供一种电池充电电路,包括:
电源转换模块,用于为电池提供电源;
电压采样模块,用于与所述电池连接,所述电压采样模块用于采样所述电池的两端电压;
电流采样模块,用于与所述电池连接,所述电流采样模块用于采样流经所述电池的充电电流;
温度采样模块,用于采样所述电池的充电温度;
控制模块,其分别所述电源转换模块、所述电压采样模块、所述电流采样模块及所述温度采样模块连接;
其中,所述控制模块包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行任一项所述的电池充电方法。
在第三方面,本申请实施例提供一种充电器,包括所述的电池充电电路。
在本申请各个实施例提供的电池充电方法、电池充电电路及充电器中,首先,施加脉冲式的充电电流为电池充电。其次,确定电池的电池容量与充放电倍率。再次,根据电池的电池容量与充放电倍率,计算出电池的最大充电电流。最后,根据电池的最大充电电流与预设电流,选择第一最优充电电流为电池充电。因此,其能够自动选择第一最优充电电流为电池充电,操作简单,充电效率高并且安全可靠。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例提供一种电池充电电路的电路原理框图;
图2是本申请实施例提供一种脉冲式的充电电流与电池电压的波形示意图;
图3是本申请实施例提供一种电池充电电路在高低温下的调整示意图;
图4是本申请实施例提供一种电源转换模块的电路原理框图;
图5是本申请实施例提供一种电池充电电路的电路结构示意图;
图6是本申请实施例提供一种控制模块的结构示意图;
图7是本申请实施例提供一种电池充电方法的流程示意图;
图8是图7中步骤72的一种流程示意图;
图9是图8中步骤722的一种流程示意图;
图10是图8中步骤722的另一种流程示意图;
图11是图7中步骤72的另一种流程示意图;
图12是本申请另一实施例提供一种电池充电方法的流程示意图;
图13是图12中步骤76的流程示意图;
图14是图7或图12中步骤74的流程示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请实施例提供一种充电器,充电器包括壳体与收容于壳体内的电池充电电路。该充电器可以具有多个充电电流档位,每个充电电流档位对应不同大小的充电电流,用户通过拨动充电器的按键,以切换充电电流档位。该充电器还可以不需要充电电流档位,其能够自动检测并确定最优充电电流为电池充电。
请参阅图1,图1是本申请实施例提供一种电池充电电路的电路原理框图。如图1所示,电池充电电路100包括:电源转换模块11、电压采样模块12、电流采样模块13、温度采样模块14及控制模块15。
电源转换模块11用于为电池16提供电源。一般的,电源转换模块11能够将外部电源转换成适合电池16的电源,并为电池16提供电源。
电压采样模块12用于与电池16连接,电压采样模块12用于采样电池16的两端电压。
电流采样模块13用于与电池16连接,电流采样模块13用于采样流经电池16的电流。
温度采样模块14用于采样电池16的充电温度。
控制模块15分别电源转换模块11、电压采样模块12、电流采样模块13及温度采样模块14连接。一方面,控制模块15根据电池16的两端电压与流经电池16的电流,控制电源转换模块11,使得电源转换模块11能够可靠稳定地为电池16提供电源,另一方面,控制模块15还可以进一步根据电池16的两端电压、流经电池16的电流以及电池16的充电温度,控制电源转换模块11,使得电源转换模块11能够在任何温度下,可靠稳定地为电池16提供电源。再另一方面,控制模块15还可以事先确定好最优充电电流,再控制电源转换模块11以最优充电电流为电池16提供电源。
例如,首先,在正式对电池进行充电之前,控制模块15施加脉冲式的充电 电流为电池充电,其中,脉冲式的充电电流包括n个脉冲周期为T、占空比为D%的电流幅值为I test的脉冲电流。
在本实施例中,控制模块15能够产生脉冲宽度调制信号(Pulse Width Modulation,PWM),其中,PWM信号的数量、周期、占空比及电流幅值可由用户可以根据检测需要来编程设定。
其次,控制模块15确定电池16的电池容量C capcity与充放电倍率C rate,并根据电池16的电池容量C capcity与充放电倍率C rate,计算出电池16的最大充电电流I chgmax
在本实施例中,根据公式:I chg max=C capcity*C rate,当控制模块15确定电池容量C capcity与充放电倍率C rate后,控制模块15便可以计算出电池16的最大充电电流I chgmax
最后,控制模块15根据电池16的最大充电电流I chgmax与预设电流,选择第一最优充电电流为电池充电。例如,充电器具有多个充电电流档位,分别为大电流档位、中电流档位及小电流档位,其中,预设电流与充电器的充电电流档位相对应,因此,预设电流可以包括最大预设电流、中预设电流及小预设电流,因此,控制模块15根据电池16的最大充电电流I chgmax与预设电流,选择第一最优充电电流为电池16充电的过程中,控制模块15判断电池16的最大充电电流I chgmax是否大于最大预设电流,一方面,若大于,选择最大预设电流为第一最优充电电流,并为电池16充电,因此,其能够避免以过大电流为电池充电而造成爆炸、起火等风险发生。另一方面,若小于,控制模块16选择最大充电电流I chgmax为第一最优充电电流,并为电池16充电,因此,其能够避免以相对过小电流为电池充电而造成充电效率低下的情况。
综上,该充电器能够自动选择第一最优充电电流为电池充电,操作简单,充电效率高并且安全可靠。
在一些实施例中,控制模块15在确定电池16的电池容量C capcity的过程中,首先,控制模块15确定电池16开始充电时的起始电压V st与结束充电时的结束电压V end
其次,控制模块15根据电池16开始充电时的起始电压V st与结束充电时的结束电压V end,计算出电池16的充电压差△Vbat。请参阅图2,对于第1T脉冲周期,电池经过第1T脉冲周期的充电后,电压由V st上升至V h1,此时,脉冲式 的充电电流中高电平对应着V h1,低电平对应着V l1。对于第2T脉冲周期,电池经过第2T脉冲周期的充电后,电压由V h1上升至V h2,此时,脉冲式的充电电流中高电平对应着V h2,低电平对应着V l2。以此类推,对于第nT脉冲周期,电池经过第nT脉冲周期的充电后,电压由V h(n-1)上升至V hn,此时,脉冲式的充电电流中高电平对应着V hn,低电平对应着V ln
此时,经过第nT脉冲周期的充电后,低电平对应着V ln,亦即V ln=V end。因此,充电压差△Vbat=V end-V st
最后,根据公式:C capcity=△U*C test/△Vbat,C test=n*T*D%*I test,△U=V full-V empty,控制模块15计算出电池16的电池容量C capcity,其中,C capcity为电池的电池容量,△U为电池的满额压差,n为充电电流的脉冲周期数量,T为脉冲周期,D%为占空比,I test为脉冲式的充电电流,V full为电池的充满电压,V empty为电池的额定最低电压。
一般的,电池容量全范围电压为3V至4.2V,其中,3V为电池的额定最低电压,4.2V为电池的充满电压。因此,上述公式可以变换为:
C capcity=△U*C test/△Vbat=1.2*n*T*D%*I test/△Vbat。
紧接着,确定电池16的电池容量C capcity后,控制模块15可以通过以下方式确定电池16的充放电倍率。在一些实施例中,控制模块15在确定电池16的充放电倍率的过程中,首先,控制模块15确定电池16的内阻R i与关联系数β,关联系数β用于描述电池16的内阻R i与充放电倍率C rate之间的相关性。
在确定电池16的内阻R i的过程中,控制模块15计算出每个脉冲周期的充电电流中高电平与低电平之间的高低压差。例如,请再参阅图2,对于第1T脉冲周期,其高低压差△Vm1=V h1-V l1。对于第2T脉冲周期,其高低压差△Vm2=V h2-V l2。依次类推,对于第nT脉冲周期,其高低压差△Vmn=V hn-V ln
当计算出每个高低压差之后,控制模块15统计各个脉冲周期对应的高低压差△Vmn的总压差△VM,总压差△VM=△Vm1+△Vm2+……+△Vmn。
紧接着,控制模块15根据总压差△VM与充电电流的脉冲周期数量n,计算出压差平均值P,其中,P=(△Vm1+△Vm2+……+△Vmn)/n。
再紧接着,控制模块15根据压差平均值P与充电电流I test,计算出电池16的内阻R i,其中,R i=P/I test
在现有电池生产工艺中,其可以通过减薄隔膜厚度或者加大隔膜与正负极 之间的接触面积,以加快锂离子交换速度,进而提高电池的充放电倍率。不过,现有电池生产工艺所生产出的电池内阻会变小,亦即,显然电池的内阻与充放电倍率存在线性相关性,内阻越大,充放电倍率越小。内阻越小,充放电倍率越大。
如前所述,由于不同电池工艺不同,内阻不同,导致计算出的充放电倍率存在一定的偏差。因此,为了精确地计算出充放电倍率,其可以通过根据市面上提供的不同电池规格书记录的充放电倍率与电池内阻,计算出关联系数,以便更加精确地计算出当前电池的充放电倍率。
因此,在确定电池16的关联系数的过程中,获取不同电池16对应的内阻R i与充放电倍率C rate,根据不同电池对应的内阻R i与充放电倍率C rate,计算出公共的关联系数β,并将公共的关联系数β作为电池16的关联系数β。
例如,本实施例提供如下电池的内阻与充放电倍率之间的关系表:
电池类别 电池A 电池B 电池C 电池D
充放电倍率C 0.5C 1C 2C 4C
电池内阻mΩ 110mΩ 50mΩ 35mΩ 14mΩ
根据上表提供的数据,关联系数β约等于55。
最后,控制模块15根据电池16的内阻R i与关联系数β,计算出电池16的充放电倍率C rate,其中,C rate=β/R i
因此,电池允许的最大充电电流I chgmax为:
I chgmax=(β/R i)*1.2*n*T*D%*I test/△Vbat
因此,控制模块15便可以根据电池16的最大充电电流I chgmax与预设电流,选择第一最优充电电流为电池16充电。
由于电池16处在低温状态下,化学反应速度变慢,需要限制充电电流来保护电池。电池16处在高温状态下,化学反应过于活跃,也需要降低充电电流来避免化学反应过程中,产生过多气体造成内压升高导致电池16鼓包或损坏。
因此,在一些实施例中,控制模块15在选择第一最优充电电流为电池充电之后,控制模块15通过温度采样模块14确定充电温度,根据充电温度与第一 最优充电电流,选择第二最优充电电流为电池16充电。
因此,在得到第一最优充电电流的前提下,通过结合充电温度,其能够进一步得到适合任何温度下的第二最优充电电流,从而使得充电器能够在任何温度下可靠稳定地对电池充电。
在一些实施例中,控制模块15根据充电温度与第一最优充电电流,选择第二最优充电电流为电池充电的过程中,首先,预先设置第一低温阈值T L1、第二低温阈值T L2、第一高温阈值T H1及第二高温阈值T H2,第一低温阈值T L1大于第二低温阈值T L2,第二高温阈值T H2大于第一高温阈值T H1
其次,将第一低温阈值T L1与第二低温阈值T L2之间的低温大范围分成若干段低温小范围,在第一最优充电电流的范围内,不同段低温小范围对应不同第二最优充电电流。
再次,将第二高温阈值T H2与第一高温阈值T H1之间的高温大范围分成若干段高温小范围,在第一最优充电电流的范围内,不同段高温小范围对应不同第三最优充电电流。
再次,控制模块15在检测到充电温度T1低于第一低温阈值T L1或者高于第一高温阈值T H1时,根据充电温度T1所对应的对应段低温小范围或高温小范围,确定对应段的第二最优充电电流或第三最优充电电流。
最后,控制模块15以确定的对应段的第二最优充电电流或第三最优充电电流为电池16充电。
请参阅图3,第一低温阈值T L1至第二低温阈值T L2之间为低温大范围,第一高温阈值T H1至第二高温阈值T H2之间为高温大范围,第一低温阈值T L1至第一高温阈值T H1之间为正常温度范围。
在低温大范围内,其被分成3段低温小范围,分别为t0至t1、t1至t2及t2至t3,此处,t0相当于第二低温阈值T L2,t3相当于第一低温阈值T L1。在第一最优充电电流的范围内,不同段低温小范围对应不同第二最优充电电流,因此,不同段低温小范围对应的第二最优充电电流皆不同并且小于第一最优充电电流。
在本实施例中,在充电温度T1低于t3的前提下,控制模块15根据充电温度T1,确定充电温度T1所在的低温小范围,再进一步确定该低温小范围对应的第二最优充电电流。例如,充电温度T1落在t1至t2,于是,控制模块15将 t1至t2所在段的第二最优充电电流对电池16充电。同理可得,在高温大范围内,其被分成3段低温小范围,分别为t4至t5、t5至t6及t6至t7,此处,t4相当于第一高温阈值T H1,t7相当于第二高温阈值T H2。在第一最优充电电流的范围内,不同段高温小范围对应不同第二最优充电电流,因此,不同段高温小范围对应的第二最优充电电流皆不同并且小于第一最优充电电流。
在本实施例中,在充电温度T1高于t4的前提下,控制模块15根据充电温度T1,确定充电温度T1所在的高温小范围,再进一步确定该高温小范围对应的第二最优充电电流。例如,充电温度T1落在t5至t6,于是,控制模块15将t5至t6所在段的第二最优充电电流对电池16充电。
当充电温度T1位于t3至t4之间,控制模块15以第一最优充电电流为电池16充电。
在一些实施例中,当充电温度小于t0或者高于t7时,控制模块15停止对电池16充电。
因此,通过采用分段式地寻优,选择最优充电电流为电池充电,其能够满足在任何温度下可靠稳定地为电池16充电。并且还可以避免充电温度变化过于频繁而过于频繁切换充电电流的情况发生。
为了详细阐述本申请实施例的目的,本申请实施例结合图4与图5,详细阐述本申请实施例提供的电池充电电路的结构原理。
请参阅图4,电源转换模块11包括电源接口111、降压电路112以及滤波电路113。
电源接口111用于输入外部电源,其中,电源接口111包括USB接口等等合适接口。
降压电路112与电源接口111连接,降压电路112用于对外部电源进行降压处理,并为电池16提供降压后的电源。
滤波电路113连接在电源接口111与降压电路112之间的节点。滤波电路113能够滤除包含在外部电源的谐波。
请参阅图5,控制模块15包括第一脉冲端口PWM1与第二脉冲端口PWM2。
降压电路112包括第一NMOS管Q1、第二NMOS管Q2、电感L1及第一电容C1,第一NMOS管Q1的漏极与电源接口111连接,第一NMOS管Q1的源极、第 二NMOS管Q2的漏极及电感L1一端皆连接至第一节点5a,第一NMOS管Q1的栅极连接至第一脉冲端口PWM1,电感L1另一端与第一电容C1一端连接,第一电容C1另一端接地,第二NMOS管Q2的源极接地,第二NMOS管Q2的栅极连接至第二脉冲端口PWM2,电池16用于连接至第一节点5a。
滤波电路113包括第二电容C2,第二电容C2一端连接在电源接口111与降压电路112之间的节点,第二电容C2另一端接地。
控制模块15包括电压采样端Vchg。
电压采样模块12包括第一电阻R1、第二电阻R2及第三电容C3,第一电阻R1一端连接至第一节点5a,第一电阻R1另一端、第二电阻R2一端、第三电容C3一端及电压采样端Vchg皆连接至第二节点5b,第二电阻R2另一端与第三电容C3另一端皆接地。
控制模块15包括电流采样端Ichg。
电流采样模块13包括第三电阻R3、第四电阻R4及第四电容C4,第三电阻R3一端与第四电阻R4一端皆连接至第三节点5c,第三电阻R3另一端、第四电容C4一端及电流采样端Ichg皆连接至第四节点5d,第四电阻R4另一端与第四电容C4另一端皆接地。
控制模块15包括基准电压端Vref与温度采样端NTC,基准电压端Vref用于输出基准电压,温度采样端NTC用于采样充电温度。
温度采样模块14包括负温度系数电阻RT1与第五电阻R5,第五电阻R5一端连接至基准电压端Vref,第五电阻R5另一端与负温度系数电阻RT1一端皆连接至温度采样端NTC,负温度系数电阻RT1另一端接地。
如前所述,在本实施例中,例如设置K段降流保护并控制充电温度,当电池处于低温区,即Vntc>Vtl时,Ichg=K*(Vntc-Vtl)/(Vtlmin-Vtl)*I,其中,Vtlmin为电池允许的最低低温点、Vtl为自定义的低温临界点,I为常温时的第一最优充电电流。当电池处于高温区时,即Vntc<Vtl时,Ichg=K*(Vth-Vntc)/(Vth-Vthmax)*I,其中,Vthmax为电池允许的最高高温点、Vth为自定义的高温临界点。
电池16可以与充电器自由分离,需要充电时,将电池16放置在充电器便可以完成充电。充电完毕后,用户可以从充电器取出电池16。
控制模块15通过第一脉冲端口PWM1与第二脉冲端口PWM2输出脉冲电流, 其中,PWM1与PWM2同频异相。
控制模块15其可以为通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、PLC、现场可编程门阵列(FPGA)、单片机、ARM(Acorn RISC Machine)或其它可编程逻辑器件、分立门或晶体管逻辑、分立的硬件组件或者这些部件的任何组合。还有,控制模块15还可以是任何传统处理器、控制器、微控制器或状态机。控制模块15也可以被实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器结合DSP核、或任何其它这种配置。
请参阅图6,控制模块15包括:至少一个处理器151以及与所述至少一个处理器151通信连接的存储器152;其中,图6中以一个处理器151为例。处理器151和存储器152可以通过总线或者其他方式连接,图6中以通过总线连接为例。
其中,存储器152存储有可被所述至少一个处理器151执行的指令,所述指令被所述至少一个处理器151执行,以使所述至少一个处理器151能够用于执行上述或下述的电池充电方法。
作为本申请实施例的另一方面,本申请实施例提供一种电池充电方法。下述各个实施例的电池充电方法对应的功能是以指令的形式存储在控制模块的存储器上,当要执行下述各个实施例的电池充电方法对应的功能时,控制模块的处理器访问存储器,调取并执行对应的指令,以实现下述各个实施例的电池充电方法对应的功能。
存储器作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如下述实施例电池充电方法对应的步骤。处理器通过运行存储在存储器中的非易失性软件程序、指令以及模块,从而执行下述实施例电池充电方法对应的步骤的功能。
存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述程序指令/模块存储在所述存储器中,当被所述一个或者多个处理器执 行时,执行上述任意方法实施例中的电池充电方法,例如,执行下述实施例描述的图7至图14所示的各个步骤的功能。
请参阅图7,电池充电方法700包括:
步骤71、施加脉冲式的充电电流为电池充电;
步骤72、确定电池的电池容量与充放电倍率;
步骤73、根据电池的电池容量与充放电倍率,计算出电池的最大充电电流;
步骤74、根据电池的最大充电电流与预设电流,选择第一最优充电电流为电池充电。
因此,其能够自动选择第一最优充电电流为电池充电,操作简单,充电效率高并且安全可靠。
在一些实施例中,请参阅图8,步骤72包括:
步骤722、确定电池的内阻与关联系数,关联系数用于描述电池的内阻与充放电倍率之间的相关性;
步骤724、根据电池的内阻与关联系数,计算出电池的充放电倍率。
在一些实施例中,请参阅图9,步骤722包括:
步骤7221、计算出每个脉冲周期的充电电流中高电平与低电平之间的高低压差;
步骤7223、统计各个脉冲周期对应的高低压差的总压差;
步骤7225、根据总压差与充电电流的脉冲周期数量,计算出压差平均值;
步骤7227、根据压差平均值与充电电流,计算出电池的内阻。
在一些实施例中,请参阅图10,步骤722包括:
步骤7222、获取不同电池对应的内阻与充放电倍率;
步骤7224、根据不同电池对应的内阻与充放电倍率,计算出公共的关联系数,并将公共的关联系数作为电池的关联系数。
在一些实施例中,请参阅图11,步骤72包括:
步骤721、确定所述电池开始充电时的起始电压与结束充电时的结束电压;
步骤723、根据电池开始充电时的起始电压与结束充电时的结束电压,计算出电池的充电压差△Vbat;
步骤725、根据公式:C capcity=△U*C test/△Vbat,C test=n*T*D%*I test,△U=V full-V empty,计算出电池的电池容量。
其中,C capcity为电池的电池容量,△U为电池的满额压差,n为充电电流的脉冲周期数量,T为脉冲周期,D%为占空比,I test为脉冲式的充电电流,V full为电池的充满电压,V empty为电池的额定最低电压。
在一些实施例中,请参阅图12,在步骤74之后,电池充电方法700还包括:
步骤75、确定充电温度;
步骤76、根据充电温度与第一最优充电电流,选择第二最优充电电流为电池充电。
在一些实施例中,请参阅图13,步骤76包括:
步骤761、预先设置第一低温阈值、第二低温阈值、第一高温阈值及第二高温阈值,第一低温阈值大于第二低温阈值,第二高温阈值大于第一高温阈值;
步骤762、将第一低温阈值与第二低温阈值之间的低温大范围分成若干段低温小范围,在第一最优充电电流的范围内,不同段低温小范围对应不同第二最优充电电流;
步骤763、将第二高温阈值与第一高温阈值之间的高温大范围分成若干段高温小范围,在第一最优充电电流的范围内,不同段高温小范围对应不同第三最优充电电流;
步骤764、在检测到充电温度低于第一低温阈值或者高于第一高温阈值时,根据充电温度所对应的对应段低温小范围或高温小范围,确定对应段的第二最优充电电流或第三最优充电电流;
步骤765、以确定的对应段的第二最优充电电流或第三最优充电电流为电池充电。
在一些实施例中,预设电流包括最大预设电流。请参阅图14,步骤74包括:
步骤741、判断电池的最大充电电流是否大于最大预设电流;
步骤742、若大于,选择最大预设电流为第一最优充电电流,并为电池充电;
步骤743、若小于,选择最大充电电流为第一最优充电电流,并为电池充电。
由于方法实施例和产品实施例是基于同一构思,在内容不互相冲突的前提下,方法实施例的内容可以引用产品实施例的,在此不赘述。
值得注意的是:上述各个实施例所述的“步骤”并不用于限定各个方法步骤之间的执行顺序,在执行方案完整地前提下,两者之间可以交替执行,或者并行执行,在此不赘述。
作为本申请实施例的又另一方面,本申请实施例提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使电池充电电路执行如上任一项所述的电池充电方法,例如执行上述任意方法实施例中的电池充电方法。
因此,其能够自动选择第一最优充电电流为电池充电,操作简单,充电效率高并且安全可靠。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种电池充电方法,其特征在于,包括:
    施加脉冲式的充电电流为电池充电;
    确定所述电池的电池容量与充放电倍率;
    根据所述电池的电池容量与充放电倍率,计算出所述电池的最大充电电流;
    根据所述电池的最大充电电流与预设电流,选择第一最优充电电流为所述电池充电。
  2. 根据权利要求1所述的方法,其特征在于,所述确定所述电池的充放电倍率,包括:
    确定所述电池的内阻与关联系数,所述关联系数用于描述所述电池的内阻与充放电倍率之间的相关性;
    根据所述电池的内阻与关联系数,计算出所述电池的充放电倍率。
  3. 根据权利要求2所述的方法,其特征在于,所述确定所述电池的内阻,包括:
    计算出每个脉冲周期的充电电流中高电平与低电平之间的高低压差;
    统计各个脉冲周期对应的所述高低压差的总压差;
    根据所述总压差与所述充电电流的脉冲周期数量,计算出压差平均值;
    根据所述压差平均值与所述充电电流,计算出所述电池的内阻。
  4. 根据权利要求2所述的方法,其特征在于,所述确定所述电池的关联系数,包括:
    获取不同电池对应的内阻与充放电倍率;
    根据所述不同电池对应的内阻与充放电倍率,计算出公共的关联系数,并将所述公共的关联系数作为所述电池的关联系数。
  5. 根据权利要求1所述的方法,其特征在于,所述确定所述电池的电池容量,包括:
    确定所述电池开始充电时的起始电压与结束充电时的结束电压;
    根据所述电池开始充电时的起始电压与结束充电时的结束电压,计算出所述电池的充电压差△Vbat;
    根据公式:C capcity=△U*C test/△Vbat,C test=n*T*D%*I test,△U=V full-V empty,计算出所述电池的电池容量,其中,C capcity为所述电池的电池容量,△U为所述电池的满额压差,n为充电电流的脉冲周期数量,T为脉冲周期,D%为占空比,I test为脉冲式的充电电流,V full为所述电池的充满电压,V empty为所述电池的额定最低电压。
  6. 根据权利要求1所述的方法,其特征在于,在选择第一最优充电电流为所述电池充电之后,所述方法还包括:
    确定充电温度;
    根据所述充电温度与所述第一最优充电电流,选择第二最优充电电流为所述电池充电。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述充电温度与所述第一最优充电电流,选择第二最优充电电流为所述电池充电,包括:
    预先设置第一低温阈值、第二低温阈值、第一高温阈值及第二高温阈值,所述第一低温阈值大于所述第二低温阈值,所述第二高温阈值大于所述第一高温阈值;
    将所述第一低温阈值与所述第二低温阈值之间的低温大范围分成若干段低温小范围,在所述第一最优充电电流的范围内,不同段低温小范围对应不同第二最优充电电流;
    将所述第二高温阈值与所述第一高温阈值之间的高温大范围分成若干段高温小范围,在所述第一最优充电电流的范围内,不同段高温小范围对应不同第三最优充电电流;
    在检测到所述充电温度低于所述第一低温阈值或者高于所述第一高温阈值时,根据所述充电温度所对应的对应段低温小范围或高温小范围,确定对应段的第二最优充电电流或第三最优充电电流;
    以确定的对应段的第二最优充电电流或第三最优充电电流为所述电池充电。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述预设电流包括最大预设电流;
    所述根据所述电池的最大充电电流与预设电流,选择第一最优充电电流为所述电池充电,包括:
    判断所述电池的最大充电电流是否大于所述最大预设电流;
    若大于,选择所述最大预设电流为第一最优充电电流,并为所述电池充电;
    若小于,选择所述最大充电电流为第一最优充电电流,并为所述电池充电。
  9. 一种电池充电电路,其特征在于,包括:
    电源转换模块,用于为电池提供电源;
    电压采样模块,用于与所述电池连接,所述电压采样模块用于采样所述电池的两端电压;
    电流采样模块,用于与所述电池连接,所述电流采样模块用于采样流经所述电池的充电电流;
    温度采样模块,用于采样所述电池的充电温度;
    控制模块,其分别所述电源转换模块、所述电压采样模块、所述电流采样模块及所述温度采样模块连接;
    其中,所述控制模块包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行如权利要求1至8任一项所述的电池充电方法。
  10. 一种充电器,其特征在于,包括如权利要求9所述的电池充电电路。
PCT/CN2018/095391 2018-03-27 2018-07-12 一种电池充电方法、电池充电电路及充电器 WO2019184143A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810258690.9 2018-03-27
CN201810258690.9A CN108336795B (zh) 2018-03-27 2018-03-27 一种电池充电方法、电池充电电路及充电器

Publications (1)

Publication Number Publication Date
WO2019184143A1 true WO2019184143A1 (zh) 2019-10-03

Family

ID=62931673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095391 WO2019184143A1 (zh) 2018-03-27 2018-07-12 一种电池充电方法、电池充电电路及充电器

Country Status (2)

Country Link
CN (1) CN108336795B (zh)
WO (1) WO2019184143A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117277517A (zh) * 2023-11-21 2023-12-22 深圳市美矽微半导体股份有限公司 一种充电芯片的充电参数智能化实时修正方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018128026A1 (de) * 2017-11-10 2019-05-16 Maxim Integrated Products, Inc. Batterieladegerät und zugehörige Systeme und Verfahren
JP7010191B2 (ja) * 2018-10-23 2022-02-10 トヨタ自動車株式会社 二次電池システムおよび二次電池の充電制御方法
CN112448039B (zh) * 2019-09-05 2022-04-08 北京小米移动软件有限公司 锂离子电池以及锂离子电池充放电控制方法及装置
CN114487644A (zh) * 2021-12-17 2022-05-13 未来穿戴技术股份有限公司 充电状态检测方法、装置、电子设备及存储介质
CN114771329B (zh) * 2022-04-11 2024-10-11 湖北亿纬动力有限公司 一种电池充电方法、装置、电子设备及存储介质
CN116228205B (zh) * 2023-03-29 2023-11-21 东莞先知大数据有限公司 一种充电桩断电风险诊断方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882260A (zh) * 2012-10-27 2013-01-16 嘉兴清源电气科技有限公司 一种带温度检测的锂电池充电控制方法及其充电器
CN103986215A (zh) * 2014-05-30 2014-08-13 深圳市中兴移动通信有限公司 移动终端及其充电电流调整方法
CN106549464A (zh) * 2017-01-13 2017-03-29 广东欧珀移动通信有限公司 一种充电控制方法、装置和计算机设备
CN107070279A (zh) * 2016-01-18 2017-08-18 住友电气工业株式会社 电力转换系统及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7843171B2 (en) * 2008-01-21 2010-11-30 Semtech Corporation Method and apparatus for battery charging based on battery capacity and charging source constraints
DE102011087496A1 (de) * 2011-11-30 2013-06-27 H-Tech Ag Verfahren und Vorrichtung zum Laden von wiederaufladbaren Zellen
CN103199600B (zh) * 2013-04-03 2015-04-08 深圳晶福源科技股份有限公司 充电控制电路及方法
CN106684478B (zh) * 2017-03-20 2019-06-11 东莞博力威电池有限公司 一种带通讯指令控制usb电池的控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882260A (zh) * 2012-10-27 2013-01-16 嘉兴清源电气科技有限公司 一种带温度检测的锂电池充电控制方法及其充电器
CN103986215A (zh) * 2014-05-30 2014-08-13 深圳市中兴移动通信有限公司 移动终端及其充电电流调整方法
CN107070279A (zh) * 2016-01-18 2017-08-18 住友电气工业株式会社 电力转换系统及其控制方法
CN106549464A (zh) * 2017-01-13 2017-03-29 广东欧珀移动通信有限公司 一种充电控制方法、装置和计算机设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117277517A (zh) * 2023-11-21 2023-12-22 深圳市美矽微半导体股份有限公司 一种充电芯片的充电参数智能化实时修正方法及系统
CN117277517B (zh) * 2023-11-21 2024-03-08 深圳市美矽微半导体股份有限公司 一种充电芯片的充电参数智能化实时修正方法及系统

Also Published As

Publication number Publication date
CN108336795A (zh) 2018-07-27
CN108336795B (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
WO2019184143A1 (zh) 一种电池充电方法、电池充电电路及充电器
JP5618393B2 (ja) 蓄電システム及び二次電池制御方法
WO2017173182A1 (en) Fast charging apparatus and method
US20210249883A1 (en) Supercapacitor based energy storage device
JP6196466B2 (ja) 電源装置
JP2015202024A (ja) モバイルバッテリー
JP5482809B2 (ja) 均等化装置
JP2014068468A (ja) 充電制御装置
JP2010252474A (ja) 二次電池の充電方法
JP2015065795A (ja) 蓄電装置、蓄電制御装置および蓄電制御方法
US20130043841A1 (en) Circuit and method of measuring voltage of the battery
JP7307872B2 (ja) 電池管理
CN104734231A (zh) 基于双向直流变换器的串联电池组均衡装置和均衡方法
US7696726B2 (en) Battery charger and associated method
JP2014045626A (ja) 充電制御装置
JP2014068467A (ja) 充電制御装置
KR101745633B1 (ko) 기준 셀의 순차 연결을 이용한 셀 밸런싱 장치 및 방법
CN114341655B (zh) 一种用于确定电池的极化电压的装置、方法及相关设备
CN114051684B (zh) 电池管理系统、电池组、电动车辆及电池管理方法
Sagar et al. Series battery equalization using sequential difference algorithm
Arasaratnam et al. Switched-capacitor cell balancing: A fresh perspective
CN208433767U (zh) 一种智能调节电池充电电流的电路及充电器
Liu et al. New type equalization circuit and management system of Li-ion battery
TWI784737B (zh) 電池健康管理方法及電池健康管理裝置
TWI786863B (zh) 電池健康管理方法及電池健康管理裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18912774

Country of ref document: EP

Kind code of ref document: A1