WO2021062827A1 - 一种通信方法、装置和系统 - Google Patents

一种通信方法、装置和系统 Download PDF

Info

Publication number
WO2021062827A1
WO2021062827A1 PCT/CN2019/109755 CN2019109755W WO2021062827A1 WO 2021062827 A1 WO2021062827 A1 WO 2021062827A1 CN 2019109755 W CN2019109755 W CN 2019109755W WO 2021062827 A1 WO2021062827 A1 WO 2021062827A1
Authority
WO
WIPO (PCT)
Prior art keywords
access network
network device
information
function
terminal
Prior art date
Application number
PCT/CN2019/109755
Other languages
English (en)
French (fr)
Inventor
范强
娄崇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19947942.9A priority Critical patent/EP4030841A4/en
Priority to KR1020227013991A priority patent/KR20220070494A/ko
Priority to CN201980100745.6A priority patent/CN114503719A/zh
Priority to AU2019469001A priority patent/AU2019469001B2/en
Priority to CA3153036A priority patent/CA3153036A1/en
Priority to PCT/CN2019/109755 priority patent/WO2021062827A1/zh
Publication of WO2021062827A1 publication Critical patent/WO2021062827A1/zh
Priority to US17/657,046 priority patent/US20220217549A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • the present invention relates to wireless communication technology, in particular to a communication method, device and system.
  • the bandwidth resources and coverage of a single access network device are limited.
  • the multi-connection mode that utilizes the wireless resources of multiple access network devices to provide services for the terminal device can increase the data throughput of the terminal device, improve the communication performance of the terminal device, and improve the utilization rate of wireless resources.
  • a terminal device communicates with multiple access network devices at the same time
  • one of the access network devices is the main access network device
  • the main access network device performs control plane signaling interaction with the terminal device.
  • Other access network devices that the terminal device communicates with may be referred to as auxiliary access network devices.
  • auxiliary access network devices a scenario where a terminal device establishes a connection with two access network devices at the same time and sends and receives data through the two connections.
  • DC dual connectivity
  • the data frame compression function, the ethernet header compression (EHC) function, and the Packet Data Convergence Protocol (PDCP) replication function can also be used.
  • EHC ethernet header compression
  • PDCP Packet Data Convergence Protocol
  • the data frame compression function maintains a first-in, first-out compression buffer on the compression side, compresses and sends the data packet using the buffer content and compression algorithm, and pushes the data packet into the compression buffer; the data frame compression function also performs the same on the decompression side Maintain a first-in, first-out decompression buffer. After receiving the compressed data packet, use the buffer content and decompression algorithm to decompress the data packet. After the data packet is decompressed, the data packet is pushed into the decompression buffer. In the above process, the sequence of decompressing the data packets is exactly the same as the sequence of sending the data packets on the compression side.
  • the data frame compression function includes the uplink data compression (UDC) function.
  • the EHC function can be used in industrial control scenarios, and the 5G system can be used as the last hop of the industrial control network.
  • Ethernet data can be transmitted between the console and the control node through the 5G system.
  • the relatively fixed fields in the Ethernet frame header of the Ethernet data stream can be compressed, such as the source/destination Ethernet address of the console and the control node connected to the terminal device. This technology can be called EHC technology.
  • the PDCP replication function may also be referred to as the repeated transmission function of the PDCP layer.
  • the PDCP copy function can copy the data packets carried by the radio into multiple identical data packets (that is, repeated packets) at the PDCP layer, and then submit multiple identical data packets to multiple different radio link control (radio link control).
  • RLC radio link control
  • RLC layer entity performs transmission, and then transmits to the media access control (MAC) layer through different logical channels.
  • the logical channel is the channel from the RLC layer to the MAC layer.
  • the embodiments of the present invention provide a communication method, device and system, which are used to reduce the failure probability of the communication function.
  • the method, device and system are applicable to multi-connection scenarios.
  • an embodiment of the present application provides a communication method, the method includes: a first access network device obtains first information of a terminal; wherein the first information is used to indicate a first number, and the first number Is the number of first functional objects supported by the terminal, the first functional object is a data radio bearer DRB to which the first function is applied or the context maintained for the first function, and the first function is a data frame Compression function, or packet data convergence protocol PDCP replication function, or Ethernet header compression EHC operation function; the first access network device determines the second number according to the first information; wherein, the second number is the second access The number of the first functional objects that can be configured by the network access device for the terminal, and the second number is less than or equal to the first number; the first access network device reports to the second access network device Send second information, where the second information is used to indicate the second amount.
  • the number of DRBs to which the first function is applied and the number of contexts maintained for the first function are the number of resources corresponding to the first function.
  • the first access network device allocates the second number to the second access network device, so that the first access network device and the second access network device are the number of DRBs configured by the terminal to apply the first function Or the number of contexts maintained for the first function will not exceed the capacity limit of the terminal, which avoids data packets that cannot be correctly parsed by the terminal or congestion due to waiting for processing.
  • the method includes: the first access network device acquires first information of the terminal; wherein the first information is used to indicate a first quantity, and the first quantity is the terminal The number of supported data radio bearer DRBs using the first function, or the first number is the number of contexts maintained for the first function supported by the terminal, and the first function is a data frame compression function or packet data aggregation Protocol PDCP replication function, or Ethernet header compression EHC operation function; the first access network device determines a second number according to the first information; wherein, the second number is that the second access network device can be the The number of DRBs configured by the terminal to apply the first function, or the second number is the number of contexts that the second access network device can configure for the terminal and maintain the first function, the The second number is less than or equal to the first number; the first access network device sends second information to the second access network device, and the second information is used to indicate the second number.
  • the data frame compression function is the uplink data compression UDC function.
  • the number of the first functional objects supported by the terminal is the maximum number of the first functional objects supported by the terminal.
  • the number of the first functional objects that the second access network device can configure for the terminal is: the number of the first functional objects that the second access network device can configure for the terminal The maximum number of first functional objects, or the number of first functional objects to be configured by the second access network device for the terminal.
  • the first access network device sends the first information to the second access network device.
  • the second access network device can negotiate and adjust the second number determined by the first access network device with the first access network device under the premise that the first number is not exceeded, so as to increase the probability of successful negotiation and improve the negotiation effectiveness.
  • the first access network device receives third information from the second access network device; wherein, the third information is used to indicate a third quantity, and the third quantity is the
  • the second access network device expects the number of the first functional objects configured for the terminal, and the third number is less than or equal to the first number. According to the third number expected by the second access network device, the fourth number allocated by the first access network device to the second access network device can better meet the requirements of the second access network device.
  • the number of the first functional objects that the second access network device expects to configure for the terminal is: the number of the first functional objects that the second access network device expects to configure for the terminal The maximum number of first functional objects, or the number of first functional objects that the second access network device expects to configure for the terminal.
  • the first access network device determining the second number according to the first information includes: the first access network device determining the second number according to the first information and the third information ; The second number is less than or equal to the third number.
  • the first access network device receives fourth information from the second access network device, where the fourth information is used to indicate that the second access network device supports the first function .
  • sending the second information by the first access network device to the second access network device includes: the first access network device sends the auxiliary station addition to the second access network device Request message, the secondary station addition request message includes the second information; or, the first access network device sends a secondary station modification request message to the second access network device, the secondary station modification request message Including the second information.
  • the auxiliary station addition request message includes a first information element, the first information element carries the second information, and the first information element is a CG-ConfigInfo information element or a ConfigRestricInfoSCG information element .
  • the secondary station modification request message includes a second information element, the second information element carries the second information, and the second information element is a CG-ConfigInfo information element or a ConfigRestricInfoSCG information element .
  • the first access network device receiving the third information from the second access network device includes: the first access network device receives the secondary station modification from the second access network device A request message, where the secondary station modification request message includes the third information.
  • the secondary station modification request message includes a third information element, the third information element carries the third information, and the third information element is a CG-ConfigInfo information element or a ConfigRestricModeReqSCG information element .
  • the first access network device sends configuration information to the terminal device according to the first information and the second quantity; wherein, the configuration information is used to configure the terminal device.
  • the number of DRBs configured by the access network device for the terminal to apply the first function or the number of contexts configured for the terminal to maintain for the first function is determined by the second number determined by the first access network device for the second access network device Therefore, the functions configured for the terminal by the first access network device and the second access network device do not exceed the terminal capability limit.
  • the first access network device obtains fifth information of the terminal; wherein, the fifth information is used to indicate that the terminal supports a capability parameter of the first function; the capability parameter Including one or more of the following: UDC dictionary type; UDC cache size; UDC compression algorithm; UDC initial dictionary; UDC priority. Avoid the difference in implementation between the first function configured by the first access network device for the terminal and the first function supported by the terminal, which may cause communication errors.
  • an embodiment of the present application provides a communication method, the method includes: a second access network device receives first information from a first access network device; wherein the first information is used to indicate a first quantity, The first number is the number of first functional objects that the second access network device can configure for the terminal, and the first functional object is a data radio bearer DRB to which the first function is applied or is the first function Maintained context, the first function is a data frame compression function, or a packet data convergence protocol PDCP copy function, or an Ethernet header compression EHC operation function; in response to the first information, the second access network device sends The terminal sends configuration information; wherein the configuration information is used to configure the first functional object or the number of the first functional objects; wherein the number of the first functional objects configured by the configuration information is less than or Equal to the first number.
  • the first access network device configures the first function for the terminal according to the first number allocated to the first access network device, so that the first access network device and the second access network device are configured for the terminal.
  • the number of DRBs for applying the first function or the number of contexts maintained for the first function will not exceed the capacity limit of the terminal, which avoids that data packets cannot be correctly parsed by the terminal or congestion due to waiting for processing.
  • the method includes: the second access network device receives first information from the first access network device; wherein the first information is used to indicate the first quantity,
  • the first number is the number of data radio bearer DRBs that can be configured by the second access network device for the terminal to which the first function is applied, or the first number is the number of data radio bearer DRBs that the second access network device can configure for the terminal.
  • the number of contexts maintained by the terminal configured for the first function where the first function is a data frame compression function, or a packet data convergence protocol PDCP replication function, or an Ethernet header compression EHC operation function; in response to the first function Information, the second access network device sends configuration information to the terminal; wherein the configuration information is used to instruct the terminal to apply the first DRB of the first function, and the number of the first DRB is less than or It is equal to the first number, or the configuration information is used to indicate the number of first contexts maintained by the terminal for the first function, and the number of the first contexts is less than or equal to the first number.
  • the configuration information is used to instruct the terminal to apply the first DRB of the first function, and the number of the first DRB is less than or It is equal to the first number, or the configuration information is used to indicate the number of first contexts maintained by the terminal for the first function, and the number of the first contexts is less than or equal to the first number.
  • the number of the first functional objects that the second access network device can configure for the terminal is: the number of the first functional objects that the second access network device can configure for the terminal The maximum number of first functional objects, or the number of first functional objects to be configured by the second access network device for the terminal.
  • the second access network device receives second information from the first access network device; wherein, the second information is used to indicate a second quantity, and the second quantity is The number of the first functional object supported by the terminal.
  • the second access network device determines a third number according to the second information; wherein, the third number is what the second access network device expects to configure for the terminal The number of the first functional object, the third number is less than or equal to the second number; the second access network device sends third information to the first access network device, the third information Used to indicate the third quantity.
  • the second access network device is able to negotiate and adjust the second number determined by the first access network device with the first access network device under the premise that the first number is not exceeded, thereby increasing the probability of successful negotiation and improving negotiation efficiency.
  • the second access network device sends fourth information to the first access network device, where the fourth information is used to indicate that the second access network device supports the first access network device.
  • the fourth information is used to indicate that the second access network device supports the first access network device.
  • the second access network device receiving the first information from the first access network device includes: the second access network device receives the first information from the first access network device Receiving a secondary station addition request message, where the secondary station addition request message includes the first information; or, the second access network device receives a secondary station modification request message from the first access network device, and the secondary station The station modification request message includes the first information.
  • the sending of the third information by the second access network device to the first access network device includes: the second access network device sends the third information to the first access network device Send a secondary station modification request message, where the secondary station modification request message includes the third information.
  • an embodiment of the present application provides a communication method.
  • the method includes: a first terminal sends first information, where the first information is used to indicate that the first terminal supports a first function, and the first function is Data frame compression function, or packet data convergence protocol PDCP copy function, or Ethernet header compression EHC operation function; the first terminal receives configuration information, and the configuration information is used to configure the SLRB to which the first function is applied or to indicate The number of contexts maintained for the first function.
  • the function configured for the SLRB of the first terminal is a function supported by the first terminal, so that the probability of communication failure of the first terminal can be reduced.
  • supporting the first function includes: a receiving side function supporting the first function, and/or a sending side function supporting the first function.
  • sending the first information by the first terminal includes: the first terminal sends the first information to the second terminal, and the second terminal can communicate with the first terminal; or, the first terminal sends the first information to the access network device. Send the first message.
  • receiving the configuration information by the first terminal includes: the first terminal receives the configuration information from the second terminal; or, the first terminal receives the configuration information from the access network device.
  • sending the first information from the first terminal to the second terminal includes: the first terminal sends the first information to the second terminal through the access network device; or, the The first terminal sends the first information to the second terminal through the first network device, and the first network device is used to save part or all of the first information.
  • the first terminal receiving configuration information from the second terminal includes: the first terminal receiving configuration information from the second terminal through the first access network device.
  • the first terminal receiving the configuration information from the first access network device includes: the first terminal receives the configuration information from the first access network device through the second terminal.
  • the first terminal sending the first information to the first access network device includes: the first terminal sends the first information to the first access network device through the second terminal.
  • the first terminal sends second information, the second information is used to indicate the capability parameter of the first terminal to support the first function; the capability parameter includes one or more of the following Species: the number of SLRBs that support the first function; the number of contexts that support the first function; the size of the UDC cache; the UDC compression algorithm; the UDC initial dictionary; the UDC priority.
  • the capability parameter of the first function the function configured for the SLRB of the first terminal can better match the capability of the first terminal.
  • sending the first information by the first terminal to the second terminal includes: the first terminal sends an RRC message to the second terminal, and the RRC message includes the first information.
  • an embodiment of the present application provides a communication method.
  • the method includes: a first terminal receives first information from a second terminal, where the first information is used to indicate that the second terminal supports a first function;
  • the first function is a data frame compression UDC function, or a packet data convergence protocol PDCP copy function, or an Ethernet header compression EHC operation function;
  • the first terminal sends configuration information to the second terminal according to the first information, and
  • the configuration information is used to configure the SLRB to which the first function is applied or used to indicate the number of contexts maintained for the first function.
  • the first terminal can configure the SLRB of the second terminal with functions supported by the second terminal, thereby reducing the probability of communication failure between the first terminal and the first terminal.
  • supporting the first function includes: a receiving side function supporting the first function, and/or a sending side function supporting the first function.
  • the first terminal receives second information from the second terminal, where the second information is used to indicate that the second terminal supports a capability parameter of the first function;
  • the capability parameter includes One of the following or any combination of them: the number of SLRBs that support the first function; the number of contexts that support the first function; UDC cache size; UDC compression algorithm; UDC initial dictionary; UDC priority.
  • the capability parameter of the first function the function configured by the first terminal for the SLRB of the second terminal can better match the capability of the second terminal.
  • the first terminal receiving the first information from the second terminal includes: the first terminal receives an RRC message from the second terminal, and the RRC message includes the first information.
  • the first terminal receiving the first information from the second terminal includes: the first terminal receives the first information from the second terminal through the first access network device; or, the The first terminal receives the first information from the second terminal through a first network device, and the first network device is used to save part or all of the first information.
  • the first terminal sending configuration information to the second terminal according to the first information includes: the first terminal sends configuration information to the second terminal through the first access network device information.
  • an embodiment of the present application provides a communication method.
  • the method includes: a first access network device receives first information from a first terminal, where the first information is used to indicate that the first terminal supports a first function ,
  • the first function is a data frame compression UDC function, or a packet data convergence protocol PDCP copy function, or an Ethernet header compression EHC operation function;
  • the first access network device receives the second information from the second terminal, the second information Used to instruct the second terminal to support the first function;
  • the first access network device sends configuration information to the first terminal and the second terminal according to the first information and the second information, and the configuration information is used for configuration
  • the SLRB of the first function applied between the first terminal and the second terminal is used to indicate the number of contexts maintained by the first terminal or the second terminal for the first function.
  • the first access network device can configure the functions supported by each terminal for the SLRB between multiple terminals, thereby reducing the probability of communication failure between the terminals.
  • supporting the first function includes: a receiving side function supporting the first function, and/or a sending side function supporting the first function.
  • the first information is also used to indicate that the first terminal supports a capability parameter of the first function;
  • the capability parameter includes one of the following or any combination thereof: The number of SLRBs of the function; the number of contexts that support the first function; the size of the UDC cache; the UDC compression algorithm; the UDC initial dictionary; the UDC priority.
  • the capability parameter of the first function the function configured for the SLRB of the first terminal can better match the capability of the first terminal.
  • the second information is also used to indicate that the second terminal supports the capability parameter of the first function;
  • the capability parameter includes one of the following or any combination thereof: The number of SLRBs of the function; the number of contexts that support the first function; the size of the UDC cache; the UDC compression algorithm; the UDC initial dictionary; the UDC priority.
  • the function configured for the SLRB of the second terminal can better match the capability of the second terminal.
  • the first access network device sending configuration information to the first terminal and the second terminal according to the first information includes: the first access network device sends the configuration information to the first terminal and the second terminal through the second terminal. The first terminal sends the configuration information.
  • the first access network device receiving the first information from the first terminal includes: the first access network device receives the first capability from the first terminal through the second terminal information.
  • an embodiment of the present application provides a communication method.
  • the method includes: a terminal sending first information, where the first information is used to indicate a first quantity, and the first quantity is the first number supported by the terminal.
  • the number of a functional object, the first functional object is the data radio bearer DRB to which the first function is applied or the context maintained for the first function, and the first function is the data frame compression function or the packet data aggregation Protocol PDCP copy function, or Ethernet header compression EHC operation function;
  • the terminal receives first configuration information from the first access network device, and the first configuration information is used to configure the first functional object or the first function
  • the terminal receives second configuration information from the second access network device, where the second configuration information is used to configure the first functional object or the number of the first functional object; the first configuration information and The sum of the number of the first functional objects configured by the second configuration information is less than or equal to the first number.
  • the terminal provides the number of first functional objects supported by the terminal, and in a multi-connection scenario, the access network device is made aware of the terminal's capacity limitation, so that multiple access network devices are configured for one of the functions configured by the terminal. And will not exceed the terminal's capacity limit.
  • an embodiment of the present application provides a communication device for implementing the communication device of the first aspect.
  • the communication device of the seventh aspect includes corresponding modules, units, or means for realizing the above-mentioned functions.
  • the modules, units, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device for implementing the communication device of the second aspect.
  • the communication device of the eighth aspect includes corresponding modules, units, or means for realizing the above-mentioned functions, and the modules, units, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device for implementing the communication device of the third aspect.
  • the communication device of the ninth aspect includes corresponding modules, units, or means for realizing the above-mentioned functions, and the modules, units, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device for implementing the communication device of the fourth aspect.
  • the communication device of the tenth aspect includes corresponding modules, units, or means for realizing the above-mentioned functions, and the modules, units, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device for implementing the communication device of the fifth aspect.
  • the communication device of the eleventh aspect includes corresponding modules, units, or means for realizing the above-mentioned functions.
  • the modules, units, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device for implementing the communication device of the sixth aspect.
  • the communication device of the twelfth aspect includes corresponding modules, units, or means for realizing the above-mentioned functions, and the modules, units, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device, including a processor, the processor is configured to read instructions from a memory, and execute the instructions to implement the method of the first aspect.
  • the communication device includes the memory.
  • the communication device may be a chip.
  • an embodiment of the present application provides a communication device, including a processor, the processor is configured to read instructions from a memory, and execute the instructions to implement the method of the second aspect.
  • the communication device includes the memory.
  • the communication device may be a chip.
  • an embodiment of the present application provides a communication device, including a processor, which is configured to read instructions from a memory and execute the instructions to implement the method of the third aspect.
  • the communication device includes the memory.
  • the communication device may be a chip.
  • an embodiment of the present application provides a communication device, including a processor, which is configured to read instructions from a memory and execute the instructions to implement the method of the fourth aspect.
  • the communication device includes the memory.
  • the communication device may be a chip.
  • an embodiment of the present application provides a communication device, including a processor, the processor is configured to read instructions from a memory, and execute the instructions to implement the method of the fifth aspect.
  • the communication device includes the memory.
  • the communication device may be a chip.
  • an embodiment of the present application provides a communication device, including a processor, the processor is configured to read instructions from a memory, and execute the instructions to implement the method of the sixth aspect.
  • the communication device includes the memory.
  • the communication device may be a chip.
  • an embodiment of the present application provides a computer-readable storage medium, including instructions, characterized in that, when the instructions are executed on a communication device, the communication device is caused to implement any of the foregoing methods.
  • an embodiment of the present application provides a computer program product, including instructions, characterized in that, when the instructions are executed on a communication device, the communication device is caused to implement any of the foregoing methods.
  • an embodiment of the present application provides a communication system, including the communication device of the ninth aspect or the fifteenth aspect.
  • the communication system may further include the communication device of the tenth aspect or the sixteenth aspect.
  • the communication system may further include the communication device of the eleventh aspect or the seventeenth aspect.
  • the communication system may further include the communication device of the twelfth aspect or the eighteenth aspect.
  • each access network device can negotiate and allocate the number of first functional objects supported by the terminal, so that each access network device is a terminal
  • the number of configured first functional objects will not exceed the capability limit of the terminal, which reduces the failure probability of the first function of the terminal and reduces the communication failure probability.
  • the terminal capabilities of the first function of multiple terminals can be learned through the interaction between the terminals or the terminal capabilities of the first function of multiple terminals through the access network equipment, so that the SLRB between the terminals can be Functions that are configured to meet the capabilities of the terminal.
  • the failure probability of the first function of the terminal is reduced, and the communication failure probability is reduced.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of this application.
  • Figure 2 is a schematic diagram of a device structure provided by an embodiment of the application.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 4 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 5 is a schematic flowchart of yet another communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of yet another communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of yet another communication method provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of another access network device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of another terminal device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of another access network device provided by an embodiment of this application.
  • the terminal device in the embodiment of the present application has a wireless transceiver function, and may be referred to as a UE in the present application, or may be referred to as a terminal for short.
  • the terminal device may be a user equipment, an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or a user device.
  • the access network equipment in the embodiments of this application may be equipment used to communicate with terminal equipment.
  • the access network equipment includes but is not limited to: evolved node B (evolved node B, eNB), radio network controller (radio network controller) , RNC), node B (node B, NB), donor base station (donor evolved nodeB, DeNB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (BBU), access point (AP), wireless relay node, wireless fidelity (wireless fidelity, WIFI) system Backhaul node, transmission point (TP) or transmission and reception point (TRP), road site unit (RSU), integrated access backhaul (IAB) system
  • the access point, etc.; the access network equipment can also be the next generation NB (generation, gNB) or transmission point (such as TRP or TP) in the new radio (NR
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB
  • the DU implements some functions of the gNB.
  • the CU implements the functions of the RRC layer and the PDCP layer
  • the DU implements the functions without the RLC layer, MAC layer, and PHY layer. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling or PDCP layer signaling, can also be used. It is considered to be sent by DU, or sent by DU+RU.
  • the access network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in the access network, and the CU can also be divided into network devices in the core network (core network, CN), which is not limited here.
  • the terminal device or the access network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in this embodiment of the present application may be a terminal device or an access network device, or a functional module in the terminal device or the access network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • Fig. 1 is an example diagram of a communication system to which an embodiment of the present application is applied.
  • the communication system includes: a core network and access network equipment.
  • the terminal equipment UE can access the communication system, and can also be considered as a part of the communication system.
  • the access network devices can communicate through Xn or X2 interfaces.
  • a UE can communicate with multiple access network devices at the same time.
  • One of the access network devices is the main access network device.
  • the main access network device performs control plane signaling interaction with the UE, and other access network devices that communicate with the UE.
  • the network access device may be referred to as a secondary access network device.
  • the primary access network device is referred to as MN for short
  • the secondary access network device is referred to as SN for short.
  • MN is a base station of LTE standard
  • MgNB is a base station of NR standard
  • SeNB is a base station of LTE standard
  • SgNB The base station
  • a scenario where a UE establishes a connection with two access network devices at the same time and transmits and receives data through the two connections may be referred to as a dual connection scenario.
  • the terminal device can also realize direct communication between the terminal devices through a sidelink (SL) interface with other terminal devices.
  • SL sidelink
  • FIG. 2 shows the communication protocol layer structure between the access network device and the UE.
  • This communication protocol layer structure can be used in the communication system shown in Figure 1.
  • the communication between the access network device and the UE follows a certain protocol layer structure.
  • the control plane protocol layer structure can include a radio resource control (radio resource control, RRC) layer and a packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC Radio link control
  • MAC media access control
  • user plane protocol layer structure can include PDCP layer, RLC layer, MAC layer
  • the functions of the protocol layer and the physical layer; in a possible implementation, the PDCP layer may also include a service data adaptation protocol (SDAP) layer.
  • SDAP service data adaptation protocol
  • the RAN equipment can be implemented by one node to implement the functions of the RRC, SDAP, PDCP, RLC, and MAC protocol layers, or multiple nodes can implement the functions of these protocol layers.
  • the UE and the access network device can establish at least one radio bearer (RB) to transmit data.
  • Radio bearers can be divided into signaling radio bearer (SRB) used to transmit signaling data and data radio bearer (DRB) used to transmit service data.
  • SRB signaling radio bearer
  • DRB data radio bearer
  • a set of functional entities of the same radio bearer It includes one PDCP entity, at least two RLC entities corresponding to the PDCP entity, at least one MAC entity corresponding to at least two RLC entities, and at least one PHY entity corresponding to at least one MAC entity.
  • UE2 can establish dual connections with access network device 1 and access network device 2.
  • One or more RBs may be established between the UE2 and the access network device 1 and the access network device 2 respectively.
  • An SLRB can be established between UE1, and UE2, and UE3 for inter-terminal communication.
  • UE2, access network device 1, and access network device 2 may enable some network functions. For example, data frame compression function, Ethernet header compression function and PDCP copy function. The following is a further introduction to the three network functions.
  • Data frame compression function maintains a first-in, first-out compressed buffer on the compression side, compresses and sends the data packet using the buffer content and compression algorithm, and pushes the data packet into the compressed buffer at the same time; data frame compression function On the decompression side, a first-in, first-out decompression buffer is also maintained.
  • the compressed data packet is received, the data packet is decompressed using the buffer content and decompression algorithm. After the data packet is decompressed, the data packet is pushed into the decompression buffer.
  • the sequence of decompressing data packets needs to be exactly the same as the sequence of sending data packets on the compression side.
  • the data frame compression function may be an uplink data compression (UDC) function.
  • UDC uplink data compression
  • EHC function Industrial control scenarios use wired Ethernet to transmit data.
  • the 5G system can be used as the last hop of the industrial control network.
  • the console and control nodes can transmit Ethernet data through the 5G system.
  • the relatively fixed fields in the Ethernet frame header of the Ethernet data stream can be compressed, such as the source/destination Ethernet address of the console and the control node connected to the terminal device. This technology can be called Ethernet.
  • Head compression (EHC) technology When the DRB established by the UE supports the EHC function, the Ethernet data carried by the DRB can be compressed and decompressed by the Ethernet header through the EHC function. The values of the compressible fields of different Ethernet data may be different.
  • One way to achieve this is to use information that can be compressed or decompressed by EHC as the context.
  • Different contexts are distinguished by context ID.
  • the decompression side establishes corresponding context information according to the context ID to perform the EHC operation.
  • the UE maintains a certain number of contexts for one or more DRBs that apply the EHC function. The more contexts the UE maintains, the larger the buffer space required.
  • PDCP copy function This function can be understood as repeated transmission at the PDCP layer. It usually refers to copying the data packet carried by the radio into multiple identical packets (that is, repeated packets) at the PDCP layer, and then submit the two data packets to the multiple Two different RLC entities are transmitted, and then transmitted to the MAC layer through different logical channels. Among them, the logical channel is the channel from the RLC layer to the MAC layer. It should be noted that, generally speaking, retransmission refers to retransmission, and duplication transmission in the embodiment of the present application is not retransmission.
  • Resending refers to sending the same data packet again after failure, or sending the same data packet multiple times in succession, and repeated transmission is to copy one data packet to two data packets and put them on two logical channels for transmission.
  • "Repetition” here can also be understood as "copy”.
  • the embodiments of the present application provide a communication method, which can reduce the probability of failure of the communication function when some communication functions are used.
  • the following examples describe the technical solution of the present application.
  • S101a The MN sends an Xn interface setup request (Xn setup request) message to the SN.
  • the Xn setup request message may include first indication information, and the first indication information is used to indicate whether the MN supports the UDC function.
  • the cell "UDC supported" in the Xn setup request can be used to indicate whether the MN supports the UDC function. For example, if the information element is carried in Xn setup request, or the value of the information element is true or 1, it indicates that the MN supports the UDC function.
  • S101a When the core network is EPC, the message in S101a can be replaced with an X2 interface setup request (X2 setup request) message.
  • S101b The SN sends an Xn interface setup response (Xn setup response) to the MN.
  • the Xn setup response may include second indication information, and the second indication information is used to indicate whether the SN supports the UDC function.
  • the information element "UDC supported" in Xn setup response can be used to indicate whether the SN supports the UDC function.
  • Xn setup response carries the information element, or the value of the information element is true or 1, indicating that the SN supports the UDC function.
  • the message in S101b can be replaced with X2 interface setup response (X2 setup response).
  • MN and SN can know whether the other party supports UDC function.
  • S101a and S101b are optional steps.
  • the MN and SN may support the UDC function by default.
  • S102a and S102b describe the process of MN obtaining UE capability information.
  • the embodiment of the present application does not limit the time sequence relationship between the process of the MN obtaining the UE capability information and the foregoing S101a and S101b.
  • S102a The MN sends a UECapabilityEnquiry message to the UE.
  • the message is used to request to obtain the capability information of the UE.
  • S102b The UE sends user equipment capability information UECapabilityInformation to the MN.
  • the user equipment capability information includes the number of DRBs that apply the UDC function supported by the UE. For ease of description, in this embodiment, it is marked as the first number.
  • the DRB applying the UDC function can be understood as a kind of UDC function object.
  • the first number may be the maximum number of DRBs that apply the UDC function supported by the UE.
  • the terminal capability information further includes parameters of UDC functions supported by the UE.
  • the parameters may include: UDC dictionary type, UDC buffer size, UDC compression algorithm, UDC initial dictionary, or UDC priority.
  • the MN may obtain the aforementioned user equipment capability information from the core network.
  • the MN determines the number of DRBs to which the UDC function can be configured by the SN for the UE.
  • the MN may determine the number of DRBs to which the UDC function can be configured for the UE by the SN according to the foregoing user equipment capability information. In order to facilitate the description of this quantity, it is marked as the second quantity in this embodiment. Wherein, the second quantity is less than or equal to the above-mentioned first quantity.
  • the second number may be the maximum number of DRBs with the UDC function that the SN determined by the MN can configure for the UE; or, the second number may be the number of DRBs with the UDC function that the SN allocates for the SN to be configured for the UE.
  • the number of DRBs that the SN needs to configure the UE with the UDC function can be understood as the number of DRBs that the SN needs or will configure the UE with the UDC function.
  • the auxiliary station addition request message includes the foregoing second quantity.
  • one cell or a parameter may be carried in the cell group configuration information (CG-ConfigInfo) cell to indicate the second quantity.
  • the information element CG-ConfigInfo carried in the secondary station addition request message includes a parameter "Allowed UDC DRB Number", or includes a cell "Allowed UDC DRB Number”, and the value of "Allowed UDC DRB Number” indicates the second Quantity.
  • the "Allowed UDC DRB Number" is not included in the CG-ConfigInfo information element, it may indicate that the second number determined by the MN is equal to 0, or that the second number determined by the MN is equal to the first number.
  • the information element CG-ConfigInfo carried in the secondary station adding request message includes the secondary cell group configuration restriction information (ConfigRestricInfoSCG) information element, and the information element may include the parameter "allowed-UDC-DRB-Number".
  • the value represents the second quantity.
  • the parameter "allowed-UDC-DRB-Number" is not included in the ConfigRestricInfoSCG information element, it may indicate that the second number determined by the MN is equal to 0, or that the second number determined by the MN is equal to the first number.
  • the value of the above "Allowed UDC DRB Number” or “allowed-UDC-DRB-Number” can be an integer between 0 and N, where N can be supported by the UE
  • the number of DRBs using the UDC function, that is, N may be the first number.
  • the MN can set the value of "Allowed UDC DRB Number” or “allowed-UDC-DRB-Number” to 1, which means that the number of DRBs that the SN can configure for the UE to apply the UDC function is 1, that is Indicates that the second number is 1.
  • the auxiliary station addition request message further includes the first quantity.
  • the MN sends the first quantity to the SN, which can facilitate the SN to decide whether to accept the MN's allocation.
  • the auxiliary station addition request message further includes the parameters of the UDC function supported by the UE.
  • the secondary station addition request message may be an SeNB Addition Request message.
  • the auxiliary station addition request message may be an SgNB Addition Request message.
  • S105 The SN sends an auxiliary station addition request confirmation message to the MN.
  • the auxiliary station addition request confirmation message may include third indication information, and the third indication information is used to indicate that the SN agrees to the second quantity.
  • the secondary station addition request confirmation message may include fourth indication information, which is used to indicate the application UDC function that the SN expects to configure for the UE.
  • the number of DRB If the SN receives the above-mentioned first quantity, the SN may determine the number of DRBs to which the UDC function is applied to the UE that the SN expects according to the first quantity. In order to facilitate the description of the quantity, the quantity is marked as the third quantity in this embodiment. Wherein, the third quantity is less than or equal to the above-mentioned first quantity.
  • the third number may be the maximum number of DRBs that the SN expects to configure the UE with the UDC function; or, the third number may be the number of DRBs that the SN expects to configure the UE with the UDC function.
  • the number of DRBs that the SN expects to configure the UE with the UDC function can be understood as the number of DRBs that the SN expects or the UDC function is to be configured for the UE.
  • the auxiliary station addition request confirmation message includes the fifth indication information, and the fifth indication information is used for Indicates that the SN does not support the UDC function.
  • the secondary station addition request confirmation message may be SeNB Addition Request Acknowledge.
  • the auxiliary station addition request confirmation message may be SgNB Addition Request Acknowledge.
  • S106a The SN sends the SN Modification Required message of the secondary station to the MN.
  • the secondary station modification request message includes the number of DRBs that the SN expects to configure the UDC function for the UE, that is, the secondary station modification request includes the third number introduced in S105.
  • S106a is an optional step.
  • the SN If the SN does not agree with the second quantity received in S104, it can include the aforementioned third quantity in the auxiliary station addition request confirmation message in S105; if the SN wants to change the number of DRBs that have been configured for the UE to apply the UDC function, it can The modification request of the auxiliary station of S106a includes the above-mentioned third quantity.
  • one cell or a parameter may be included in the cell group configuration information (CG-ConfigInfo) cell to indicate the third quantity.
  • the information element CG-ConfigInfo carried in the secondary station modification request message includes a parameter or information element "Requested UDC DRB Number", and the value of "Requested UDC DRB Number” represents the third number.
  • the information element CG-ConfigInfo carried in the secondary station modification request message includes the secondary cell group configuration restriction mode request ("ConfigRestricModeReqSCG") information element, and the information element may include the parameter "requested-UDC-DRB-Number". The value of the parameter represents the third quantity.
  • the value of the above "Requested UDC DRB Number” or “requested-UDC-DRB-Number” can be an integer between 0 and N, where N can be supported by the UE
  • the number of DRBs using the UDC function, that is, N may be the first number.
  • the SN can set the value of the aforementioned "Requested UDC DRB Number” or “requested-UDC-DRB-Number” to 1, indicating that the SN expects the number of DRBs configured for the UE to apply the UDC function to 1. That means the third number is 1.
  • S106 when the MN and the SN are connected with the EPC, S106 is: the SN sends a secondary station modification request SgNB Modification Required message to the MN.
  • S107a The MN sends a secondary station modification request SN Modification Request to the SN.
  • the secondary station modification request includes the number of DRBs to which the UDC function can be configured for the UE by the SN determined by the MN again.
  • the MN re-determines the DRB applying the UDC function that the SN can configure for the UE according to the terminal capability information and the secondary station modification request in S106.
  • the fourth number is marked in the embodiment of the present application. Wherein, the fourth quantity is less than or equal to the above-mentioned first quantity. Optionally, the fourth quantity is less than or equal to the third quantity.
  • one cell or a parameter may be included in the cell group configuration information (CG-ConfigInfo) cell to indicate the fourth quantity.
  • the information element CG-ConfigInfo carried in the secondary station modification request message includes a parameter or information element "Allowed UDC DRB Number", and the value of "Allowed UDC DRB Number” represents the fourth number.
  • the CG-ConfigInfo information element does not include the parameter or information element "Allowed UDC DRB Number", which may indicate that the fourth number determined by the MN is equal to the third number.
  • the information element CG-ConfigInfo carried in the secondary station modification request message includes the secondary cell group configuration restriction information (ConfigRestricInfoSCG) information element, and the information element may include the parameter "allowed-UDC-DRB-Number".
  • the value represents the fourth quantity.
  • the parameter "Allowed UDC DRB Number" is not included in the ConfigRestricInfoSCG cell, which may indicate that the fourth number determined by the MN is equal to the third number.
  • S107a and S107b are optional steps. If the MN again determines the number of DRBs that the SN can configure for the UE to apply the UDC function, S107a and S107b are executed; if the MN does not determine the fourth number, or the fourth number determined by the MN is the same as the fourth number determined by the MN. The above second quantity is the same, and S107a and S107b may not be executed.
  • S107b The SN sends a secondary station modification request confirmation message SN Modification Request Acknowledge to the MN.
  • the SN in response to S107a, the SN sends the secondary station modification request confirmation message.
  • S106b The MN sends a secondary station modification confirmation message to the SN.
  • the MN sends the secondary station modification confirmation message.
  • the MN sends an RRC reconfiguration message to the UE.
  • the message includes DRB configuration information between MN and UE.
  • the MN and the UE have established one or more DRBs
  • the above RRC reconfiguration message includes one or more configuration information, where each configuration information corresponds to a DRB between the MN and the UE; if the configuration information of a DRB includes UDC information ,
  • the DRB is the DRB that applies the UDC function.
  • UDC information can be represented by fields or cells.
  • a field supportedUDC in the configuration information can be used to indicate the DRB application UDC function corresponding to the configuration information; or, for example, a cell uplinkDataCompression can be used to indicate the DRB application UDC function parameter corresponding to the configuration information.
  • a field supportedUDC in the configuration information can be used to indicate the DRB application UDC function corresponding to the configuration information; or, for example, a cell uplinkDataCompression can be used to indicate the DRB application UDC function parameter corresponding to the configuration information.
  • this parameter please refer to Parameters of the UDC function in S102.
  • the number of DRBs in which the configuration information includes UDC information is less than or equal to the difference between the first number and the second number.
  • the number of DRBs in which the configuration information includes UDC information is less than or equal to the difference between the first number and the fourth number.
  • S108 is an optional step. If the number of DRBs configured by the MN for the UE to apply the UDC function needs to be changed or a different DRB needs to be selected to apply the UDC function, S108 can be executed. The embodiment of the present application does not limit the time when S108 is executed.
  • S109 The SN sends an RRC reconfiguration message to the UE.
  • the message includes DRB configuration information between SN and UE.
  • the SN and the UE have established one or more DRBs, and the above RRC reconfiguration message includes one or more configuration information, where each configuration information corresponds to a DRB between the SN and the UE; if the configuration information of a DRB includes UDC information , The DRB is the DRB that applies the UDC function.
  • the number of DRBs in which the configuration information includes UDC information is less than or equal to the second number.
  • the second number is the determined number of DRBs that the SN determines that the SN needs to be configured for the UE to apply the UDC function
  • the number of DRBs in the DRB between the SN and the UE that includes UDC information is equal to the second number.
  • the number of DRBs in the DRB between the SN and the UE whose configuration information includes UDC information is less than or equal to the fourth number.
  • the embodiment of this application does not limit the name of the cell or parameter.
  • the MN can allocate the number of DRBs that the SN can configure for the UE with the UDC function, so that the MN configures the number of DRBs with the UDC function for the UE and the SN configures the DRB with the UDC function for the UE.
  • the sum of the numbers will not exceed the number of DRBs that the UE supports to apply the UDC function. It is avoided that the functions configured by the MN and SN for the UE exceed the capacity limit of the UE, which causes the UE to process the data packet incorrectly or to be congested due to waiting for processing.
  • the embodiment of this application takes the negotiation between the MN and the SN on the number of DRBs that the UE supports to apply the UDC function as an example to introduce the communication method shown in FIG. 3; those skilled in the art can understand that the communication method shown in FIG. 3 can also be used.
  • Used to negotiate between the MN and SN the number of DRBs that the UE supports the PDCP replication function, or between the MN and SN to negotiate the number of DRBs that the UE supports the EHC function, or between the MN and SN to negotiate the DRBs that the UE uses other functions
  • the quantity is not repeated here.
  • the MN sends the number of DRBs that the UE supports to apply the EHC function to the SN, and the MN also sends the MN to the SN.
  • the RRC configuration information can be used by the MN to configure the DRB to which the EHC function is applied to the UE.
  • the SN determines the number of DRBs supporting the EHC function that the SN can configure for the UE according to the number of DRBs that the UE supports and the RRC configuration information of the MN.
  • the SN sends RRC configuration information to the UE according to the number.
  • the RRC configuration information is used by the SN to configure the DRB for the UE with the EHC function.
  • Fig. 4 is a schematic flowchart of another communication method according to an embodiment of the present application.
  • the communication method in FIG. 3 can be applied to a scenario where a terminal device communicates with multiple access network devices.
  • the embodiment of the present application takes the EHC function in a dual connection scenario as an example for introduction.
  • the core network can be 5GC or EPC.
  • the 5GC is mainly used as an example for description in the embodiments of this application; in addition, the primary access network device may be referred to as MN for short, and the auxiliary access network device may be referred to as SN for short.
  • MN the primary access network device
  • auxiliary access network device may be referred to as SN for short.
  • the difference from the method shown in FIG. 3 is that in the method shown in FIG. 4, the MN allocates the number of contexts maintained by the UE for the EHC function to the SN instead of the number of DRBs to which the UE applies the UDC function.
  • the method includes:
  • S201a The MN sends an Xn interface setup request (Xn setup request) message to the SN.
  • the Xn setup request message may include first indication information, and the first indication information is used to indicate whether the MN supports the EHC function.
  • S201b The SN sends an Xn interface setup response (Xn setup response) to the MN.
  • the Xn setup response may include second indication information, and the second indication information is used to indicate whether the SN supports the EHC function.
  • S202a The MN sends a user equipment capability query UECapabilityEnquiry message to the UE for requesting to obtain the capability information of the UE.
  • S202b The UE sends user equipment capability information UECapabilityInformation to the MN.
  • the user equipment capability information includes the number of contexts maintained for the EHC function supported by the UE. In order to facilitate the description of the quantity, it is marked as the first quantity in this embodiment.
  • the number may be the maximum number of contexts maintained for the EHC function supported by the UE. the amount.
  • the MN may obtain the user equipment capability information from the core network instead of obtaining the aforementioned user equipment capability information from the UE.
  • the core network may obtain and save the foregoing user equipment capability information from the UE.
  • the MN determines the number of contexts that the SN can configure for the UE and maintain the EHC function.
  • the MN determines, according to the foregoing user equipment capability information, the number of contexts that the SN can configure for the UE and maintain the EHC function. In order to facilitate the description of this quantity, it is marked as the second quantity in this embodiment. Wherein, the second quantity is less than or equal to the above-mentioned first quantity.
  • the above-mentioned second number can be understood as the maximum number of contexts that can be created by the DRB between the UE and the SN when the EHC function is applied.
  • the second number may be the maximum number of contexts that the SN determined by the MN can configure for the UE to maintain the EHC function; or, the second number may be the SN determined by the MN that needs or will be configured for the UE as EHC The number of contexts maintained by the function.
  • S204 The MN sends a request message for adding a secondary station to the SN.
  • the auxiliary station addition request message includes the foregoing second quantity.
  • S205 The SN sends a secondary station addition request confirmation message to the MN.
  • the SN may include third indication information, which is used to indicate that the SN agrees to the above-mentioned second quantity; or, the SN may include fourth indication information, which is used to indicate that the SN does not support the EHC function; or The SN may include fifth indication information, and the fifth indication information is used to indicate the number of contexts that the SN expects to be configured for the UE and maintained for the EHC function.
  • the SN may determine, according to the first number, the number of contexts that the SN expects to be configured for the UE and maintained for the EHC function.
  • the quantity is marked as the third quantity in this embodiment.
  • the third quantity is less than or equal to the above-mentioned first quantity.
  • the third number can be the maximum number of contexts that the SN expects to be configured for the UE and maintained for the EHC function; or, the third number can be the needs of the SN expected or the context that will be configured for the UE to be maintained for the EHC function. quantity.
  • the auxiliary station addition request confirmation message may indicate that the SN agrees to the foregoing second quantity.
  • the SN instead of using S101a and S101b to communicate whether the MN and the SN support the EHC function, the SN sends the auxiliary station addition request confirmation message to the MN so that the MN knows whether the SN supports the EHC function.
  • the secondary station addition request confirmation message is SeNB Addition Request Acknowledge.
  • the auxiliary station addition request confirmation message is SgNB Addition Request Acknowledge.
  • S206a The SN sends the SN Modification Required message of the secondary station to the MN.
  • the secondary station modification request message includes the number of contexts that the SN expects to be configured for the UE and maintained for the EHC function. That is, the third quantity introduced in S205.
  • S206a is an optional step. If the SN does not agree with the second quantity received in S204, or the SN wishes to change the number of contexts configured for the UE to maintain the EHC function, the SN may send the third quantity to the MN, that is, execute S206a.
  • the SN determines the third quantity according to the first quantity received in S204.
  • the third quantity is less than or equal to the above-mentioned first quantity.
  • the third number can be the maximum number of contexts that the SN expects to be configured for the UE and maintained for the EHC function; or, the third number can be the SN expects or needs to be configured for the UE to maintain the context for the EHC function. quantity.
  • S207a The MN sends a secondary station modification request SN Modification Request to the SN.
  • the secondary station modification request includes the number of contexts that the SN re-determined by the MN can be configured for the UE and maintained for the EHC function.
  • the MN re-determines the number of contexts that the SN can configure for the UE and maintains the EHC function according to the terminal capability information and the secondary station modification request in S206.
  • the fourth number is marked in the embodiment of this application.
  • the fourth quantity is less than or equal to the above-mentioned first quantity.
  • the fourth quantity is less than or equal to the third quantity.
  • S207b The SN sends a secondary station modification request confirmation message SN Modification Request Acknowledge to the MN.
  • S206b The MN sends a secondary station modification confirmation message to the SN.
  • the MN sends an RRC reconfiguration message to the UE.
  • the message includes DRB configuration information between MN and UE.
  • the MN and the UE have established one or more DRBs
  • the foregoing RRC reconfiguration message includes one or more configuration information, where each configuration information corresponds to one DRB between the MN and the UE.
  • the configuration information of the DRB may include sixth indication information, which is used to indicate the maximum number of contexts that can be maintained for the EHC function of the DRB.
  • the configuration information includes a field maxCID, and the value of this field is used to indicate the maximum number.
  • the sum of the maximum number of contexts maintained by each DRB applying the EHC function does not exceed the difference between the first number and the second number. That is, the maxCID of each DRB applying the EHC function can be different, but the sum of maxCID does not exceed the difference between the first number and the second number.
  • S209 The SN sends an RRC reconfiguration message to the UE.
  • the message includes DRB configuration information between SN and UE.
  • DRB configuration information between SN and UE.
  • one or more DRBs are established between the SN and the UE, and the foregoing RRC reconfiguration message includes one or more configuration information, wherein each configuration information corresponds to one DRB between the SN and the UE.
  • the configuration information of the DRB may include sixth indication information, which is used to indicate the maximum number of contexts that can be maintained for the EHC function of the DRB.
  • the configuration information includes a field maxCID, and the value of this field is used to indicate the maximum number.
  • the sum of the maximum number of contexts maintained by each DRB applying the EHC function does not exceed the second number. That is, the maxCID of each DRB applying the EHC function can be different, but the sum of maxCID does not exceed the second number.
  • the MN and SN can negotiate and divide the number of contexts that the UE supports and maintains for the EHC function. It is avoided that in the process of applying the EHC function, the sum of the number of contexts created by the MN and SN exceeds the number of contexts that the UE can maintain, causing the UE to fail to create a complete context and fail to implement the EHC function correctly.
  • the MN sends the number of contexts maintained for the EHC function supported by the UE to the SN, and MN
  • the RRC configuration information of the MN is also sent to the SN.
  • the RRC configuration information can be used by the MN to configure the DRB for the UE to apply the EHC function.
  • the RRC configuration information includes the number of contexts maintained for the application of the EHC function.
  • the SN determines the number of contexts maintained for the EHC function that the SN can configure for the UE according to the number of contexts maintained for the EHC function supported by the UE and the above-mentioned RRC configuration information of the MN.
  • the SN sends RRC configuration information to the UE according to the number.
  • the RRC configuration information is used by the SN to configure the DRB for the UE to apply the EHC function.
  • the RRC configuration information includes the number of contexts maintained for the application of the EHC function.
  • the embodiment of this application takes as an example the number of contexts maintained for the EHC function supported by the UE to negotiate between the MN and the SN to introduce the communication method shown in FIG. 4; those skilled in the art can understand that the communication shown in FIG. 4
  • the method can also be used between the MN and the SN to negotiate the number of contexts supported by the UE to maintain other functions, which will not be repeated here.
  • Fig. 5 is another schematic flowchart of a communication method according to an embodiment of the present application.
  • the communication method shown in FIG. 5 can be applied to a scenario of communication between terminal devices.
  • the embodiment of the present application uses the communication between UE1 and UE2 as an example to introduce the technical solution of the present application.
  • UE1 and UE2 shown in FIG. 5 may communicate through unicast, or through multicast, or through broadcast.
  • the communication method in Figure 5 includes:
  • S301 UE2 sends a request message to UE1, where the request message is used to request the capability information of UE1.
  • S301 is an optional step.
  • S302 UE1 sends UE1 capability information to UE2.
  • the capability information includes the UDC capability of the Sidelink interface of the UE1, and the UDC capability includes the capability of supporting the compression side function of the UDC or the capability of supporting the decompression side function of the UDC or the capability of supporting the compression side and the decompression side of the UDC.
  • the Sidelink interface of UE1 supports the compression side function of UDC
  • the data carried by the SLRB of UE1 can be compressed in the PDCP entity of UE1.
  • UE1 can decompress the data frame in the PDCP entity of UE1 after receiving the data carried by the SLRB.
  • the UDC capability also includes the number of SLRBs that the UE1 supports to apply the UDC function.
  • the UDC capability further includes the parameters of the UDC function supported by the Sidelink interface of UE1.
  • the parameters may include: UDC dictionary type, UDC buffer size, UDC compression algorithm, UDC initial dictionary, and UDC priority.
  • S303 UE2 sends SLRB configuration information to UE1.
  • UE2 determines the applicable functions of the SLRB between UE2 and UE1 according to the capability information of UE1.
  • the configuration information of an SLRB between UE2 and UE1 may include information about the application of the UDC function of the SLRB.
  • UE2 determines the number of SLRBs applying the UDC function in the SLRB between UE2 and UE1 according to the default number, and the configuration information of the SLRB applying the UDC function includes information about the UDC function.
  • UE2 determines the number of SLRBs with UDC function applied in the SLRB between UE2 and UE1 according to the number of SLRBs with UDC function supported by UE1 in S302, and the configuration information of the SLRB with UDC function includes UDC function information.
  • the design of the UDC function information included in the configuration information can refer to the design of the UDC information in S108.
  • the content of the communication between UE1 and UE2 may be carried by side link RRC signaling, or carried by uplink signaling, such as PC5-S signaling, or non-access stratum (NAS)
  • the signaling is carried, which is not specifically limited.
  • UE2 can configure the functions supported by UE1 for the SLRB of UE1, avoiding transmission errors caused by UE2 sending data packets that UE1 cannot process.
  • the number of SLRBs that UE1 supports the UDC function the number of SLRBs that UE2 configures for UE1 to apply the UDC function will not exceed the limit of the number of SLRBs that UE1 applies the UDC function to, avoiding UE1's processing errors on data packets or waiting for processing. congestion.
  • the UDC function negotiated between UE1 and UE2 is taken as an example to introduce the communication method shown in FIG. 5; those skilled in the art can understand that the communication method shown in FIG. 5 can also be used for UE1.
  • Fig. 6 is another schematic flowchart of a communication method according to an embodiment of the present application.
  • the communication method shown in FIG. 6 can be applied to a scenario of communication between terminal devices.
  • the embodiment of the present application uses communication between UE1 and UE2 as an example to introduce the technical solution of the present application.
  • UE1 and UE2 shown in FIG. 6 communicate through unicast.
  • the difference between the communication method shown in FIG. 6 and FIG. 5 lies in that the configuration information of the SLRB between UE1 and UE2 is determined by the access network device instead of UE2.
  • the communication method in FIG. 6 includes:
  • This step is optional.
  • S402 UE1 sends UE1's capability information to UE2.
  • S403 UE2 sends the capability information of UE1 and UE2 to the access network device.
  • the access network device sends the configuration information of the SLRB between UE1 and UE2 to UE2.
  • the access network device confirms that there is unicast communication between UE1 and UE2.
  • the access network device determines the configuration information of the SLRB between UE1 and UE2 according to the capability information of UE1 and UE2.
  • S405 UE2 sends SLRB configuration information to UE1.
  • UE2 may send the SLRB configuration information received by UE2 in S404 to UE1.
  • the access network equipment can configure the functions supported by UE1 and UE2 for the SLRB established between UE1 and UE2, avoiding transmission errors caused by UE2 and UE1 being unable to process data packets sent by each other.
  • the number of SLRBs supporting the UDC function of UE1 and UE2 the number of SLRBs configured by the access network equipment for UE2 and UE1 to apply the UDC function will not exceed the limit of the number of SLRBs using the UDC function of UE1 and UE2, avoiding the pairing of UE1 or UE2. Data packet processing error or congestion due to waiting for processing.
  • UE1 and UE2 negotiate the UDC functions supported by each access network device as an example to introduce the communication method shown in FIG. 5; those skilled in the art can understand that the communication method shown in FIG. It can be used to negotiate the PDCP replication function supported by UE1 and UE2, or to negotiate the EHC function supported by UE1 and UE2, or to negotiate other functions supported by UE1 and UE2, which will not be repeated here.
  • Fig. 7 shows another schematic flowchart of a communication method according to an embodiment of the present application.
  • the communication method shown in FIG. 7 can be applied to a scenario where a terminal communicates with multiple access network devices.
  • the first access network device may be the MN in FIG. 3, the first access network device may be the SN in FIG. 3, and the terminal may be the UE in FIG. 3.
  • the communication method of FIG. 7 includes:
  • S501 The first access network device acquires first information of the terminal.
  • the first information is used to indicate a first number, the first number is the number of first functional objects supported by the terminal, and the first functional object is a data radio bearer DRB to which the first function is applied or is A context maintained for the first function, where the first function is a data frame compression function, or a packet data convergence protocol PDCP copy function, or an Ethernet header compression EHC operation function
  • the first access network device determines the second quantity according to the first information.
  • the second number is the number of the first functional objects that can be configured by the second access network device for the terminal, and the second number is less than or equal to the first number.
  • S503 The first access network device sends second information to the second access network device.
  • the second information is used to indicate the second quantity.
  • the number of the first functional objects supported by the terminal is the maximum number of the first functional objects supported by the terminal.
  • the number of the first functional objects supported by the terminal is the maximum number of the first functional objects supported by the terminal.
  • the number of contexts maintained for the first function supported by the terminal is the maximum number of contexts maintained for the first function supported by the terminal. For details, refer to S102.
  • the number of the first functional objects that the second access network device can configure for the terminal is: the first functional objects that the second access network device can configure for the terminal For the maximum number of, or the number of the first functional object to be configured by the second access network device for the terminal, refer to S103 for details.
  • the first access network device sends the first information to the second access network device.
  • the first access network device sends the first information to the second access network device.
  • S104 For details, refer to S104.
  • the first access network device receives third information from the second access network device; wherein, the third information is used to indicate a third quantity, and the third quantity is the second access
  • the network device expects the number of the first functional objects configured for the terminal, and the third number is less than or equal to the first number. For details, refer to S106.
  • the number of the first functional objects that the second access network device expects to configure for the terminal is: the first functional objects that the second access network device expects to configure for the terminal
  • S502 includes: the first access network device determines the second number according to the first information and the third information; the second number is less than or equal to the third number.
  • the first access network device determines the second number according to the first information and the third information; the second number is less than or equal to the third number.
  • the second access network device receives fourth information from the first access network device, where the fourth information is used to indicate that the first access network device supports the first function.
  • the fourth information is used to indicate that the first access network device supports the first function.
  • S503 includes: the second access network device sends a secondary station addition request message to the first access network device, and the secondary station addition request message includes the second information; or, the second access network device sends a secondary station addition request message to the first access network device.
  • the access network device sends a secondary station modification request message, and the secondary station modification request message includes the second information.
  • the second access network device receiving the third information from the first access network device includes: the second access network device receives a secondary station modification request message from the first access network device, and the secondary station modification request message includes the first access network device.
  • the second access network device receives a secondary station modification request message from the first access network device, and the secondary station modification request message includes the first access network device.
  • the first access network device sends configuration information to the terminal device according to the first information and the second quantity; wherein, the configuration information is used to configure the first function of the terminal The number of objects or the first functional objects; wherein, the number of the first functional objects configured in the configuration information is less than or equal to the difference between the first number and the second number.
  • the configuration information is used to configure the first function of the terminal.
  • the number of objects or the first functional objects wherein, the number of the first functional objects configured in the configuration information is less than or equal to the difference between the first number and the second number.
  • the second access network device obtains fifth information of the terminal; where the fifth information is used to indicate the capability parameter of the terminal to support the first function; the capability parameter includes one or more of the following: UDC dictionary type; UDC Cache size; UDC compression algorithm; UDC initial dictionary; UDC priority, please refer to S102 for details.
  • the second access network device and the first access network device can negotiate and divide the number of DRBs that the terminal supports to apply the first function function, and can also support the terminal to support the application of the first function.
  • the number of contexts maintained by the DRB is negotiated and divided. It is avoided that the functions configured by the second access network device and the first access network device for the terminal exceed the terminal capability limit, which causes the terminal to process the data packet incorrectly or to be congested due to waiting for processing.
  • FIG. 8 shows another schematic flowchart of a communication method according to an embodiment of the present application.
  • the communication method shown in FIG. 8 can be applied to a scenario where a terminal communicates with multiple access network devices.
  • the first access network device may be the SN in FIG. 3
  • the second access network device may be the MN in FIG. 3
  • the terminal may be the UE in FIG. 3.
  • the communication method of FIG. 8 includes:
  • the second access network device receives first information from the first access network device.
  • the first information is used to indicate a first number
  • the first number is the number of first functional objects that the second access network device can configure for the terminal
  • the first functional object is the first application
  • the data radio bearer DRB of the function is either a context maintained for the first function
  • the first function is a data frame compression function, or a packet data convergence protocol PDCP copy function, or an Ethernet header compression EHC operation function.
  • the second access network device In response to the first information, the second access network device sends configuration information to the terminal.
  • the configuration information is used to configure the first functional object or the number of the first functional objects; wherein the number of the first functional objects configured by the configuration information is less than or equal to the first number.
  • the number of the first functional objects that the second access network device can configure for the terminal is: the first functional objects that the second access network device can configure for the terminal For the maximum number of, or the number of the first functional object to be configured by the second access network device for the terminal, refer to S103 for details.
  • the second access network device receives second information from the first access network device; wherein, the second information is used to indicate a second quantity, and the second quantity indicates that the terminal supports
  • the second information is used to indicate a second quantity
  • the second quantity indicates that the terminal supports
  • the second access network device determines a third number according to the second information; wherein, the third number is the first number that the second access network device expects to configure for the terminal The number of functional objects, the third number is less than or equal to the second number; the second access network device sends third information to the first access network device, and the third information is used to indicate all For the third quantity, please refer to S105 for details.
  • the second access network device sends fourth information to the first access network device, where the fourth information is used to indicate that the second access network device supports the first function, specifically Refer to S101.
  • S601 includes: the first access network device receives a secondary station addition request message from the second access network device, and the secondary station addition request message includes the first information; or, the first access network device accesses from the second access network device.
  • the network device receives the secondary station modification request message, and the secondary station modification request message includes the first information.
  • S104 and S107 For details, refer to S104 and S107.
  • sending the third information by the first access network device to the second access network device includes: the first access network device sends a secondary station modification request message to the second access network device, and the secondary station modification request message includes the first Three information, please refer to S107 for details.
  • the first access network device and the second access network device can negotiate and divide the number of DRBs that the terminal supports to apply the first function function, and can also support the maintenance of the DRB that applies the first function to the terminal.
  • the number of contexts is negotiated and divided. It is avoided that the functions configured by the first access network device and the second access network device for the terminal exceed the terminal capability limit, which may cause the terminal to process the data packet incorrectly or cause congestion due to waiting for processing.
  • FIG. 9 shows a communication device provided by an embodiment of the present application, which can be used to implement, for example, the function of the MN in Fig. 3, or the function of the MN in Fig. 4, or the function of the first access network device in Fig. 7.
  • the device may also be used to implement, for example, the function of the SN in FIG. 3, or the function of the SN in FIG. 4, or the function of the second access network device in FIG.
  • the device can also be used to realize, for example, the function of the access network device in FIG. 6.
  • FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of this application.
  • the communication device 900 includes an antenna 901, a radio frequency device 902, and a baseband device 903.
  • the antenna 901 is connected to the radio frequency device 902.
  • the radio frequency device 902 receives the information sent by the terminal through the antenna 901, and sends the information sent by the user equipment to the baseband device 903 for processing.
  • the baseband device 903 processes the information of the terminal and sends it to the radio frequency device 902
  • the radio frequency device 902 processes the information of the user equipment and sends it to the terminal via the antenna 901.
  • the baseband device 903 may include one or more processing elements 9031, for example, including a main control CPU and other integrated circuits.
  • the baseband device 903 may also include a storage element 9032 and an interface 9033.
  • the storage element 9032 is used to store computer-executed instructions for executing the solution of the application, and the processing element 9031 controls the execution; the interface 9033 is used to exchange information with the radio frequency device 902
  • the interface is, for example, a common public radio interface (CPRI).
  • the processing element 9031 is used to execute the computer-executable instructions stored in the storage element 9032, so as to realize the function of the MN in FIG. 3, or the function of the MN in FIG. 4, or the function of the first access network device in FIG.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the methods and/or steps implemented by the first network element or the first device can also be implemented by a chip on the baseband device 903.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used for Each step of any method executed by the first network element or the first device above is executed, and the interface circuit is used to communicate with other devices.
  • the communication device 900 shown in FIG. 9 includes, for example, the function of the MN in FIG. 3, or the function of the MN in FIG. 4, or the function of the first access network device in FIG. 7:
  • the baseband device 903 is specifically configured to: determine the second number of functions allocated to the second access network device in S103 and S502.
  • the interface 9033 is specifically used for: the function of sending an interface establishment request in S101a.
  • the interface 9033 is specifically used for: the function of receiving an interface establishment response in S101b.
  • the antenna 901 is specifically used for the function of receiving user terminal capability information in S102b and S501.
  • the interface 9033 is specifically used to send the second number of functions allocated to the second access network device in S104 and S503.
  • the interface 9033 is specifically used to: receive the function of receiving the modification request of the secondary station in S106.
  • the interface 9033 is specifically used for: the function of sending a modification request of the secondary station in S107a.
  • the antenna 901 is specifically used for: the function of sending configuration information in S108.
  • the communication device 900 shown in FIG. 9 may be used to implement, for example, the function of the SN in FIG. 3, or the function of the SN in FIG. 4, or the function of the second access network device in FIG. 8:
  • the baseband device 903 is specifically configured to: determine the desired third number of functions in S105.
  • the interface 9033 is specifically used for: the function of receiving an interface establishment request in S101a.
  • the interface 9033 is specifically used for: the function of sending an interface establishment response in S101b.
  • the interface 9033 is specifically used to receive the second number of functions allocated to the first access network device in S104, S107a, and S601.
  • the interface 9033 is specifically used to: send the desired third number of functions in S106.
  • the antenna 901 is specifically used for: the function of sending configuration information in S109 and S602.
  • the communication device 900 shown in FIG. 9 may be used to implement, for example, the function of the access network device in FIG. 6:
  • the baseband device 903 is specifically used for the function of determining the configuration information of the SLRB in S404;
  • the antenna 901 is specifically used for: the function of receiving capability information of UE1 and UE2 in S403;
  • the antenna 901 is specifically used for: the function of sending SLRB configuration information in S404.
  • the aforementioned communication device 900 may be a general-purpose device or a dedicated device.
  • the communication device 900 may be a network server, a base station, or a device having a similar structure in FIG. 9.
  • the embodiment of the present application does not limit the type of the communication device 900.
  • the functions, or the second access network device in FIG. 8; or the methods and/or steps implemented by the access network device in FIG. 6, can also be implemented by a chip system that implements the above device functions.
  • Fig. 10 shows a communication device provided by an embodiment of the present application.
  • the device can be used to implement the function of UE1 in FIG. 5, or the function of UE1 in FIG. 6, for example.
  • the device can also be used to implement the functions of UE2 in FIG. 5, for example.
  • the device can also be used to implement the function of UE2 in FIG. 6, for example.
  • FIG. 10 is a schematic structural diagram of a communication device 1000 provided by an embodiment of this application.
  • the communication device 1000 includes one or more processors 1001, a communication line 1002, and at least one communication interface (in FIG. 10, it is only an example that includes a communication interface 1003 and a processor 1001 as an example), optional
  • the memory 1004 may also be included.
  • the processor 1001 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of the application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 1002 is used to connect different components.
  • the communication interface 1003 may be a transceiver module for communicating with other equipment or communication devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and so on.
  • the transceiver module may be a device such as a transceiver or a transceiver, or may also be a network card or an optical fiber switching device.
  • the communication interface 1003 may also be a transceiver circuit located in the processor 1001 to implement signal input and signal output of the processor.
  • the memory 1004 may be a device having a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 1002. The memory can also be integrated with the processor.
  • the memory 1004 is used to store computer-executed instructions for executing the solution of the present application, and the processor 1001 controls the execution.
  • the processor 1001 is configured to execute computer-executable instructions stored in the memory 1004, so as to implement the function of UE1 in FIG. 5, or the function of UE1 in FIG. 6, or the function of UE2 in FIG. 5, or the function of UE2 in FIG. .
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the communication apparatus 1000 may further include an output device 1006 and an input device 1007.
  • the output device 1006 communicates with the processor 1001 and can display information in a variety of ways.
  • the processor 1001 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 10.
  • the communication device 1000 may include multiple processors, such as the processor 1001 and the processor 1005 in FIG. 10. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication device 1000 shown in FIG. 10 may be used to implement, for example, the function of UE1 in FIG. 5 or the function of UE1 in FIG. 6:
  • the processor 1001 is specifically used for: the function of performing configuration according to the configuration information of the SLRB in S303 and S405;
  • the input device 1007 is specifically used for: the function of receiving request messages in S301 and S401;
  • the output device 1006 is specifically used for: the function of sending the capability information of the UE1 in S302 and S402;
  • the input device 1007 is specifically used for the function of receiving SLRB configuration information in S303 and S405.
  • the communication device 1000 shown in FIG. 10 may be used to implement, for example, the function of UE2 in FIG. 5 or the function of UE2 in FIG. 6:
  • the processor 1001 is specifically configured to: determine the function of configuring the SLRB in S303;
  • the output device 1006 is specifically used for: the function of sending request information in S301 and S401;
  • the input device 1007 is specifically used for: the function of receiving the capability information of the UE1 in S302 and S402;
  • the output device 1006 is specifically used for: the function of sending capability information of UE1 and UE2 in S403;
  • the input device 1007 is specifically used for: the function of receiving SLRB configuration information in S404;
  • the output device 1006 is specifically used for the function of sending SLRB configuration information in S303 and S405.
  • the aforementioned communication device 1000 may be a general-purpose device or a dedicated device.
  • the communication device 1000 may be a network server, an embedded device, a desktop computer, a portable computer, a mobile phone, a tablet computer, a wireless terminal device, or a device having a similar structure in FIG. 10.
  • the embodiment of the present application does not limit the type of the communication device 1000.
  • Fig. 11 shows a communication device provided by an embodiment of the present application, which can be used to implement, for example, the function of the MN in Fig. 3, or the function of the MN in Fig. 4, or the function of the first access network device in Fig. 7; also It can be used to realize, for example, the function of the SN in FIG. 3, or the function of the SN in FIG. 4, or the function of the second access network device in FIG. 8; it can also be used to realize the function of the access network device in FIG. 6, for example.
  • the embodiments of the present application may divide the communication device into functional units according to the foregoing method embodiments. For example, each functional unit may be divided corresponding to each function, or two or more units may be integrated into one processing module.
  • the above-mentioned integrated unit can be realized in the form of hardware or software function module. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 provided by an embodiment of this application.
  • the communication device 1100 includes a processing unit 1101, a first transceiving unit 1102, and a second transceiving unit 1103, where the second transceiving unit 1103 may be an air interface transceiving unit.
  • the communication device 1100 shown in FIG. 11 may be used to implement, for example, the function of the MN in FIG. 3, or the function of the MN in FIG. 4, or the function of the first access network device in FIG. 7:
  • the processing unit 1101 is specifically configured to: determine the second number of functions allocated to the second access network device in S103 and S502.
  • the transceiver unit 1102 is specifically used for: the function of sending an interface establishment request in S101a.
  • the transceiver unit 1102 is specifically configured to: receive the interface establishment response function in S101b.
  • the transceiver unit 1103 is specifically configured to: S102b and S501 receive the function of user terminal capability information.
  • the transceiver unit 1102 is specifically configured to: send the second number of functions allocated to the second access network device in S104 and S503.
  • the transceiver unit 1102 is specifically configured to: receive the function of the secondary station modification request in S106.
  • the transceiver unit 1102 is specifically used for: the function of sending a modification request of the secondary station in S107a.
  • the transceiver unit 1103 is specifically used for: the function of sending configuration information in S108.
  • the communication device 1100 shown in FIG. 11 may be used to implement, for example, the function of the SN in FIG. 3, or the function of the SN in FIG. 4, or the function of the second access network device in FIG. 8:
  • processing unit 1101 is specifically configured to: determine the desired third number of functions in S105.
  • the transceiving unit 1102 is specifically used for: the function of receiving an interface establishment request in S101a.
  • the transceiver unit 1102 is specifically used for: the function of sending an interface establishment response in S101b.
  • the transceiver unit 1102 is specifically configured to receive the second number of functions allocated to the first access network device in S104, S107a, and S601.
  • the transceiver unit 1102 is specifically configured to: send the desired third number of functions in S106.
  • the transceiver unit 1103 is specifically used for: the function of sending configuration information in S109 and S602.
  • the communication device 1100 shown in FIG. 11 may be used to implement, for example, the function of the access network device in FIG. 6:
  • the processing unit 1101 is specifically used for the function of determining the configuration information of the SLRB in S404;
  • the transceiver unit 1103 is specifically configured to: receive the capability information of UE1 and UE2 in S403;
  • the transceiver unit 1103 is specifically configured to: send the SLRB configuration information in S404.
  • the functions/implementation process of the transceiving unit 1102 and the processing unit 1101 in FIG. 11 can be implemented by the processor in the communication device of FIG. 9 invoking the computer execution instructions stored in the memory.
  • the function/implementation process of the processing unit 1101 in FIG. 11 may be implemented by the processor in the communication device of FIG. 9 calling computer execution instructions stored in the memory
  • the function/implementation process of the transceiver unit 1102 in FIG. 11 may be implemented by The communication interface in the communication device of FIG. 9 is implemented.
  • FIG. 12 shows a communication device provided by an embodiment of the present application, which can be used to implement the function of UE1 in FIG. 5 or the function of UE1 in FIG. 6, for example.
  • the device can also be used to implement the functions of UE2 in FIG. 5, for example.
  • the device can also be used to implement the functions of UE2 in FIG. 6, for example.
  • the embodiments of the present application may divide the communication device into functional units according to the foregoing method embodiments. For example, each functional unit may be divided corresponding to each function, or two or more units may be integrated into one processing module.
  • the above-mentioned integrated unit can be realized in the form of hardware or software function module. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the communication apparatus 1200 shown in FIG. 12 may be used to implement, for example, the function of UE1 in FIG. 5 or the function of UE1 in FIG. 6:
  • the processing unit 1201 is specifically configured to: configure the function according to the configuration information of the SLRB in S303 and S405;
  • the transceiver unit 1202 is specifically used for: the function of receiving request messages in S301 and S401;
  • the transceiver unit 1202 is specifically configured to: S302, the function of sending UE1 capability information in S402;
  • the transceiver unit 1202 is specifically configured to: receive the SLRB configuration information in S303 and S405.
  • the communication apparatus 1200 shown in FIG. 12 may be used to implement, for example, the function of UE2 in FIG. 5 or the function of UE2 in FIG. 6:
  • the processing unit 1201 is specifically configured to: determine the function of the SLRB configuration in S303;
  • the transceiver unit 1202 is specifically used for: the function of sending request information in S301 and S401;
  • the transceiver unit 1202 is specifically used for: the function of receiving UE1 capability information in S302 and S402; optionally, the transceiver unit 1202 is specifically used for: the function of sending UE1 and UE2 capability information in S403;
  • the transceiver unit 1202 is specifically used for: the function of receiving SLRB configuration information in S404;
  • the transceiver unit 1202 is specifically configured to: send the SLRB configuration information in S303 and S405.
  • the functions/implementation process of the transceiving unit 1202 and the processing unit 1201 in FIG. 12 may be implemented by the processor in the communication device of FIG. 10 invoking computer execution instructions stored in the memory.
  • the function/implementation process of the processing unit 1201 in FIG. 12 may be implemented by the processor in the communication device of FIG. 10 calling computer execution instructions stored in the memory, and the function/implementation process of the transceiver unit 1202 in FIG. 12 may be implemented by The communication interface in the communication device of FIG. 10 is implemented.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the computer may include the aforementioned device.
  • the disclosed system, device, and method may be implemented in other ways.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种通信的方法、装置和系统,可应用于多连接场景。基于本发明实施例提供的方案,第一接入网设备根据获取的终端支持应用数据帧压缩功能的数据无线承载DRB的数量,为第二接入网设备分配第二接入网设备能够为该终端配置的应用该功能的DRB数量,并将分配结果告知第二接入网设备。利用该方法,不同的接入网设备为该终端设备配置的应用数据帧压缩功能的DRB总量不会超过终端的能力限制。上述方案同样适用于分组数据汇聚协议复制功能以及以太头压缩操作功能。对于为该功能维护的上下文的数量的分配也可以参考该方案。

Description

一种通信方法、装置和系统 技术领域
本发明涉及无线通信技术,特别涉及一种通信方法、装置和系统。
背景技术
在通信系统中,单个接入网设备的带宽资源和覆盖范围有限。利用多个接入网设备的无线资源来为终端设备提供服务的多连接方式能够提高终端设备的数据吞吐量,提高终端设备通信性能,提高无线资源利用率。
一个终端设备同时与多个接入网设备进行通信的多连接场景中,其中一个接入网设备为主接入网设备,该主接入网设备与该终端设备进行控制面信令交互,与该终端设备通信的其他接入网设备可以称为辅接入网设备。其中,一个终端设备同时与两个接入网设备建立连接并通过两个连接收发数据的场景可以称为双连接(dual connectivity,DC)场景。与单连接场景类似,在多连接场景中,也可以使用数据帧压缩功能、以太头压缩(ethernet header compression,EHC)功能、以及分组数据汇聚层协议(Packet Data Convergence Protocol,PDCP)复制功能。
数据帧压缩功能在压缩侧维护一个先入先出的压缩buffer,利用buffer内容和压缩算法对数据包进行压缩并发送,同时将该数据包推入压缩buffer中;数据帧压缩功能在解压侧同样会维护一个先入先出的解压缩buffer,当收到压缩数据包后,利用buffer内容和解压缩算法对数据包进行解压,数据包解压完,将数据包推入解压缩buffer中。上述过程需要解压数据包的顺序和压缩侧发送数据包的顺序完全一致。数据帧压缩功能包括上行数据压缩(uplink data compression,UDC)功能。
EHC功能可以用于工业控制场景,5G系统可以作为工业控制网络的最后一跳,例如控制台和控制节点间可以通过5G系统传输以太数据。为了提升无线资源利用效率,可以对以太数据流的以太帧头中较为固定的字段进行压缩,例如控制台和连接到终端设备的控制节点的源/目的以太地址等字段,该技术可以称为EHC技术。
PDCP复制功能还可以称为PDCP层的重复传输功能。PDCP复制功能可以将无线承载的数据包在PDCP层复制成多个相同的数据包(也就是重复包),然后多个相同的数据包分别递交给多个不同的无线链路控制(radio link control,RLC)层实体进行传输,进而通过不同的逻辑信道传输到媒体接入控制(media access control,MAC)层。其中,逻辑信道是RLC层到MAC层之间的信道。
但在多连接的场景下,在使用数据帧压缩功能、或者以太头压缩功能、或者PDCP复制功能时,可能会造成通信的失败。
发明内容
本发明实施例提供了一种通信的方法、装置和系统,用于降低通信功能的失败概率。该方法、装置和系统可适用于多连接场景。
第一方面,本申请实施例提供一种通信方法,该方法包括:第一接入网设备获取 终端的第一信息;其中,所述第一信息用于指示第一数量,所述第一数量是所述终端支持的第一功能对象的数量,所述第一功能对象是应用第一功能的数据无线承载DRB或者是为所述第一功能维护的上下文context,所述第一功能是数据帧压缩功能、或者分组数据汇聚协议PDCP复制功能、或者以太头压缩EHC操作功能;所述第一接入网设备根据所述第一信息确定第二数量;其中,所述第二数量是第二接入网设备能够为所述终端配置的所述第一功能对象的数量,所述第二数量小于或等于所述第一数量;所述第一接入网设备向所述第二接入网设备发送第二信息,所述第二信息用于指示所述第二数量。
其中,应用第一功能的DRB的数量和为所述第一功能维护的context的数量是一种与第一功能对应的资源的数量。
根据第一方面的方法,第一接入网设备为第二接入网设备分配第二数量,使第一接入网设备和第二接入网设备为终端配置的应用第一功能的DRB数量或者为第一功能维护的context的数量不会超过终端的能力限制,避免了数据包不能被终端正确解析或者由于等待处理而出现拥塞。
作为第一方面的通信方法的另一种描述方式,该方法包括:第一接入网设备获取终端的第一信息;其中,第一信息用于指示第一数量,第一数量是所述终端支持的应用第一功能的数据无线承载DRB的数量,或者第一数量是所述终端支持的为第一功能维护的上下文context的数量,所述第一功能是数据帧压缩功能、或者分组数据汇聚协议PDCP复制功能、或者以太头压缩EHC操作功能;所述第一接入网设备根据所述第一信息确定第二数量;其中,所述第二数量是第二接入网设备能够为所述终端配置的应用所述第一功能的DRB的数量,或者所述第二数量是所述第二接入网设备能够为所述终端配置的为所述第一功能维护的context的数量,所述第二数量小于或等于所述第一数量;所述第一接入网设备向所述第二接入网设备发送第二信息,所述第二信息用于指示所述第二数量。
作为一种可选的设计,数据帧压缩功能是上行数据压缩UDC功能。
作为一种可选的设计,所述终端支持的所述第一功能对象的数量是所述终端支持的所述第一功能对象的最大数量。
作为一种可选的设计,所述第二接入网设备能够为所述终端配置的所述第一功能对象的数量是:所述第二接入网设备能够为所述终端配置的所述第一功能对象的最大数量,或者,所述第二接入网设备要为所述终端配置的所述第一功能对象的数量。
作为一种可选的设计,第一接入网设备向第二接入网设备发送所述第一信息。通过该过程使第二接入网设备能够在不超过第一数量的前提下与第一接入网设备协商和调整第一接入网设备确定的第二数量,提高协商成功的概率,提高协商效率。
作为一种可选的设计,第一接入网设备从所述第二接入网设备接收第三信息;其中,所述第三信息用于指示第三数量,所述第三数量是所述第二接入网设备期望为所述终端配置的所述第一功能对象的数量,所述第三数量小于或等于所述第一数量。根据第二接入网设备期望的第三数量,第一接入网设备为第二接入网设备分配的第四数量能够更好的满足第二接入网设备的需求。
作为一种可选的设计,所述第二接入网设备期望为所述终端配置的所述第一功能 对象的数量是:所述第二接入网设备期望为所述终端配置的所述第一功能对象的最大数量,或者,所述第二接入网设备期望要为所述终端配置的所述第一功能对象的数量。
作为一种可选的设计,第一接入网设备根据所述第一信息确定第二数量包括:所述第一接入网设备根据所述第一信息和所述第三信息确定第二数量;所述第二数量小于或等于所述第三数量。
作为一种可选的设计,第一接入网设备从所述第二接入网设备接收第四信息,所述第四信息用于指示所述第二接入网设备支持所述第一功能。
作为一种可选的设计,第一接入网设备向所述第二接入网设备发送第二信息包括:所述第一接入网设备向所述第二接入网设备发送辅站添加请求消息,所述辅站添加请求消息包括所述第二信息;或者,所述第一接入网设备向所述第二接入网设备发送辅站修改请求消息,所述辅站修改请求消息包括所述第二信息。
作为一种可选的设计,所述辅站添加请求消息包括第一信元,所述第一信元携带所述第二信息,所述第一信元为CG-ConfigInfo信元或者ConfigRestricInfoSCG信元。
作为一种可选的设计,所述辅站修改请求消息包括第二信元,所述第二信元携带所述第二信息,所述第二信元为CG-ConfigInfo信元或者ConfigRestricInfoSCG信元。
作为一种可选的设计,第一接入网设备从所述第二接入网设备接收第三信息包括:所述第一接入网设备从所述第二接入网设备接收辅站修改要求消息,所述辅站修改要求消息包括所述第三信息。
作为一种可选的设计,所述辅站修改要求消息包括第三信元,所述第三信元携带所述第三信息,所述第三信元为CG-ConfigInfo信元或者ConfigRestricModeReqSCG信元。
作为一种可选的设计,所述第一接入网设备根据所述第一信息和所述第二数量向所述终端设备发送配置信息;其中,所述配置信息用于配置所述终端所述第一功能对象或者所述第一功能对象的数量;其中,所述配置信息配置的所述第一功能对象的数量小于或等于所述第一数量和所述第二数量的差值第一接入网设备为终端配置的应用第一功能的DRB的数量或者为终端配置的为第一功能维护的context的数量受到第一接入网设备为第二接入网设备确定的第二数量的影响,从而使第一接入网设备和第二接入网设备为终端配置的功能不超过终端能力限制。
作为一种可选的设计,第一接入网设备获取所述终端的第五信息;其中,所述第五信息用于指示所述终端支持所述第一功能的能力参数;所述能力参数包括如下的一种或者多种:UDC字典类型;UDC缓存大小;UDC压缩算法;UDC初始字典;UDC优先级。避免第一接入网设备为终端配置的第一功能与终端支持的第一功能在实现上存在区别而导致通信错误。
第二方面,本申请实施例提供一种通信方法,该方法包括:第二接入网设备从第一接入网设备接收第一信息;其中,所述第一信息用于指示第一数量,所述第一数量是所述第二接入网设备能够为终端配置的第一功能对象的数量,所述第一功能对象是应用第一功能的数据无线承载DRB或者是为所述第一功能维护的上下文context,所述第一功能是数据帧压缩功能、或者分组数据汇聚协议PDCP复制功能、或者以太头压缩EHC操作功能;响应于所述第一信息,所述第二接入网设备向所述终端发送配置 信息;其中,所述配置信息用于配置所述第一功能对象或者所述第一功能对象的数量;其中,所述配置信息配置的所述第一功能对象的数量小于或等于所述第一数量。
根据第二方面的方法,第一接入网设备根据分配给第一接入网设备的第一数量为终端配置第一功能,使第一接入网设备和第二接入网设备为终端配置的应用第一功能的DRB数量或者为第一功能维护的context的数量不会超过终端的能力限制,避免了数据包不能被终端正确解析或者由于等待处理而出现拥塞。
作为第二方面的通信方法的另一种描述方式,该方法包括:第二接入网设备从第一接入网设备接收第一信息;其中,所述第一信息用于指示第一数量,所述第一数量是所述第二接入网设备能够为终端配置的应用第一功能的数据无线承载DRB的数量,或者所述第一数量是所述第二接入网设备能够为所述终端配置的为所述第一功能维护的上下文context的数量,所述第一功能是数据帧压缩功能、或者分组数据汇聚协议PDCP复制功能、或者以太头压缩EHC操作功能;响应于所述第一信息,所述第二接入网设备向所述终端发送配置信息;其中,所述配置信息用于指示所述终端应用所述第一功能的第一DRB,所述第一DRB的数量小于或等于所述第一数量,或者,所述配置信息用于指示所述终端为所述第一功能维护的第一context的数量,所述第一context的数量小于或等于所述第一数量。
作为一种可选的设计,所述第二接入网设备能够为所述终端配置的所述第一功能对象的数量是:所述第二接入网设备能够为所述终端配置的所述第一功能对象的最大数量,或者,所述第二接入网设备要为所述终端配置的所述第一功能对象的数量。
作为一种可选的设计,所述第二接入网设备从所述第一接入网设备接收第二信息;其中,所述第二信息用于指示第二数量,所述第二数量是所述终端支持的所述第一功能对象的数量。
作为一种可选的设计,所述第二接入网设备根据所述第二信息确定第三数量;其中,所述第三数量是所述第二接入网设备期望为所述终端配置的所述第一功能对象的数量,所述第三数量小于或等于所述第二数量;所述第二接入网设备向所述第一接入网设备发送第三信息,所述第三信息用于指示所述第三数量。使第二接入网设备能够在不超过第一数量的前提下与第一接入网设备协商和调整第一接入网设备确定的第二数量,提高协商成功的概率,提高协商效率。
作为一种可选的设计,所述第二接入网设备向所述第一接入网设备发送第四信息,所述第四信息用于指示所述第二接入网设备支持所述第一功能。
作为一种可选的设计,所述第二接入网设备从所述第一接入网设备接收所述第一信息包括:所述第二接入网设备从所述第一接入网设备接收辅站添加请求消息,所述辅站添加请求消息包括所述第一信息;或者,所述第二接入网设备从所述第一接入网设备接收辅站修改请求消息,所述辅站修改请求消息包括所述第一信息。
作为一种可选的设计,所述第二接入网设备向所述第一接入网设备发送所述第三信息包括:所述第二接入网设备向所述第一接入网设备发送辅站修改要求消息,所述辅站修改要求消息包括所述第三信息。
第三方面,本申请实施例提供一种通信方法,该方法包括:第一终端发送第一信息,所述第一信息用于指示所述第一终端支持第一功能,所述第一功能是数据帧压缩 功能、或者分组数据汇聚协议PDCP复制功能、或者以太头压缩EHC操作功能;所述第一终端接收配置信息,所述配置信息用于配置应用所述第一功能的SLRB或者用于指示为所述第一功能维护的context的数量。
根据第三方面的方法,为第一终端的SLRB配置的功能是第一终端支持的功能,从而能够降低第一终端通信失败的概率。
作为一种可选的设计,支持第一功能包括:支持第一功能的接收侧功能、和/或支持第一功能的发送侧功能。
作为一种可选的设计,第一终端发送第一信息包括:第一终端向第二终端发送第一信息,第二终端与第一终端间可以通信;或者,第一终端向接入网设备发送第一信息。
作为一种可选的设计,第一终端接收配置信息包括:第一终端从所述第二终端接收配置信息;或者,第一终端从所述接入网设备接收配置信息。
作为一种可选的设计,第一终端向第二终端发送第一信息包括:所述第一终端通过所述接入网设备向所述第二终端发送所述第一信息;或者,所述第一终端通过第一网络设备向所述第二终端发送所述第一信息,所述第一网络设备用于保存所述第一信息的部分或者全部。
作为一种可选的设计,所述第一终端从所述第二终端接收配置信息包括:所述第一终端通过所述第一接入网设备从所述第二终端接受配置信息。
作为一种可选的设计,第一终端从所述第一接入网设备接收配置信息包括:所述第一终端通过第二终端从所述第一接入网设备接收配置信息。
作为一种可选的设计,第一终端向第一接入网设备发送第一信息包括:所述第一终端通过所述第二终端向所述第一接入网设备发送第一信息。
作为一种可选的设计,第一终端发送第二信息,所述第二信息用于指示所述第一终端支持所述第一功能的能力参数;所述能力参数包括如下的一种或多种:支持第一功能的SLRB数量;支持第一功能的context数量;UDC缓存大小;UDC压缩算法;UDC初始字典;UDC优先级。通过发送第一功能的能力参数,为第一终端的SLRB配置的功能能够更好的匹配第一终端的能力。
作为一种可选的设计,第一终端向第二终端发送第一信息包括:所述第一终端向所述第二终端发送RRC消息,所述RRC消息包括所述第一信息。
第四方面,本申请实施例提供一种通信方法,该方法包括:第一终端从第二终端接收第一信息,所述第一信息用于指示所述第二终端支持第一功能,所述第一功能是数据帧压缩UDC功能、或者分组数据汇聚协议PDCP复制功能、或者以太头压缩EHC操作功能;所述第一终端根据所述第一信息向所述第二终端发送配置信息,所述配置信息用于配置应用所述第一功能的SLRB或者用于指示为所述第一功能维护的context的数量。
根据第四方面的方法,第一终端能够为第二终端的SLRB配置第二终端支持的功能,从而能够降低第一终端与第一终端通信失败的概率。
作为一种可选的设计,支持第一功能包括:支持第一功能的接收侧功能、和/或支持第一功能的发送侧功能。
作为一种可选的设计,第一终端从所述第二终端接受第二信息,所述第二信息用于指示所述第二终端支持所述第一功能的能力参数;所述能力参数包括如下的一种或者它们的任意组合:支持第一功能的SLRB数量;支持第一功能的context数量;UDC缓存大小;UDC压缩算法;UDC初始字典;UDC优先级。根据第一功能的能力参数,第一终端为第二终端的SLRB配置的功能能够更好的匹配第二终端的能力。
作为一种可选的设计,第一终端从第二终端接收第一信息包括:所述第一终端从所述第二终端接收RRC消息,所述RRC消息包括所述第一信息。
作为一种可选的设计,第一终端从第二终端接收第一信息包括:所述第一终端通过第一接入网设备从所述第二终端接收所述第一信息;或者,所述第一终端通过第一网络设备从所述第二终端接收所述第一信息,所述第一网络设备用于保存所述第一信息的部分或者全部。
作为一种可选的设计,第一终端根据所述第一信息向所述第二终端发送配置信息包括:所述第一终端通过所述第一接入网设备向所述第二终端发送配置信息。
第五方面,本申请实施例提供一种通信方法,该方法包括:第一接入网设备从第一终端接收第一信息,所述第一信息用于指示所述第一终端支持第一功能,所述第一功能是数据帧压缩UDC功能、或者分组数据汇聚协议PDCP复制功能、或者以太头压缩EHC操作功能;第一接入网设备从第二终端接收第二信息,所述第二信息用于指示第二终端支持所述第一功能;第一接入网设备根据所述第一信息和所述第二信息向第一终端和第二终端发送配置信息,所述配置信息用于配置第一终端和第二终端间应用所述第一功能的SLRB或者用于指示第一终端或者第二终端为所述第一功能维护的context的数量。
根据第五方面的方法,第一接入网设备能够为多个终端间的SLRB配置各终端支持的功能,从而能够降低终端间通信失败的概率。
作为一种可选的设计,支持第一功能包括:支持第一功能的接收侧功能、和/或支持第一功能的发送侧功能。
作为一种可选的设计,所述第一信息还用于指示所述第一终端支持所述第一功能的能力参数;所述能力参数包括如下的一种或者它们的任意组合:支持第一功能的SLRB数量;支持第一功能的context数量;UDC缓存大小;UDC压缩算法;UDC初始字典;UDC优先级。根据第一功能的能力参数,为第一终端的SLRB配置的功能能够更好的匹配第一终端的能力。
作为一种可选的设计,所述第二信息还用于指示所述第二终端支持所述第一功能的能力参数;所述能力参数包括如下的一种或者它们的任意组合:支持第一功能的SLRB数量;支持第一功能的context数量;UDC缓存大小;UDC压缩算法;UDC初始字典;UDC优先级。根据第一功能的能力参数,为第二终端的SLRB配置的功能能够更好的匹配第二终端的能力。
作为一种可选的设计,第一接入网设备根据所述第一信息向所述第一终端和第二终端发送配置信息包括:所述第一接入网设备通过第二终端向所述第一终端发送所述配置信息。
作为一种可选的设计,第一接入网设备从第一终端接收第一信息包括:所述第一 接入网设备通过所述第二终端从所述第一终端接收所述第一能力信息。
第六方面,本申请实施例提供一种通信方法,该方法包括:终端发送第一信息,其中,所述第一信息用于指示第一数量,所述第一数量是所述终端支持的第一功能对象的数量,所述第一功能对象是应用第一功能的数据无线承载DRB或者是为所述第一功能维护的上下文context,所述第一功能是数据帧压缩功能、或者分组数据汇聚协议PDCP复制功能、或者以太头压缩EHC操作功能;所述终端从第一接入网设备接收第一配置信息,所述第一配置信息用于配置所述第一功能对象或者所述第一功能对象的数量;所述终端从第二接入网设备接收第二配置信息,所述第二配置信息用于配置所述第一功能对象或者所述第一功能对象的数量;第一配置信息和第二配置信息配置的所述第一功能对象的数量之和小于或等于第一数量。
根据第六方面的方法,终端提供终端支持的第一功能对象的数量,在多连接场景中使接入网设备获知该终端的能力限制,使多个接入网设备为该终端配置的功能之和不会超过终端的能力限制。
第七方面,本申请实施例提供一种通信装置,用于实现第一方面的通信装置。第七方面的通信装置包括实现上述功能相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第八方面,本申请实施例提供一种通信装置,用于实现第二方面的通信装置。第八方面的通信装置包括实现上述功能相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第九方面,本申请实施例提供一种通信装置,用于实现第三方面的通信装置。第九方面的通信装置包括实现上述功能相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第十方面,本申请实施例提供一种通信装置,用于实现第四方面的通信装置。第十方面的通信装置包括实现上述功能相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第十一方面,本申请实施例提供一种通信装置,用于实现第五方面的通信装置。第十一方面的通信装置包括实现上述功能相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第十二方面,本申请实施例提供一种通信装置,用于实现第六方面的通信装置。第十二方面的通信装置包括实现上述功能相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第十三方面,本申请实施例提供一种通信装置,包括处理器,所述处理器用于从存储器读取指令,运行所述指令以实现第一方面的方法。可选的,该通信装置包括该 存储器。可选的,该通信装置可以是芯片。
第十四方面,本申请实施例提供一种通信装置,包括处理器,所述处理器用于从存储器读取指令,运行所述指令以实现第二方面的方法。可选的,该通信装置包括该存储器。可选的,该通信装置可以是芯片。
第十五方面,本申请实施例提供一种通信装置,包括处理器,所述处理器用于从存储器读取指令,运行所述指令以实现第三方面的方法。可选的,该通信装置包括该存储器。可选的,该通信装置可以是芯片。
第十六方面,本申请实施例提供一种通信装置,包括处理器,所述处理器用于从存储器读取指令,运行所述指令以实现第四方面的方法。可选的,该通信装置包括该存储器。可选的,该通信装置可以是芯片。
第十七方面,本申请实施例提供一种通信装置,包括处理器,所述处理器用于从存储器读取指令,运行所述指令以实现第五方面的方法。可选的,该通信装置包括该存储器。可选的,该通信装置可以是芯片。
第十八方面,本申请实施例提供一种通信装置,包括处理器,所述处理器用于从存储器读取指令,运行所述指令以实现第六方面的方法。可选的,该通信装置包括该存储器。可选的,该通信装置可以是芯片。
第十九方面,本申请实施例提供一种计算机可读存储介质,包括指令,其特征在于,当所述指令在通信装置上执行时,使得所述通信装置实现上述任一种方法。
第二十方面,本申请实施例提供一种计算机程序产品,包括指令,其特征在于,当所述指令在通信装置上执行时,使得所述通信装置实现上述任一种方法。
第二十一方面,本申请实施例提供一种通信系统,包括第七方面或者第十三方面的通信装置。可选的,该通信系统还可以包括第八方面或者第十四方面的通信装置。
第二十一方面,本申请实施例提供一种通信系统,包括第九方面或者第十五方面的通信装置。可选的,该通信系统还可以包括第十方面或者第十六方面的通信装置。可选的,该通信系统还可以包括第十一方面或者第十七方面的通信装置。可选的,该通信系统还可以包括第十二方面或者第十八方面的通信装置。
通过本申请的方案,在终端连接多个接入网设备的多连接场景中,各接入网设备能够对终端支持的第一功能对象的数量进行协商和分配,使各接入网设备为终端配置的第一功能对象的数量不会超过终端的能力限制,降低了终端的第一功能的失败概率,降低了通信的失败概率。
通过本申请的方案,在终端间通信的场景中,通过终端间交互关于第一功能的终端能力或者通过接入网设备获知多个终端关于第一功能的终端能力,使终端之间的SLRB能够被配置符合终端能力的功能。降低了终端的第一功能的失败概率,降低了通信的失败概率。
附图说明
图1为本申请实施例提供的一种通信系统的示意图;
图2为本申请实施例提供的一种设备结构的示意图;
图3为本申请实施例提供的一种通信方法的示意性流程图;
图4为本申请实施例提供的另一种通信方法的示意性流程图;
图5为本申请实施例提供的又一种通信方法的示意性流程图;
图6为本申请实施例提供的又一种通信方法的示意性流程图;
图7为本申请实施例提供的又一种通信方法的示意性流程图;
图8为本申请实施例提供的又一种通信方法的示意性流程图;
图9为本申请实施例提供的一种终端装置的结构示意图;
图10为本申请实施例提供的另一种接入网装置的结构示意图;
图11为本申请实施例提供的又一种终端装置的结构示意图;
图12为本申请实施例提供的又一种接入网装置的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述。
本申请实施例的技术方案可以应用于长期演进(long term evolution,LTE)系统、5G通信系统,随着通信技术的演进和变化,本申请的方案也可以适用于其他通信系统,例如6G通信系统,本申请实施例对此不作限定。
本申请实施例中的终端设备具有无线收发功能,在本申请中可称为UE,也可简称为终端。终端设备可以是用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的接入网设备可以是用于与终端设备通信的设备,接入网设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、施主基站(donor evolved nodeB,DeNB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)、路边装置(road site unit,RSU)、融合接入回传(integrated access backhaul,IAB)系统中的接入点等等;接入网设备还可以为新空口(new radio,NR)系统中的下一代NB(generation,gNB)或传输点(如TRP或TP)、或者5G系统中基站的一个或一组(包括多个天线面板)天线面板、或者构成gNB或传输点的网络节点,如BBU或分布式单元(distributed unit,DU)等。在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能, 比如,CU实现RRC层和PDCP层的功能,DU实现无RLC层、MAC层和PHY层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PDCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,接入网设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,可以将CU划分为接入网中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不做限制。
在本申请实施例中,终端设备或接入网设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或接入网设备,或者,是终端设备或接入网设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是应用本申请实施例的通信系统的一种示例图。如图1所示,该通信系统包括:核心网、和接入网设备。终端设备UE可以接入该通信系统,也可以认为是该通信系统的一部分。接入网设备间可以通过Xn或者X2接口进行通信。一个UE可以同时与多个接入网设备进行通信,其中一个接入网设备为主接入网设备,该主接入网设备与该UE进行控制面信令交互,与该UE通信的其他接入网设备可以称为辅接入网设备,本申请实施例将主接入网设备简称为MN,将辅接入网设备简称为SN。如果MN是LTE制式的基站,又可以称之为MeNB,如果MN是NR制式的基站,又可以称之为MgNB;如果SN是LTE制式的基站,又可以称之为SeNB,如果SN是NR制式的基站,又可以称之为SgNB。其中,一个UE同时与两个接入网设备建立连接并通过两个连接收发数据的场景可以称为双连接场景。如图1所示,终端设备还可以和其他终端设备通过侧行链路(sidelink,SL)接口实现终端设备间的直连通信。随着通信技术的演进和变化,设备间通信的接口或接口名称可以发生变化,本申请实施例对此 不作限定。
图2示出了接入网设备与UE间的通信协议层结构。该通信协议层结构可用于图1所示的通信系统。接入网设备与UE间的通信遵循一定的协议层结构,例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能;用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种可能的实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。RAN设备可以由一个节点实现RRC、SDAP、PDCP、RLC和MAC等协议层的功能,或者可以由多个节点实现这些协议层的功能。
在图1所示的通信系统中,UE和接入网设备可以建立至少一个无线承载(radio bearer,RB)来传输数据。无线承载可以分为用于传输信令数据的信令无线承载(signalling radio bearer,SRB)和用于传输业务数据的数据无线承载(data radio bearer,DRB),同一无线承载的一组功能实体集合包括一个PDCP实体、该PDCP实体对应的至少两个RLC实体、至少两个RLC实体对应的至少一个MAC实体、至少一个MAC实体对应的至少一个PHY实体。
在图1所示的系统中,UE2可以和接入网设备1和接入网设备2建立双连接。UE2和接入网设备1以及接入网设备2之间可以分别建立一个或多个RB。UE1、和UE2、和UE3之间可以建立SLRB,进行终端间通信。为了进一步提高通信效率,UE2、接入网设备1、以及接入网设备2可以启用一些网络功能。例如数据帧压缩功能、以太头压缩功能和PDCP复制功能。以下对三种网络功能做进一步介绍。
数据帧压缩功能:数据帧压缩功能在压缩侧维护一个先入先出的压缩buffer,利用buffer内容和压缩算法对数据包进行压缩并发送,同时将该数据包推入压缩buffer中;数据帧压缩功能在解压侧同样会维护一个先入先出的解压缩buffer,当收到压缩数据包后,利用buffer内容和解压缩算法对数据包进行解压,数据包解压完,将数据包推入解压缩buffer中。上述过程需要解压数据包的顺序和压缩侧发送数据包的顺序完全一致,因此该功能需要配置在与确认模式RLC实体关联的PDCP实体上。数据帧压缩功能可以是上行数据压缩(uplink data compression,UDC)功能。当UE与接入网设备间的DRB应用UDC功能时,该DRB承载的数据可以在UE上通过UDC功能进行压缩并在接入网设备上进行解压。
EHC功能:工业控制场景使用有线的以太网传输数据,5G系统可以作为工业控制网络的最后一跳,例如控制台和控制节点间可以通过5G系统传输以太数据。为了提升无线资源利用效率,可以对以太数据流的以太帧头中较为固定的字段进行压缩,例如控制台和连接到终端设备的控制节点的源/目的以太地址等字段,该技术可以称为以太头压缩(EHC)技术。当UE建立的DRB支持EHC功能时,该DRB承载的以太数据可以通过EHC功能进行以太头压缩和解压。不同的以太数据可压缩的字段的取值可能不同,一种实现方式是将可以通过EHC压缩或解压的信息作为上下文context。不同的context通过context ID区分。解压侧根据该context ID建立对应的上下文信息以执行EHC操作。UE为应用EHC功能的一个或多个DRB维护一定数量的context, UE维护的context越多则需要的缓存空间越大。
PDCP复制功能:该功能可以理解为PDCP层的重复传输,通常指将无线承载的数据包在PDCP层复制成多个相同的包(也就是重复包),然后这两个数据包分别递交给多个不同的RLC实体进行传输,进而通过不同的逻辑信道传输到MAC层。其中,逻辑信道是RLC层到MAC层之间的信道。需要注意的是,通常所说的重传是指重新传输(retransmission),而本申请实施例中的重复传输(duplication transmission)并不是重新传输。重新发送是指同一个数据包发送失败后的再次发送,或者是同一个数据包的连续多次发送,而重复传输是将一个数据包复制两个数据包,分别放到两个逻辑信道上传输,这里的“重复”,也可以理解为“复制”。
本申请实施例提供一种通信方法,在使用一些通信功能时,可以降低通信功能失败的概率。以下通过实施例以对本申请的技术方案进行描述。
图3是本申请实施例的一种通信方法的示意性流程图。其中,图3的通信方法可以应用于终端设备与多个接入网设备通信的场景。本申请实施例以双连接场景中的UDC功能为例进行介绍。其中核心网可以是5GC或者EPC。为了便于叙述,在本申请实施例中主要以5GC为例进行说明;另外主接入网设备可以简称为MN,辅接入网设备可以简称为SN。如图3所示,该方法包括:
S101a:MN向SN发送Xn接口建立请求(Xn setup request)消息。
其中,该Xn setup request消息可以包括第一指示信息,该第一指示信息用于指示MN是否支持UDC功能。
作为一种可选的设计,可以通过Xn setup request中的信元“UDC supported”来表示MN是否支持UDC功能。例如,Xn setup request中携带该信元,或者该信元的取值为true或者1时表示MN支持UDC功能。
在核心网是EPC时,S101a中的消息可替换为X2接口建立请求(X2 setup request)消息。S101b:SN向MN发送Xn接口建立响应(Xn setup response)。
其中,该Xn setup response可以包括第二指示信息,该第二指示信息用于指示SN是否支持UDC功能。
作为一种可选的设计,可以通过Xn setup response中的信元“UDC supported”来表示SN是否支持UDC功能。例如,Xn setup response中携带该信元,或者该信元的取值为true或者1时表示SN支持UDC功能。
在核心网是EPC时,S101b中的消息可替换为X2接口建立响应(X2 setup response)。
通过S101a和S101b,MN和SN可以获知对方是否支持UDC功能。
其中,S101a和S101b是可选步骤。作为另一种可选的实施方式,可以默认MN和SN支持UDC功能。
以下S102a和S102b描述了MN获取UE能力信息的过程。其中,本申请实施例对MN获取UE能力信息的过程与上述S101a和S101b的时序关系不作限定。
S102a:MN向UE发送用户设备能力查询UECapabilityEnquiry消息。
其中,该消息用于请求获取UE的能力信息。
S102b:UE向MN发送用户设备能力信息UECapabilityInformation。
其中,该用户设备能力信息包括UE支持的应用UDC功能的DRB的数量。为了 便于叙述,本实施例中标记为第一数量。
在本申请实施例中,应用UDC功能的DRB可以理解为是一种UDC功能对象。
作为一种可选的设计,第一数量可以是该UE支持的应用UDC功能的DRB的最大数量。
可选的,该终端能力信息还包括UE支持的UDC功能的参数,该参数可以包括:UDC字典类型、UDC缓存大小、UDC压缩算法、UDC初始字典、或者UDC优先级。通过提供UE支持的UDC功能参数,能够在接入网设备支持多种UDC功能时为UE配置更加匹配UE能力的UDC功能。
作为S102a和S102b的替代,MN可以从核心网获取上述用户设备能力信息。
S103:MN确定SN能够为UE配置的应用UDC功能的DRB的数量。
具体的,MN可以根据上述用户设备能力信息确定SN能够为UE配置的应用UDC功能的DRB的数量。为了便于叙述该数量,本实施例中标记为第二数量。其中,第二数量小于或等于上述第一数量。
该第二数量可以是MN确定的SN能够为UE配置的应用UDC功能的DRB的最大数量;或者,第二数量可以是MN为SN分配的SN要为UE配置的应用UDC功能的DRB的数量。SN要为UE配置应用UDC功能的DRB的数量可以理解为SN需要或者将要为UE配置应用UDC功能的DRB的数量。
S104:MN向SN发送辅站添加请求消息。
其中,该辅站添加请求消息包括上述第二数量。
作为一种可选的设计,可以在小区组配置信息(CG-ConfigInfo)信元中携带一个信元或者携带一个参数来表示第二数量。例如在该辅站添加请求消息携带的信元CG-ConfigInfo中包括一个参数“Allowed UDC DRB Number”,或者包括一个信元“Allowed UDC DRB Number”,“Allowed UDC DRB Number”的取值表示第二数量。可选的,若CG-ConfigInfo信元中未包括该“Allowed UDC DRB Number”,则可以表示MN确定的第二数量等于0,或者表示MN确定的第二数量等于第一数量。再例如该辅站添加请求消息携带的信元CG-ConfigInfo中包括辅小区组配置限制信息(ConfigRestricInfoSCG)信元,该信元中可以包括参数“allowed-UDC-DRB-Number”,该参数的取值表示第二数量。可选的,若ConfigRestricInfoSCG信元中未包括参数“allowed-UDC-DRB-Number”,则可以表示MN确定的第二数量等于0,或者表示MN确定的第二数量等于第一数量。
基于上述设计的一种可选的实现方式中,上述“Allowed UDC DRB Number”或者“allowed-UDC-DRB-Number”的取值可以是0到N之间的整数,其中N可以是UE支持的应用UDC功能DRB的数量,即N可以是第一数量。例如N=2时,MN可以将上述“Allowed UDC DRB Number”或者“allowed-UDC-DRB-Number”的取值设置为1,表示SN能够为UE配置的应用UDC功能的DRB数量为1,即表示第二数量为1。
可选的,该辅站添加请求消息还包括第一数量。MN将第一数量发送至SN,可以便于SN决定是否接受MN的分配。
可选的,该辅站添加请求消息还包括上述UE支持的UDC功能的参数。
当SN是eNB时,该辅站添加请求消息可以是SeNB Addition Request消息。
当SN是gNB时,该辅站添加请求消息可以是SgNB Addition Request消息。
S105:SN向MN发送辅站添加请求确认消息。
可选的,若SN同意上述S104中接收的第二数量,则该辅站添加请求确认消息可以包括第三指示信息,第三指示信息用于指示SN同意上述第二数量。
可选的,若SN不同意上述S104中接收的第二数量,则该辅站添加请求确认消息可以包括第四指示信息,第四指示信息用于指示SN期望的为UE配置的应用UDC功能的DRB的数量。若SN接收到上述第一数量,SN可以根据第一数量确定SN期望的为UE配置的应用UDC功能的DRB的数量。为了便于叙述该数量,本实施例中将该数量标记为第三数量。其中,第三数量小于或等于上述第一数量。第三数量可以是SN期望的为UE配置的应用UDC功能的DRB的最大数量;或者,第三数量可以是SN期望的要为UE配置应用UDC功能的DRB的数量。SN期望的要为UE配置应用UDC功能的DRB的数量可以理解为SN期望的需要或者将要为UE配置应用UDC功能的DRB的数量。
可选的,若SN不支持UDC功能,且在S101a和S101b中没有将SN不支持UDC功能的信息告知MN,则该辅站添加请求确认消息中包括第五指示信息,第五指示信息用于指示SN不支持UDC功能。
当SN是eNB时,该辅站添加请求确认消息可以是SeNB Addition Request Acknowledge。
当SN是gNB时,该辅站添加请求确认消息可以是SgNB Addition Request Acknowledge。
S106a:SN向MN发送辅站修改要求SN Modification Required消息。
其中,该辅站修改要求消息包括SN期望的为UE配置的应用UDC功能的DRB的数量,即辅站修改要求包括S105中介绍的第三数量。
S106a为可选的步骤。
若SN不同意S104中接收的第二数量,则可以在S105的辅站添加请求确认消息中包括上述第三数量;若SN希望改变已为UE配置的应用UDC功能的DRB的数量,则可以在S106a的辅站修改要求中包括上述第三数量。
作为一种可选的设计,可以在小区组配置信息(CG-ConfigInfo)信元中包括一个信元或者包括一个参数来表示第三数量。例如在该辅站修改要求消息携带的信元CG-ConfigInfo中包括参数或信元“Requested UDC DRB Number”,“Requested UDC DRB Number”的取值表示第三数量。或者例如该辅站修改要求消息携带的信元CG-ConfigInfo中包括辅小区组配置限制模式请求(“ConfigRestricModeReqSCG”)信元,该信元中可以包括参数“requested-UDC-DRB-Number”,该参数的取值表示第三数量。
基于上述设计的一种可选的实现方式中,上述“Requested UDC DRB Number”或者“requested-UDC-DRB-Number”的取值可以是0到N之间的整数,其中N可以是UE支持的应用UDC功能DRB的数量,即N可以是第一数量。例如N=2时,SN可以将上述“Requested UDC DRB Number”或者“requested-UDC-DRB-Number”的取值设置为1,表示SN期望的为UE配置的应用UDC功能的DRB数量为1,即表示第三 数量为1。
可选的,MN和SN与EPC连接时,S106为:SN向MN发送辅站修改要求SgNB Modification Required消息。
S107a:MN向SN发送辅站修改请求SN Modification Request。
其中,该辅站修改请求包括MN再次确定的SN能够为UE配置的应用UDC功能的DRB的数量。
具体的,MN根据终端能力信息和S106中的辅站修改要求再次确定SN能够为UE配置的应用UDC功能的DRB的,为了便于叙述,本申请实施例中标记为第四数量。其中,第四数量小于或等于上述第一数量。可选的,第四数量小于或等于第三数量。
作为一种可选的设计,可以在小区组配置信息(CG-ConfigInfo)信元中包括一个信元或者包括一个参数用于指示第四数量。例如在该辅站修改请求消息携带的信元CG-ConfigInfo中包括参数或信元“Allowed UDC DRB Number”,“Allowed UDC DRB Number”的取值表示第四数量。可选的,CG-ConfigInfo信元中未包括参数或信元“Allowed UDC DRB Number”,可以表示MN确定的第四数量等于第三数量。或者例如该辅站修改请求消息携带的信元CG-ConfigInfo中包括辅小区组配置限制信息(ConfigRestricInfoSCG)信元,该信元中可以包括参数“allowed-UDC-DRB-Number”,该参数的取值表示第四数量。可选的,ConfigRestricInfoSCG信元中未包括参数“Allowed UDC DRB Number”,可以表示MN确定的第四数量等于第三数量。
S107a和S107b为可选的步骤,若MN再次确定SN能够为UE配置的应用UDC功能的DRB的数量,则执行S107a和S107b;若MN没有确定第四数量,或者MN再次确定的第四数量与上述第二数量相同,可以不执行S107a和S107b。
S107b:SN向MN发送辅站修改请求确认消息SN Modification Request Acknowledge。
具体的,响应于S107a,SN发送该辅站修改请求确认消息。
S106b:MN向SN发送辅站修改确认消息。
具体的,响应于S106a,MN发送该辅站修改确认消息。
S108:MN向UE发送RRC重配置消息。
其中,该消息包括MN和UE间的DRB的配置信息。
具体的,MN和UE建立有一个或多个DRB,上述RRC重配置消息包括一个或多个配置信息,其中每个配置信息对应MN和UE间的一个DRB;若一个DRB的配置信息包括UDC信息,该DRB是应用UDC功能的DRB。作为一种可选的设计,UDC信息可以由字段或者信元表示。例如,可以由配置信息中的一个字段supportedUDC来表示该配置信息对应的DRB应用UDC功能;或者例如,可以由一个信元uplinkDataCompression来表示该配置信息对应的DRB应用UDC功能的参数,该参数可以参考S102中的UDC功能的参数。
其中,配置信息包括UDC信息的DRB的数量小于或等于第一数量与第二数量的差值。
可选的,若执行S107a和S107b,则配置信息包括UDC信息的DRB的数量小于或等于第一数量与第四数量的差值。
S108为可选的步骤,若MN为UE配置的应用UDC功能的DRB的数量需要改变或者需要选择不同的DRB应用UDC功能,可以执行S108。本申请实施例对执行S108的时刻不作限定。
S109:SN向UE发送RRC重配置消息。
其中,该消息包括SN和UE间的DRB的配置信息。
具体的,SN和UE建立有一个或多个DRB,上述RRC重配置消息包括一个或多个配置信息,其中每个配置信息对应SN和UE间的一个DRB;若一个DRB的配置信息包括UDC信息,该DRB是应用UDC功能的DRB。
其中,配置信息包括UDC信息的DRB的数量小于或等于第二数量。作为一种示例,若第二数量是MN确定的SN需要为UE配置的应用UDC功能的DRB的确定的数量,则上述SN和UE间的DRB中配置信息包括UDC信息的DRB的数量等于第二数量。
可选的,若执行S107a和S107b,则SN和UE间的DRB中配置信息包括UDC信息的DRB的数量小于或等于第四数量。
本申请实施例对信元或者参数的名称不作限定。
通过上述S103、S104、S106、S107a和S109,MN能够分配SN能够为UE配置的应用UDC功能的DRB的数量,使MN为UE配置应用UDC功能的DRB数量和SN为UE配置应用UDC功能的DRB数量之和不会超过UE支持应用UDC功能的DRB的数量。避免了MN和SN为UE配置的功能超过UE的能力限制而导致UE对数据包的处理错误或者由于等待处理而出现拥塞。
本申请实施例以MN和SN间协商UE支持应用UDC功能的DRB数量为例,对图3所示的通信方法进行介绍;本领域技术人员可以理解的是,图3所示的通信方法还可以用于MN和SN间协商UE支持PDCP复制功能的DRB的数量、或者用于MN和SN间协商UE支持应用EHC功能的DRB的数量、或者用于MN和SN间协商UE应用其他功能的DRB的数量,在此不作赘述。
对于MN和SN间协商UE支持应用EHC功能的DRB的数量,另一种可选的实现方式是在S104中,MN向SN发送UE支持的应用EHC功能的DRB的数量,MN还向SN发送MN的RRC配置信息,该RRC配置信息可以用于MN为UE配置应用EHC功能的DRB。SN根据UE支持的应用EHC功能的DRB的数量,以及上述MN的RRC配置信息确定SN能够为UE配置的支持EHC功能的DRB的数量。SN根据该数量向UE发送RRC配置信息,该RRC配置信息用于SN为UE配置应用EHC功能的DRB。
图4是本申请实施例的另一种通信方法的示意性流程图。其中,图3的通信方法可以应用于终端设备与多个接入网设备通信的场景。本申请实施例以双连接场景中的EHC功能为例进行介绍。其中核心网可以是5GC或者EPC。为了便于叙述,在本申请实施例中主要以5GC为例进行说明;另外主接入网设备可以简称为MN,辅接入网设备可以简称为SN。与图3所示方法的区别之处在于,图4所示的方法中MN为SN分配UE为EHC功能维护的context的数量,而不是分配UE应用UDC功能的DRB 的数量。如图4所示,该方法包括:
S201a:MN向SN发送Xn接口建立请求(Xn setup request)消息。
其中,该Xn setup request消息可以包括第一指示信息,该第一指示信息用于指示MN是否支持EHC功能。
具体可参考S101a。
S201b:SN向MN发送Xn接口建立响应(Xn setup response)。
其中,该Xn setup response可以包括第二指示信息,该第二指示信息用于指示SN是否支持EHC功能。
具体可参考S101b。
S202a:MN向UE发送用户设备能力查询UECapabilityEnquiry消息,用于请求获取UE的能力信息。
具体可参考S102a。
S202b:UE向MN发送用户设备能力信息UECapabilityInformation。
其中,该用户设备能力信息包括UE支持的为EHC功能维护的context的数量。为了便于叙述该数量,本实施例中标记为第一数量。
作为一种示例,该数量可以是该UE支持的为EHC功能维护的context的最大数量。量。
可选的,MN可以从核心网获取用户设备能力信息,而不从UE获取上述用户设备能力信息。其中,核心网可以从UE获取上述用户设备能力信息并保存。
S203:MN确定SN能够为UE配置的为EHC功能维护的context的数量。
具体的,MN根据上述用户设备能力信息确定SN能够为UE配置的为EHC功能维护的context的数量。为了便于叙述该数量,本实施例中标记为第二数量。其中,第二数量小于或等于上述第一数量。
具体的,上述第二数量可以理解为UE和SN间的DRB在应用EHC功能时能够创建的context的最大数量。
作为一种示例,该第二数量可以是MN确定的SN能够为UE配置的为EHC功能维护的context的最大数量;或者,第二数量可以是MN确定的SN需要或将要为UE配置的为EHC功能维护的context的数量。
S204:MN向SN发送辅站添加请求消息。
其中,该辅站添加请求消息包括上述第二数量。
具体可参考S104。
S205:SN向MN发送辅站添加请求确认消息。
可选的,SN可以包括第三指示信息,第三指示信息用于指示SN同意上述第二数量;或者,SN可以包括第四指示信息,第四指示信息用于指示SN不支持EHC功能;或者,SN可以包括第五指示信息,第五指示信息用于指示SN期望的为UE配置的为EHC功能维护的context的数量。
可选的,SN可以根据第一数量确定SN期望的为UE配置的为EHC功能维护的context的数量。为了便于叙述该数量,本实施例中将该数量标记为第三数量。其中,第三数量小于或等于上述第一数量。作为一种示例,第三数量可以是SN期望的为UE 配置的为EHC功能维护的context的最大数量;或者,第三数量可以是SN期望的需要或将要为UE配置的为EHC功能维护的context的数量。
可选的,若该辅站添加请求确认消息不包括上述第三指示信息、第四指示信息、第五指示信息中的任何一个,可以表示SN同意上述第二数量。
可选的,可以不通过S101a和S101b来交互MN和SN是否支持EHC功能,而通过SN向MN发送该辅站添加请求确认消息使MN获知SN是否支持EHC功能。
可选的,SN是eNB时,该辅站添加请求确认消息是SeNB Addition Request Acknowledge。
可选的,SN是gNB时,该辅站添加请求确认消息是SgNB Addition Request Acknowledge。
S206a:SN向MN发送辅站修改要求SN Modification Required消息。
其中,该辅站修改要求消息包括SN期望的为UE配置的为EHC功能维护的context的数量。即S205中介绍的第三数量。
S206a为可选的步骤。若SN不同意S204中接收的第二数量,或者SN希望改变为UE配置的为EHC功能维护的context的数量,SN可以向MN发送上述第三数量,即执行S206a。
具体的,SN根据S204中接收的第一数量确定第三数量。其中,第三数量小于或等于上述第一数量。
作为一种示例,第三数量可以是SN期望的为UE配置的为EHC功能维护的context的最大数量;或者,第三数量可以是SN期望的需要或将要为UE配置的为EHC功能维护的context的数量。
具体可参考S106。
S207a:MN向SN发送辅站修改请求SN Modification Request。
其中,该辅站修改请求包括MN再次确定的SN能够为UE配置的为EHC功能维护的context的数量。
具体的,MN根据终端能力信息和S206中的辅站修改要求再次确定SN能够为UE配置的为EHC功能维护的context的数量,为了便于叙述,本申请实施例中标记为第四数量。其中,第四数量小于或等于上述第一数量。可选的,第四数量小于或等于第三数量。
具体可参考S107a。
S207b:SN向MN发送辅站修改请求确认消息SN Modification Request Acknowledge。
具体可参考S107b。
S206b:MN向SN发送辅站修改确认消息。
具体可参考S106b。
S208:MN向UE发送RRC重配置消息。
其中,该消息包括MN和UE间的DRB的配置信息。具体的,MN和UE建立有一个或多个DRB,上述RRC重配置消息包括一个或多个配置信息,其中每个配置信息对应MN和UE间的一个DRB。
其中,DRB的配置信息可以包括第六指示信息,用于指示能够为该DRB的EHC功能维护的context的最大数量。例如,在配置信息中包括一个字段maxCID,该字段的取值用于表示该最大数量。应用EHC功能的各DRB维护的context的最大数量之和不超过第一数量和第二数量的差值。也就是应用EHC功能的各DRB的maxCID可以不同,但maxCID的总和不超过第一数量和第二数量的差值。
可选的,若执行S107a和S107b,应用EHC功能的各DRB维护的context的最大数量之和不超过第一数量和第四数量的差值。
具体可参考S108。
S209:SN向UE发送RRC重配置消息。
其中,该消息包括SN和UE间的DRB的配置信息。具体的,SN和UE建立有一个或多个DRB,上述RRC重配置消息包括一个或多个配置信息,其中每个配置信息对应SN和UE间的一个DRB。
其中,DRB的配置信息可以包括第六指示信息,用于指示能够为该DRB的EHC功能维护的context的最大数量。例如,在配置信息中包括一个字段maxCID,该字段的取值用于表示该最大数量。应用EHC功能的各DRB维护的context的最大数量之和不超过第二数量。也就是应用EHC功能的各DRB的maxCID可以不同,但maxCID的总和不超过第二数量。
可选的,若执行S107a和S107b,应用EHC功能的各DRB维护的context的最大数量之和不超过第四数量。
通过上述过程,MN和SN可以对UE支持的为EHC功能维护的context的数量进行协商和划分。避免了在应用EHC功能的过程中MN和SN创建的context的数量之和超过了UE能够维护的context的数量而导致UE不能完整的创建context,不能正确实现EHC功能。
对于MN和SN间协商和划分UE支持的为EHC功能维护的context的数量,另一种可选的实现方式是在S204中,MN向SN发送UE支持的为EHC功能维护的context的数量,MN还向SN发送MN的RRC配置信息,该RRC配置信息可以用于MN为UE配置应用EHC功能的DRB,该RRC配置信息包括为应用EHC功能维护的context的数量。SN根据UE支持的为EHC功能维护的context的数量,以及上述MN的RRC配置信息确定SN能够为UE配置的为EHC功能维护的context的数量。SN根据该数量向UE发送RRC配置信息,该RRC配置信息用于SN为UE配置应用EHC功能的DRB,该RRC配置信息包括为应用EHC功能维护的context的数量。
本申请实施例以MN和SN间协商UE支持的为EHC功能维护的context的数量为例,对图4所示的通信方法进行介绍;本领域技术人员可以理解的是,图4所示的通信方法还可以用于MN和SN间协商UE支持的为其他功能维护的context的数量,在此不作赘述。
图5是本申请实施例的通信方法的另一种示意性流程图。其中,图5所示的通信方法可以应用于终端设备间通信的场景,本申请实施例以UE1和UE2间的通信为示例对本申请的技术方案进行介绍。图5所示的UE1和UE2可以通过单播通信、或者通过组播通信、或者通过广播通信。图5的通信方法包括:
S301:UE2向UE1发送请求消息,该请求消息用于请求UE1的能力信息。
S301为可选的步骤。
S302:UE1向UE2发送UE1的能力信息。
具体的,该能力信息包括UE1的Sidelink接口的UDC能力,该UDC能力包括支持UDC的压缩侧功能的能力或支持UDC的解压侧功能的能力或支持UDC的压缩侧和解压侧的能力。UE1的Sidelink接口支持UDC的压缩侧功能时,UE1的SLRB承载的数据可以在UE1的PDCP实体中进行数据帧压缩。UE1的Sidelink接口支持UDC的解压侧功能时,UE1接收到SLRB承载的数据后可以在UE1的PDCP实体中进行数据帧解压缩。
可选的,UDC能力还包括UE1支持应用UDC功能的SLRB的数量。
可选的,UDC能力还包括UE1的Sidelink接口支持的UDC功能的参数,该参数可以包括:UDC字典类型、UDC缓存大小、UDC压缩算法、UDC初始字典、UDC优先级。
S303:UE2向UE1发送SLRB的配置信息。
具体的,UE2根据UE1的能力信息确定UE2和UE1间的SLRB可以应用的功能。UE2和UE1间的一个SLRB的配置信息中可以包括该SLRB应用UDC功能的信息。
可选的,UE2根据默认数量确定UE2和UE1间的SLRB中应用UDC功能的SLRB的数量,应用UDC功能的SLRB的配置信息中包括UDC功能的信息。
可选的,UE2根据S302中UE1支持应用UDC功能的SLRB的数量确定UE2和UE1间的SLRB中应用UDC功能的SLRB的数量,应用UDC功能的SLRB的配置信息中包括UDC功能的信息。
可选的,配置信息中包括的UDC功能的信息的设计可以参考S108中对UDC信息的设计。
可选的,本申请实施例中,UE1和UE2间通信的内容可以由侧行链路RRC信令携带,或者由上行信令携带,如PC5-S信令,或非接入层(NAS)信令携带,具体不做限定。
通过提供UE1的能力信息,UE2能够为UE1的SLRB配置UE1支持的功能,避免了UE2发送UE1不能处理的数据包而导致传输错误。通过进一步提供UE1支持UDC功能的SLRB的数量,UE2为UE1配置应用UDC功能的SLRB数量不会超过UE1应用UDC功能的SLRB的数量限制,避免了UE1对数据包的处理错误或者由于等待处理而出现拥塞。
本申请实施例以UE1和UE2间协商各自支持的UDC功能为例,对图5所示的通信方法进行介绍;本领域技术人员可以理解的是,图5所示的通信方法还可以用于UE1和UE2间协商各自支持的PDCP复制功能、或者用于UE1和UE2间协商各自支持的EHC功能、或者用于UE1和UE2间协商各自支持的其他功能,在此不作赘述。
图6是本申请实施例的通信方法的另一种示意性流程图。其中,图6所示的通信方法可以应用于终端设备间通信的场景,本申请实施例以UE1和UE2间的通信为示例对本申请的技术方案进行介绍。图6所示的UE1和UE2通过单播通信。图6与图5所示的通信方法的区别在于由接入网设备而不是由UE2确定UE1和UE2间的SLRB 的配置信息。图6的通信方法包括:
S401:UE2向UE1发送请求消息,该请求消息用于请求UE1的能力信息。
该步骤为可选的步骤。
S402:UE1向UE2发送UE1的能力信息。
具体可参考S302。此处不作赘述。
S403:UE2向接入网设备发送UE1和UE2的能力信息。
UE2的能力信息的内容可以参考S302中对UE1的能力信息的介绍,此处不作赘述。
S404:接入网设备向UE2发送UE1和UE2间的SLRB的配置信息。
具体的,接入网设备确认UE1和UE2间是单播通信。接入网设备根据UE1和UE2的能力信息,确定UE1和UE2间的SLRB的配置信息。
S405:UE2向UE1发送SLRB的配置信息。
具体的,UE2可以向UE1发送UE2在S404中接收的SLRB的配置信息。
通过提供UE1和UE2的能力信息,接入网设备能够为UE1和UE2间建立的SLRB配置UE1和UE2支持的功能,避免了UE2和UE1不能处理对方发送的数据包而导致传输错误。通过进一步提供UE1和UE2支持UDC功能的SLRB的数量,接入网设备为UE2和UE1配置应用UDC功能的SLRB数量不会超过UE1和UE2应用UDC功能的SLRB的数量限制,避免了UE1或者UE2对数据包的处理错误或者由于等待处理而出现拥塞。
本申请实施例以UE1和UE2通过接入网设备协商各自支持的UDC功能为例,对图5所示的通信方法进行介绍;本领域技术人员可以理解的是,图5所示的通信方法还可以用于UE1和UE2间协商各自支持的PDCP复制功能、或者用于UE1和UE2间协商各自支持的EHC功能、或者用于UE1和UE2间协商各自支持的其他功能,在此不作赘述。
图7所示是本申请实施例的通信方法的另一种示意性流程图。其中,图7所示的通信方法可以应用于终端与多个接入网设备通信的场景。其中,第一接入网设备可以是图3中的MN,第一接入网设备可以是图3中的SN,终端可以是图3中的UE。图7的通信方法包括:
S501:第一接入网设备获取终端的第一信息。
其中,所述第一信息用于指示第一数量,所述第一数量是所述终端支持的第一功能对象的数量,所述第一功能对象是应用第一功能的数据无线承载DRB或者是为所述第一功能维护的上下文context,所述第一功能是数据帧压缩功能、或者分组数据汇聚协议PDCP复制功能、或者以太头压缩EHC操作功能
具体可参考S102。
S502:第一接入网设备根据第一信息确定第二数量。
其中,所述第二数量是第二接入网设备能够为所述终端配置的所述第一功能对象的数量,所述第二数量小于或等于所述第一数量。
具体可参考S103。
S503:第一接入网设备向第二接入网设备发送第二信息。
其中,第二信息用于指示第二数量。
具体可参考S104,S107a,S107b。
可选的,终端支持的所述第一功能对象的数量是所述终端支持的所述第一功能对象的最大数量,具体可参考S102。
可选的,终端支持为第一功能维护的context的数量是终端支持的为第一功能维护的context的最大数量,具体可参考S102。
可选的,所述第二接入网设备能够为所述终端配置的所述第一功能对象的数量是:所述第二接入网设备能够为所述终端配置的所述第一功能对象的最大数量,或者,所述第二接入网设备要为所述终端配置的所述第一功能对象的数量,具体可参考S103。
可选的,第一接入网设备向所述第二接入网设备发送所述第一信息,具体可参考S104。
可选的,第一接入网设备从所述第二接入网设备接收第三信息;其中,所述第三信息用于指示第三数量,所述第三数量是所述第二接入网设备期望为所述终端配置的所述第一功能对象的数量,所述第三数量小于或等于所述第一数量,具体可参考S106。
可选的,所述第二接入网设备期望为所述终端配置的所述第一功能对象的数量是:所述第二接入网设备期望为所述终端配置的所述第一功能对象的最大数量,或者,所述第二接入网设备期望要为所述终端配置的所述第一功能对象的数量,具体可参考S106。
可选的,S502包括:第一接入网设备根据所述第一信息和所述第三信息确定所述第二数量;所述第二数量小于或等于所述第三数量,具体可参考S107。
可选的,第二接入网设备从第一接入网设备接收第四信息,第四信息用于指示第一接入网设备支持第一功能,具体可参考S101。
可选的,S503包括:第二接入网设备向第一接入网设备发送辅站添加请求消息,辅站添加请求消息包括所述第二信息;或者,第二接入网设备向第一接入网设备发送辅站修改请求消息,辅站修改请求消息包括第二信息,具体可参考S104和S107。
可选的,第二接入网设备从第一接入网设备接收第三信息包括:第二接入网设备从第一接入网设备接收辅站修改要求消息,辅站修改要求消息包括第三信息,具体可参考S106。
可选的,所述第一接入网设备根据所述第一信息和所述第二数量向所述终端设备发送配置信息;其中,所述配置信息用于配置所述终端所述第一功能对象或者所述第一功能对象的数量;其中,所述配置信息配置的所述第一功能对象的数量小于或等于所述第一数量和所述第二数量的差值,具体可参考S108。
可选的,第二接入网设备获取终端的第五信息;其中,第五信息用于指示终端支持第一功能的能力参数;能力参数包括如下的一种或者多种:UDC字典类型;UDC缓存大小;UDC压缩算法;UDC初始字典;UDC优先级,具体可参考S102。
通过上述S501,S502,S503,第二接入网设备和第一接入网设备可以对终端支持应用第一功能功能的DRB的数量进行协商和划分,还可以对终端支持为应用第一功能的DRB维护的context的数量进行协商和划分。避免了第二接入网设备和第一接入网设备为终端配置的功能超过终端能力限制而导致终端对数据包的处理错误或者由于等 待处理而出现拥塞。
图8所示是本申请实施例的通信方法的另一种示意性流程图。其中,图8所示的通信方法可以应用于终端与多个接入网设备通信的场景。其中,第一接入网设备可以是图3中的SN,第二接入网设备可以是图3中的MN,终端可以是图3中的UE。图8的通信方法包括:
S601:第二接入网设备从第一接入网设备接收第一信息。
其中,所述第一信息用于指示第一数量,所述第一数量是所述第二接入网设备能够为终端配置的第一功能对象的数量,所述第一功能对象是应用第一功能的数据无线承载DRB或者是为所述第一功能维护的上下文context,所述第一功能是数据帧压缩功能、或者分组数据汇聚协议PDCP复制功能、或者以太头压缩EHC操作功能。
具体可参考S104,S107。
S602:响应于所述第一信息,第二接入网设备向终端发送配置信息。
其中,所述配置信息用于配置所述第一功能对象或者所述第一功能对象的数量;其中,所述配置信息配置的所述第一功能对象的数量小于或等于所述第一数量。
具体可参考S109。
可选的,所述第二接入网设备能够为所述终端配置的所述第一功能对象的数量是:所述第二接入网设备能够为所述终端配置的所述第一功能对象的最大数量,或者,所述第二接入网设备要为所述终端配置的所述第一功能对象的数量,具体可参考S103。
可选的,所述第二接入网设备从所述第一接入网设备接收第二信息;其中,所述第二信息用于指示第二数量,所述第二数量是所述终端支持的所述第一功能对象的数量,具体可参考S104。
可选的,所述第二接入网设备根据所述第二信息确定第三数量;其中,所述第三数量是所述第二接入网设备期望为所述终端配置的所述第一功能对象的数量,所述第三数量小于或等于所述第二数量;所述第二接入网设备向所述第一接入网设备发送第三信息,所述第三信息用于指示所述第三数量,具体可参考S105。
可选的,所述第二接入网设备向所述第一接入网设备发送第四信息,所述第四信息用于指示所述第二接入网设备支持所述第一功能,具体可参考S101。
可选的,S601包括:第一接入网设备从第二接入网设备接收辅站添加请求消息,辅站添加请求消息包括第一信息;或者,第一接入网设备从第二接入网设备接收辅站修改请求消息,辅站修改请求消息包括第一信息,具体可参考S104,S107。
可选的,第一接入网设备向第二接入网设备发送第三信息包括:第一接入网设备向第二接入网设备发送辅站修改要求消息,辅站修改要求消息包括第三信息,具体可参考S107。
通过上述S601,S602,第一接入网设备和第二接入网设备可以对终端支持应用第一功能功能的DRB的数量进行协商和划分,还可以对终端支持为应用第一功能的DRB维护的context的数量进行协商和划分。避免了第一接入网设备和第二接入网设备为终端配置的功能超过终端能力限制而导致终端对数据包的处理错误或者由于等待处理而出现拥塞。
图9所示是本申请实施例提供的一种通信装置,可以用于实现例如图3中MN的 功能,或者图4中MN的功能,或者图7中第一接入网设备的功能。该装置也可以用于实现例如图3中SN的功能,或者图4中SN的功能,或者图8中第二接入网设备的功能。该装置也可以用于实现例如实现图6中接入网设备的功能。图9所示为本申请实施例提供的通信装置900的结构示意图。该通信装置900包括天线901、射频装置902、基带装置903。天线901与射频装置902连接。在上行方向上,射频装置902通过天线901接收终端发送的信息,将用户设备发送的信息发送给基带装置903进行处理。在下行方向上,基带装置903对终端的信息进行处理,并发送给射频装置902,射频装置902对用户设备的信息进行处理后经过天线901发送给终端。
基带装置903可以包括一个或多个处理元件9031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置903还可以包括存储元件9032和接口9033,存储元件9032用于存储执行本申请方案的计算机执行指令,并由处理元件9031来控制执行;接口9033用于与射频装置902交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。处理元件9031用于执行存储元件9032中存储的计算机执行指令,从而实现图3中MN的功能,或者图4中MN的功能,或者图7中第一接入网设备的功能;或者实现例如图3中SN的功能,或者图4中SN的功能,或者图8中第二接入网设备的功能;或者实现图6中接入网设备的功能。本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。以上各个实施例中,由第一网元或者第一装置实现的方法和/或步骤,也可以由基带装置903上的芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上第一网元或者第一装置执行的任一种方法的各个步骤,接口电路用于与其它装置通信。
图9所示的通信装置900包括可以用于实现例如图3中MN的功能,或者图4中MN的功能,或者图7中第一接入网设备的功能:
可选的,基带装置903具体用于:S103,S502中确定为第二接入网设备分配的第二数量的功能。
可选的,接口9033具体用于:S101a中发送接口建立请求的功能。
可选的,接口9033具体用于:S101b中接收接口建立响应的功能。
可选的,天线901具体用于:S102b,S501中接收用户终端能力信息的功能。
可选的,接口9033具体用于:S104,S503中发送为第二接入网设备分配的第二数量的功能。
可选的,接口9033具体用于:S106中接收辅站修改要求的功能。
可选的,接口9033具体用于:S107a中发送辅站修改请求的功能。
可选的,天线901具体用于:S108中发送配置信息的功能。
图9所示的通信装置900可以用于实现例如图3中SN的功能,或者图4中SN的功能,或者图8中第二接入网设备的功能:
可选的,基带装置903具体用于:S105中确定期望的第三数量的功能。
可选的,接口9033具体用于:S101a中接收接口建立请求的功能。
可选的,接口9033具体用于:S101b中发送接口建立响应的功能。
可选的,接口9033具体用于:S104,S107a,S601中接收为第一接入网设备分配 的第二数量的功能。
可选的,接口9033具体用于:S106中发送期望的第三数量的功能。
可选的,天线901具体用于:S109,S602中发送配置信息的功能。
图9所示的通信装置900可以用于实现例如图6中接入网设备的功能:
可选的,基带装置903具体用于S404中确定SLRB的配置信息的功能;
可选的,天线901具体用于:S403中接收UE1和UE2的能力信息的功能;
可选的,天线901具体用于:S404中发送SLRB的配置信息的功能。
上述的通信装置900可以是一个通用装置或者是一个专用装置。例如通信装置900可以是网络服务器、基站或具有图9中类似结构的设备。本申请实施例不限定通信装置900的类型。
可以理解的是,以上实施例中,由图3中的MN,或者图4中的MN,或者图7中的第一接入网设备;或者图3中SN的功能,或者图4中SN的功能,或者图8中第二接入网设备;或者图6中接入网设备实现的方法和/或步骤,也可以由实现上述装置功能的芯片系统实现。
图10所示是本申请实施例提供的一种通信装置。该装置可以用于实现例如图5中UE1的功能,或者图6中UE1的功能。该装置也可以用于实现例如图5中UE2的功能。该装置也可以用于实现例如图6中UE2的功能。
图10所示为本申请实施例提供的通信装置1000的结构示意图。该通信装置1000包括一个或多个处理器1001,通信线路1002,以及至少一个通信接口(图10中仅是示例性的以包括通信接口1003,以及一个处理器1001为例进行说明),可选的还可以包括存储器1004。
处理器1001可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路1002用于连接不同组件。
通信接口1003,可以是收发模块用于与其他设备或通信装置或通信网络,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置,还可以是网卡,光纤交换装置。可选的,通信接口1003也可以是位于处理器1001内的收发电路,用以实现处理器的信号输入和信号输出。
存储器1004可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1002与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1004用于存储执行本申请方案的计算机执行指令,并由处理器1001来控制执行。处理器1001用于执行存储器1004中存储的计算机执行指令,从而实现本申请的图5中UE1的功能、或者图6中UE1的功能、或者图5中UE2的功能、或者图6中UE2的功能。本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,通信装置1000还可以包括输出设备1006和输入设备1007。输出设备1006和处理器1001通信,可以以多种方式来显示信息。
在具体实现中,作为一种实施例,处理器1001可以包括一个或多个CPU,例如图10中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置1000可以包括多个处理器,例如图10中的处理器1001和处理器1005。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
图10所示的通信装置1000可以用于实现例如图5中UE1的功能,或者图6中UE1的功能:
可选的,处理器1001具体用于:S303,S405中根据SLRB的配置信息进行配置的功能;
可选的,输入设备1007具体用于:S301,S401中接收请求消息的功能;
可选的,输出设备1006具体用于:S302,S402中发送UE1的能力信息的功能;
可选的,输入设备1007具体用于:S303,S405中接收SLRB的配置信息的功能。
图10所示的通信装置1000可以用于实现例如图5中UE2的功能,或者图6中UE2的功能:
可选的,处理器1001具体用于:S303中确定SLRB的配置的功能;
可选的,输出设备1006具体用于:S301,S401中发送请求信息的功能;
可选的,输入设备1007具体用于:S302,S402中接收UE1的能力信息的功能;
可选的,输出设备1006具体用于:S403中发送UE1和UE2的能力信息的功能;
可选的,输入设备1007具体用于:S404中接收SLRB配置信息的功能;
可选的,输出设备1006具体用于:S303,S405中发送SLRB的配置信息的功能。
上述的通信装置1000可以是一个通用装置或者是一个专用装置。例如通信装置1000可以是网络服务器、嵌入式设备、台式机、便携式电脑、移动手机、平板电脑、无线终端设备或具有图10中类似结构的设备。本申请实施例不限定通信装置1000的类型。
可以理解的是,以上各个实施例中,由图5中的UE1、或者图6中的UE1、或者图5中的UE2、或者图6中的UE2实现的方法和/或步骤,也可以由实现上述装置功能的芯片系统实现。
图11所示是本申请实施例提供的一种通信装置,可以用于实现例如图3中MN的功能,或者图4中MN的功能,或者图7中第一接入网设备的功能;也可以用于实现例如图3中SN的功能,或者图4中SN的功能,或者图8中第二接入网设备的功能; 也可以用于例如实现图6中接入网设备的功能。本申请实施例可以根据上述方法实施例中对通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的单元集成在一个处理模块中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图11所示为本申请实施例提供的通信装置1100的结构示意图。该通信装置1100包括处理单元1101、和第一收发单元1102、和第二收发单元1103,其中第二收发单元1103可以是空口收发单元。
图11所示的通信装置1100可以用于实现例如图3中MN的功能,或者图4中MN的功能,或者图7中第一接入网设备的功能:
可选的,处理单元1101具体用于:S103,S502中确定为第二接入网设备分配的第二数量的功能。
可选的,收发单元1102具体用于:S101a中发送接口建立请求的功能。
可选的,收发单元1102具体用于:S101b中接收接口建立响应的功能。
可选的,收发单元1103具体用于:S102b,S501中接收用户终端能力信息的功能。
可选的,收发单元1102具体用于:S104,S503中发送为第二接入网设备分配的第二数量的功能。
可选的,收发单元1102具体用于:S106中接收辅站修改要求的功能。
可选的,收发单元1102具体用于:S107a中发送辅站修改请求的功能。
可选的,收发单元1103具体用于:S108中发送配置信息的功能。
图11所示的通信装置1100可以用于实现例如图3中SN的功能,或者图4中SN的功能,或者图8中第二接入网设备的功能:
可选的,处理单元1101具体用于:S105中确定期望的第三数量的功能。
可选的,收发单元1102具体用于:S101a中接收接口建立请求的功能。
可选的,收发单元1102具体用于:S101b中发送接口建立响应的功能。
可选的,收发单元1102具体用于:S104,S107a,S601中接收为第一接入网设备分配的第二数量的功能。
可选的,收发单元1102具体用于:S106中发送期望的第三数量的功能。
可选的,收发单元1103具体用于:S109,S602中发送配置信息的功能。
图11所示的通信装置1100可以用于实现例如图6中接入网设备的功能:
可选的,处理单元1101具体用于S404中确定SLRB的配置信息的功能;
可选的,收发单元1103具体用于:S403中接收UE1和UE2的能力信息的功能;
可选的,收发单元1103具体用于:S404中发送SLRB的配置信息的功能。具体的,图11中的收发单元1102和处理单元1101的功能/实现过程可以通过图9的通信装置中的处理器调用存储器中存储的计算机执行指令来实现。或者,图11中的处理单元1101的功能/实现过程可以通过图9的通信装置中的处理器调用存储器中存储的计算机执行指令来实现,图11中的收发单元1102的功能/实现过程可以通过图9的通信装置中的通信接口来实现。
图12所示是本申请实施例提供的一种通信装置,可用于实现例如图5中UE1的功能,或者图6中UE1的功能。该装置也可以用于实现例如图5中UE2的功能。该装置也可以用于实现例如图6中UE2的功能。本申请实施例可以根据上述方法实施例中对通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的单元集成在一个处理模块中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图12所示为本申请实施例提供的通信装置1200的结构示意图。该通信装置1200包括处理单元1201、和收发单元1202。
图12所示的通信装置1200可以用于实现例如图5中UE1的功能,或者图6中UE1的功能:
可选的,处理单元1201具体用于:S303,S405中根据SLRB的配置信息进行配置的功能;
可选的,收发单元1202具体用于:S301,S401中接收请求消息的功能;
可选的,收发单元1202具体用于:S302,S402中发送UE1的能力信息的功能;
可选的,收发单元1202具体用于:S303,S405中接收SLRB的配置信息的功能。
图12所示的通信装置1200可以用于实现例如图5中UE2的功能,或者图6中UE2的功能:
可选的,处理单元1201具体用于:S303中确定SLRB的配置的功能;
可选的,收发单元1202具体用于:S301,S401中发送请求信息的功能;
可选的,收发单元1202具体用于:S302,S402中接收UE1的能力信息的功能;可选的,收发单元1202具体用于:S403中发送UE1和UE2的能力信息的功能;
可选的,收发单元1202具体用于:S404中接收SLRB配置信息的功能;
可选的,收发单元1202具体用于:S303,S405中发送SLRB的配置信息的功能。
具体的,图12中的收发单元1202和处理单元1201的功能/实现过程可以通过图10的通信装置中的处理器调用存储器中存储的计算机执行指令来实现。或者,图12中的处理单元1201的功能/实现过程可以通过图10的通信装置中的处理器调用存储器中存储的计算机执行指令来实现,图12中的收发单元1202的功能/实现过程可以通过图10的通信装置中的通信接口来实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中 心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种通信方法,其特征在于,包括:
    第一接入网设备获取终端的第一信息;其中,所述第一信息用于指示第一数量,所述第一数量是所述终端支持的第一功能对象的数量,所述第一功能对象是应用第一功能的数据无线承载DRB或者是为所述第一功能维护的上下文context,所述第一功能是数据帧压缩功能、或者分组数据汇聚协议PDCP复制功能、或者以太头压缩EHC操作功能;
    所述第一接入网设备根据所述第一信息确定第二数量;其中,所述第二数量是第二接入网设备能够为所述终端配置的所述第一功能对象的数量,所述第二数量小于或等于所述第一数量;
    所述第一接入网设备向所述第二接入网设备发送第二信息,所述第二信息用于指示所述第二数量。
  2. 根据权利要求1所述的方法,其特征在于,
    所述终端支持的所述第一功能对象的数量是所述终端支持的所述第一功能对象的最大数量。
  3. 根据权利要求1所述的方法,其特征在于,
    所述第二接入网设备能够为所述终端配置的所述第一功能对象的数量是:
    所述第二接入网设备能够为所述终端配置的所述第一功能对象的最大数量,或者,
    所述第二接入网设备要为所述终端配置的所述第一功能对象的数量。
  4. 根据权利要求1-3任一所述的方法,其特征在于,还包括:
    所述第一接入网设备向所述第二接入网设备发送所述第一信息。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    所述第一接入网设备从所述第二接入网设备接收第三信息;其中,所述第三信息用于指示第三数量,所述第三数量是所述第二接入网设备期望为所述终端配置的所述第一功能对象的数量,所述第三数量小于或等于所述第一数量。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第二接入网设备期望为所述终端配置的所述第一功能对象的数量是:
    所述第二接入网设备期望为所述终端配置的所述第一功能对象的最大数量,或者,
    所述第二接入网设备期望要为所述终端配置的所述第一功能对象的数量。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一接入网设备根据所述第一信息确定所述第二数量包括:
    所述第一接入网设备根据所述第一信息和所述第三信息确定所述第二数量;所述第二数量小于或等于所述第三数量。
  8. 根据权利要求1-7任一所述的方法,其特征在于,还包括:
    所述第一接入网设备从所述第二接入网设备接收第四信息,所述第四信息用于指示所述第二接入网设备支持所述第一功能。
  9. 根据权利要求1-8任一所述的方法,其特征在于,所述第一接入网设备向所述第二接入网设备发送所述第二信息包括:
    所述第一接入网设备向所述第二接入网设备发送辅站添加请求消息,所述辅站添加请求消息包括所述第二信息;或者,
    所述第一接入网设备向所述第二接入网设备发送辅站修改请求消息,所述辅站修改请求消息包括所述第二信息。
  10. 根据权利要求5-7任一所述的方法,其特征在于,所述第一接入网设备从所述第二接入网设备接收所述第三信息包括:
    所述第一接入网设备从所述第二接入网设备接收辅站修改要求消息,所述辅站修改要求消息包括所述第三信息。
  11. 根据权利要求1-10任一所述的方法,其特征在于,还包括:
    所述第一接入网设备根据所述第一信息和所述第二数量向所述终端设备发送配置信息;
    其中,
    所述配置信息用于配置所述终端所述第一功能对象或者所述第一功能对象的数量;其中,所述配置信息配置的所述第一功能对象的数量小于或等于所述第一数量和所述第二数量的差值。
  12. 根据权利要求1-11任一所述的方法,其特征在于,还包括:
    所述第一接入网设备获取所述终端的第五信息;其中,所述第五信息用于指示所述终端支持的所述第一功能的能力参数;
    所述能力参数包括以下的一种或者多种:
    UDC字典类型;UDC缓存大小;UDC压缩算法;UDC初始字典;UDC优先级。
  13. 一种通信方法,其特征在于,包括:
    第二接入网设备从第一接入网设备接收第一信息;其中,所述第一信息用于指示第一数量,所述第一数量是所述第二接入网设备能够为终端配置的第一功能对象的数量,所述第一功能对象是应用第一功能的数据无线承载DRB或者是为所述第一功能维护的上下文context,所述第一功能是数据帧压缩功能、或者分组数据汇聚协议PDCP复制功能、或者以太头压缩EHC操作功能;
    响应于所述第一信息,所述第二接入网设备向所述终端发送配置信息;其中,所述配置信息用于配置所述第一功能对象或者所述第一功能对象的数量;其中,所述配 置信息配置的所述第一功能对象的数量小于或等于所述第一数量。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第二接入网设备能够为所述终端配置的所述第一功能对象的数量是:
    所述第二接入网设备能够为所述终端配置的所述第一功能对象的最大数量,或者,
    所述第二接入网设备要为所述终端配置的所述第一功能对象的数量。
  15. 根据权利要求13或14所述的方法,其特征在于,还包括:
    所述第二接入网设备从所述第一接入网设备接收第二信息;其中,所述第二信息用于指示第二数量,所述第二数量是所述终端支持的所述第一功能对象的数量。
  16. 根据权利要求15所述的方法,其特征在于,还包括:
    所述第二接入网设备根据所述第二信息确定第三数量;其中,所述第三数量是所述第二接入网设备期望为所述终端配置的所述第一功能对象的数量,所述第三数量小于或等于所述第二数量;
    所述第二接入网设备向所述第一接入网设备发送第三信息,所述第三信息用于指示所述第三数量。
  17. 根据权利要求13-16任一所述的方法,其特征在于,还包括:
    所述第二接入网设备向所述第一接入网设备发送第四信息,所述第四信息用于指示所述第二接入网设备支持所述第一功能。
  18. 根据权利要求13-17任一所述的方法,其特征在于,所述第二接入网设备从所述第一接入网设备接收所述第一信息包括:
    所述第二接入网设备从所述第一接入网设备接收辅站添加请求消息,所述辅站添加请求消息包括所述第一信息;或者,
    所述第二接入网设备从所述第一接入网设备接收辅站修改请求消息,所述辅站修改请求消息包括所述第一信息。
  19. 根据权利要求16所述的方法,其特征在于,所述第二接入网设备向所述第一接入网设备发送所述第三信息包括:
    所述第二接入网设备向所述第一接入网设备发送辅站修改要求消息,所述辅站修改要求消息包括所述第三信息。
  20. 一种接入网装置,其特征在于,包括:
    处理器,用于读取并运行存储器中的指令,以实现如权利要求1-12任一所述的方法。
  21. 一种接入网装置,其特征在于,包括:
    处理器,用于读取并运行存储器中的指令,以实现如权利要求13-19任一所述的方法。
  22. 一种计算机存储介质,用于存储指令,当所述指令在通信装置上运行时,以实现如权利要求1-19任一所述的方法。
  23. 一种计算机程序产品,包括指令,当所述指令在通信装置上运行时,以实现如权利要求1-19任一所述的方法。
  24. 一种通信系统,其特征在于,包括如权利要求20所述的接入网装置和如权利要求21所述的接入网装置。
PCT/CN2019/109755 2019-09-30 2019-09-30 一种通信方法、装置和系统 WO2021062827A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19947942.9A EP4030841A4 (en) 2019-09-30 2019-09-30 COMMUNICATION METHOD, APPARATUS AND SYSTEM
KR1020227013991A KR20220070494A (ko) 2019-09-30 2019-09-30 통신 방법, 장치 및 시스템
CN201980100745.6A CN114503719A (zh) 2019-09-30 2019-09-30 一种通信方法、装置和系统
AU2019469001A AU2019469001B2 (en) 2019-09-30 2019-09-30 Communication method, apparatus, and system
CA3153036A CA3153036A1 (en) 2019-09-30 2019-09-30 Communication method, apparatus, and system
PCT/CN2019/109755 WO2021062827A1 (zh) 2019-09-30 2019-09-30 一种通信方法、装置和系统
US17/657,046 US20220217549A1 (en) 2019-09-30 2022-03-29 Communication Method, Apparatus, and System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109755 WO2021062827A1 (zh) 2019-09-30 2019-09-30 一种通信方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/657,046 Continuation US20220217549A1 (en) 2019-09-30 2022-03-29 Communication Method, Apparatus, and System

Publications (1)

Publication Number Publication Date
WO2021062827A1 true WO2021062827A1 (zh) 2021-04-08

Family

ID=75336717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109755 WO2021062827A1 (zh) 2019-09-30 2019-09-30 一种通信方法、装置和系统

Country Status (7)

Country Link
US (1) US20220217549A1 (zh)
EP (1) EP4030841A4 (zh)
KR (1) KR20220070494A (zh)
CN (1) CN114503719A (zh)
AU (1) AU2019469001B2 (zh)
CA (1) CA3153036A1 (zh)
WO (1) WO2021062827A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023005770A1 (zh) * 2021-07-28 2023-02-02 华为技术有限公司 信息指示方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104519583A (zh) * 2013-09-27 2015-04-15 上海贝尔股份有限公司 一种通过双连接进行数据传输和处理的方法、装置和系统
CN104936291A (zh) * 2014-03-21 2015-09-23 中兴通讯股份有限公司 一种控制终端能力的方法、终端及基站
US20190149993A1 (en) * 2017-11-14 2019-05-16 Futurewei Technologies, Inc. System and method of providing ue capability for support of security protection on bearers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230027A1 (ja) * 2017-06-15 2018-12-20 日本電気株式会社 無線アクセスネットワークノード及び無線端末並びにこれらの方法
JP2020536405A (ja) * 2017-09-07 2020-12-10 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. データ伝送方法及び端末装置
EP3689061B1 (en) * 2017-09-28 2023-08-16 ZTE Corporation Methods for performing dual connectivity in sidelink communications, communication node and computer-readable medium
CA3021658A1 (en) * 2017-10-20 2019-04-20 Comcast Cable Communications, Llc Non-access stratum capability information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104519583A (zh) * 2013-09-27 2015-04-15 上海贝尔股份有限公司 一种通过双连接进行数据传输和处理的方法、装置和系统
CN104936291A (zh) * 2014-03-21 2015-09-23 中兴通讯股份有限公司 一种控制终端能力的方法、终端及基站
US20190149993A1 (en) * 2017-11-14 2019-05-16 Futurewei Technologies, Inc. System and method of providing ue capability for support of security protection on bearers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "DRB ID allocation for Option 4 and Option 7", 3GPP TSG-RAN WG2 MEETING #101 R2-1802521, 2 March 2018 (2018-03-02), XP051399234 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023005770A1 (zh) * 2021-07-28 2023-02-02 华为技术有限公司 信息指示方法和装置

Also Published As

Publication number Publication date
KR20220070494A (ko) 2022-05-31
AU2019469001A1 (en) 2022-04-21
EP4030841A1 (en) 2022-07-20
AU2019469001B2 (en) 2023-11-16
US20220217549A1 (en) 2022-07-07
CN114503719A (zh) 2022-05-13
CA3153036A1 (en) 2021-04-08
EP4030841A4 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
JP7318779B2 (ja) マスター無線アクセスネットワークノード、amf、及びこれらの方法
EP3606276B1 (en) Radio bearer determination in dual connectivity
WO2018126865A1 (zh) 控制信令配置方法及装置
WO2020164615A1 (zh) 一种通信方法及相关设备
US20210218817A1 (en) Communications method and apparatus
WO2013075602A1 (zh) 实现载波聚合的方法、基站和用户设备
WO2018059223A1 (zh) 一种通信方法及装置
WO2020206582A1 (zh) 一种用于中继通信的方法和装置
WO2018001297A1 (zh) 数据传输的方法及装置
TW201911824A (zh) 處理承載型態改變的裝置及方法
WO2019140955A1 (zh) 地址发送的方法、装置及存储介质
WO2020078248A1 (zh) 无线通信方法及设备
CN109691066B (zh) 数据复制下的处理方法及相关设备
US20220217549A1 (en) Communication Method, Apparatus, and System
JP7379507B2 (ja) 情報送信方法及び装置、並びに情報受信方法及び装置
WO2022206393A1 (zh) 通信方法及装置
WO2022042652A1 (zh) 上行数据处理方法、装置、网络设备、终端设备及介质
WO2019090728A1 (zh) 承载配置方法及相关产品
WO2021000818A1 (zh) 通信方法、装置和系统
WO2011153927A1 (zh) 一种资源状态过程的映射方法和设备
WO2021062717A1 (zh) 一种缓冲区状态报告传输方法及装置
WO2024067869A1 (zh) 通信方法和通信装置
WO2014000611A1 (zh) 传输数据的方法和装置
WO2023246746A1 (zh) 一种通信方法及相关设备
WO2022233011A1 (zh) 建立连接的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947942

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3153036

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019469001

Country of ref document: AU

Date of ref document: 20190930

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227013991

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019947942

Country of ref document: EP

Effective date: 20220412