WO2018126865A1 - 控制信令配置方法及装置 - Google Patents

控制信令配置方法及装置 Download PDF

Info

Publication number
WO2018126865A1
WO2018126865A1 PCT/CN2017/116113 CN2017116113W WO2018126865A1 WO 2018126865 A1 WO2018126865 A1 WO 2018126865A1 CN 2017116113 W CN2017116113 W CN 2017116113W WO 2018126865 A1 WO2018126865 A1 WO 2018126865A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
configuration information
information
slice
control information
Prior art date
Application number
PCT/CN2017/116113
Other languages
English (en)
French (fr)
Inventor
何青春
高音
黄河
刘旸
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/476,228 priority Critical patent/US20190356450A1/en
Publication of WO2018126865A1 publication Critical patent/WO2018126865A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/24Interfaces between hierarchically similar devices between backbone network devices

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a control signaling configuration method and apparatus.
  • the baseband unit (BBU) and the remote radio unit (Longbit Evolution, LTE for short)
  • the transmission capacity of the CPRI (Common Public Radio Interface) between the short-circuited RRUs poses a great challenge. Since the CPRI interface transmits IQ signals processed by physical layer coding and modulation, the CPRI interface has a large requirement for transmission delay and bandwidth. After the 5G air interface rate is increased to tens of Gbps, the traffic demand of the CPRI interface will rise to the Tbps level, which puts tremendous pressure on the network deployment cost and deployment difficulty. Therefore, in 5G, it is necessary to redefine the division mode of the preamble interface.
  • the network function with delay-insensitive is placed in the first network element (such as centralized processing).
  • the delay-sensitive network function is placed in the second network element (such as a distributed processing unit (DU), and the first network element and the second network element pass the ideal or Non-ideal fronthaul for transmission.
  • the first control plane protocol entity (such as the radio resource control RRC entity) is located in the first network element, and the first control plane protocol entity performs control signaling generation, maintains establishment and/or modification and/or release of the radio bearer, and maintains the second Parameter updates for control plane entities, third control plane entities, fourth control plane entities, and physical layers.
  • the function of the second protocol entity is similar to and enhanced on the basis of the PDCP function of the Long Term Evolution (LTE) system.
  • the function of the third protocol entity is similar to and enhanced on the RLC function of the Long Term Evolution (LTE), and the fourth protocol entity function is enhanced. It is similar to and enhanced on the Medium Access Control (MAC) function of Long Term Evolution (LTE).
  • MAC Medium Access Control
  • the first network element and the second network element communicate with each other through the fronthaul interface. Therefore, the related entity configuration information in the second network element needs to be sent by the first network element to the first network element through the interface between the first network element and the second network element.
  • the second network element, and the terminal-related configuration also needs to be sent by the first network element to the second network element through the interface, and further, sent by the second network element to the terminal.
  • the feedback message of the terminal and the feedback message of the second network element are also sent to the first network element through the interface.
  • the embodiments of the present disclosure provide a control signaling configuration method and apparatus, so as to at least solve the technical problem that the network elements in the related art cannot understand each other.
  • a control signaling configuration method including: a first network element generating control information; the first network element passing the control information between a first network element and a second network element The interface is sent to the second network element.
  • the first network element and the second network element are defined according to different processing delay requirements, and/or defined according to different transmission capacity requirements, and/or defined according to different service types.
  • the first network element generates control information according to the service type information, and the service type information includes at least one of the following: a service type, a radio bearer (RB), a logical channel (LCH), and a physical Layer parameter numerology, network slice slice.
  • the service type information includes at least one of the following: a service type, a radio bearer (RB), a logical channel (LCH), and a physical Layer parameter numerology, network slice slice.
  • the first network element includes at least one of: a first control plane protocol entity, a second protocol entity, some or all third protocol entities, some or all of the fourth protocol entities, some or all physical layers.
  • the second network element includes at least one of: part or all of the second protocol entity, part or all of the third protocol entity, part or all of the fourth protocol entity, part or all of the physical layer, and the radio frequency unit.
  • control information includes configuration information, where the configuration information includes at least one of the following: slice configuration information, numerology configuration information, schedule-free Grant-free configuration information, and logical channel prioritized (LCP) configuration.
  • Information Discontinuous Reception (DRX) configuration information, hybrid automatic repeat request hybrid automatic repeat request (Hybrid ARQ, HARQ) configuration information, cache status report BSR configuration information, power headroom report PHR configuration information, measurement configuration information.
  • the first network element generating the control information includes: the first network element generating the control information when performing at least one of adding, deleting, and updating operations on the configuration information.
  • the first network element sends the control information to the second network element by using an interface between the first network element and the second network element, where the first network element performs the adding of the configuration information. And transmitting, by the at least one of the operations, the control information to the second network element; or, after the first network element receives the request for acquiring the configuration information, the first network element sends The control information is sent to the second network element.
  • the generating, by the first network element, the control information includes: configuring, by the first network element, the control information by using a dedicated process and/or a public process.
  • the method further includes: receiving, by the first network element Feedback information of the control information sent by the second network element.
  • the feedback information includes at least one of the following: feedback information for flow control, inter-layer status indication information, acknowledgement ACK/non-acknowledgement NACK status indication information, measurement result report information, entity in the second network element. Parameter information.
  • the slice configuration information includes at least one of the following: a mapping relationship between a slice and a radio bearer RB, a mapping relationship between a slice and a logical channel LCH, a mapping relationship between a slice and a service type, and a mapping between a slice and a physical resource or a resource pool. Relationship, slice priority, slice quality of service QoS level, slice maximum transmission rate, slice occupancy resource percentage.
  • the numerology configuration information includes at least one of the following: a mapping relationship between a numerology and a radio bearer RB, a mapping relationship between a numerology and a logical channel LCH, a mapping relationship between a numerology and a service type, and a mapping between a numerology and a physical resource or a resource pool. relationship.
  • the Grant-free configuration information includes at least one of the following: a mapping relationship between the Grant-free and the radio bearer RB, a mapping relationship between the Grant-free and the logical channel LCH, and a mapping relationship between the Grant-free and the service type.
  • the LCP configuration information includes at least one of the following: a mapping relationship between the LCP and the radio bearer RB, a mapping relationship between the LCP and the logical channel LCH, and a mapping relationship between the LCP and the service type.
  • the DRX configuration information includes at least one of the following: a mapping relationship between the DRX and the radio bearer RB, a mapping relationship between the DRX and the logical channel LCH, and a mapping relationship between the DRX and the service type.
  • the HARQ configuration information includes at least one of the following: a mapping relationship between the HARQ and the radio bearer RB, a mapping relationship between the HARQ and the logical channel LCH, and a mapping relationship between the HARQ and the service type.
  • the BSR configuration information includes at least one of the following: the BSR reports in units of logical channel groups, and the BSR reports in units of logical channels.
  • the PHR configuration information includes at least one of: configuring the terminal to calculate the power headroom according to the total power, and configuring the terminal to calculate the power headroom according to the power allocated on the multiple links.
  • content transmission is performed between the first network element and the second network element by using at least one of the following formats: a container, a plaintext.
  • a control signaling configuration apparatus including: a generating module configured to generate control information; and a sending module configured to pass the control information to the first network element and the second network element The interface between the two is sent to the second network element.
  • the generating module is configured to generate control information according to the service type information, and the service type information includes at least one of the following: a service type, a radio bearer RB, a logical channel LCH, a physical layer parameter numerology, and a network slice slice.
  • control information includes configuration information, where the configuration information includes at least one of the following: slice configuration information, numerology configuration information, schedule-free Grant-free configuration information, logical channel priority LCP configuration information, discontinuous reception DRX
  • the configuration information the hybrid automatic repeat request HARQ configuration information, the buffer status report BSR configuration information, the power headroom report PHR configuration information, and the measurement configuration information.
  • the generating module includes: a generating unit, configured to generate the control information when performing at least one of adding, deleting, and updating operations on the configuration information.
  • the sending module includes: a first sending unit, configured to send the control information to the second network element after performing at least one of adding, deleting, and updating operations on the configuration information: or
  • the second sending unit is configured to: after receiving the request for acquiring the configuration information, enable the first network element to send the control information to the second network element.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps:
  • the control information is sent to the second network element by using an interface between the first network element and the second network element, where the first network element and the second network element are defined according to different processing delay requirements, and / or according to different transmission capacity requirements, and / or according to different business types.
  • the first network element generates the control information by using the interface, and the first network element sends the control information to the second network element through the interface between the first network element and the second network element, and the network is exchanged through the receiving between the network elements.
  • the control information between the elements can enable the network elements to understand each other's service type information. Therefore, the second network element can perform corresponding operations according to the configuration information of the first network element included in the control information, and can solve the network element in the related technology. The technical problems that cannot be understood by each other, thereby improving the business processing efficiency of the network element.
  • FIG. 1A is a flowchart of a control signaling configuration method according to an embodiment of the present disclosure
  • FIG. 1B is a flowchart of another control signaling configuration method according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a control plane protocol architecture of a wireless network side or a terminal side provided by the present disclosure
  • FIG. 3 is a structural block diagram of a control signaling configuration apparatus according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a fronthaul interface between a first network element and a second network element according to the present disclosure
  • FIG. 5 is a schematic diagram of a sending process of configuration information between a first network element and a second network element according to the present disclosure
  • FIG. 6 is a schematic flowchart of generating and/or transmitting slice configuration information provided by the present disclosure
  • FIG. 7 is a schematic flowchart of a configuration of a numerology mapping relationship provided by the present disclosure.
  • FIG. 8 is a schematic flowchart of a configuration of a DRX mapping relationship provided by the present disclosure.
  • FIG. 9 is a schematic flowchart of a configuration of a HARQ mapping relationship provided by the present disclosure.
  • FIG. 10 is a schematic flowchart of a configuration process of a Grant-free mapping relationship provided by the present disclosure
  • FIG. 11 is a schematic flowchart of a configuration of an LCP mapping relationship provided by the present disclosure.
  • FIG. 12 is a schematic diagram of a sending process of a configuration message of a BSR/PHR/measurement configuration provided by the present disclosure.
  • FIG. 1A is a flowchart of a control signaling configuration method according to an embodiment of the present disclosure. As shown in FIG. 1A, the flow includes the following steps:
  • Step S12 The first network element generates control information.
  • Step S14 The first network element sends the control information to the second network element by using an interface between the first network element and the second network element.
  • the first network element generates the control information by using the foregoing steps.
  • the first network element sends the control information to the second network element through the interface between the first network element and the second network element, and the network is exchanged through the receiving between the network elements.
  • the control information between the elements can enable the network elements to understand each other's service type information. Therefore, the second network element can perform corresponding operations according to the configuration information of the first network element included in the control information, and can solve the network element in the related technology.
  • the first network element generates the control information according to the service type information, and the service type information includes at least one of the following: a service type, a radio bearer RB, and a logical channel LCH. , physical layer parameter numerology, network slice slice.
  • control information includes configuration information, where the configuration information includes at least one of the following: slice configuration information, numerology configuration information, schedule-free Grant-free configuration information, and logical channel priority.
  • the first network element generating control information includes: when the first network element performs at least one of adding, deleting, and updating operations on the configuration information, generating the control information.
  • the first network element sends the control information to the second network element by using an interface between the first network element and the second network element, where the first network element includes: the first network element After performing at least one of adding, deleting, and updating operations on the configuration information, sending the control information to the second network element; or receiving, at the first network element, a request for acquiring the configuration information The first network element sends the control information to the second network element.
  • the first network element generating control information includes: configuring, by the first network element, the control information by using a dedicated process and/or a public process.
  • the method further includes The first network element receives feedback information of the control information sent by the second network element.
  • the feedback information includes at least one of the following: feedback information for flow control, inter-layer status indication information, acknowledgement ACK/non-acknowledgement NACK status indication information, and measurement result report information.
  • the parameter information of the entity in the second network element includes at least one of the following: feedback information for flow control, inter-layer status indication information, acknowledgement ACK/non-acknowledgement NACK status indication information, and measurement result report information.
  • the slice configuration information includes at least one of the following: a mapping relationship between a slice and a radio bearer RB, a mapping relationship between a slice and a logical channel LCH, a mapping relationship between a slice and a service type, and a slice.
  • the mapping relationship with the physical resource or resource pool, the slice priority, the quality of service QoS level of the slice, the maximum transmission rate of the slice, and the percentage of the slice occupied resources.
  • the numerology configuration information includes at least one of the following: a mapping relationship between a numerology and a radio bearer RB, a mapping relationship between a numerology and a logical channel LCH, a mapping relationship between a numerology and a service type, and a numerology A mapping relationship with a physical resource or resource pool.
  • the Grant-free configuration information includes at least one of the following: a mapping relationship between the Grant-free and the radio bearer RB, a mapping relationship between the Grant-free and the logical channel LCH, and Grant-free The mapping relationship with the business type.
  • the LCP configuration information includes at least one of the following: a mapping relationship between the LCP and the radio bearer RB, a mapping relationship between the LCP and the logical channel LCH, and a mapping relationship between the LCP and the service type.
  • the DRX configuration information includes at least one of the following: a mapping relationship between the DRX and the radio bearer RB, a mapping relationship between the DRX and the logical channel LCH, and a mapping relationship between the DRX and the service type.
  • the HARQ configuration information includes at least one of the following: a mapping relationship between the HARQ and the radio bearer RB, a mapping relationship between the HARQ and the logical channel LCH, and a mapping relationship between the HARQ and the service type.
  • the BSR configuration information includes at least one of the following: the BSR is in the logic The channel group is reported as a unit, and the BSR is reported in units of logical channels.
  • the PHR configuration information includes at least one of: configuring the terminal to calculate the power headroom according to the total power, and configuring the terminal to calculate the power headroom according to the power allocated on the multiple links.
  • the first network element and the second network element perform content transmission by using at least one of the following formats: a container, a plaintext.
  • the first network element and the second network element are defined according to different processing delay requirements, and/or are defined according to different transmission capacity requirements, and/or Defined according to different business types.
  • FIG. 1B is a flowchart of a control signaling configuration method according to an embodiment of the present disclosure. As shown in FIG. 1B, the flow includes the following steps:
  • Step S102 The first network element generates control information according to the service type information.
  • Step S104 The first network element sends the control information to the second network element by using an interface between the first network element and the second network element.
  • the first network element generates the control information according to the service type information.
  • the first network element sends the control information to the second network element through the interface between the first network element and the second network element, because Receiving the control information between the network elements, the network element can understand the service type information of the other party. Therefore, the second network element can perform the corresponding operation according to the configuration message of the first network element included in the control information, and the related technology can be solved.
  • the technical problems that the network elements cannot understand each other, and thus improve the business processing efficiency of the network element.
  • the first network element and the second network element are defined according to different processing delay requirements, and/or are defined according to different transmission capacity requirements, and/or are defined according to different service types.
  • the executor of the foregoing step, the first network element includes at least one of: a first control plane protocol entity, a second protocol entity, some or all third protocol entities, some or all of the fourth protocol entities, part or all Physical layer, but not limited to this.
  • the second network element includes at least one of: part or all of the second protocol entity, part or all of the third protocol entity, part or all of the fourth protocol entity, part or all of the physical layer, radio frequency unit, but is not limited thereto.
  • the content included in the second network element is related to the physical content included in the first network element.
  • the first network element includes the first control plane protocol entity and the second protocol entity
  • the second network element includes the third protocol entity.
  • Fourth protocol entity, part or all of physical layer, radio frequency unit The first network element and the second network element may be more than one network element entity.
  • the fourth network element includes at least one of: one or all of the physical Layer, RF unit.
  • the first control plane protocol entity may be a radio resource control entity, perform control signaling generation, maintain establishment and/or modification and/or release of radio bearers, and maintain a second control plane entity and a third control plane. Parameter updates for entities, fourth control plane entities, and physical layers.
  • the function of the second protocol entity is similar to and enhanced on the basis of the Packet Data Convergence Protocol (PDCP) function of the Long Term Evolution (LTE) system, and the third protocol entity function and the radio link control of the Long Term Evolution (LTE) (Radio)
  • the Link Control (RLC) function is similar and enhanced.
  • the fourth protocol entity function is similar to and enhanced on the Medium Access Control (MAC) function of Long Term Evolution (LTE).
  • MAC Medium Access Control
  • the service type information of the embodiment includes at least one of the following: a service type, a radio bearer RB, a logical channel LCH, a physical layer parameter numerology, and a network slice slice, where the physical layer parameter numerology includes at least one of the following: : subcarrier spacing, symbol interval, subframe format, number of symbols included in the subframe, multiple access mode, and transmission time interval.
  • control information includes configuration information, where the configuration information includes at least one of the following: slice configuration information, numerology configuration information, schedule-free Grant-free configuration information, logical channel priority LCP configuration information, discontinuous reception DRX configuration information, and hybrid
  • the automatic retransmission request HARQ configuration information the buffer status report BSR configuration information, the power headroom report (PHR) configuration information, and the measurement configuration information.
  • the generating, by the first network element, the control information according to the service type information includes: generating, by the first network element, the control information according to the service type information when the configuration information is performed by at least one of the following operations: adding, deleting And update.
  • the sending, by the first network element, the control information to the second network element by using the interface between the first network element and the second network element includes: the first network element is configured to be executed in the following information After the at least one operation is performed, the control information is sent to the second network element: adding, deleting, and updating; or, after the first network element receives the request for obtaining the configuration information, the first network element sends the control information to the second network element.
  • the first network element and the second network element perform content transmission by using at least one of the following formats: a container container and a plain text, and the plaintext may be an Application Information Element (AP IE) or the like.
  • the content may be the above control information, request message, or the like.
  • the generating, by the first network element, the control information according to the service type information includes: the first network element uses the dedicated process and/or the public process configuration control information according to the service type information.
  • the method further includes: receiving, by the first network element, control information sent by the second network element Feedback information.
  • the feedback information includes at least one of the following: feedback information used for flow control, inter-layer status indication information, acknowledgement ACK/non-acknowledgement NACK status indication information, measurement result report information, and parameter information of an entity in the second network element. .
  • the configuration information of the embodiment is exemplified.
  • the slice configuration information includes at least one of the following: a mapping relationship between a slice and a radio bearer RB, a mapping relationship between a slice and a logical channel LCH, a mapping relationship between a slice and a service type, and a slice.
  • the mapping relationship with the physical resource or resource pool, the slice priority, the quality of service QoS level of the slice, the maximum transmission rate of the slice, and the percentage of the slice occupied resources.
  • the numerology configuration information includes at least one of the following: a mapping relationship between a numerology and a radio bearer RB, a mapping relationship between a numerology and a logical channel LCH, a mapping relationship between a numerology and a service type, and a mapping relationship between a numerology and a physical resource or a resource pool.
  • the Grant-free configuration information includes at least one of the following: a mapping relationship between the Grant-free and the radio bearer RB, a mapping between the Grant-free and the logical channel LCH, and a mapping between the Grant-free and the service type.
  • the LCP configuration information includes at least one of the following: a mapping relationship between the LCP and the radio bearer RB, a mapping relationship between the LCP and the logical channel LCH, and a mapping relationship between the LCP and the service type.
  • the DRX configuration information includes at least one of the following: a mapping relationship between the DRX and the radio bearer RB, a mapping relationship between the DRX and the logical channel LCH, and a mapping relationship between the DRX and the service type.
  • the HARQ configuration information includes at least one of the following: a mapping relationship between the HARQ and the radio bearer RB, a mapping relationship between the HARQ and the logical channel LCH, and a mapping relationship between the HARQ and the service type.
  • the Buffer Status Report (BSR) configuration information includes at least one of the following: the BSR reports in units of logical channel groups, and the BSR reports in units of logical channels.
  • the PHR configuration information includes at least one of the following: the configuration terminal calculates the power headroom by the total power, and the configuration terminal calculates the power headroom according to the power allocated on the multiple links.
  • a control signaling configuration device is further provided, which is used to implement the foregoing embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of a control signaling configuration apparatus according to an embodiment of the present disclosure. As shown in FIG. 3, the apparatus includes:
  • the generating module 30 is configured to generate control information according to the service type information.
  • the sending module 32 is configured to send the control information to the second network element by using an interface between the first network element and the second network element.
  • the generating module 30 is configured to generate control information.
  • the service type information includes at least one of the following: a service type, a radio bearer RB, a logical channel LCH, a physical layer parameter numerology, a network slice slice, where the physical layer parameter numerology includes at least one of the following: a subcarrier Interval, symbol interval, subframe format, number of symbols included in the subframe, multiple access mode, transmission time interval.
  • control information includes configuration information, where the configuration information includes at least one of the following: slice configuration information, numerology configuration information, schedule-free Grant-free configuration information, logical channel priority LCP configuration information, discontinuous reception DRX configuration information, and hybrid The automatic retransmission request HARQ configuration information, the buffer status report BSR configuration information, the power headroom report PHR configuration information, and the measurement configuration information.
  • the generating module includes: a generating unit, configured to generate, according to the service type information, control information when the configuration information is performed by at least one of the following operations: adding, deleting, and updating.
  • the sending module includes: a first sending unit, configured to send the control information to the second network element after the configuration information is performed, at least one of: adding, deleting, updating; or, the second sending unit, After receiving the request for obtaining the configuration information, the first network element sends control information to the second network element.
  • a first sending unit configured to send the control information to the second network element after the configuration information is performed, at least one of: adding, deleting, updating; or, the second sending unit, After receiving the request for obtaining the configuration information, the first network element sends control information to the second network element.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • FIG. 4 is a schematic diagram of a fronthaul interface between a first network element and a second network element according to the present disclosure.
  • the ideal fronthaul transmission delay is relatively small, such as tens to hundreds of microseconds, and the non-ideal fronthaul transmission delay is relatively large, such as milliseconds.
  • the first network element is caused by the distinction between ideal and non-ideal fronthaul.
  • the second network element has different functional divisions, that is, in the case of non-ideal fronthaul transmission, the delay-sensitive user plane function, such as the function closely related to scheduling, needs to be placed in the second network element, and the delay requirement is not sensitive. Functions such as header compression, encryption, and integrity contain are placed in the first network element to meet the transmission delay requirements.
  • the first control plane protocol entity (such as the RRC entity) is in the first network element. Therefore, the parameter configuration of the second network element and/or the configuration of the terminal also requires the first network element to notify the second network through the fronthaul interface. yuan.
  • the second network element is required to understand the control message generated by the first network element, and the first network element is required for the message content fed back by the second network element.
  • the information unit (IE) transmitted on the interface needs to be defined and standardized. Based on this, a control signaling configuration method is proposed, which aims to define the first network element and the first The type of control message transmitted on the interface between the two network elements.
  • Table 1 lists the mapping relationship between slice and/or numerology and/or HARQ and/or DRX and radio bearer RB and/or logical channel LCH and/or service type, the mapping relationship of which is configured by the first network element through the fronthaul interface.
  • the second network element The mapping relationship between slice and/or numerology and/or HARQ and/or DRX and radio bearer RB and/or logical channel LCH and/or service type, the mapping relationship of which is configured by the first network element through the fronthaul interface.
  • the second network element is configured by the first network element through the fronthaul interface.
  • FIG. 5 is a schematic diagram of a sending process of configuration information between a first network element and a second network element according to the present disclosure.
  • the first network element generates the configuration information according to the service type information, and sends the configuration information to the second network element through the fronthaul interface.
  • the second network element performs parameter update according to the configuration information and/or configures the terminal according to the configuration information.
  • the first network element may be a centralized processing unit CU, and the second network element may be a distributed processing unit DU.
  • Step 1 Configure information generation.
  • the configuration information includes at least one of the following: slice configuration information, numerology configuration information, Grant-free configuration information, LCP configuration information, DRX configuration information, HARQ configuration information, BSR configuration information, and PHR configuration information.
  • the triggering condition generated by the configuration information includes at least one of the following: adding the configuration information, deleting the configuration information, updating the configuration information, and receiving a configuration parameter request of the second network element.
  • Step 2 The first network element sends the configuration information to the second network element through the fronthaul interface.
  • the first network element includes at least one of the following: a first control plane protocol entity, a second protocol entity, a third protocol entity, a fourth protocol entity, and a physical layer.
  • the second network element includes at least one of the following: a second protocol entity, a third protocol entity, a fourth protocol entity, a physical layer, and a radio frequency unit.
  • the one first network element manages one or more second network elements, that is, the one first network element sends the configuration information to one or more second network elements.
  • the configuration information is sent by the first network element to the second network element when the configuration information is added and/or deleted and/or updated.
  • the configuration information is sent to the second network element when the second network element applies the configuration parameter to the first network element.
  • Step 3 The second network element updates the parameters of the second network element according to the configuration information and/or configures the terminal according to the configuration information.
  • the second network element configures an entity in the second network element according to the configuration information.
  • the second network element configures the terminal according to the configuration information.
  • Step 4 The second network element sends the receiving confirmation message of the configuration information to the first network element through the fronthaul interface.
  • the receiving confirmation message is generated by the second network element or generated by the terminal.
  • the first network element After receiving the configuration information confirmation message, the first network element stops the repeated transmission of the configuration information.
  • step 4 corresponding to the process of sending or deleting the configuration information is an optional step. That is, the transmission of the deleted or released configuration information may not have a feedback process of receiving the confirmation.
  • FIG. 6 is a schematic diagram of a process of generating and/or transmitting slice configuration information provided by the present disclosure.
  • the first network element generates configuration information of one and/or multiple slices in a slice unit, and sends the configuration information to the second network element by using the fronthaul interface, where the second network element compares one and/or multiple slices according to the configuration information.
  • Centralized management and scheduling, to achieve isolation between slices, to avoid interference between slices, the specific steps are described as follows:
  • Step 1 The slice addition and/or deletion and/or update triggers the first network element to generate slice configuration information.
  • the configuration information includes a mapping relationship between the slice and the radio bearer RB and/or the logical channel LCH, a resource required by the slice, a slice priority, and a QoS level corresponding to the slice.
  • the triggering conditions generated by the configuration information include: adding and/or deleting and/or updating of the slice.
  • the one slice contains one and/or multiple radio bearers RB and/or logical channel LCH, as shown in Table 1.
  • the fourth protocol entity in the second network element allocates resources for one and/or multiple slices according to the configuration information, and performs priority processing of the slice.
  • the resource required by the slice is used to indicate that the fourth protocol entity in the second network element needs to be reserved for the slice. Resource block size.
  • the slice priority is used to indicate that the fourth protocol entity in the second network element schedules the priority order of the slice.
  • the QoS level of the slice is used to indicate that the fourth protocol entity in the second network element performs scheduling processing on the slice according to the QoS level.
  • the fourth protocol entity has a scheduling function for centralized management and scheduling of one and/or multiple slices.
  • the slice is divided according to different radio bearers, or divided according to different cells and/or frequencies, or divided according to different service types.
  • Step 2 The first network element sends the slice configuration information to the second network element through the fronthaul interface.
  • the information unit (IE) transmitted by the fronthaul interface includes a mapping relationship between the slice and the radio bearer RB and/or the logical channel LCH, a resource required by the slice, a slice priority, and a QoS level corresponding to the slice.
  • the configuration information is sent by the first network element to the second network element when the slice is added and/or deleted and/or updated.
  • the second network element requests slice configuration information from the first network element through the fronthaul interface.
  • the first network element and the second network element may be wired or wirelessly transmitted.
  • the fronthaul is either ideal for fronthaul or for non-ideal fronthaul.
  • Step 3 The second network element allocates resources for each slice according to the configuration information, and performs slice scheduling and priority processing.
  • the configuration information includes a mapping relationship between the slice and the radio bearer RB and/or the logical channel LCH, a resource required by the slice, a slice priority, and a QoS level corresponding to the slice.
  • the fourth protocol entity in the second network element determines, according to the configuration information, a mapping relationship between the slice and the radio bearer RB and/or the logical channel LCH, as shown in Table 1.
  • the fourth protocol entity allocates a resource block of a predetermined size to each slice according to the scheduling information in the configuration information, and performs scheduling priority processing to implement isolation between slices to avoid interference between slices.
  • the corresponding slice resource is released.
  • Step 3 The second network element sends the receiving confirmation message of the slice configuration to the first network element through the fronthaul interface.
  • the first network element After receiving the configuration information confirmation message of the slice, the first network element stops the repeated transmission of the slice configuration information.
  • step 4 corresponding to the sending process of deleting or releasing the configuration information of the slice is an optional step. That is, the transmission of the configuration information of the deleted or released slice may not have a feedback process of receiving the confirmation.
  • FIG. 7 is a schematic diagram of a configuration flow of a numerology mapping relationship provided by the present disclosure.
  • the first network element sends the configuration information of the numerology to the second network element in a semi-static manner, and the second network element updates the parameters of the entity in the second network element and/or the second network according to the configuration information.
  • the terminal configures the terminal according to the configuration information, and the specific steps are described as follows:
  • Step 1 Adding and/or deleting and/or updating the mapping relationship between the radio bearer and/or the logical channel and/or the service type and the numerology triggers the first network element to generate the numerology with the radio bearer and/or the logical channel and/or the service type. Mapping relationship configuration information.
  • the physical layer parameter numerology includes at least one of the following: subcarrier spacing, symbol interval, subframe format, The number of symbols included in the subframe, the multiple access method, and the transmission time interval.
  • the semi-static configuration method means that the numerology configuration information is carried in the L3 and/or L2 control message, and the base station configures the numerology configuration information to the second network element by using an L3 control message and/or an L2 control message.
  • the second network element sends the configuration information to the terminal.
  • the generation and/or transmission of the L3 control message and/or the L2 control message containing the numerology configuration information is triggered by a change of a different service type numerology.
  • the second network element requests configuration information of the numerology mapping relationship from the first network element by using the fronthaul interface.
  • the L3 control information may be an RRC control message.
  • the L2 control information may be a MAC Control message MAC CE.
  • Step 2 The first network element sends the mapping relationship configuration information of the numerology to the second network element through the fronthaul interface.
  • Step 3 The second network element configures an entity in the second network element according to the numerology mapping relationship and/or configures the numerology mapping relationship to the terminal.
  • the numerology configuration information is used to indicate that the terminal uses the numerology configuration parameter to perform data reception and demodulation.
  • the second network element dynamically indicates which set of numerology configuration parameters the terminal adopts by using Downlink Control Information (DCI), or the terminal automatically selects which set of numerology configuration parameters to use according to the service type.
  • DCI Downlink Control Information
  • the configuration information of the numerology mapping relationship is deleted, the corresponding numerology resource is released.
  • Step 4 The second network element sends a receiving confirmation message of the configuration message of the numerology mapping relationship to the first network element through the fronthaul interface.
  • the feedback message is generated by the second network element or generated by the terminal.
  • the first network element After receiving the numerology configuration information confirmation message, the first network element stops the repeated transmission of the numerology configuration information.
  • step 4 corresponding to the process of sending or deleting the configuration information of the numerology is an optional step. That is, the transmission of the configuration information of the deletion or release of the numerology may not have a feedback process of receiving the confirmation.
  • FIG. 8 is a schematic flowchart of a configuration of a DRX mapping relationship provided by the present disclosure.
  • the terminal simultaneously performs multiple services, and different services are mapped to different radio bearers and/or logical channels.
  • the first network element selects DRX parameters and timings for the terminal according to the radio bearers and/or logical channels and/or service types used by the terminal. The specific steps are described as follows:
  • Step 1 The first network element selects parameters and timers of the DRX according to the used radio bearers and/or logical channels and/or service types and/or physical layer parameters to generate radio bearers and/or logical channels and/or physical layer parameters. Mapping relationship with DRX parameters.
  • the physical layer parameter includes at least one of the following: a subcarrier spacing, a symbol interval, a subframe format, a number of symbols included in the subframe, a multiple access manner, and a transmission time interval.
  • the parameters and timers of the DRX are selected according to radio bearers and/or logical channels and/or service types and/or physical layer parameters to implement parameters and timers of the DRX and the radio bearers and/or logical channels. And mapping of the service type and/or the physical layer parameter, and the first network element sends the information to the second network element through the interface between the first network element and the second network element, and further, the second network element is configured to the terminal. .
  • the radio bearers and/or logical channel and/or physical layer parameters are associated with the service type, that is, different services are mapped to the corresponding radio bearer RBs and/or logical channels LCH, and different physical layers are adopted according to different service features. parameter.
  • the update of the DRX configuration parameters is triggered by the traffic type change and/or logical channel change and/or radio bearer change and/or physical layer parameter change.
  • the transmission of the DRX configuration parameters is triggered by the traffic type change and/or logical channel change and/or radio bearer change and/or physical layer parameter change.
  • the second network element requests configuration information of the DRX mapping relationship from the first network element by using the fronthaul interface.
  • Step 2 The first network element sends the mapping relationship between the radio bearer and/or the logical channel and/or the service type and/or the physical layer parameter and the DRX parameter to the second network element.
  • the manner in which the first network element sends the DRX configuration information corresponding to each service to the second network element is as follows:
  • Manner 1 The first network element sends the DRX configuration information to the second network element semi-statically through the first control plane protocol entity (such as the radio resource control RRC entity).
  • first control plane protocol entity such as the radio resource control RRC entity.
  • Manner 2 The first network element sends the DRX configuration information to the second network element semi-statically through a fourth protocol entity (such as a MAC CE).
  • a fourth protocol entity such as a MAC CE
  • the second network element sends the DRX configuration information to the terminal.
  • the second network element dynamically indicates which set of DRX parameters the terminal adopts through the DCI, or the terminal independently selects which set of DRX parameters to use according to the service type.
  • the service type may be classified according to requirements such as transmission rate, and/or delay, and/or reliability, including but not limited to at least one of the following: enhanced mobile broadband (eMBB), massive connection (massive machine) Type Communications, mMTC), (Ultra-Reliable and Low Latency Communications, Ultra-Reliable Low-Delay URLLC).
  • eMBB enhanced mobile broadband
  • mMTC massive connection (massive machine) Type Communications
  • Ultra-Reliable Low-Delay URLLC Ultra-Reliable Low-Delay
  • Step 3 The second network element sends the receiving confirmation message of the configuration message of the DRX mapping relationship to the first network element through the fronthaul interface.
  • the receiving confirmation message is generated by the second network element or generated by the terminal.
  • the receiving confirmation message is used to indicate a receiving state of the DRX configuration information described by the first network element. That is, it indicates whether the first network element needs to retransmit the DRX configuration information.
  • step 4 corresponding to the process of deleting or releasing the configuration information of the DRX is an optional step. That is, the transmission of the configuration information of deleting or releasing the DRX may not have a feedback process of receiving the confirmation.
  • FIG. 9 is a schematic flowchart of a configuration of a HARQ mapping relationship provided by the present disclosure.
  • the first network element generates a mapping relationship table between different service types and HARQ configuration parameters, and passes the mapping relationship table through the first network element and the second network.
  • the interface between the elements is sent to the second network element.
  • the specific steps are as follows: Step 1: The first network element selects the HARQ parameters according to the used radio bearers and/or logical channels and/or service types and/or physical layer parameters, and generates Mapping relationship between radio bearers and/or logical channel and/or physical layer parameters and HARQ parameters.
  • the physical layer parameter includes at least one of the following: a subcarrier spacing, a symbol interval, a subframe format, a number of symbols included in the subframe, a multiple access manner, and a transmission time interval.
  • the first network element generates the HARQ configuration parameter and the radio bearer and/or logical channel according to a radio bearer and/or a logical channel and/or a service type and/or a physical layer parameter and/or a slice to select a HARQ configuration parameter. And/or a mapping table of service types and/or physical layer parameters and/or slices, the mapping relationship table is as shown in Table 1.
  • the update of the HARQ configuration parameters is triggered by the traffic type change and/or logical channel change and/or radio bearer change and/or physical layer parameter change and/or slice information change.
  • the second network element requests the configuration information of the HARQ mapping relationship to the first network element by using the fronthaul interface.
  • Step 2 The first network element sends the mapping relationship between the radio bearer and/or the logical channel and/or the service type and/or the physical layer parameter and the HARQ parameter to the second network element.
  • the first network element sends the HARQ configuration information to the second network element semi-statically through a first control plane protocol entity (such as a radio resource control RRC entity).
  • a first control plane protocol entity such as a radio resource control RRC entity.
  • the first network element sends the HARQ configuration information to the second network element semi-statically by using a fourth protocol entity control unit (such as a MAC CE).
  • a fourth protocol entity control unit such as a MAC CE
  • Step 3 The second network element configures an entity in the second network element according to the HARQ mapping relationship and/or configures the HARQ mapping relationship to the terminal.
  • the second network element updates the parameter configuration of its own entity according to the HARQ configuration information.
  • the second network element sends the HARQ configuration information to the terminal.
  • the second network element dynamically indicates which set of HARQ parameters the terminal adopts through the DCI, or the terminal independently selects which set of HARQ parameters to use according to the service type.
  • the service type may be classified according to requirements such as transmission rate, and/or delay, and/or reliability, including but not limited to at least one of the following: eMBB, mMTC, URLLC, and the like.
  • the terminal determines the HARQ configuration parameter corresponding to the service according to the currently used service type information and the mapping relationship.
  • Step 4 The second network element sends the receiving confirmation message of the configuration message of the HARQ mapping relationship to the first network element through the fronthaul interface.
  • the receiving confirmation message is generated by the second network element or generated by the terminal.
  • the receiving acknowledgement message is used to indicate a receiving state of the HARQ configuration information described by the first network element. That is, it indicates whether the first network element needs to retransmit the HARQ configuration information.
  • step 4 corresponding to the process of deleting or releasing the configuration information of the HARQ is an optional step. That is, the transmission of the configuration information of deleting or releasing the HARQ may not have a feedback process of receiving the confirmation.
  • FIG. 10 is a schematic flowchart of a configuration process of a Grant-free mapping relationship provided by the present disclosure.
  • the first network element generates a mapping relationship table between the different service types and the Grant-free configuration parameters, and sends the mapping relationship table to the second network element through the interface between the first network element and the second network element.
  • the specific steps are described as follows: Step 1: The first network element selects a Grant-free parameter according to the used radio bearer and/or logical channel and/or service type and/or physical layer parameter to generate a radio bearer and/or a logical channel and/or Or the mapping relationship between physical layer parameters and Grant-free parameters.
  • the physical layer parameter includes at least one of the following: a subcarrier spacing, a symbol interval, a subframe format, a number of symbols included in the subframe, a multiple access manner, and a transmission time interval.
  • the Grant-free configuration parameter and the radio bearer Generating, by the first network element, the Grant-free configuration parameter and the radio bearer according to a radio bearer and/or a logical channel and/or a service type and/or a physical layer parameter and/or a slice selecting a Grant-free configuration parameter. / or a mapping table of logical channels and / or service types and / or physical layer parameters and / or slices.
  • the update of the Grant-free configuration parameter is triggered by the service type change and/or logical channel change and/or radio bearer change and/or physical layer parameter change and/or slice information change.
  • the second network element requests configuration information of the Grant-free mapping relationship from the first network element by using the fronthaul interface.
  • Step 2 The first network element sends the mapping relationship between the radio bearer and/or the logical channel and/or the service type and/or the physical layer parameter and the Grant-free parameter to the second network element.
  • the first network element sends the Grant-free configuration information to the second network element semi-statically through a first control plane protocol entity (such as a radio resource control RRC entity).
  • a first control plane protocol entity such as a radio resource control RRC entity.
  • the first network element sends the Grant-free configuration information to the second network element semi-statically by using a fourth protocol entity control unit (such as a MAC CE).
  • a fourth protocol entity control unit such as a MAC CE
  • Step 3 The second network element configures an entity in the second network element according to the Grant-free mapping relationship and/or configures the Grant-free mapping relationship to the terminal.
  • the second network element updates the parameter configuration of its own entity according to the Grant-free configuration information.
  • the second network element sends the Grant-free configuration information to the terminal.
  • the second network element dynamically indicates which set of Grant-free parameters the terminal adopts through the DCI, or the terminal independently selects which set of Grant-free parameters to use according to the service type.
  • the service type may be classified according to requirements such as transmission rate, and/or delay, and/or reliability, including but not limited to at least one of the following: eMBB, mMTC, URLLC, and the like.
  • the terminal determines a Grant-free configuration parameter corresponding to the service according to the currently used service type information and the mapping relationship.
  • Step 4 The second network element sends the receiving confirmation message of the configuration message of the Grant-free mapping relationship to the first network element through the fronthaul interface.
  • the receiving confirmation message is generated by the second network element or generated by the terminal.
  • the receiving confirmation message is used to indicate a receiving state of the Grant-free configuration information described by the first network element. That is, it indicates whether the first network element needs to retransmit the Grant-free configuration information.
  • step 4 corresponding to the process of deleting or releasing the configuration information of the Grant-free is an optional step. That is, the transmission of the delete or release Grant-free configuration information may not have a feedback process of receiving the confirmation.
  • FIG. 11 is a schematic flowchart of a configuration process of an LCP mapping relationship provided by the present disclosure.
  • the first network element generates a mapping relationship table between different service types and LCP configuration parameters, and sends the mapping relationship table to the second network element by using an interface between the first network element and the second network element.
  • the description is as follows: Step 1: The first network element selects parameters of the LCP according to the used radio bearers and/or logical channels and/or service types and/or physical layer parameters to generate radio bearers and/or logical channels and/or physical layer parameters. Mapping relationship with LCP parameters.
  • the physical layer parameter includes at least one of the following: a subcarrier spacing, a symbol interval, a subframe format, a number of symbols included in the subframe, a multiple access manner, and a transmission time interval.
  • the LCP configuration parameters and the radio bearers and/or logical channels are generated according to radio bearers and/or logical channels and/or service types and/or physical layer parameters and/or slices And/or a mapping table of service types and/or physical layer parameters and/or slices.
  • the update of the LCP configuration parameters is triggered by the traffic type change and/or logical channel change and/or radio bearer change and/or physical layer parameter change and/or slice information change.
  • the second network element requests configuration information of the LCP mapping relationship from the first network element by using the fronthaul interface.
  • Step 2 The first network element sends the mapping relationship between the radio bearer and/or the logical channel and/or the service type and/or the physical layer parameter and the LCP parameter to the second network element.
  • the first network element sends the LCP configuration information to the second network element semi-statically by the first control plane protocol entity (such as the radio resource control RRC entity).
  • the first control plane protocol entity such as the radio resource control RRC entity.
  • the first network element sends the LCP configuration information to the second network element semi-statically by using a fourth protocol entity control unit (such as a MAC CE).
  • a fourth protocol entity control unit such as a MAC CE
  • Step 3 The second network element configures an entity in the second network element according to the LCP mapping relationship and/or configures the LCP mapping relationship to the terminal.
  • the second network element updates the parameter configuration of its own entity according to the LCP configuration information.
  • the second network element sends the LCP configuration information to the terminal.
  • the second network element dynamically indicates which set of LCP parameters the terminal adopts through the DCI, or the terminal independently selects which set of LCP parameters to use according to the service type.
  • the service type may be classified according to requirements such as transmission rate, and/or delay, and/or reliability, including but not limited to at least one of the following: eMBB, mMTC, URLLC, and the like.
  • the terminal determines an LCP configuration parameter corresponding to the service according to the currently used service type information and the mapping relationship.
  • Step 4 The second network element sends a receiving confirmation message of the configuration message of the LCP mapping relationship to the first network element through the fronthaul interface.
  • the receiving confirmation message is generated by the second network element or generated by the terminal.
  • the receiving confirmation message is used to indicate a receiving state of the LCP configuration information described by the first network element. That is, it indicates whether the first network element needs to retransmit the LCP configuration information.
  • step 4 corresponding to the sending process of deleting or releasing the configuration information of the LCP is an optional step. That is, the transmission of the configuration information of deleting or releasing the LCP may not have a feedback process of receiving the confirmation.
  • FIG. 12 is a schematic diagram of a sending process of a configuration message of a BSR/PHR/measurement configuration provided by the present disclosure.
  • the first network element generates the measurement configuration and/or the configuration information reported by the BSR and/or the PHR, and sends the mapping relationship table to the second network element by using an interface between the first network element and the second network element.
  • the configuration information is sent by the second network element to the terminal, and the specific steps are as follows: Step 1: The first network element generates configuration information of the BSR and/or the PHR and/or the measurement configuration.
  • the BSR configuration information includes at least one of the following: the BSR reports in units of logical channel groups, and the BSR reports in units of logical channels.
  • the PHR configuration information includes at least one of the following: the configuration terminal calculates the power headroom according to the total power, and configures the terminal to calculate the power headroom according to the power allocated on the multiple links.
  • the measurement configuration includes at least one of: a measurement object, a trigger report configuration, a measurement identifier, a measurement Gap, whether the configuration terminal performs cell measurement or beam measurement.
  • Step 2 The first network element sends configuration information of the BSR and/or PHR and/or measurement configuration to the second network element.
  • the first network element configures the BSR and/or PHR and/or the measurement reporting manner according to the connection mode of the terminal, such as a single link or a multiple link.
  • the first network element configures, according to the high and low frequency, whether the terminal performs cell level measurement or beam level measurement.
  • the first network element configures a BSR and/or a PHR and/or a measurement reporting manner according to the current service of the terminal.
  • the second network element requests the BSR and/or PHR and/or the measured configuration information from the first network element through the fronthaul interface.
  • Step 3 The second network element sends a receiving confirmation message of the BSR and/or PHR configuration message to the first network element through the fronthaul interface.
  • the receiving confirmation message is generated by the second network element or generated by the terminal.
  • the receiving confirmation message is used to indicate a receiving status of the BSR and/or PHR configuration information described by the first network element. That is, it indicates whether the first network element needs to retransmit the BSR and/or PHR configuration information.
  • Step 4 The second network element sends the measurement result reported by the terminal and/or the measurement result converted by the second network element filtering process to the first network element.
  • the second network element is directly sent to the first network element according to the measurement result reported by the terminal.
  • the second network element performs filtering processing according to the measurement result reported by the terminal, and sends the converted measurement result to the first network element.
  • the second network element converts the measurement result of the beam by the terminal into the measurement result of the cell, and then reports the first network element.
  • Embodiments of the present disclosure also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • the control information is sent to the second network element by using an interface between the first network element and the second network element.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor generates, according to the stored program code in the storage medium, the generation of the control information according to the service type information;
  • the processor sends the control information to the second network element by using an interface between the first network element and the second network element according to the stored program code in the storage medium.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the present disclosure is applicable to the communication field, and solves the technical problem that the network elements cannot understand each other in the related art, thereby improving the service processing efficiency of the network element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种控制信令配置方法及装置,其中,该方法包括:第一网元生成控制信息;所述第一网元将所述控制信息通过第一网元与第二网元间的接口发送给第二网元。通过本公开,解决了相关技术中网元之间不能相互理解的技术问题,进而提高了网元的业务处理效率。 (图1)

Description

控制信令配置方法及装置 技术领域
本公开涉及通信领域,具体而言,涉及一种控制信令配置方法及装置。
背景技术
5G移动通信中,海量连接、用户更高的速率要求,对长期演进(Long Term Evolution,简称为LTE)中基带处理单元(Base Band Unit,简称为BBU)与射频拉远单元(Remote Radio Unit,简称为RRU)之间的前传接口CPRI(Common Public Radio Interface,通用公共无线电接口)的传输容量提出了极大挑战。由于CPRI接口传输的是经过物理层编码调制等处理后的IQ信号,CPRI接口对传输时迟和带宽都有较大的要求。在5G空口速率提升到数十Gbps后,CPRI接口的流量需求将上升到Tbps级别,这对网络部署成本和部署难度都带来了巨大的压力。因此,在5G中,需要重新定义前传接口的划分方式。在前传接口的划分方式中,从传输容量、传输时延、方便部署等几方面进行考虑,比如考虑到非理想fronthaul传输,将时延不敏感的网络功能放在第一网元(比如集中处理单元CU(Centralized Unit))中,将时延敏感的网络功能放在第二网元(比如分布式处理单元DU(Distributed Unit))中,第一网元与第二网元之间通过理想或非理想fronthaul进行传输。
第一控制面协议实体(如无线资源控制RRC实体)位于第一网元,第一控制面协议实体进行控制信令的生成,维护无线承载的建立和/或修改和/或释放,维护第二控制面实体、第三控制面实体、第四控制面实体和物理层的参数更新。第二协议实体功能与长期演进LTE系统的PDCP功能类似并在其基础上有所增强,第三协议实体功能与长期演进LTE的RLC功能类似并在其基础上有所增强,第四协议实体功能与长期演进LTE的媒体接入控制(Medium Access Control,MAC)功能类似并在其基础上有所增强。第一网元与第二网元之间通过fronthaul接口通信,因此,第二网元中的相关实体配置信息需要通过第一网元与第二网元间的接口由第一网元发送到第二网元,并且,终端相关的配置也需经过所述接口由所述第一网元发送到第二网元,进一步的,再由第二网元发送给终端。同理,终端的反馈消息以及第二网元的反馈消息也要通过所述接口发送到第一网元。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本公开实施例提供了一种控制信令配置方法及装置,以至少解决相关技术中网元之间不能相互理解的技术问题。
根据本公开的一个实施例,提供了一种控制信令配置方法,包括:第一网元生成控制信息;所述第一网元将所述控制信息通过第一网元与第二网元间的接口发送给第二网元。
可选的,所述第一网元与所述第二网元根据不同的处理时延要求进行定义,和/或根据不同的传输容量要求进行定义,和/或根据不同的业务类型进行定义。
可选地,第一网元根据业务类型信息生成控制信息,且所述业务类型信息包括至少以下之一:业务类型、无线承载(Radio Bearer,RB)、逻辑信道(Logical Channel,LCH)、物理层参数numerology、网络切片slice。
可选地,所述第一网元包括至少以下之一:第一控制面协议实体、第二协议实体、部分或全部第三协议实体、部分或全部第四协议实体、部分或全部物理层。
可选地,所述第二网元包括至少以下之一:部分或全部第二协议实体、部分或全部第三协议实体、部分或全部第四协议实体、部分或全部物理层、射频单元。
可选地,所述控制信息包括配置信息,所述配置信息包括至少以下之一:slice配置信息、numerology配置信息、免调度Grant-free配置信息、逻辑信道优先级(Logical Channel Prioritized,LCP)配置信息、非连续接收(Discontinuous Reception,DRX)配置信息、混合自动重传请求混合自动重传请求(Hybrid ARQ,HARQ)配置信息、缓存状态报告BSR配置信息、功率余量上报PHR配置信息、测量配置信息。
可选地,第一网元生成控制信息包括:所述第一网元在对所述配置信息执行添加、删除、更新操作至少之一时生成所述控制信息。
可选地,所述第一网元将所述控制信息通过第一网元与第二网元间的接口发送给第二网元包括:所述第一网元在对所述配置信息执行添加、删除、更新操作至少之一后将所述控制信息发送给所述第二网元;或者,在所述第一网元接收到获取所述配置信息的请求后,所述第一网元发送所述控制信息给所述第二网元。
可选地,第一网元生成控制信息包括:第一网元使用专用过程和/或公共过程配置所述控制信息。
可选地,在所述第一网元将所述控制信息通过第一网元与第二网元间的接口发送给第二网元之后,所述方法还包括:所述第一网元接收所述第二网元发送的所述控制信息的反馈信息。
可选地,所述反馈信息包括至少以下之一:用于流控的反馈信息、层间状态指示信息、确认ACK/非确认NACK状态指示信息、测量结果上报信息、第二网元中实体的参数信息。
可选地,所述slice配置信息包括至少以下之一:slice与无线承载RB的映射关系、slice与逻辑信道LCH的映射关系、slice与业务类型的映射关系、slice与物理资源或资源池的映射关系、slice优先级、slice的服务质量QoS等级、slice的最大传输速率、slice占用资源百分比。
可选地,所述numerology配置信息包括至少以下之一:numerology与无线承载RB的映射关系、numerology与逻辑信道LCH的映射关系、numerology与业务类型的映射关系、numerology与物理资源或资源池的映射关系。
可选地,所述Grant-free配置信息包括至少以下之一:Grant-free与无线承载RB的映射关系、Grant-free与逻辑信道LCH的映射关系、Grant-free与业务类型的映射关系。
可选地,所述LCP配置信息包括至少以下之一:LCP与无线承载RB的映射关系、LCP与逻辑信道LCH的映射关系、LCP与业务类型的映射关系。
可选地,所述DRX配置信息包括至少以下之一:DRX与无线承载RB的映射关系、DRX与逻辑信道LCH的映射关系、DRX与业务类型的映射关系。
可选地,所述HARQ配置信息包括至少以下之一:HARQ与无线承载RB的映射关系、HARQ与逻辑信道LCH的映射关系、HARQ与业务类型的映射关系。
可选地,所述BSR配置信息包括至少以下之一:BSR以逻辑信道组为单位进行上报、BSR以逻辑信道为单位进行上报。
可选地,所述PHR配置信息包括至少以下之一:配置终端按总功率来计算功率余量、配置终端按多条链路上分配的功率来计算功率余量。
可选地,所述第一网元与所述第二网元之间通过以下格式至少之一进行内容传输:容器container、明文。
根据本公开的另一个实施例,提供了一种控制信令配置装置,包括:生成模块,设置为生成控制信息;发送模块,设置为将所述控制信息通过第一网元与第二网元间的接口发送给第二网元。
可选地,生成模块设置为根据业务类型信息生成控制信息,且所述业务类型信息包括至少以下之一:业务类型、无线承载RB、逻辑信道LCH、物理层参数numerology、网络切片slice。
可选地,所述控制信息包括配置信息,所述配置信息包括至少以下之一:slice配置信息、numerology配置信息、免调度Grant-free配置信息、逻辑信道优先级LCP配置信息、非连续接收DRX配置信息、混合自动重传请求HARQ配置信息、缓存状态报告BSR配置信息、功率余量上报PHR配置信息、测量配置信息。
可选地,所述生成模块包括:生成单元,设置为在对所述配置信息执行添加、删除、更新操作至少之一时生成所述控制信息。
可选地,所述发送模块包括:第一发送单元,设置为在对所述配置信息执行添加、删除、更新操作至少之一后将所述控制信息发送给所述第二网元:;或者,第二发送单元,设置为接收到获取所述配置信息的请求后,使所述第一网元发送所述控制信息给所述第二网元。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:
生成控制信息;
所述控制信息通过第一网元与第二网元间的接口发送给第二网元;其中,所述第一网元与所述第二网元根据不同的处理时延要求进行定义,和/或根据不同的传输容量要求进行定义,和/或根据不同的业务类型进行定义。
通过本公开,第一网元生成控制信息;第一网元将控制信息通过第一网元与第二网元间的接口发送给第二网元,由于通过网元之间的接收交互了网元之间的控制信息,可以使网元相互理解对方的业务类型信息,因此第二网元能够按照控制信息所包括的第一网元的配置消息进行相应操作,可以解决相关技术中网元之间不能相互理解的技术问题,进而提高了网元的业务处理效率。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1A是根据本公开实施例的控制信令配置方法的流程图;
图1B是根据本公开实施例的另一控制信令配置方法的流程图;
图2为本公开提供的无线网络侧或终端侧的控制面协议架构示意图;
图3是根据本公开实施例的控制信令配置装置的结构框图;
图4为本公开提供的第一网元与第二网元间的fronthaul接口示意图;
图5为本公开提供的第一网元与第二网元间配置信息的发送流程示意图;
图6为本公开提供的slice配置信息的生成和/或发送流程示意图;
图7为本公开提供的numerology映射关系的配置流程示意图;
图8为本公开提供的DRX映射关系的配置流程示意图;
图9为本公开提供的HARQ映射关系的配置流程示意图;
图10为本公开提供的Grant-free映射关系的配置流程示意图;
图11为本公开提供的LCP映射关系的配置流程示意图;
图12为本公开提供的BSR/PHR/测量配置的配置消息的发送流程示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1A
在本实施例中提供了一种控制信令配置方法,图1A是根据本公开实施例的控制信令配置方法的流程图,如图1A所示,该流程包括如下步骤:
步骤S12,第一网元生成控制信息;
步骤S14,第一网元将控制信息通过第一网元与第二网元间的接口发送给第二网元。
通过上述步骤,第一网元生成控制信息;第一网元将控制信息通过第一网元与第二网元间的接口发送给第二网元,由于通过网元之间的接收交互了网元之间的控制信息,可以使网元相互理解对方的业务类型信息,因此第二网元能够按照控制信息所包括的第一网元的配置消息进行相应操作,可以解决相关技术中网元之间不能相互理解的技术问题,进而提高了网元的业务处理效率。
在根据本实施例的可选实施方式中,所述第一网元根据业务类型信息生成所述控制信息,且所述业务类型信息包括至少以下之一:业务类型、无线承载RB、逻辑信道LCH、物理层参数numerology、网络切片slice。
在根据本实施例的可选实施方式中,所述控制信息包括配置信息,所述配置信息包括至少以下之一:slice配置信息、numerology配置信息、免调度Grant-free配置信息、逻辑信道优先级LCP配置信息、非连续接收DRX配置信息、混合自动重传请求HARQ配置信息、缓存状态报告BSR配置信息、功率余量上报PHR配置信息、测量配置信息。
在根据本实施例的可选实施方式中,所述第一网元生成控制信息包括:所述第一网元在对所述配置信息执行添加、删除、更新操作至少之一时,生成所述控制信息。
在根据本实施例的可选实施方式中,所述第一网元将所述控制信息通过第一网元与第二网元间的接口发送给第二网元包括:所述第一网元在对所述配置信息执行添加、删除、更新操作至少之一后,将所述控制信息发送给所述第二网元;或者,在所述第一网元接收到获取所述配置信息的请求后,所述第一网元发送所述控制信息给所述第二网元。
在根据本实施例的可选实施方式中,所述第一网元生成控制信息包括:第一网元使用专用过程和/或公共过程配置所述控制信息。
在根据本实施例的可选实施方式中,在所述第一网元将所述控制信息通过第一网元与第二网元间的接口发送给第二网元之后,所述方法还包括:所述第一网元接收所述第二网元发送的所述控制信息的反馈信息。
在根据本实施例的可选实施方式中,所述反馈信息包括至少以下之一:用于流控的反馈信息、层间状态指示信息、确认ACK/非确认NACK状态指示信息、测量结果上报信息、第二网元中实体的参数信息。
在根据本实施例的可选实施方式中,所述slice配置信息包括至少以下之一:slice与无线承载RB的映射关系、slice与逻辑信道LCH的映射关系、slice与业务类型的映射关系、slice与物理资源或资源池的映射关系、slice优先级、slice的服务质量QoS等级、slice的最大传输速率、slice占用资源百分比。
在根据本实施例的可选实施方式中,所述numerology配置信息包括至少以下之一:numerology与无线承载RB的映射关系、numerology与逻辑信道LCH的映射关系、numerology与业务类型的映射关系、numerology与物理资源或资源池的映射关系。
在根据本实施例的可选实施方式中,所述Grant-free配置信息包括至少以下之一:Grant-free与无线承载RB的映射关系、Grant-free与逻辑信道LCH的映射关系、Grant-free与业务类型的映射关系。
在根据本实施例的可选实施方式中,所述LCP配置信息包括至少以下之一:LCP与无线承载RB的映射关系、LCP与逻辑信道LCH的映射关系、LCP与业务类型的映射关系。
在根据本实施例的可选实施方式中,所述DRX配置信息包括至少以下之一:DRX与无线承载RB的映射关系、DRX与逻辑信道LCH的映射关系、DRX与业务类型的映射关系。
在根据本实施例的可选实施方式中,所述HARQ配置信息包括至少以下之一:HARQ与无线承载RB的映射关系、HARQ与逻辑信道LCH的映射关系、HARQ与业务类型的映射关系。
在根据本实施例的可选实施方式中,所述BSR配置信息包括至少以下之一:BSR以逻 辑信道组为单位进行上报、BSR以逻辑信道为单位进行上报。
在根据本实施例的可选实施方式中,所述PHR配置信息包括至少以下之一:配置终端按总功率来计算功率余量、配置终端按多条链路上分配的功率来计算功率余量。
在根据本实施例的可选实施方式中,所述第一网元与所述第二网元之间通过以下格式至少之一进行内容传输:容器container、明文。
在根据本实施例的可选实施方式中,所述第一网元与所述第二网元根据不同的处理时延要求进行定义,和/或根据不同的传输容量要求进行定义,和/或根据不同的业务类型进行定义。
实施例1B
在本实施例中提供了另一种控制信令配置方法,图1B是根据本公开实施例的控制信令配置方法的流程图,如图1B所示,该流程包括如下步骤:
步骤S102,第一网元根据业务类型信息生成控制信息;
步骤S104,第一网元将控制信息通过第一网元与第二网元间的接口发送给第二网元。
通过上述步骤,第一网元根据业务类型信息生成控制信息;第一网元将控制信息通过第一网元与第二网元间的接口发送给第二网元,由于通过网元之间的接收交互了网元之间的控制信息,可以使网元相互理解对方的业务类型信息,因此第二网元能够按照控制信息所包括的第一网元的配置消息进行相应操作,可以解决相关技术中网元之间不能相互理解的技术问题,进而提高了网元的业务处理效率。
可选的,第一网元与第二网元根据不同的处理时延要求进行定义,和/或根据不同的传输容量要求进行定义,和/或根据不同的业务类型进行定义。
可选地,上述步骤的执行主体第一网元包括至少以下之一:第一控制面协议实体、第二协议实体、部分或全部第三协议实体、部分或全部第四协议实体、部分或全部物理层,但不限于此。第二网元包括至少以下之一:部分或全部第二协议实体、部分或全部第三协议实体、部分或全部第四协议实体、部分或全部物理层、射频单元,但不限于此。第二网元包括的内容与第一网元包括的实体内容有一定的联系,当第一网元包括第一控制面协议实体、第二协议实体的时候,第二网元包括第三协议实体、第四协议实体、部分或全部物理层、射频单元。第一网元与第二网元可以不止是一个网元实体,当第二网元进一步分成第三网元和第四网元的时候,第四网元包括至少以下之一:部分或全部物理层、射频单元。
图2为本公开提供的无线网络侧或终端侧的控制面协议架构示意图。在图2中,第一控制面协议实体可以是无线资源控制实体,进行控制信令的生成,维护无线承载的建立和/或修改和/或释放,维护第二控制面实体、第三控制面实体、第四控制面实体和物理层的参数更新。第二协议实体功能与长期演进LTE系统的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)功能类似并在其基础上有所增强,第三协议实体功能与长期演进LTE的无线链路控制(Radio Link Control,RLC)功能类似并在其基础上有所增强,第四协议实体功能与长期演进LTE的媒体接入控制(Medium Access Control,MAC)功能类似并在其基础上有所增强。
可选的,本实施例的业务类型信息包括至少以下之一:业务类型、无线承载RB、逻辑信道LCH、物理层参数numerology、网络切片slice,其中,所述物理层参数numerology包括至少以下之一:子载波间隔、符号间隔、子帧格式、子帧包含的符号数、多址方式、传输时间间隔。
可选的,控制信息包括配置信息,配置信息包括至少以下之一:slice配置信息、numerology配置信息、免调度Grant-free配置信息、逻辑信道优先级LCP配置信息、非连续接收DRX配置信息、混合自动重传请求HARQ配置信息、缓存状态报告BSR配置信息、功率余量上报(Power Headroom Report,PHR)配置信息、测量配置信息。
在根据本实施例的可选实施方式中,第一网元根据业务类型信息生成控制信息包括:第一网元在配置信息被执行以下操作至少之一时根据业务类型信息生成控制信息:添加、删除、更新。
在根据本实施例的可选实施方式中,第一网元将控制信息通过第一网元与第二网元间的接口发送给第二网元包括:第一网元在配置信息被执行以下操作至少之一后将控制信息发送给第二网元:添加、删除、更新;或者,在第一网元接收到获取配置信息的请求后,第一网元发送控制信息给第二网元。
所述第一网元与所述第二网元之间通过以下格式至少之一进行内容传输:容器container、明文,该明文可以是应用层信息单元(Application Information Element,AP IE)等。该内容可以是上述控制信息,请求消息等。
可选的,第一网元根据业务类型信息生成控制信息包括:第一网元根据业务类型信息使用专用过程和/或公共过程配置控制信息。
可选的,在第一网元将控制信息通过第一网元与第二网元间的接口发送给第二网元之后,方法还包括:第一网元接收第二网元发送的控制信息的反馈信息。
可选的,反馈信息包括至少以下之一:用于流控的反馈信息、层间状态指示信息、确认ACK/非确认NACK状态指示信息、测量结果上报信息、第二网元中实体的参数信息。
下面对本实施例的各种配置信息进行例举说明,slice配置信息包括至少以下之一:slice与无线承载RB的映射关系、slice与逻辑信道LCH的映射关系、slice与业务类型的映射关系、slice与物理资源或资源池的映射关系、slice优先级、slice的服务质量QoS等级、slice的最大传输速率、slice占用资源百分比。numerology配置信息包括至少以下之一:numerology与无线承载RB的映射关系、numerology与逻辑信道LCH的映射关系、numerology与业务类型的映射关系、numerology与物理资源或资源池的映射关系。Grant-free配置信息包括至少以下之一:Grant-free与无线承载RB的映射关系、Grant-free与逻辑信道LCH的映射关系、Grant-free与业务类型的映射关系。LCP配置信息包括至少以下之一:LCP与无线承载RB的映射关系、LCP与逻辑信道LCH的映射关系、LCP与业务类型的映射关系。DRX配置信息包括至少以下之一:DRX与无线承载RB的映射关系、DRX与逻辑信道LCH的映射关系、DRX与业务类型的映射关系。HARQ配置信息包括至少以下之一:HARQ与无线承载RB的映射关系、HARQ与逻辑信道LCH的映射关系、HARQ与业务类型的映射关系。缓存状 态报告(Buffer Status Report,BSR)配置信息包括至少以下之一:BSR以逻辑信道组为单位进行上报、BSR以逻辑信道为单位进行上报。PHR配置信息包括至少以下之一:配置终端按总功率来计算功率余量、配置终端按多条链路上分配的功率来计算功率余量。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例2
在本实施例中还提供了一种控制信令配置装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本公开实施例的控制信令配置装置的结构框图,如图3所示,该装置包括:
生成模块30,用于根据业务类型信息生成控制信息;
发送模块32,用于将控制信息通过第一网元与第二网元间的接口发送给第二网元。
或者,生成模块30用于生成控制信息。
可选的,且业务类型信息包括至少以下之一:业务类型、无线承载RB、逻辑信道LCH、物理层参数numerology、网络切片slice,其中,所述物理层参数numerology包括至少以下之一:子载波间隔、符号间隔、子帧格式、子帧包含的符号数、多址方式、传输时间间隔。
可选的,控制信息包括配置信息,配置信息包括至少以下之一:slice配置信息、numerology配置信息、免调度Grant-free配置信息、逻辑信道优先级LCP配置信息、非连续接收DRX配置信息、混合自动重传请求HARQ配置信息、缓存状态报告BSR配置信息、功率余量上报PHR配置信息、测量配置信息。
可选的,生成模块包括:生成单元,用于在配置信息被执行以下操作至少之一时根据业务类型信息生成控制信息:添加、删除、更新。
可选的,发送模块包括:第一发送单元,用于在配置信息被执行以下操作至少之一后将控制信息发送给第二网元:添加、删除、更新;或者,第二发送单元,用于接收到获取配置信息的请求后,第一网元发送控制信息给第二网元。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
图4为本公开提供的第一网元与第二网元间的fronthaul接口示意图。图4中,第一网元与第二网元之间通过前传fronthaul接口进行信息交互,针对不同的时延,这里的fronthaul 可以是理想fronthaul或非理想fronthaul。理想fronthaul的传输时延比较小,比如大概为几十到几百微秒,非理想fronthaul的传输时延相对较大,比如为毫秒级,由于理想和非理想fronthaul的区分,导致第一网元、第二网元有不同的功能划分,即在非理想fronthaul传输的情况下,需要把时延敏感的用户面功能如与调度紧密相关的功能放在第二网元中,时延要求不敏感如头压缩、加密和完整性包含等功能放在第一网元中,以满足传输时延要求。另外,第一控制面协议实体(如无线资源控制RRC实体)在第一网元,因此,第二网元的参数配置和/或终端的配置也需要第一网元通过fronthaul接口告诉第二网元。
由于第一网元与第二网元间存在fronthaul接口,因此,针对第一网元生成的控制消息,要求第二网元能够理解,针对第二网元反馈的消息内容,要求第一网元也能够理解,为解决上述问题,需要对所述接口上传输的信息单元(IE)进行定义和规范,基于此,本文提出了一种控制信令配置方法,旨在定义第一网元和第二网元间接口上传输的控制消息类型。
表1列出了slice和/或numerology和/或HARQ和/或DRX与无线承载RB和/或逻辑信道LCH和/或业务类型的映射关系,其映射关系由第一网元通过fronthaul接口配置给第二网元。
表1
Figure PCTCN2017116113-appb-000001
本实施例还包括多个实例,用于结合不同的场景对本申请进行详细说明:
实例1
图5为本公开提供的第一网元与第二网元间配置信息的发送流程示意图。第一网元根据业务类型信息进行配置信息的生成,并通过fronthaul接口发送到第二网元,第二网元根据配置信息进行参数更新和/或根据配置信息配置终端。所述第一网元可以是集中处理单元CU,所述第二网元可以是分布式处理单元DU,具体步骤描述如下:
步骤1:配置信息生成。
所述配置信息包括至少以下之一:slice配置信息、numerology配置信息、Grant-free配置信息、LCP配置信息、DRX配置信息、HARQ配置信息、BSR配置信息、PHR配置信息。
所述配置信息生成的触发条件包括至少以下之一:所述配置信息的添加、所述配置信息的删除、所述配置信息的更新、收到所述第二网元的配置参数请求。
步骤2:第一网元通过fronthaul接口将配置信息发送到第二网元。
所述第一网元包括至少以下之一:第一控制面协议实体、第二协议实体、第三协议实体、第四协议实体、物理层。
所述第二网元包括至少以下之一:第二协议实体、第三协议实体、第四协议实体、物理层、射频单元。
所述一个第一网元管理一个或多个第二网元,即所述一个第一网元将所述配置信息发送给一个或多个第二网元。
所述配置信息是所述第一网元在所述配置信息的添加和/或删除和/或更新的时候发送给所述第二网元的。
可选的,所述配置信息是在所述第二网元向第一网元申请配置参数的时候发送给所述第二网元的。
步骤3:第二网元根据配置信息更新第二网元的参数和/或根据配置信息配置终端。
所述第二网元根据所述配置信息配置第二网元中的实体。
或者,所述第二网元根据所述配置信息配置终端。
步骤4:第二网元将所述配置信息的接收确认消息通过fronthaul接口发送到第一网元。
所述接收确认消息或者是所述第二网元产生,或者是所述终端产生。
所述第一网元接收到所述配置信息确认消息后,停止所述配置信息的重复发送。
需要说明的是,删除或释放的配置信息发送过程对应的步骤4为可选步骤。即删除或释放的配置信息的发送可以没有接收确认的反馈过程。
实例2
图6为本公开提供的slice配置信息的生成和/或发送流程示意图。其中,第一网元以slice为单位生成一个和/或多个slice的配置信息,通过fronthaul接口发送到第二网元中,第二网元根据所述配置信息对一个和/或多个slice进行集中管理和调度,实现slice间的隔离,避免slice间的干扰,具体步骤描述如下:
步骤1:slice添加和/或删除和/或更新触发第一网元生成slice配置信息。
所述配置信息包括slice与无线承载RB和/或逻辑信道LCH的映射关系、slice需要的资源、slice优先级、slice对应的QoS等级。
所述配置信息生成的触发条件包括:slice的添加和/或删除和/或更新。
所述一个slice包含一个和/或多个无线承载RB和/或逻辑信道LCH,如表1所示。
所述第二网元中的第四协议实体根据所述配置信息为一个和/或多个slice分配资源以及进行slice的优先级处理。
所述slice需要的资源用以指示所述第二网元中的第四协议实体需要为所述slice预留的 资源块大小。
所述slice优先级用以指示第二网元中的第四协议实体调度所述slice的优先级顺序。
所述slice的QoS等级用以指示第二网元中的第四协议实体按照所述QoS等级对所述slice进行调度处理。
所述第四协议实体具有调度功能,对一个和/或多个slice进行集中管理和调度。
所述slice或者按不同的无线承载进行划分,或者按不同的小区和/或频率进行划分,或者按不同的业务类型进行划分。
步骤2:第一网元将slice配置信息通过fronthaul接口发送到第二网元中。
所述fronthaul接口传输的信息单元(IE)包括slice与无线承载RB和/或逻辑信道LCH的映射关系、slice需要的资源、slice优先级、slice对应的QoS等级。
所述配置信息是所述第一网元在slice的添加和/或删除和/或更新的时候发送给所述第二网元的。
可选的,第二网元通过fronthaul接口向第一网元请求slice配置信息。
所述第一网元与所述第二网元间或者采用有线传输方式或者采用无线传输方式。
针对不同的传输时延要求,所述fronthaul或者为理想fronthaul或者为非理想fronthaul。
步骤3:第二网元根据配置信息为每个slice分配资源,进行slice调度及优先级处理。
所述配置信息包括slice与无线承载RB和/或逻辑信道LCH的映射关系、slice需要的资源、slice优先级、slice对应的QoS等级。
所述第二网元中的第四协议实体根据所述配置信息确定slice与无线承载RB和/或逻辑信道LCH的映射关系,如表1所示。
所述第四协议实体根据所述配置信息中的调度信息为每个slice分配预定大小的资源块,以及进行调度优先级处理,实现slice间的隔离,避免slice间的干扰。
如果是删除slice的配置信息,则释放对应的slice资源。
步骤3:第二网元将slice配置的接收确认消息通过fronthaul接口发送到第一网元。
所述第一网元接收到所述slice的配置信息确认消息后,停止所述slice配置信息的重复发送。
需要说明的是,删除或释放slice的配置信息的发送过程对应的步骤4为可选步骤。即删除或释放slice的配置信息的发送可以没有接收确认的反馈过程。
实例3
图7为本公开提供的numerology映射关系的配置流程示意图。第一网元通过高层信令半静态的方式将所述numerology的配置信息发送到第二网元,第二网元根据所述配置信息更新第二网元中实体的参数和/或第二网元根据所述配置信息配置终端,具体步骤描述如下:
步骤1:无线承载和/或逻辑信道和/或业务类型与numerology的映射关系的添加和/或删除和/或更新触发第一网元生成numerology与无线承载和/或逻辑信道和/或业务类型的映射关系配置信息。
所述物理层参数numerology包括至少以下之一:子载波间隔、符号间隔、子帧格式、 子帧包含的符号数、多址方式、传输时间间隔。
所述半静态配置方法是指所述numerology配置信息承载在L3和/或L2控制消息中,所述基站通过L3控制消息和/或L2控制消息将所述numerology配置信息配置给第二网元。
在一示例中,所述第二网元将所述配置信息发送给终端。
所述包含所述numerology配置信息的L3控制消息和/或L2控制消息的生成和/或发送由不同业务类型numerology的改变所触发。
可选的,第二网元通过fronthaul接口向第一网元请求所述numerology映射关系的配置信息。
所述L3控制信息可以是RRC控制消息。
所述L2控制信息可以是MAC控制消息MAC CE。
步骤2:第一网元将所述numerology的映射关系配置信息通过fronthaul接口发送到第二网元。
步骤3:第二网元根据所述numerology映射关系配置第二网元中的实体和/或将所述numerology映射关系配置给终端。
所述numerology配置信息用于指示终端采用所述numerology配置参数进行数据的接收和解调。
所述第二网元通过下行控制信息(Downlink Control Information,DCI)动态的指示终端采用哪套numerology配置参数,或者终端根据业务类型自主选择采用哪一套numerology配置参数。
如果是删除numerology映射关系的配置信息,则释放对应的numerology资源。
步骤4:第二网元将numerology映射关系的配置消息的接收确认消息通过fronthaul接口发送到第一网元。
所述反馈消息或者是所述第二网元产生的,或者是所述终端产生的。
所述第一网元接收到所述numerology配置信息确认消息后,停止numerology配置信息的重复发送。
需要说明的是,删除或释放numerology的配置信息的发送过程对应的步骤4为可选步骤。即删除或释放numerology的配置信息的发送可以没有接收确认的反馈过程。
实例4
图8为本公开提供的DRX映射关系的配置流程示意图。终端同时进行多个业务,不同的业务映射到不同的无线承载和/或逻辑信道上,第一网元根据终端使用的无线承载和/或逻辑信道和/或业务类型为终端选择DRX参数和定时器,具体步骤描述如下:
步骤1:第一网元根据使用的无线承载和/或逻辑信道和/或业务类型和/或物理层参数选择DRX的参数和定时器,生成无线承载和/或逻辑信道和/或物理层参数与DRX参数的映射关系。
所述物理层参数包括至少以下之一:子载波间隔、符号间隔、子帧格式、子帧中包含的符号数、多址方式、传输时间间隔。
所述DRX的参数和定时器根据无线承载和/或逻辑信道和/或业务类型和/或物理层参数进行选择,实现所述DRX的参数和定时器与所述无线承载和/或逻辑信道和/或业务类型和/或物理层参数的映射,并由第一网元通过第一网元与第二网元间的接口发送给第二网元,进一步的,由第二网元配置给终端。
所述无线承载和/或逻辑信道和/或物理层参数与业务类型关联,即不同的业务映射到对应的无线承载RB上和/或逻辑信道LCH上,根据不同的业务特征采用不同的物理层参数。
所述DRX配置参数的更新由所述业务类型改变和/或逻辑信道改变和/或无线承载改变和/或物理层参数改变所触发。
所述DRX配置参数的发送由所述业务类型改变和/或逻辑信道改变和/或无线承载改变和/或物理层参数改变所触发。
可选的,第二网元通过fronthaul接口向第一网元请求所述DRX映射关系的配置信息。
步骤2:第一网元将所述无线承载和/或逻辑信道和/或业务类型和/或物理层参数与DRX参数的映射关系发送给第二网元。
所述第一网元将每个业务对应的DRX配置信息发送给第二网元的方式有如下几种:
方式一:所述第一网元通过第一控制面协议实体(如无线资源控制RRC实体)半静态的将DRX配置信息发送给所述第二网元。
方式二:所述第一网元通过第四协议实体(如MAC CE)半静态的将DRX配置信息发送给所述第二网元。
进一步的,所述第二网元将DRX配置信息发送给终端。
所述第二网元通过DCI动态的指示终端采用哪套DRX参数,或者终端根据业务类型自主选择采用哪一套DRX参数。
其中,业务类型可以根据传输速率、和/或时延、和/或可靠性等要求进行划分,包括但不限于至少以下之一:增强移动宽带(enhanced Mobile Broadband,eMBB)、海量连接(massive Machine Type Communications,mMTC)、(Ultra-Reliable and Low Latency Communications,超可靠低时延URLLC)等。
如果是删除DRX的配置信息,则释放对应的DRX配置。
步骤3:第二网元将所述DRX映射关系的配置消息的接收确认消息通过fronthaul接口发送到第一网元。
所述接收确认消息或者是所述第二网元产生的,或者是所述终端产生的。
所述接收确认消息用于指示第一网元所述的DRX配置信息的接收状态。即指示第一网元是否需要重传所述DRX配置信息。
需要说明的是,删除或释放DRX的配置信息的发送过程对应的步骤4为可选步骤。即删除或释放DRX的配置信息的发送可以没有接收确认的反馈过程。
实例5
图9为本公开提供的HARQ映射关系的配置流程示意图。本实例中,第一网元生成不同业务类型与HARQ配置参数的映射关系表,并将所述映射关系表通过第一网元与第二网 元间的接口发送给第二网元,具体步骤描述如下:步骤1:第一网元根据使用的无线承载和/或逻辑信道和/或业务类型和/或物理层参数选择HARQ的参数,生成无线承载和/或逻辑信道和/或物理层参数与HARQ参数的映射关系。
所述物理层参数包括至少以下之一:子载波间隔、符号间隔、子帧格式、子帧包含的符号数、多址方式、传输时间间隔。
所述第一网元根据无线承载和/或逻辑信道和/或业务类型和/或物理层参数和/或slice选择HARQ配置参数,生成所述HARQ配置参数与所述无线承载和/或逻辑信道和/或业务类型和/或物理层参数和/或slice的映射关系表,所述映射关系表如表1所示。所述HARQ配置参数的更新由所述业务类型改变和/或逻辑信道改变和/或无线承载改变和/或物理层参数改变和/或slice信息改变所触发。
可选的,第二网元通过fronthaul接口向第一网元请求所述HARQ映射关系的配置信息。
步骤2:第一网元将所述无线承载和/或逻辑信道和/或业务类型和/或物理层参数与HARQ参数的映射关系发送给第二网元。
所述第一网元通过第一控制面协议实体(如无线资源控制RRC实体)半静态的将HARQ配置信息发送给所述第二网元。
可选的,所述第一网元通过第四协议实体控制单元(如MAC CE)半静态的将HARQ配置信息发送给所述第二网元。
步骤3:第二网元根据所述HARQ映射关系配置第二网元中的实体和/或将所述HARQ映射关系配置给终端。
所述第二网元根据HARQ配置信息更新自身实体的参数配置。
所述第二网元将所述HARQ配置信息发送给终端。
所述第二网元通过DCI动态的指示终端采用哪套HARQ参数,或者终端根据业务类型自主选择采用哪一套HARQ参数。
其中,业务类型可以根据传输速率、和/或时延、和/或可靠性等要求进行划分,包括但不限于至少以下之一:eMBB、mMTC、URLLC等。
所述终端根据当前使用的业务类型信息及映射关系确定与该业务对应的HARQ配置参数。
如果是删除HARQ的配置信息,则释放对应的HARQ配置。
步骤4:第二网元将所述HARQ映射关系的配置消息的接收确认消息通过fronthaul接口发送到第一网元。
所述接收确认消息或者是所述第二网元产生的,或者是所述终端产生的。
所述接收确认消息用于指示第一网元所述的HARQ配置信息的接收状态。即指示第一网元是否需要重传所述HARQ配置信息。
需要说明的是,删除或释放HARQ的配置信息的发送过程对应的步骤4为可选步骤。即删除或释放HARQ的配置信息的发送可以没有接收确认的反馈过程。
实例6
图10为本公开提供的Grant-free映射关系的配置流程示意图。本实例中,第一网元生成不同业务类型与Grant-free配置参数的映射关系表,并将所述映射关系表通过第一网元与第二网元间的接口发送给第二网元,具体步骤描述如下:步骤1:第一网元根据使用的无线承载和/或逻辑信道和/或业务类型和/或物理层参数选择Grant-free的参数,生成无线承载和/或逻辑信道和/或物理层参数与Grant-free参数的映射关系。
所述物理层参数包括至少以下之一:子载波间隔、符号间隔、子帧格式、子帧包含的符号数、多址方式、传输时间间隔。
所述第一网元根据无线承载和/或逻辑信道和/或业务类型和/或物理层参数和/或slice选择Grant-free配置参数,生成所述Grant-free配置参数与所述无线承载和/或逻辑信道和/或业务类型和/或物理层参数和/或slice的映射关系表。所述Grant-free配置参数的更新由所述业务类型改变和/或逻辑信道改变和/或无线承载改变和/或物理层参数改变和/或slice信息改变所触发。
可选的,第二网元通过fronthaul接口向第一网元请求所述Grant-free映射关系的配置信息。
步骤2:第一网元将所述无线承载和/或逻辑信道和/或业务类型和/或物理层参数与Grant-free参数的映射关系发送给第二网元。
所述第一网元通过第一控制面协议实体(如无线资源控制RRC实体)半静态的将Grant-free配置信息发送给所述第二网元。
可选的,所述第一网元通过第四协议实体控制单元(如MAC CE)半静态的将Grant-free配置信息发送给所述第二网元。
步骤3:第二网元根据所述Grant-free映射关系配置第二网元中的实体和/或将所述Grant-free映射关系配置给终端。
所述第二网元根据Grant-free配置信息更新自身实体的参数配置。
所述第二网元将所述Grant-free配置信息发送给终端。
所述第二网元通过DCI动态的指示终端采用哪套Grant-free参数,或者终端根据业务类型自主选择采用哪一套Grant-free参数。
其中,业务类型可以根据传输速率、和/或时延、和/或可靠性等要求进行划分,包括但不限于至少以下之一:eMBB、mMTC、URLLC等。
所述终端根据当前使用的业务类型信息及映射关系确定与该业务对应的Grant-free配置参数。
如果是删除Grant-free的配置信息,则释放对应的Grant-free配置。
步骤4:第二网元将所述Grant-free映射关系的配置消息的接收确认消息通过fronthaul接口发送到第一网元。
所述接收确认消息或者是所述第二网元产生的,或者是所述终端产生的。
所述接收确认消息用于指示第一网元所述的Grant-free配置信息的接收状态。即指示第一网元是否需要重传所述Grant-free配置信息。
需要说明的是,删除或释放Grant-free的配置信息的发送过程对应的步骤4为可选步骤。即删除或释放Grant-free的配置信息的发送可以没有接收确认的反馈过程。
实例7
图11为本公开提供的LCP映射关系的配置流程示意图。本实例中,第一网元生成不同业务类型与LCP配置参数的映射关系表,并将所述映射关系表通过第一网元与第二网元间的接口发送给第二网元,具体步骤描述如下:步骤1:第一网元根据使用的无线承载和/或逻辑信道和/或业务类型和/或物理层参数选择LCP的参数,生成无线承载和/或逻辑信道和/或物理层参数与LCP参数的映射关系。
所述物理层参数包括至少以下之一:子载波间隔、符号间隔、子帧格式、子帧包含的符号数、多址方式、传输时间间隔。
所述第一网元根据无线承载和/或逻辑信道和/或业务类型和/或物理层参数和/或slice选择LCP配置参数,生成所述LCP配置参数与所述无线承载和/或逻辑信道和/或业务类型和/或物理层参数和/或slice的映射关系表。所述LCP配置参数的更新由所述业务类型改变和/或逻辑信道改变和/或无线承载改变和/或物理层参数改变和/或slice信息改变所触发。
可选的,第二网元通过fronthaul接口向第一网元请求所述LCP映射关系的配置信息。
步骤2:第一网元将所述无线承载和/或逻辑信道和/或业务类型和/或物理层参数与LCP参数的映射关系发送给第二网元。
所述第一网元通过第一控制面协议实体(如无线资源控制RRC实体)半静态的将LCP配置信息发送给所述第二网元。
可选的,所述第一网元通过第四协议实体控制单元(如MAC CE)半静态的将LCP配置信息发送给所述第二网元。
步骤3:第二网元根据所述LCP映射关系配置第二网元中的实体和/或将所述LCP映射关系配置给终端。
所述第二网元根据LCP配置信息更新自身实体的参数配置。
所述第二网元将所述LCP配置信息发送给终端。
所述第二网元通过DCI动态的指示终端采用哪套LCP参数,或者终端根据业务类型自主选择采用哪一套LCP参数。
其中,业务类型可以根据传输速率、和/或时延、和/或可靠性等要求进行划分,包括但不限于至少以下之一:eMBB、mMTC、URLLC等。
所述终端根据当前使用的业务类型信息及映射关系确定与该业务对应的LCP配置参数。
如果是删除LCP的配置信息,则释放对应的LCP配置。
步骤4:第二网元将所述LCP映射关系的配置消息的接收确认消息通过fronthaul接口发送到第一网元。
所述接收确认消息或者是所述第二网元产生的,或者是所述终端产生的。
所述接收确认消息用于指示第一网元所述的LCP配置信息的接收状态。即指示第一网元是否需要重传所述LCP配置信息。
需要说明的是,删除或释放LCP的配置信息的发送过程对应的步骤4为可选步骤。即删除或释放LCP的配置信息的发送可以没有接收确认的反馈过程。
实例8
图12为本公开提供的BSR/PHR/测量配置的配置消息的发送流程示意图。本实例中,第一网元生成测量配置和/或BSR和/或PHR上报的配置信息,并将所述映射关系表通过第一网元与第二网元间的接口发送给第二网元,进一步的,由所述第二网元将所述配置信息发送给终端,具体步骤描述如下:步骤1:第一网元生成BSR和/或PHR和/或测量配置的配置信息。
所述BSR配置信息包括至少以下之一:BSR以逻辑信道组为单位进行上报、BSR以逻辑信道为单位进行上报。
所述PHR配置信息包括至少以下之一:配置终端按总的功率来计算功率余量、配置终端按多条链路上分配的功率来计算功率余量。
所述测量配置包括至少以下之一:测量对象、触发上报配置、测量标识、测量Gap、配置终端是进行小区测量还是进行波束测量。
步骤2:第一网元将所述BSR和/或PHR和/或测量配置的配置信息发送给第二网元。
第一网元根据终端的连接方式,比如单链路还是多链路配置BSR和/或PHR和/或测量的上报方式。
可选的,第一网元根据高低频,配置终端是进行小区级别的测量还是波束级别的测量。
可选的,第一网元根据终端的当前业务,配置BSR和/或PHR和/或测量的上报方式。
可选的,第二网元通过fronthaul接口向第一网元请求所述BSR和/或PHR和/或测量的配置信息。
步骤3:第二网元将所述BSR和/或PHR的配置消息的接收确认消息通过fronthaul接口发送到第一网元。
所述接收确认消息或者是所述第二网元产生的,或者是所述终端产生的。
所述接收确认消息用于指示第一网元所述的BSR和/或PHR配置信息的接收状态。即指示第一网元是否需要重传所述BSR和/或PHR配置信息。
步骤4:第二网元将所述终端上报的测量结果和/或第二网元过滤处理转化后的测量结果发送到第一网元。
所述第二网元根据终端上报的测量结果直接发送到所述第一网元。
或者,所述第二网元根据终端上报的测量结果进行滤波处理,将转换后的测量结果发送到第一网元。比如第二网元将终端对波束的测量结果转换成小区的测量结果后再上报的第一网元。
实施例4
本公开的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,根据业务类型信息生成控制信息;
S2,将所述控制信息通过第一网元与第二网元间的接口发送给第二网元。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行根据业务类型信息生成控制信息;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行将所述控制信息通过第一网元与第二网元间的接口发送给第二网元。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开适用于通信领域,用以解决相关技术中网元之间不能相互理解的技术问题,进而提高了网元的业务处理效率。

Claims (38)

  1. 一种控制信令配置方法,包括:
    第一网元根据业务类型信息生成控制信息;
    所述第一网元将所述控制信息通过第一网元与第二网元间的接口发送给第二网元。
  2. 根据权利要求1所述的方法,其中,所述业务类型信息包括至少以下之一:业务类型、无线承载RB、逻辑信道LCH、物理层参数numerology、网络切片slice。
  3. 根据权利要求1所述的方法,其中,所述控制信息包括配置信息,所述配置信息包括至少以下之一:
    slice配置信息、numerology配置信息、免调度Grant-free配置信息、逻辑信道优先级LCP配置信息、非连续接收DRX配置信息、混合自动重传请求HARQ配置信息、缓存状态报告BSR配置信息、功率余量上报PHR配置信息、测量配置信息。
  4. 根据权利要求3所述的方法,其中,第一网元根据业务类型信息生成控制信息包括:
    所述第一网元在对所述配置信息执行添加、删除、更新操作至少之一时,根据所述业务类型信息生成所述控制信息。
  5. 根据权利要求3所述的方法,其中,所述第一网元将所述控制信息通过第一网元与第二网元间的接口发送给第二网元包括:
    所述第一网元在对所述配置信息执行添加、删除、更新操作至少之一后,将所述控制信息发送给所述第二网元;或者,
    在所述第一网元接收到获取所述配置信息的请求后,所述第一网元发送所述控制信息给所述第二网元。
  6. 根据权利要求1所述的方法,其中,所述第一网元根据业务类型信息生成控制信息包括:
    第一网元根据业务类型信息使用专用过程和/或公共过程配置所述控制信息。
  7. 根据权利要求1所述的方法,其中,在所述第一网元将所述控制信息通过第一网元与第二网元间的接口发送给第二网元之后,所述方法还包括:
    所述第一网元接收所述第二网元发送的所述控制信息的反馈信息。
  8. 根据权利要求7所述的方法,其中,所述反馈信息包括至少以下之一:用于流控的反馈信息、层间状态指示信息、确认ACK/非确认NACK状态指示信息、测量结果上报信息、第二网元中实体的参数信息。
  9. 根据权利要求3所述的方法,其中,所述slice配置信息包括至少以下之一:slice与无线承载RB的映射关系、slice与逻辑信道LCH的映射关系、slice与业务类型的映射关系、slice与物理资源或资源池的映射关系、slice优先级、slice的服务质量QoS等级、slice的最大传输速率、slice占用资源百分比。
  10. 根据权利要求3所述的方法,其中,所述numerology配置信息包括至少以下之一:numerology与无线承载RB的映射关系、numerology与逻辑信道LCH的映射关系、 numerology与业务类型的映射关系、numerology与物理资源或资源池的映射关系。
  11. 根据权利要求3所述的方法,其中,所述Grant-free配置信息包括至少以下之一:Grant-free与无线承载RB的映射关系、Grant-free与逻辑信道LCH的映射关系、Grant-free与业务类型的映射关系。
  12. 根据权利要求3所述的方法,其中,所述LCP配置信息包括至少以下之一:LCP与无线承载RB的映射关系、LCP与逻辑信道LCH的映射关系、LCP与业务类型的映射关系。
  13. 根据权利要求3所述的方法,其中,所述DRX配置信息包括至少以下之一:DRX与无线承载RB的映射关系、DRX与逻辑信道LCH的映射关系、DRX与业务类型的映射关系。
  14. 根据权利要求3所述的方法,其中,所述HARQ配置信息包括至少以下之一:HARQ与无线承载RB的映射关系、HARQ与逻辑信道LCH的映射关系、HARQ与业务类型的映射关系。
  15. 根据权利要求3所述的方法,其中,所述BSR配置信息包括至少以下之一:BSR以逻辑信道组为单位进行上报、BSR以逻辑信道为单位进行上报。
  16. 根据权利要求3所述的方法,其中,所述PHR配置信息包括至少以下之一:配置终端按总功率来计算功率余量、配置终端按多条链路上分配的功率来计算功率余量。
  17. 根据权利要求1所述的方法,其中,所述第一网元与所述第二网元之间通过以下格式至少之一进行内容传输:容器container、明文。
  18. 根据权利要求1所述的方法,其中,所述第一网元与所述第二网元根据不同的处理时延要求进行定义,和/或根据不同的传输容量要求进行定义,和/或根据不同的业务类型进行定义。
  19. 一种控制信令配置装置,包括:
    生成模块,设置为根据业务类型信息生成控制信息;
    发送模块,设置为将所述控制信息通过第一网元与第二网元间的接口发送给第二网元。
  20. 根据权利要求19所述的装置,其中,所述业务类型信息包括至少以下之一:业务类型、无线承载RB、逻辑信道LCH、物理层参数numerology、网络切片slice。
  21. 根据权利要求19所述的装置,其中,所述控制信息包括配置信息,所述配置信息包括至少以下之一:
    slice配置信息、numerology配置信息、免调度Grant-free配置信息、逻辑信道优先级LCP配置信息、非连续接收DRX配置信息、混合自动重传请求HARQ配置信息、缓存状态报告BSR配置信息、功率余量上报PHR配置信息、测量配置信息。
  22. 根据权利要求21所述的装置,其中,所述生成模块包括:
    生成单元,设置为在对所述配置信息执行添加、删除、更新操作至少之一时根据所述 业务类型信息生成所述控制信息。
  23. 根据权利要求21所述的装置,其中,所述发送模块包括:
    第一发送单元,设置为在对所述配置信息执行添加、删除、更新操作至少之一后将所述控制信息发送给所述第二网元;或者,
    第二发送单元,设置为接收到获取所述配置信息的请求后,使所述第一网元发送所述控制信息给所述第二网元。
  24. 一种控制信令配置方法,包括:
    第一网元生成控制信息;
    所述第一网元将所述控制信息通过第一网元与第二网元间的接口发送给第二网元。
  25. 根据权利要求24所述的方法,其中,所述第一网元根据业务类型信息生成所述控制信息,且所述业务类型信息包括至少以下之一:业务类型、无线承载RB、逻辑信道LCH、物理层参数numerology、网络切片slice。
  26. 根据权利要求24所述的方法,其中,所述控制信息包括配置信息,所述配置信息包括至少以下之一:
    slice配置信息、numerology配置信息、免调度Grant-free配置信息、逻辑信道优先级LCP配置信息、非连续接收DRX配置信息、混合自动重传请求HARQ配置信息、缓存状态报告BSR配置信息、功率余量上报PHR配置信息、测量配置信息。
  27. 根据权利要求26所述的方法,其中,所述第一网元生成控制信息包括:
    所述第一网元在对所述配置信息执行添加、删除、更新操作至少之一时,生成所述控制信息。
  28. 根据权利要求23所述的方法,其中,所述第一网元将所述控制信息通过第一网元与第二网元间的接口发送给第二网元包括:
    所述第一网元在对所述配置信息执行添加、删除、更新操作至少之一后,将所述控制信息发送给所述第二网元;或者,
    在所述第一网元接收到获取所述配置信息的请求后,所述第一网元发送所述控制信息给所述第二网元。
  29. 根据权利要求24所述的方法,其中,所述第一网元生成控制信息包括:
    第一网元使用专用过程和/或公共过程配置所述控制信息。
  30. 根据权利要求24所述的方法,其中,在所述第一网元将所述控制信息通过第一网元与第二网元间的接口发送给第二网元之后,所述方法还包括:
    所述第一网元接收所述第二网元发送的所述控制信息的反馈信息。
  31. 根据权利要求30所述的方法,其中,所述反馈信息包括至少以下之一:用于流控的反馈信息、层间状态指示信息、确认ACK/非确认NACK状态指示信息、测量结果上报信息、第二网元中实体的参数信息。
  32. 根据权利要求24所述的方法,其中,所述第一网元与所述第二网元之间通过以下 格式至少之一进行内容传输:容器container、明文。
  33. 根据权利要求24所述的方法,其中,所述第一网元与所述第二网元根据不同的处理时延要求进行定义,和/或根据不同的传输容量要求进行定义,和/或根据不同的业务类型进行定义。
  34. 一种控制信令配置装置,包括:
    生成模块,设置为生成控制信息;
    发送模块,设置为将所述控制信息通过第一网元与第二网元间的接口发送给第二网元。
  35. 根据权利要求34所述的装置,其中,所述生成模块根据业务类型信息生成所述控制信息,且所述业务类型信息包括至少以下之一:业务类型、无线承载RB、逻辑信道LCH、物理层参数numerology、网络切片slice。
  36. 根据权利要求34所述的装置,其中,所述控制信息包括配置信息,所述配置信息包括至少以下之一:
    slice配置信息、numerology配置信息、免调度Grant-free配置信息、逻辑信道优先级LCP配置信息、非连续接收DRX配置信息、混合自动重传请求HARQ配置信息、缓存状态报告BSR配置信息、功率余量上报PHR配置信息、测量配置信息。
  37. 根据权利要求36所述的装置,其中,所述生成模块包括:
    生成单元,设置为在对所述配置信息执行添加、删除、更新操作至少之一时生成所述控制信息。
  38. 根据权利要求36所述的装置,其中,所述发送模块包括:
    第一发送单元,设置为在对所述配置信息执行添加、删除、更新操作至少之一后将所述控制信息发送给所述第二网元;或者,
    第二发送单元,设置为接收到获取所述配置信息的请求后,使所述第一网元发送所述控制信息给所述第二网元。
PCT/CN2017/116113 2017-01-05 2017-12-14 控制信令配置方法及装置 WO2018126865A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/476,228 US20190356450A1 (en) 2017-01-05 2017-12-14 Control signaling configuration method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710008457.0 2017-01-05
CN201710008457.0A CN108282868B (zh) 2017-01-05 2017-01-05 控制信令配置方法及装置

Publications (1)

Publication Number Publication Date
WO2018126865A1 true WO2018126865A1 (zh) 2018-07-12

Family

ID=62789072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116113 WO2018126865A1 (zh) 2017-01-05 2017-12-14 控制信令配置方法及装置

Country Status (3)

Country Link
US (1) US20190356450A1 (zh)
CN (1) CN108282868B (zh)
WO (1) WO2018126865A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3522589A4 (en) * 2016-09-30 2020-06-10 ZTE Corporation METHOD AND DEVICE FOR MANAGING A NETWORK LAYER AND COMPUTER STORAGE MEDIUM

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018214062A1 (zh) * 2017-05-24 2018-11-29 北京小米移动软件有限公司 无线资源控制消息的传输方法及装置
CN109302726B (zh) * 2017-07-25 2020-12-15 华为技术有限公司 测量方法、终端设备和接入网设备
CN109587818B (zh) * 2017-09-28 2021-03-23 华为技术有限公司 信息的传输方法和装置
CN109076552B (zh) * 2018-07-16 2021-10-08 北京小米移动软件有限公司 信道监测方法、装置、系统及存储介质
CN110769510B (zh) * 2018-07-28 2022-07-22 华为技术有限公司 一种免调度gf资源分配方法及相关设备
WO2020029215A1 (en) * 2018-08-10 2020-02-13 Chongqing University Of Posts And Telecommunications Methods, systems and devices for determining buffer status report
CN110312282B (zh) * 2018-09-28 2021-06-29 华为技术有限公司 数据传输的方法和装置
EP3873137A4 (en) * 2018-10-24 2022-06-15 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR CONFIGURATION OF NETWORK PARAMETERS AND COMPUTER READABLE STORAGE MEDIUM
WO2021114257A1 (zh) * 2019-12-13 2021-06-17 Oppo广东移动通信有限公司 Drx参数配置方法、处理方法、网络节点及用户设备
US20230353294A1 (en) * 2019-12-26 2023-11-02 Telefonaktiebolaget Lm Ericsson (Publ) Network slicing in cellular systems
CN111741536B (zh) * 2020-08-21 2020-12-18 深圳微品致远信息科技有限公司 一种用于5g网络的动态网络切片方法和系统
US11871285B2 (en) * 2020-09-24 2024-01-09 Electronics And Telecommunications Research Institute Handover processing method based slice and device for performing the method
US11785636B1 (en) * 2021-09-03 2023-10-10 T-Mobile Innovations Llc Wireless communication network access for wireless user equipment based on their wireless network slices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100466A1 (en) * 2003-05-05 2004-11-18 Nokia Corporation Method, system and network element for authorizing a data transmission
CN103260176A (zh) * 2012-02-20 2013-08-21 中兴通讯股份有限公司 最小化路测方法、网元及系统
US20130227151A1 (en) * 2007-11-27 2013-08-29 Verizon Services Organization, Inc. Packet-switched network-to-network interconnection interface
CN105578513A (zh) * 2014-10-11 2016-05-11 电信科学技术研究院 一种通信方法、设备及系统
CN106162692A (zh) * 2015-04-07 2016-11-23 中兴通讯股份有限公司 一种连接态下最小化路测方法和装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2405289B (en) * 2003-08-20 2006-10-25 Ipwireless Inc Method,base station,remote station and system for HSDPA communication
KR20120019073A (ko) * 2010-08-24 2012-03-06 주식회사 팬택 다중 요소 반송파 시스템에서 잉여전력에 관한 정보의 전송장치 및 방법
US9107197B2 (en) * 2011-04-13 2015-08-11 Telefonaktiebolaget L M Ericsson (Publ) Terminal-based selection of radio parameters among a parameter subset offered by the network
KR102103343B1 (ko) * 2013-08-09 2020-05-04 주식회사 팬택 이종 네트워크 무선 통신 시스템에서 데이터 전송 장치 및 방법
US9961693B2 (en) * 2014-03-20 2018-05-01 Sharp Kabushiki Kaisha Terminal apparatus, base station apparatus, communication system, notification method, and integrated circuit
WO2015199353A1 (ko) * 2014-06-24 2015-12-30 엘지전자 주식회사 단말간 직접 통신을 지원하는 통신 시스템에서 송수신 단말간 통신을 위한 자원할당 방법 및 이를 위한 장치
CN105282803A (zh) * 2014-07-25 2016-01-27 中兴通讯股份有限公司 通讯接口和基于通讯接口的信息传递方法及系统
WO2017005295A1 (en) * 2015-07-06 2017-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation for data transmission in wireless systems
US10616820B2 (en) * 2015-08-25 2020-04-07 Lg Electronics Inc. Base station connecting method and user equipment performing same
US11089579B2 (en) * 2016-01-13 2021-08-10 Samsung Electronics Co., Ltd. Method and apparatus for supporting multiple services in advanced MIMO communication systems
WO2017204067A1 (ja) * 2016-05-26 2017-11-30 京セラ株式会社 ネットワーク装置
US10383165B2 (en) * 2016-06-03 2019-08-13 Ofinno, Llc Uplink resource allocation in a wireless device and wireless network
CN107872886B (zh) * 2016-09-27 2019-12-10 电信科学技术研究院 媒体接入控制层架构、数据传输方法、网络侧设备及终端
US10721722B2 (en) * 2016-09-30 2020-07-21 Qualcomm Incorporated Aspects of new radio PDCCH design
US10999800B2 (en) * 2016-12-01 2021-05-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for discontinuous reception
EP3554145B1 (en) * 2016-12-16 2022-03-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Discontinuous reception method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100466A1 (en) * 2003-05-05 2004-11-18 Nokia Corporation Method, system and network element for authorizing a data transmission
US20130227151A1 (en) * 2007-11-27 2013-08-29 Verizon Services Organization, Inc. Packet-switched network-to-network interconnection interface
CN103260176A (zh) * 2012-02-20 2013-08-21 中兴通讯股份有限公司 最小化路测方法、网元及系统
CN105578513A (zh) * 2014-10-11 2016-05-11 电信科学技术研究院 一种通信方法、设备及系统
CN106162692A (zh) * 2015-04-07 2016-11-23 中兴通讯股份有限公司 一种连接态下最小化路测方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3522589A4 (en) * 2016-09-30 2020-06-10 ZTE Corporation METHOD AND DEVICE FOR MANAGING A NETWORK LAYER AND COMPUTER STORAGE MEDIUM

Also Published As

Publication number Publication date
CN108282868A (zh) 2018-07-13
CN108282868B (zh) 2023-07-18
US20190356450A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2018126865A1 (zh) 控制信令配置方法及装置
US11304252B2 (en) Method and apparatus for processing packet in next-generation mobile communication system
US11277859B2 (en) Method for supporting multiple scheduling requests in next-generation mobile communication system
US10869223B2 (en) Method and apparatus for efficient operation upon packet duplication activation and deactivation in next generation wireless communication system
US11387973B2 (en) Method and apparatus for transmitting and receiving scheduling requests
CN113115359B (zh) 在移动通信系统中的终端及其执行的方法
EP3634071B1 (en) Channel access priority class selection
CN107667559B (zh) 在无线通信系统中使用不同的无线连接技术提供多连接的装置和方法
US10873880B2 (en) Method and apparatus for wireless communication in wireless communication system
KR102501927B1 (ko) 무선 통신 시스템에서 통신 방법 및 장치
WO2018059317A1 (zh) 一种网络切片的管理方法及装置、计算机存储介质
US11844147B2 (en) Method and apparatus for resource allocation for network coordination
US10833820B2 (en) User terminal and radio base station
KR20190116810A (ko) 차세대 이동통신 시스템에서 엑세스 제어 설정 정보를 효율적으로 제공하는 방법 및 장치
KR102674850B1 (ko) Nr 시스템에서 mr-dc에 대한 단말 능력을 보고하는 방법 및 장치
US20150349929A1 (en) Evolved node-b, user equipment, and methods for hybrid automatic repeat request (harq) communication
KR20200099001A (ko) 무선 통신 시스템에서 단말 능력을 보고하기 위한 방법 및 장치
WO2021161861A1 (ja) 端末及び通信方法
CN112567881A (zh) 在下一代移动通信系统中支持无丢失的pdcp版本改变的方法和设备
WO2021244299A1 (zh) 通信方法及通信设备
KR20240118772A (ko) 네트워크 에너지 절약 기반의 수락 제어
US20230262716A1 (en) Conditional and proactive grants for sidelink communications
US20240267967A1 (en) Method and device for connecting multiple base stations in wireless communication system
WO2024171653A1 (ja) 端末、基地局、通信方法及び集積回路
WO2022030069A1 (ja) 端末、基地局及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889692

Country of ref document: EP

Kind code of ref document: A1