JP7318779B2 - マスター無線アクセスネットワークノード、amf、及びこれらの方法 - Google Patents

マスター無線アクセスネットワークノード、amf、及びこれらの方法 Download PDF

Info

Publication number
JP7318779B2
JP7318779B2 JP2022124485A JP2022124485A JP7318779B2 JP 7318779 B2 JP7318779 B2 JP 7318779B2 JP 2022124485 A JP2022124485 A JP 2022124485A JP 2022124485 A JP2022124485 A JP 2022124485A JP 7318779 B2 JP7318779 B2 JP 7318779B2
Authority
JP
Japan
Prior art keywords
pdu session
splitting
amf
core network
scg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022124485A
Other languages
English (en)
Other versions
JP2022140737A (ja
Inventor
尚 二木
貞福 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JP2022140737A publication Critical patent/JP2022140737A/ja
Application granted granted Critical
Publication of JP7318779B2 publication Critical patent/JP7318779B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • H04W28/0864Load balancing or load distribution among access entities between base stations of different hierarchy levels, e.g. Master Evolved Node B [MeNB] or Secondary Evolved node B [SeNB]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/0827Triggering entity
    • H04W28/0835Access entity, e.g. eNB
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • H04W28/0967Quality of Service [QoS] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00695Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using split of the control plane or user plane
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Description

本開示は、無線通信システムに関し、特に無線端末が異なる無線アクセスネットワークノードによって運用される複数のセルを同時に使用するデュアルコネクティビティ動作(dual-connectivity operation)に関する。
3rd Generation Partnership Project(3GPP(登録商標))は、2020年以降の導入に向けた第5世代移動通信システム(5G)の標準化作業を行っている。5Gは、LTE及びLTE-Advancedの継続的な改良・発展(enhancement/evolution)と新たな5Gエア・インタフェース(新たなRadio Access Technology(RAT))の導入による革新的な改良・発展の組合せで実現されると想定されている。新たなRATは、例えば、LTE/LTE-Advancedの継続的発展が対象とする周波数帯(e.g., 6 GHz以下)よりも高い周波数帯、例えば10 GHz以上のセンチメートル波帯及び30 GHz以上のミリ波帯をサポートする。
本明細書では、第5世代移動通信システムは、5G System、又はNext Generation (NextGen) System(NG System)とも呼ばれる。5G Systemのための新たなRATは、New Radio(NR)、5G RAT、又はNG RATと呼ばれる。5G Systemのための新たな無線アクセスネットワーク(Radio Access Network(RAN))は、5G-RAN又はNextGen RAN(NG RAN)と呼ばれる。5G-RAN 内の新たな基地局は、NR NodeB(NR NB)又はgNodeB(gNB)と呼ばれる。5G Systemのための新たなコアネットワークは、5G Core Network(5G-CN又は5GC)又はNextGen Core(NG Core)と呼ばれる。5G Systemに接続する無線端末(User Equipment(UE))は、5G UE、NextGen UE(NG UE)又は単にUEと呼ばれる。5G SystemのためのRAT、UE、無線アクセスネットワーク、コアネットワーク、ネットワーク・エンティティ(ノード)、及びプロトコルレイヤ等の正式な名称は、標準化作業が進む過程で将来的に決定されるであろう。
また、本明細書で使用される“LTE”との用語は、特に断らない限り、5G Systemとのインターワーキングを可能とするためのLTE及びLTE-Advancedの改良・発展を含む。5G System とのインターワークのためのLTE及びLTE-Advancedの改良・発展は、LTE-Advanced Pro、LTE+、又はenhanced LTE(eLTE)とも呼ばれる。さらに、本明細書で使用される“Evolved Packet Core (EPC)”、“Mobility Management Entity (MME)”、“Serving Gateway (S-GW)”、及び“Packet Data Network (PDN) Gateway (P-GW)”等のLTEのネットワーク又は論理的エンティティに関する用語は、特に断らない限り、5G Systemとのインターワーキングを可能とするためのこれらの改良・発展を含む。改良されたEPC、MME、S-GW、及びP-GWは、例えば、enhanced EPC(eEPC)、enhanced MME(eMME)、enhanced S-GW(eS-GW)、及びenhanced P-GW(eP-GW)とも呼ばれる。
LTE及びLTE-Advancedでは、Quality of Service(QoS)及びパケットルーティングのために、QoSクラス毎且つPDNコネクション毎のベアラがRAN(i.e., Evolved Universal Terrestrial RAN(E-UTRAN))及びコアネットワーク(i.e., EPC)の両方で使用される。すなわち、Bearer-based QoS(or per-bearer QoS)コンセプトでは、UEとEPC内のP-GWとの間に1又は複数のEvolved Packet System (EPS) bearersが設定され、同じQoSクラスを持つ複数のサービスデータフロー(Service Data Flows(SDFs))はこれらのQoSを満足する1つのEPS bearerを通して転送される。SDFは、Policy and Charging Control (PCC) ルールに基づくSDFテンプレート(i.e., packet filters)にマッチする1又は複数のパケットフローである。また、パケットルーティングのために、EPS bearerを通って送られる各パケットは、このパケットがどのベアラ(i.e., General Packet Radio Service (GPRS) Tunneling Protocol(GTP)トンネル)に関連付けられているかを見分ける(identify)ための情報を包含する。また、QoS Class Identifier(QCI)がQoSクラスの情報として用いられる。3GPP仕様は、各QCIとこれに関連付けられるQoS特性(例えば、パケットと伝送遅延に関する要求(i.e., Packet Delay Budget))の間の関係を規定している。
これに対して、5G Systemでは、無線ベアラがNG-RAN において使用されるかもしれないが、5GC内及び5GCとNG-RANの間のインタフェースにおいてベアラは使用されないことが検討されている。具体的には、EPS bearerの代わりにPDU flowsが定義され、1又は複数のSDFsは、1又は複数のPDU flowsにマップされる。5G UEとNG Core内のユーザプレーン終端エンティティ(i.e., EPC内のP-GWに相当するエンティティ)との間のPDU flowは、EPS Bearer-based QoSコンセプトにおけるEPSベアラに相当する。PDU flowは、5G system内でのパケットフォワーディング及び処理(treatment)の最も微細な粒度(finest granularity)に対応する。すなわち、5G Systemは、Bearer-based QoSコンセプトの代わりにFlow-based QoS(or per-flow QoS)コンセプトを採用する。Flow-based QoS コンセプトでは、QoSはPDU flow単位で取り扱われる(handled)。5G systemのQoSフレームワークでは、PDU flow は、N3インタフェースのトンネルのService Data Unitをカプセル化(encapsulating)するヘッダー内のPDU flow IDによって特定される。N3インタフェースは、5GCとgNB(i.e., NG-RAN)の間のユーザプレーン・インタフェースである。5G UEとデータネットワークとの間の関連付け(association)は、PDUセッション(PDU session)と呼ばれる。PDUセッションは、LTE及びLTE-AdvancedのPDNコネクション(PDN connection)に相当する用語である。複数のPDU flowsが1つのPDUセッション内に設定されることができる。3GPP仕様は、5G Systemのために、LTEのQCIに相当する5G QoS Indicator(5QI)を規定する。
なお、PDU flow は、“QoS flow”とも呼ばれる。QoS flowは、5G system内でのQoS処理(treatment)の最も微細な粒度(finest granularity)である。PDU session内の同一のN3マーキング値を有するユーザプレーントラフィックがQoS flowに対応する。N3マーキングは、上述のPDU flow IDに対応し、QoS flow Identity(QFI)とも呼ばれ、さらにFlow Identification Indicator(FII)とも呼ばれる。ここで、少なくとも仕様に規定される各5QIとこれと同じ値(番号)を持つ対応するQFIとの間には1対1の関係がある(i.e., one-to-one mapping)。
図1は、5G systemの基本アーキテクチャを示している。UEは、gNBとの間に1又はそれ以上のシグナリング無線ベアラ(Signalling Radio Bearers(SRBs))及び1又はそれ以上のデータ無線ベアラ(Data Radio Bearers(DRBs))を確立する。5GC及びgNBは、UEのためのコントロールプレーン・インタフェース及びユーザプレーン・インタフェースを確立する。5GCとgNB(i.e., RAN)の間のコントロールプレーン・インタフェースは、N2インタフェース、NG2インタフェース、又はNG-cインタフェースと呼ばれ、Non-Access Stratum(NAS)情報の転送、及び5GCとgNB間の制御情報(e.g., N2 AP Information Element)に使用される。5GCとgNB(i.e., RAN)の間のユーザプレーン・インタフェースは、N3インタフェース、NG3インタフェース、又はNG-uインタフェースと呼ばれ、UEのPDUセッション内の1又はそれ以上のPDU flowsのパケット(packets)の転送に使用される。
なお、図1に示されたアーキテクチャは、複数の5Gアーキテクチャ・オプション(又は配置シナリオ(deployment scenarios))の1つに過ぎない。図1に示されたアーキテクチャは、“Standalone NR (in NextGen System)”又は“オプション2”と呼ばれるアーキテクチャである。3GPPは、さらに、E-UTRA及びNR無線アクセス技術(E-UTRA and NR radio access technologies)を使用するマルチ接続動作(multi-connectivity operation)のための幾つかのネットワーク・アーキテクチャを検討している。マルチ接続動作の代表例が、1つのマスターノード(Master node (MN))と1つのセカンダリノード(Secondary node (SN))が互いに連携して1つのUEと同時に通信するデュアル接続(Dual Connectivity (DC))である。E-UTRA及びNR無線アクセス技術を使用するデュアル接続動作は、Multi-RAT Dual Connectivity (MR-DC)と呼ばれる。MR-DCは、E-UTRAノード及びNRノード(E-UTRA and NR nodes)の間のデュアル接続(connectivity)である。
MR-DCでは、E-UTRAノード(i.e., eNB)及びNRノード(i.e., gNB)のうち一方がマスターノード(Master node (MN))として動作し、他方がセカンダリノード(Secondary node (SN))として動作し、少なくともMNがコアネットワークに接続される。MNは1又はそれ以上のMaster Cell Group(MCG)セルをUEに提供し、SNは1又はそれ以上のSecondary Cell Group(SCG)セルをUEに提供する。MR-DCは、“MR-DC with the EPC” 及び“MR-DC with the 5GC”を含む。
MR-DC with the EPCは、E-UTRA-NR Dual Connectivity (EN-DC)を含む。EN-DCでは、UEはMNとして動作するeNB及びSNとして動作するgNBに接続される。さらに、eNB(i.e., Master eNB)はEPCに接続され、gNB(i.e. Secondary gNB)はX2 interfaceを介してMaster eNBに接続される。
MR-DC with the 5GCは、NR-E-UTRA Dual Connectivity (NE-DC)及びNG-RAN E-UTRA-NR Dual Connectivity (NG-EN-DC)を含む。NE-DCでは、UEはMNとして動作するgNB及びSNとして動作するeNBに接続され、gNB(i.e., Master gNB)は5GCに接続され、eNB(i.e. Secondary eNB)はXn interfaceを介してMaster gNBに接続される。一方、NG-EN-DCでは、UEはMNとして動作するeNB及びSNとして動作するgNBに接続され、eNB(i.e., Master eNB)は5GCに接続され、gNB(i.e. Secondary gNB)はXn interfaceを介してMaster eNBに接続される。
図2、図3、及び図4は、上述した3つのDCタイプ、すなわちEN-DC、NE-DC、及びNG-EN-DCのネットワーク構成をそれぞれ示している。さらに、5G Systemは、2つのgNBsの間のデュアルコネクティビティをサポートする。本明細書では、2つのgNBsの間のデュアルコネクティビティは、NR-NR DCと呼ばれる。図5は、NR-NR DCのネットワーク構成を示している。
図6は、上述した3つのMR-DCタイプ並びにNR-NR DCがサポートするSRBs及びDRBsを示している。なお、図6は、現在3GPPにて議論中の3GPP Release 15においてサポートされるベアラタイプを例示している。したがって、これらのDCタイプによってサポートされるベアラタイプは図6と異なってもよい。
MCG SRBは、MCGセルにおいてUEとMNとの間に確立されるSRBであり、MNによって生成されるRadio Resource Control Protocol Data Units(RRC PDUs)は、MCG SRBでトランスポートされることができる。SNによって生成されるRRC PDUsは、MN及びMCG SRBを介してUEにトランスポートされることができる。これに代えて、SNは、SNによって生成されるRRC PDUsをUEとSNとの間で直接的にトランスポートするために、SCGセルにおいてUEとSNとの間のSRB(SCG SRB)を確立することができる。SCG SRB は、例えば、SRB3と呼ばれる。MCG split SRBは、MCG SRBを介してトランスポートされることができるRRC PPUsの複製(duplication)を行い、同じRRC PDUsがMCGセルとSCGセルの両方においてトランスポートされることを可能にする。
MCGベアラは、その無線プロトコルがMCGにのみ配置されるユーザプレーンベアラである。MCGスプリットベアラは、その無線プロトコルがMNにおいてスプリットされ、MCG及びSCGの両方に属するユーザプレーンベアラである。SCGベアラは、その無線プロトコルがSCGにのみ配置されるユーザプレーンベアラである。SCGスプリットベアラは、その無線プロトコルがSNにおいてスプリットされ、SCG及びMCGの両方に属するユーザプレーンベアラである。MCGスプリットベアラおよびSCGスプリットベアラは、PDCP data PDUsの複製(duplication)を行い、同じPDCP data PDUsがMCGセルとSCGセルの両方においてトランスポートされることを可能にする。
なお、NR(i.e., gNB及びUE)のレイヤ2機能は、LTE(i.e., eNB及びUE)のレイヤ2機能と同一ではない。例えば、NRのレイヤ2は、Service Data Adaptation Protocol(SDAP)サブレイヤ、Packet Data Convergence Protocol(PDCP)サブレイヤ、Radio Link Control(RLC)サブレイヤ、及びMedium Access Control(MAC)サブレイヤの4サブレイヤを含む。NR PDCPサブレイヤでは、DRBsのためのPDCP Sequence Number(SN)のサイズが12ビット又は18ビットであり、これはLTEのPDCP SNサイズ(i.e., 7ビット、12ビット、15ビット、又は18ビット)のサブセットである。ただし、LTE eNBが5GCに接続される場合、LTE(i.e., eNB及びUE)のレイヤ2はSDAPサブレイヤを含む。一方、NR gNBがEN-DCでSNとして運用される場合、NR(i.e., gNB及びUE)のレイヤ2は、SDAPサブレイヤを実装しなくてもよい。これに代えて、NR gNBがEN-DCでSNとして運用される場合、NR(i.e., gNB及びUE)のレイヤ2は、SDAPサブレイヤがこれを通過するPDUsに対してトランスペアレントであるように実装されてもよい。すなわち、SDAPサブレイヤにはTransparent Modeが実装されてもよい。
SDAPサブレイヤの主要なサービス及び機能は、QoS flowとデータ無線ベアラ(DRB)の間のマッピング、並びにダウンリンク(DL)及びアップリンク(UL)パケットへのQoS flow Identity (QFI)のマーキングを含む。SDAPの1つの(single)プロトコルエンティティは、各個(each individual)PDUセッションのために設定される(DCを除いて)。DCの場合、2つのエンティティが設定されることができる(i.e., 1つはMCGのためでありもう1つはSCGのため)。
図7は、上述した5GCのnon-DC QoSアーキテクチャを示している(非特許文献1を参照)。各UEのために、5GCは1又はそれ以上のPDUセッションを確立する。各UEのために、NG-RANは、PDUセッション毎に(per PDU session)1又はそれ以上のDRBsを確立する。NG-RANは、異なるPDUセッションに属するパケット(packets)を異なるDRBにマップする。言い換えると、NG-RANは、異なるPDUセッションに属するQoS flows(i.e., 該QoS flowsで送信されるパケット(packets))を同じDRBへとマップしない。したがって、NG-RANは、PDU Session establishmentにおいて、5GCによって示された各PDUセッションのために少なくとも1つのデフォルトDRBを確立する。non-DCの場合、1つのPDUセッションに属する複数のQoSフローのパケット(packets)は、NG-RANノード(i.e., gNB)と5GC内のユーザプレーン機能(user plane function(UPF))の間に設定されるNG-Uトンネルを介してデリバリーされる。NG-Uトンネルは、例えばGeneral Packet Radio Service (GPRS) Tunnelling Protocol(GTP)トンネルである。NG-Uトンネルの5GC内の終点ノードは、user plane gateway(UPGW)とも呼ばれる。5GCのQoSコンセプトでは、5GCは、1つのPDUセッション内のQoSレベルが互いに異なる複数のQoSフローを1つのNG-Uトンネルで転送することを許容する。NG-Uトンネルは、N3トンネル、NG3トンネル、又はPDUトンネル、PDUセッション・トンネルとも呼ばれる。
非特許文献2、3、及び4は、NG-RANにおいてDCが実行される場合に、5GC内のUPF(UPGW)における1つのPDUセッションのためのNG-Uリソース(resources)をスプリットするオプションを提案している。ここでのDCは、NR-NR DC並びにMR-DC with the 5GC(e.g.., NE-DC及びNG-EN DC)を含む。具体的には、5GシステムにおけるDCでは、2つのNG-Uトンネルが1つのPDUセッションのために同時にサポートされることが必要とされる。一方のNG-UトンネルはUPF(UPGW)とマスターノード(Master Node(MN))の間に設定され、もう1つのNG-UトンネルはUPF(UPGW)とセカンダリノード(Secondary Node(SN))の間に設定される。本明細書では、このような構成をPDUセッション・スプリットと呼ぶ。すなわちPDUセッション・スプリットは、2つ又はそれ以上のNG-Uトンネルが1つのPDUセッションのために同時にサポートされる構成と定義することができる。言い換えると、PDUセッション・スプリットは、1つのPDUセッション内の一部がMNに送られ、残りがSN(s)に送られることを許容する構成と定義することができる。
3GPPで検討されているPDUセッション・スプリットでは、MNが、MNを介して転送されていた1つのPDUセッションの複数のQoSフローのうちの一部をSNに移す。図8は、非特許文献3及び4に開示されたQoSフローのMNからSNへの移動を示している。図8の例では、MNを介して転送されていた1つのPDUセッションの2つのQoSフロー801及び802のうちQoSフロー802がSNに移される。MNからSNに移されたQoSフロー802は、UPF(UPGW)とSNの間に設定されたNG-Uトンネル822を介して転送される。すなわち、5GシステムにおけるDCでは、1つのPDUセッションの異なるQoSフロー801及び802が、異なる2つのNG-Uトンネル821及び822を介してMNとSNに同時に送られる必要がある。なお、MNに送られるQoSフロー801はMCGフローと呼ばれることがあり、SNに送られるQoSフロー802はSCGフローと呼ばれることがある。
3GPP TS 38.300 V0.4.1 (2017-06)、"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; NR and NG-RAN Overall Description; Stage 2 (Release 15)", June 2017 3GPP Tdoc R2-1703252, Samsung, "NR + NR DC: QOS Architecture", 3GPP TSG-RAN WG2 Meeting #97 bis, April 2017 3GPP Tdoc R3-171711, Ericsson, "PDU Session Split at UPF", 3GPP TSG-RAN WG3 Meeting #96, May 2017 3GPP Tdoc R3-171898, NTT DOCOMO, INC., "Response to R3-171711 (PDU Session split at UPF)", 3GPP TSG-RAN WG3 Meeting #96, May 2017
非特許文献2、3、及び4は、PDUセッション・スプリットのためにMN(e.g., MgNB)とコアネットワーク(e.g., 5GC)の間のシグナリング又は調整(coordination)が必要とされることを開示している。さらに、非特許文献2、3、及び4は、PDUセッション・スプリットのためにMN(e.g., MgNB)とSN(e.g., SgNB)の間のシグナリング又は調整(coordination)が必要されることを開示している。しかしながら、非特許文献2、3、及び4は、PDUセッション・スプリットのためのシグナリングの詳細を開示していない。したがって、PDUセッション・スプリットをどのように行うか明確でない。
本明細書に開示される実施形態が達成しようとする目的の1つは、PDUセッション・スプリットの無線通信ネットワークへの実装に寄与する装置、方法、及びプログラムを提供することである。なお、この目的は、本明細書に開示される複数の実施形態が達成しようとする複数の目的の1つに過ぎないことに留意されるべきである。その他の目的又は課題と新規な特徴は、本明細書の記述又は添付図面から明らかにされる。
第1の態様では、マスター無線アクセスネットワーク(RAN)ノードは、メモリ及び前記メモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、無線端末とコアネットワーク内のユーザプレーン機能との間に既に確立済みの第1のPDUセッションの修正要求をコアネットワーク内のコントロールプレーン機能に送るよう構成される。前記修正要求は、前記既に確立済みの第1のPDUセッションに関してPDUセッション・スプリットが必要とされることを暗示的又は明示的に示す。前記修正要求は、前記既に確立済みの第1のPDUセッションに関連付けられた複数のQuality of Service(QoS)フローのうち特定の1又はそれ以上のQoSフローを、前記ユーザプレーン機能と前記マスターRANノードの間の第1のトンネルから前記ユーザプレーン機能とセカンダリRANノードの間の第2のトンネルに移動するように前記ユーザプレーン機能を制御することを前記コントロールプレーン機能に引き起こす。
第2の態様では、コアネットワークに配置されるコントロールプレーン・ノードは、メモリ及び前記メモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、無線端末と前記コアネットワーク内のユーザプレーン機能との間に既に確立済みの第1のPDUセッションの修正要求をマスター無線アクセスネットワーク(RAN)ノードから受信するよう構成される。前記修正要求は、前記既に確立済みの第1のPDUセッションに関してPDUセッション・スプリットが必要とされることを暗示的又は明示的に示す。前記少なくとも1つのプロセッサは、さらに、前記修正要求の受信に応答して、前記既に確立済みの第1のPDUセッションに関連付けられた複数のQuality of Service(QoS)フローのうち特定の1又はそれ以上のQoSフローを、前記ユーザプレーン機能と前記マスターRANノードの間の第1のトンネルから前記ユーザプレーン機能とセカンダリRANノードの間の第2のトンネルに移動するように前記ユーザプレーン機能を制御するよう構成される。
第3の態様では、セカンダリ無線アクセスネットワーク(RAN)ノードは、メモリ及び前記メモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、無線端末のためのデュアルコネクティビティのためのリソースを割り当てるよう要求するノード間メッセージをマスターRANノードから受信するよう構成される。前記ノード間メッセージは、さらに、前記無線端末とコアネットワーク内のユーザプレーン機能との間に既に確立済みの第1のPDUセッションにPDUセッション・スプリットが適用されることを暗示的又は明示的に示す。前記PDUセッション・スプリットは、前記第1のPDUセッションに関連付けられた複数のQuality of Service(QoS)フローのうちの1又はそれ以上の第1のQoSフローが前記ユーザプレーン機能と前記マスターRANノードの間の第1のトンネルを介して転送され、前記複数のQoSフローのうちの1又はそれ以上の第2のQoSフローが前記ユーザプレーン機能と前記セカンダリRANノードの間の第2のトンネルを介して転送される構成を含む。
第4の態様では、無線端末は、メモリ及び前記メモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、デュアルコネクティビティのためのセカンダリセルグループ設定を示すRRCコネクション再構成メッセージをマスター(RAN)ノード又はセカンダリRANノードから受信するよう構成される。前記RRCコネクション再構成メッセージは、さらに、前記無線端末とコアネットワーク内のユーザプレーン機能との間に既に確立済みの第1のPDUセッションにPDUセッション・スプリットが適用されることを暗示的又は明示的に示す。前記PDUセッション・スプリットは、前記第1のPDUセッションに関連付けられた複数のQuality of Service(QoS)フローのうちの1又はそれ以上の第1のQoSフローが前記ユーザプレーン機能と前記マスターRANノードの間の第1のトンネルを介して転送され、前記複数のQoSフローのうちの1又はそれ以上の第2のQoSフローが前記ユーザプレーン機能とセカンダリRANノードの間の第2のトンネルを介して転送される構成を含む。
第5の態様では、マスター無線アクセスネットワーク(RAN)ノードにおける方法は、無線端末とコアネットワーク内のユーザプレーン機能との間に既に確立済みの第1のPDUセッションの修正要求をコアネットワーク内のコントロールプレーン機能に送ることを含む。前記修正要求は、前記既に確立済みの第1のPDUセッションに関してPDUセッション・スプリットが必要とされることを暗示的又は明示的に示す。
第6の態様では、コアネットワークに配置されるコントロールプレーン・ノードにおける方法は、無線端末と前記コアネットワーク内のユーザプレーン機能との間に既に確立済みの第1のPDUセッションの修正要求をマスター無線アクセスネットワーク(RAN)ノードから受信することを含む。前記修正要求は、前記既に確立済みの第1のPDUセッションに関してPDUセッション・スプリットが必要とされることを暗示的又は明示的に示す。さらに、当該方法は、前記既に確立済みの第1のPDUセッションに関連付けられた複数のQuality of Service(QoS)フローのうち特定の1又はそれ以上のQoSフローを、前記ユーザプレーン機能と前記マスターRANノードの間の第1のトンネルから前記ユーザプレーン機能とセカンダリRANノードの間の第2のトンネルに移動するように前記ユーザプレーン機能を制御することを含む。
第7の態様では、セカンダリ無線アクセスネットワーク(RAN)ノードにおける方法は、無線端末のためのデュアルコネクティビティのためのリソースを割り当てるよう要求するノード間メッセージをマスターRANノードから受信することを含む。前記ノード間メッセージは、さらに、前記無線端末とコアネットワーク内のユーザプレーン機能との間に既に確立済みの第1のPDUセッションにPDUセッション・スプリットが適用されることを暗示的又は明示的に示す。
第8の態様では、無線端末における方法は、デュアルコネクティビティのためのセカンダリセルグループ設定を示すRRCコネクション再構成メッセージをマスター(RAN)ノード又はセカンダリRANノードから受信することを含む。前記RRCコネクション再構成メッセージは、さらに、前記無線端末とコアネットワーク内のユーザプレーン機能との間に既に確立済みの第1のPDUセッションにPDUセッション・スプリットが適用されることを暗示的又は明示的に示す。
第9の態様では、プログラムは、コンピュータに読み込まれた場合に、上述の第5、第6、第7、又は第8の態様に係る方法をコンピュータに行わせるための命令群(ソフトウェアコード)を含む。
上述の態様によれば、PDUセッション・スプリットの無線通信ネットワークへの実装に寄与する装置、方法、及びプログラムを提供できる。
5G Systemの基本アーキテクチャを示す図である。 EN-DCのネットワーク構成を示す図である。 NE-DCのネットワーク構成を示す図である。 NG-EN-DCのネットワーク構成を示す図である。 NR-NR DCのネットワーク構成を示す図である。 3GPPにて議論中の3つのDCタイプによってサポートされるベアラタイプを示すテーブルである。 5G Systemのnon-DC QoSアーキテクチャを示す図である。 5G SystemのNR-NR DC QoSアーキテクチャを示す図である。 幾つかの実施形態に係る無線通信ネットワークの構成例を示す図である。 第1の実施形態に係るマスターノードの動作の一例を示すフローチャートである。 第1の実施形態に係るコントロールプレーン機能エンティティの動作の一例を示すフローチャートである。 第1の実施形態に係るPDUセッション・スプリットに関するシグナリングの一例を示すシーケンス図である。 “PDU Session Request To Be Modified List”情報要素(Information Element(IE))のフォーマットの一例を示す図である。 “PDU Session Request To Be Modified List”IEのフォーマットの一例を示す図である。 “PDU Session Request To Be Modified List” IEのフォーマットの一例を示す図である。 第1の実施形態に係るPDUセッション・スプリットに関するシグナリングの一例を示すシーケンス図である。 “PDU Session Request To Be Setup List”IEのフォーマットの一例を示す図である。 第2の実施形態に係るコントロールプレーン機能エンティティの動作の一例を示すフローチャートである。 第2の実施形態に係るPDUセッション・スプリットに関するシグナリングの一例を示すシーケンス図である。 第4の実施形態に係るコントロールプレーン機能エンティティの動作の一例を示すフローチャートである。 第4の実施形態に係るPDUセッション・スプリットに関するシグナリングの一例を示すシーケンス図である。 第5の実施形態に係るマスターノードの動作の一例を示すフローチャートである。 第5の実施形態に係るPDUセッション・スプリットに関するシグナリングの一例を示すシーケンス図である。 第7の実施形態に係るマスターノードの動作の一例を示すフローチャートである。 第7の実施形態に係るPDUセッション・スプリットに関するシグナリングの一例を示すシーケンス図である。 第7の実施形態に係る無線端末の動作の一例を示すシーケンス図である。 第8の実施形態に係るPDUセッション・スプリットに関するシグナリングの一例を示すシーケンス図である。 第8の実施形態に係るPDUセッション・スプリットに関するシグナリングの一例を示すシーケンス図である。 幾つかの実施形態に係るマスターノードの構成例を示すブロック図である。 幾つかの実施形態に係る無線端末の構成例を示すブロック図である。 幾つかの実施形態に係るコントロールプレーン機能エンティティの構成例を示すブロック図である。
以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
以下に説明される複数の実施形態は、独立に実施されることもできるし、適宜組み合わせて実施されることもできる。これら複数の実施形態は、互いに異なる新規な特徴を有している。したがって、これら複数の実施形態は、互いに異なる目的又は課題を解決することに寄与し、互いに異なる効果を奏することに寄与する。
以下に示される複数の実施形態は、NR-NR DC及びMR-DC with the 5GCを主な対象として説明される。しかしながら、これらの実施形態は、その他のRATsを使用するDCアーキテクチャをサポートする他の無線通信システムに適用されてもよい。
<第1の実施形態>
図9は、本実施形態を含む幾つかの実施形態に係る無線通信ネットワークの構成例を示している。図9の例では、無線通信ネットワークは、マスターノード(MN)1、セカンダリノード(SN)2、UE3、及びコアネットワーク4を含む。図9に示された無線通信ネットワークは、NR-NR DC又はMR-DC with the 5GCをサポートする。すなわち、MN1及びSN2の各々は、NRノード(i.e., gNB)又はE-UTRAノード(i.e., eNB)である。MN1及びSN2はインタフェース901及び904を介してコアネットワーク4に接続される。コアネットワーク4は、5GCである。インタフェース901及び904は、NGインタフェース(i.e., NG-c及びNG-u、NG2及びNG3、又はN2及びN3)である。MN1とSN2の間は、インタフェース903によって接続される。インタフェース903は、Xnインタフェースである。
コアネットワーク4は、コントロールプレーン機能(control plane function(CPF))及びユーザプレーン機能(UPF)を含む。コントロールプレーン機能は、例えば、Access and Mobility Management Function(AMF)、Session Management Function(SMF)、及びPolicy Control function(PCF)を含む。コントロールプレーン機能は、1又はそれ以上のコントロールプレーン機能エンティティ(又は1又はそれ以上のコントロールプレーン・ノード)によって提供される。ユーザプレーン機能は、1又はそれ以上のユーザプレーン機能エンティティ(又は1又はそれ以上のユーザプレーンノード)によって提供される。図9の例は、1つのAMF/SMFエンティティ5、及び1つのUPFエンティティ6を示している。AMF/SMFエンティティ5は、AMF若しくはSMF又は両方を提供する。AMF/SMFエンティティ5は、例えば、1若しくはそれ以上のエンティティ、1若しくはそれ以上の物理ノード、又は1若しくはそれ以上のコンピュータを含んでもよい。同様に、UPFエンティティ6も、1若しくはそれ以上のエンティティ、1若しくはそれ以上の物理ノード、又は1若しくはそれ以上のコンピュータを含んでもよい。例えば、UPFエンティティ6はPDUセッション毎にあってもよいし、複数のUPFエンティティ6が1つのPDUセッションのために使用されてもよい。
UE3は、NR-NR DC若しくはMR-DC with the 5GC又は両方をサポートする。すなわち、UE3は、NR無線アクセス技術又はE-UTRA及びNR無線アクセス技術を使用するデュアル接続動作(dual-connectivity operation)をサポートする。UE3は、MN1及びSN2と同時に通信する能力を有する。言い換えると、UE3は、MN1によって提供されるマスターセルグループ(Master Cell Group(MCG))に属するセルをSN2によって提供されるセカンダリセルグループ(Secondary Cell Group(SCG))に属するセルとアグリゲートする能力を有する。MCGは、マスターRATを用いて提供される1又はそれ以上のセルを含む。SCGは、セカンダリRATを用いて提供される1又はそれ以上のセルを含む。MN1とUE3の間のエアインタフェース902は、コントロールプレーン・コネクション(e.g., RRCコネクション、シグナリング無線ベアラ(SRBs))及びユーザプレーン・コネクション(e.g., データ無線ベアラ(DRBs))を提供する。一方、SN2とUE3の間のエアインタフェース905は、少なくともユーザプレーン・コネクションを含む。エアインタフェース905は、コントロールプレーン・コネクションを含んでもよいし、含まなくてもよい。
MN1、SN2、UE3、及びコアネットワーク4は、PDUセッション・スプリットをサポートするよう構成されている。以下では、これらのノード又はエンティティによって行われるPDUセッション・スプリットのための動作が説明される。
図10は、MN1の動作の一例を示すフローチャートである。ステップ1001では、MN1は、既に確立済みのPDUセッションの修正要求をコアネットワーク4に送る。当該修正要求は、UE3のために既に確立済みのPDUセッションに関してPDUセッション・スプリットが必要とされることを暗示的又は明示的に示す。ステップ1002では、MN1は、当該修正要求に対する応答メッセージをコアネットワーク4から受信する。
図11は、コアネットワーク4の動作の一例を示すフローチャートである。図11の手順は、AMF/SMFエンティティ5によって行われる。ステップ1101では、AMF/SMFエンティティ5は、既に確立済みのPDUセッションの修正要求(これは、PDUセッション・スプリットの要否を暗示的又は明示的に示す)をMN1から受信する。
AMF/SMFエンティティ5は、受信した修正要求を解析し、PDUセッション・スプリットを行う必要があるか否か(又はPDUセッション・スプリットを要求されているか否か)を判定する。すなわち、AMF/SMFエンティティ5は、当該修正要求がPDUセッション・スプリットが必要とされることを示す場合に、UE3のために既に確立済みのPDUセッションが2以上のRANノード(e.g., MN1及びSN2)にスプリットされる必要があることを認識する。
PDUセッション・スプリットが必要とされる場合、AMF/SMFエンティティ5は、既に確立済みのPDUセッションに関連付けられた複数のQoSフローのうち特定の1又はそれ以上のQoSフローを、MN1へのNG-UトンネルからSN2へのNG-Uトンネルに移動するようにUPFエンティティ6を制御する(ステップ1102)。幾つかの実装において、AMF/SMFエンティティ5は、MN1へのNG-Uトンネル及びSN2へのNG-Uトンネルを設定するために、これら2つのトンネルに同じPDUセッションIDを重複して使用する(すなわち、同じPDUセッションIDを再利用する)。AMF/SMFエンティティ5は、PDUセッション・スプリットが必要とされている(又はPDUセッション・スプリットを要求されている)PDUセッションに対してスプリットを適用できない場合、それを示す応答メッセージをMN1に返してもよい。
幾つかの実装において、PDU SESSION RESOURCE MODIFY INDICATIONメッセージがステップ1001(及びステップ1101)に示された修正要求の送信のために使用されてもよい。このPDU SESSION RESOURCE MODIFY INDICATIONメッセージは、特定のUEのために確立済みのPDUセッション(session(s))の修正を要求するためにMN1によって使用される。PDU SESSION RESOURCE MODIFY INDICATIONメッセージは、NG-c(又はN2)インタフェースを介して送られるNG Application Protocol (NGAP)(又はN2 Application Protocol(N2AP))メッセージの1つである。
図12は、PDU SESSION RESOURCE MODIFY INDICATIONメッセージが使用される例を示している。ステップ1201では、MN1は、PDUセッション・スプリット要求を含むPDU SESSION RESOURCE MODIFY INDICATIONメッセージをAMF/SMFエンティティ5に送る。ステップ1202では、AMF/SMFエンティティ5は、PDU SESSION RESOURCE MODIFY CONFIRMメッセージをMN1に送る。このPDU SESSION RESOURCE MODIFY CONFIRMメッセージは、ステップ1002(及びステップ1103)に示された応答メッセージに相当する。
一例では、PDU SESSION RESOURCE MODIFY INDICATIONメッセージ内の修正要求は、PDUセッション・スプリットの必要性を明示的に示すPDUセッション・タイプ情報であってもよい。AMF/SMFエンティティ5は、当該PDUセッション・タイプ情報がPDUセッション・スプリットが必要とされる(又は要求される)ことを示す場合に、PDUセッションが2以上のRANノード(e.g., MN1及びSN2)にスプリットされる必要があることを認識してもよい。反対に、当該PDUセッション・タイプ情報がPDUセッション・スプリットが必要とされる(又は要求される)ことを示さない場合に、AMF/SMFエンティティ5は、PDUセッションが他のRANノード(e.g., SN2)に移動される必要があることを認識してもよい。
なお、PDU SESSION RESOURCE MODIFY INDICATIONメッセージは、“PDU Session Request To Be Modified List” 情報要素(IE)を含む。図13Aは、“PDU Session Request To Be Modified List”IEのフォーマットの一例を示している。図13Aに示されるように、“PDU Session Request To Be Modified List” IEは、“PDU Session Request To Modify Item IEs”IEを含む。“PDU Session Request To Modify Item IEs”IEは、“PDU Session ID” IE及び“DL TNL Information”IEを含む。“PDU Session ID” IEは、修正が必要とされる(又は修正が要求される)各PDUセッションのPDU Session IDを示す。“DL TNL Information”IEは、“PDU Session ID” IE によって特定されるPDUセッションのためのダウンリンク(DL)Transport Network Layer(TNL)アドレス及びTunnel Endpoint Identifier(TEID)を示す。これらDL TNLアドレス及びTEIDは、NG-UトンネルのRANノード(e.g., gNB)側のエンドポイントを特定する。
さらに、図13Aの例では、“PDU Session Request To Be Modified List”IEは、必須情報要素(mandatory IEs)の1つとして“Modification Type”IEを含むよう改良されている。“Modification Type”IEは、“PDU Session ID”IEによって特定されるPDUセッションの修正がPDUセッション全体に適用されるか、又は一部に適用されるかを示す。例えば、“Modification Type”IEは、“Modify All”又は“Modify Partially”を示す。“Modification Type”IEが“Modify Partially”にセットされる場合、これはPDUセッションの一部に対する修正(つまり、PDUセッション・スプリットを要求していること)を示し、“PDU Session Request To Be Modified List” IEは、さらに“QoS Flow Request To Be Modified List”IEを含む。“QoS Flow Request To Be Modified List”IEは、MN1からSN2に移される各QoSフローの識別子(i.e., QoS Flow Indicator(QFI))を含む。なお、“QoS Flow Request To Be Modified List”IEは、“QoS Flow To Be Modified List”IE、若しくは“QoS Flow To Modify List”IEでもよい。
図13Aの例に代えて、図13Bに示されるように、“PDU Session Request To Be Modified List”IEは、必須情報要素(mandatory IEs)の1つとして“Modification Type Option”IEを含むよう改良されてもよい。“Modification Type Option”IEは、“PDU Session ID” IE によって特定されるPDUセッションの修正がPDUセッション・スプリットであるか否かを示す。例えば、“Type Option”IEは、“All”又は“Split(or Partial)”を示す。“Type Option”IEが“Split(or Partial)”にセットされる場合、“PDU Session Request To Be Modified List” IEは、さらに“QoS Flow Request To Be Modified List”IEを含む。“QoS Flow Request To Be Modified List”IEは、MN1からSN2に移される各QoSフローの識別子(i.e., QoS Flow Indicator(QFI))を含む。
例えば、“Modification Type”IE(図13A)が“Modify Partially”にセットされている場合、又は“Modification Type Option”IE(図13B)が“Split(or Partial)”にセットされている場合、AMF/SMFエンティティ5は、当該PDUセッションが2以上のRANノード(e.g., MN1及びSN2)にスプリットされる必要があること(又は当該PDUセッションをスプリットするように要求されていること)を認識してもよい。一方、“Modification Type”IE(図13A)が“Modify All”にセットされている場合、又は“Modification Type Option”IE(図13B)が“All”にセットされている場合、AMF/SMFエンティティ5は、当該PDUセッションが他のRANノード(e.g., SN2)に移動される必要があること(又は当該PDUセッションを他のRANノードに移動するように要求されていること)を認識してもよい。
さらに、AMF/SMFエンティティ5は、PDUセッション・タイプ情報(e.g., Modification Type IE, or Modification Type Option IE)がPDUセッション・スプリットが必要とされる(又は要求される)ことを示すか否かに応じて、“DL TNL Information”IEに含まれるDL TNLアドレスが当該PDUセッションの新たなDLアドレスであるか又は追加のDLアドレスであるかを判定するよう構成されてもよい。具体的には、“Modification Type”IE(図13A)が“Modify Partially”にセットされている場合、又は“Modification Type Option”IE(図13B)が“Split(or Partial)”にセットされている場合、AMF/SMFエンティティ5は、“DL TNL Information”IEに含まれるDL TNLアドレスが当該PDUセッションの追加のDLアドレス(i.e., 追加されるNG-Uトンネルに対応するSN2のアドレス)であると判定してもよい。一方、“Modification Type”IE(図13A)が“Modify All”にセットされている場合、又は“Modification Type Option” IE(図13B)が“All”にセットされている場合、AMF/SMFエンティティ5は、“DL TNL Information”IEに含まれるDL TNLアドレスが当該PDUセッションの新たなDLアドレスであると判定してもよい。
“Modification Type Option” IE(図13B)の値“All”の代わりに“MN”及び“SN”が規定されてもよい。つまり、“Modification Type Option” IEは、“MN”、“SN”、及び“Split(or Partial)”のいずれかにセットされてもよい。例えば、“Modification Type Option” IE が“MN”(又は“SN”)にセットされている場合、AMF/SMFエンティティ5は、当該PDUセッションがMN1(又は“SN2”)に移動される必要があることを認識してもよい。また、“Modification Type Option” IEが“MN”又は“SN”にセットされている場合、AMF/SMFエンティティ5は、“DL TNL Information”IEに含まれるDL TNLアドレスが当該PDUセッションの新たなDLアドレスであると判定してもよい。
これに代えて、AMF/SMFエンティティ5は、“PDU Session Request To Be Modified List” IEが “QoS Flow Request To Be Modified List”IEを含むか否かに応じて、PDUセッション・スプリットが必要とされるか否かを判定してもよい。具体的には、AMF/SMFエンティティ5は、“PDU Session Request To Be Modified List” IE に含まれる“QoS Flow Request To Be Modified List”IEが当該PDUセッションの複数のQoSフローの一部のみを示す場合に、PDUセッション・スプリットが必要とされることを認識してもよい。一方、AMF/SMFエンティティ5は、“QoS Flow Request To Be Modified List”IEが当該PDUセッションの複数のQoSフローの一部のみを示し、且つ“DL TNL Information”IEに含まれるDL TNLアドレスが当該PDUセッションの残りの全てのQoSフローのためのDL TNLアドレスと一致する場合、スプリットされていた当該PDUセッションが1つのRANノードにマージ(統合)されることを認識してもよい。
図14は、“PDU Session Request To Be Modified List”IEのフォーマットのさらに他の例を示している。図14の例では、“PDU Session Request To Be Modified List” IEは、オプション要素(optional IEs)の1つとして“Modification Type Option”IEを含み、これが必要に応じて“Split”にセットされるよう改良されている。例えば、“Modification Type Option”IEが“Split”にセットされ且つ“PDU Session Request To Be Modified List”IEに含まれている場合、AMF/SMFエンティティ5は、当該PDUセッションが2以上のRANノード(e.g., MN1及びSN2)にスプリットされる必要があること(又は当該PDUセッションをスプリットするように要求されていること)を認識してもよい。一方、“Modification Type Option”IEが“PDU Session Request To Be Modified List”IEに含まれていない場合、AMF/SMFエンティティ5は、当該PDUセッションが他のRANノード(e.g., SN2)に移動される必要があること(又は当該PDUセッションを他のRANノードに移動するように要求されていること)を認識してもよい。なお、図14の“Type Option”IEが上述のPDUセッション・タイプ情報に相当してもよい。
これに代えて、図14の“Modification Type Option”IEは、“Split”及び“Merge(or Unify)”のいずれかにセットされてもよい。例えば、“Modification Type Option”IEが“Split”にセットされている場合、AMF/SMFエンティティ5は、当該PDUセッションが2以上のRANノード(e.g., MN1及びSN2)にスプリットされる必要があることを認識してもよい。一方、“Modification Type Option”IEが“Merge(or Unify)”にセットされている場合、AMF/SMFエンティティ5は、2以上のRANノード(e.g., MN1及びSN2)にスプリットされていた当該PDUセッションが1つのRANノードにマージ(統合)されることを認識してもよい。
“PDU SESSION RESOURCE MODIFY CONFIRM”メッセージは、例えば“PDU Session Confirm To Modify List” 情報要素(IE)を含む。これは、MN1からPDUセッション・スプリットを要求された1つ以上のPDUセッションのうち、AMF/SMFエンティティ5が受け入れた(又はPDUセッション・スプリットが成功した)PDUセッションを示す。さらに、“PDU SESSION RESOURCE MODIFY CONFIRM”メッセージは、AMF/SMFエンティティ5が受け入れなかった(又はPDUセッション・スプリットが成功しなかった)PDUセッションを示す“PDU Session Not Admitted List” IE(又は“PDU Session Failed to Modify List” IE)を含んでもよい。
他の実装において、新たなNGAPメッセージが図10のステップ1001(及び図11のステップ1101)に示された修正要求の送信のために定義されてもよい。当該新たなNGAPメッセージは、既に設定済みのPDUセッションをスプリットすることをコアネットワーク4に要求する。言い換えると、当該新たなNGAPメッセージは、既に設定済みのPDUセッションを他のRANノード(e.g., SN2)に追加的にセットアップすることをコアネットワーク4に要求する。例えば、新たなNGAPメッセージの名称は、PDU SESSION RESOURCE SETUP INDICATIONメッセージ又はPDU SESSION RESOURCE ADDITION INDICATIONメッセージであってもよい。また、これに応答するコアネットワーク4からRANノードへのNGAPメッセージの名称は、PDU SESSION RESOURCE SETUP CONFIRMメッセージ又はPDU SESSION RESOURCE ADDITION CONFIRMメッセージであってもよい。
図15は、新たなNGAPメッセージ(e.g., PDU SESSION RESOURCE SETUP INDICATIONメッセージ)が使用される例を示している。ステップ1501では、MN1は、PDUセッション・スプリット要求を含むPDU SESSION RESOURCE SETUP INDICATIONメッセージをAMF/SMFエンティティ5に送る。ステップ1502では、AMF/SMFエンティティ5は、PDU SESSION RESOURCE SETUP CONFIRMメッセージをMN1に送る。このPDU SESSION RESOURCE SETUP CONFIRMメッセージは、図10のステップ1002(及び図11のステップ1103)に示された応答メッセージに相当する。
PDU SESSION RESOURCE SETUP INDICATIONメッセージは、“PDU Session Request To Be Setup List” 情報要素(IE)を含んでもよい。図16は、“PDU Session Request To Be Setup List”IEのフォーマットの一例を示している。“PDU Session Request To Be Setup List” IEは、“PDU Session Request To Be Setup Item IEs”IEを含む。“PDU Session Request To Be Setup Item IEs”IEは、“PDU Session ID” IE及び“DL TNL Information”IEを含む。“PDU Session ID” IEは、2以上のRANノードにスプリットされる各PDUセッションのPDU Session IDを示す。“DL TNL Information”IEは、“PDU Session ID” IE によって特定されるPDUセッションのためのDL TNLアドレス及びTEIDを示す。さらに、図16の例では、“PDU Session Request To Be Setup List”IEは、 “QoS Flow Request To Be Modified List”IEを含む。“QoS Flow Request To Be Modified List”IEは、MN1からSN2に移される各QoSフローの識別子(i.e., QoS Flow Indicator(QFI))を含む。“PDU Session Request To Be Setup List”IEの名称は、“PDU Session Request To Be Added List”IEでもよい。
以上の説明から理解されるように、本実施形態では、MN1は、既に確立済みのPDUセッション修正要求をコアネットワーク4に送るよう構成され、且つ当該確立済みのPDUセッションに関してPDUセッション・スプリットが必要とされることを暗示的又は明示的に示す要求(又は表示又は情報要素)を当該修正要求に含めるよう構成されている。さらに、AMF/SMFエンティティ5は、当該修正要求を受信するよう構成されている。これにより、AMF/SMFエンティティ5は、PDUセッションの修正の際に、当該PDUセッションが2以上のRANノード(e.g., MN1及びSN2)にスプリットされるべきか、あるいは他のRANノード(e.g., SN2)に移されるべきかを適切に判定できる。
なお、本実施形態のPDUセッション・スプリットでは、MN1を介して転送されていたPDUセッションの複数のQoSフローのうちの一部が1以上のSN2に移されてもよい。より具体的には、本実施形態のPDUセッション・スプリットは、UE3のために既にMN1において確立済みのPDUセッションがMN1及び少なくとも1つのSN(SN2を含む)にスプリットされる(split over the MN 1 and at least one SN including the SN 2)ケースを含む。さらに、本実施形態のPDUセッション・スプリットは、UE3のために既にMN1において確立済みのPDUセッションがMN1からSN2に移され、さらに当該移されたPDUセッションがSN2と少なくとも1つの他のSNにスプリットされる(split over the SN 2 and at least one other SN)ケースを含む。
さらに、本実施形態のPDUセッション・スプリットでは、SN2を介して転送されていたPDUセッションの複数のQoSフローのうちの一部がMN1に移されてもよい。より具体的には、本実施形態のPDUセッション・スプリットは、UE3のために既にSN2において確立済みのPDUセッションがSN2及びMN1にスプリットされる(split over the SN 2 and the MN 1)ケースを含む。さらに、本実施形態のPDUセッション・スプリットは、UE3のために既にSN2において確立済みのPDUセッションがSN2からMN1に移され、さらに当該移されたPDUセッションがMN1と少なくとも1つの他のSNにスプリットされる(split over the MN 1 and at least one SN)ケースを含む。
さらにまた、本実施形態のPDUセッション・スプリットでは、MN1及びSN2のうち一方にのみ設定されていたPDUセッションに関連付けられる新たなQoSフローがMN1及びSN2のうちの他方に追加されてもよい。この場合、AMF/SMFエンティティ5は、既に確立済みのPDUセッションの修正要求(これは、PDUセッション・スプリットが必要とされることを暗示的又は明示的に示す)をMN1から受信したことに応答して、既に確立済みのPDUセッションに関連付けられた新たなQoSフローを設定してもよい。このとき、MN1及びSN2は、新たなQoSフローを既存のデータ無線ベアラ(DRB)にマッピングしてもよい。これに代えて、MN1及びSN2は、DRBを新たに確立し、それに新たなQoSフローをマッピングしてもよい。
PDUセッション・スプリットが必要とされる場合、AMF/SMFエンティティ5は、既に確立済みのPDUセッションに関連付けられた複数のQoSフローのうち特定の1又はそれ以上のQoSフローを、MN1へのNG-UトンネルからSN2へのNG-Uトンネルに移動するようにUPFエンティティ6を制御する(ステップ1102)。
<第2の実施形態>
本実施形態は、PDUセッション・スプリットのための他の改良を提供する。本実施形態に係る無線通信ネットワークの構成例は、図9に示された例と同様である。
本実施形態では、AMF/SMFエンティティ5は、第1の実施形態で説明されたPDUセッション・スプリットのための修正要求の送信よりも前に行われる当該PDUセッションの確立手順において、当該PDUセッションに関してPDUセッション・スプリットが許可されるか否か(又はPDUセッション・スプリットが可能が否か)を示すPDUセッション単位の(on a per-PDU session basis)又はQoSフロー単位の表示をRANノード(e.g., 将来MN1として動作するgNB又はeNB)に送るよう構成される。RANノードは、PDUセッションの確立手順において、当該PDUセッションに関してPDUセッション・スプリットが許可されるか否かを示すPDUセッション単位の(on a per-PDU session basis)又はQoSフロー単位の表示をAMF/SMFエンティティ5から受信するよう構成される。
当該表示は、当該PDUセッションのためのPDUセッション・リソースのセットアップを要求するためにAMF/SMFエンティティ5からRANノードに送られるメッセージに含まれてもよい。
幾つかの実装において、MN1は、DCを開始するときに、PDUセッション・スプリットをコアネットワーク4に要求するか否かを、PDUセッションの確立手順の際に受信済みのPDUセッション・スプリットが許可されるか否かを示す表示に基づいて判定してもよい。
図17は、本実施形態に係るコアネットワーク4の動作の一例を示すフローチャートである。図17の手順は、AMF/SMFエンティティ5によって行われる。ステップ1701では、AMF/SMFエンティティ5は、UE3のためのPDUセッションの確立をトリガーするNASメッセージを包含するNGAPメッセージをRANノード(e.g., 将来MN1として動作するgNB又はeNB)から受信する。例えば、当該NASメッセージは、コアネットワーク4への初期アタッチ及びデフォルトPDUセッションのセットアップのためのAttach Requestメッセージであってもよい。この場合、当該NGAPメッセージは、INITIAL UE MESSAGEメッセージであってもよい。さらに又はこれに代えて、当該NASメッセージは、新たに(1つ目又は追加の)PDUセッションの確立を要求するためにUE3によって送信されるPDU Session Establishment Requestメッセージであってもよい。この場合、NGAPメッセージは、INITIAL UE MESSAGEメッセージ又はUPLINK NAS TRANSPORTメッセージであってもよい。
ステップ1702では、AMF/SMFエンティティ5は、UE3のためのPDUセッションをセットアップするようにUPFエンティティ6を制御する。ステップ1703では、AMF/SMFエンティティ5は、当該新たに確立されるPDUセッションのPDUセッション・スプリットが許可されるか否かを判定する。ステップ1704では、AMF/SMFエンティティ5は、PDUセッション・スプリットが許可されるか否かを示すPDUセッション・リソースのセットアップ要求メッセージを当該RANノードに送る。
図18は、PDUセッション確立手順で行われるシグナリングの一例を示すシーケンス図である。ステップ1801では、RANノード7(e.g., 将来MN1として動作するgNB又はeNB)は、NGAP: INITIAL UE MESSAGEメッセージ又はNGAP: UPLINK NAS TRANSPORTメッセージをAMF/SMFエンティティ5に送る。ステップ1801のNGAPメッセージは、UE3のためのPDUセッションの確立をトリガーするNASメッセージ(e.g., PDU Session Establishment Request)を包含する。
ステップ1802では、AMF/SMFエンティティ5は、NGAP:INITIAL CONTEXT SETUP REQUESTメッセージ又はNGAP: PDU SESSION RESOURCE SETUP REQUESTメッセージをRANノード7に送る。ステップ1802のNGAPメッセージは、UE3のために確立されるPDUセッションのためのPDUセッション・リソースのセットアップを要求するためにRANノード7に送られる。ステップ1802のNGAPメッセージは、当該PDUセッションに関してPDUセッション・スプリットが許可されるか否かを示すPDUセッション単位の(on a per-PDU session basis)又はQoSフロー単位の表示を含む。当該表示は、例えば、“PDU Session Split Permission Indication” IEであってもよいし、“PDU Session Split”IE(これはallowed又はnot-allowedに設定される)であってもよいし、“PDU Session Split Support” IE(これはsupport又はnot-supportに設定される)であってもよい。
以上の説明から理解されるように、本実施形態では、AMF/SMFエンティティ5は、PDUセッションの確立手順において、当該PDUセッションに関してPDUセッション・スプリットが許可されるか否かを示すPDUセッション単位の(on a per-PDU session basis)又はQoSフロー単位の表示をRANノードに送るよう構成される。RANノードは、PDUセッションの確立手順において、当該PDUセッションに関してPDUセッション・スプリットが許可されるか否かを示すPDUセッション単位の(on a per-PDU session basis)又はQoSフロー単位の表示をAMF/SMFエンティティ5から受信するよう構成される。これにより、RANノード(i.e., 将来MN1として動作するgNB又はeNB)は、予めPDUセッション・スプリットが許可されているPDUセッション(又はQoSフロー)についてのみ選択的にPDUセッション・スプリットをコアネットワーク4に要求するよう動作することができる。
なお、本実施形態は、PDUセッション単位又はQoSフロー単位でPDUセッション・スプリットが許可されるか否か(又は可能か否か)を示す表示を使用する例を示した。このことはPDUセッション・スプリットを許可するか否かの判定(又はPDUセッション・スプリットが可能か否かのサポート)をPDUセッション単位又はQoSフロー単位でするようにAMF/SMFエンティティ5を限定するものではない。つまり、当該表示は、確立される(つまり、確立が要求される)PDUセッション毎に(又はQoSフロー毎に)送られるが、当該表示の内容は、AMF/SMFエンティティ5によって制御される複数のPDUセッション及びこれに包含される複数のQoSフローの間で共通であってもよい。
<第3の実施形態>
本実施形態は、第2の実施形態の変形例を提供する。本実施形態に係る無線通信ネットワークの構成例は、図9に示された例と同様である。
AMF/SMFエンティティ5は、PDUセッション・スプリットが許可されるか否か(又は可能か否か)を示すUE単位の表示をRANノード7に送ってもよい。この場合、AMF/SMFエンティティ5は、PDUセッション・スプリットを許可するか否かをUE単位で判定してもよい。いくつかの実装において、AMF/SMFエンティティ5は、UE3のためのPDUセッションの確立手順において、PDUセッション・スプリットが当該UE3に許可されるか否かを示すUE単位の表示をRANノード7に送ってもよい。
これにより、RANノード7(i.e., 将来MN1として動作するgNB又はeNB)は、予めPDUセッション・スプリットが許可されているUE3のPDUセッション(又はQoSフロー)についてのみ選択的にPDUセッション・スプリットをコアネットワーク4に要求するよう動作することができる。
<第4の実施形態>
本実施形態は、PDUセッション・スプリットのための他の改良を提供する。本実施形態に係る無線通信ネットワークの構成例は、図9に示された例と同様である。
本実施形態では、AMF/SMFエンティティ5は、第1の実施形態で説明されたPDUセッション・スプリットのための修正要求の送信よりも前に行われるRANノード(e.g., 将来MN1として動作するgNB又はeNB)とAMF/SMFエンティティ5との間のシグナリング・コネクション(i.e., NG2/NG-Cインタフェース)をセットアップする又は修正する手順において、PDUセッション・スプリットが許可されるか否か(又はPDUセッション・スプリットが可能か否か)を示す表示を当該RANノードに送るよう構成される。当該RANノードは、AMF/SMFエンティティ5とのシグナリング・コネクションのセットアップ又は修正手順において、PDUセッション・スプリットが許可されるか否か(又はPDUセッション・スプリットが可能か否か)を示す表示をAMF/SMFエンティティ5から受信するよう構成される。
当該表示は、AMF/SMF単位の表示であってもよい。これに代えて、当該表示は、PDUセッション・スプリットの許可若しくは不許可(又は可能若しくは不可能)をUPF毎に示してもよい。さらに又はこれに代えて、当該表示は、PDUセッション・スプリットの許可若しくは不許可(又は可能若しくは不可能)をネットワークスライス毎に示してもよい。
なお、5G Systemは、network slicingをサポートする。Network slicingは、Network Function Virtualization(NFV)技術及びsoftware-defined networking(SDN)技術を使用し、複数の仮想化された論理的なネットワークを物理的なネットワークの上に作り出すことを可能にする。各々の仮想化された論理的なネットワークは、ネットワークスライス(network slice)又はネットワークスライス・インスタンス(network slice instance)と呼ばれ、論理的なノード(nodes)及び機能(functions)を含み、特定のトラフィック及びシグナリングのために使用される。NG-RAN若しくは5GC又は両方は、Slice Selection Function(SSF)を有する。SSFは、5G UE及び5GCの少なくとも一方によって提供される情報に基づいて、当該5G UEのために適した1又は複数のネットワークスライスを選択する。
したがって、幾つかの実装において、コアネットワーク4は、複数のネットワークスライスを提供してもよい。複数のネットワークスライスは、例えば、それぞれのネットワークスライス上でUE3に提供されるサービス又はユースケースによって区別される。ユースケースは、例えば、広帯域通信(enhanced Mobile Broad Band: eMBB)、高信頼・低遅延通信(Ultra Reliable and Low Latency Communication: URLLC)、及び多接続M2M通信(massive Machine Type Communication: mMTC)を含む。これらは、スライスタイプ(e.g., Slice/Service Type (SST))と呼ばれる。
さらにMN1若しくはSN2又は両方は、1又はそれ以上のネットワークスライスをサポートしてもよい。言い換えると、1又はそれ以上のネットワークスライスが、MN1及びSN2のセルにおいて使用可能であってもよい。幾つかの実装において、MN1若しくはSN2又は両方は、end-to-endネットワークスライシングをUE3に提供するために、UE3のために選択されたコアネットワーク4のネットワークスライス(Core Network (CN)スライスと呼ぶ)に関連付けられたRANスライス及び無線(radio)スライスをUE3に割り当ててもよい。
AMF/SMFエンティティ5からRANノード(e.g., 将来MN1として動作するgNB又はeNB)に送られる上述の表示がPDUセッション・スプリットの許可又は不許可をネットワークスライス(CNスライス)毎に示すことによって、例えば、以下に示す幾つかの利点がもたらされる。
例えば、MN1は、UE3のためのCNスライス選択を行う際に、各CNスライスがPDUセッション・スプリットを許可しているか否かを考慮してもよい。これにより、例えば、MN1は、将来的にDCを実行する予定があるUE3のために、PDUセッション・スプリットが許可されているCNスライスを選択することができる。
また、例えば、MN1は、予めPDUセッション・スプリットが許可されているCNスライスを利用しているPDUセッションについてのみ選択的にPDUセッション・スプリットをコアネットワーク4に要求することができる。
また、例えば、MN1は、PDUセッション・スプリットが許可されていないCNスライスを利用しているPDUセッションに関してDCを開始する際に、他のCNスライスへ当該PDUセッションを切り替えるようコアネットワーク4に要求することができる。
図19は、本実施形態に係るコアネットワーク4の動作の一例を示すフローチャートである。図19の手順は、AMF/SMFエンティティ5によって行われる。ステップ1901では、AMF/SMFエンティティ5は、NGインタフェース・セットアップ要求をRANノード(e.g., 将来MN1として動作するgNB又はeNB)から受信する。ステップ1902では、AMF/SMFエンティティ5は、PDUセッション・スプリットが許可されるか否か(又はPDUセッション・スプリットが可能か否か)を示すNGインタフェース・セットアップ応答メッセージを当該RANノード(e.g., MN1)に送る。
図20は、NGセットアップ手順で行われるシグナリングの一例を示すシーケンス図である。NGセットアップ手順は、RANノード7(e.g., 将来MN1として動作するgNB又はeNB)及びAMF/SMFエンティティ5がN2インタフェース(NG-Cインタフェース)上で正しく相互運用(interoperate)することを可能にする。
ステップ2001では、RANノード7は、NG SETUP REQUESTメッセージをAMF/SMFエンティティ5に送る。ステップ2002では、AMF/SMFエンティティ5は、NG SETUP RESPONSEメッセージをRANノード7に送る。当該NG SETUP RESPONSEメッセージは、PDUセッション・スプリットが許可されるか否かを示す表示を含む。当該表示は、例えば、“PDU Session Split Permission Indication”IEであってもよいし、“PDU Session Split”IE(これはallowed又はnot-allowedに設定される)であってもよいし、“PDU Session Split Support” IE(これはsupport又はnot-supportに設定される)であってもよい。既に説明したように、当該表示は、PDUセッション・スプリットの許可若しくは不許可(又は可能若しくは不可能)をネットワークスライス(CNスライス)毎に示してもよい。
以上の説明から理解されるように、本実施形態では、AMF/SMFエンティティ5は、NGセットアップ手順において、PDUセッション・スプリットが許可されるか否か(又は可能か否か)を示す表示をRANノードに送るよう構成される。RANノードは、NGセットアップ手順において、PDUセッション・スプリットが許可されるか否かを示す表示をAMF/SMFエンティティ5から受信するよう構成される。これにより、RANノード(i.e., 将来MN1として動作するgNB又はeNB)は、予めPDUセッション・スプリットが許可されている場合にのみPDUセッション・スプリットをコアネットワーク4に要求するよう動作することができる。
<第5の実施形態>
本実施形態は、PDUセッション・スプリットのための他の改良を提供する。本実施形態に係る無線通信ネットワークの構成例は、図9に示された例と同様である。
本実施形態では、MN1は、UE3のためのデュアルコネクティビティ(DC)で使用されるPDUセッション(及び該PDUセッションのQoS flow(s))のためのリソースを割り当てるよう要求するセカンダリセルグループ(SCG)追加要求メッセージをSN2に送るよう構成される。SN2は、当該SCG追加要求メッセージをMN1から受信するよう構成される。さらに、当該SCG追加要求メッセージは、UE3とコアネットワーク4内のUPFエンティティ6との間に既に確立済みのPDUセッションにPDUセッション・スプリットが適用されることを暗示的又は明示的に示す。当該SCG追加要求メッセージは、SgNB ADDITION REQUESTメッセージ(又はSN ADDITION REQUESTメッセージ)であってもよい。
幾つかの実装において、当該SCG追加要求メッセージは、当該PDUセッション又は当該PDUセッションの1又はそれ以上のQoSフローにPDUセッション・スプリットが適用されることを明示的に示すPDUセッション確立タイプ情報(e.g., “PDU Session Establishment Type”情報要素(IE))を含んでもよい。例えば、PDUセッション確立タイプ情報は、SCG追加要求メッセージに含まれるオプション要素(optional IEs)の1つであってもよい。この場合、SN2は、PDUセッション確立タイプ情報がSCG追加要求メッセージに含まれている場合(又はこれが“Split”にセットされている場合)、当該PDUセッションにPDUスプリットが適用されることを認識してもよい。
図21は、MN1の動作の一例を示すフローチャートである。ステップ2101では、MN1は、既に確立済みのPDUセッションの複数のQoSフローのうち一部をSN2に移すために、SCG追加要求メッセージをSN2に送る。当該SCG追加要求メッセージは、UE3のためのDCで使用されるPDUセッション(及び該PDUセッションのQoS flow(s))のためのリソースを割り当てるよう要求し且つPDUセッション・スプリットを示す。ステップ2102では、SN2は、応答メッセージ(e.g., SN ADDITION REQUEST ACKNOWLEDGEメッセージ)をSN2から受信する。
図22は、SgNB(又はSN)追加準備(addition preparation)手順で行われるシグナリングの一例を示すシーケンス図である。ステップ2201では、MN1は、SN ADDITION REQUESTメッセージをSN2に送る。当該SN ADDITION REQUESTメッセージは、“PDU Session ID”情報要素(IE)、“PDU Session Establishment Type” IE及び“QoS Flow List”IEを含む。“PDU Session ID”IEは、MN1(i.e., MCG)からSN2(i.e., SCG)に移されるPDUセッション、AMF/SMFエンティティ5によってUPFエンティティ6からMN1(i.e., MCG)及びSN2(i.e., SCG)にスプリットされるMN1(i.e., MCG)に確立されているPDUセッション、又はSN2(i.e., SCG)に新たに確立されるPDUセッション、のうち少なくともいずれかの識別子を示す。“PDU Session Establishment Type”IEは、SN2に追加されるPDUセッションにPDUセッション・スプリットが適用されているか否かを示す。“QoS Flow List”IEは、SN2に追加されるPDUセッションに含まれ、且つMN1(i.e., MCG)からSN2(i.e., SCG)に移される又はSN2(i.e., SCG)に新たに確立される1又はそれ以上のQoSフローを示す。
なお、当該SN ADDITION REQUESTメッセージは、さらに、必須情報要素(mandatory IEs)の1つとして“Bearer Option”IEを含む。“Bearer Option”IEは、SCGに設定されるべきデータ無線ベアラ(DRB)のタイプ(i.e., SCG bearer、MCG split bearer、又はSCG split bearer)を示す。したがって、上述の“PDU Session Establishment Type”IE及び“QoS Flow List”IEは、SCG bearer又はSCG split bearerを示す“Bearer Option”IEに関連付けられてもよい。言い換えると、上述の“PDU Session Establishment Type”IE及び“QoS Flow List”IEは、SCG bearer又はSCG split bearerを示す“Bearer Option”IEに包含されてもよい。なお、MCG split bearerおよびSCG split bearerは、まとめてSplit bearerとして示されてもよいし、Split bearer anchored at MN (MCG)およびSplit bearer anchored at SN (SCG)と示されてもよい。
当該SN ADDITION REQUESTメッセージは、セカンダリセルグループ(SCG)設定に関連する情報(i.e., RRC: SCG-ConfigInfo)を含む。例えば、当該SCG設定に関連する情報は、MN1からSN2に追加を要求されるDRBのリストを含む。当該DRBリストは、MCGにおけるPDUセッション識別子(i.e., PDU Session ID)、DRB識別子(i.e., DRB Identity)、及び1又はそれ以上のQoSフローの識別子(i.e., QFIs)の関連付けを示す。これに代えて、当該SCG設定に関連する情報は、MN1からSN2に追加を要求されるPDUセッションの識別子(i.e., PDU Session ID)、及び1又はそれ以上のQoSフローの識別子(i.e., QFIs)の関連付けを示してもよい。さらに、当該SCG設定に関連する情報は、PDUセッション・スプリットを明示的に示す情報(e.g., PDUセッション・タイプ情報又はDRBタイプ情報)を含んでもよい。また、SCG設定に関連する情報は、MN1によるUE3のためのマスターセルグループ(MCG)設定(e.g. MCG Configuration)の少なくとも一部を含んでもよい。例えば、MCG設定は、各MCGセルの個別無線リソース設定(e.g., “RadioResourceConfigDedicatedMCG”IE)を含む。各MCGセルの個別無線リソース設定は、既に確立されているDRBのリストを含む。当該DRBリストは、PDUセッション識別子(i.e., PDU Session ID)、DRB識別子(i.e., DRB Identity)、及び1又はそれ以上のQoSフローの識別子(i.e., QFIs)の関連付けを示す。当該MCG設定は、PDUセッション・スプリットを明示的に示す情報(e.g., PDUセッション・タイプ情報又はDRBタイプ情報)を含んでもよい。
ステップ2202では、SN2は、SN ADDITION ACKNOWLEDGEメッセージをMN1に送る。当該SN ADDITION ACKNOWLEDGEメッセージは、セカンダリセルグループ(SCG)設定(i.e., RRC: SCG-Config)を含む。当該SCG設定は、追加されるSCGセルリスト(i.e., Primary Secondary Cell(PSCell)及びゼロ又はそれ以上(zero or more)SCG SCell(s))、及び各SCGセルの個別無線リソース設定(e.g., “RadioResourceConfigDedicatedSCG”IE)を含む。各SCGセルの個別無線リソース設定は、追加されるDRBのリストを含み、当該DRBリストは、PDUセッション識別子(i.e., PDU Session ID)、DRB識別子(i.e., DRB Identity)、及び1又はそれ以上のQoSフローの識別子(i.e., QFIs)の関連付けを示す。当該SCG設定は、PDUセッション・スプリットを明示的に示す情報(e.g., PDUセッション・タイプ情報又はDRBタイプ情報)を含んでもよい。
ここで、PDUセッション識別子の代わりに、又はPDUセッション識別子と共に、当該PDUセッションに関連付けられたSDAPエンティティの識別子(e.g., SDAP Identity, or SDAPレイヤとPDCPレイヤの関連付けを示すService Channel Identity)が使用されてもよい。例えば、Service Channel Identityは、SDAPエンティティと、それに接続される各PDCPエンティティとの間のService Access Point (SAP)として規定されてもよい。また、SDAPエンティティの識別子はMN1によって割り当てられてもよく、MN1はそれをSN ADDITION REQUESTメッセージに含まれる情報要素の1つ(e.g., RRC: SCG-ConfigInfoのSDAP-Config)としてSN2に通知し、SN2がそれを使用してもよい。さらに、PDUセッション・スプリットされた同じPDUセッション識別子に関連付けられたSDAPエンティティには、同じSDAPエンティティの識別子が割り当てられてもよい。
MN1からSN2への1又はそれ以上のQoSフローの移動(i.e., オフローディング)は、DRB単位で行われてもよいし、QoSフロー単位で行われてもよい。DRB単位のオフローディングでは、1つのMCGベアラ又はMCGスプリットベアラの全てのQoSフローがSCGベアラ又はSCGスプリットベアラに移される。当該QoSフローがマッピングされる(含まれる)DRBに対応するSCGベアラ又はSCGスプリットベアラは、SN Additionプロシージャにおいて新規に確立される。このとき、SN2(i.e., SCG)は、MN1(i.e., MCG)におけるQoSフローとDRBの間のマッピング(包含関係)と同一の設定をする。さらに、SN2(i.e., SCG)は、SN Additionプロシージャ中新たにSN2(i.e., SCG)に確立される他のQoSフローも、MN1(i.e., MCG)からSN2(i.e., SCG)に移されるQoSフローと同じDRBにマッピングしてもよい。これに代えて、MN1(i.e., MCG)で同じDRBにマッピングされていた複数QoSフローは、SN2(i.e., SCG)において別々のDRBにマッピングされてもよい。これらのSN2(i.e., SCG)におけるQoSフローとDRBの間のマッピングは、MN1がSN2に指定してもよいし、MN1がMCGにおけるQoSフローとDRBの間のマッピングをSN2に通知して最終的にSN2が決定してもよい。
以上の説明から理解されるように、本実施形態では、MN1は、UE3のためのDCのためのリソースを割り当てるよう要求するSCG追加要求メッセージをSN2に送るよう構成される。SN2は、当該SCG追加要求メッセージをMN1から受信するよう構成される。さらに、当該SCG追加要求メッセージは、UE3とコアネットワーク4内のUPFエンティティ6との間に既に確立済みのPDUセッションにPDUセッション・スプリットが適用されることを暗示的又は明示的に示す。これにより、例えば、以下に示す幾つかの利点がもたらされる。
例えば、SN2は、同じPDUセッションの複数のQoSフローを1つのDRBにマッピングすることが許容されている。したがって、SN2は、同一PDUセッションのPDUセッション・スプリットが適用されたQoSフローとMCGスプリットベアラのQoSフローとを同じDRBマッピングできる。
また、例えば、SN2は、SN2から他のSNにQoSフローをさらに移す場合、又はSN2からMN1にQoSフローを戻す場合に、当該QoSフローにPDUセッション・スプリットが適用されていることを他のSN又はMN1に知らせることができる。
<第6の実施形態>
本実施形態は、第5の実施形態に示されたMN1とSN2の間のインタラクションの変形例を提供する。本実施形態に係る無線通信ネットワークの構成例は、図9に示された例と同様である。
MN1は、UE3のためのデュアルコネクティビティ(DC)で使用されるPDUセッション(及び該PDUセッションのQoS flow(s))のためのリソースを割り当てるため又は修正するための準備を要求するために、SCG追加要求メッセージとは別の基地局間(又はノード間)メッセージ(e.g., XnAPメッセージ)をSN2に送ってもよい。例えば、MN1は、セカンダリセルグループ(SCG)修正準備要求メッセージを送ってもよい。当該SCG修正準備要求メッセージは、SgNB MODIFICATION REQUESTメッセージ(又はSN MODIFICATION REQUESTメッセージ)であってもよい。当該SCG修正準備要求メッセージは、既にUE3のために設定済みの1又はそれ以上のSCGセル(i.e., PSCell、SCG SCell(s)、又はPSCell及びSCG SCell(s))の修正をSN2に要求する。当該SCG修正準備要求メッセージは、UE3のために既に確立済みのPDUセッションの複数のQoSフローのうち一部をMN1からSN2に移すために使用されることができる。さらに又はこれに代えて、当該SCG修正準備要求メッセージは、UE3のために既に確立済みのPDUセッションの複数のQoSフローのうち一部をSN2からMN1に移すために使用されることができる。この場合、当該SCG修正準備要求メッセージは、既に確立済みのPDUセッションにPDUセッション・スプリットが適用されることを暗示的又は明示的に示してもよい。
第5の実施形態で説明されたのと同様に、MN1からSN2への1又はそれ以上のQoSフローの移動(i.e., オフローディング)は、DRB単位で行われてもよいし、QoSフロー単位で行われてもよい。DRB単位のオフローディングでは、1つのMCGベアラ又はMCGスプリットベアラの全てのQoSフローがSCGベアラ又はSCGスプリットベアラに移される。当該QoSフローがマッピングされる(含まれる)DRBに対応するSCGベアラ又はSCGスプリットベアラは、SN Modificationプロシージャにおいて新規に確立されてもよいし、既に確立済みであってもよい。
同様に、SN2からMN1への1又はそれ以上のQoSフローの移動(i.e., オフローディング)は、DRB単位で行われてもよいし、QoSフロー単位で行われてもよい。DRB単位のオフローディングでは、1つのSCGベアラ又はSCGスプリットベアラの全てのQoSフローがMCGベアラ又はMCGスプリットベアラに移される。当該QoSフローがマッピングされる(含まれる)DRBに対応するMCGベアラ又はMCGスプリットベアラは、SN Modificationプロシージャにおいて新規に確立されてもよいし、既に確立済みであってもよい。
本実施形態で説明されたMN1とSN2の間のインタラクションは、スプリットされたPDUセッション(及び該PDUセッションのQoS flow(s))を1つのRANノードにマージ(統合)する場合にも適用されることができる。例えば、MN1からSN2へスプリットされたPDUセッションが再びMN1へマージされてもよい。あるいは、MN1からSN2へスプリットされたPDUセッションのMN1に残る全てのQoSフローがSN2へ移されてもよい。同様に、SN2からMN1へスプリットされたPDUセッションが再びSN2へマージされてもよい。あるいは、SN2からMN1へスプリットされたPDUセッションのSN2に残る全てのQoSフローがMN1へ移されてもよい。
なお、SCG修正準備要求メッセージを含むSCG修正のためのSN Modificationプロシージャは、MN1自身から開始(initiate)されてもよい。これに代えて、MN1にSN Modificationプロシージャを行うことを要求するSCG修正要求メッセージを送信することにより、SN2から開始(initiate)されてもよい。当該、SCG修正要求メッセージは、SgNB MODIFICATION REQUIREDメッセージ(又はSN MODIFICATION REQUIREDメッセージ)であってもよい。
さらに、第5の実施形態で説明されたSCG追加要求メッセージに含まれる情報要素が、SCG修正準備要求メッセージ若しくはSCG修正要求メッセージ又は両方に含まれてもよい。さらに、各情報要素の名称または構成は異なってもよい。例えば、“PDU Session Establishment Type”IEは、“PDU Session Modification Type”IEに置き換えられてもよい。また、PDUセッション確立タイプ情報(e.g., “PDU Session Establishment Type”情報要素(IE))は、PDUセッション・スプリットの場合には“Split”にセットされ、スプリットされたPDUセッションをマージ(統合)する場合には“Merge(or Unify)”にセットされてもよい。
ここで、PDUセッション識別子の代わりに、又はPDUセッション識別子と共に、当該PDUセッションに関連付けられたSDAPエンティティの識別子(e.g., SDAP Identity, or SDAPレイヤとPDCPレイヤの関連付けを示すService Channel Identity)が使用されてもよい。例えば、Service Channel Identityは、SDAPエンティティと、それに接続される各PDCPエンティティとの間のService Access Point (SAP)として規定されてもよい。例えば、Service Channel Identityは、SDAPエンティティと、それに接続される各PDCPエンティティとの間のService Access Point (SAP)として規定されてもよい。また、SDAPエンティティの識別子はMN1によって割り当てられてもよく、MN1はそれをSN MODIFICATION REQUESTメッセージに含まれる情報要素の1つ(e.g., RRC: SCG-ConfigInfoのSDAP-Config)としてSN2に通知し、SN2がそれを使用してもよい。さらに、PDUセッション・スプリットされた同じPDUセッション識別子に関連付けられたSDAPエンティティには、同じSDAPエンティティの識別子が割り当てられてもよい。
<第7の実施形態>
本実施形態は、PDUセッション・スプリットのための他の改良を提供する。本実施形態に係る無線通信ネットワークの構成例は、図9に示された例と同様である。
本実施形態では、MN1又はSN2は、DCのためのセカンダリセルグループ(SCG)設定を示すRRCコネクション再構成(Reconfiguration)メッセージをUE3に送信するよう構成される。UE3は、当該RRCコネクション再構成メッセージをMN1又はSN2から受信するよう構成される。当該RRCコネクション再構成メッセージは、さらに、MN1(i.e., MCG)からSN2(i.e., SCG)に移される1若しくはそれ以上のQoSフロー、又は1若しくはそれ以上のデータ無線ベアラ(DRB)にPDUセッション・スプリットが適用されることを暗示的又は明示的に示す。言い換えると、当該RRCコネクション再構成メッセージは、UE3とコアネットワーク4との間に既に確立済みのPDUセッションにPDUセッション・スプリットが適用されることを暗示的又は明示的に示す。
一例として、PDUセッション・スプリットを暗示的又は明示的に示すために、RRCコネクション再構成メッセージに含まれるセカンダリセルグループの設定情報(e.g., SCG Configuration)が、PDUセッションに関する情報(e.g., PDUセッション識別子、PDUセッション・タイプ情報)を含んでもよい。例えば、セカンダリセルグループの設定情報は、マスターセルグループ(MCG)で既に確立済みのPDUセッションの識別子(i.e., PDU Session ID)と、当該PDUセッションに含まれ且つMN1(i.e., MCG)からSN2(i.e., SCG)に移される1又はそれ以上のQoSフローと、当該QoSフローを包含するデータ無線ベアラの関連付けを示してもよい。
例えば、PDUセッション・スプリットを暗示的に示すために、セカンダリセルグループ(SCG)の設定情報(e.g., “SCG Configuration” IE)の中の、SCGに確立されるDRB(s)の設定情報(e.g., “DRB-ToAddModSCG” IE)は、PDUセッション識別子(i.e., PDU Session ID)、QoSフロー識別子(i.e., QoS Flow Indicator (QFI))、及びDRB識別子(i.e., DRB Identity)を含んでもよい。SCGに確立されるDRB(s)の設定情報(e.g., “DRB-ToAddModSCG” IE)は、さらに、対応するDRBタイプの情報(e.g., MCG split, SCG, SCG split)を含んでもよい。
これに代えて、PDUセッション・スプリットを明示的に示すために、SCGの設定情報(e.g., “SCG Configuration” IE)の中の、SCGに確立されるDRB(s)の設定情報(e.g., “DRB-ToAddModSCG” IE)は、PDUセッション・タイプ情報(e.g., PDU-SessionType(“split”に設定))を含んでもよい。PDUセッション・タイプ情報は、PDUセッション・スプリットでない場合には“non-split”に設定されてもよい。これに代えて、PDUセッション・スプリットの場合にのみ、PDUセッション・タイプ情報が含まれてもよい。さらに、DRB(s)の設定情報は、PDUセッション識別子(i.e., PDU Session ID)、QoSフロー識別子(i.e., QoS Flow Indicator (QFI))、及びDRB識別子(i.e., DRB Identity)、及び、対応するDRBタイプの情報(e.g., MCG split, SCG, SCG split)を含んでもよい。
さらに又はこれに代えて、PDUセッション・スプリットを明示的に示すために、セカンダリセルグループ(SCG)の設定情報(e.g., SCG Configuration)は、MCGにおいて既に確立済みのPDUセッション又は1若しくはそれ以上のQoSフローにPDUセッション・スプリットが適用されることを明示的に示す表示を含んでもよい。当該表示は、例えば、データ無線ベアラタイプ情報であってもよい。データ無線ベアラタイプ情報は、PDUセッション・スプリットが適用されていることを示すデータ無線ベアラタイプ、例えば“PDU session Split (PS) SCG bearer”又は“PDU session Split (PS) SCG split bearer”を示してもよい。
なお、上述のセカンダリセルグループ(SCG)の設定情報(e.g., SCG Configuration)に含まれる全て又は一部の情報要素(IEs)は、SN2により生成され、SN2からMN1に転送されてもよい。さらにMN1は、当該情報要素を透過的に(transparently)UE3へ送信し、UE3がそれをMCGで受信してもよい。
さらに、上述のRRCコネクション再構成(Reconfiguration)メッセージは、マスターセルグループの設定情報(e.g., MCG Configuration)を含んでいてもよい。マスターセルグループの設定情報(e.g., MCG Configuration)は、上述のセカンダリセルグループ(SCG)の設定情報(e.g., SCG Configuration)と共に1つのRRCコネクション再構成(Reconfiguration)メッセージで送信されてもよい。上述のセカンダリセルグループ(SCG)の設定情報(e.g., SCG Configuration)に含まれる情報要素(e.g., PDUセッション識別子及びPDUセッション・タイプ情報)の少なくとも一部は、セカンダリセルグループ(SCG)の設定情報(e.g., SCG Configuration)の代わりに、マスターセルグループの設定情報(e.g., MCG Configuration)に含まれてもよい。例えば、マスターセルグループ(MCG)の設定情報は、マスターセルグループで既に確立済みのPDUセッションの識別子(i.e., PDU Session ID)と、当該PDUセッションに含まれ且つMN1(i.e., MCG)からSN2(i.e., SCG)に移されない1又はそれ以上のQoSフローと、当該QoSフローを包含するデータ無線ベアラの関連付けを示してもよい。
図23及び図24は、MN1の動作の一例を示すフローチャートである。ステップ2301及びステップ2401では、MN1は、DCのためのSCG設定を実行するよう要求し且つPDUセッション・スプリットを示すRRC Connection ReconfigurationメッセージをUE3に送信する。すなわち、RRC Connection Reconfigurationメッセージは、PDUセッション・スプリットの表示とSCG-Configurationを含む。PDUセッション・スプリットの表示は、SCG-Configuration内に包含されてもよい。ステップ2302及びステップ2402では、MN1は、RRC Connection Reconfiguration Complete メッセージをUE3から受信する。当該RRC Connection Reconfigurationメッセージは、MN1からSN2へスプリットされるMCG Split SRBを用いて、SN2を介して(i.e. SCGセルで)UE3に送信されてもよい。これに代えて、当該RRC Connection Reconfigurationメッセージに含まれる情報のうち、少なくともDCのためのSCG設定を実行するよう要求し且つPDUセッション・スプリットを示す情報を含むSCG RRC Connection Reconfigurationメッセージを、SN2がSCG SRBを用いてUE3に送信してもよい。
図25は、UE3のNASレイヤ31とAccess Stratum(AS)レイヤ32のインタラクションの一例を示している。ASレイヤ32は、既に確立済みのPDUセッションにPDUセッション・スプリットが適用されることを暗示的または明示的に示す情報を含むRRC Connection Reconfiguration メッセージ(図24のステップ2401)をMN1から受信したなら、PDUセッション・スプリットが適用されることを示す表示(e.g., PDU Session Split Indication)及び対応するPDUセッション識別子(i.e., PDU Session ID)を上位レイヤ(i.e., NASレイヤ31)に通知する(indicate to upper layer)。このとき、ASレイヤ32は、QoSフロー識別子(i.e., QoS flow Indicator (QFI))もNASレイヤ31に通知してもよい。さらに又はこれに代えて、ASレイヤ32は、既に確立済みのPDUセッションに属する1又はそれ以上のQoSフローがSCGのDRB(i.e., SCG bearer 又は SCG split bearer)に移されることを示す更新マッピング情報を上位レイヤ(i.e., NASレイヤ31)に通知してもよい(indicate to upper layer)。これにより、NASレイヤ31は、同一のPDUセッションに属する複数のQoSフローがMN1(MCG)及びSN2(SCG)にスプリットされていることを認識できる。
これに代えて、MR-DCにおいてPDUセッション・スプリットが暗示的に示される場合には、UE3のASレイヤ32(e.g., SCG RATのRRCレイヤ)は、データ無線ベアラ(DRB)の確立、当該DRBに対応するQoSフロー識別子、及びPDUセッション識別子を上位レイヤ(UE NASレイヤ31)に示してもよい。この場合、上位レイヤは、PDUセッション識別子が既にASレイヤ32(e.g., MCG RATのRRCレイヤ)から示されたPDUセッション識別子と重複している(同一である)ことに基づき、PDUセッション・スプリットされていることを認識してもよい。例えば、UE3のNASレイヤ31が開始した(トリガーした)PDUセッションの確立要求手順(PDU session establishment request procedure)では、NASレイヤ31がPDU session IDを付与する。したがって、NASレイヤ31は、自身が一方のセルグループ(CG)のRAT(e.g., MCG RAT)のASレイヤ32に既に割り当てたのと同じPDU session IDが別のCGのRAT(e.g., SCG RAT)のASレイヤ32から示された場合に、PDUセッション・スプリットされていることを認識することができる。
これに代えて、同一のRRC Connection Reconfiguration内のMCG-configuration及びSCG-configurationの各々がPDUセッション識別子を含んでもよい。この場合、UE3は、MCG-configuration内のPDUセッション識別子とSCG-configuration内のPDUセッション識別子とが重複している(同一である)ことに基づき、PDUセッション・スプリットされていることを認識してもよい。一例では、UE ASレイヤ32がPDUセッション識別の重複に基づきPDUセッション・スプリットを認識し、その後当該PDUセッション識別子又はPDUセッション・スプリットされていることをUE NASレイヤ31へ通知してもよい。これに代えて、UE NASレイヤ31は、MCG-configuration内のPDUセッション識別子及びSCG-configuration内のPDUセッション識別子をUE ASレイヤ32から受信し、これら2つのPDUセッション識別子に基づいてPDUセッション・スプリットされていることを認識してもよい。
ここで、PDUセッション識別子の代わりに、又はPDUセッション識別子と共に、当該PDUセッションに関連付けられたSDAPエンティティの識別子(e.g., SDAP Identity, or SDAPレイヤとPDCPレイヤの関連付けを示すService Channel Identity)が使用されてもよい。既に説明したように、Service Channel Identityは、SDAPエンティティと、それに接続される各PDCPエンティティとの間のService Access Point (SAP)として規定されてもよい。
<第8の実施形態>
本実施形態は、PDUセッション・スプリットを伴うNR-NR DCが実行されているときのUEモビリティに関する改良を提供する。本実施形態に係る無線通信ネットワークの構成例は、図9に示された例と同様である。
本実施形態では、以下に示す3つのモビリティシナリオを考える。
1.Change of SgNB
第1のモビリティ・シナリオは、Change of SgNB(又はSgNB Change)である。このシナリオは、3GPP Release 12(LTE-Advanced)のDCでのChange of SeNBシナリオに類似する。すなわち、Change of SgNB手順は、MgNB(i.e., MN1)によって開始され、UEコンテキスト(UE context)をソースSgNB(i.e., SN2)からターゲットSgNBに転送し且つUE内のSCG設定(SCG config)をあるSgNBにより生成(指定)された設定から他のSgNBにより生成(指定)される設定へ変更するために使用される。
MgNB(i.e., MN1)は、SgNB(又はSN)追加準備(addition preparation)手順を使用してターゲットSgNBにUE3のためのリソースを割り当てるよう要求することによってChange of SgNBを開始する。SgNB(又はSN)追加準備手順は、基本的に第5の実施形態(図21及び22)に示したとおりである。違いは、MgNBによってターゲットSgNBへ転送されるUEコンテキストが、ソースSgNBにより生成(指定)されたSCG設定を含む点である。SgNB(又はSN)追加準備手順を行なった後に、MgNB(i.e., MN1)は、DL TNL情報(DL TNLアドレス及びTEID)の更新をUPFエンティティ6に知らせるために、第1の実施形態で説明された既に確立済みのPDUセッションの修正要求(PDUセッション・スプリットの要否を示す)のメッセージをAMF/SMFエンティティ5に送ればよい。
2.MgNB to gNB Change
第2のモビリティ・シナリオは、MgNB to gNB Changeである。このシナリオは、3GPP Release 12(LTE-Advanced)のDCでのMeNB to eNB Changeシナリオに類似する。すなわち、MgNB to gNB Change手順は、ソースMgNB(i.e., MN1)及びソースSgNB(i.e., SN2)からターゲットgNBにコンテキストデータを転送するために使用される。
ソースMgNB(i.e., MN1)は、Xn Handover Preparation手順を開始することによって、MgNB to gNB Change手順を開始する。すなわち、ソースMgNB(i.e., MN1)は、Xn: HANDOVER REQUESTメッセージをターゲットgNBに送る。ソースMgNB(i.e., MN1)は、HANDOVER REQUESTメッセージ内のハンドオーバ準備情報(“HandoverPreparationInformation”IE)にSCGの設定情報(SCG configuration)を含める。当該SCGの設定情報は、PDUセッション識別子(i.e., PDU Session ID)、DRB識別子(i.e., DRB Identity)、及び1又はそれ以上のQoSフローの識別子(i.e., QFIs)の関連付けを示す。当該SCG設定は、PDUセッション・スプリットを明示的に示す情報(e.g., PDUセッション・タイプ情報又はDRBタイプ情報)を含んでもよい。
図26は、Xn Handover Preparation手順で行われるシグナリングの一例を示すシーケンス図である。ステップ2601では、ソースMgNB(i.e., MN1)は、HANDOVER REQUESTメッセージをターゲットgNB8に送る。上述したように、当該HANDOVER REQUESTメッセージは、SCGの設定情報を含む。さらに、当該HANDOVER REQUESTメッセージは、PDUセッション・スプリットを明示的に示す情報(e.g., PDUセッション・タイプ情報又はDRBタイプ情報)を含んでもよい。当該タイプ情報は、SCGの設定情報に含まれてもよい。
3.Inter-MgNB handover without SgNB change
第3のモビリティ・シナリオは、Inter-MgNB handover without SgNB changeである。このシナリオは、3GPP Release 12(LTE-Advanced)のDCでのInter-MeNB handover without SeNB changeシナリオに類似する。すなわち、Inter-MgNB handover without SgNB change手順は、ハンドオーバ中にSgNBを追加するターゲットMgNBへソースMgNB(i.e., MN1)からコンテキストデータを転送するために使用される。
ソースMgNB(i.e., MN1)は、Xn Handover Preparation手順を開始することによって、Inter-MgNB handover without SgNB change手順を開始する。すなわち、ソースMgNB(i.e., MN1)は、Xn: HANDOVER REQUESTメッセージをターゲットMgNBに送る。ソースMgNB(i.e., MN1)は、HANDOVER REQUESTメッセージ内のハンドオーバ準備情報(“HandoverPreparationInformation”IE)にSCG設定(“SCG configuration”IE)を含める。さらに、ソースMgNB(i.e., MN1)は、HANDOVER REQUESTメッセージ内の“UE Context Reference at the SgNB”IE内に、SgNB UE XnAP ID and SgNB IDを含める。これらSgNB UE XnAP ID and SgNB IDは、SgNB(i.e., SN2)のXnインタフェースにおいてUE3に関するデータ及びシグナリングメッセージを識別するために使用される。
“SCG configuration”IE又は“UE Context Reference at the SgNB”IEは、PDUセッション・スプリットを明示的に示す情報(e.g., PDUセッション・タイプ情報又はDRBタイプ情報)を含んでもよい。図26に示した例と同様に、ソースMgNB(i.e., MN1)は、HANDOVER REQUESTメッセージをターゲットMgNB8に送ってもよい。当該HANDOVER REQUESTメッセージは、“SCG configuration”IE及び“UE Context Reference at the SgNB”IEを含む。さらに、当該HANDOVER REQUESTメッセージは、PDUセッション・スプリットを明示的に示す情報(e.g., PDUセッション・タイプ情報又はDRBタイプ情報)を含んでもよい。当該タイプ情報は、“SCG configuration”IE又は“UE Context Reference at the SgNB”IEに含まれてもよい。
なお、MgNB to gNB Change手順では、ソースMgNB(i.e., MN1)へのNG-Uトンネル及びソースSgNB(i.e., SN2)へのNG-UトンネルをターゲットgNBへのNG-Uトンネルに変更するために、ターゲットgNBは、各PDU sessionのDL GTPトンネル(i.e., NG-U(又はN3)トンネル)のPath switchをAMF/SMFエンティティ5に要求し、AMF/SMFエンティティ5がNG-U(又はN3)Path Switch手順を実行する。さらに、Inter-MgNB handover without SgNB change手順でも、ソースMgNB(i.e., MN1)へのNG-UトンネルをターゲットMgNBへのNG-Uトンネルに変更するために、ターゲットgNBは、NG-U(又はN3)のPath switchをAMF/SMFエンティティ5に要求し、AMF/SMFエンティティ5がNG-U(又はN3) Path Switch手順を実行する。
NG-U(又はN3) Path Switch手順は、3GPP Release 12(LTE-Advanced)のDCでのS1 Path Switch手順に類似する。すなわち、図27に示されるように、ターゲット(M)gNB8は、AMF/SMFエンティティ5にPATH SWITCH REQUESTメッセージを送る。当該PATH SWITCH REQUESTメッセージは、PDUセッション・スプリットを明示的に示すタイプ情報(e.g., PDUセッション・タイプ情報又はQoSフロー・タイプ情報)を含んでもよい。または、ターゲット(M)gNB8は、NG-U(又はN3)のPath Switchの要求を、1つのPDU sessionからスプリットされたNG-U(又はN3)毎に行ってもよい。
MgNB to gNB Change手順において当該タイプ情報を含むPATH SWITCH REQUESTメッセージを受信した場合、AMF/SMFエンティティ5は、PDUセッション・スプリットが適用されていたソースMgNB(i.e., MN1)へのNG-Uトンネル及びソースSgNB(i.e., SN2)へのNG-UトンネルをターゲットgNB8へのNG-Uトンネルに変更することを決定する。一方、Inter-MgNB handover without SgNB change手順において当該タイプ情報を含むPATH SWITCH REQUESTメッセージを受信した場合、AMF/SMFエンティティ5は、PDUセッション・スプリットが適用されていたソースMgNB(i.e., MN1)へのNG-UトンネルをターゲットMgNB8へのNG-Uトンネルに変更することを決定するとともに、ターゲットMgNB8へのNG-UトンネルにPDUセッション・スプリットが適用されることを認識する。
これに代えて、PATH SWITCH REQUEST メッセージは、ハンドオーバ前に確立されたPDU session及び当該PDU sessionのQoSフローとこれらに対応するRANノード(ソースMgNB1、SgNB2)との関係が維持されることを明示的に示す情報要素を含んでもよい。当該情報要素は、例えば、“relative PDU session mapping kept” IEであってもよい。言い換えると、AMF/SMFエンティティ5は、当該情報要素を受信することで、ソースMgNB1に確立されていたPDU session及び当該PDU sessionのQoSフローがターゲットMgNB8において確立されること、及びSgNB2に確立されたPDU session及び当該PDU sessionのQoSフローがそのままSgNB2に維持されることを認識することができる。
<第9の実施形態>
上述の複数の実施形態は、各々独立に実施されてもよいし、適宜組み合わせて実施されてもよい。例えば、既に説明したように、MN1は、第5の実施形態で説明されたSN ADDITIONプロシージャ又は第6の実施形態で説明されたSN MODIFICATIONプロシージャに従って、PDUセッション・スプリットが適用されるPDUセッションのためのリソース割り当てをSN2に要求してもよい。その後に、MN1は、第1の実施形態で説明されたように、既に確立済みのPDUセッションの修正要求をAMF/SMFエンティティ5に送信してもよい。
さらに又はこれに代えて、MN1は、AMF/SMFエンティティ5から新規QoSフローの追加を要求された場合に、当該新規QoSフローをMN1(MCG)のDRBへmappingするのではなく、当該新規QoSフローをSN2(SCG)のDRBへ直接的にmappingしてもよい。より具体的には、AMF/SMFエンティティ5は、UE3のために既に確立済みのPDUセッションへの新規QoSフローの追加を要求するためにNGAP: PDU SESSION RESOURCE MODIFY REQUESTメッセージをMN1に送信する。当該NGAPメッセージの受信に応答して、MN1は、第5の実施形態で説明されたSN ADDITIONプロシージャ又は第6の実施形態で説明されたSN MODIFICATIONプロシージャに従って、当該新規QoSフローのためのリソース割り当てをSN2に要求してもよい。SN2は、当該新規QoSフローのために新規SCGベアラを確立してもよいし、当該新規QoSフローを既存のSCGベアラにマップしてもよい。言い換えると、SN2は、当該新規QoSフローがマップされるSCGにベアラをSN2が決定してもよい。例えば、NR-NR DCでは、MN1又はSN2が新規QoSフローとSCGベアラのマッピングを決定し、MR-DCでは、SN2が当該マッピングを決定してもよい。SN ADDITIONプロシージャ又はSN MODIFICATIONプロシージャの後に、MN1は、第1の実施形態で説明された手順に従って、既に確立済みのPDUセッションの修正要求をAMF/SMFエンティティ5に送信してもよい。
続いて以下では、上述の複数の実施形態に係るMN1、SN2、UE3、及びAMF/SMFエンティティ5の構成例について説明する。図28は、上述の実施形態に係るMN1の構成例を示すブロック図である。SN2の構成も図28に示されたそれと同様であってもよい。図28を参照すると、MN1は、Radio Frequencyトランシーバ2801、ネットワークインターフェース2803、プロセッサ2804、及びメモリ2805を含む。RFトランシーバ2801は、UE3を含むUEsと通信するためにアナログRF信号処理を行う。RFトランシーバ2801は、複数のトランシーバを含んでもよい。RFトランシーバ2801は、アンテナアレイ2802及びプロセッサ2804と結合される。RFトランシーバ2801は、変調シンボルデータをプロセッサ2804から受信し、送信RF信号を生成し、送信RF信号をアンテナアレイ2802に供給する。また、RFトランシーバ2801は、アンテナアレイ2802によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをプロセッサ2804に供給する。
ネットワークインターフェース2803は、ネットワークノード(e.g., SN2、CPノード5、UPノード6)と通信するために使用される。ネットワークインターフェース2803は、例えば、IEEE 802.3 seriesに準拠したネットワークインターフェースカード(NIC)を含んでもよい。
プロセッサ2804は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。プロセッサ2804は、複数のプロセッサを含んでもよい。例えば、プロセッサ2804は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., Digital Signal Processor(DSP))とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., Central Processing Unit(CPU)又はMicro Processing Unit(MPU))を含んでもよい。
メモリ2805は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。揮発性メモリは、例えば、Static Random Access Memory(SRAM)若しくはDynamic RAM(DRAM)又はこれらの組み合わせである。不揮発性メモリは、マスクRead Only Memory(MROM)、Electrically Erasable Programmable ROM(EEPROM)、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。メモリ2805は、プロセッサ2804から離れて配置されたストレージを含んでもよい。この場合、プロセッサ2804は、ネットワークインターフェース2803又は図示されていないI/Oインタフェースを介してメモリ2805にアクセスしてもよい。
メモリ2805は、上述の複数の実施形態で説明されたMN1による処理を行うための命令群およびデータを含む1又はそれ以上のソフトウェアモジュール(コンピュータプログラム)2806を格納してもよい。いくつかの実装において、プロセッサ2804は、当該ソフトウェアモジュール2806をメモリ2805から読み出して実行することで、上述の実施形態で説明されたMN1の処理を行うよう構成されてもよい。
図29は、UE3の構成例を示すブロック図である。Radio Frequency(RF)トランシーバ2901は、MN1及びSN2と通信するためにアナログRF信号処理を行う。RFトランシーバ2901は、複数のトランシーバを含んでもよい。RFトランシーバ2901により行われるアナログRF信号処理は、周波数アップコンバージョン、周波数ダウンコンバージョン、及び増幅を含む。RFトランシーバ2901は、アンテナアレイ2902及びベースバンドプロセッサ2903と結合される。RFトランシーバ2901は、変調シンボルデータ(又はOFDMシンボルデータ)をベースバンドプロセッサ2903から受信し、送信RF信号を生成し、送信RF信号をアンテナアレイ2902に供給する。また、RFトランシーバ2901は、アンテナアレイ2902によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをベースバンドプロセッサ2903に供給する。
ベースバンドプロセッサ2903は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。デジタルベースバンド信号処理は、(a) データ圧縮/復元、(b) データのセグメンテーション/コンカテネーション、(c) 伝送フォーマット(伝送フレーム)の生成/分解、(d) 伝送路符号化/復号化、(e) 変調(シンボルマッピング)/復調、及び(f) Inverse Fast Fourier Transform(IFFT)によるOFDMシンボルデータ(ベースバンドOFDM信号)の生成などを含む。一方、コントロールプレーン処理は、レイヤ1(e.g., 送信電力制御)、レイヤ2(e.g., 無線リソース管理、及びhybrid automatic repeat request(HARQ)処理)、及びレイヤ3(e.g., アタッチ、モビリティ、及び通話管理に関するシグナリング)の通信管理を含む。
例えば、ベースバンドプロセッサ2903によるデジタルベースバンド信号処理は、Packet Data Convergence Protocol(PDCP)レイヤ、Radio Link Control(RLC)レイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、ベースバンドプロセッサ2903によるコントロールプレーン処理は、Non-Access Stratum(NAS)プロトコル、RRCプロトコル、及びMAC CEの処理を含んでもよい。
ベースバンドプロセッサ2903は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., DSP)とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., CPU又はMPU)を含んでもよい。この場合、コントロールプレーン処理を行うプロトコルスタック・プロセッサは、後述するアプリケーションプロセッサ2904と共通化されてもよい。
アプリケーションプロセッサ2904は、CPU、MPU、マイクロプロセッサ、又はプロセッサコアとも呼ばれる。アプリケーションプロセッサ2904は、複数のプロセッサ(複数のプロセッサコア)を含んでもよい。アプリケーションプロセッサ2904は、メモリ2906又は図示されていないメモリから読み出されたシステムソフトウェアプログラム(Operating System(OS))及び様々なアプリケーションプログラム(e.g., 通話アプリケーション、WEBブラウザ、メーラ、カメラ操作アプリケーション、音楽再生アプリケーション)を実行することによって、UE3の各種機能を実現する。
幾つかの実装において、図29に破線(2905)で示されているように、ベースバンドプロセッサ2903及びアプリケーションプロセッサ2904は、1つのチップ上に集積されてもよい。言い換えると、ベースバンドプロセッサ2903及びアプリケーションプロセッサ2904は、1つのSystem on Chip(SoC)デバイス2905として実装されてもよい。SoCデバイスは、システムLarge Scale Integration(LSI)またはチップセットと呼ばれることもある。
メモリ2906は、揮発性メモリ若しくは不揮発性メモリ又はこれらの組合せである。メモリ2906は、物理的に独立した複数のメモリデバイスを含んでもよい。揮発性メモリは、例えば、SRAM若しくはDRAM又はこれらの組み合わせである。不揮発性メモリは、MROM、EEPROM、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。例えば、メモリ2906は、ベースバンドプロセッサ2903、アプリケーションプロセッサ2904、及びSoC2905からアクセス可能な外部メモリデバイスを含んでもよい。メモリ2906は、ベースバンドプロセッサ2903内、アプリケーションプロセッサ2904内、又はSoC2905内に集積された内蔵メモリデバイスを含んでもよい。さらに、メモリ2906は、Universal Integrated Circuit Card(UICC)内のメモリを含んでもよい。
メモリ2906は、上述の複数の実施形態で説明されたUE3による処理を行うための命令群およびデータを含む1又はそれ以上のソフトウェアモジュール(コンピュータプログラム)2907を格納してもよい。幾つかの実装において、ベースバンドプロセッサ2903又はアプリケーションプロセッサ2904は、当該ソフトウェアモジュール2907をメモリ2906から読み出して実行することで、上述の実施形態で図面を用いて説明されたUE3の処理を行うよう構成されてもよい。
図30は、上述の実施形態に係るAMF/SMFエンティティ5の構成例を示すブロック図である。図30を参照すると、AMF/SMFエンティティ5は、ネットワークインターフェース3001、プロセッサ3002、及びメモリ3003を含む。ネットワークインターフェース3001は、ネットワークノード(e.g., RANノード、他のコアネットワークノード)と通信するために使用される。ネットワークインターフェース3001は、例えば、IEEE 802.3 seriesに準拠したネットワークインタフェースカード(NIC)を含んでもよい。
プロセッサ3002は、例えば、マイクロプロセッサ、MPU、又はCPUであってもよい。プロセッサ3002は、複数のプロセッサを含んでもよい。
メモリ3003は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。揮発性メモリは、例えば、SRAM若しくはDRAM又はこれらの組み合わせである。不揮発性メモリは、例えば、MROM、PROM、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの組合せである。メモリ3003は、プロセッサ3002から離れて配置されたストレージを含んでもよい。この場合、プロセッサ3002は、ネットワークインターフェース3001又は図示されていないI/Oインタフェースを介してメモリ3003にアクセスしてもよい。
メモリ3003は、上述の複数の実施形態で説明されたAMF/SMFエンティティ5による処理を行うための命令群およびデータを含む1又は複数のソフトウェアモジュール(コンピュータプログラム)3004を格納してもよい。いくつかの実装において、プロセッサ3002は、当該1又は複数のソフトウェアモジュール3004をメモリ3003から読み出して実行することで、上述の実施形態で説明されたAMF/SMFエンティティ5の処理を行うよう構成されてもよい。
図28、図29、及び図30を用いて説明したように、上述の実施形態に係るMN1、SN2、UE3、及びAMF/SMFエンティティ5が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、Compact Disc Read Only Memory(CD-ROM)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、Programmable ROM(PROM)、Erasable PROM(EPROM)、フラッシュROM、Random Access Memory(RAM))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
<その他の実施形態>
上述の実施形態は、主にNR-NR DCの例に関して説明された。これらの実施形態に示された装置の構成および動作は、MR-DC with the 5GCのために使用されることができる。
上述の実施形態は、MN1とSN2間で送信される情報要素(e.g., SCG-Config)及びメッセージがLTE DCを想定した名称および構成を持つ例を提供した。しかしながら、NR-NR DCの情報要素及びメッセージの名称及び構成は、LTE DCのそれと同一でなくてもよい。例えば、SCG-Configに含まれる少なくとも一部の情報要素は、MN1とSN2間のXnインタフェースの情報要素として規定されてもよい。さらに、DCの形態(e.g., NR-NR DC, MR-DC with the 5GC(e.g., NG-EN-DC, NE-DC))によって、情報要素の名称及び構成が異なってもよい。例えば、NR-NR DCではMNとSNが共にNRのRRC protocolを使用するが、MR-DCではMN及びSNが互いに異なるRRC protocol(つまりLTEのRRC protocol及びNRのRRC protocol)を使用する。そのため、MR-DCでは、MNとSNがお互いにPDUセッション識別子、包含されるQoSフロー、及びDRB識別子の組み合わせを知っていればよいかもしれない。
上述の実施形態は、Dual Connectivityの例に関して説明された。しかしながら、Multi Connectivity(MC)において適用されてもよい。例えば、上述の実施形態は、1つのUEとの通信において、1つのMNに対して2つのSN(e.g., SN2-1及びSN2-2)が存在する場合、3つのN3トンネル(NG-Uトンネル)が1つのPDUセッションのために同時にサポートされる構成に適用されてもよい。言い換えると、1つのPDUセッションが、MN1、SN2-1、及びSN2-2へとスプリットされてもよい。これに代えて、1つのPDUセッションが、2つのSN2-1及びSN2-2へスプリットされてもよいし、MN1及び2つのSNのうちの1つ(SN2-1又はSN2-2)へスプリットされてもよい。このように、上述の実施形態は、MCにおいて、1つのPDUセッションが3以上のRAN nodes(i.e., MN及びSNs)へスプリットされる構成(つまり、1つのPDUセッションに対応する3以上のN3トンネル(NG-Uトンネル)が設定される構成)へ拡張されることが可能である。
上述の実施形態は、NR-NR DCまたはMR-DCの機能をサポートしているUE3がPDUセッション・スプリットの機能をサポートすることを前提としていた。しかしながら、NR-NR DCまたはMR-DCの機能をサポートするがPDUセッション・スプリットの機能をサポートしないUEが存在してもよい。例えば、PDUセッション・スプリットの(機能の)サポートを示す端末能力(e.g., PDU session split support, PDU-SessionTypeSplit)が規定されもよい。
PDUセッション・スプリットのサポートを示す端末能力は、UE ASレイヤの能力(UE AS Capability, e.g. UE radio access capability)であってもよいし、UE NASレイヤの能力(UE NAS Capability, e.g. UE network capability)であってもよい。当該端末能力がUE ASレイヤの能力である場合、UE3は当該端末能力を示す情報要素をRRCメッセージでMN1へ送信してもよい。一方、当該端末能力がUE NASレイヤの能力である場合、UE3は当該端末能力を示す情報要素をNASメッセージでAMF/SMFエンティティ5へ送信してもよい。
これに代えて、当該端末能力がUE NASレイヤの能力である場合、AMF/SMFエンティティ5がMN1に当該端末能力を通知してもよい。AMF/SMFエンティティ5からMN1への当該端末能力の通知は、UE単位で行われてもよい。
これに代えて、AMF/SMFエンティティ5は、UE3のためのPDUセッションにPDUセッション・スプリットが許可されるか否かを判定するために、当該UE3が当該端末能力を有するか否かを考慮してもよい。例えば、AMF/SMFエンティティ5は、PDUセッションの確立手順において、当該UE3又は加入者情報サーバ(e.g., Home Subscriber Server (HSS))から当該端末能力を示す情報要素を受信してもよい。そして、AMF/SMFエンティティ5は、受信された情報要素を考慮して、当該UE3のためのPDUセッションに関してPDUセッション・スプリットが許可されるか否かを判定してもよい。言い換えると、AMF/SMFエンティティ5は、各UEの端末能力に基づいて、PDUセッション・スプリットを許可するか否かをUE単位で判定してもよい。
これにより、MN1またはAMF/SMFエンティティ5は、UE3のPDUセッション・スプリットの能力を考慮して、当該UE3のためのPDUセッションが確立(マップ)される1又はそれ以上のRANノードを適切に決定することができる。或いは、AMF/SMF AMF/SMFエンティティ5は、MN1からのPDUセッション・スプリットの要求を許可するか否かを適切に決定することができる。
上述の実施形態で説明されたMN1及びSN2は、Cloud Radio Access Network(C-RAN)コンセプトに基づいて実装されてもよい。C-RANは、Centralized RANと呼ばれることもある。したがって、上述の実施形態で説明されたMN1及びSN2の各々により行われる処理及び動作は、C-RANアーキテクチャに含まれるDigital Unit(DU)によって、又はDU及びRadio Unit(RU)の組み合せによって提供されてもよい。DUは、Baseband Unit(BBU)又はCentral Unit(CU)と呼ばれる。RUは、Remote Radio Head(RRH)、Remote Radio Equipment(RRE)、Distributed Unit(DU)、又はTransmission and Reception Point(TRP)とも呼ばれる。すなわち、上述の実施形態で説明されたMN1及びSN2の各々によって行われる処理及び動作は、任意の1又は複数の無線局(又はRANノード)によって提供されてもよい。
さらに、上述した実施形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。
この出願は、2017年8月9日に出願された日本出願特願2017-154365を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 マスターノード(MN)
2 セカンダリノード(SN)
3 User Equipment (UE)
4 コアネットワーク
5 コントロールプレーン(CP)ノード
6 ユーザプレーン(UP)ノード
7 RANノード
8 ターゲットgNB
2801 RFトランシーバ
2804 プロセッサ
2805 メモリ
2901 RFトランシーバ
2903 ベースバンドプロセッサ
2904 アプリケーションプロセッサ
2906 メモリ
3002 プロセッサ
3003 メモリ

Claims (10)

  1. マスター無線アクセスネットワーク(RAN)ノードであって、
    メモリと、
    前記メモリに結合された少なくとも1つのプロセッサと、
    を備え、
    前記少なくとも1つのプロセッサは、
    無線端末とコアネットワーク内のUPF(User Plane Function)との間で確立されるPDUセッションのスプリットが許可されるか否か又はスプリットが可能か否かを示す第一の情報を含むPDU Session Resource Setup Requestメッセージを前記コアネットワーク内のAMF(Access and Mobility Management Function)から受信し、
    前記PDUセッションの修正を要求するPDU Session Resource Modify Indicationメッセージを前記コアネットワーク内の前記AMFに送るよう構成され、
    前記PDU Session Resource Modify Indicationメッセージは、前記PDUセッションを複数のトンネルにスプリットすることを前記コアネットワークに示すために用いられ、
    前記PDU Session Resource Modify Indicationメッセージは、前記PDUセッションのスプリットに対応づけられたQuality of Service(QoS)フローのリストを含む、
    マスターRANノード。
  2. 前記第一の情報は、スプリットが許可されるか否か又はスプリットが可能か否かを示すPDUセッション単位又はQoSフロー単位の表示である、
    請求項1に記載のマスターRANノード。
  3. 前記第一の情報は、前記PDUセッションのスプリットの許可又は不許可をネットワークスライス毎に示す、
    請求項1又は2に記載のマスターRANノード。
  4. 前記マスターRANノードは、NextGen Radio Access Network(NG-RAN)ノードであり、前記コアネットワークは5Gコアネットワークである、
    請求項1~3のいずれか1項に記載のマスターRANノード。
  5. 前記PDUセッションを複数のトンネルにスプリットすることは、当該PDUセッションに関連付けられた複数のQoSフローのうち1又はそれ以上のQoSフローを、前記コアネットワーク内のUPFと前記マスターRANノードの間の第1のトンネルから前記コアネットワーク内のUPFといずかのセカンダリRANノードの間の第2のトンネルに移動すること、又は、前記第2のトンネルから前記第1のトンネルに移動することを含む、
    請求項1~4のいずれか1項に記載のマスターRANノード。
  6. コアネットワークに配置されるAMF(Access and Mobility Management Function)であって、
    メモリと、
    前記メモリに結合された少なくとも1つのプロセッサと、
    を備え、
    前記少なくとも1つのプロセッサは、
    無線端末と前記コアネットワーク内のUPF(User Plane Function)との間で確立されるPDUセッションのスプリットが許可されるか否か又はスプリットが可能か否かを示す第一の情報を含むPDU Session Resource Setup Requestメッセージをマスター無線アクセスネットワーク(RAN)ノードに送信し、
    前記PDUセッションの修正を要求するPDU Session Resource Modify Indicationメッセージを前記マスターRANノードから受信するよう構成され、
    前記PDU Session Resource Modify Indicationメッセージは、前記PDUセッションを複数のトンネルにスプリットすることを前記コアネットワークに示すために用いられ、
    前記PDU Session Resource Modify Indicationメッセージは、前記PDUセッションのスプリットに対応づけられたQuality of Service(QoS)フローのリストを含む、
    AMF。
  7. 前記第一の情報は、スプリットが許可されるか否か又はスプリットが可能か否かを示すPDUセッション単位又はQoSフロー単位の表示である、
    請求項6に記載のAMF。
  8. 前記コアネットワークは5Gコアネットワークである、
    請求項6又は7に記載のAMF。
  9. マスター無線アクセスネットワーク(RAN)ノードにおける方法であって、
    無線端末とコアネットワーク内のUPF(User Plane Function)との間で確立されるPDUセッションのスプリットが許可されるか否か又はスプリットが可能か否かを示す第一の情報を含むPDU Session Resource Setup Requestメッセージを前記コアネットワーク内のAMF(Access and Mobility Management Function)から受信すること、及び
    前記PDUセッションの修正を要求するPDU Session Resource Modify Indicationメッセージを前記AMFに送ること、
    を備え、
    前記PDU Session Resource Modify Indicationメッセージは、前記PDUセッションを複数のトンネルにスプリットすることを前記コアネットワークに示すために用いられ、
    前記PDU Session Resource Modify Indicationメッセージは、前記PDUセッションのスプリットに対応づけられたQuality of Service(QoS)フローのリストを含む、
    方法。
  10. コアネットワークに配置されるAMF(Access and Mobility Management Function)における方法であって、
    無線端末と前記コアネットワーク内のUPF(User Plane Function)との間で確立されるPDUセッションのスプリットが許可されるか否か又はスプリットが可能か否かを示す第一の情報を含むPDU Session Resource Setup Requestメッセージをマスター無線アクセスネットワーク(RAN)ノードに送信すること、及び
    前記PDUセッションの修正を要求するPDU Session Resource Modify Indicationメッセージを前記マスターRANノードから受信すること、
    を備え、
    前記PDU Session Resource Modify Indicationメッセージは、前記PDUセッションを複数のトンネルにスプリットすることを前記コアネットワークに示すために用いられ、
    前記PDU Session Resource Modify Indicationメッセージは、前記PDUセッションのスプリットに対応づけられたQuality of Service(QoS)フローのリストを含む、
    方法。
JP2022124485A 2017-08-09 2022-08-04 マスター無線アクセスネットワークノード、amf、及びこれらの方法 Active JP7318779B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017154365 2017-08-09
JP2017154365 2017-08-09
JP2019535586A JP6904419B2 (ja) 2017-08-09 2018-04-11 無線アクセスネットワークノード、コアネットワークノード、及び無線端末並びにこれらの方法
JP2021102130A JP7124933B2 (ja) 2017-08-09 2021-06-21 マスター無線アクセスネットワークノード、コントロールプレーン・ノード、及びこれらの方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021102130A Division JP7124933B2 (ja) 2017-08-09 2021-06-21 マスター無線アクセスネットワークノード、コントロールプレーン・ノード、及びこれらの方法

Publications (2)

Publication Number Publication Date
JP2022140737A JP2022140737A (ja) 2022-09-27
JP7318779B2 true JP7318779B2 (ja) 2023-08-01

Family

ID=65272816

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019535586A Active JP6904419B2 (ja) 2017-08-09 2018-04-11 無線アクセスネットワークノード、コアネットワークノード、及び無線端末並びにこれらの方法
JP2021102130A Active JP7124933B2 (ja) 2017-08-09 2021-06-21 マスター無線アクセスネットワークノード、コントロールプレーン・ノード、及びこれらの方法
JP2022124485A Active JP7318779B2 (ja) 2017-08-09 2022-08-04 マスター無線アクセスネットワークノード、amf、及びこれらの方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2019535586A Active JP6904419B2 (ja) 2017-08-09 2018-04-11 無線アクセスネットワークノード、コアネットワークノード、及び無線端末並びにこれらの方法
JP2021102130A Active JP7124933B2 (ja) 2017-08-09 2021-06-21 マスター無線アクセスネットワークノード、コントロールプレーン・ノード、及びこれらの方法

Country Status (5)

Country Link
US (3) US11076317B2 (ja)
EP (2) EP3668262B1 (ja)
JP (3) JP6904419B2 (ja)
CN (1) CN110999520B (ja)
WO (1) WO2019030981A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108366391B (zh) * 2017-01-26 2023-08-25 中兴通讯股份有限公司 一种通信方法、网络设备及系统
WO2019030981A1 (ja) * 2017-08-09 2019-02-14 日本電気株式会社 無線アクセスネットワークノード、コアネットワークノード、及び無線端末並びにこれらの方法
BR112020008149A2 (pt) * 2017-10-30 2020-11-03 Huawei Technologies Co., Ltd. método para melhorar confiabilidade de serviço, dispositivo, e sistema
CN109787791B (zh) * 2017-11-10 2024-04-12 华为技术有限公司 通信方法及通信设备
EP3753373B1 (en) * 2018-02-14 2023-07-19 Telefonaktiebolaget LM Ericsson (publ) Handling qos mobility and dual connectivity in nr
US11178717B2 (en) * 2018-05-21 2021-11-16 Electronics And Telecommunications Research Institute Traffic distribution method through multi-access network in a network and network entity performing the same
KR102396950B1 (ko) * 2018-05-21 2022-05-12 삼성전자 주식회사 5g 무선통신 네트워크 시스템에서 최고 신뢰성있는 서비스를 위한 이중 전송 방법 및 장치
CN110557847B (zh) * 2018-05-30 2024-01-05 华为技术有限公司 通信方法、装置及存储介质
CA3104732C (en) * 2018-07-02 2023-09-12 Nokia Technologies Oy Access control for user equipment in a connected mode
JP7262941B2 (ja) * 2018-08-06 2023-04-24 シャープ株式会社 端末装置、基地局装置、および方法
CN112511534B (zh) * 2018-08-14 2022-02-25 华为技术有限公司 一种业务流的传输方法、通信方法及装置
US11310004B2 (en) * 2018-08-20 2022-04-19 Qualcomm Incorporated Master node transport network layer information exchange for downlink data forwarding of a secondary node terminated bearer
US20220053390A1 (en) * 2018-11-09 2022-02-17 Lg Electronics Inc. Support of inter-gnb handover in higher layer multi-connectivity
CN111436078B (zh) * 2019-01-15 2022-04-29 华为技术有限公司 通信方法和网络设备
EP3959941A1 (en) 2019-04-26 2022-03-02 Apple Inc. Split protocol data unit (pdu) session indication for multi-rat dual connectivity (mr-dc) with 5gc
CN110536484B (zh) * 2019-05-13 2024-03-26 中兴通讯股份有限公司 多连接系统中的数据无线承载控制方法、装置和系统
CN112020109B (zh) * 2019-05-31 2021-11-16 大唐移动通信设备有限公司 一种用户终端上下文处理方法及装置
KR102169718B1 (ko) * 2019-09-17 2020-10-26 에스케이텔레콤 주식회사 세션 그룹 제어 방법 및 장치
CN113170370A (zh) 2019-09-23 2021-07-23 Oppo广东移动通信有限公司 系统互操作的方法及装置
JP2021175109A (ja) * 2020-04-27 2021-11-01 日本電気株式会社 Ue、af装置、smf装置、及びこれらの方法
CN113676947A (zh) * 2020-05-13 2021-11-19 华为技术有限公司 通信方法和装置
CN113810950A (zh) * 2020-06-15 2021-12-17 华为技术有限公司 一种通信方法及装置
WO2022030073A1 (ja) * 2020-08-05 2022-02-10 日本電気株式会社 無線アクセスネットワークノード、User Equipment、及びこれらの方法
CN112752303B (zh) * 2021-01-06 2022-11-01 深圳市日海飞信信息系统技术有限公司 面向垂直行业的本地分流方法、装置及设备
CN112819054B (zh) * 2021-01-25 2023-06-30 中国联合网络通信集团有限公司 一种切片模板配置方法及装置
CN117242805A (zh) * 2021-07-30 2023-12-15 Oppo广东移动通信有限公司 一种数据传输方法及装置、终端、网络设备
US11812512B2 (en) * 2021-08-05 2023-11-07 Qualcomm Incorporated Detecting a change to relay device protocol data unit session configuration
US11800578B2 (en) 2021-10-28 2023-10-24 Cisco Technology, Inc. Techniques for handling tunnel errors for multi-tunnel sessions
CN114158079B (zh) * 2021-12-21 2023-04-18 中国联合网络通信集团有限公司 通信方法和装置、电子设备、计算机可读介质
US11910448B2 (en) * 2021-12-28 2024-02-20 T-Mobile Innovations Llc Random access channel preamble assignments for dual connectivity

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011100492A1 (en) * 2010-02-12 2011-08-18 Interdigital Technology Corporation Data split between multiple sites
CN103503327B (zh) * 2011-04-29 2019-01-01 英特尔公司 管理与多传输点的无线通信的系统和方法
WO2014082270A1 (zh) * 2012-11-29 2014-06-05 华为技术有限公司 一种数据传输的控制方法、装置及系统
US9456378B2 (en) * 2013-09-25 2016-09-27 Intel Corporation End-to-end (E2E) tunneling for multi-radio access technology (multi-rat)
JP6350537B2 (ja) * 2013-10-31 2018-07-04 日本電気株式会社 無線通信システム、基地局装置、無線端末、及び通信制御方法
CN106304411B (zh) * 2015-05-15 2020-02-21 上海诺基亚贝尔股份有限公司 用于双连接系统中的上行链路分割承载的方法及装置
WO2017030420A1 (en) * 2015-08-19 2017-02-23 Samsung Electronics Co., Ltd. Method and wireless communication system for handling offloading of drbs to wlan carrier
CN106941733B (zh) * 2016-01-04 2022-05-13 中兴通讯股份有限公司 双连接中实现重配置的方法、主服务基站及辅服务基站
JP2017154365A (ja) 2016-03-01 2017-09-07 凸版印刷株式会社 建材用防湿シート
US10362511B2 (en) * 2016-05-17 2019-07-23 Lg Electronics Inc. Method and apparatus for determining PDU session identity in wireless communication system
CN109479215B (zh) * 2016-06-30 2022-07-29 华为技术有限公司 多连接通信方法和设备
US10813159B2 (en) * 2016-07-05 2020-10-20 Lg Electronics Inc. Method for performing access control in next-generation mobile communication network, and user equipment
EP4096288A1 (en) * 2016-08-01 2022-11-30 Samsung Electronics Co., Ltd. Method and apparatus for managing data communication in wireless communication network
EP3516922B1 (en) * 2016-09-30 2021-07-14 Samsung Electronics Co., Ltd. Method and apparatus for establishing dual-connectivity to transmit data in new radio communication architecture
WO2018066702A1 (ja) 2016-10-07 2018-04-12 株式会社Nttドコモ 無線通信システム、ネットワーク装置及び無線通信方法
US10419985B2 (en) * 2016-10-25 2019-09-17 Lg Electronics Inc. Method of supporting access network handover operation of user equipment in wireless communication system and apparatus for the same
GB201621072D0 (en) * 2016-12-12 2017-01-25 Samsung Electronics Co Ltd NR QOS handling
CN110214457A (zh) * 2016-12-29 2019-09-06 Lg电子株式会社 建立drb的方法和设备
US10728952B2 (en) * 2017-01-09 2020-07-28 Huawei Technologies Co., Ltd. System and methods for session management
US10470199B2 (en) * 2017-01-10 2019-11-05 Htc Corporation Device and method of handling a PDU session in inter-system mobility between a LTE system and a NR/5G system
CN108366391B (zh) * 2017-01-26 2023-08-25 中兴通讯股份有限公司 一种通信方法、网络设备及系统
CN110622549B (zh) * 2017-05-12 2023-11-14 诺基亚技术有限公司 协议数据单元会话分割功能和信令发送
CN109246852B (zh) * 2017-06-13 2023-08-11 夏普株式会社 无线协议层实体处理方法以及相应的用户设备
CN109151914B (zh) * 2017-06-16 2024-04-12 华为技术有限公司 一种通信方法及接入网设备
WO2019031490A1 (ja) * 2017-08-08 2019-02-14 三菱電機株式会社 通信システム、通信端末装置および基地局装置
WO2019030981A1 (ja) * 2017-08-09 2019-02-14 日本電気株式会社 無線アクセスネットワークノード、コアネットワークノード、及び無線端末並びにこれらの方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Huawei,Granularity of offload for Option 7[online],3GPP TSG RAN WG3 adhoc_R3_AH_NR_1706 R3-172477,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_AHGs/R3_AH_NR_1706/Docs/R3-172477.zip>,2017年06月20日
NEC,PDU Session Split and its signalling impact[online],3GPP TSG RAN WG3 #97 R3-173029,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_97/Docs/R3-173029.zip>,2017年08月12日
Qualcomm Incorporated,Flow QoS Support in Dual Connectivity[online],3GPP TSG RAN WG3 #96 R3-171796,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_96/Docs/R3-171796.zip>,2017年05月06日
Samsung,Discussion on the TNL Address[online],3GPP TSG RAN WG3 adhoc_R3_AH_NR_1706 R3-172273,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_AHGs/R3_AH_NR_1706/Docs/R3-172273.zip>,2017年06月20日
ZTE,Correction of TS38.413 due to PDU Session Split over NG-U[online],3GPP TSG RAN WG3 #97 R3-172683,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_97/Docs/R3-172683.zip>,2017年08月11日
ZTE,Further Discussion on Bearer Option Selection Principles for 5GC Based DC[online],3GPP TSG RAN WG3 #96 R3-171498,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_96/Docs/R3-171498.zip>,2017年05月06日

Also Published As

Publication number Publication date
CN110999520B (zh) 2023-10-31
CN110999520A (zh) 2020-04-10
EP4236591A2 (en) 2023-08-30
JPWO2019030981A1 (ja) 2020-07-30
EP3668262B1 (en) 2023-11-15
EP3668262A4 (en) 2020-09-23
JP2021153337A (ja) 2021-09-30
JP6904419B2 (ja) 2021-07-14
US11076317B2 (en) 2021-07-27
WO2019030981A1 (ja) 2019-02-14
JP7124933B2 (ja) 2022-08-24
EP3668262A1 (en) 2020-06-17
US11877187B2 (en) 2024-01-16
US20210314817A1 (en) 2021-10-07
EP4236591A3 (en) 2023-11-22
US11576080B2 (en) 2023-02-07
US20230148192A1 (en) 2023-05-11
US20200260325A1 (en) 2020-08-13
JP2022140737A (ja) 2022-09-27

Similar Documents

Publication Publication Date Title
JP7318779B2 (ja) マスター無線アクセスネットワークノード、amf、及びこれらの方法
JP7243873B2 (ja) 無線アクセスネットワークノード及び無線端末並びにこれらの方法
JP7131582B2 (ja) ソースranノード、無線端末、及びターゲットranノード、並びにこれらの方法
JP7205572B2 (ja) 無線アクセスネットワークノード及び無線端末並びにこれらの方法
JP2020061792A (ja) 無線端末、第2のコアネットワークノード、及びこれらの方法
WO2018128017A1 (ja) 無線アクセスネットワークノード、無線端末、コアネットワークノード並びにこれらの方法及び非一時的なコンピュータ可読媒体
JP2020074656A (ja) 無線アクセスネットワークノード、無線端末、コアネットワークノード、及びこれらの方法
US20240137942A1 (en) Radio access network node, radio terminal, and methods and non-transitory computer-readable media therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230703

R151 Written notification of patent or utility model registration

Ref document number: 7318779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151