WO2023005770A1 - 信息指示方法和装置 - Google Patents

信息指示方法和装置 Download PDF

Info

Publication number
WO2023005770A1
WO2023005770A1 PCT/CN2022/106835 CN2022106835W WO2023005770A1 WO 2023005770 A1 WO2023005770 A1 WO 2023005770A1 CN 2022106835 W CN2022106835 W CN 2022106835W WO 2023005770 A1 WO2023005770 A1 WO 2023005770A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
ehc
contexts
maximum number
established
Prior art date
Application number
PCT/CN2022/106835
Other languages
English (en)
French (fr)
Inventor
范强
孙靖聪
徐小英
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22848375.6A priority Critical patent/EP4369753A1/en
Publication of WO2023005770A1 publication Critical patent/WO2023005770A1/zh
Priority to US18/423,942 priority patent/US20240163721A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers

Definitions

  • the present application relates to the communication field, and more specifically, to an information indicating method and device.
  • an access network device can establish an Ethernet header compression (Ethernet header compression, EHC) context for a terminal.
  • EHC Ethernet header compression
  • a centralized unit (centralized unit, CU) in an access network device adopting a split architecture can be separated into a CU-control plane (control plane, CP) and a CU-user plane (user plane, UP).
  • CU-UP can be used to establish EHC context for the terminal.
  • the CU-UP does not understand the capabilities of the user equipment (UE), so how to establish a reasonable number of EHC contexts for the UE has become an urgent technical problem to be solved.
  • the embodiments of the present application provide an information indication method and device, in order to establish a reasonable number of EHC contexts for a terminal.
  • the present application provides an information indication method, which can be performed by UP, or can also be performed by components configured in UP (such as chips, chip systems, etc.), or can also be implemented by all or part of the
  • the logic module or software implementation of the UP function is not limited in this application.
  • the method provided by the present application is described by taking the interaction between the UP and the CP as an example for the convenience of understanding and description.
  • the method includes: the user plane UP in the centralized unit CU receives first information from the control plane CP, the first information is used to indicate the Ethernet header compression EHC context that can be established for the first target in the downlink direction
  • the maximum number, the first target includes: a user equipment UE, a first data radio bearer (data radio bearer, DRB) of the UE, or a first protocol data unit (protocol data unit, PDU) session of the UE, so
  • the first DRB is a DRB maintained by the UP
  • the first PDU session is a PDU session maintained by the UP
  • the UP is the first target in the downlink direction Create an EHC context.
  • the CP uses the first information to indicate to the UP the maximum number of EHC contexts that the UP can establish for the UE, the UE's DRB, or the UE's PDU session in the downlink direction, so that the UP can use the maximum number of EHC contexts in the downlink direction.
  • the number of EHC contexts established by the UP for the first target in the downlink direction is not greater than the maximum number indicated by the first information.
  • the UP By restricting the number of EHC contexts established by the UP for the first target in the downlink direction to not be greater than the maximum number indicated by the first information, it is avoided that the UP establishes too many EHC contexts in the downlink direction to exceed the capability of the UE.
  • the first information is carried in an EHC parameter information element (information element, IE) (which may be referred to as an information element).
  • EHC parameter information element information element, IE
  • the first target is the first PDU session of the UE, and the first information is carried in the PDU session resource list IE to be established.
  • the first information is carried in a bearer context establishment request message, a bearer context modification request message, or a bearer context modification confirmation message.
  • the first information does not need to be sent separately, and is directly carried in a bearer context establishment request message, a bearer context modification request message, or a bearer context modification confirmation message, thereby reducing the occupation of network resources.
  • the method further includes: the UP sends second information to the CP, and the second information is used to request to modify the The maximum number of EHC contexts that can be established for the first target.
  • the UP requests the CP to re-assign itself the maximum number of EHC contexts that can be established for the first target in the downlink direction, so that the maximum number of EHC contexts that the CP reallocates for the UP is more in line with the actual situation of the UP Business needs.
  • the second information indicates the expected value of the maximum number requested to be modified, or the second information is used to request to modify the maximum number to a larger value, or to modify the maximum number to a smaller value value.
  • the second information may be carried in a bearer context modification requirement message.
  • the second information does not need to be sent separately, but is directly carried in the bearer context modification request message, which reduces the occupation of network resources.
  • the present application provides an information indication method, which can be executed by the CP, or can also be executed by components configured in the CP (such as chips, chip systems, etc.), or can also be implemented by all or part of the
  • the logic module or software implementation of the CP function is not limited in this application.
  • the method provided by the present application is described by taking the interaction between the UP and the CP as an example for the convenience of understanding and description.
  • the method includes: the control plane CP in the centralized unit CU generates first information, the first information is used to indicate the maximum number of Ethernet header compression EHC contexts that can be established for the first target in the downlink direction, so
  • the first target includes: UE, a first DRB of the UE or a first PDU session of the UE, the first DRB is a DRB maintained by the UP, and the first PDU session is a PDU session maintained by the UP;
  • the CP sends the first information to the UP.
  • the CP uses the first information to indicate to the UP the maximum number of EHC contexts that the UP can establish for the UE, the UE's DRB, or the UE's PDU session in the downlink direction, so that the UP can use the maximum number in the downlink direction.
  • UE, UE's DRB or UE's PDU session establishes a reasonable number of EHC contexts, which solves the problem that the UP cannot establish a reasonable number of EHC contexts for the UE because the UP does not know the capabilities of the UE in the access network equipment of the split architecture.
  • the maximum number of EHC contexts that the UE can establish in the uplink direction allocated by the CP to the UE is the same as the maximum number of EHC contexts that the CP allocates to the UE for the UP
  • the sum of the allocated maximum numbers of EHC contexts that the UP can establish for the UE in the downlink direction is not greater than the maximum number of EHC contexts supported by the UE.
  • the EHC contexts supported by the UE By restricting the sum of the maximum number of EHC contexts that can be established by the UE in the uplink direction allocated by the CP to the UE and the maximum number of EHC contexts that can be established by the CP in the downlink direction for the UE allocated by the CP, the EHC contexts supported by the UE The size relationship between the maximum numbers prevents the CP from allocating too many EHC contexts, which may exceed the UE's capability.
  • the first information is carried in an EHC parameter IE.
  • the first target is the first PDU session of the UE, and the first information is carried in the PDU session resource list IE to be established.
  • the first information is carried in a bearer context establishment request message, a bearer context modification request message, or a bearer context modification confirmation message.
  • the first information does not need to be sent separately, and is directly carried in a bearer context establishment request message, a bearer context modification request message, or a bearer context modification confirmation message, thereby reducing the occupation of network resources.
  • the method further includes:
  • the CP receives second information from the UP, the second information is used to request to modify the maximum number of EHC contexts that can be established for the first target in the downlink direction; the CP receives the second information according to the second information , to modify the first information.
  • the second information indicates the expected value of the maximum number requested to be modified, or the second information is used to request to modify the maximum number to a larger value, or to modify the maximum number to a smaller value value.
  • the second information is carried in the bearer context modification requirement message.
  • the second information does not need to be sent separately, but is directly carried in the bearer context modification request message, which reduces the occupation of network resources.
  • the method further includes: the CP receives third information, where the third information is used to indicate the maximum number of EHC contexts supported by the UE .
  • the present application provides an information indication device, including a module or unit for implementing the first aspect and the method in any possible implementation manner of the first aspect. It should be understood that each module or unit can realize corresponding functions by executing computer programs.
  • the present application provides an information indicating device, including a processor, and the processor is configured to execute the information indicating method described in the first aspect and any possible implementation manner of the first aspect.
  • the apparatus may also include memory for storing instructions and data.
  • the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the methods described in the foregoing aspects can be implemented.
  • the device may further include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces.
  • the present application provides an information indication device, including a module or unit for implementing the second aspect and the method in any possible implementation manner of the second aspect. It should be understood that each module or unit can realize corresponding functions by executing computer programs.
  • the present application provides an information indication device, including a processor, where the processor is configured to execute the information indication method described in the second aspect and any possible implementation manner of the second aspect.
  • the apparatus may also include memory for storing instructions and data.
  • the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the methods described in the foregoing aspects can be implemented.
  • the device may further include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces.
  • the present application provides an information indication system, including the device described in the third aspect or the fourth aspect and the device described in the fifth aspect or the sixth aspect.
  • the present application provides a computer-readable storage medium, including a computer program, which, when run on a computer, enables the computer to realize either the first aspect or the second aspect and any possibility of the first aspect or the second aspect method in the implementation.
  • the present application provides a computer program product, the computer program product including: a computer program (also referred to as code, or instruction), when the computer program is executed, the computer executes the first aspect or The second aspect and the method in any possible implementation manner of the first aspect or the second aspect.
  • a computer program also referred to as code, or instruction
  • FIG. 1 is a schematic diagram of a system of an information indication method provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an access network device deployed with a CU and a DU provided in an embodiment of the present application;
  • Fig. 3 is a schematic flowchart of an information indication method provided by an embodiment of the present application.
  • Fig. 4 is another schematic flowchart of the information indication method provided by the embodiment of the present application.
  • Fig. 5 is a schematic block diagram of an information indication device provided by an embodiment of the present application.
  • Fig. 6 is another schematic block diagram of an information indication device provided by an embodiment of the present application.
  • Fig. 7 is another schematic block diagram of an information indication device provided by an embodiment of the present application.
  • Fig. 8 is another schematic block diagram of an information indication device provided by an embodiment of the present application.
  • the technical solution provided by this application can be applied to scenarios such as the Internet of Things (IOT), the Industrial Internet of Things (IIOT), and the Internet of Vehicles (V2X).
  • IOT Internet of Things
  • IIOT Industrial Internet of Things
  • V2X Internet of Vehicles
  • the UE in this embodiment of the present application may also be referred to as terminal equipment, terminal, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, wireless communication device, user agent, or user device.
  • the UE may be a device that provides voice/data connectivity to users, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some terminals can be: mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function (such as notebook computer, palmtop computer, etc.), mobile internet device (mobile internet device, MID), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self driving (self driving), wireless in remote medical (remote medical) Terminals, wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, cellular phones, cordless Telephones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices, or connected Other processing devices to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in the 5G network or
  • wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device may also be a terminal device in the IoT system.
  • IoT is an important part of the future development of information technology. Its main technical feature is to connect objects to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and object interconnection. IoT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • the present application does not limit the specific form of the terminal device.
  • Access network equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WiFi) system Access point (access point, AP), wireless relay node (radio relay node, RRN), wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc.
  • evolved Node B evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • home base station for example, home evolved NodeB, or home Node B, H
  • 5G can also be 5G, such as, NR, gNB in the system, or, transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or, can also be A network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit, DU), etc.
  • 5G such as, NR, gNB in the system, or, transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or, can also be A network node constituting a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit, DU), etc.
  • BBU baseband unit
  • DU distributed unit
  • a gNB may include a CU and a distributed unit (DU).
  • DU distributed unit
  • Fig. 1 is a schematic diagram of a system applicable to the information indicating method provided by the embodiment of the present application.
  • the system 100 includes a core network device 110, access network (radio access network, RAN) devices 120a and 120b connected to the same core network (core network, CN) device 110, connected to the access network device The terminal 130a of 120a and the terminal 130b connected to the access network device 120b.
  • the core network device 110 and the access network device 120a or 120b may be connected through an NG interface, or may be connected through an N2 interface.
  • the access network devices 120a and 120b may be access network devices of different forms, or may be access network devices of the same form. This embodiment of the present application does not limit it.
  • the core network device 110 may be connected to other numbers of access network devices, and each access network device 120a and 120b may be connected to other numbers of terminal devices respectively.
  • the access network device 120b shown in FIG. 1 includes CUs and DUs, such as CU 121, DU 122a and 122b as shown in the figure.
  • the CU 121 and the DU 122a, and the CU 121 and the DU 122b can be connected through the standardized interface F1 respectively. It can be seen that one or more DUs can be connected to the same CU, but a DU is only connected to one CU. This application does not limit the number of DUs that can be connected to a CU.
  • the access network device 120b may also include an active antenna unit (active antenna unit, AAU).
  • active antenna unit active antenna unit, AAU
  • the CU can realize some functions of the access network equipment, and the DU can realize some functions of the access network equipment.
  • the CU is responsible for processing non-real-time protocols and services, realizing the radio resource control (radio resource control, RRC) layer, packet data Convergence layer protocol (packet data convergence protocol, PDCP) layer, service data adaptation protocol (service data adaptation protocol, SDAP) layer and other high-level functions.
  • DU is responsible for processing physical layer protocols and real-time services, and realizes underlying functions such as radio link control (radio link control, RLC) layer, medium access control (medium access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU can realize some physical layer processing functions, radio frequency processing and related functions of active antennas.
  • high-level signaling such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU and AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU is divided into network devices in the access network.
  • the CU can also be divided into network devices in the core network, which is not limited in this application.
  • Fig. 2 further shows an access network device deployed with CU and DU.
  • CUs can be divided into CU-CP and CU-UP based on different functions.
  • CU-CP and CU-UP can be connected through standardized interface E1.
  • One CU-CP can connect multiple CU-UPs.
  • the CU-CP includes an RRC entity and a PDCP entity, and the PDCP entity is a PDCP entity corresponding to a signaling radio bearer (SRB).
  • SRB signaling radio bearer
  • the CU-UP includes an SDAP entity and a PDCP entity, and the PDCP entity is a PDCP entity corresponding to a data radio bearer (DRB).
  • DRB data radio bearer
  • One CU-CP can be connected to one or more DUs, and the CU-CP can be connected to each DU through the F1-C interface.
  • a DU can also be connected to one or more CU-UPs, and each CU-UP can be connected to a DU through the F1-U interface. It should be understood that both the F1-C interface and the F1-U interface belong to the F1 interface.
  • the CU-UP separated from the CU in the access network device can establish an EHC context for the terminal.
  • CU-CP can configure EHC related parameters for UE, but CU-UP still cannot determine the number of EHC contexts that can be established for the terminal based on the parameters configured by CU-CP. Therefore, CU-UP cannot establish a reasonable context for the terminal. Number of EHC contexts.
  • this application provides an information indication method.
  • the CU-CP sends the first information to the CU-UP, so as to indicate that the CU-CP can be the UE, the first DRB of the UE, or the first DRB of the UE in the downlink direction through the first information.
  • the maximum number of EHC contexts established by a protocol data unit (protocol data unit, PDU) session wherein the first DRB is any DRB of the UE maintained by the UP, and the first PDU session is any PDU of the UE maintained by the UP session. Therefore, the CU-UP can establish a reasonable number of EHC contexts for the UE, or the first DRB, or the first PDU session in the downlink direction based on the first information.
  • protocol data unit protocol data unit
  • one UE can establish one or more PDU sessions, and one PDU session can establish one or more DRBs.
  • Any PDU session may have a requirement for establishing an EHC context, and any DRB may also have a requirement for establishing an EHC context.
  • a UE is taken as an example to describe the method provided by the embodiment of the present application. That is to say, one or more PDU sessions mentioned below are PDU sessions established by the same UE, and one or more DRBs mentioned below are DRBs of the same UE. However, it should be understood that for any UE, the method provided below may be implemented to establish an EHC context for the downlink direction of the UE.
  • CU can be divided into CU-CP and CU-UP.
  • One CU-CP can connect to multiple CU-UPs, and CU-UP can establish EHC context for UE.
  • multiple CU-UPs connected to the CU-CP can maintain the EHC context of the UE from different dimensions.
  • Each CU-UP may be responsible for maintaining one DRB of the UE, or the EHC context on multiple DRBs.
  • Each CU-UP can also be responsible for maintaining one PDU session of the UE, or the EHC context on multiple PDU sessions.
  • first and second in the embodiments of the present application is only for the convenience of distinguishing and describing different things belonging to the same name category, and does not restrict the order or quantity of things.
  • first information and second information are only information with different content or purposes, and there is no relationship between them in time or priority.
  • the first information may be one piece of information or multiple pieces of information, and the second information may also be May be one message or multiple messages.
  • Fig. 3 is a schematic flowchart of an information indication method provided by an embodiment of the present application.
  • the method 300 shown in FIG. 3 includes step 310 to step 350 .
  • Each step in the method 300 shown in FIG. 3 will be described in detail below. It should be noted that in specific implementation, some steps in FIG. 3 can be selected for implementation, and the order of the steps in the figure can also be adjusted for implementation, which is not limited in this application. It should be understood that performing some of the steps in the illustrations, adjusting the order of the steps, or combining them for specific implementation all fall within the protection scope of the present application.
  • step 310 the CP in the CU generates first information, the first information is used to indicate the maximum number of Ethernet header compression EHC contexts that the UP in the CU can establish for the first target in the downlink direction.
  • the first target includes: the UE, the first DRB of the UE or the first PDU session of the UE, the first DRB is any DRB of the UE maintained by the UP, and the first PDU session is the UE's session maintained by the UP Any PDU session.
  • the first information generated by the CP in the CU can be used to indicate that the UP in the CU can serve the UE in the downlink direction.
  • the UE establishes DRB1, DRB2, and DRB3, and the UPs connected to the CP include UP1, UP2, and UP3.
  • the business data served by DRB1, DRB2 and DRB3 can perform EHC, so UP can establish EHC context for these DRBs for Ethernet header compression, and UP1 maintains DRB1, UP2 maintains DRB2, and UP3 maintains DRB3.
  • the CP allocates for the UP the maximum number of EHC contexts that can be established for the UE in the downlink direction is 500. Then, the CP in the CU can generate the first information for each UP respectively, and three pieces of first information can be generated in total.
  • one piece of first information can be used to indicate the maximum number of EHC contexts that UP1 can establish for the DRB1 it maintains in the downlink direction, such as 100; another first piece of information can be used to indicate the DRB2 that UP2 can maintain in the downlink direction
  • the maximum number of established EHC contexts such as 250; the further first information may be used to indicate the maximum number of EHC contexts that UP3 can establish for the DRB3 it maintains in the downlink direction, such as 150.
  • the UE establishes DRB1, DRB2, DRB3, DRB4, DRB5, and DRB6, and the UPs connected to the CP include UP1, UP2, and UP3.
  • the service data of DRB1, DRB2, DRB3, DRB4, DRB5 and DRB6 can be EHC, therefore, UP can establish EHC context for these DRBs for Ethernet header compression, and UP1 maintains DRB1 and DRB2, and UP2 maintains DRB3 and DRB4 And DRB5, UP3 maintains DRB6.
  • the CP can allocate for the UP, the maximum number of EHC contexts that can be established for the UE in the downlink direction is 500.
  • the CP in the CU can generate one piece of first information for each UP, and can generate three pieces of first information in total.
  • one piece of first information can be used to indicate the maximum number of EHC contexts that UP1 can establish for DRB1 maintained by it in the downlink direction, such as 100, and the maximum number of EHC contexts established for DRB2 maintained by it, such as 150; another The first information may be used to indicate the maximum number of EHC contexts that UP2 can establish for DRB3 maintained by it in the downlink direction, such as 50, the maximum number of EHC contexts established for DRB4 it maintains, such as 60, and the maximum number of EHC contexts maintained by it.
  • the maximum number of EHC contexts established by DRB5, such as 60; the further first information may be used to indicate the maximum number of EHC contexts that UP3 can establish for DRB6 in the downlink direction, such as 80.
  • the first information generated by the CP in the CU can be used to indicate that the UP in the CU can establish a DRB for the UE in the downlink direction.
  • the maximum number of EHC contexts That is to say, the CP will indicate to the corresponding UP the total maximum number of EHC contexts that can be established in the downlink direction by at least one DRB maintained by the UP.
  • the UE establishes DRB1, DRB2, DRB3, DRB4, DRB5, and DRB6, and the UPs connected to the CP include UP1, UP2, and UP3.
  • the service data of DRB1, DRB2, DRB3, DRB4, DRB5 and DRB6 can perform EHC, so UP can establish EHC context for these DRBs for Ethernet header compression, and UP1 maintains DRB1 and DRB2, and UP2 maintains DRB3, DRB4 and DRB5, UP3 maintains DRB6.
  • the CP can allocate for the UP, the maximum number of EHC contexts that can be established for the UE in the downlink direction is 500.
  • the CP in the CU can generate one piece of first information for each UP, and three pieces of first information can be generated in total.
  • one piece of first information can be used to indicate the total maximum number of EHC contexts that UP1 can establish for DRB1 and DRB2 maintained by it in the downlink direction, such as 150;
  • another first information is used to indicate the maximum number of EHC contexts that UP3 can establish for its maintained DRB6 in the downlink direction, such as 100.
  • each UP can allocate the number of EHC contexts that can be established in the downlink direction to each DRB maintained by itself according to the maximum number indicated by the CP in the first information.
  • UP1 can flexibly allocate the number of EHC contexts that can be established in the downlink direction to DRB1 and DRB2 respectively.
  • the first information generated by the CP in the CU can be used to indicate that the UP in the CU can serve the UE in the downlink direction
  • the maximum number of EHC contexts established for the first PDU session is any PDU session of the UE maintained by the UP. That is to say, the CP will indicate to the corresponding UP the maximum number of EHC contexts that can be established in the downlink direction of the PDU session maintained by the UP.
  • the UE establishes PDU session 1, PDU session 2, and PDU session 3, and the UPs connected to the CP include UP1, UP2, and UP3.
  • the service data of PDU session 1, PDU session 2 and PDU session 3 can perform EHC, so UP can establish an EHC context for the DRB corresponding to these PDU sessions for Ethernet header compression, and UP1 maintains PDU session 1, and UP2 maintains PDU session 2, UP3 maintains PDU session 3.
  • the CP can allocate for the UP, the maximum number of EHC contexts that can be established for the UE in the downlink direction is 500. Then, the CP in the CU can generate one piece of first information for each UP, and three pieces of first information can be generated in total.
  • one first information is used to indicate the maximum number of EHC contexts that UP1 can establish for the PDU session 1 it maintains in the downlink direction, such as 100; the other first information is used to indicate that UP2 can be maintained by it in the downlink direction
  • the maximum number of EHC contexts established by the PDU session 2 such as 200; the further first information is used to indicate the maximum number of EHC contexts that UP3 can establish for the PDU session 3 it maintains in the downlink direction, such as 200.
  • each UP allocates the number of EHC contexts that can be established in the downlink direction to each DRB maintained by itself according to the maximum number indicated by the CP in the first information.
  • PDU session 1, PDU session 2, and PDU session 3 there are PDU session 1, PDU session 2, and PDU session 3 in the UE, and UPs connected to the CP include UP1 and UP2.
  • PDU session 1, PDU session 2 and PDU session 3 all need to establish EHC context
  • UP1 maintains PDU session 1 and PDU session 2
  • UP2 maintains PDU session 3.
  • the CP can allocate for the UP
  • the maximum number of EHC contexts that can be established for the UE in the downlink direction is 500.
  • the CP in the CU may generate one first message for each UUP, and there may be two first messages in total.
  • a first piece of information is used to indicate the maximum number of EHC contexts that UP1 can establish for the PDU session 1 it maintains in the downlink direction, such as 200, and the maximum number of EHC contexts that can be established for the PDU session 2 it maintains, Such as 150; another first information is used to indicate the maximum number of EHC contexts that UP2 can establish for the PDU session 3 it maintains in the downlink direction, such as 150.
  • each UP also allocates the number of EHC contexts that can be established in the downlink direction to each DRB corresponding to a PDU session maintained by the CP according to the maximum number indicated by the CP in the first information.
  • the maximum number of EHC contexts that the UP can establish for the first target in the downlink direction indicated by the above first information is allocated based on the capability of the UE.
  • the maximum number of EHC contexts that can be established for each DRB or each PDU session in the downlink direction based on the UP allocated for each DRB or each PDU session of the UE , to determine the maximum number of EHC contexts that the UP can establish for the UE in the downlink direction.
  • the maximum number of EHC contexts allocated by the CP to the UP that can be established for the UE in the downlink direction can meet the following conditions: the maximum number of EHC contexts allocated by the CP to the UE that can be established by the UE in the uplink direction is the same as the maximum number of EHC contexts allocated by the CP to the UE.
  • the sum of the maximum number of EHC contexts that the UP can establish for the UE in the row direction is not greater than the maximum number of EHC contexts supported by the UE, or less than or equal to the maximum number of EHC contexts supported by the UE.
  • the maximum number of UP that can be established for the first target in the downlink direction indicated by the above first information should also be limited within the maximum number of EHC contexts that can be established for the UE in the downlink direction allocated by the CP for the UP.
  • the CP may first allocate to the UE the maximum number of EHC contexts that the UE can establish in the uplink direction, and then allocate to the UP the maximum number of EHC contexts that the UP can establish for the UE in the downlink direction.
  • the CP allocates to the UE the maximum number of EHC contexts that the UE can establish in the uplink direction, the allocated maximum number is not greater than the maximum number of EHC contexts supported by the UE.
  • the CP reallocates for the UE the maximum number of EHC contexts that the UP can establish for the UE in the downlink direction, the maximum number allocated is not greater than the remaining number of EHC contexts supported by the UE allocated by the CP.
  • the CP may first allocate to the UE the maximum number of EHC contexts that the UP can establish for the UE in the downlink direction, and then allocate to the UE the maximum number of EHC contexts that can be established for the UE in the uplink direction. At this time, when the CP allocates to the UE the maximum number of EHC contexts that the UP can establish for the UE in the downlink direction, the allocated maximum number is not greater than the maximum number of EHC contexts supported by the UE. Afterwards, when the CU allocates to the UE the maximum number of EHC contexts that the UE can establish in the uplink direction, the maximum number allocated is not greater than the remaining number of EHC contexts supported by the UE after allocation by the CP.
  • the maximum number of EHC contexts supported by the UE is 500, and the CP can choose to allocate the maximum number of EHC contexts that the UE can establish in the uplink direction first, which can be any value within 500, such as 350.
  • the CP then allocates to the UE the maximum number of EHC contexts that the UP can establish for the UE in the downlink direction.
  • it may be not greater than the number of EHC contexts supported by the remaining UEs, such as less than or equal to 150.
  • the UE is first assigned the maximum number of EHC contexts that UP can establish for the UE in the downlink direction, and then the UE is assigned the maximum number of EHC contexts that can be established for the UE in the uplink direction. repeat.
  • the CP After the CP allocates the maximum number of EHC contexts that the UP can establish for the UE in the downlink direction for the UE, the CP continues to allocate the maximum number of EHC contexts for the first target maintained by each UP, just refer to the foregoing exemplary description.
  • the CP may determine the maximum number of EHC contexts that can be allocated to the UE and that the UP can establish for the UE in the downlink direction according to the capability of the UE.
  • the capability of the UE may specifically include the maximum number of EHC contexts that the UE can support.
  • the CP receives third information, where the third information is used to indicate the maximum number of EHC contexts supported by the UE.
  • the third information is capability information of the UE.
  • the capability information of the UE may indicate whether the UE supports establishment of EHC contexts, and may further indicate the maximum number of EHC contexts supported by the UE; or, the capability information of the UE may directly indicate the maximum number of EHC contexts supported by the UE.
  • the network device can obtain the UE's capability information from the UE. For example, the UE can actively or at the request of the network device report its own capability information to the CP. When the CP receives the UE's capability information, it can determine The maximum number of EHC contexts supported by the UE is allocated according to the maximum number of EHC contexts reported by the UE. In another implementation manner, the network device may obtain UE capability information from other network devices. For example, the CP may obtain UE capability information from a handover command sent by the UE's source base station during UE handover. The CP can determine the maximum number of EHC contexts supported by the UE according to the capability information of the UE, and then allocate accordingly according to the maximum number of EHC contexts.
  • step 320 the CP sends the first information to the UP.
  • the UP receives the first information from the CP.
  • IEs for carrying the first information are exemplarily given below in conjunction with technical specification (technical specification, TS) 38.463.
  • the first information is carried in the EHC parameter IE.
  • the first information is carried in the EHC parameter IE, for example, a new first IE or first parameter is introduced in the EHC parameter IE to indicate the first information.
  • a new first IE or first parameter is introduced in the EHC parameter IE to indicate the first information.
  • the first parameter is newly introduced in the EHC Downlink IE of the EHC Parameter IE to indicate the first information.
  • the first parameter can be called the largest context identifier (context identifier, CID) EHC- Downlink (downlink, DL) (maxCID-EHC-DL), where the value in the "maxCID-EHC-DL" field can be a positive integer, and the value range can be, for example, 1 to 32767, indicating that DRB can be used in the downlink direction
  • CID context identifier
  • maxCID-EHC-DL the value in the "maxCID-EHC-DL” field can be a positive integer
  • the value range can be, for example, 1 to 32767, indicating that DRB can be used in the downlink direction
  • the maximum number of EHC contexts to establish It should be noted that the name of the first parameter above is only an example, not a limitation.
  • the first information is carried in the EHC parameter IE, for example, a new first IE or first parameter is introduced in the EHC parameter IE to indicate the first information .
  • the first parameter is newly introduced in the EHC Commom IE of the EHC Parameter IE to indicate the first information.
  • the first parameter may be called the maximum number of UE downlink EHC context identifiers (UE DL Maximum EHC CID Number), wherein, the value in the "UE DL Maximum EHC CID Number" field can be a positive integer, and the value range can be, for example, 1 to 32767, indicating the maximum number of EHC contexts that can be established for the UE in the downlink direction.
  • UE DL Maximum EHC CID Number the maximum number of UE downlink EHC context identifiers
  • the value in the "UE DL Maximum EHC CID Number" field can be a positive integer
  • the value range can be, for example, 1 to 32767, indicating the maximum number of EHC contexts that can be
  • the first information is carried in the EHC parameter IE, for example, a new first IE or first parameter is introduced in the EHC parameter IE to indicate the first information.
  • the first parameter is newly introduced in the EHC Commom IE of the EHC parameter IE to indicate the first information
  • the first parameter may be called the maximum number of PDU session downlink EHC context identifiers (context identifier, CID) ( PDU session DL Maximum EHC CID Number), wherein, the value in the "PDU session DL Maximum EHC CID Number" field can be a positive integer, and the value range can be, for example, 1 to 32767, indicating that the PDU session can be established in the downlink direction Maximum number of EHC contexts.
  • CID context identifier
  • the value in the "PDU session DL Maximum EHC CID Number" field can be a positive integer
  • the value range can be, for example, 1 to 32767, indicating that the PDU session can be established in the downlink direction Maximum number of E
  • the first target is the first PDU session of the UE, and the first information is carried in the PDU session resource list IE to be established.
  • the first information may also be carried in the PDU session resource list to be established, for example, a new first IE or first parameter is introduced in the PDU session resource list IE, and used to indicate the first message.
  • a new first IE or first parameter is introduced in the PDU session resource list IE, and used to indicate the first message.
  • the first parameter is newly introduced in the PDU Session Resource To Setup Item information element of the PDU session resource list IE to indicate the first information.
  • the first parameter can be called the maximum number of PDU session downlink EHC context identifiers (PDU session DL Maximum EHC CID Number), where the value in the "PDU session DL Maximum EHC CID Number" field can be a positive integer greater than or equal to 0, and the value range can be, for example, 0 to 32767, which means that it can Maximum number of EHC contexts established for a PDU session.
  • PDU session DL Maximum EHC CID Number the maximum number of PDU session downlink EHC context identifiers
  • the first target is a UE
  • the first information is carried in the UE session resource list IE to be established.
  • the first information can also be carried in the UE session resource list IE to be established, for example, a new first IE or first parameter is introduced in the UE session resource list IE to indicate first information.
  • the first parameter is newly introduced in the UE session resource list IE to indicate the first information.
  • the first parameter may be called the maximum number of user equipment downlink EHC context identifiers (UE DL Maximum EHC CID Number),
  • the value in the "UE DL Maximum EHC CID Number" field can be a positive integer greater than or equal to 0, and the value range can be, for example, 0 to 32767, indicating the maximum number of EHC contexts that can be established for the UE in the downlink direction.
  • UE DL Maximum EHC CID Number The value in the "UE DL Maximum EHC CID Number" field can be a positive integer greater than or equal to 0, and the value range can be, for example, 0 to 32767, indicating the maximum number of EHC contexts that can be established for the UE in the down
  • the first information may be carried in a bearer context setup request (bearer context setup request) message, a bearer context modification request (bearer context modification requset) message, or a bearer context modification confirmation (bearer context context modification confirm) message.
  • a bearer context setup request (bearer context setup request) message
  • a bearer context modification request (bearer context modification requset) message
  • a bearer context modification confirmation (bearer context context modification confirm) message.
  • step 330 the UP establishes an EHC context for the first target in the downlink direction based on the first information.
  • the number of EHC contexts established by the UP for the first target in the downlink direction is not greater than the maximum number indicated by the first information.
  • the UP When the first information received by the UP is used to indicate the maximum number of EHC contexts that the UP in the CU can establish for the DRB of the UE in the downlink direction, the UP establishes a reasonable number of EHC contexts for the corresponding DRB according to the indicated maximum number EHC context.
  • UP1 maintains DRB1 of the UE
  • UP2 maintains DRB2 of the UE
  • UP3 maintains DRB3 of the UE. If the first information received by UP1 indicates that the maximum number of EHC contexts that UP1 can establish for the DRB1 it maintains in the downlink direction is 100, then UP1 can establish a reasonable number of EHC contexts for the DRB1 it maintains according to actual needs , the number of EHC contexts established by UP1 for DRB1 is not greater than 100, such as 80 or 95.
  • the first information received by UP2 indicates that the maximum number of EHC contexts that UP2 can establish for the DRB2 it maintains in the downlink direction is 250, then UP2 can establish a reasonable number of EHC contexts for the DRB2 it maintains according to actual needs, UP2
  • the number of EHC contexts established for DRB2 is not greater than 250, such as 250 or 200.
  • the first information received by UP3 indicates that the maximum number of EHC contexts that UP3 can establish for the DRB3 it maintains in the downlink direction is 150, then UP3 can establish a reasonable number of EHC contexts for the DRB3 it maintains according to actual needs , the number of EHC contexts established by UP3 for DRB3 is not greater than 150, such as 150 or 100.
  • UP1 maintains DRB1 and DRB2 of the UE
  • UP2 maintains DRB3, DRB4 and DRB5 of the UE
  • UP3 maintains DRB6 of the UE. If the first information received by UP1 is used to indicate that the maximum number of EHC contexts that UP1 can establish for DRB1 maintained by UP1 in the downlink direction is 100, and the maximum number of EHC contexts established for DRB2 maintained by UP1 is 150. Then, UP1 can establish a reasonable number of EHC contexts for the DRB1 and DRB2 it maintains according to actual needs.
  • the number of EHC contexts established by UP1 for DRB1 is not greater than 100, such as 100 or 80, and the number of EHC contexts established by UP1 for DRB2 is not greater than 150, such as 120 or 150. If the first information received by UP2 is used to indicate that the maximum number of EHC contexts that UP2 can establish for DRB3 it maintains in the downlink direction is 50, the maximum number of EHC contexts it can establish for DRB4 it maintains is 60 and for it The maximum number of DRB5 established EHC contexts maintained is 60. Then, UP2 can establish a reasonable number of EHC contexts for the DRB3, DRB4 and DRB5 it maintains according to actual needs.
  • the number of EHC contexts established by UP2 for DRB3 is not greater than 50, such as 50, or 45
  • the number of EHC contexts established by UP for DRB4 is not greater than 60, such as 55, or 60
  • the number of EHC contexts established by UP for DRB5 Not more than 60, such as 30, or 60. If the first information received by UP3 is used to indicate that the maximum number of EHC contexts that UP3 can establish for DRB6 in the downlink direction is 80. Then, UP3 can establish a reasonable number of EHC contexts for the DRB6 it maintains according to actual needs, and the number of EHC contexts established by UP3 for DRB6 is not more than 80, such as 79.
  • the UP allocates a reasonable number of DRBs it maintains according to the indicated maximum number. EHC context.
  • UP1 maintains DRB1 and DRB2 of the UE
  • UP2 maintains DRB3, DRB4 and DRB5 of the UE
  • UP3 maintains DRB6 of the UE.
  • UP1 can set up EHC contexts for DRB1 and DRB2 respectively according to actual needs. Allocate the maximum number of EHC contexts that can be established. When allocating the maximum number of EHC contexts that can be established for DRB1 and DRB2 according to actual needs, it only needs to meet the sum of the maximum number of EHC contexts that can be allocated by UP1 for DRB1 and DRB2 respectively. It only needs to be no greater than the maximum quantity indicated by the first information.
  • the maximum number of EHC contexts that can be allocated to DRB1 is 50, and the maximum number of EHC contexts that can be allocated to DRB2 is 100.
  • UP1 actually establishes the number of EHC contexts for DRB1 and DRB2, it can also establish a reasonable number of EHC contexts for DRB1 and DRB2 according to actual needs.
  • the number of EHC contexts is not greater than 100.
  • UP1 can set up EHC contexts for DRB3, DRB4 and DRB5 according to actual needs. Assign the maximum number of EHC contexts that can be established. When assigning the maximum number of EHC contexts that can be established for DRB3, DRB4, and DRB5 according to actual needs, it only needs to satisfy the EHC contexts that UP1 allocates for DRB3D, DRB4, and DRB5. It is sufficient that the sum of the maximum numbers of is not greater than the maximum number indicated by the first information.
  • the maximum number of EHC contexts that can be established can be allocated to DRB3, such as 50
  • the maximum number of EHC contexts that can be established can be allocated to DRB4, such as 120
  • the maximum number of EHC contexts that can be established can be allocated to DRB5, such as 80.
  • UP1 actually establishes the number of EHC contexts for DRB3, DRB4, and DRB5
  • the number of EHC contexts established by UP2 for DRB3 is not greater than 50.
  • the number of EHC contexts established for DRB4 is not greater than 120
  • the number of EHC contexts established for DRB5 is not greater than 80.
  • the first information received by UP3 is used to indicate that the maximum number of EHC contexts that UP3 can establish for the DRB6 it maintains in the downlink direction is 100, then UP3 can establish a reasonable number of EHC contexts for the DRB6 it maintains according to actual needs , the number of EHC contexts established by UP3 for DRB6 is not greater than 100, such as 95.
  • the UP When the first information received by the UP is used to indicate the maximum number of EHC contexts that the UP in the CU can establish for the PDU session of the UE in the downlink direction, the UP maintains the PDU according to the indicated maximum number The DRB in the session allocates a reasonable number of EHC contexts.
  • UP1 maintains PDU session 1 of the UE
  • UP2 maintains PDU session 2 of the UE
  • UP3 maintains PDU session 3 of the UE.
  • PDU session 1 is associated with DRB1 and DRB2
  • PDU session 2 is associated with DRB3, DRB4 and DRB5
  • PDU session 3 is associated with DRB6.
  • UP1 can allocate EHC contexts that can be established for DRB1 and DRB2 according to actual needs
  • the maximum number of EHC contexts allocated by UP1 to DRB1 and DRB2 must not exceed the maximum number indicated by the first information. For example, UP1 can allocate the maximum number of establishable EHC contexts to DRB1 as 45, and allocate the maximum number of establishable EHC contexts to DRB2 as 55.
  • UP1 actually establishes the number of EHC contexts for DRB1 and DRB2, it can also establish a reasonable number of EHC contexts for DRB1 and DRB2 according to actual needs.
  • the number of EHC contexts is not greater than 55.
  • the first information received by UP2 is used to indicate that the maximum number of EHC contexts that UP2 can establish for the PDU session 2 it maintains in the downlink direction is 200, then UP2 can allocate establishable EHC contexts for DRB3, DRB4, and DRB5 according to actual needs.
  • the maximum number of EHC contexts only needs to satisfy that the sum of the maximum number of EHC contexts that can be established respectively allocated by UP1 to DRB3, DRB4 and DRB5 is not greater than the maximum number indicated by the first information.
  • UP2 can allocate the maximum number of establishable EHC contexts to DRB3 as 100, allocate the maximum number of establishable EHC contexts to DRB4 as 60, and allocate the maximum number of establishable EHC contexts to DRB5 as 40.
  • UP1 actually establishes the number of EHC contexts for DRB3, DRB4, and DRB5
  • it can also establish a reasonable number of EHC contexts for DRB3, DRB4, and DRB5 according to actual needs, which will not be repeated here.
  • the first information received by UP3 is used to indicate that the maximum number of EHC contexts that UP3 can establish for the PDU session 3 it maintains in the downlink direction is 200, then UP3 can establish a reasonable number of multiple EHC contexts for DRB6 according to actual needs , the number of EHC contexts established by UP3 for DRB6 is not greater than 200, such as 200, 150.
  • UP1 maintains PDU session 1 and PDU session 2 of the UE
  • UP2 maintains PDU session 3 of the UE.
  • DRB1 and DRB2 in PDU session 1, DRB3, DRB4 and DRB5 in PDU session 2, and DRB6 in PDU session 3.
  • UP1 can allocate the number of EHC contexts that can be established to DRB1 and DRB2 in PDU session 1, and allocate the number of EHC contexts that can be established to DRB3, DRB4, and DRB5 in PDU session 2 according to actual needs.
  • UP1 allocates the number of establishable EHC contexts for DRB1 and DRB2 in PDU session 1, it only needs to satisfy that the sum of the maximum number of establishable EHC contexts allocated by UP1 to DRB1 and DRB2 respectively is not greater than the PDU indicated by the first information
  • the maximum number of EHC contexts that session 1 can establish is sufficient.
  • the maximum number of EHC contexts that can be allocated for DRB1 is 50
  • the maximum number of EHC contexts that can be established for DRB2 is 100.
  • UP1 allocates the number of establishable EHC contexts for DRB3, DRB4 and DRB5 in PDU session 2 in PDU session 2, it only needs to satisfy that the sum of the maximum number of establishable EHC contexts allocated by UP1 to DRB3, DRB4 and DRB5 respectively is not greater than the first
  • the maximum number of EHC contexts that can be established by the PDU session 2 indicated by the information is sufficient.
  • the maximum number of EHC contexts that can be established is allocated to DRB3 is 50
  • the maximum number of EHC contexts that can be established is allocated to DRB4 is 100
  • the maximum number of EHC contexts that can be established is allocated to DRB5 is 50.
  • UP1 establishes a reasonable number of EHC contexts for DRB1 and DRB2 according to actual needs.
  • the number of EHC contexts established for DRB1 is not more than 50, and the number of EHC contexts established for DRB2 is not greater than 100.
  • Establish a reasonable number of EHC contexts with DRB5 the number of EHC contexts established for DRB3 is not greater than 50, the number of EHC contexts established for DRB4 is not greater than 100, and the number of EHC contexts established for DRB5 is not greater than 50.
  • UP2 can establish a reasonable number of EHC contexts for DRB6 according to actual needs, as The number of EHC contexts established by DRB6 is not greater than 150, such as 100.
  • step 340 the UP sends second information to the CP, where the second information is used to request modification of the maximum number of EHC contexts that can be established for the first target in the downlink direction.
  • the CP receives the second information from the UP.
  • the second information indicates the expected value of the maximum quantity that is requested to be modified, or the second information is used to request to modify the maximum quantity to a larger value, or to modify the maximum quantity to a smaller value.
  • the UP may send second information to the CP to request the CP to provide The UP reallocates the maximum number of EHC contexts that can be established for the first target in the downlink direction.
  • the first information received by UP2 is used to indicate that the maximum number of EHC contexts that the UP2 can establish for the first DRB of the UE in the downlink direction is 250, and the UP2 maintains the establishment of the EHC context of the DRB2 on the UE. If the maximum number of EHC contexts indicated by the first message is 250 and does not meet the requirements of UP2, at this time, UP2 can send the second message to the CP to directly request to modify one of the maximum number of EHC contexts that can be established for DRB2. Expected value, such as 260, or, to request to modify the maximum number to a larger value, or, to request to modify the maximum number to a smaller value.
  • the first information received by UP2 is used to indicate that the maximum number of EHC contexts that the UP2 can establish for the UE in the downlink direction is 250, and the UP2 maintains the establishment of the EHC contexts of the UE's DRB3, DRB4, and DRB5. If the maximum number of EHC contexts indicated by the first information is 250 and does not meet the requirements of UP2, at this time, UP2 can send the second information to the CP to directly request to modify the total number of EHC contexts that can be established for DRB3, DRB4, and DRB5. Some desired value for the maximum number of , such as 255, or, to request a modification of the maximum number to a larger value, or, to request a modification of the maximum number to a smaller value.
  • the first information received by UP2 is used to indicate that the maximum number of EHC contexts that UP2 can establish for the UE's first PDU session in the downlink direction is 250, and the UP2 maintains the EHC context of the UE's PDU session 2 of establishment. If the maximum number of EHC contexts indicated by the first information is 250 and does not meet the requirements of UP2, at this time, UP2 can send the second information to the CP to directly request to modify the total maximum number of EHC contexts that can be established for PDU session 2. Some desired value for the quantity, such as 275, or, to request a modification of the maximum quantity to a larger value, or, to request a modification of the maximum quantity to a smaller value.
  • the UP may choose to send the second information in a bearer context modification required (bearer context modification required) message.
  • step 350 the CP modifies the first information according to the second information to obtain the modified first information.
  • the CP may not directly redistribute according to the request, but first perform the following operations: If the second information received by the CP is used to indicate that the maximum number is changed to a smaller value, then the CP It is sufficient to directly modify the first information correspondingly, obtain the modified first information, and send the modified first information to the corresponding UP.
  • the CP will first determine whether the value of the modified maximum number is The sum of the maximum number of EHC contexts that can be established by the UE in the uplink direction allocated by the CP for the UE and the maximum number of EHC contexts that can be established by the UP for the UE in the downlink direction allocated by the CP to the UP is greater than the EHC context supported by the UE the maximum number of . If it is greater than the maximum number of EHC contexts supported by the UE, the CP will correspondingly adjust the maximum number of EHC contexts allocated to other UPs that can be established for the first target in the downlink direction.
  • UPs connected to the CP include UP1, UP2 and UP3.
  • UP1 maintains the establishment of the EHC context on DRB1
  • UP2 maintains the establishment of the EHC context on DRB2
  • UP3 maintains the establishment of the EHC context on DRB3.
  • the maximum number of EHC contexts supported by the UE is 600.
  • the maximum number of EHC contexts that the CP allocates to the UE that can be established by the UE in the uplink direction is 200.
  • the CP allocates the EHC contexts that the UP can establish for the UE in the downlink direction.
  • the maximum number of EHC contexts that can be established for DRB1 in the downlink direction allocated by the CP to UP1 is 100, and the maximum number of EHC contexts that can be established for DRB2 in the downlink direction allocated to UP2 by the CP is 150, which is The maximum number of EHC contexts allocated by UP2 that can be established for DRB2 in the downlink direction is 150. If UP2 receives the first information, it finds that the maximum number of EHC contexts that can be established for DRB2 indicated by the first information is 150 and does not meet its own needs, then UP2 sends the second information to the CP to request to modify the maximum number for 200.
  • the CP After receiving the second information, the CP determines that if the number of EHC contexts that can be established for UP2 is 200, the maximum number of EHC contexts that can be established for the UE in the downlink direction allocated by the CP to UP will reach 450, so , will result in exceeding the maximum number of EHC contexts supported by the UE. At this time, after the CP can modify the maximum number of EHC contexts that can be established in the downlink direction allocated to UP2 to 200, it will also re-allocate the maximum number of EHC contexts for UP1 and UP3.
  • the maximum number of EHC contexts that can be established in the upward direction is modified to 80, and the maximum number of EHC contexts that can be established in the downstream direction allocated by UP3 is modified to 120, so as to resend the modified first information to UP1, UP2, and UP3 to re- Indicates the maximum number of EHC contexts each UP can establish for the first target in the downlink direction.
  • the UP can directly establish the EHC context for the first target in the downlink direction according to the first information sent by the CP.
  • the first target is the UE or the first PDU session of the UE, the above execution process is also satisfied, and details are not repeated here.
  • the CP indicates to the UP the maximum number of EHC contexts that the UP can establish for the UE, the UE's DRB, or the UE's PDU session in the downlink direction through the first information, so that the UP can establish the maximum number of EHC contexts for the UE in the downlink direction based on the maximum number.
  • DRB of UE or PDU session of UE establishes a reasonable number of EHC contexts, which solves the problem that a reasonable number of EHC contexts cannot be established for the UE because the UP does not know the capabilities of the UE in the access network device of the split architecture.
  • Fig. 4 is another schematic flowchart of the information indication method provided by the embodiment of the present application.
  • the method 400 shown in FIG. 4 includes step 410 to step 430 . Each step in the method 400 shown in FIG. 4 will be described in detail below.
  • step 410 the UP sends third information to the UE, where the third information is used to instruct the UE to establish an EHC context in the downlink direction.
  • the UP can directly instruct the UE to establish an EHC context in the downlink direction.
  • step 420 when the total number of currently maintained EHC contexts is less than the maximum number of EHC contexts supported by the UE, the UE establishes an EHC context in the downlink direction according to the third information.
  • the maximum number of EHC contexts supported by the UE is 500.
  • the UE judges that the total number of currently maintained EHC contexts is 498, and then the UE establishes another EHC context in the downlink direction.
  • the UE may also send first feedback information to the UP, where the first feedback information is used to indicate that the UE has established the EHC context in the downlink direction.
  • step 430 when the total number of currently maintained EHC contexts is greater than or equal to the maximum number of EHC contexts supported by the UE, the UE does not perform the operation of establishing the EHC context in the downlink direction.
  • the maximum number of EHC contexts supported by the UE is 500.
  • the UE judges that the total number of currently maintained EHC contexts is 500, which has reached the upper limit of the UE's capability. The operation to establish the EHC context upwards.
  • the UE may not send feedback information to the UP, or the UE may send second feedback information to the UP, where the second feedback information is used to indicate the The total number of EHC contexts currently maintained by the UE has reached the upper limit of its capability.
  • the UP can continue to send the third information to the UE at a preset time interval. If no feedback information from the UE is received within the preset time period, the UP considers that the EHC context currently maintained by the UE is The total number has reached the upper limit of the capability of the UE, and the third information is no longer sent to the UE. It should be understood that those skilled in the art may set specific values of the preset time period and the preset time interval according to actual needs, which are not limited in the present application.
  • the UP can learn based on the second feedback information that the EHC context currently maintained by the UE has always reached the upper limit of the UE's capability, and then no longer sends the third information to the UE.
  • the UE when the total number of EHC contexts currently maintained by the UE is greater than or equal to the maximum number of EHC contexts supported by the UE, even if the number of EHC contexts established by the UE for DRB in the uplink direction has not yet reached the number allocated by the CP for the UE The maximum number of EHC contexts that can be established in the uplink direction, and the UE will no longer establish new EHC contexts, and can update and overwrite the established EHC contexts in the uplink direction.
  • the UE may select one of steps 420 and 430 to execute according to the relationship between the total number of currently maintained EHC contexts and the maximum number of contexts supported by the UE, but not necessarily all of them.
  • the UP sends the third information to the UE.
  • the third information is used to indicate that the UE should establish an EHC context in the downlink direction.
  • the UE judges the total number of EHC contexts currently maintained by the UE and the maximum number of EHC contexts supported by the UE. To determine whether the EHC context can be established in the downlink direction, it can prevent the total number of EHC contexts maintained by the UE from exceeding the UE's capability limit, and avoid introducing new parameters between the CU and the UP.
  • Fig. 5 is a schematic block diagram of an information indication device provided by an embodiment of the present application.
  • the information indication apparatus 500 may include: a receiving unit 510 and a processing unit 520 .
  • Each unit in the apparatus 500 may be used to implement a corresponding process executed by the CU-UP in the method 300 shown in FIG. 3 .
  • the receiving unit 510 can be used to perform step 320 in the method 300
  • the processing unit 520 can be used to perform steps 330 and 340 in the method 300 .
  • the receiving unit 510 may be configured to receive first information from the control plane CP, where the first information is used to indicate the maximum number of Ethernet header compression EHC contexts that can be established for the first target in the downlink direction, and the first target Including: a user equipment UE, a first data radio bearer DRB of the UE or a first protocol data unit PDU session of the UE, the first DRB is a DRB maintained by the UP, and the first PDU session is a PDU session maintained by the UP.
  • the processing unit 520 may be configured to establish an EHC context for the first target in the downlink direction based on the first information.
  • the number of EHC contexts established by the UP for the first target in the downlink direction is not greater than the maximum number indicated by the first information.
  • the first information is carried in the EHC parameter IE.
  • the first target is the first PDU session of the UE, and the first information is carried in the PDU session resource list IE to be established.
  • the first information is carried in a bearer context establishment request message, a bearer context modification request message, or a bearer context modification confirmation message.
  • the processing unit 520 is further configured to send second information to the CP, where the second information is used to request modification of the maximum number of EHC contexts that can be established for the first target in the downlink direction.
  • the second information indicates an expected value of the maximum quantity that is requested to be modified, or the second information is used to request to modify the maximum quantity to a larger value, or to modify the maximum quantity to a smaller value.
  • the second information is carried in a bearer context modification requirement message.
  • each functional unit in each embodiment of the present application may be integrated into one processor, or physically exist separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • Fig. 6 is a schematic block diagram of an information indication device provided by an embodiment of the present application.
  • the information indicating apparatus 600 may include: a generating unit 610 and a sending unit 620 .
  • Each unit in the apparatus 600 may be used to implement a corresponding process executed by the CU-CP in the method 300 shown in FIG. 3 .
  • the generating unit 610 may be used to execute step 310 , step 340 and step 350 in the method 300
  • the sending unit 620 may be used to execute step 320 in the method 300 .
  • the generating unit 610 may be configured to generate first information, where the first information is used to indicate the maximum number of Ethernet header compression EHC contexts that can be established for a first target in the downlink direction, where the first target includes: a user equipment UE .
  • a first data radio bearer DRB of the UE or a first protocol data unit PDU session of the UE the first DRB is a DRB maintained by the UP
  • the first PDU session is a PDU session maintained by the UP.
  • the sending unit 620 may be configured to send the first information to the UP.
  • the sum of the maximum number of EHC contexts that can be established by the UE in the uplink direction allocated to the UE by the generating unit 610 and the maximum number of EHC contexts that can be established by the CP in the downlink direction allocated to the UE by the UP is not greater than the The maximum number of EHC contexts supported by the UE.
  • the first information is carried in the EHC parameter IE.
  • the first target is the first PDU session of the UE, and the first information is carried in the PDU session resource list IE to be established.
  • the first information is carried in a bearer context establishment request message, a bearer context modification request message, or a bearer context modification confirmation message.
  • the generating unit 610 is further configured to receive second information from the UP, where the second information is used to request modification of the maximum number of EHC contexts that can be established for the first target in the downlink direction; according to the second information, modify the a message.
  • the second information indicates an expected value of the maximum quantity that is requested to be modified, or the second information is used to request to modify the maximum quantity to a larger value, or to modify the maximum quantity to a smaller value.
  • the second information is carried in a bearer context modification requirement message.
  • the generating unit 610 is further configured to receive third information, where the third information is used to indicate the maximum number of EHC contexts supported by the UE.
  • each functional unit in each embodiment of the present application may be integrated into one processor, or physically exist separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • Fig. 7 is another schematic block diagram of an information indication device provided by an embodiment of the present application.
  • the information indicating device 700 can be used to realize the function of CU-UP in the above method.
  • the information indicating device 700 may be a system on a chip.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 700 may include at least one processor 710, configured to implement the function of CU-UP in the method provided by the embodiment of the present application.
  • the processor 710 can be used to receive first information from the CP, where the first information is used to indicate that the downlink can be
  • the maximum number of Ethernet header compression EHC contexts established by the first target includes: user equipment UE, the first data radio bearer DRB of the UE or the first protocol data unit PDU session of the UE, the first DRB is maintained by the UP A DRB of , the first PDU session is a PDU session maintained by the UP; based on the first information, an EHC context is established for the first target in the downlink direction.
  • the first target includes: user equipment UE, the first data radio bearer DRB of the UE or the first protocol data unit PDU session of the UE, the first DRB is maintained by the UP A DRB of , the first PDU session is a PDU session maintained by the UP; based on the first information, an EHC context is established for the first target in the downlink direction.
  • the apparatus 700 may also include at least one memory 720 for storing program instructions and/or data.
  • the memory 720 is coupled to the processor 710 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 710 may cooperate with memory 720 .
  • Processor 710 may execute program instructions stored in memory 720 . At least one of the at least one memory may be included in the processor.
  • the apparatus 700 may also include a communication interface 730 for communicating with other devices through a transmission medium, so that the apparatus 700 can communicate with other devices.
  • the other device may be a CU-CP;
  • the communication interface 730 may be, for example, a transceiver, an interface, a bus, a circuit Or a device capable of transmitting and receiving functions.
  • the processor 710 can use the communication interface 730 to send and receive data and/or information, and be used to implement the method executed by the CU-UP in the embodiment corresponding to FIG. 3 .
  • a specific connection medium among the processor 710, the memory 720, and the communication interface 730 is not limited.
  • the processor 710 , the memory 720 and the communication interface 730 are connected through a bus.
  • the bus is represented by a thick line in FIG. 7 , and the connection manners between other components are only for schematic illustration and are not limited thereto.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 7 , but it does not mean that there is only one bus or one type of bus.
  • Fig. 8 is another schematic block diagram of an information indication device provided by an embodiment of the present application.
  • the information indication apparatus 800 can be used to realize the function of the CU-CP in the above method.
  • the information using device 800 may be a system on a chip.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 800 may include at least one processor 810 configured to implement the function of the CU-CP in the method provided by the embodiment of the present application.
  • the processor 810 can be used to generate first information, and the first information is used to indicate that the downlink can be the first
  • the maximum number of Ethernet header compression EHC contexts established by the target the first target includes: the user equipment UE, the first data radio bearer DRB of the UE or the first protocol data unit PDU session of the UE, and the first DRB is one maintained by the UP
  • the apparatus 800 may also include at least one memory 820 for storing program instructions and/or data.
  • the memory 820 is coupled to the processor 810 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 810 may cooperate with memory 820 .
  • Processor 810 may execute program instructions stored in memory 820. At least one of the at least one memory may be included in the processor.
  • the apparatus 800 may also include a communication interface 830 for communicating with other devices through a transmission medium, so that the apparatus 800 can communicate with other devices.
  • the other device may be a CU-UP;
  • the communication interface 830 may be, for example, a transceiver, an interface, a bus, a circuit Or a device capable of transmitting and receiving functions.
  • the processor 810 can use the communication interface 830 to send and receive data and/or information, and be used to implement the method executed by the CU-CP in the embodiment corresponding to FIG. 3 .
  • the specific connection medium among the processor 810, the memory 820, and the communication interface 830 is not limited in the embodiment of the present application.
  • the processor 810 , the memory 820 and the communication interface 830 are connected through a bus.
  • the bus is represented by a thick line in FIG. 8 , and the connection manners between other components are only for schematic illustration and are not limited thereto.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 8 , but it does not mean that there is only one bus or one type of bus.
  • the processor in this embodiment of the present application may be an integrated circuit chip that has a signal processing capability.
  • each step of the above-mentioned method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other possible Programming logic devices, discrete gate or transistor logic devices, and discrete hardware components can implement or execute the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides an information indication system, which includes the aforementioned CU-UP and CU-CP.
  • the present application also provides a computer program product, the computer program product includes: a computer program (also called code, or instruction), when the computer program is executed, the computer executes the CU-CP in the embodiment shown in Figure 3
  • a computer program also called code, or instruction
  • the computer executes the CU-CP in the embodiment shown in Figure 3
  • the executed method or the method executed by the CU-UP, or the computer executes the method executed by the UE or the method executed by the CU-UP in the embodiment shown in FIG. 4 .
  • the present application also provides a computer-readable storage medium, where a computer program (also called code, or instruction) is stored in the computer-readable storage medium.
  • a computer program also called code, or instruction
  • the computer executes the method executed by the CU-CP or the method executed by the CU-UP in the embodiment shown in FIG. 3 , or the computer executes the method executed by the UE or the CU in the embodiment shown in FIG. 4 -UP method to execute.
  • unit may be used to denote a computer-related entity, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the unit described as a separate component may or may not be physically separated, and the component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • each functional unit may be fully or partially implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer instructions (programs). When the computer program instructions (program) are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transferred from a website, computer, server, or data center by wire (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium, (for example, a floppy disk, a hard disk, a tape), an optical medium (for example, a digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (SSD)) wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a tape
  • an optical medium for example, a digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (SSD)
  • this function is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了信息指示方法和装置。该方法包括:CP通过第一信息向UP指示UP在下行方向上能够为UE、UE的DRB或UE的PDU会话建立的EHC上下文的最大数量,从而使得UP能够基于该最大数量,在下行方向上为UE、UE的DRB或UE的PDU会话建立合理数量的EHC上下文,解决了分离式架构的接入网设备中因UP不了解UE的能力而无法为UE建立合理数量的EHC上下文的问题。

Description

信息指示方法和装置
本申请要求于2021年07月28日提交中国专利局、申请号为202110854277.0、申请名称为“信息指示方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及信息指示方法和装置。
背景技术
随着通信技术的发展,接入网设备可为终端建立以太头压缩(ethernet header compression,EHC)上下文。
目前,采用分离式架构的接入网设备中的集中式单元(centralized unit,CU)可以分离为CU-控制面(control plane,CP)和CU-用户面(user plane,UP)。其中,CU-UP可用于为终端建立EHC上下文。但是,CU-UP并不了解用户设备(user equipment,UE)的能力,因此,如何为UE建立合理数量的EHC上下文,成为一项亟待解决的技术问题。
发明内容
本申请实施例提供了信息指示方法和装置,以期为终端建立合理数量的EHC上下文。
第一方面,本申请提供了信息指示方法,该方法可以由UP执行,或者,也可以由配置在UP中的部件(如芯片、芯片系统等)执行,或者,还可以由能够实现全部或部分UP功能的逻辑模块或软件实现,本申请对此不作限定。下文中仅为方便理解和说明,以UP与CP之间的交互为例来描述本申请提供的方法。
示例性地,该方法包括:集中式单元CU中的用户面UP从控制面CP接收第一信息,所述第一信息用于指示在下行方向上能够为第一目标建立的以太头压缩EHC上下文的最大数量,所述第一目标包括:用户设备UE、所述UE的第一数据无线承载(data radio bearer,DRB)或所述UE的第一协议数据单元(protocol data unit,PDU)会话,所述第一DRB为所述UP维护的一个DRB,所述第一PDU会话为所述UP维护的PDU会话;所述UP基于所述第一信息,在所述下行方向上为所述第一目标建立EHC上下文。
基于上述技术内容,CP通过该第一信息向UP指示UP在下行方向上能够为UE、UE的DRB或UE的PDU会话建立的EHC上下文的最大数量,从而使得UP能够基于该最大数量,在下行方向上为UE、UE的DRB或UE的PDU会话建立合理数量的EHC上下文,解决了分离式架构的接入网设备中因UP不了解UE的能力而无法为UE建立合理数量的EHC上下文的问题。
结合第一方面,在第一方面的某些可能的实现方式中,该UP在下行方向上为所 述第一目标建立的EHC上下文的数量不大于所述第一信息指示的所述最大数量。
通过限制UP在下行方向上为第一目标建立的EHC上下文的数量不能大于第一信息所指示的最大数量,避免了UP在下行方向上建立过多的EHC上下文而导致超过UE的能力。
结合第一方面,在第一方面的某些可能的实现方式中,该第一信息承载于EHC参数信息元素(information element,IE)(可简称信元)中。
结合第一方面,在第一方面的某些可能的实现方式中,该第一目标为所述UE的第一PDU会话,所述第一信息承载于要建立的PDU会话资源列表IE中。
结合第一方面,在第一方面的某些可能的实现方式中,该第一信息携带在承载上下文建立请求消息、承载上下文修改请求消息、或承载上下文修改确认消息中。
第一信息可无需单独发送,直接携带在承载上下文建立请求消息、承载上下文修改请求消息、或承载上下文修改确认消息中发送,减少了对网络资源的占用。
结合第一方面,在第一方面的某些可能的实现方式中,所述方法还包括:所述UP向所述CP发送第二信息,所述第二信息用于请求修改所述下行方向上能够为所述第一目标建立的EHC上下文的最大数量。
通过UP向CP请求重新为自己分配在下行方向上能够为第一目标建立的EHC上下文的最大数量,使得CP为该UP重新分配的为第一目标建立的EHC上下文的最大数量更符合该UP的实际业务需求。
进一步地,该第二信息指示请求修改的所述最大数量的期望值,或者,所述第二信息用于请求将所述最大数量修改为更大值,或,将所述最大数量修改为更小值。
进一步地,该第二信息可携带在承载上下文修改需求消息中。
第二信息可无需单独发送,直接携带在承载上下文修改需求消息中发送,减少了对网络资源的占用。
第二方面,本申请提供了信息指示方法,该方法可以由CP执行,或者,也可以由配置在CP中的部件(如芯片、芯片系统等)执行,或者,还可以由能够实现全部或部分CP功能的逻辑模块或软件实现,本申请对此不作限定。下文中仅为方便理解和说明,以UP与CP之间的交互为例来描述本申请提供的方法。
示例性地,该方法包括:集中式单元CU中的控制面CP生成第一信息,所述第一信息用于指示在下行方向上能够为第一目标建立的以太头压缩EHC上下文的最大数量,所述第一目标包括:UE、所述UE的第一DRB或所述UE的第一PDU会话,所述第一DRB为UP维护的一个DRB,所述第一PDU会话为UP维护的PDU会话;所述CP向所述UP发送所述第一信息。
基于上述技术内容,CP通过第一信息向UP指示UP在下行方向上能够为UE、UE的DRB或UE的PDU会话建立的EHC上下文的最大数量,从而使得UP能够基于该最大数量,在下行方向上为UE、UE的DRB或UE的PDU会话建立合理数量的EHC上下文,解决了分离式架构的接入网设备中因UP不了解UE的能力而无法为UE建立合理数量的EHC上下文的问题。
结合第二方面,在第二方面的某些可能的实现方式中,所述CP为所述UE分配的在上行方向上所述UE能够建立的EHC上下文的最大数量与所述CP为所述UP分配 的在下行方向上所述UP能够为所述UE建立的EHC上下文的最大数量之和,不大于所述UE支持的EHC上下文的最大数量。
通过限制CP为UE分配在上行方向上UE能够建立的EHC上下文的最大数量和CP为UP分配的在下行方向为UP能够为UE建立的EHC上下文的最大数量之和,与UE支持的EHC上下文的最大数量之间的大小关系,避免了CP分配过多的EHC上下文数量而导致超出UE的能力。
结合第二方面,在第二方面的某些可能的实现方式中,该第一信息承载于EHC参数IE中。
结合第二方面,在第二方面的某些可能的实现方式中,该第一目标为所述UE的第一PDU会话,所述第一信息承载于要建立的PDU会话资源列表IE中。
结合第二方面,在第二方面的某些可能的实现方式中,该第一信息携带在承载上下文建立请求消息、承载上下文修改请求消息、或承载上下文修改确认消息中。
第一信息可无需单独发送,直接携带在承载上下文建立请求消息、承载上下文修改请求消息、或承载上下文修改确认消息中发送,减少了对网络资源的占用。
结合第二方面,在第二方面的某些可能的实现方式中,所述方法还包括:
所述CP从所述UP接收第二信息,所述第二信息用于请求修改所述下行方向上能够为所述第一目标建立的EHC上下文的最大数量;所述CP根据所述第二信息,修改所述第一信息。
通过CP接收UP的第二信息,并根据第二信息修改第一信息,使得修改后的第一信息所指示的该UP在下行方向上能够为第一目标建立的EHC上下文的最大数量更符合该UP的实际业务需求。
进一步地,该第二信息指示请求修改的所述最大数量的期望值,或者,所述第二信息用于请求将所述最大数量修改为更大值,或,将所述最大数量修改为更小值。
进一步地,该第二信息携带在承载上下文修改需求消息中。
第二信息可无需单独发送,直接携带在承载上下文修改需求消息中发送,减少了对网络资源的占用。
结合第二方面,在第二方面的某些可能的实现方式中,所述方法还包括:所述CP接收第三信息,所述第三信息用于指示所述UE支持的EHC上下文的最大数量。
第三方面,本申请提供了信息指示装置,包括用于实现第一方面以及第一方面任一种可能实现方式中的方法的模块或单元。应理解,各个模块或单元可通过执行计算机程序来实现相应的功能。
第四方面,本申请提供了信息指示装置,包括处理器,所述处理器用于执行第一方面以及第一方面任一种可能实现方式中所述的信息指示方法。
所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述各方面中描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性地,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第五方面,本申请提供了信息指示装置,包括用于实现第二方面以及第二方面任一种可能实现方式中的方法的模块或单元。应理解,各个模块或单元可通过执行计算 机程序来实现相应的功能。
第六方面,本申请提供了信息指示装置,包括处理器,所述处理器用于执行第二方面以及第二方面任一种可能实现方式中所述的信息指示方法。
所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述各方面中描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性地,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。
第七方面,本申请提供了信息指示系统,包括第三方面或第四方面中所述的装置和第五方面或第六方面中所述的装置。
第八方面,本申请提供了一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得计算机实现第一方面或第二方面以及第一方面或第二方面任一种可能实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行第一方面或第二方面以及第一方面或第二方面任一种可能实现方式中的方法。
应当理解的是,本申请的第三方面至第九方面与本申请的第一方面或第二方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1是本申请实施例提供的信息指示方法的系统的示意图;
图2是本申请实施例提供的部署有CU和DU的接入网设备的示意图;
图3是本申请实施例提供的信息指示方法的示意性流程图;
图4是本申请实施例提供的信息指示方法的另一示意性流程图;
图5是本申请实施例提供的信息指示装置的示意性框图;
图6是本申请实施例提供的信息指示装置的另一示意性框图;
图7是本申请实施例提供的信息指示装置的另一示意性框图;
图8是本申请实施例提供的信息指示装置的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的技术方案可以应用于物联网(internet of things,IOT)、工业物联网(industrial internet of things,IIOT)、车联网(vehicle to x,V2X)等场景。
应理解,本申请实施例中的UE,又可以称为终端设备、终端、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。
UE可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例可以为:手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑(如笔记本电脑、掌上电脑等)、移动互联网设备(mobile internet device,MID)、虚拟现实(virtual reality,VR)设备、增强现实 (augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是IoT系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
本申请对于终端设备的具体形式均不作限定。
还应理解,接入网设备可以是任意一种具有无线收发功能的设备。接入网设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点(radio relay node,RRN)、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括CU和分布式单元(distributed unit,DU)。下文将结合附图对CU-DU的架构进行详细说明,这里暂且省略对CU-DU的详述。
图1是适用于本申请实施例提供的信息指示方法的系统的示意图。如图1所示,该系统100包括核心网设备110、连接于同一核心网(core network,CN)设备110的接入网(radio access network,RAN)设备120a和120b、连接于接入网设备120a的终端130a和连接于接入网设备120b的终端130b。其中,核心网设备110与接入网设备120a或120b可通过NG接口连接,也可以通过N2接口连接。接入网设备120a和120b 可以为不同形态的接入网设备,也可以为相同形态的接入网设备。本申请实施例对此不作限定。应理解,图中虽然示出了接入同一核心网设备110的两个接入网设备,以及与接入网设备120a连接的一个终端设备和与接入网设备120b连接的一个终端设备,但这不应对本申请构成任何限定。核心网设备110可以连接其他数量的接入网设备,各接入网设备120a和120b也可以分别连接其他数量的终端设备。
图1所示的接入网设备120b包括CU和DU,如图中的所示CU 121、DU 122a和122b。CU 121和DU 122a之间、CU 121和DU 122b之间可以分别通过标准化接口F1连接。可以看到,同一个CU可以连接一个或多个DU,但一个DU仅连接于一个CU。本申请对于一个CU能够连接的DU的数量不作限定。
另外,图中虽未示出,但可以理解,接入网设备120b还可以包括有源天线单元(active antenna unit,AAU)。
其中,CU可以实现接入网设备的部分功能,DU可以实现接入网设备的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、服务数据适配协议(service data adaptation protocol,SDAP)层等高层功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒介访问控制(medium access control,MAC)层和物理(physical,PHY)层等底层功能。AAU可以实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU和AAU发送的。
可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。
需要说明的是,本申请实施例中为方便理解和说明,将CU划分为接入网中的网络设备。在另一种定义中,也可以将CU划分为核心网中的网络设备,本申请对此不做限定。
图2进一步示出了部署有CU和DU的接入网设备。如图2所示,CU可以基于不同的功能分为CU-CP和CU-UP。CU-CP和CU-UP之间可通过标准化接口E1连接。一个CU-CP可连接多个CU-UP。其中,CU-CP包含实现RRC体和PDCP实体,该PDCP实体为对应信令资源承载(signaling radio bearer,SRB)的PDCP实体。CU-UP包含SDAP实体和PDCP实体,该PDCP实体为对应数据无线承载(data radio bearer,DRB)的PDCP实体。
一个CU-CP可连接一个或多个DU,CU-CP与每个DU之间可通过F1-C接口连接。一个DU也可连接一个或多个CU-UP,每个CU-UP与DU之间可通过F1-U接口连接。应理解,F1-C接口和F1-U接口都属于F1接口。
如前所述,接入网设备中的CU分离出的CU-UP可以为终端建立EHC上下文。目前,CU-CP可以为UE配置EHC的相关参数,但是CU-UP根据CU-CP所配置的参数仍然无法确定出可以为终端建立的EHC上下文的数量,因此,CU-UP无法为终端建立合理数量的EHC上下文。
鉴于此,本申请提供一种信息指示方法,CU-CP向CU-UP发送第一信息,以通过该第一信息指示CU-CP在下行方向上能够为UE、UE的第一DRB或UE的第一协议数据单元(protocol data unit,PDU)会话建立的EHC上下文的最大数量,其中,第一DRB为UP维护的该UE的任意一个DRB,第一PDU会话为UP维护的该UE的任意一个PDU会话。由此,CU-UP就可基于该第一信息,在下行方向上为UE、或第一DRB、或第一PDU会话建立合理数量的EHC上下文。
下面将结合附图对本申请实施例提供的信息指示方法做详细说明。
为了方便理解下文的实施例,首先做出如下说明:
第一,对于UE而言,一个UE可以建立一个或多个PDU会话,一个PDU会话可以建立一个或多个DRB。任意一个PDU会话均可具有建立EHC上下文的需求,任意一个DRB也均可具有建立EHC上下文的需求。下文中为方便理解和说明,以一个UE为例来描述本申请实施例提供的方法。也就是说,下文中所提及的一个或多个PDU会话为同一个UE建立的PDU会话,下文中提及的一个或多个DRB为同一个UE的DRB。但应理解,对于任何一个UE,均可以实施下文所提供的方法,来为UE的下行方向建立EHC上下文。
如前所述,CU可分为CU-CP和CU-UP,一个CU-CP可连接多个CU-UP,CU-UP可为UE建立EHC上下文。其中,与CU-CP连接的多个CU-UP可从不同的维度来维护该UE的EHC上下文。每个CU-UP可负责维护该UE的一个DRB,或多个DRB上的EHC上下文。每个CU-UP也可负责维护该UE的一个PDU会话,或多个PDU会话上的EHC上下文。应理解,也可以存在以下情况:该多个CU-UP中的部分CU-UP参与该UE的EHC上下文的维护,另一部分CU-UP不参与该UE的EHC上下文的维护。
第二,本申请实施例中“第一”、“第二”等的使用仅仅为了便于对归属于同一个名称类别下的不同事物进行区分描述,不对事物的次序或者数量进行约束。例如,“第一信息”和“第二信息”仅仅为不同内容或者用途的信息,二者没有时间先后关系或者优先级高低关系,第一信息可能是一个信息或者多个信息,第二信息也可能是一个信息或者多个信息。
第三,在本申请实施例中,“当…时”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
图3是本申请实施例提供的信息指示方法的示意性流程图。图3所示的方法300包括步骤310至步骤350。下面详细说明图3所示的方法300中的各个步骤。需要说明的是,在具体实施中可以选择图3中的部分步骤进行实施,还可以调整图示中步骤的顺序进行实施,本申请对此不做限定。应理解,执行图示中的部分步骤、调整步骤的顺序或相互结合进行具体实施,均落在本申请的保护范围内。
在步骤310中,CU中的CP生成第一信息,该第一信息用于指示该CU中的UP在下行方向上能够为第一目标建立的以太头压缩EHC上下文的最大数量。
其中,第一目标包括:UE、该UE的第一DRB或该UE的第一PDU会话,第一DRB为UP维护的该UE的任意一个DRB,该第一PDU会话为UP维护的该UE的任 意一个PDU会话。
在与CP连接的多个UP共同维护一个UE,且每个UP维护该UE的至少一个DRB时,CU中的CP生成的第一信息可用于指示CU中的UP在下行方向上能够为该UE的第一DRB建立的EHC上下文的最大数量,其中,第一DRB为UP维护的一个DRB。也就是说,CP会将UE中具有建立EHC上下文的需求的每个DRB在下行方向上能够建立的EHC上下文的最大数量指示给对应的UP。
例如,UE建立DRB1、DRB2和DRB3,与CP连接的UP有UP1、UP2和UP3。其中,DRB1、DRB2和DRB3服务的业务数据可以进行EHC,因此UP可以为这些DRB建立EHC上下文用于以太头压缩,并且,UP1维护DRB1,UP2维护DRB2,UP3维护DRB3。若该CP为UP分配的在下行方向上能够为该UE建立的EHC上下文的最大数量为500。则,CU中的CP可以针对每个UP分别生成第一信息,共可生成三个第一信息。其中,一个第一信息可用于指示UP1在下行方向上能够为它所维护的DRB1建立的EHC上下文的最大数量,如100;另一个第一信息可用于指示UP2在下行方向上能够为它所维护的DRB2建立的EHC上下文的最大数量,如250;再一个第一信息可用于指示UP3在下行方向上能够为它所维护的DRB3建立的EHC上下文的最大数量,如150。
又例如,UE建立DRB1、DRB2、DRB3、DRB4、DRB5和DRB6,与CP连接的UP有UP1、UP2和UP3。其中,DRB1、DRB2、DRB3、DRB4、DRB5和DRB6服务的业务数据可以进行EHC,因此,UP可以为这些DRB建立EHC上下文用于以太头压缩,并且,UP1维护DRB1和DRB2,UP2维护DRB3、DRB4和DRB5,UP3维护DRB6。若该CP可为UP分配的在下行方向上能够为该UE建立的EHC上下文的最大数量为500。则,CU中的CP可以针对每个UP生成一个第一信息,共可以生成三个第一信息。其中,一个第一信息可用于指示UP1在下行方向上能够为它所维护的DRB1建立的EHC上下文的最大数量,如100,为它所维护的DRB2建立的EHC上下文的最大数量,如150;另一个第一信息可用于指示UP2在下行方向上能够为它所维护的DRB3建立的EHC上下文的最大数量,如50,为它所维护的DRB4建立的EHC上下文的最大数量,如60,以及为它所维护的DRB5建立的EHC上下文的最大数量,如60;再一个第一信息可用于指示UP3在下行方向上能够为DRB6建立的EHC上下文的最大数量,如80。
在与CP连接的多个UP共同维护该UE,且每个UP维护该UE的至少一个DRB时,CU中的CP生成的第一信息可用于指示CU中的UP在下行方向上能够为该UE建立的EHC上下文的最大数量。也就是说,CP会将UP维护的至少一个DRB在下行方向上能够建立的EHC上下文的总的最大数量指示给对应UP。
例如,UE建立DRB1、DRB2、DRB3、DRB4、DRB5和DRB6,与CP连接的UP有UP1、UP2和UP3。其中,DRB1、DRB2、DRB3、DRB4、DRB5和DRB6服务的业务数据可以进行EHC,因此UP可以为这些DRB建立EHC上下文用于以太头压缩,并且,UP1维护DRB1和DRB2,UP2维护DRB3、DRB4和DRB5,UP3维护DRB6。若该CP可为UP分配的在下行方向上能够为该UE建立的EHC上下文的最大数量为500。则,CU中的CP可以针对每个UP生成一个第一信息,共可生成三个第一信息。 其中,一个第一信息可用于指示UP1在下行方向上能够为它所维护的DRB1和DRB2建立的EHC上下文的总的最大数量,如150;另一个第一信息用于指示UP2在下行方向上能够为它所维护的DRB3、DRB4和DRB5建立的EHC上下文的总的最大数量,如,250;再一个第一信息用于指示UP3在下行方向上能够为它所维护的DRB6建立的EHC上下文的最大数量,如100。此情况下,各UP可根据CP在第一信息中所指示的最大数量,自行为其所维护的各个DRB分配下行方向上能够建立的EHC上下文的数量。例如,UP1可以为DRB1和DRB2灵活分配各自在下行方向可建立的EHC上下文数量。
在与CP连接的多个UP共同维护该UE,且每个UP维护该UE的至少一个PDU会话时,CU中的CP生成的第一信息可用于指示CU中的UP在下行方向上能够为该UE的第一PDU会话建立的EHC上下文的最大数量。其中,该第一PDU会话为UP维护的该UE的任意一个PDU会话。也就是说,CP会将UP维护的PDU会话在下行方向上能够建立的EHC上下文的最大数量指示给对应的UP。
例如,UE建立PDU会话1、PDU会话2和PDU会话3,与CP连接的UP有UP1,UP2和UP3。其中,PDU会话1,PDU会话2和PDU会话3服务的业务数据可以进行EHC,因此UP可以为这些PDU会话对应的DRB建立EHC上下文用于以太头压缩,并且,UP1维护PDU会话1,UP2维护PDU会话2,UP3维护PDU会话3。若该CP可为UP分配的在下行方向上能够为该UE建立的EHC上下文的最大数量为500。则,CU中的CP可以针对每个UP生成一个第一信息,共可生成三个第一信息。其中,一个第一信息用于指示UP1在下行方向上能够为它所维护的PDU会话1建立的EHC上下文的最大数量,如100;另一个第一信息用于指示UP2在下行方向上能够为它所维护的PDU会话2建立的EHC上下文的最大数量,如200;再一个第一信息用于指示UP3在下行方向上能够为它所维护的PDU会话3建立的EHC上下文的最大数量,如200。此种情况下,各UP根据CP在第一信息中所指示的最大数量,自行为其所维护的各个DRB分配下行方向上能够建立的EHC上下文的数量。
又例如,UE中有PDU会话1,PDU会话2和PDU会话3,与CP连接的UP有UP1和UP2。其中,PDU会话1,PDU会话2和PDU会话3均有建立EHC上下文的需求,并且,UP1维护PDU会话1和PDU会话2,UP2维护PDU会话3。若该CP可为UP分配的在下行方向上能够为该UE建立的EHC上下文的最大数量为500。则,CU中的CP可以针对每个UUP生成一个第一信,共可两个第一信息。其中,一个第一信息用于指示UP1在下行方向上能够为它所维护的PDU会话1建立的EHC上下文的最大数量,如200,以及为它所维护的PDU会话2建立的EHC上下文的最大数量,如150;另一个第一信息用于指示UP2在下行方向上能够为它所维护的PDU会话3建立的EHC上下文的最大数量,如150。此种情况下,各UP同样根据CP在第一信息中所指示的最大数量,自行为其所维护的一个PDU会话对应的各个DRB分配下行方向上能够建立的EHC上下文的数量。
应理解,上述第一信息所指示的UP在下行方向上能够为第一目标建立的EHC上下文的最大数量是基于UE的能力而分配的。当UE中维护了多个DRB或多个PDU会话时,可以基于针对该UE的各个DRB或各个PDU会话而分配的UP在下行方向 上能够为上述各个DRB或各个PDU会话建立的EHC上下文的最大数量,确定UP在下行方向上能够为该UE建立的EHC上下文的最大数量。
CP为UP分配的在下行方向上能够为UE建立的EHC上下文的最大数量可以满足以下条件:CP为UE分配的在上行方向上该UE能够建立的EHC上下文的最大数量与CP为该UE分配的在下行方向上UP能够为该UE建立的EHC上下文的最大数量之和,不大于该UE支持的EHC上下文的最大数量,或者说,小于或等于该UE支持的EHC上下文的最大数量。
相对应地,上述第一信息所指示的UP在下行方向上能够为第一目标建立的最大数量也应限制在CP为UP分配的在下行方向上能够为UE建立的EHC上下文的最大数量之内。
一种实现方式中,CP可先为UE分配在上行方向上该UE能够建立的EHC上下文的最大数量,后为UP分配在下行方向上UP能够为UE建立的EHC上下文的最大数量。此时,CP为UE分配在上行方向上该UE能够建立的EHC上下文的最大数量时,分配的最大数量不大于该UE支持的EHC上下文的最大数量。之后,CP为该UE再分配在下行方向上UP能够为UE建立的EHC上下文的最大数量时,分配的最大数量不大于CP分配后的剩余的UE支持的EHC上下文的数量。
另一种实现方式中,CP也可以先为UE分配在下行方向上UP能够为UE建立的EHC上下文的最大数量,后为UE分配在上行方向上为该UE能够建立的EHC上下文的最大数量。此时,CP为该UE分配在下行方向上UP能够为UE建立的EHC上下文的最大数量时,分配的最大数量不大于UE支持的EHC上下文的最大数量。之后,CU再为该UE分配在上行方向上该UE能够建立的EHC上下文的最大数量时,分配的最大数量不大于CP分配后剩余的UE支持的EHC上下文的数量。
例如,UE支持的EHC上下文的最大数量为500,CP可选择先为UE分配在上行方向上该UE能够建立的EHC上下文的最大数量,可以为500以内的任意数值,如350。CP再为该UE分配在下行方向上UP能够为该UE建立的EHC上下文的最大数量,相应地,可以为不大于剩余的UE支持的EHC上下文的数量,如小于或等于150。相应地,先为UE分配在下行方向上UP能够为该UE建立的EHC上下文的最大数量,后为UE分配在上行方向上能够为该UE建立的EHC上下文的最大数量的方式类同,不再举例赘述。
CP为UE分配在下行方向上UP能够为UE建立的EHC上下文的最大数量之后,再继续为各个UP所维护的第一目标分配EHC上下文的最大数量的方式,参照前述示例性说明即可。
CP可根据UE的能力来确定能够为UE分配的在下行方向上UP能够为该UE建立的EHC上下文的最大数量。该UE的能力具体可包括UE能够支持的EHC上下文的最大数量。可选地,CP接收第三信息,该第三信息用于指示UE支持的EHC上下文的最大数量。
示例性地,该第三信息为该UE的能力信息。该UE的能力信息可指示UE是否支持EHC上下文的建立,并可进一步指示该UE支持的EHC上下文的最大数量;或者,该UE的能力信息可直接指示UE支持的EHC上下文的最大数量。
一种实现方式中,网络设备可以从UE处获得UE的能力信息,例如UE可主动或者在网络设备的请求下将自己的能力信息上报给CP,CP在接收到UE的能力信息时,可确定UE支持的EHC上下文的最大数量,进而根据UE上报的EHC上下文的最大数量进行相应地分配。在另一种实现方式中,网络设备可以从其他网络设备处获得UE的能力信息,例如,CP可以在UE的切换过程中,从该UE的源基站发送的切换命令中获取UE的能力信息。CP可以根据UE的能力信息确定UE支持的EHC上下文的最大数量,进而根据EHC上下文的最大数量进行相应地分配。
在步骤320中,CP向UP发送该第一信息。相应地,UP从CP接收该第一信息。
在CP向UP发送第一信息时,可采用多种方式来承载第一信息。下文中结合技术规范(technical specification,TS)38.463示例性地给出了用于承载第一信息的IE的几个示例。
可选地,该第一信息承载于EHC参数IE中。
在第一信息所指示的第一目标为一个DRB时,该第一信息承载于EHC参数IE中,例如,在EHC参数IE中引入一个新的第一IE或第一参数,用于指示第一信息。如下表1所示,在EHC参数IE的EHC Downlink IE中通过新引入第一参数用于指示第一信息,第一参数可以称为EHC参数IE中的最大上下文标识(context identifier,CID)EHC-下行(downlink,DL)(maxCID-EHC-DL),其中,该“maxCID-EHC-DL”域中的值可以为正整数,取值范围例如可以为1~32767,表示下行方向上能够为DRB建立的EHC上下文的最大数量。需要注意的是,上述第一参数的名称仅做示例,而非限定。
表1
Figure PCTCN2022106835-appb-000001
在第一信息所指示的第一目标为UE时,该第一信息承载于EHC参数IE中,例如,在EHC参数IE中引入一个新的第一IE或第一参数,用于指示第一信息。如下表2所示,在EHC参数IE的EHC Commom IE中通过新引入第一参数用于指示第一信息,第一参数可以称为UE下行EHC上下文标识(context identifier)的最大数量(UE DL Maximum EHC CID Number),其中,该“UE DL Maximum EHC CID Number”域中的值可以为正整数,取值范围例如可以为1~32767,表示在下行方向上能够为UE建立的EHC上下文的最大数量。需要注意的是,上述第一参数的名称仅做示例,而非限定。
表2
Figure PCTCN2022106835-appb-000002
在第一信息所指示的第一目标为PDU会话时,该第一信息承载于EHC参数IE中,例如,在EHC参数IE中引入一个新的第一IE或第一参数,用于指示第一信息。如下表3所示,在EHC参数IE的EHC Commom IE中通过新引入第一参数用于指示第一信息,第一参数可以称为PDU会话下行EHC上下文标识(context identifier,CID)的最大数量(PDU session DL Maximum EHC CID Number),其中,该“PDU session DL Maximum EHC CID Number”域中的值可以为正整数,取值范围例如可以为1~32767,表示在下行方向上能够为PDU会话建立的EHC上下文的最大数量。需要注意的是,上述第一参数的名称仅做示例,而非限定。
表3
Figure PCTCN2022106835-appb-000003
Figure PCTCN2022106835-appb-000004
可选地,该第一目标为UE的第一PDU会话,该第一信息承载于要建立的PDU会话资源列表IE中。
在第一目标为UE的PDU会话时,该第一信息也可承载于要建立的PDU会话资源列表中,例如,在PDU会话资源列表IE中引入一个新的第一IE或第一参数,用于指示第一信息。如下表4所示,在PDU会话资源列表IE的PDU Session Resource To Setup Item信元中通过新引入第一参数用于指示第一信息,第一参数可以称为PDU会话下行EHC上下文标识的最大数量(PDU session DL Maximum EHC CID Number),其中,该“PDU session DL Maximum EHC CID Number”域中的值可以为大于等于0的正整数,取值范围例如可以为0~32767,表示在下行方向上能够为PDU会话建立的EHC上下文的最大数量。需要注意的是,上述第一参数的名称仅做示例,而非限定。
表4
Figure PCTCN2022106835-appb-000005
可选地,该第一目标为UE,该第一信息承载于要建立的UE会话资源列表IE中。
在第一目标为UE时,该第一信息也可承载于要建立的UE会话资源列表IE中,例如,在UE会话资源列表IE中引入一个新的第一IE或第一参数,用于指示第一信息。如下表5所示,在UE会话资源列表IE中通过新引入第一参数用于指示第一信息,第一参数可以称为用户设备下行EHC上下文标识的最大数量(UE DL Maximum EHC CID Number),该“UE DL Maximum EHC CID Number”域中的值可以为大于等于0的正整数,取值范围,例如可以为0~32767,表示在下行方向上能够为UE建立的EHC上下文的最大数量。需要注意的是,上述第一参数的名称仅做示例,而非限定。
表5
Figure PCTCN2022106835-appb-000006
可选地,在CP发送第一信息时,可将第一信息携带在承载上下文建立请求(bearer context setup request)消息、承载上下文修改请求(bearer context modification requset)消息、或承载上下文修改确认(bearer context modification confirm)消息中发送。
在步骤330中,UP基于该第一信息,在下行方向上为第一目标建立EHC上下文。
其中,UP在下行方向上为第一目标建立的EHC上下文的数量不大于第一信息指示的最大数量。
在UP接收到的第一信息用于指示该CU中的该UP在下行方向上能够为UE的DRB建立的EHC上下文的最大数量时,该UP根据所指示的最大数量为对应的DRB建立合理数量的EHC上下文。
例如,UP1维护UE的DRB1,UP2维护该UE的DRB2,UP3维护该UE的DRB3。若UP1接收到的第一信息用于指示UP1在下行方向上能够为它所维护的DRB1建立的EHC上下文的最大数量为100,则UP1可根据实际需求为它所维护的DRB1建立合理数量的EHC上下文,UP1为DRB1建立的EHC上下文的数量不大于100,如80、或95。若UP2接收到的第一信息指示UP2在下行方向上能够为它所维护的DRB2建立的EHC上下文的最大数量为250,则UP2可根据实际需求为它所维护的DRB2建 立合理数量的EHC上下文,UP2为DRB2建立的EHC上下文的数量不大于250,如250、或200。若UP3接收到的第一信息用于指示UP3在下行方向上能够为它所维护的DRB3建立的EHC上下文的最大数量为150,则UP3可根据实际需求为它所维护的DRB3建立合理数量的EHC上下文,UP3为DRB3建立的EHC上下文的数量不大于150,如150、或100。
又例如,UP1维护UE的DRB1和DRB2,UP2维护该UE的DRB3、DRB4和DRB5,UP3维护该UE的DRB6。若UP1接收到的第一信息用于指示UP1在下行方向上能够为它所维护的DRB1建立的EHC上下文的最大数量为100,为它所维护的DRB2建立的EHC上下文的最大数量为150。则,UP1可根据实际需求为它所维护的DRB1和DRB2建立合理数量的EHC上下文。其中,UP1为DRB1建立的EHC上下文的数量不大于100,如100、或80,UP1为DRB2建立的EHC上下文的数量不大于150,如120、或150。若UP2接收到的第一信息用于指示UP2在下行方向上能够为它所维护的DRB3建立的EHC上下文的最大数量为50,为它所维护的DRB4建立的EHC上下文的最大数量为60和为它所维护的DRB5建立的EHC上下文的最大数量为60。则,UP2可根据实际需求为它所维护的DRB3、DRB4和DRB5建立合理数量的EHC上下文。其中,UP2为DRB3建立的EHC上下文的数量不大于50,如50、或45,UP为DRB4建立的EHC上下文的数量不大于60,如55、或60,以及UP为DRB5建立的EHC上下文的数量不大于60,如30、或60。若UP3接收到的第一信息用于指示UP3在下行方向上能够为DRB6建立的EHC上下文的最大数量为80。则,UP3可根据实际需求为它所维护的DRB6建立合理数量的EHC上下文,UP3为DRB6建立的EHC上下文的数量不大于80,如79。
在UP接收到的第一信息用于指示该CU中的该UP在下行方向上能够为UE建立的EHC上下文的最大数量时,该UP根据所指示的最大数量为它所维护的DRB分配合理数量的EHC上下文。
例如,UP1维护UE的DRB1和DRB2上,UP2维护该UE的DRB3、DRB4和DRB5,UP3维护该UE的DRB6。
若UP1接收到的第一信息用于指示UP1在下行方向上能够为它所维护的UE的DRB1和DRB2建立的EHC上下文的总的最大数量为150,则,UP1可根据实际需求为DRB1和DRB2分别分配可建立的EHC上下文的最大数量,在根据实际需求为DRB1和DRB2分配可建立的EHC上下文的最大数量时,只需要满足UP1为DRB1和DRB2分别分配的可建立的EHC上下文的最大数量之和不大于第一信息所指示的最大数量即可。如,可为DRB1分配可建立的EHC上下文的最大数量为50,为DRB2分配可建立的EHC上下文的最大数量为100。同样地,UP1在为DRB1和DRB2实际建立EHC上下文的数量时,同样可根据实际需求为DRB1和DRB2建立合理数量的EHC上下文,UP1为DRB1建立的EHC上下文的数量不大于50,为DRB2建立的EHC上下文的数量不大于100。
若UP2接收的第一信息用于指示UP2在下行方向上能够为它所维护的DRB3,DRB4和DRB5建立的EHC上下文的总的最大数量为250,则,UP1可根据实际需求为DRB3、DRB4和DRB5分配可建立的EHC上下文的最大数量,在根据实际需求为 DRB3、DRB4和DRB5分别分配可建立的EHC上下文的最大数量时,只需要满足UP1为DRB3D、DRB4和DRB5分别分配的可建立的EHC上下文的最大数量之和不大于第一信息所指示的最大数量即可。如,可为DRB3分配可建立的EHC上下文的最大数量如50,为DRB4分配可建立的EHC上下文的最大数量如120,为DRB5分配可建立的EHC上下文的最大数量如80。同样地,UP1在为DRB3、DRB4和DRB5实际建立EHC上下文的数量时,同样可根据实际需求为DRB3、DRB4和DRB5建立合理数量的EHC上下文,UP2为DRB3建立的EHC上下文的数量不大于50,为DRB4建立的EHC上下文的数量不大于120,为DRB5建立的EHC上下文的数量不大于80。
若UP3接收的第一信息用于指示UP3在下行方向上能够为它所维护的DRB6建立的EHC上下文的最大数量为100,则,UP3可根据实际需求为它所维护的DRB6建立合理数量的EHC上下文,UP3为DRB6建立的EHC上下文的数量不大于100,如95。
在UP接收到的第一信息用于指示该CU中的该UP在下行方向上能够为该UE的PDU会话建立的EHC上下文的最大数量时,该UP根据所指示的最大数量为它所维护的PDU会话中的DRB分配合理数量的EHC上下文。
例如,UP1维护UE的PDU会话1,UP2维护该UE的PDU会话2,UP3维护该UE的PDU会话3。其中,PDU会话1关联有DRB1和DRB2,PDU会话2关联有DRB3、DRB4和DRB5,PDU会话3关联有DRB6。
若UP1接收到第一信息用于指示UP1在下行方向上能够为它所维护的PDU会话1建立的EHC上下文的最大数量为100,则,UP1可根据实际需求为DRB1和DRB2分配可建立的EHC上下文的最大数量,只需要满足UP1为DRB1和DRB2分别分配的可建立的EHC上下文的最大数量之和不大于第一信息所指示的最大数量即可。如,UP1可为DRB1分配可建立的EHC上下文的最大数量为45,为DRB2分配可建立的EHC上下文的最大数量为55。同样地,UP1在为DRB1和DRB2实际建立EHC上下文的数量时,同样可根据实际需求为DRB1、DRB2建立合理数量的EHC上下文,UP1为DRB1建立的EHC上下文的数量不大于45,为DRB2建立的EHC上下文的数量不大于55。
若UP2接收的第一信息用于指示UP2在下行方向上能够为它所维护的PDU会话2建立的EHC上下文的最大数量为200,则,UP2可根据实际需求为DRB3、DRB4和DRB5分配可建立的EHC上下文的最大数量,只需要满足UP1为DRB3、DRB4和DRB5分别分配的可建立的EHC上下文的最大数量之和不大于第一信息所指示的最大数量即可。如,UP2可为DRB3分配可建立的EHC上下文的最大数量为100,为DRB4分配可建立的EHC上下文的最大数量为60,为DRB5分配可建立的EHC上下文的最大数量为40。同样地,UP1在为DRB3、DRB4和DRB5实际建立EHC上下文的数量时,同样可根据实际需求为DRB3、DRB4和DRB5建立合理数量的EHC上下文,在此不再赘述。
若UP3接收到的第一信息用于指示UP3在下行方向上能够为它所维护的PDU会话3建立的EHC上下文的最大数量为200,则,UP3可根据实际需求为DRB6建立合理数量多额EHC上下文,UP3为DRB6建立的EHC上下文的数量不大于200,如200、 150。
又例如,UP1维护UE的PDU会话1和PDU会话2,UP2维护UE的PDU会话3。PDU会话1中有DRB1和DRB2,PDU会话2中有DRB3、DRB4和DRB5,PDU会话3中有DRB6。若UP1接收的第一信息用于指示UP1在下行方向上能够为它所维护的PDU会话1建立的EHC上下文的最大数量为150,能够为它所维护的PDU会话2建立的EHC上下文的最大数量为200,则,UP1可根据实际需求为PDU会话1中的DRB1和DRB2分配可建立的EHC上下文的数量,以及为PDU会话2中的DRB3、DRB4和DRB5分配可建立的EHC上下文的数量。UP1在为PDU会话1中的DRB1和DRB2分配可建立的EHC上下文的数量时,只需要满足UP1为DRB1、DRB2分别分配的可建立的EHC上下文的最大数量之和不大于第一信息所指示PDU会话1能够建立的EHC上下文的最大数量即可。如,为DRB1分配能够建立的EHC上下文的最大数量为50,为DRB2分配能够建立的EHC上下文的最大数量为100。UP1在为PDU会话2中的DRB3、DRB4和DRB5分配可建立的EHC上下文的数量时,只需要满足UP1为DRB3、DRB4和DRB5分别分配的可建立的EHC上下文的最大数量之和不大于第一信息所指示PDU会话2能够建立的EHC上下文的最大数量即可。如,为DRB3分配能够建立的EHC上下文的最大数量为50,为DRB4分配能够建立的EHC上下文的最大数量为100,以及为DRB5分配能够建立的EHC上下文的最大数量为50。之后,UP1再根据实际需求为DRB1和DRB2建立合理数量的EHC上下文,为DRB1建立的EHC上下文的数量不大于50,为DRB2建立的EHC上下文的数量不大于100,以及根据实际需求为DRB3、DRB4和DRB5建立合理数量的EHC上下文,为DRB3建立的EHC上下文的数量不大于50,为DRB4建立的EHC上下文的数量不大于100,为DRB5建立的EHC上下文的数量不大于50。
若UP2接收的第一信息用于指示UP2在下行方向上能够为它所维护的PDU会话2建立的EHC上下文的最大数量为150,则,UP2可根据实际需求为DRB6建立合理数量的EHC上下文,为DRB6建立的EHC上下文的数量不大于150,如100。
在步骤340中,UP向CP发送第二信息,该第二信息用于请求修改下行方向上能够为第一目标建立的EHC上下文的最大数量。相应地,CP从UP接收该第二信息。
其中,该第二信息指示请求修改的最大数量的期望值,或者,该第二信息用于请求将最大数量修改为更大值,或将最大数量修改为更小值。
在UP接收的第一信息所指示的该UP在下行方向上能够为第一目标建立的EHC上下文的最大数量不符合该UP的需求时,该UP可向CP发送第二信息,以请求CP为该UP重新分配在下行方向上能够为第一目标建立的EHC上下文的最大数量。
例如,若UP2接收到的第一信息用于指示该UP2在下行方向上能够为UE的第一DRB建立的EHC上下文的最大数量为250,而该UP2维护该UE上的DRB2的EHC上下文的建立。若第一信息所指示的EHC上下文的最大数量为250不满足UP2的需求,此时,UP2就可向CP发送第二信息,以直接请求修改能够为DRB2建立的EHC上下文的最大数量的某个期望值,如260,或者,以请求将最大数量修改为更大值,或者,以请求将最大数量修改为更小值。
又例如,若UP2接收到的第一信息用于指示该UP2在下行方向上能够为UE建立 的EHC上下文的最大数量为250,而该UP2维护该UE的DRB3、DRB4和DRB5的EHC上下文的建立。若第一信息所指示的EHC上下文的最大数量为250不满足UP2的需求,此时,UP2就可向CP发送第二信息,以直接请求修改能够为DRB3、DRB4和DRB5建立的EHC上下文的总的最大数量的某个期望值,如255,或者,以请求将最大数量修改为更大值,或者,以请求将最大数量修改为更小值。
再例如,若UP2接收到的第一信息用于指示该UP2在下行方向上能够为UE的第一PDU会话建立的EHC上下文的最大数量为250,而该UP2维护该UE的PDU会话2的EHC上下文的建立。若第一信息所指示的EHC上下文的最大数量为250不满足UP2的需求,此时,UP2就可向CP发送第二信息,以直接请求修改能够为PDU会话2建立的EHC上下文的总的最大数量的某个期望值,如275,或者,以请求将最大数量修改为更大值,或者,以请求将最大数量修改为更小值。
可选地,在具体发送第二信息时,UP可选择将第二信息携带在承载上下文修改需求(bearer context modification required)消息中发送。
在步骤350中,CP根据该第二信息,修改第一信息,得到修改后的第一信息。
CP在接收到第二信息后,可以不直接根据请求进行重新分配,而是先进行如下操作:若CP接收的第二信息用于指示将最大数量修改为更小值,则CP根据第二信息直接对应修改第一信息,得到修改后的第一信息,并将修改后的第一信息发送给对应UP即可。若CP接收的第二信息用于请求将最大数量修改为更大值,或接收的第二信息请求修改的最大数量的期望值的数值更大,则CP会先判断修改后的最大数量的数值是否会导致CP为UE分配的在上行方向上该UE能够建立的EHC上下文的最大数量与CP为UP分配的在下行方向上UP能够为UE建立的EHC上下文的最大数量之和,大于UE支持的EHC上下文的最大数量。若大于UE支持的EHC上下文的最大数量,则CP也会相应调整为其它UP分配的在下行方向上能够为第一目标建立的EHC上下文的最大数量。
以第一目标为UE的第一DRB为例:UE中有DRB1,DRB2和DRB3,与CP连接的UP有UP1,UP2和UP3。UP1维护DRB1上的EHC上下文的建立,UP2维护DRB2上的EHC上下文的建立,UP3维护DRB3上的EHC上下文的建立。UE支持的EHC上下文的最大数量为600,CP为UE分配的在上行方向上该UE能够建立的EHC上下文的最大数量为200,CP为UP分配的在下行方向上UP能够为该UE建立的EHC上下文的最大数量为400,其中,CP为UP1分配的在下行方向上能够为DRB1建立的EHC上下文的最大数量为100,为UP2分配的在下行方向上能够为DRB2建立的EHC上下文的最大数量为150,为UP2分配的在下行方向上能够为DRB2建立的EHC上下文的最大数量为150。若UP2接收到第一信息后,发现第一信息所指示的能为DRB2建立的EHC上下文的最大数量为150并不满足自身的需求,则UP2向CP发送第二信息,以请求将最大数量修改为200。CP在接收到第二信息后,判断出若将为UP2分配能够建立的EHC上下文的数量为200时,CP为UP分配的下行方向上能够为UE建立的EHC上下文的最大数量将达到450,如此,将导致超出UE支持的EHC上下文的最大数量。此时,CP可将为UP2分配的在下行方向上能够建立的EHC上下文的最大数量修改为200后,也会重新为UP1和UP3分配EHC上下文的最大数量,如,可将 为UP1分配的在下行方向上能够建立的EHC上下文的最大数量修改为80,将UP3分配的在下行方向上能够建立的EHC上下文的最大数量修改为120,从而向UP1、UP2和UP3重新发送修改后的第一信息,以重新指示各UP在下行方向上能够为第一目标建立的EHC上下文的最大数量。
需要说明的是,上述步骤340、步骤350是可选的步骤。UP可以直接根据CP发送的第一信息,在下行方向上为第一目标建立EHC上下文。
应理解,第一目标为UE、或者UE的第一PDU会话时,也同样满足上述执行过程,在此不再赘述。
基于上述方案,CP通过第一信息向UP指示UP在下行方向上能够为UE、UE的DRB或UE的PDU会话建立的EHC上下文的最大数量,从而使得UP能够基于该最大数量,在下行方向上为UE、UE的DRB或UE的PDU会话建立合理数量的EHC上下文,解决了分离式架构的接入网设备中因UP不了解UE的能力而无法为UE建立合理数量的EHC上下文的问题。
图4是本申请实施例提供的信息指示方法的另一示意性流程图。图4所示的方法400包括步骤410至步骤430。下面详细说明图4所示的方法400中的各个步骤。
在步骤410中,UP向UE发送第三信息,该第三信息用于指示该UE在下行方向上建立一条EHC上下文。
在UP按照业务需要建立下行方向上的EHC上下文时,UP可直接指示UE在下行方向上建立一条EHC上下文。
在步骤420中,UE在当前维护的EHC上下文的总数小于该UE支持的EHC上下文的最大数量的情况下,根据该第三信息在下行方向上建立EHC上下文。
示例性地,UE支持的EHC上下文的最大数量为500,UE在接收到第三信息后,判断出当前已经维护的EHC上下文的总数为498,则UE在下行方向上再建立一条EHC上下文。
可选地,UE在下行方向上建立了EHC上下文后,UE还可以向UP发送第一反馈信息,该第一反馈信息用于指示该UE已经在下行方向上建立了EHC上下文。
在步骤430中,UE在当前维护的EHC上下文的总数大于或等于该UE支持的EHC上下文的最大数量的情况下,不执行在下行方向建立EHC上下文的操作。
示例性地,UE支持的EHC上下文的最大数量为500,UE在接收到第三信息后,判断出当前已经维护的EHC上下文的总数为500,已经达到UE的能力上限,则UE不执行在下行方向上建立EHC上下文的操作。
可选地,UE在判断出当前维护的EHC上下文的总数已经达到能力上限时,UE可不向UP发送反馈信息,或者,UE可向UP发送第二反馈信息,该第二反馈信息用于指示该UE当前维护的EHC上下文的总数已经达到能力上限。
在UE不向UP发送反馈信息时,UP可以预设时间间隔向UE持续发送第三信息,若在预设时间段内均没有接收到UE的反馈信息,则UP认为UE当前维护的EHC上下文的总数已经达到该UE的能力上限,不再向UE发送第三信息。应理解,本领域技术人员可根据实际需求设置预设时间段和预设时间间隔的具体数值,本申请对此不加以限制。
在UE向UP发送第二反馈信息时,UP就可基于该第二反馈信息获知到UE当前维护的EHC上下文的总是已经达到该UE的能力上限,则不再向UE发送第三信息。
对于UE而言,UE在当前维护的EHC上下文的总数大于等于该UE支持的EHC上下文的最大数量时,即使UE在上行方向上为DRB建立的EHC上下文的数量还未达到CP为UE分配的在上行方向上可建立的EHC上下文的最大数量,UE也不再建立新的EHC上下文,可对上行方向上已经建立的EHC上下文采用更新覆盖的方式。
应理解,UE可以根据当前维护的EHC上下文的总数与UE支持的上下文的最大数量的大小关系,选择步骤420和步骤430中的一个步骤来执行,而并不一定要全部执行。
基于上述方案,UP向UE发送第三信息,该第三信息用于指示该在UE在下行方向上建立一条EHC上下文,UE通过判断UE当前维护的EHC上下文的总数和UE支持的EHC上下文的最大数量之间的大小关系,来决定是否可以在下行方向上建立EHC上下文,因此可以防止UE维护的EHC上下文的总数超出UE的能力限制,也避免了在CU和UP之间引入新的参数。
以上,结合图3至图4详细描述了本申请实施例提供的方法。以下,结合图5至图8详细说明本申请实施例提供的装置。
图5是本申请实施例提供的信息指示装置的示意性框图。如图5所示,该信息指示装置500可以包括:接收单元510和处理单元520。该装置500中的各单元可用于实现图3所示的方法300中CU-UP执行的相应流程。例如,接收单元510可用于执行方法300中的步骤320,处理单元520可用于执行方法300中的步骤330和步骤340。
具体来说,该接收单元510,可用于从控制面CP接收第一信息,该第一信息用于指示在下行方向上能够为第一目标建立的以太头压缩EHC上下文的最大数量,该第一目标包括:用户设备UE、UE的第一数据无线承载DRB或UE的第一协议数据单元PDU会话,该第一DRB为UP维护的一个DRB,该第一PDU会话为UP维护的PDU会话。该处理单元520,可用于基于该第一信息,在下行方向上为第一目标建立EHC上下文。
可选地,该UP在下行方向上为第一目标建立的EHC上下文的数量不大于第一信息指示的最大数量。
可选地,该第一信息承载于EHC参数IE中。
可选地,该第一目标为UE的第一PDU会话,该第一信息承载于要建立的PDU会话资源列表IE中。
可选地,该第一信息携带在承载上下文建立请求消息、承载上下文修改请求消息、或承载上下文修改确认消息中。
可选地,该处理单元520,还可用于向CP发送第二信息,该第二信息用于请求修改下行方向上能够为第一目标建立的EHC上下文的最大数量。
可选地,该第二信息指示请求修改的最大数量的期望值,或者,该第二信息用于请求将最大数量修改为更大值,或,将最大数量修改为更小值。
可选地,该第二信息携带在承载上下文修改需求消息中。
应理解,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
图6是本申请实施例提供的信息指示装置的示意性框图。如图6所示,该信息指示装置600可以包括:生成单元610和发送单元620。该装置600中的各单元可用于实现图3所示的方法300中CU-CP执行的相应流程。例如,生成单元610可用于执行方法300中的步骤310、步骤340和步骤350,发送单元620可用于执行方法300中的步骤320。
具体来说,该生成单元610可用于生成第一信息,该第一信息用于指示在下行方向上能够为第一目标建立的以太头压缩EHC上下文的最大数量,该第一目标包括:用户设备UE、UE的第一数据无线承载DRB或UE的第一协议数据单元PDU会话,该第一DRB为UP维护的一个DRB,该第一PDU会话为UP维护的PDU会话。该发送单元620可用于向UP发送该第一信息。
可选地,生成单元610为UE分配的在上行方向上UE能够建立的EHC上下文的最大数量与CP为UP分配的在下行方向上UP能够为UE建立的EHC上下文的最大数量之和,不大于该UE支持的EHC上下文的最大数量。
可选地,该第一信息承载于EHC参数IE中。
可选地,该第一目标为UE的第一PDU会话,该第一信息承载于要建立的PDU会话资源列表IE中。
可选地,该第一信息携带在承载上下文建立请求消息、承载上下文修改请求消息、或承载上下文修改确认消息中。
可选地,该生成单元610,还可用于从UP接收第二信息,该第二信息用于请求修改下行方向上能够为第一目标建立的EHC上下文的最大数量;根据第二信息,修改第一信息。
可选地,该第二信息指示请求修改的最大数量的期望值,或者,该第二信息用于请求将最大数量修改为更大值,或,将最大数量修改为更小值。
可选地,该第二信息携带在承载上下文修改需求消息中。
可选地,该生成单元610,还可用于接收第三信息,该第三信息用于指示UE支持的EHC上下文的最大数量。
应理解,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
图7是本申请实施例提供的信息指示装置的另一示意性框图。该信息指示装置700可用于实现上述方法中CU-UP的功能。该信息指示装置700可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如图7所示,该装置700可以包括至少一个处理器710,用于实现本申请实施例 提供的方法中CU-UP的功能。
示例性地,当该装置700用于实现本申请实施例提供的方法中CU-UP的功能时,处理器710可用于从CP接收第一信息,该第一信息用于指示在下行方向上能够为第一目标建立的以太头压缩EHC上下文的最大数量,该第一目标包括:用户设备UE、UE的第一数据无线承载DRB或UE的第一协议数据单元PDU会话,该第一DRB为UP维护的一个DRB,该第一PDU会话为UP维护的PDU会话;基于该第一信息,在下行方向上为第一目标建立EHC上下文。具体参见方法示例中的详细描述,此处不做赘述。
该装置700还可以包括至少一个存储器720,用于存储程序指令和/或数据。存储器720和处理器710耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器710可能和存储器720协同操作。处理器710可能执行存储器720中存储的程序指令。该至少一个存储器中的至少一个可以包括于处理器中。
该装置700还可以包括通信接口730,用于通过传输介质和其它设备进行通信,从而用于装置700可以和其它设备进行通信。示例性地,当该装置700用于实现本申请实施例提供的方法中CU-UP的功能时,该其他设备可以是CU-CP;该通信接口730例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。处理器710可利用通信接口730收发数据和/或信息,并用于实现图3对应的实施例中的CU-UP所执行的方法。
本申请实施例中不限定上述处理器710、存储器720以及通信接口730之间的具体连接介质。本申请实施例在图7中以处理器710、存储器720以及通信接口730之间通过总线连接。总线在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图8是本申请实施例提供的信息指示装置的另一示意性框图。该信息指示装置800可用于实现上述方法中CU-CP的功能。该信息使用装置800可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如图8所示,该装置800可以包括至少一个处理器810,用于实现本申请实施例提供的方法中CU-CP的功能。
示例性地,当该装置800用于实现本申请实施例提供的方法中CU-CP的功能时,处理器810可用于生成第一信息,该第一信息用于指示在下行方向上能够为第一目标建立的以太头压缩EHC上下文的最大数量,该第一目标包括:用户设备UE、UE的第一数据无线承载DRB或UE的第一协议数据单元PDU会话,该第一DRB为UP维护的一个DRB,该第一PDU会话为UP维护的PDU会话;向UP发送该第一信息。具体参见方法示例中的详细描述,此处不做赘述。
该装置800还可以包括至少一个存储器820,用于存储程序指令和/或数据。存储器820和处理器810耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器810可能和存储器820协同操作。处理器810可能执行存储器820中存 储的程序指令。该至少一个存储器中的至少一个可以包括于处理器中。
该装置800还可以包括通信接口830,用于通过传输介质和其它设备进行通信,从而用于装置800可以和其它设备进行通信。示例性地,当该装置800用于实现本申请实施例提供的方法中CU-CP的功能时,该其他设备可以是CU-UP;该通信接口830例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。处理器810可利用通信接口830收发数据和/或信息,并用于实现图3对应的实施例中的CU-CP所执行的方法。
本申请实施例中不限定上述处理器810、存储器820以及通信接口830之间的具体连接介质。本申请实施例在图8中以处理器810、存储器820以及通信接口830之间通过总线连接。总线在图8中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供一种信息指示系统,该系统包括前述的CU-UP和CU-CP。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序(也可 以称为代码,或指令),当该计算机程序被运行时,使得计算机执行图3所示实施例中CU-CP执行的方法或CU-UP执行的方法,或者,使得计算机执行图4所示实施例中UE执行的方法或CU-UP执行的方法。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)。当该计算机程序被运行时,使得计算机执行图3所示实施例中CU-CP执行的方法或CU-UP执行的方法,或者,使得计算机执行图4所示实施例中UE执行的方法或CU-UP执行的方法。
本说明书中使用的术语“单元”、“模块”等,可用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。在本申请所提供的几个实施例中,应该理解到,所揭露的装置、设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,各功能单元的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行该计算机程序指令(程序)时,全部或部分地产生按照本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (24)

  1. 一种信息指示方法,其特征在于,包括:
    集中式单元CU中的用户面UP从控制面CP接收第一信息,所述第一信息用于指示在下行方向上能够为第一目标建立的以太头压缩EHC上下文的最大数量,所述第一目标包括:用户设备UE、所述UE的第一数据无线承载DRB或所述UE的第一协议数据单元PDU会话,所述第一DRB为所述UP维护的一个DRB,所述第一PDU会话为所述UP维护的PDU会话;
    所述UP基于所述第一信息,在所述下行方向上为所述第一目标建立EHC上下文。
  2. 如权利要求1所述的方法,其特征在于,所述UP在下行方向上为所述第一目标建立的EHC上下文的数量不大于所述第一信息指示的所述最大数量。
  3. 如权利要求1所述的方法,其特征在于,所述第一信息承载于EHC参数信息元素IE中。
  4. 如权利要求1所述的方法,其特征在于,所述第一目标为所述UE的第一PDU会话,所述第一信息承载于要建立的PDU会话资源列表IE中。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述第一信息携带在承载上下文建立请求消息、承载上下文修改请求消息、或承载上下文修改确认消息中。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    所述UP向所述CP发送第二信息,所述第二信息用于请求修改所述下行方向上能够为所述第一目标建立的EHC上下文的最大数量。
  7. 如权利要求6所述的方法,其特征在于,所述第二信息指示请求修改的所述最大数量的期望值,或者,所述第二信息用于请求将所述最大数量修改为更大值,或,将所述最大数量修改为更小值。
  8. 如权利要求6或7所述的方法,其特征在于,所述第二信息携带在承载上下文修改需求消息中。
  9. 一种信息指示方法,其特征在于,包括:
    集中式单元CU中的控制面CP生成第一信息,所述第一信息用于指示在下行方向上能够为第一目标建立的以太头压缩EHC上下文的最大数量,所述第一目标包括:用户设备UE、所述UE的第一数据无线承载DRB或所述UE的第一协议数据单元PDU会话,所述第一DRB为所述UP维护的一个DRB,所述第一PDU会话为所述UP维护的PDU会话;
    所述CP向所述UP发送所述第一信息。
  10. 如权利要求9所述的方法,其特征在于,所述CP为所述UE分配的在上行方向上所述UE能够建立的EHC上下文的最大数量与所述CP为所述UE分配的在下行方向上能够为所述UE建立的EHC上下文的最大数量之和,不大于所述UE支持的EHC上下文的最大数量。
  11. 如权利要求9所述的方法,其特征在于,所述第一信息承载于EHC参数信息元素IE中。
  12. 如权利要求9所述的方法,其特征在于,所述第一目标为所述UE的第一PDU会话,所述第一信息承载于要建立的PDU会话资源列表IE中。
  13. 如权利要求9至12中任一项所述的方法,其特征在于,所述第一信息携带在承载上下文建立请求消息、承载上下文修改请求消息、或承载上下文修改确认消息中。
  14. 如权利要求9至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述CP从所述UP接收第二信息,所述第二信息用于请求修改所述下行方向上能够为所述第一目标建立的EHC上下文的最大数量;
    所述CP根据所述第二信息,修改所述第一信息。
  15. 如权利要求14所述的方法,其特征在于,所述第二信息指示请求修改的所述最大数量的期望值,或者,所述第二信息用于请求将所述最大数量修改为更大值,或,将所述最大数量修改为更小值。
  16. 如权利要求14或15所述的方法,其特征在于,所述第二信息携带在承载上下文修改需求消息中。
  17. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述CP接收第三信息,所述第三信息用于指示所述UE支持的EHC上下文的最大数量。
  18. 一种信息指示装置,其特征在于,包括处理器,所述处理器用于执行程序代码,以使得所述装置实现如权利要求1至8中任一项所述的方法。
  19. 一种信息指示装置,其特征在于,包括用于执行如权利要求1至8中任一项所述的方法的单元。
  20. 一种信息指示装置,其特征在于,包括处理器,所述处理器用于执行程序代码,以使得所述装置实现如权利要求9至17中任一项所述的方法。
  21. 一种信息指示装置,其特征在于,包括用于执行如权利要求9至17中任一项所述的方法的单元。
  22. 一种信息指示系统,其特征在于,包括如权利要求18所述的装置和如权利要求20所述的装置。
  23. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至8中任一项所述的方法,或,使得所述计算机执行如权利要求9至17中任一项所述的方法。
  24. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求1至8中任一项所述的方法,或,使得所述计算机执行如权利要求9至17中任一项所述的方法。
PCT/CN2022/106835 2021-07-28 2022-07-20 信息指示方法和装置 WO2023005770A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22848375.6A EP4369753A1 (en) 2021-07-28 2022-07-20 Information indication method and apparatus
US18/423,942 US20240163721A1 (en) 2021-07-28 2024-01-26 Information indication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110854277.0A CN115696298A (zh) 2021-07-28 2021-07-28 信息指示方法和装置
CN202110854277.0 2021-07-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/423,942 Continuation US20240163721A1 (en) 2021-07-28 2024-01-26 Information indication method and apparatus

Publications (1)

Publication Number Publication Date
WO2023005770A1 true WO2023005770A1 (zh) 2023-02-02

Family

ID=85059132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106835 WO2023005770A1 (zh) 2021-07-28 2022-07-20 信息指示方法和装置

Country Status (4)

Country Link
US (1) US20240163721A1 (zh)
EP (1) EP4369753A1 (zh)
CN (1) CN115696298A (zh)
WO (1) WO2023005770A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312587A (zh) * 2019-07-30 2021-02-02 夏普株式会社 用户设备及其执行的方法和基站及其执行的方法
WO2021062827A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种通信方法、装置和系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112312587A (zh) * 2019-07-30 2021-02-02 夏普株式会社 用户设备及其执行的方法和基站及其执行的方法
WO2021062827A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种通信方法、装置和系统

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG-RAN; E1 Application Protocol (E1AP) (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.463, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. V16.5.0, 9 April 2021 (2021-04-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 237, XP052000770 *
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG-RAN; E1 Application Protocol (E1AP) (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.463, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. V16.6.0, 25 August 2021 (2021-08-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 239, XP052056352 *
HUAWEI (MODERATOR): "Summary of Offline Discussion on Correction on missing IE of EHC", 3GPP DRAFT; R3-212758, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Online; 20210517 - 20210528, 26 May 2021 (2021-05-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052014456 *
HUAWEI, CHINA UNICOM: "Enhancement for EHC contexts", 3GPP DRAFT; R3-213356, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. E-meeting; 20210816 - 20210826, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052035279 *
HUAWEI, CHINA UNICOM: "Restricting the number of DL EHC contexts – Option 1", 3GPP DRAFT; R3-213357, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. E-meeting; 20210816 - 20210826, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052035280 *
HUAWEI, CHINA UNICOM: "Restricting the number of DL EHC contexts – Option 2", 3GPP DRAFT; R3-213358, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. E-meeting; 20210816 - 20210826, 6 August 2021 (2021-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052035281 *

Also Published As

Publication number Publication date
CN115696298A (zh) 2023-02-03
EP4369753A1 (en) 2024-05-15
US20240163721A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
US11659432B2 (en) Method and apparatus for managing data communication in wireless communication network
WO2022016401A1 (zh) 通信方法和通信装置
WO2020216133A1 (zh) 一种通信方法及设备
US20230156830A1 (en) Communication method and related device
WO2021249430A1 (zh) 一种通信方法及相关设备
WO2020150876A1 (zh) 会话建立方法、终端设备和网络设备
US20230086410A1 (en) Communication method and communication apparatus
WO2021238882A1 (zh) 一种实现业务连续性的方法及装置
WO2020191767A1 (zh) 分配能力标识的方法和设备
WO2022160123A1 (zh) 接入方式选择方法、终端设备和网络设备
WO2020200103A1 (zh) 确定承载类型的方法和通信装置
WO2023005770A1 (zh) 信息指示方法和装置
WO2022160205A1 (zh) 一种数据传输方法、终端设备和网络设备
WO2021142669A1 (zh) 业务传输的方法和设备
CN115696468A (zh) 通信的方法和通信装置
WO2020147040A1 (zh) 数据复制传输配置方法、装置、芯片及计算机程序
WO2023155655A1 (zh) 算力能力感知方法和装置
WO2023015573A1 (zh) 通信方法、设备及存储介质
US20240040369A1 (en) Transmission method, terminal device, network device, and communication system
WO2022061838A1 (zh) 启用反向映射机制方法、终端设备和网络设备
US20240040655A1 (en) Parameter configuration method, terminal device and network device
WO2023216696A1 (zh) 信息处理的方法和装置
WO2024016141A1 (zh) 一种计算隧道的建立方法及相关装置
WO2022222748A1 (zh) 中继通信方法和装置
WO2023273880A1 (zh) 传输方式切换的方法和相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022848375

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022848375

Country of ref document: EP

Effective date: 20240206

NENP Non-entry into the national phase

Ref country code: DE