WO2021062708A1 - 无线通信方法和终端设备 - Google Patents

无线通信方法和终端设备 Download PDF

Info

Publication number
WO2021062708A1
WO2021062708A1 PCT/CN2019/109607 CN2019109607W WO2021062708A1 WO 2021062708 A1 WO2021062708 A1 WO 2021062708A1 CN 2019109607 W CN2019109607 W CN 2019109607W WO 2021062708 A1 WO2021062708 A1 WO 2021062708A1
Authority
WO
WIPO (PCT)
Prior art keywords
logical channel
terminal device
unicast communication
logical
information
Prior art date
Application number
PCT/CN2019/109607
Other languages
English (en)
French (fr)
Inventor
卢前溪
赵振山
林晖闵
Original Assignee
Oppo广东移动通信有限公司
Oppo广东移动通信有限公司深圳分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司, Oppo广东移动通信有限公司深圳分公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980094216.XA priority Critical patent/CN113574953B/zh
Priority to PCT/CN2019/109607 priority patent/WO2021062708A1/zh
Publication of WO2021062708A1 publication Critical patent/WO2021062708A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a wireless communication method and terminal device.
  • Terminal devices for example, vehicle-mounted terminals
  • Terminal devices can communicate with other terminals on the side link, and can also communicate with network devices on the uplink and downlink.
  • the originating device and The receiving device can configure the sending and receiving parameters according to the base station where it resides or its own pre-configuration information, which may cause conflicts in configuration parameters, thereby affecting communication performance.
  • the configuration parameters of the sending device and the receiving device is an urgent problem to be solved.
  • the embodiments of the present application provide a wireless communication method and terminal device.
  • For side-link unicast communication conflicts between the configuration parameters of the originating device and the receiving device can be avoided, thereby improving the side-link unicast communication performance.
  • a wireless communication method which is applied to sidelink unicast communication between a terminal device and another terminal device, and the method includes:
  • the terminal device uses different logical channels for sidelink unicast communication in different transmission directions, and/or, the terminal device uses different logical channels for sidelink unicast communication in different transmission modes.
  • a terminal device which is used to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each of its implementation manners.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • a device for implementing the method in the first aspect or its implementation manners.
  • the device includes a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes the method in the first aspect or its implementation manners.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • a computer program product including computer program instructions that cause a computer to execute the method in the first aspect or its implementation manners.
  • a computer program which when running on a computer, causes the computer to execute the method in the first aspect or its implementation manners.
  • the terminal device uses different logical channels for sidelink unicast communication in different transmission directions, and/or the terminal device uses different logical channels for sidelink unicast communication in different transmission modes For side-link unicast communication, the conflict between the configuration parameters of the sending device and the receiving device can be avoided, thereby improving the performance of the side-link unicast communication.
  • Fig. 1 is a schematic frame diagram of a transmission mode according to an embodiment of the present application.
  • Fig. 2 is a schematic frame diagram of another transmission mode according to an embodiment of the present application.
  • Fig. 3 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a logical channel configuration in different transmission directions according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a logical channel configuration of a different transmission mode according to an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • the embodiments of the present application can be applied to any terminal device-to-terminal device communication framework.
  • V2V vehicle to Vehicle
  • V2X vehicle to Everything
  • D2D terminal to terminal
  • the terminal in the embodiment of the present application may be any device or device configured with a physical layer and a media access control layer, and the terminal device may also be referred to as an access terminal.
  • the terminal device may also be referred to as an access terminal.
  • UE User Equipment
  • user unit user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital linear processing (Personal Digital Assistant, PDA), and a wireless Communication-enabled handheld devices, computing devices, or other linear processing devices connected to wireless modems, in-vehicle devices, wearable devices, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the embodiment of the present application takes a vehicle-mounted terminal as an example for description, but it is not limited to this.
  • the embodiments of the present application may be applicable to the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) defined two transmission modes, respectively denoted as: mode A and mode B .
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • Fig. 1 is a schematic diagram of mode A of an embodiment of the present application.
  • Fig. 2 is a schematic diagram of mode B of an embodiment of the present application.
  • the transmission resources of the vehicle-mounted terminal are allocated by the base station 110, and the vehicle-mounted terminal transmits data on the side link according to the resources allocated by the base station 110.
  • the base station 110 may allocate resources for a single transmission to the terminal, or allocate resources for semi-static transmission to the terminal.
  • the vehicle terminal (vehicle terminal 131 and vehicle terminal 132) adopts a sensing and reservation transmission mode, and the vehicle terminal independently selects and transmits on the resources of the side link Resources for data transmission.
  • the following takes the vehicle-mounted terminal 131 as an example for specific description.
  • the vehicle-mounted terminal 131 obtains a set of available transmission resources in the resource pool by means of interception, and the vehicle-mounted terminal 131 randomly selects a transmission resource from the set for data transmission.
  • the vehicle-mounted terminal 131 may also adopt a semi-static transmission mode. That is, after acquiring a transmission resource, the vehicle-mounted terminal 131 continuously uses the transmission resource in multiple transmission periods to reduce the probability of resource reselection and resource conflict.
  • the vehicle-mounted terminal 131 can carry information for reserving resources for the next transmission in the control information of this transmission, so that other terminals (for example, the vehicle-mounted terminal 132) can determine whether this resource is reserved by the user by detecting the control information of the user. And use, to achieve the purpose of reducing resource conflicts.
  • the user may be in a mixed mode, that is, the user can use mode A for resource acquisition, and at the same time You can use mode B for resource acquisition.
  • NR New Radio
  • V2X Vehicle to Everything
  • UE1 configures the transmission parameters of the bearer used for data transmission by UE1 according to the pre-configured information of the base station where it resides or UE1 itself, and the corresponding UE2 configures the reception parameters of the bearer used for data reception according to the UE implementation;
  • UE2 configures the transmission parameters of the bearer used for data transmission by UE2 according to the pre-configured information of the base station where it resides or UE2 itself, and the corresponding UE1 configures the reception parameters of the bearer used for data reception according to the implementation of the UE.
  • the present application designs a wireless communication method, which can avoid conflicts between the configuration parameters of the sending end device and the receiving end device.
  • FIG. 3 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application.
  • the method 200 is applied to sidelink unicast communication between a terminal device and another terminal device.
  • the terminal device shown in FIG. 3 may be a vehicle-mounted terminal as shown in FIG. 1 or FIG. 2.
  • the method 200 may include some or all of the following contents:
  • the terminal device uses different logical channels for sidelink unicast communication in different transmission directions, and/or, the terminal device uses different logical channels for sidelink unicast communication in different transmission modes.
  • the different transmission directions include:
  • the terminal device is used as the sender of data, or
  • the terminal device serves as the data receiver.
  • the data includes at least one of the following:
  • Service Data Adaptation Protocol Protocol Data Unit Service Data Adaptation Protocol Data Unit, SDAP PDU
  • Service Data Adaptation Protocol Service Data Unit Service Data Adaptation Protocol Service Data Unit, SDAP SDU
  • Packet Data Convergence Protocol Protocol Data Unit Packet Data Convergence Protocol Protocol Data Unit
  • PDCP PDU Packet Data Convergence Protocol Protocol Data Unit
  • RLC PDU Radio Link Control Protocol Data Unit
  • Media Access Control Protocol Data Unit Media Access Control Protocol Data Unit
  • the different transmission modes include Radio Link Control Acknowledged Mode (RLC AM) and Radio Link Control Unacknowledged Mode (RLC UM) .
  • RLC AM Radio Link Control Acknowledged Mode
  • RLC UM Radio Link Control Unacknowledged Mode
  • the terminal device uses different logical channels for sidelink unicast communication in the different transmission directions according to the first correspondence, where the first correspondence reflects different Correspondence between logical channels and different transmission directions.
  • the first correspondence is at least one of the following correspondences:
  • the first corresponding relationship configured by the network device the first corresponding relationship configured by the terminal device, the first corresponding relationship indicated by the upper layer, and the first corresponding relationship agreed upon by the protocol.
  • the upper layer indicates that the first correspondence relationship may be, for example, that the terminal device is the sender of the side link PC5 signaling (PC5signal, PC5-S), and the terminal device is based on the pre-defined correlation that can be used by the sender. Configure the parameters to determine the first correspondence.
  • the terminal device uses different logical channels for sidelink unicast communication in the different transmission modes according to the second correspondence, where the second correspondence reflects the different Correspondence between logical channels and different transmission modes.
  • the second correspondence relationship is at least one of the following correspondence relationships:
  • the second correspondence relationship configured by the network device configured by the network device, the second correspondence relationship configured by the terminal device, the second correspondence relationship indicated by the upper layer, and the second correspondence relationship agreed upon by the protocol.
  • the upper layer indicates that the second correspondence relationship may be, for example, that the terminal device is the sending end of PC5-S signaling, and the terminal device determines the second correspondence relationship according to the predefined relevant configuration parameters that can be used by the sending end. .
  • the terminal device selects the first logical channel from the first logical channel set to perform sidelink unicast communication.
  • the first logical channel may be used for sidelink unicast communication in the first radio link control (Radio Link Control, RLC) mode, where the first RLC mode is RLC AM Or RLC UM.
  • RLC Radio Link Control
  • the first RLC mode is RLC AM.
  • the first RLC mode is RLC UM.
  • UE1 determines the logical channel identifier (Identity, ID) according to the predefined range of logical channels that the sender can use, similarly because UE2 is PC5- S signaling—receiving end of direct communication request (direct_communication_request), UE2 determines the logical channel ID according to the predefined range of logical channels that can be used by the receiving end.
  • the sender can use the logical channel ID range x to y, and the receiver can use the logical channel ID range w to z. Then two UEs select specific IDs in their respective ID ranges for the side link bearers A and B. , Where there is no intersection between x ⁇ y and w ⁇ z.
  • the terminal device may select the first logical channel from the first logical channel set to perform sidelink unicast communication according to the instruction of the network device.
  • the terminal device receives first indication information sent by the network device, where the first indication information is used to instruct the terminal device to select the m-th logical channel in the first logical channel set as the first logical channel, where m is A positive integer; the terminal device selects the first logical channel from the first logical channel set to perform sidelink unicast communication according to the first indication information.
  • the terminal device may feed back the ID of the selected first logical channel to the peer device.
  • the terminal device sends second information to the peer device through PC5 radio resource control (Radio Resource Control, RRC), and the second information includes the identification ID of the first logical channel.
  • RRC Radio Resource Control
  • the terminal device may also send first configuration information to the peer device through PC5 RRC, where the first configuration information is the sending configuration information of the terminal device for the first logical channel. Therefore, the peer device can perform the sending configuration for the first logical channel based on the first configuration information.
  • the terminal device receives the first configuration information sent by the network device. That is, the first configuration information is configured by the network device.
  • the terminal device obtains a first mapping relationship from a system message of the network device or from pre-configuration information, where the first mapping relationship is a mapping relationship between a quality of service (QoS) attribute and a transmission configuration; And the terminal device determines the first configuration information according to the QoS attribute information and the first mapping relationship.
  • QoS quality of service
  • the first mapping relationship can be obtained from the system message of the network device.
  • the terminal device may determine the sending parameter of the second logical channel based on its own implementation. For example, the terminal device performs transmission configuration for the second logical channel according to its own implementation, and the second logical channel is a logical channel used by the peer device for sidelink unicast communication.
  • the terminal device may be based on the sending configuration for the second logical channel fed back by the peer device Information to determine the sending parameters of the second logical channel. For example, the terminal device receives second configuration information sent by the opposite device, where the second configuration information is the sending configuration information of the opposite device for the second logical channel, and the second logical channel is used by the opposite device for the side link A logical channel for unicast communication; and the terminal device performs transmission configuration for the second logical channel according to the second configuration information.
  • the terminal device sends third information to the network device, where the third information includes the ID of the second logical channel and/or the second configuration information.
  • the terminal device may send configuration information for the second logical channel indicated by the network device. To determine the sending parameters of the second logical channel.
  • the terminal device receives fourth information sent by the network device, where the fourth information is used to configure the sending parameters for the second logical channel, and the second logical channel is the logic used by the peer device for sidelink unicast communication. Channel; the terminal device performs transmission configuration for the second logical channel according to the fourth information.
  • the terminal device receives fourth information sent by the network device, where the fourth information includes a sending configuration for the second logical channel.
  • the terminal device obtains a second mapping relationship from a system message of the network device or from pre-configuration information, where the second mapping relationship is a mapping relationship between a QoS attribute and a transmission configuration; and the terminal The device performs transmission configuration for the second logical channel according to the QoS attribute information and the second mapping relationship.
  • the terminal device receives first information sent by the peer device through PC5 RRC signaling, the first information includes the ID of the second logical channel, and the second logical channel is used by the peer device for the side A logical channel for uplink unicast communication; and the terminal device selects the first logical channel from logical channels other than the second logical channel in the first logical channel set to perform sidelink unicast communication.
  • the terminal device may select the first logical channel from logical channels other than the second logical channel in the first logical channel set to perform sidelink unicast communication according to the instructions of the network device. .
  • the terminal device receives second indication information sent by the network device, where the second indication information is used to instruct the terminal device to select the nth logical channel from the logical channel other than the second logical channel in the first logical channel set.
  • Logical channels as the first logical channel, n is a positive integer; and the terminal device selects the first logical channel from logical channels other than the second logical channel in the first logical channel set according to the second indication information
  • the logical channel carries out side link unicast communication.
  • the terminal device may feed back the ID of the selected first logical channel to the peer device.
  • the terminal device sends the second information to the peer device through PC5 RRC, and the second information includes the ID of the first logical channel.
  • the terminal device may also send first configuration information to the peer device through PC5 RRC, where the first configuration information is the sending configuration information of the terminal device for the first logical channel. Therefore, the peer device can perform the sending configuration for the first logical channel based on the first configuration information.
  • the terminal device receives the first configuration information sent by the network device. That is, the first configuration information is configured by the network device.
  • the terminal device obtains a first mapping relationship from a system message of the network device or from pre-configuration information, where the first mapping relationship is a mapping relationship between the QoS attribute and the sending configuration; and the terminal device according to the QoS attribute information And the first mapping relationship to determine the first configuration information.
  • the first mapping relationship can be obtained from the system message of the network device.
  • the terminal device may determine the sending parameter of the second logical channel based on its own implementation. For example, the terminal device performs transmission configuration for the second logical channel according to its own implementation, and the second logical channel is a logical channel used by the peer device for sidelink unicast communication.
  • the terminal device may be based on the sending configuration for the second logical channel fed back by the peer device Information to determine the sending parameters of the second logical channel. For example, the terminal device receives second configuration information sent by the opposite device, where the second configuration information is the sending configuration information of the opposite device for the second logical channel, and the second logical channel is used by the opposite device for the side link A logical channel for unicast communication; and the terminal device performs transmission configuration for the second logical channel according to the second configuration information.
  • the terminal device sends third information to the network device, where the third information includes the ID of the second logical channel and/or the second configuration information.
  • the terminal device may send configuration information for the second logical channel indicated by the network device To determine the sending parameters of the second logical channel.
  • the terminal device receives fourth information sent by the network device, where the fourth information is used to configure the sending parameters for the second logical channel, and the second logical channel is the logic used by the peer device for sidelink unicast communication. Channel; and the terminal device performs transmission configuration for the second logical channel according to the fourth information.
  • the terminal device receives fourth information sent by the network device, where the fourth information includes a sending configuration for the second logical channel.
  • the terminal device obtains a second mapping relationship from a system message of the network device or from pre-configuration information, where the second mapping relationship is a mapping relationship between a QoS attribute and a sending configuration; and the terminal The device performs transmission configuration for the second logical channel according to the QoS attribute information and the second mapping relationship.
  • the terminal device receives first information sent by the peer device through PC5 RRC signaling, the first information includes the ID of the second logical channel, and the second logical channel is used by the peer device A logical channel for sidelink unicast communication for the first RLC mode; and the terminal device selects the first logical channel from the first logical channel set to perform the communication for the second RLC mode according to the ID of the second logical channel Side link unicast communication.
  • Example 3 if the second RLC mode is the same as the first RLC mode,
  • the terminal device selects the first logical channel from the first logical channel set to perform sidelink unicast communication for the second RLC mode.
  • the identifier of the first logical channel is the same as the identifier of the second logical channel.
  • the terminal device receives third indication information sent by the network device, where the third indication information is used to instruct the terminal device to select the qth logical channel in the first logical channel set as the first logical channel, q Is a positive integer; and the terminal device selects the first logical channel from the first logical channel set to perform sidelink unicast communication for the second RLC mode according to the third indication information.
  • Example 3 if the second RLC mode is different from the first RLC mode,
  • the terminal device selects a first logical channel from logical channels other than the second logical channel in the first logical channel set to perform sidelink unicast communication for the second RLC mode.
  • the terminal device receives fourth indication information sent by the network device, where the fourth indication information is used to instruct the terminal device to select the first logical channel from the logical channels other than the second logical channel in the first logical channel set.
  • p logical channels are used as the first logical channel, and p is a positive integer; and the terminal device selects the first logical channel from the first logical channel set according to the fourth indication information to perform the side operation for the second RLC mode Link unicast communication.
  • the terminal device may feed back the ID of the selected first logical channel to the peer device.
  • the terminal device sends the second information to the peer device through PC5 RRC, and the second information includes the ID of the first logical channel.
  • the terminal device may also send first configuration information to the peer device through PC5 RRC, where the first configuration information is the sending configuration information of the terminal device for the first logical channel. Therefore, the peer device can perform the sending configuration for the first logical channel based on the first configuration information.
  • the terminal device receives the first configuration information sent by the network device. That is, the first configuration information is configured by the network device.
  • the terminal device obtains a first mapping relationship from a system message of the network device or from pre-configuration information, where the first mapping relationship is a mapping relationship between the QoS attribute and the sending configuration; and the terminal device according to the QoS attribute information And the first mapping relationship to determine the first configuration information.
  • the first mapping relationship can be obtained from the system message of the network device.
  • the terminal device may determine the sending parameter of the second logical channel based on its own implementation. For example, the terminal device performs transmission configuration for the second logical channel according to its own implementation, and the second logical channel is a logical channel used by the peer device for sidelink unicast communication.
  • the terminal device may be based on the sending configuration for the second logical channel fed back by the peer device Information to determine the sending parameters of the second logical channel. For example, the terminal device receives second configuration information sent by the opposite end device, where the second configuration information is the sending configuration information of the opposite end device for the second logical channel, and the second logical channel is used by the opposite end device for the side link A logical channel for unicast communication; and the terminal device performs transmission configuration for the second logical channel according to the second configuration information.
  • the terminal device sends third information to the network device, where the third information includes the ID of the second logical channel and/or the second configuration information.
  • the terminal device may send configuration information for the second logical channel indicated by the network device.
  • the terminal device receives fourth information sent by the network device, where the fourth information is used to configure the sending parameters for the second logical channel, and the second logical channel is the logic used by the peer device for sidelink unicast communication. Channel; the terminal device performs transmission configuration for the second logical channel according to the fourth information.
  • the terminal device receives fourth information sent by the network device, where the fourth information includes a sending configuration for the second logical channel.
  • the terminal device obtains a second mapping relationship from a system message of the network device or from pre-configuration information, where the second mapping relationship is a mapping relationship between a QoS attribute and a transmission configuration; and the terminal The device performs transmission configuration for the second logical channel according to the QoS attribute information and the second mapping relationship.
  • the logical channel division of different transmission directions can be specifically selected through the processes 1a to 1f as shown in Fig. 4:
  • the UE 1 obtains the parameter configuration of the side link bearer A used for SDAP PDU transmission from the base station 1 or pre-configuration 1 where it resides.
  • the UE1 performs logical channel selection.
  • UE1 Since UE1 is the sender of PC5-S signaling, UE1 determines the logical channel ID according to the predefined range of logical channels that can be used by the sender.
  • the sender can use the logical channel ID range x to y, and the UE 1 selects logical channel A from x to y for sidelink unicast communication.
  • the UE 1 can select logical channel A in combination with the instruction information issued by the network device.
  • the network device can indicate which logical channel ID in the range x to y is logical channel A, thereby further restricting the logic of UE 1 Channel selection.
  • the UE 1 notifies the UE 2 of the selected logical channel A through PC5-RRC, and notifies the UE 2 of the sending parameter configuration of the corresponding logical channel A.
  • UE 2 performs logical channel selection.
  • UE2 since UE2 is the receiver of PC5-S signaling, UE2 determines the logical channel ID according to a predefined range of logical channels that can be used by the receiver.
  • the receiver can use the logical channel ID range w to z, and the UE 2 selects logical channel B from w to z for sidelink unicast communication.
  • UE 2 can select logical channel B in combination with the instruction information issued by the network device.
  • the network device can indicate which logical channel ID in the range w ⁇ z is logical channel B, thereby further restricting the logic of UE 2 Channel selection.
  • the UE 2 sends the logical channel A and the sending parameter configuration of the logical channel A to the base station 2.
  • the UE 2 configures the sending parameters for logical channel A.
  • the UE 2 performs related sending configuration for the logical channel A according to the sending parameter configuration of the logical channel A sent by the UE 1.
  • the UE 2 performs related sending configuration for the logical channel A according to the parameter configuration of the logical channel A issued by the network device.
  • the UE 2 performs related transmission configuration for the logical channel A according to its own implementation.
  • UE 1 may also perform related actions of UE 2 described above, and correspondingly, UE 2 may also perform related actions of UE 1 described above.
  • the logical channel division of different RLC modes can be specifically selected through the processes 2a to 2f as shown in FIG. 5:
  • the UE 1 obtains the parameter configuration of the side link bearer A used for SDAP PDU transmission from the base station 1 or pre-configuration 1 where it resides.
  • UE 1 performs logical channel selection for the first RLC mode.
  • UE1 Since UE1 is the sender of PC5-S signaling, UE1 determines the logical channel ID for the first RLC mode according to the predefined range of logical channels that can be used by the sender.
  • the sender can use the logical channel ID range x to y, and the UE 1 selects logical channel A from x to y to perform sidelink unicast communication for the first RLC mode.
  • the UE 1 can select logical channel A in combination with the instruction information issued by the network device.
  • the network device can indicate which logical channel ID in the range x to y is logical channel A, thereby further restricting the logic of UE 1 Channel selection.
  • UE 1 first selects logical channel A and sends it to UE 2.
  • UE 2 finds that RLC AM is used on logical channel A. If UE 2 also uses RLC AM, UE 2 can also use logical channel A (and if A is in w ⁇ z range), otherwise, UE 2 needs to select a logical channel in the range w ⁇ z.
  • the UE 1 notifies the UE 2 of the selected logical channel A through PC5-RRC, and notifies the UE 2 of the transmission parameter configuration of the corresponding logical channel A.
  • the UE 2 performs logical channel selection for the second RLC mode.
  • UE2 since UE2 is the receiver of PC5-S signaling, UE2 determines the logical channel ID according to a predefined range of logical channels that can be used by the receiver.
  • the receiver can use the logical channel ID range w to z, and the UE 2 selects logical channel B from w to z for sidelink unicast communication.
  • UE 2 can select logical channel B in combination with the instruction information issued by the network device.
  • the network device can indicate which logical channel ID in the range w ⁇ z is logical channel B, thereby further restricting the logic of UE 2 Channel selection.
  • the UE 2 sends the logical channel A and the sending parameter configuration of the logical channel A to the base station 2.
  • the UE 2 configures the sending parameters for logical channel A.
  • the UE 2 performs related sending configuration for the logical channel A according to the sending parameter configuration of the logical channel A sent by the UE 1.
  • the UE 2 performs related sending configuration for the logical channel A according to the parameter configuration of the logical channel A issued by the network device.
  • the UE 2 performs related transmission configuration for the logical channel A according to its own implementation.
  • UE 1 may also perform related actions of UE 2 described above, and correspondingly, UE 2 may also perform related actions of UE 1 described above.
  • the terminal device uses different logical channels for sidelink unicast communication in different transmission directions, and/or the terminal device uses different logical channels for sidelinks in different transmission modes.
  • side-link unicast communication it is possible to avoid conflicts between the configuration parameters of the sending device and the receiving device, thereby improving the performance of the side-link unicast communication.
  • FIG. 6 shows a schematic block diagram of a terminal device 300 according to an embodiment of the present application. As shown in FIG. 6, the terminal device 300 is used to perform sidelink unicast communication with another terminal device, and the terminal device 300 includes:
  • the communication unit 310 is configured to use different logical channels for side-link unicast communication in different transmission directions, and/or, the communication unit 310 is also configured to use different logical channels for side-link unicast communication in different transmission modes Road unicast communication.
  • the different transmission directions include:
  • the terminal device serves as the data sender, or,
  • the terminal device serves as the data receiver.
  • the data includes at least one of the following:
  • SDAP PDU SDAP SDU
  • PDCP PDU PDCP PDU
  • RLC PDU MAC PDU
  • the different transmission modes include RLC AM and RLC UM.
  • the communication unit 310 is specifically configured to:
  • the first correspondence different logical channels are used for sidelink unicast communication in the different transmission directions, where the first correspondence reflects the correspondence between different logical channels and different transmission directions.
  • the first correspondence is at least one of the following correspondences:
  • the first corresponding relationship configured by the network device the first corresponding relationship configured by the terminal device, the first corresponding relationship indicated by the upper layer, and the first corresponding relationship agreed upon by the protocol.
  • the communication unit 310 is specifically configured to:
  • the second correspondence different logical channels are used for the sidelink unicast communication of the different transmission modes, where the second correspondence reflects the correspondence between the different logical channels and the different transmission modes.
  • the second correspondence relationship is at least one of the following correspondence relationships:
  • the second correspondence relationship configured by the network device configured by the network device, the second correspondence relationship configured by the terminal device, the second correspondence relationship indicated by the upper layer, and the second correspondence relationship agreed upon by the protocol.
  • the communication unit 310 is further configured to:
  • the first logical channel is selected from the first logical channel set to perform sidelink unicast communication.
  • the communication unit 310 is further configured to:
  • the first logical channel is selected from the first logical channel set for sidelink unicast communication, where the first logical channel is used for sidelink unicast communication for the first RLC mode, and the first RLC mode is RLC AM or RLC UM.
  • the communication unit 310 is specifically configured to:
  • first indication information sent by a network device, where the first indication information is used to instruct the terminal device to select the m-th logical channel in the first logical channel set as the first logical channel, and m is a positive integer;
  • the first logical channel is selected from the first logical channel set to perform sidelink unicast communication according to the first indication information.
  • the communication unit 310 is further configured to:
  • the first logical channel is selected from logical channels other than the second logical channel in the first logical channel set to perform sidelink unicast communication.
  • the communication unit 310 is specifically configured to:
  • Receive second indication information sent by a network device where the second indication information is used to instruct the terminal device to select the nth logical channel as the first logical channel set from logical channels other than the second logical channel in the first logical channel set A logical channel, n is a positive integer;
  • the first logical channel is selected from logical channels other than the second logical channel in the first logical channel set to perform sidelink unicast communication.
  • the communication unit 310 is further configured to:
  • the first information includes the ID of the second logical channel, and the second logical channel is used by the peer device to perform the side link for the first RLC mode Logical channel for unicast communication;
  • the first logical channel is selected from the first logical channel set to perform sidelink unicast communication for the second RLC mode.
  • the second RLC mode is the same as the first RLC mode
  • the communication unit 310 is specifically used for:
  • the first logical channel is selected from the first logical channel set to perform sidelink unicast communication for the second RLC mode.
  • the identifier of the first logical channel is the same as the identifier of the second logical channel.
  • the communication unit 310 is specifically configured to:
  • the first logical channel is selected from the first logical channel set to perform sidelink unicast communication for the second RLC mode.
  • the communication unit 310 is specifically used for:
  • the first logical channel is selected from logical channels other than the second logical channel in the first logical channel set to perform sidelink unicast communication for the second RLC mode.
  • the communication unit 310 is specifically configured to:
  • Receive fourth instruction information sent by the network device where the fourth instruction information is used to instruct the terminal device to select the p-th logical channel from the logical channels in the first logical channel set except the second logical channel as the first logical channel A logical channel, p is a positive integer;
  • the first logical channel is selected from the first logical channel set to perform sidelink unicast communication for the second RLC mode.
  • the communication unit 310 is further configured to send second information to the peer device through PC5 RRC, where the second information includes the ID of the first logical channel.
  • the communication unit 310 is further configured to send first configuration information to the peer device through PC5 RRC, where the first configuration information is the sending configuration information of the terminal device for the first logical channel.
  • the communication unit 310 is further configured to receive the first configuration information sent by the network device.
  • the terminal device 300 further includes: a processing unit 320, where:
  • the communication unit 310 is further configured to obtain a first mapping relationship from a system message of a network device or from pre-configuration information, where the first mapping relationship is a mapping relationship between QoS attributes and sending configurations;
  • the processing unit 320 is configured to determine the first configuration information according to the QoS attribute information and the first mapping relationship.
  • the terminal device 300 further includes:
  • the processing unit 320 is configured to perform transmission configuration for the second logical channel according to its own implementation, and the second logical channel is a logical channel used by the peer device for sidelink unicast communication.
  • the terminal device 300 further includes a processing unit 320,
  • the communication unit 310 is also configured to receive second configuration information sent by the opposite end device, where the second configuration information is sending configuration information of the opposite end device for a second logical channel, and the second logical channel is used by the opposite end device for side travel.
  • the processing unit 320 is further configured to perform transmission configuration for the second logical channel according to the second configuration information.
  • the communication unit 310 is further configured to send third information to the network device, where the third information includes the ID of the second logical channel and/or the second configuration information.
  • the terminal device 300 further includes a processing unit 320,
  • the communication unit 310 is further configured to receive fourth information sent by the network device, and the fourth information is used to configure sending parameters for the second logical channel, and the second logical channel is used by the peer device for sidelink unicast communication.
  • Logical channel ;
  • the processing unit 320 is configured to perform transmission configuration for the second logical channel according to the fourth information.
  • the communication unit 310 is further configured to receive fourth information sent by the network device, where the fourth information includes a sending configuration for the second logical channel.
  • the terminal device 300 further includes: a processing unit 320,
  • the communication unit 310 is further configured to obtain a second mapping relationship from a system message of the network device or from pre-configuration information, where the second mapping relationship is a mapping relationship between QoS attributes and sending configurations;
  • the processing unit 320 is configured to perform transmission configuration for the second logical channel according to the QoS attribute information and the second mapping relationship.
  • terminal device 300 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 300 are to implement the method shown in FIG. 3, respectively.
  • the corresponding process of the terminal equipment in 200 will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a communication device 400 provided by an embodiment of the present application.
  • the communication device 400 shown in FIG. 7 includes a processor 410, and the processor 410 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 400 may further include a memory 420.
  • the processor 410 may call and run a computer program from the memory 420 to implement the method in the embodiment of the present application.
  • the memory 420 may be a separate device independent of the processor 410, or may be integrated in the processor 410.
  • the communication device 400 may further include a transceiver 430, and the processor 410 may control the transceiver 430 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 430 may include a transmitter and a receiver.
  • the transceiver 430 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 400 may specifically be a network device of an embodiment of the application, and the communication device 400 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For the sake of brevity, it will not be repeated here. .
  • the communication device 400 may specifically be a terminal device of an embodiment of the present application, and the communication device 400 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, it will not be repeated here. .
  • Fig. 8 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 500 shown in FIG. 8 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the apparatus 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the device 500 may further include an input interface 530.
  • the processor 510 can control the input interface 530 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the device 500 may further include an output interface 540.
  • the processor 510 can control the output interface 540 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the network equipment in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • details are not described herein again.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 9 is a schematic block diagram of a communication system 600 provided by an embodiment of the present application. As shown in FIG. 9, the communication system 600 includes a terminal device 610 and a network device 620.
  • the terminal device 610 may be used to implement the corresponding functions implemented by the terminal device in the foregoing method, and for the sake of brevity, details are not described herein again.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the sake of brevity it is not here. Go into details again.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法和终端设备,对于侧行链路单播通信,能够避免发端设备与收端设备所配置参数的冲突,从而提高侧行链路单播通信性能。该无线通信方法应用于终端设备与另一终端设备之间的侧行链路单播通信,该无线通信方法包括:终端设备使用不同的逻辑信道用于不同传输方向的侧行链路单播通信,和/或,该终端设备使用不同的逻辑信道用于不同传输模式的侧行链路单播通信。

Description

无线通信方法和终端设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法和终端设备。
背景技术
终端设备(例如,车载终端)既可以在侧行链路上与其他终端进行通信,又可以在上下行链路上与网络设备进行通信,然而,对于侧行链路单播通信,发端设备与收端设备都可以根据其驻留的基站或者其自身的预配置信息进行发送参数和接收参数的配置,从而可能导致配置参数的冲突,从而影响通信性能。对于侧行链路单播通信,如何避免发端设备与收端设备所配置参数的冲突是一个亟待解决的问题。
发明内容
本申请实施例提供了一种无线通信方法和终端设备,对于侧行链路单播通信,能够避免发端设备与收端设备所配置参数的冲突,从而提高侧行链路单播通信性能。
第一方面,提供了一种无线通信方法,该方法应用于终端设备与另一终端设备之间的侧行链路单播通信,该方法包括:
终端设备使用不同的逻辑信道用于不同传输方向的侧行链路单播通信,和/或,该终端设备使用不同的逻辑信道用于不同传输模式的侧行链路单播通信。
第二方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第三方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种装置,用于实现上述第一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
通过上述技术方案,终端设备使用不同的逻辑信道用于不同传输方向的侧行链路单播通信,和/或,终端设备使用不同的逻辑信道用于不同传输模式的侧行链路单播通信,对于侧行链路单播通信,能够避免发端设备与收端设备所配置参数的冲突,从而提高侧行链路单播通信性能。
附图说明
图1是本申请实施例的一种传输模式的示意性框架图。
图2是本申请实施例的另一种传输模式的示意性框架图。
图3是根据本申请实施例提供的一种无线通信方法的示意性流程图。
图4是根据本申请实施例提供的一种不同传输方向的逻辑信道配置示意图。
图5是根据本申请实施例提供的一种不同传输模式的逻辑信道配置示意图。
图6是根据本申请实施例提供的一种终端设备的示意性框图。
图7是根据本申请实施例提供的一种通信设备的示意性框图。
图8是根据本申请实施例提供的一种装置的示意性框图。
图9是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以适用于任何终端设备到终端设备的通信框架。
例如,车辆到车辆(Vehicle to Vehicle,V2V)、车辆到其他设备(Vehicle to Everything,V2X)、终端到终端(Device to Device,D2D)等。
其中,本申请实施例中的终端可以是任何配置有物理层和媒体接入控制层的设备或装置,终端设备也可称为接入终端。例如,用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字线性处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它线性处理设备、车载设备、可穿戴设备等等。本申请实施例以车载终端为例进行说明,但并不限于此。
可选地,在本申请的一些实施例中,本申请实施例可以适用于第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)定义了两种传输模式,分别记为:模式A和模式B。
图1是本申请实施例的模式A的示意图。图2是本申请实施例的模式B的示意图。
在图1所示的模式A中,车载终端(车载终端121和车载终端122)的传输资源是由基站110分配的,车载终端根据基站110分配的资源在侧行链路上进行数据的发送。具体地,基站110可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。
在图2所示的模式B中,车载终端(车载终端131和车载终端132)采用侦听(sensing)加预留(reservation)的传输方式,车载终端在侧行链路的资源上自主选取传输资源进行数据传输。
下面以车载终端131为例进行具体说明。
车载终端131在资源池中通过侦听的方式获取可用的传输资源集合,车载终端131从该集合中随机选取一个传输资源进行数据的传输。
由于车联网系统中的业务具有周期性特征,本申请实施例中,车载终端131还可以采用半静态传输的方式。即车载终端131获取一个传输资源后,在多个传输周期中持续的使用该传输资源,以降低资源重选以及资源冲突的概率。
车载终端131可以在本次传输的控制信息中携带预留下次传输资源的信息,使得其他终端(例如,车载终端132)可以通过检测该用户的控制信息判断这块资源是否被该用户预留和使用,达到降低资源冲突的目的。
需要说明的是,在新空口(New Radio,NR)车辆到其他设备(Vehicle to Everything,V2X)中,用户可能处在一个混合的模式下,即既可以使用模式A进行资源的获取,又同时可以使用模式B进行资源的获取。
对于单播链路的配置,采用一种对称式的方式进行配置:
UE1根据其驻留的基站或者UE1自身的预配置的信息对UE1进行数据发送使用的承载进行发送参数配置,相对应的UE2根据UE实现对进行数据接收使用的该承载进行接 收参数的配置;
UE2根据其驻留的基站或者UE2自身的预配置的信息对UE2进行数据发送使用的承载进行发送参数配置,相对应的UE1根据UE实现对进行数据接收使用的该承载进行接收参数的配置。
基于上述技术问题,本申请设计了一种无线通信方法,可以避免发端设备与收端设备所配置参数的冲突。
图3是本申请实施例的无线通信方法200的示意性流程图。该方法200应用于终端设备与另一终端设备之间的侧行链路单播通信。图3中所示的终端设备可以是如图1或图2所示的车载终端。
如图3所示,该方法200可以包括如下内容中的部分或者全部:
S210,终端设备使用不同的逻辑信道用于不同传输方向的侧行链路单播通信,和/或,该终端设备使用不同的逻辑信道用于不同传输模式的侧行链路单播通信。
可选地,在本申请实施例中,该不同传输方向包括:
该终端设备作为数据的发送端,或
该终端设备作为数据的接收端。
可选地,该数据包括以下中的至少一种:
服务数据适应协议协议数据单元(Service Data Adaptation Protocol Protocol Data Unit,SDAP PDU)、服务数据适应协议服务数据单元(Service Data Adaptation Protocol service data unit,SDAP SDU)、分组数据汇聚协议协议数据单元(Packet Data Convergence Protocol Protocol Data Unit,PDCP PDU)、无线链路控制协议数据单元(Radio Link Control Protocol Data Unit,RLC PDU)、以及媒体接入控制协议数据单元(Media Access Control Protocol Data Unit,MAC PDU)。
可选地,在本申请实施例中,该不同传输模式包括无线链路控制确认模式(Radio Link Control Acknowledged Mode,RLC AM)和无线链路控制非确认模式(Radio Link Control Unacknowledged Mode,RLC UM)。
可选地,在本申请实施例中,该终端设备根据第一对应关系,使用不同的逻辑信道用于该不同传输方向的侧行链路单播通信,其中,该第一对应关系反映不同的逻辑信道与不同的传输方向的对应关系。
可选地,该第一对应关系为以下对应关系中的至少一种:
网络设备配置的该第一对应关系,该终端设备配置的该第一对应关系,上层指示的该第一对应关系,协议约定的该第一对应关系。
需要说明的是,上层指示该第一对应关系例如可以是:终端设备为侧行链路PC5信令(PC5signal,PC5-S)的发送端,该终端设备根据预定义的发送端可以使用的相关配置参数,确定该第一对应关系。
可选地,在本申请实施例中,该终端设备根据第二对应关系,使用不同的逻辑信道用于该不同传输模式的侧行链路单播通信,其中,该第二对应关系反映不同的逻辑信道与不同的传输模式的对应关系。
可选地,该第二对应关系为以下对应关系中的至少一种:
网络设备配置的该第二对应关系,该终端设备配置的该第二对应关系,上层指示的该第二对应关系,协议约定的该第二对应关系。
需要说明的是,上层指示该第二对应关系例如可以是:终端设备为PC5-S信令的发送端,该终端设备根据预定义的发送端可以使用的相关配置参数,确定该第二对应关系。
可选地,作为示例1,该终端设备从第一逻辑信道集合中选择第一逻辑信道进行侧行链路单播通信。
可选地,在示例1中,该第一逻辑信道可以用于针对第一无线链路控制(Radio Link Control,RLC)模式的侧行链路单播通信,其中,第一RLC模式为RLC AM或者RLC UM。
例如,该第一RLC模式为RLC AM。
又例如,该第一RLC模式为RLC UM。
假设UE1是PC5-S信令—直接通信请求(direct_communication_request)的发送端,UE1根据预定义的发送端可以使用的逻辑信道的范围确定逻辑信道标识(Identity,ID),类似的由于UE2是PC5-S信令—直接通信请求(direct_communication_request)的接收端,UE2根据预定义的接收端可以使用的逻辑信道的范围确定逻辑信道ID。
例如,发送端可以使用逻辑信道ID范围x~y,接收端可以使用逻辑信道ID范围w~z,则两个UE分别在各自的ID范围中选择特定ID用于侧行链路承载A和B,这里x~y与w~z没有交集。
可选地,在示例1中,该终端设备可以根据网络设备的指示从第一逻辑信道集合中选择第一逻辑信道进行侧行链路单播通信。
具体地,该终端设备接收网络设备发送的第一指示信息,该第一指示信息用于指示该终端设备选择该第一逻辑信道集合中的第m个逻辑信道作为该第一逻辑信道,m为正整数;该终端设备根据该第一指示信息从该第一逻辑信道集合中选择该第一逻辑信道进行侧行链路单播通信。
可选地,在示例1中,该终端设备可以将所选择的第一逻辑信道的ID反馈给对端设备。
具体地,该终端设备通过PC5无线资源控制(Radio Resource Control,RRC)向对端设备发送第二信息,该第二信息包括该第一逻辑信道的标识ID。
可选地,在示例1中,该终端设备还可以通过PC5 RRC向对端设备发送第一配置信息,该第一配置信息为该终端设备针对该第一逻辑信道的发送配置信息。从而,对端设备可以基于该第一配置信息,进行针对该第一逻辑信道的发送配置。
可选地,该终端设备接收网络设备发送的该第一配置信息。即该第一配置信息为网络设备配置的。
可选地,该终端设备从网络设备的系统消息或者从预配置信息中获取第一映射关系,该第一映射关系为服务质量(Quality of Service,QoS)属性与发送配置之间的映射关系;以及该终端设备根据QoS属性信息和该第一映射关系,确定该第一配置信息。
对于处于空闲态或者非激活态的终端设备,可以从网络设备的系统消息中获取该第一映射关系。
可选地,在示例1中,在对端设备选择第二逻辑信道用于侧行链路单播通信的情况下,该终端设备可以基于自身实现确定该第二逻辑信道的发送参数。例如,该终端设备根据其自身实现,进行针对第二逻辑信道的发送配置,该第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道。
可选地,在示例1中,在对端设备选择第二逻辑信道用于侧行链路单播通信的情况下,该终端设备可以基于对端设备反馈的针对该第二逻辑信道的发送配置信息,确定该第二逻辑信道的发送参数。例如,该终端设备接收对端设备发送的第二配置信息,该第二配置信息为对端设备针对第二逻辑信道的发送配置信息,该第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;以及该终端设备根据该第二配置信息,进行针对该第二逻辑信道的发送配置。
可选地,在示例1中,该终端设备向网络设备发送第三信息,该第三信息包括该第二逻辑信道的ID和/或该第二配置信息。
可选地,在示例1中,在对端设备选择第二逻辑信道用于侧行链路单播通信的情况下,该终端设备可以基于网络设备指示的针对该第二逻辑信道的发送配置信息,确定该第二逻辑信道的发送参数。
例如,该终端设备接收网络设备发送的第四信息,该第四信息用于配置针对第二逻辑信道的发送参数,该第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;该 终端设备根据该第四信息,进行针对该第二逻辑信道的发送配置。
可选地,在示例1中,该终端设备接收网络设备发送的第四信息,该第四信息包括针对该第二逻辑信道的发送配置。
可选地,在示例1中,该终端设备从网络设备的系统消息或者从预配置信息中获取第二映射关系,该第二映射关系为QoS属性与发送配置之间的映射关系;以及该终端设备根据QoS属性信息和该第二映射关系,进行针对该第二逻辑信道的发送配置。
可选地,作为示例2,该终端设备接收对端设备通过PC5 RRC信令发送的第一信息,该第一信息包括第二逻辑信道的ID,该第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;以及该终端设备从第一逻辑信道集合中除该第二逻辑信道之外的逻辑信道中选择第一逻辑信道进行侧行链路单播通信。
可选地,在示例2中,该终端设备可以根据网络设备的指示从第一逻辑信道集合中除该第二逻辑信道之外的逻辑信道中选择第一逻辑信道进行侧行链路单播通信。
具体地,该终端设备接收网络设备发送的第二指示信息,该第二指示信息用于指示该终端设备从该第一逻辑信道集合中除该第二逻辑信道之外的逻辑信道中选择第n个逻辑信道作为该第一逻辑信道,n为正整数;以及该终端设备根据该第二指示信息,从该第一逻辑信道集合中除该第二逻辑信道之外的逻辑信道中选择该第一逻辑信道进行侧行链路单播通信。
可选地,在示例2中,该终端设备可以将所选择的第一逻辑信道的ID反馈给对端设备。
具体地,该终端设备通过PC5 RRC向对端设备发送第二信息,该第二信息包括该第一逻辑信道的ID。
可选地,在示例2中,该终端设备还可以通过PC5 RRC向对端设备发送第一配置信息,该第一配置信息为该终端设备针对该第一逻辑信道的发送配置信息。从而,对端设备可以基于该第一配置信息,进行针对该第一逻辑信道的发送配置。
可选地,该终端设备接收网络设备发送的该第一配置信息。即该第一配置信息为网络设备配置的。
可选地,该终端设备从网络设备的系统消息或者从预配置信息中获取第一映射关系,该第一映射关系为QoS属性与发送配置之间的映射关系;以及该终端设备根据QoS属性信息和该第一映射关系,确定该第一配置信息。
对于处于空闲态或者非激活态的终端设备,可以从网络设备的系统消息中获取该第一映射关系。
可选地,在示例2中,在对端设备选择第二逻辑信道用于侧行链路单播通信的情况下,该终端设备可以基于自身实现确定该第二逻辑信道的发送参数。例如,该终端设备根据其自身实现,进行针对第二逻辑信道的发送配置,该第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道。
可选地,在示例2中,在对端设备选择第二逻辑信道用于侧行链路单播通信的情况下,该终端设备可以基于对端设备反馈的针对该第二逻辑信道的发送配置信息,确定该第二逻辑信道的发送参数。例如,该终端设备接收对端设备发送的第二配置信息,该第二配置信息为对端设备针对第二逻辑信道的发送配置信息,该第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;以及该终端设备根据该第二配置信息,进行针对该第二逻辑信道的发送配置。
可选地,在示例2中,该终端设备向网络设备发送第三信息,该第三信息包括该第二逻辑信道的ID和/或该第二配置信息。
可选地,在示例2中,在对端设备选择第二逻辑信道用于侧行链路单播通信的情况下,该终端设备可以基于网络设备指示的针对该第二逻辑信道的发送配置信息,确定该第二逻辑信道的发送参数。
例如,该终端设备接收网络设备发送的第四信息,该第四信息用于配置针对第二逻辑信道的发送参数,该第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;以及该终端设备根据该第四信息,进行针对该第二逻辑信道的发送配置。
可选地,在示例2中,该终端设备接收网络设备发送的第四信息,该第四信息包括针对该第二逻辑信道的发送配置。
可选地,在示例2中,该终端设备从网络设备的系统消息或者从预配置信息中获取第二映射关系,该第二映射关系为QoS属性与发送配置之间的映射关系;以及该终端设备根据QoS属性信息和该第二映射关系,进行针对该第二逻辑信道的发送配置。
可选地,作为示例3,该终端设备接收对端设备通过PC5 RRC信令发送的第一信息,该第一信息包括第二逻辑信道的ID,且该第二逻辑信道为对端设备用于进行针对第一RLC模式的侧行链路单播通信的逻辑信道;以及该终端设备根据该第二逻辑信道的ID,从第一逻辑信道集合中选择第一逻辑信道进行针对第二RLC模式的侧行链路单播通信。
可选地,在示例3中,若该第二RLC模式与该第一RLC模式相同,
该终端设备从该第一逻辑信道集合中选择该第一逻辑信道进行针对该第二RLC模式的侧行链路单播通信。
例如,该第一逻辑信道的标识与该第二逻辑信道的标识相同。
可选地,该终端设备接收网络设备发送的第三指示信息,该第三指示信息用于指示该终端设备选择该第一逻辑信道集合中的第q个逻辑信道作为该第一逻辑信道,q为正整数;以及该终端设备根据该第三指示信息从该第一逻辑信道集合中选择该第一逻辑信道进行针对该第二RLC模式的侧行链路单播通信。
可选地,在示例3中,若该第二RLC模式与该第一RLC模式不同,
该终端设备从该第一逻辑信道集合中除该第二逻辑信道之外的逻辑信道中选择第一逻辑信道进行针对该第二RLC模式的侧行链路单播通信。
可选地,该终端设备接收网络设备发送的第四指示信息,该第四指示信息用于指示该终端设备从该第一逻辑信道集合中除该第二逻辑信道之外的逻辑信道中选择第p个逻辑信道作为该第一逻辑信道,p为正整数;以及该终端设备根据该第四指示信息从该第一逻辑信道集合中选择该第一逻辑信道进行针对该第二RLC模式的侧行链路单播通信。
可选地,在示例3中,该终端设备可以将所选择的第一逻辑信道的ID反馈给对端设备。
具体地,该终端设备通过PC5 RRC向对端设备发送第二信息,该第二信息包括该第一逻辑信道的ID。
可选地,在示例3中,该终端设备还可以通过PC5 RRC向对端设备发送第一配置信息,该第一配置信息为该终端设备针对该第一逻辑信道的发送配置信息。从而,对端设备可以基于该第一配置信息,进行针对该第一逻辑信道的发送配置。
可选地,该终端设备接收网络设备发送的该第一配置信息。即该第一配置信息为网络设备配置的。
可选地,该终端设备从网络设备的系统消息或者从预配置信息中获取第一映射关系,该第一映射关系为QoS属性与发送配置之间的映射关系;以及该终端设备根据QoS属性信息和该第一映射关系,确定该第一配置信息。
对于处于空闲态或者非激活态的终端设备,可以从网络设备的系统消息中获取该第一映射关系。
可选地,在示例3中,在对端设备选择第二逻辑信道用于侧行链路单播通信的情况下,该终端设备可以基于自身实现确定该第二逻辑信道的发送参数。例如,该终端设备根据其自身实现,进行针对第二逻辑信道的发送配置,该第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道。
可选地,在示例3中,在对端设备选择第二逻辑信道用于侧行链路单播通信的情况 下,该终端设备可以基于对端设备反馈的针对该第二逻辑信道的发送配置信息,确定该第二逻辑信道的发送参数。例如,该终端设备接收对端设备发送的第二配置信息,该第二配置信息为对端设备针对第二逻辑信道的发送配置信息,该第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;以及该终端设备根据该第二配置信息,进行针对该第二逻辑信道的发送配置。
可选地,在示例3中,该终端设备向网络设备发送第三信息,该第三信息包括该第二逻辑信道的ID和/或该第二配置信息。
可选地,在示例3中,在对端设备选择第二逻辑信道用于侧行链路单播通信的情况下,该终端设备可以基于网络设备指示的针对该第二逻辑信道的发送配置信息,确定该第二逻辑信道的发送参数。例如,该终端设备接收网络设备发送的第四信息,该第四信息用于配置针对第二逻辑信道的发送参数,该第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;该终端设备根据该第四信息,进行针对该第二逻辑信道的发送配置。
可选地,在示例3中,该终端设备接收网络设备发送的第四信息,该第四信息包括针对该第二逻辑信道的发送配置。
可选地,在示例3中,该终端设备从网络设备的系统消息或者从预配置信息中获取第二映射关系,该第二映射关系为QoS属性与发送配置之间的映射关系;以及该终端设备根据QoS属性信息和该第二映射关系,进行针对该第二逻辑信道的发送配置。
以下结合实施例一至实施例二详述无线通信方法200中的方案。
实施例一,不同传输方向的逻辑信道划分,具体可以通过如图4所示流程1a~1f进行逻辑信道选择:
1a.UE 1从驻留的基站1或者预配置1中获得用于SDAP PDU发送的侧行链路承载A的参数配置。
1b.UE 1进行逻辑信道选择。
由于UE 1是PC5-S信令的发送方,UE1根据预定义的发送方可以使用的逻辑信道的范围确定逻辑信道ID。
例如,发送方可以使用逻辑信道ID范围x~y,则UE 1在x~y中选择逻辑信道A进行侧行链路单播通信。
在选择过程中,UE 1可以结合网络设备下发的指示信息选择逻辑信道A,例如网络设备可以指示范围x~y中的第几个逻辑信道ID为逻辑信道A,从而进一步限制UE 1的逻辑信道选择。
1c.UE 1将选择的逻辑信道A通过PC5-RRC通知UE 2,并将相对应的逻辑信道A的发送参数配置通知给UE 2。
1d.UE 2进行逻辑信道选择。
可选地,由于UE 2是PC5-S信令的接收方,UE2根据预定义的接收方可以使用的逻辑信道的范围确定逻辑信道ID。
例如,接收方可以使用逻辑信道ID范围w~z,则UE 2在w~z中选择逻辑信道B进行侧行链路单播通信。
在选择过程中,UE 2可以结合网络设备下发的指示信息选择逻辑信道B,例如网络设备可以指示范围w~z中的第几个逻辑信道ID为逻辑信道B,从而进一步限制UE 2的逻辑信道选择。
1e.UE 2向基站2发送逻辑信道A和逻辑信道A的发送参数配置。
1f.UE 2进行针对逻辑信道A的发送参数配置。
可选地,UE 2根据UE 1发来的逻辑信道A的发送参数配置进行针对逻辑信道A的相关发送配置。
可选地,UE 2根据网络设备下发的逻辑信道A的参数配置进行针对逻辑信道A的相关发送配置。
可选地,UE 2根据基于自身实现进行针对逻辑信道A的相关发送配置。
需要说明的是,UE 1也可以执行上述UE 2的相关动作,相应的,UE 2也可以执行上述UE 1的相关动作。
实施例二,不同RLC模式的逻辑信道划分,具体可以通过如图5所示流程2a~2f进行逻辑信道选择:
2a.UE 1从驻留的基站1或者预配置1中获得用于SDAP PDU发送的侧行链路承载A的参数配置。
2b.UE 1进行针对第一RLC模式的逻辑信道选择。
由于UE 1是PC5-S信令的发送方,UE1根据预定义的发送方可以使用的逻辑信道的范围确定针对第一RLC模式的逻辑信道ID。
例如,发送方可以使用逻辑信道ID范围x~y,则UE 1在x~y中选择逻辑信道A进行针对第一RLC模式的侧行链路单播通信。
在选择过程中,UE 1可以结合网络设备下发的指示信息选择逻辑信道A,例如网络设备可以指示范围x~y中的第几个逻辑信道ID为逻辑信道A,从而进一步限制UE 1的逻辑信道选择。
例如UE 1首先选择了逻辑信道A,并发送给UE 2,UE 2发现逻辑信道A上使用了RLC AM,如果UE 2也使用RLC AM,UE 2可以也使用逻辑信道A(且如果A在w~z的范围内),否则UE 2就需要另外在范围w~z中选择一个逻辑信道。
2c.UE 1将选择的逻辑信道A通过PC5-RRC通知UE 2,并将相对应的逻辑信道A的发送参数配置通知给UE 2。
2d.UE 2进行针对第二RLC模式的逻辑信道选择。
可选地,由于UE 2是PC5-S信令的接收方,UE2根据预定义的接收方可以使用的逻辑信道的范围确定逻辑信道ID。
例如,接收方可以使用逻辑信道ID范围w~z,则UE 2在w~z中选择逻辑信道B进行侧行链路单播通信。
在选择过程中,UE 2可以结合网络设备下发的指示信息选择逻辑信道B,例如网络设备可以指示范围w~z中的第几个逻辑信道ID为逻辑信道B,从而进一步限制UE 2的逻辑信道选择。
2e.UE 2向基站2发送逻辑信道A和逻辑信道A的发送参数配置。
2f.UE 2进行针对逻辑信道A的发送参数配置。
可选地,UE 2根据UE 1发来的逻辑信道A的发送参数配置进行针对逻辑信道A的相关发送配置。
可选地,UE 2根据网络设备下发的逻辑信道A的参数配置进行针对逻辑信道A的相关发送配置。
可选地,UE 2根据基于自身实现进行针对逻辑信道A的相关发送配置。
需要说明的是,UE 1也可以执行上述UE 2的相关动作,相应的,UE 2也可以执行上述UE 1的相关动作。
因此,在本申请实施例中,终端设备使用不同的逻辑信道用于不同传输方向的侧行链路单播通信,和/或,终端设备使用不同的逻辑信道用于不同传输模式的侧行链路单播通信,对于侧行链路单播通信,能够避免发端设备与收端设备所配置参数的冲突,从而提高侧行链路单播通信性能。
图6示出了根据本申请实施例的终端设备300的示意性框图。如图6所示,该终端设备300用于与另一终端设备进行侧行链路单播通信,该终端设备300包括:
通信单元310,用于使用不同的逻辑信道用于不同传输方向的侧行链路单播通信,和/或,该通信单元310还用于使用不同的逻辑信道用于不同传输模式的侧行链路单播通信。
可选地,该不同传输方向包括:
该终端设备作为数据的发送端,或者,
该终端设备作为数据的接收端。
可选地,该数据包括以下中的至少一种:
SDAP PDU、SDAP SDU、PDCP PDU、RLC PDU、以及MAC PDU。
可选地,该不同传输模式包括RLC AM和RLC UM。
可选地,该通信单元310具体用于:
根据第一对应关系,使用不同的逻辑信道用于该不同传输方向的侧行链路单播通信,其中,该第一对应关系反映不同的逻辑信道与不同的传输方向的对应关系。
可选地,该第一对应关系为以下对应关系中的至少一种:
网络设备配置的该第一对应关系,该终端设备配置的该第一对应关系,上层指示的该第一对应关系,协议约定的该第一对应关系。
可选地,该通信单元310具体用于:
根据第二对应关系,使用不同的逻辑信道用于该不同传输模式的侧行链路单播通信,其中,该第二对应关系反映不同的逻辑信道与不同的传输模式的对应关系。
可选地,该第二对应关系为以下对应关系中的至少一种:
网络设备配置的该第二对应关系,该终端设备配置的该第二对应关系,上层指示的该第二对应关系,协议约定的该第二对应关系。
可选地,该通信单元310还用于:
从第一逻辑信道集合中选择第一逻辑信道进行侧行链路单播通信。
可选地,该通信单元310还用于:
从第一逻辑信道集合中选择第一逻辑信道进行侧行链路单播通信,其中,该第一逻辑信道用于针对第一RLC模式的侧行链路单播通信,该第一RLC模式为RLC AM或者RLC UM。
可选地,该通信单元310具体用于:
接收网络设备发送的第一指示信息,该第一指示信息用于指示该终端设备选择该第一逻辑信道集合中的第m个逻辑信道作为该第一逻辑信道,m为正整数;
根据该第一指示信息从该第一逻辑信道集合中选择该第一逻辑信道进行侧行链路单播通信。
可选地,该通信单元310还用于:
接收对端设备通过PC5 RRC信令发送的第一信息,该第一信息包括第二逻辑信道的ID,该第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;
从第一逻辑信道集合中除该第二逻辑信道之外的逻辑信道中选择第一逻辑信道进行侧行链路单播通信。
可选地,该通信单元310具体用于:
接收网络设备发送的第二指示信息,该第二指示信息用于指示该终端设备从该第一逻辑信道集合中除该第二逻辑信道之外的逻辑信道中选择第n个逻辑信道作为该第一逻辑信道,n为正整数;
根据该第二指示信息,从该第一逻辑信道集合中除该第二逻辑信道之外的逻辑信道中选择该第一逻辑信道进行侧行链路单播通信。
可选地,该通信单元310还用于:
接收对端设备通过PC5 RRC信令发送的第一信息,该第一信息包括第二逻辑信道的ID,且该第二逻辑信道为对端设备用于进行针对第一RLC模式的侧行链路单播通信的逻辑信道;
根据该第二逻辑信道的ID,从第一逻辑信道集合中选择第一逻辑信道进行针对第二RLC模式的侧行链路单播通信。
可选地,若该第二RLC模式与该第一RLC模式相同,
该通信单元310具体用于:
从该第一逻辑信道集合中选择该第一逻辑信道进行针对该第二RLC模式的侧行链路单播通信。
可选地,该第一逻辑信道的标识与该第二逻辑信道的标识相同。
可选地,该通信单元310具体用于:
接收网络设备发送的第三指示信息,该第三指示信息用于指示该终端设备选择该第一逻辑信道集合中的第q个逻辑信道作为该第一逻辑信道,q为正整数;
根据该第三指示信息从该第一逻辑信道集合中选择该第一逻辑信道进行针对该第二RLC模式的侧行链路单播通信。
可选地,若该第二RLC模式与该第一RLC模式不同,
该通信单元310具体用于:
从该第一逻辑信道集合中除该第二逻辑信道之外的逻辑信道中选择第一逻辑信道进行针对该第二RLC模式的侧行链路单播通信。
可选地,该通信单元310具体用于:
接收网络设备发送的第四指示信息,该第四指示信息用于指示该终端设备从该第一逻辑信道集合中除该第二逻辑信道之外的逻辑信道中选择第p个逻辑信道作为该第一逻辑信道,p为正整数;
根据该第四指示信息从该第一逻辑信道集合中选择该第一逻辑信道进行针对该第二RLC模式的侧行链路单播通信。
可选地,该通信单元310还用于通过PC5 RRC向对端设备发送第二信息,该第二信息包括该第一逻辑信道的ID。
可选地,该通信单元310还用于通过PC5 RRC向对端设备发送第一配置信息,该第一配置信息为该终端设备针对该第一逻辑信道的发送配置信息。
可选地,该通信单元310还用于接收网络设备发送的该第一配置信息。
可选地,该终端设备300还包括:处理单元320,其中:
该通信单元310还用于从网络设备的系统消息或者从预配置信息中获取第一映射关系,该第一映射关系为QoS属性与发送配置之间的映射关系;
该处理单元320用于根据QoS属性信息和该第一映射关系,确定该第一配置信息。
可选地,该终端设备300还包括:
处理单元320,用于根据其自身实现,进行针对第二逻辑信道的发送配置,该第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道。
可选地,该终端设备300还包括处理单元320,
该通信单元310还用于接收对端设备发送的第二配置信息,该第二配置信息为对端设备针对第二逻辑信道的发送配置信息,该第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;
该处理单元320还用于根据该第二配置信息,进行针对该第二逻辑信道的发送配置。
可选地,该通信单元310还用于向网络设备发送第三信息,该第三信息包括该第二逻辑信道的ID和/或该第二配置信息。
可选地,该终端设备300还包括处理单元320,
该通信单元310还用于接收网络设备发送的第四信息,该第四信息用于配置针对第二逻辑信道的发送参数,该第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;
该处理单元320用于根据该第四信息,进行针对该第二逻辑信道的发送配置。
可选地,该通信单元310还用于接收网络设备发送的第四信息,该第四信息包括针对该第二逻辑信道的发送配置。
可选地,该终端设备300还包括:处理单元320,
该通信单元310还用于从网络设备的系统消息或者从预配置信息中获取第二映射关 系,该第二映射关系为QoS属性与发送配置之间的映射关系;
该处理单元320用于根据QoS属性信息和该第二映射关系,进行针对该第二逻辑信道的发送配置。
应理解,根据本申请实施例的终端设备300可对应于本申请方法实施例中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例提供的一种通信设备400示意性结构图。图7所示的通信设备400包括处理器410,处理器410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,通信设备400还可以包括存储器420。其中,处理器410可以从存储器420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器420可以是独立于处理器410的一个单独的器件,也可以集成在处理器410中。
可选地,如图7所示,通信设备400还可以包括收发器430,处理器410可以控制该收发器430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器430可以包括发射机和接收机。收发器430还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备400具体可为本申请实施例的网络设备,并且该通信设备400可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备400具体可为本申请实施例的终端设备,并且该通信设备400可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例的装置的示意性结构图。图8所示的装置500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,装置500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,该装置500还可以包括输入接口530。其中,处理器510可以控制该输入接口530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置500还可以包括输出接口540。其中,处理器510可以控制该输出接口540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图9是本申请实施例提供的一种通信系统600的示意性框图。如图9所示,该通信系统600包括终端设备610和网络设备620。
其中,该终端设备610可以用于实现上述方法中由终端设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。 在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (63)

  1. 一种无线通信方法,其特征在于,所述方法应用于终端设备与另一终端设备之间的侧行链路单播通信,所述方法包括:
    终端设备使用不同的逻辑信道用于不同传输方向的侧行链路单播通信,和/或,所述终端设备使用不同的逻辑信道用于不同传输模式的侧行链路单播通信。
  2. 根据权利要求1所述的方法,其特征在于,所述不同传输方向包括:
    所述终端设备作为数据的发送端,或者,
    所述终端设备作为数据的接收端。
  3. 根据权利要求2所述的方法,其特征在于,所述数据包括以下中的至少一种:
    服务数据适应协议协议数据单元SDAP PDU、服务数据适应协议服务数据单元SDAP SDU、分组数据汇聚协议协议数据单元PDCP PDU、无线链路控制协议数据单元RLC PDU、以及媒体接入控制协议数据单元MAC PDU。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述不同传输模式包括无线链路控制确认模式RLC AM和无线链路控制非确认模式RLC UM。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述终端设备使用不同的逻辑信道用于不同传输方向的侧行链路单播通信,包括:
    所述终端设备根据第一对应关系,使用不同的逻辑信道用于所述不同传输方向的侧行链路单播通信,其中,所述第一对应关系反映不同的逻辑信道与不同的传输方向的对应关系。
  6. 根据权利要求5所述的方法,其特征在于,所述第一对应关系为以下对应关系中的至少一种:
    网络设备配置的所述第一对应关系,所述终端设备配置的所述第一对应关系,上层指示的所述第一对应关系,协议约定的所述第一对应关系。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述终端设备使用不同的逻辑信道用于不同传输模式的侧行链路单播通信,包括:
    所述终端设备根据第二对应关系,使用不同的逻辑信道用于所述不同传输模式的侧行链路单播通信,其中,所述第二对应关系反映不同的逻辑信道与不同的传输模式的对应关系。
  8. 根据权利要求7所述的方法,其特征在于,所述第二对应关系为以下对应关系中的至少一种:
    网络设备配置的所述第二对应关系,所述终端设备配置的所述第二对应关系,上层指示的所述第二对应关系,协议约定的所述第二对应关系。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备从第一逻辑信道集合中选择第一逻辑信道进行侧行链路单播通信。
  10. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备从第一逻辑信道集合中选择第一逻辑信道进行侧行链路单播通信,其中,所述第一逻辑信道用于针对第一无线链路控制RLC模式的侧行链路单播通信,所述第一RLC模式为RLC AM或者RLC UM。
  11. 根据权利要求9或10所述的方法,其特征在于,所述终端设备从第一逻辑信道集合中选择第一逻辑信道进行侧行链路单播通信,包括:
    所述终端设备接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备选择所述第一逻辑信道集合中的第m个逻辑信道作为所述第一逻辑信道,m为正整数;
    所述终端设备根据所述第一指示信息从所述第一逻辑信道集合中选择所述第一逻辑信道进行侧行链路单播通信。
  12. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收对端设备通过PC5 RRC信令发送的第一信息,所述第一信息包括第二逻辑信道的ID,所述第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;
    所述终端设备从第一逻辑信道集合中除所述第二逻辑信道之外的逻辑信道中选择第一逻辑信道进行侧行链路单播通信。
  13. 根据权利要求12所述的方法,其特征在于,所述终端设备从第一逻辑信道集合中除所述第二逻辑信道之外的逻辑信道中选择第一逻辑信道进行侧行链路单播通信,包括:
    所述终端设备接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备从所述第一逻辑信道集合中除所述第二逻辑信道之外的逻辑信道中选择第n个逻辑信道作为所述第一逻辑信道,n为正整数;
    所述终端设备根据所述第二指示信息,从所述第一逻辑信道集合中除所述第二逻辑信道之外的逻辑信道中选择所述第一逻辑信道进行侧行链路单播通信。
  14. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收对端设备通过PC5 RRC信令发送的第一信息,所述第一信息包括第二逻辑信道的ID,且所述第二逻辑信道为对端设备用于进行针对第一RLC模式的侧行链路单播通信的逻辑信道;
    所述终端设备根据所述第二逻辑信道的ID,从第一逻辑信道集合中选择第一逻辑信道进行针对第二RLC模式的侧行链路单播通信。
  15. 根据权利要求14所述的方法,其特征在于,若所述第二RLC模式与所述第一RLC模式相同,
    所述终端设备根据所述第二逻辑信道的ID,从第一逻辑信道集合中选择第一逻辑信道进行针对第二RLC模式的侧行链路单播通信,包括:
    所述终端设备从所述第一逻辑信道集合中选择所述第一逻辑信道进行针对所述第二RLC模式的侧行链路单播通信。
  16. 根据权利要求15所述的方法,其特征在于,所述第一逻辑信道的标识与所述第二逻辑信道的标识相同。
  17. 根据权利要求15或16所述的方法,其特征在于,所述终端设备从所述第一逻辑信道集合中选择所述第一逻辑信道进行针对所述第二RLC模式的侧行链路单播通信,包括:
    所述终端设备接收网络设备发送的第三指示信息,所述第三指示信息用于指示所述终端设备选择所述第一逻辑信道集合中的第q个逻辑信道作为所述第一逻辑信道,q为正整数;
    所述终端设备根据所述第三指示信息从所述第一逻辑信道集合中选择所述第一逻辑信道进行针对所述第二RLC模式的侧行链路单播通信。
  18. 根据权利要求14所述的方法,其特征在于,若所述第二RLC模式与所述第一RLC模式不同,
    所述终端设备根据所述第二逻辑信道的ID,从第一逻辑信道集合中选择第一逻辑信道进行针对第二RLC模式的侧行链路单播通信,包括:
    所述终端设备从所述第一逻辑信道集合中除所述第二逻辑信道之外的逻辑信道中选择第一逻辑信道进行针对所述第二RLC模式的侧行链路单播通信。
  19. 根据权利要求18所述的方法,其特征在于,所述终端设备从所述第一逻辑信道集合中除所述第二逻辑信道之外的逻辑信道中选择第一逻辑信道进行针对所述第二RLC模式的侧行链路单播通信,包括:
    所述终端设备接收网络设备发送的第四指示信息,所述第四指示信息用于指示所述终端设备从所述第一逻辑信道集合中除所述第二逻辑信道之外的逻辑信道中选择第p个逻辑信道作为所述第一逻辑信道,p为正整数;
    所述终端设备根据所述第四指示信息从所述第一逻辑信道集合中选择所述第一逻辑信道进行针对所述第二RLC模式的侧行链路单播通信。
  20. 根据权利要求9至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备通过侧行链路无线资源控制PC5 RRC向对端设备发送第二信息,所述第二信息包括所述第一逻辑信道的标识ID。
  21. 根据权利要求9至20中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备通过PC5 RRC向对端设备发送第一配置信息,所述第一配置信息为所述终端设备针对所述第一逻辑信道的发送配置信息。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备发送的所述第一配置信息。
  23. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述终端设备从网络设备的系统消息或者从预配置信息中获取第一映射关系,所述第一映射关系为服务质量QoS属性与发送配置之间的映射关系;
    所述终端设备根据QoS属性信息和所述第一映射关系,确定所述第一配置信息。
  24. 根据权利要求9至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据其自身实现,进行针对第二逻辑信道的发送配置,所述第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道。
  25. 根据权利要求9至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收对端设备发送的第二配置信息,所述第二配置信息为对端设备针对第二逻辑信道的发送配置信息,所述第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;
    所述终端设备根据所述第二配置信息,进行针对所述第二逻辑信道的发送配置。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    所述终端设备向网络设备发送第三信息,所述第三信息包括所述第二逻辑信道的ID和/或所述第二配置信息。
  27. 根据权利要求9至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备发送的第四信息,所述第四信息用于配置针对第二逻辑信道的发送参数,所述第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;
    所述终端设备根据所述第四信息,进行针对所述第二逻辑信道的发送配置。
  28. 根据权利要求9至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收网络设备发送的第四信息,所述第四信息包括针对所述第二逻辑信道的发送配置。
  29. 根据权利要求9至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备从网络设备的系统消息或者从预配置信息中获取第二映射关系,所述第二映射关系为QoS属性与发送配置之间的映射关系;
    所述终端设备根据QoS属性信息和所述第二映射关系,进行针对所述第二逻辑信道的发送配置。
  30. 一种终端设备,其特征在于,所述终端设备用于与另一终端设备进行侧行链路单播通信,所述终端设备包括:
    通信单元,用于使用不同的逻辑信道用于不同传输方向的侧行链路单播通信,和/或,所述通信单元还用于使用不同的逻辑信道用于不同传输模式的侧行链路单播通信。
  31. 根据权利要求30所述的终端设备,其特征在于,所述不同传输方向包括:
    所述终端设备作为数据的发送端,或者,
    所述终端设备作为数据的接收端。
  32. 根据权利要求31所述的终端设备,其特征在于,所述数据包括以下中的至少一种:
    服务数据适应协议协议数据单元SDAP PDU、服务数据适应协议服务数据单元SDAP SDU、分组数据汇聚协议协议数据单元PDCP PDU、无线链路控制协议数据单元RLC PDU、以及媒体接入控制协议数据单元MAC PDU。
  33. 根据权利要求30至32中任一项所述的终端设备,其特征在于,所述不同传输模式包括无线链路控制确认模式RLC AM和无线链路控制非确认模式RLC UM。
  34. 根据权利要求30至33中任一项所述的终端设备,其特征在于,所述通信单元具体用于:
    根据第一对应关系,使用不同的逻辑信道用于所述不同传输方向的侧行链路单播通信,其中,所述第一对应关系反映不同的逻辑信道与不同的传输方向的对应关系。
  35. 根据权利要求34所述的终端设备,其特征在于,所述第一对应关系为以下对应关系中的至少一种:
    网络设备配置的所述第一对应关系,所述终端设备配置的所述第一对应关系,上层指示的所述第一对应关系,协议约定的所述第一对应关系。
  36. 根据权利要求30至35中任一项所述的终端设备,其特征在于,所述通信单元具体用于:
    根据第二对应关系,使用不同的逻辑信道用于所述不同传输模式的侧行链路单播通信,其中,所述第二对应关系反映不同的逻辑信道与不同的传输模式的对应关系。
  37. 根据权利要求36所述的终端设备,其特征在于,所述第二对应关系为以下对应关系中的至少一种:
    网络设备配置的所述第二对应关系,所述终端设备配置的所述第二对应关系,上层指示的所述第二对应关系,协议约定的所述第二对应关系。
  38. 根据权利要求30至37中任一项所述的终端设备,其特征在于,所述通信单元还用于:
    从第一逻辑信道集合中选择第一逻辑信道进行侧行链路单播通信。
  39. 根据权利要求30至37中任一项所述的终端设备,其特征在于,所述通信单元还用于:
    从第一逻辑信道集合中选择第一逻辑信道进行侧行链路单播通信,其中,所述第一逻辑信道用于针对第一无线链路控制RLC模式的侧行链路单播通信,所述第一RLC模式为RLC AM或者RLC UM。
  40. 根据权利要求38或39所述的终端设备,其特征在于,所述通信单元具体用于:
    接收网络设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备选择所述第一逻辑信道集合中的第m个逻辑信道作为所述第一逻辑信道,m为正整数;
    根据所述第一指示信息从所述第一逻辑信道集合中选择所述第一逻辑信道进行侧行链路单播通信。
  41. 根据权利要求30至37中任一项所述的终端设备,其特征在于,所述通信单元还用于:
    接收对端设备通过PC5 RRC信令发送的第一信息,所述第一信息包括第二逻辑信道的ID,所述第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;
    从第一逻辑信道集合中除所述第二逻辑信道之外的逻辑信道中选择第一逻辑信道进行侧行链路单播通信。
  42. 根据权利要求41所述的终端设备,其特征在于,所述通信单元具体用于:
    接收网络设备发送的第二指示信息,所述第二指示信息用于指示所述终端设备从所述第一逻辑信道集合中除所述第二逻辑信道之外的逻辑信道中选择第n个逻辑信道作为所述第一逻辑信道,n为正整数;
    根据所述第二指示信息,从所述第一逻辑信道集合中除所述第二逻辑信道之外的逻辑信道中选择所述第一逻辑信道进行侧行链路单播通信。
  43. 根据权利要求30至37中任一项所述的终端设备,其特征在于,所述通信单元还用于:
    接收对端设备通过PC5 RRC信令发送的第一信息,所述第一信息包括第二逻辑信道的ID,且所述第二逻辑信道为对端设备用于进行针对第一RLC模式的侧行链路单播通信的逻辑信道;
    根据所述第二逻辑信道的ID,从第一逻辑信道集合中选择第一逻辑信道进行针对第二RLC模式的侧行链路单播通信。
  44. 根据权利要求43所述的终端设备,其特征在于,若所述第二RLC模式与所述第一RLC模式相同,
    所述通信单元具体用于:
    从所述第一逻辑信道集合中选择所述第一逻辑信道进行针对所述第二RLC模式的侧行链路单播通信。
  45. 根据权利要求44所述的终端设备,其特征在于,所述第一逻辑信道的标识与所述第二逻辑信道的标识相同。
  46. 根据权利要求44或45所述的终端设备,其特征在于,所述通信单元具体用于:
    接收网络设备发送的第三指示信息,所述第三指示信息用于指示所述终端设备选择所述第一逻辑信道集合中的第q个逻辑信道作为所述第一逻辑信道,q为正整数;
    根据所述第三指示信息从所述第一逻辑信道集合中选择所述第一逻辑信道进行针对所述第二RLC模式的侧行链路单播通信。
  47. 根据权利要求43所述的终端设备,其特征在于,若所述第二RLC模式与所述第一RLC模式不同,
    所述通信单元具体用于:
    从所述第一逻辑信道集合中除所述第二逻辑信道之外的逻辑信道中选择第一逻辑信道进行针对所述第二RLC模式的侧行链路单播通信。
  48. 根据权利要求47所述的终端设备,其特征在于,所述通信单元具体用于:
    接收网络设备发送的第四指示信息,所述第四指示信息用于指示所述终端设备从所述第一逻辑信道集合中除所述第二逻辑信道之外的逻辑信道中选择第p个逻辑信道作为所述第一逻辑信道,p为正整数;
    根据所述第四指示信息从所述第一逻辑信道集合中选择所述第一逻辑信道进行针对所述第二RLC模式的侧行链路单播通信。
  49. 根据权利要求38至48中任一项所述的终端设备,其特征在于,所述通信单元还用于通过侧行链路无线资源控制PC5R RC向对端设备发送第二信息,所述第二信息包括所述第一逻辑信道的标识ID。
  50. 根据权利要求38至49中任一项所述的终端设备,其特征在于,所述通信单元还用于通过PC5 RRC向对端设备发送第一配置信息,所述第一配置信息为所述终端设备针对所述第一逻辑信道的发送配置信息。
  51. 根据权利要求50所述的终端设备,其特征在于,所述通信单元还用于接收网络设备发送的所述第一配置信息。
  52. 根据权利要求50所述的终端设备,其特征在于,所述终端设备还包括:处理单元,其中:
    所述通信单元还用于从网络设备的系统消息或者从预配置信息中获取第一映射关系,所述第一映射关系为服务质量QoS属性与发送配置之间的映射关系;
    所述处理单元用于根据QoS属性信息和所述第一映射关系,确定所述第一配置信息。
  53. 根据权利要求38至52中任一项所述的终端设备,其特征在于,所述终端设备还包括:
    处理单元,用于根据其自身实现,进行针对第二逻辑信道的发送配置,所述第二逻 辑信道为对端设备用于侧行链路单播通信的逻辑信道。
  54. 根据权利要求38至52中任一项所述的终端设备,其特征在于,所述终端设备还包括处理单元,
    所述通信单元还用于接收对端设备发送的第二配置信息,所述第二配置信息为对端设备针对第二逻辑信道的发送配置信息,所述第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;
    所述处理单元还用于根据所述第二配置信息,进行针对所述第二逻辑信道的发送配置。
  55. 根据权利要求54所述的终端设备,其特征在于,所述通信单元还用于向网络设备发送第三信息,所述第三信息包括所述第二逻辑信道的ID和/或所述第二配置信息。
  56. 根据权利要求38至52中任一项所述的终端设备,其特征在于,所述终端设备还包括处理单元,
    所述通信单元还用于接收网络设备发送的第四信息,所述第四信息用于配置针对第二逻辑信道的发送参数,所述第二逻辑信道为对端设备用于侧行链路单播通信的逻辑信道;
    所述处理单元用于根据所述第四信息,进行针对所述第二逻辑信道的发送配置。
  57. 根据权利要求38至52中任一项所述的终端设备,其特征在于,所述通信单元还用于接收网络设备发送的第四信息,所述第四信息包括针对所述第二逻辑信道的发送配置。
  58. 根据权利要求38至52中任一项所述的终端设备,其特征在于,所述终端设备还包括:处理单元,
    所述通信单元还用于从网络设备的系统消息或者从预配置信息中获取第二映射关系,所述第二映射关系为QoS属性与发送配置之间的映射关系;
    所述处理单元用于根据QoS属性信息和所述第二映射关系,进行针对所述第二逻辑信道的发送配置。
  59. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至29中任一项所述的方法。
  60. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求1至29中任一项所述的方法。
  61. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至29中任一项所述的方法。
  62. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至29中任一项所述的方法。
  63. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至29中任一项所述的方法。
PCT/CN2019/109607 2019-09-30 2019-09-30 无线通信方法和终端设备 WO2021062708A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980094216.XA CN113574953B (zh) 2019-09-30 2019-09-30 无线通信方法和终端设备
PCT/CN2019/109607 WO2021062708A1 (zh) 2019-09-30 2019-09-30 无线通信方法和终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109607 WO2021062708A1 (zh) 2019-09-30 2019-09-30 无线通信方法和终端设备

Publications (1)

Publication Number Publication Date
WO2021062708A1 true WO2021062708A1 (zh) 2021-04-08

Family

ID=75336366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109607 WO2021062708A1 (zh) 2019-09-30 2019-09-30 无线通信方法和终端设备

Country Status (2)

Country Link
CN (1) CN113574953B (zh)
WO (1) WO2021062708A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115748A1 (en) * 2014-01-31 2015-08-06 Lg Electronics Inc. Method for handling an id collision for d2d communication system and device therefor
CN106341214A (zh) * 2016-09-08 2017-01-18 广东米德有源通信科技有限公司 信令传输方法和系统
CN108260163A (zh) * 2018-03-28 2018-07-06 中兴通讯股份有限公司 信息的发送、接收方法及装置
CN108307472A (zh) * 2016-08-12 2018-07-20 中兴通讯股份有限公司 设备直通系统的通信方法及装置、通信系统
CN109286979A (zh) * 2017-07-19 2019-01-29 电信科学技术研究院 一种资源分配方法、装置及终端

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2947851A4 (en) * 2013-01-18 2016-08-24 Fujitsu Ltd LOGIC PATH PROCESSING METHOD IN DEVICE DEVICE COMMUNICATION, USER EQUIPMENT AND BASE STATION
PL2922360T3 (pl) * 2014-03-21 2019-06-28 Sun Patent Trust Procedura żądania planowania dla łączności D2D
EP3001754A1 (en) * 2014-09-23 2016-03-30 Alcatel Lucent Wireless communication network control node and method
EP3051736B1 (en) * 2015-01-30 2020-04-29 Panasonic Intellectual Property Corporation of America Prioritization in the logical channel prioritization procedure for sidelink logical channels in ProSe direct communications
EP3627723A1 (en) * 2015-07-24 2020-03-25 Panasonic Intellectual Property Corporation of America Improved prose relay ue activation
CN112788573B (zh) * 2015-08-12 2023-06-06 Lg电子株式会社 用于在无线通信系统中操作的方法及无线装置
CN107645710A (zh) * 2016-07-20 2018-01-30 普天信息技术有限公司 一种v2x业务的传输方法
CN107645742A (zh) * 2016-07-20 2018-01-30 普天信息技术有限公司 一种车与外界的信息交换v2x业务的传输方法
CN110168999B (zh) * 2017-02-06 2022-09-06 苹果公司 一种用户设备UE的装置及其方法以及gNB的装置及其方法
KR102091925B1 (ko) * 2017-04-26 2020-03-23 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 제어 엘리먼트 전송을 위한 자원을 요청하기 위한 방법 및 장치
PT3637658T (pt) * 2017-07-27 2021-11-02 Guangdong Oppo Mobile Telecommunications Corp Ltd Método de comunicação sem fios, dispositivo terminal e dispositivo de rede
WO2019024114A1 (zh) * 2017-08-04 2019-02-07 Oppo广东移动通信有限公司 数据传输的方法、终端设备和网络设备
JP2020526946A (ja) * 2017-08-10 2020-08-31 テレフオンアクチーボラゲット エルエム エリクソン(パブル) サイドリンクデータ複製の方法およびデバイス
CN109982266B (zh) * 2017-12-28 2021-05-11 华为技术有限公司 一种通信方法、及相关产品
CN110166201B (zh) * 2018-02-13 2021-01-08 维沃移动通信有限公司 一种副链路数据的指示方法及终端设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115748A1 (en) * 2014-01-31 2015-08-06 Lg Electronics Inc. Method for handling an id collision for d2d communication system and device therefor
CN108307472A (zh) * 2016-08-12 2018-07-20 中兴通讯股份有限公司 设备直通系统的通信方法及装置、通信系统
CN106341214A (zh) * 2016-09-08 2017-01-18 广东米德有源通信科技有限公司 信令传输方法和系统
CN109286979A (zh) * 2017-07-19 2019-01-29 电信科学技术研究院 一种资源分配方法、装置及终端
CN108260163A (zh) * 2018-03-28 2018-07-06 中兴通讯股份有限公司 信息的发送、接收方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAN2: "Reply LS on usage of ProSe Per-Packet Priority in ProSe UE-Network Relay", 3GPP DRAFT; R2-153674, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Beijing, China; 20150824 - 20150828, 23 August 2015 (2015-08-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051004336 *

Also Published As

Publication number Publication date
CN113574953A (zh) 2021-10-29
CN113574953B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2020191769A1 (zh) 传输侧行信道的方法和终端设备
WO2019214184A1 (zh) 通信方法和设备
WO2020177218A1 (zh) 传输侧行链路数据的方法和终端设备
US20220159696A1 (en) Wireless communication method, terminal device, and network device
WO2021155594A1 (zh) 一种选取资源的方法及装置、终端设备
WO2020056696A1 (zh) 一种资源分配方法及装置、终端
WO2021026891A1 (zh) 传输侧行数据的方法、终端设备和网络设备
CN116095865A (zh) 一种资源选择方法、终端设备及存储介质
WO2021007779A1 (zh) 一种资源共享方法及装置、终端设备
WO2019051804A1 (zh) 传输数据的方法、终端设备和网络设备
WO2020191778A1 (zh) 重传资源配置方法、设备、芯片及计算机程序
WO2021212372A1 (zh) 资源分配方法和终端
WO2020258521A1 (zh) 无线通信方法和终端设备
WO2021016979A1 (zh) 无线通信方法和终端设备
WO2020124534A1 (zh) 数据传输的方法和设备
WO2020258885A1 (zh) 无线通信方法和终端设备
WO2021062708A1 (zh) 无线通信方法和终端设备
WO2021092923A1 (zh) 无线通信方法、终端设备和网络设备
WO2020206622A1 (zh) 无线通信的方法和设备
WO2020077745A1 (zh) 一种连接配置方法、设备及存储介质
WO2020147040A1 (zh) 数据复制传输配置方法、装置、芯片及计算机程序
WO2022120610A1 (zh) 无线通信方法和终端
WO2022205349A1 (zh) 无线通信方法、终端设备和网络设备
WO2022126412A1 (zh) 一种重置配置方法及装置、终端设备
WO2023050376A1 (en) Methods and devices for candidate resource set initialization and user equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947545

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19947545

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19947545

Country of ref document: EP

Kind code of ref document: A1