WO2021060471A1 - クレーン情報表示システム - Google Patents

クレーン情報表示システム Download PDF

Info

Publication number
WO2021060471A1
WO2021060471A1 PCT/JP2020/036283 JP2020036283W WO2021060471A1 WO 2021060471 A1 WO2021060471 A1 WO 2021060471A1 JP 2020036283 W JP2020036283 W JP 2020036283W WO 2021060471 A1 WO2021060471 A1 WO 2021060471A1
Authority
WO
WIPO (PCT)
Prior art keywords
crane
unit
camera
input
input unit
Prior art date
Application number
PCT/JP2020/036283
Other languages
English (en)
French (fr)
Inventor
翔 大西
Original Assignee
株式会社タダノ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タダノ filed Critical 株式会社タダノ
Priority to EP20867090.1A priority Critical patent/EP4036044A4/en
Priority to US17/642,077 priority patent/US12012310B2/en
Priority to JP2021549045A priority patent/JP7107447B2/ja
Publication of WO2021060471A1 publication Critical patent/WO2021060471A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/40Applications of devices for transmitting control pulses; Applications of remote control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment
    • B66C23/905Devices for indicating or limiting lifting moment electrical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/272Means for inserting a foreground image in a background image, i.e. inlay, outlay

Definitions

  • Patent Document 1 discloses a configuration in which information on the operating state of a crane is visualized and a display screen is displayed on a display unit of a mobile terminal. As a result, even a person outside the crane can grasp the operating state of the crane.
  • Patent Document 1 visualizes and displays information on the operating state of the crane by drawing the crane from above or from the side. Therefore, there is a problem that the configuration described in Patent Document 1 must be examined in two dimensions.
  • an object of the present invention is to provide a crane information display system capable of examining crane information in three dimensions at a work site.
  • a crane information display system equipped with a terminal device having a camera, and the camera captures a crane to obtain a camera image.
  • a crane detection unit that detects the crane reflected in the camera image based on the image information of the camera image, and a crane detection unit.
  • the orientation of the camera with respect to the crane identified from the crane reflected in the camera image, the position of the camera in the real space indicated by the first satellite positioning signal receiving unit mounted on the camera, and the position of the camera mounted on the crane.
  • An information processing unit that specifies the position and orientation of the crane in the coordinate system of the camera image based on the position of the crane in the real space indicated by the second satellite positioning signal receiving unit.
  • FIG. 1 is a diagram showing a crane information display system of the first embodiment. Hereinafter, the configuration of the crane information display system of the first embodiment will be described.
  • the crane information display system 100 of the first embodiment describes an example in which a worker M photographs a crane 1 placed at a work site with a tablet terminal 50 as a user terminal provided with a camera 51. To do.
  • the crane information display system 100 of the first embodiment describes an example in which the camera 51 takes a picture of the crane 1 in a state where the outrigger 80 is not overhanging.
  • the front-rear direction of the crane 1 is the front-rear direction D.
  • the crane 1 includes a traveling body 10, a swivel body 20, and a boom 30.
  • the traveling body 10 includes a vehicle body frame 11, an outrigger 80, a traveling device for self-propelling on a road or a work site, and the like.
  • the swivel body 20 is provided above the traveling body 10 and is rotatable around the vertical axis C1 with respect to the traveling body 10.
  • the swivel body 20 includes a cabin 21.
  • the cabin 21 has an operation unit (for example, a steering wheel, a shift lever, an accelerator pedal, a brake pedal, etc.) for controlling the traveling of the traveling body 10. Further, the cabin 21 has an operation unit for operating the swivel body 20, the boom 30, the winch, and the like.
  • the operator boarding the cabin 21 operates the operation unit to rotate the swivel body 20, undulate and expand the boom 30, and rotate the winch to perform the work.
  • a crane receiving unit 25 is attached to the rotating body 20.
  • the crane receiving unit 25 (corresponding to the “second satellite positioning signal receiving unit” of the present invention) receives, for example, a GNSS signal from a GNSS (Global Navigation Satellite System) satellite as a satellite 90, executes positioning, and executes positioning. Acquire the position information of the turning center of the crane 1 in the real space.
  • GNSS Global Navigation Satellite System
  • the boom 30 includes intermediate booms 32 to 35 between the proximal boom 31 on the proximal end side and the distal end boom 36 on the distal end side.
  • the intermediate booms 32 to 35 and the tip boom 36 are sequentially housed inside the base end boom 31 in a nested manner.
  • a sheave 37 is arranged on the boom head 36a provided at the tip of the tip boom 36.
  • a wire rope 38 for hanging loads is wound around a winch of the swivel body 20 provided near the base end of the boom 30.
  • the wire rope 38 is arranged along the axial direction of the boom 30 from the winch to the sheave 37, and the wire rope 38 hung around the sheave 37 is suspended vertically downward from the sheave 37.
  • a hook 39 is provided at the bottom of the wire rope 38.
  • the crane 1 configured in this way moves the load suspended on the hook 39 to a predetermined position by feeding and hoisting the wire rope 38 by the winch, undulating and expanding and contracting the boom 30, and turning the swivel body 20.
  • the tablet terminal 50 includes a camera 51, an image display unit 53, an input unit 52, and a camera receiving unit 55.
  • the image taken by the camera 51 is displayed on the image display unit 53.
  • the image display unit 53 is also configured as a touch panel as the input unit 52.
  • the camera receiving unit 55 (corresponding to the “first satellite positioning signal receiving unit” of the present invention) receives, for example, a GNSS signal from a GNSS (Global Navigation Satellite System) satellite as a satellite 90, executes positioning, and executes positioning.
  • GNSS Global Navigation Satellite System
  • the position of the camera 51 in the real space, that is, the position information of the tablet terminal 50 is acquired.
  • FIG. 2 is a block diagram showing a functional configuration of the crane information display system 100 of the first embodiment.
  • FIG. 3 is a table showing the performance information of the crane stored in the storage unit 61 of the first embodiment.
  • FIG. 4 is a diagram showing an image displayed on the image display unit 53 of the first embodiment.
  • the functional configuration of the crane information display system 100 of the first embodiment will be described.
  • the crane information display system 100 receives the position information of the camera 51 received from the satellite 90 by the camera receiving unit 55, the position information of the turning center of the crane 1 received by the crane receiving unit 25 from the satellite 90, and the input unit 52.
  • the input information and the input information are input to the control unit 60 (in this embodiment, the control unit built in the tablet terminal 50), and the information controlled by the control unit 60 is output by the image display unit 53.
  • the camera 51 can be, for example, a camera 51 provided in a general tablet terminal 50.
  • the camera 51 can take a picture of the crane 1 and the site environment around the crane 1.
  • the input unit 52 includes a working radius input unit 52a, a suspended load input unit 52b, and an overhang amount input unit 52c.
  • the working radius of the crane 1 can be input to the working radius input unit 52a.
  • the working radius is a horizontal distance from the vertical straight line lowered from the center of the hook 39 to the vertical axis C1 which is the turning center of the swivel body 20.
  • the working radius is input by tapping the touch panel as the input unit 52.
  • the suspended load load to be worked can be input to the suspended load input unit 52b.
  • the suspended load is the load (mass) of the suspended load, which is the load applied to the crane 1.
  • the overhang amount of the outrigger 80 can be input to the overhang amount input unit 52c.
  • the overhang amount of the outrigger 80 is the overhang amount of the crane 1 in the width direction.
  • the length of the boom 30 and the like can be input to the input unit 52.
  • the length of the boom 30 is the length of the boom 30 in which the tip boom 36 and the intermediate booms 32 to 35 are stored in the base end boom 31 (fully contracted state), or the boom in which the tip boom 36 is extended.
  • the control unit 60 includes a storage unit 61, a crane detection unit 62, an information processing unit 63, and a work capacity calculation unit 64.
  • the control unit 60 is a well-known microcomputer composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like, and has a function (crane) of the control unit 60.
  • the detection unit 62, the information processing unit 63, and the work capacity calculation unit 64) are realized, for example, by the CPU referring to a control program or various data stored in the storage unit 61 (for example, HDD), ROM or RAM. Will be done.
  • the storage unit 61 stores the performance information of the crane 1.
  • the performance information includes a rated total load table G according to the overhang amount of the outrigger 80.
  • FIG. 3 shows the rated total load according to the length of the boom 30 and the working radius when the overhang amount of the outrigger 80 is 6.6 [m].
  • the rated total load is a limit value of a load that can be lifted at a predetermined length of the boom 30 and a predetermined working radius.
  • the total rated load, the length of the boom 30, and the working radius are interrelated. For example, once the total rated load and the working radius are determined, the limit value of the length of the boom 30, the undulation of the boom 30
  • the limit value of the angle, the limit value of the lift of the crane 1, and the like are specified.
  • the overhang amount of the outrigger 80 is 6.6 [m]
  • the working radius is 5.0 [m]
  • the length of the boom 30 is 9.35 [m]
  • the rated total load is , 19.6 [t].
  • the overhang amount of the outrigger 80 is 6.6 [m]
  • the working radius is 10.0 [m]
  • the length of the boom 30 is 30.5 [m]
  • the rated total load is 7 It becomes .15 [t].
  • the information processing unit 63 has the turning center of the crane 1 detected by the crane detecting unit 62, the position information of the camera 51 received by the camera receiving unit 55, and the turning center of the crane 1 received by the crane receiving unit 25. Performs processing to associate the position information with.
  • the information processing unit 63 acquires the direction of the crane 1 in the image of the camera 51 (that is, the direction of the camera 51 with respect to the crane 1) based on the turning center of the crane 1 detected by the crane detection unit 62. To do. Further, the information processing unit 63 is based on the orientation of the camera 51, the position information of the camera 51 received by the camera receiving unit 55, and the position information of the turning center of the crane 1 received by the crane receiving unit 25. , The position of the camera 51 and the position of the turning center of the crane 1 are associated with the image taken by the camera 51.
  • the information processing unit 63 indicates the direction of the camera 51 with respect to the crane 1, the position information of the camera 51 in the real space received by the camera receiving unit 55, and the turning of the crane 1 in the real space received by the crane receiving unit 25. Based on the position information of the center, the position and orientation of the crane 1 in the coordinate system of the image of the camera 51 are specified.
  • the work capacity calculation unit 64 calculates the work capacity of the crane 1 based on the information about the crane 1 input to the input unit 52.
  • the work capacity calculation unit 64 stores the work radius input to the work radius input unit 52a and the overhang amount of the outrigger 80 input to the overhang amount input unit 52c to the storage unit 61.
  • the maximum total rated load of the crane 1 With reference to the stored total rated load table G, the maximum total rated load of the crane 1, the length of the boom 30 (that is, the limit value of the length of the boom 30), and the undulation angle of the boom 30 (that is, that is).
  • the limit value of the undulation angle of the boom 30) and the lift of the crane 1 (that is, the limit value of the lift of the crane 1) are calculated.
  • the length of the boom 30, the undulation angle of the boom 30, and the lift of the crane 1 calculated by the work capacity calculation unit 64 are the work radius input to the work radius input unit 52a and the overhang amount input unit 52c.
  • the limit value within the range that the length of the boom 30 can take, the boom 30 It is a limit value within a range where the undulation angle of the crane 1 can be taken, and a limit value within a range where the lift of the crane 1 can be taken.
  • the working radius input to the working radius input unit 52a is 5 [m]
  • the overhang amount of the outrigger 80 input to the overhang amount input unit 52c is 6.6 [m].
  • the working capacity calculation unit 64 calculates the maximum rated total load of the crane 1 as 19.6 [t] with reference to the rated total load table G. Further, the work capacity calculation unit 64 calculates the length of the boom 30 at that time as 9.35 [m]. Further, the work capacity calculation unit 64 calculates the undulation angle of the boom 30 and the lift of the crane 1 based on the work radius input to the work radius input unit 52a and the calculated length of the boom 30. To do.
  • the working capacity calculation unit 64 is specified in the rated total load table G of FIG.
  • the image display unit 53 has a work radius E1 input to the work radius input unit 52a and an outrigger input to the overhang amount input unit 52c based on the information processed by the information processing unit 63.
  • the limit value of the undulation angle) and the lift F4 of the crane 1 (that is, the limit value of the lift of the crane 1) are superimposed and displayed on the image of the site environment of the crane 1 and its surroundings taken by the camera 51.
  • the image display unit 53 three-dimensionally examines how each part of the crane 1 affects the site environment when the user actually operates the crane 1 at the site.
  • the maximum rated total load F1 of the crane 1, the length F2 of the boom 30, and the undulation angle F3 of the boom 30 so as to be superimposed on the crane 1 or the surrounding environment of the crane 1 shown in the image of the camera 51.
  • At least a part of the information on the lift F4 of the crane 1 is displayed as a three-dimensional image.
  • information on the length F2 of the boom 30 and the undulation angle F3 of the boom 30 is displayed as a three-dimensional image so as to be superimposed on the crane 1 reflected in the image of the camera 51 by a dotted line.
  • FIG. 5 is a flowchart showing a processing flow by the control unit 60 of the crane information display system 100 of the first embodiment.
  • the processing flow by the control unit 60 of the crane information display system 100 of the first embodiment will be described.
  • the control unit 60 starts from the crane receiving unit 25 as shown in FIG.
  • the input information on the position of the turning center of the crane 1 and the information on the position of the camera 51 input from the camera receiving unit 55 are acquired (step S101).
  • the crane detection unit 62 detects the turning center of the crane 1 based on the image of the crane 1 placed at the work site taken by the camera 51 (step S102).
  • the information processing unit 63 acquires the direction of the camera 51 based on the turning center of the crane 1 detected by the crane detection unit 62 (step S103).
  • the information processing unit 63 is based on the orientation of the camera 51, the position information of the camera 51 received by the camera receiving unit 55, and the position information of the turning center of the crane 1 received by the crane receiving unit 25. , The position of the camera 51 and the position of the turning center of the crane 1 are associated with the image captured by the camera 51 (step S104).
  • control unit 60 acquires the working radius E1 input to the working radius input unit 52a and the overhang amount E2 of the outrigger 80 input to the overhang amount input unit 52c (step S105).
  • the work capacity calculation unit 64 maximizes the crane 1 based on the work radius E1 input to the work radius input unit 52a and the overhang amount E2 of the outrigger 80 input to the overhang amount input unit 52c.
  • the rated total load F1, the length F2 of the boom 30, the undulation angle F3 of the boom 30, and the lift F4 of the crane 1 are calculated (step S106).
  • the image display unit 53 includes the working radius E1 input to the working radius input unit 52a, the overhanging amount E2 of the outrigger 80 input to the overhanging amount input unit 52c, and the maximum rated total load F1 of the crane 1.
  • the length F2 of the boom 30, the undulation angle F3 of the boom 30, and the lift F4 of the crane 1 are superimposed and displayed on the image of the on-site environment of the crane 1 and its surroundings taken by the camera 51 (step). S107), the process is terminated.
  • the vector from the time of initialization may be acquired by SLAM technology or an acceleration sensor and followed.
  • the crane information display system 100 of the first embodiment has a crane detection unit 62 that detects the crane 1 based on an image of the crane 1 placed at the work site taken by the camera 51, and a camera 51 mounted on the camera 51.
  • the camera receiving unit 55 that receives the position information of the above from the satellite 90
  • the crane receiving unit 25 that receives the position information of the crane 1 mounted on the crane 1 from the satellite 90
  • the crane 1 detected by the crane detecting unit 62 The information processing unit 63 that processes the position information of the camera 51 received by the camera receiving unit 55 and the position information of the crane 1 received by the crane receiving unit 25, and the information about the crane 1.
  • the working capacity of the crane 1 can be superimposed and displayed on the image of the actual crane 1 placed at the work site. Therefore, the crane 1, its surrounding environment, and the working capacity of the crane 1 can be confirmed in real time with a three-dimensional image. As a result, the work plan of the crane 1 can be examined in real time at the work site.
  • the input unit 52 includes a work radius input unit 52a for inputting the working radius E1 of the crane 1, and the work capacity calculation unit 64 is based on the input value of the work radius input unit 52a. Then, the maximum rated total load F1 of the crane 1 is calculated (FIGS. 2 and 4).
  • the work capacity calculation unit 64 calculates the length F2 of the boom 30 and the undulation angle F3 of the boom 30 based on the input value of the input unit 52 (FIG. 2). And FIG. 4).
  • the image display unit 53 has the suspended load G1 of the suspended load 5 scheduled to be worked and the overhanging load G1 input to the suspended load load input unit 52b based on the information processed by the information processing unit 63.
  • the overhang amount G2 of the outrigger 80 input to the amount input unit 52c, the maximum working radius H1 of the crane 1, the length H2 of the boom 30, the undulation angle H3 of the boom 30, and the lift H4 of the crane 1 are captured by a camera. It is superimposed and displayed on the image of the on-site environment of the crane 1 and its surroundings taken by 51.
  • Examples 1 to 3 an example in which the present invention is applied to a crane 1 provided with a boom 30 is shown. However, the present invention is applicable to cranes with jib.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Jib Cranes (AREA)

Abstract

カメラ(51)を有する端末装置を備え、カメラ(51)にて、クレーン(1)を撮影してカメラ画像を得るクレーン情報表示システムであって、カメラ画像に映るクレーンの向きを検出するクレーン検出部(62)と、カメラ画像に映るクレーン(1)の向きと、実空間におけるカメラ(51)の位置と、実空間におけるクレーン(1)の位置と、に基づいて、カメラ画像の座標系におけるクレーン(1)の位置及び姿勢を特定する情報処理部(63)と、入力部(52)に入力されたクレーン(1)に関する情報に基づいて、クレーン(1)の作業能力を算出する作業能力算出部(64)と、クレーン(1)の作業能力を、クレーン(1)の位置と姿勢に対応した三次元の画像情報に変換して、カメラ画像に重ねて表示する画像表示部(53)と、を備える、クレーン情報表示システム。

Description

クレーン情報表示システム
 本発明は、クレーン情報表示システムに関する。
 従来、クレーンの情報を表示するクレーン情報表示システムが知られている(例えば、特許文献1参照)。
 特許文献1には、クレーンの稼働状態に関する情報を視覚化して表示画面を携帯端末の表示部に表示させる構成が開示されている。これにより、クレーンの外にいる人間でもクレーンの稼働状態を把握することができる。
特開2014-227281号公報
 しかしながら、特許文献1に記載の構成は、クレーンの稼働状態に関する情報を、クレーンを上方や側方から描画することにより視覚化して表示する。そのため、特許文献1に記載の構成では、2次元で検討しなければならない、という問題がある。
 そこで、本発明は、作業現場において、クレーンの情報を3次元で検討することができるクレーン情報表示システムを提供することを目的とする。
 前述した課題を解決する主たる本開示は、
 カメラを有する端末装置を備え、前記カメラにて、クレーンを撮影してカメラ画像を得るクレーン情報表示システムであって、
 前記カメラ画像の画像情報に基づいて、前記カメラ画像に映る前記クレーンを検出するクレーン検出部と、
 前記カメラ画像に映る前記クレーンから特定される前記クレーンに対する前記カメラの向きと、前記カメラに搭載された第1衛星測位信号受信部が示す実空間における前記カメラの位置と、前記クレーンに搭載された第2衛星測位信号受信部が示す実空間における前記クレーンの位置と、に基づいて、前記カメラ画像の座標系における前記クレーンの位置及び姿勢を特定する情報処理部と、
  入力部に入力されたクレーンに関する情報に基づいて、前記クレーンの作業能力を算出する作業能力算出部と、
 前記クレーンの作業能力を、前記情報処理部にて特定された前記クレーンの前記位置と前記姿勢に対応した三次元の画像情報に変換して、前記カメラ画像に重ねて表示する画像表示部と、
 を備える、クレーン情報表示システムである。
 このように構成された本発明のクレーン情報表示システムは、作業現場において、クレーンの情報を3次元で検討することができる。
実施例1のクレーン情報表示システムを示す図である。 実施例1のクレーン情報表示システムの機能構成を示すブロック図である。 実施例1の記憶部に記憶されるクレーンの性能情報を示す表である。 実施例1の画像表示部に表示される画像を示す図である。 実施例1のクレーン情報表示システムの制御部による処理の流れを示すフローチャートである。 実施例2の画像表示部に表示される画像を示す図である。 実施例2のクレーン情報表示システムの制御部による処理の流れを示すフローチャートである。 実施例3の画像表示部に表示される画像を示す図である。 実施例3のクレーン情報表示システムの制御部による処理の流れを示すフローチャートである。
 以下、本発明によるクレーン情報表示システムを実現する実施形態を、図面に示す実施例1~実施例3に基づいて説明する。
[クレーン情報表示システムの構成]
 図1は、実施例1のクレーン情報表示システムを示す図である。以下、実施例1のクレーン情報表示システムの構成を説明する。
 図1に示すように、実施例1のクレーン情報表示システム100は、カメラ51を備えたユーザ端末としてのタブレット端末50で、作業者Mが作業現場に置かれたクレーン1を撮影する例について説明する。実施例1のクレーン情報表示システム100は、アウトリガー80が張り出していない状態のクレーン1を、カメラ51で撮影する例について説明する。なお、クレーン1の前後方向を前後方向Dとする。
[クレーンの構成]
 図1に示すように、クレーン1は、走行体10と、旋回体20と、ブーム30とを備える。
 走行体10は、車体フレーム11と、アウトリガー80と、道路や作業現場を自走するための走行装置等を備える。
 アウトリガー80は、走行体10の車体フレーム11のリア側面に取り付けられたリアアウトリガー81と、車体フレーム11のフロント側面に取り付けられたフロントアウトリガー82と、で構成される。アウトリガー80は、走行時には、車体フレーム11に収納される。一方、アウトリガー80は、作業時には、水平方向及び垂直方向に張り出し、車体全体を持ち上げて、姿勢を安定させる。
 旋回体20は、走行体10の上方に設けられ、走行体10に対して、鉛直軸C1回りに回転可能となっている。旋回体20は、キャビン21を備える。キャビン21は、走行体10の走行を制御するための操作部(例えば、ステアリング、シフトレバー、アクセルペダル、及びブレーキペダル等)を有する。また、キャビン21は、旋回体20やブーム30やウインチ等を操作する操作部を有する。キャビン21に搭乗した作業者は、操作部を操作して、旋回体20を旋回させ、ブーム30を起伏及び伸縮させ、ウインチを回転させて作業を行う。
 旋回体20には、クレーン用受信部25が取り付けられる。クレーン用受信部25(本件発明の「第2衛星測位信号受信部」に相当)は、例えば、衛星90としてのGNSS(Global Navigation Satellite System)衛星からのGNSS信号を受信して測位を実行し、実空間におけるクレーン1の旋回中心の位置情報を取得する。
 ブーム30は、基端側が旋回体20に支持されて、旋回体20に対して起伏可能に取り付けられる。ブーム30は、旋回体20に設けられた起伏シリンダ22によって起伏され、伸縮シリンダ(不図示)によって伸縮される。
 ブーム30は、基端側の基端ブーム31から先端側の先端ブーム36までの間に、中間ブーム32~35を備える。中間ブーム32~35と先端ブーム36は、順次、基端ブーム31の内部に格納される入れ子式になっている。
 先端ブーム36の先端に設けられたブームヘッド36aには、シーブ37が配置されている。旋回体20の、ブーム30の基端近くに設けられたウインチには、吊り荷用のワイヤロープ38が巻かれている。ワイヤロープ38は、ウインチからシーブ37までブーム30の軸方向に沿って配置され、シーブ37に掛け回されたワイヤロープ38は、シーブ37から鉛直方向の下方に吊り下げられる。ワイヤロープ38の最下部には、フック39が設けられている。
 フック39に荷物が吊られ、ウインチに巻かれたワイヤロープ38を繰り出すことで、フック39が降下し、ワイヤロープ38を巻き上げることで、フック39は上昇する。
 このように構成されたクレーン1は、ウインチによるワイヤロープ38の繰り出し・巻き上げ、ブーム30の起伏及び伸縮、並びに旋回体20の旋回により、フック39に吊られた荷物を所定の位置に移動させる。
[タブレット端末の構成]
 図1に示すように、タブレット端末50は、カメラ51と、画像表示部53と、入力部52と、カメラ用受信部55と、を備える。
 カメラ51で撮影した画像は、画像表示部53に表示される。画像表示部53は、入力部52としてのタッチパネルとしても構成される。
 カメラ用受信部55(本件発明の「第1衛星測位信号受信部」に相当)は、例えば、衛星90としてのGNSS(Global Navigation Satellite System)衛星からのGNSS信号を受信して測位を実行し、実空間におけるカメラ51の位置、すなわちタブレット端末50の位置情報を取得する。
[クレーン情報表示システムの機能構成]
 図2は、実施例1のクレーン情報表示システム100の機能構成を示すブロック図である。図3は、実施例1の記憶部61に記憶されるクレーンの性能情報を示す表である。図4は、実施例1の画像表示部53に表示される画像を示す図である。以下、実施例1のクレーン情報表示システム100の機能構成を説明する。
 クレーン情報表示システム100は、衛星90からカメラ用受信部55が受信したカメラ51の位置情報と、衛星90からクレーン用受信部25が受信したクレーン1の旋回中心の位置情報と、入力部52で入力された入力情報と、が制御部60(本実施形態では、タブレット端末50に内蔵された制御部)に入力され、制御部60で制御された情報が、画像表示部53で出力される。
 カメラ51は、例えば一般的なタブレット端末50に備わるカメラ51とすることができる。カメラ51は、クレーン1やクレーン1の周辺の現場環境を撮影することができる。
 入力部52には、クレーン1に関する情報を入力することができる。入力部52は、作業半径入力部52aと、吊荷荷重入力部52bと、張出量入力部52cと、を備える。
 作業半径入力部52aには、クレーン1の作業半径を入力することができる。作業半径とは、フック39の中心より降ろした鉛直線から、旋回体20の旋回中心である鉛直軸C1までの水平距離である。作業半径は、入力部52としてのタッチパネルをタップして入力する。
 吊荷荷重入力部52bには、作業予定の吊荷荷重を入力することができる。吊荷荷重とは、吊荷の荷重(質量)であり、クレーン1にかかる荷重である。
 張出量入力部52cには、アウトリガー80の張り出し量を入力することができる。アウトリガー80の張り出し量とは、クレーン1の幅方向への張り出し量である。
 また、入力部52には、ブーム30の長さ等を入力することができる。ブーム30の長さは、先端ブーム36と、中間ブーム32~35とが、基端ブーム31に格納された状態(全縮状態)のブーム30の長さや、先端ブーム36が伸張した状態のブーム30の長さや、先端ブーム36と中間ブーム32~35とが伸張した状態(全伸状態)の長さ等である。
 制御部60は、記憶部61と、クレーン検出部62と、情報処理部63と、作業能力算出部64と、を備える。尚、制御部60は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、及び、ROM(Read Only Memory)等によって構成された周知のマイコンであり、制御部60が有する機能(クレーン検出部62、情報処理部63、及び作業能力算出部64)は、例えば、CPUが、記憶部61(例えば、HDD)、ROM又はRAMに格納された制御プログラムや各種データを参照することによって実現される。
 記憶部61は、クレーン1の性能情報を記憶する。性能情報には、アウトリガー80の張り出し量に応じた定格総荷重表Gが含まれる。図3には、一例として、アウトリガー80の張り出し量が6.6[m]である場合の、ブーム30の長さと作業半径とに応じた、定格総荷重が記載されている。定格総荷重とは、ブーム30の所定の長さと所定の作業半径における吊り上げ可能な荷重の限界値である。換言すると、定格総荷重、ブーム30の長さ、及び作業半径は、相互に関係しており、例えば、定格総荷重と作業半径が定まると、ブーム30の長さの限界値、ブーム30の起伏角度の限界値、及び、クレーン1の揚程の限界値等が指定されることになる。
 例えば、アウトリガー80の張り出し量が6.6[m]であり、作業半径が5.0[m]であり、ブーム30の長さが9.35[m]である場合、その定格総荷重は、19.6[t]となる。アウトリガー80の張り出し量が6.6[m]であり、作業半径が10.0[m]であり、ブーム30の長さが30.5[m]である場合、その定格総荷重は、7.15[t]となる。
 クレーン検出部62は、作業現場に置かれたクレーン1をカメラ51で撮影した画像に基づいて、画像認証によって、カメラ51で撮影した画像の中のクレーン1を検出する。また、クレーン検出部62は、カメラ51で撮影した画像の中のクレーン1の旋回中心を検出する。これにより、カメラ51の画像内におけるクレーン1の向き(即ち、クレーン1に対するカメラ51の向き)が検出されることになる。
 情報処理部63は、クレーン検出部62が検出したクレーン1の旋回中心と、カメラ用受信部55が受信したカメラ51の位置情報、及び、クレーン用受信部25が受信したクレーン1の旋回中心の位置情報と、を対応させる処理をする。
 具体的には、情報処理部63は、クレーン検出部62が検出したクレーン1の旋回中心に基づいて、カメラ51の画像内におけるクレーン1の向き(即ち、クレーン1に対するカメラ51の向き)を取得する。また、情報処理部63は、カメラ51の向きと、カメラ用受信部55が受信したカメラ51の位置情報と、クレーン用受信部25が受信したクレーン1の旋回中心の位置情報と、に基づいて、カメラ51の位置と、クレーン1の旋回中心の位置を、カメラ51で撮影した画像に対応づける。即ち、情報処理部63は、クレーン1に対するカメラ51の向きと、カメラ用受信部55が受信した実空間におけるカメラ51の位置情報と、クレーン用受信部25が受信した実空間におけるクレーン1の旋回中心の位置情報と、に基づいて、カメラ51の画像の座標系におけるクレーン1の位置及び姿勢を特定する。
 作業能力算出部64は、入力部52に入力されたクレーン1に関する情報に基づいて、クレーン1の作業能力を算出する。実施例1では、作業能力算出部64は、作業半径入力部52aに入力された作業半径と、張出量入力部52cに入力されたアウトリガー80の張り出し量と、に基づいて、記憶部61に記憶された定格総荷重表Gを参照して、クレーン1の最大の定格総荷重と、ブーム30の長さ(即ち、ブーム30の長さの限界値)と、ブーム30の起伏角度(即ち、ブーム30の起伏角度の限界値)と、クレーン1の揚程(即ち、クレーン1の揚程の限界値)と、を算出する。
 尚、ここで、作業能力算出部64が算出するブーム30の長さ、ブーム30の起伏角度、及びクレーン1の揚程は、作業半径入力部52aに入力された作業半径、張出量入力部52cに入力されたアウトリガー80の張り出し量、及び、定格総荷重表Gから特定されるクレーン1の最大の定格総荷重の条件下において、ブーム30の長さが取り得る範囲内における限界値、ブーム30の起伏角度が取り得る範囲内における限界値、及び、クレーン1の揚程が取り得る範囲内における限界値である。
 例えば、図3に示すように、作業半径入力部52aに入力された作業半径が5[m]であり、張出量入力部52cに入力されたアウトリガー80の張り出し量が6.6[m]であった場合、作業能力算出部64は、定格総荷重表Gを参照して、クレーン1の最大の定格総荷重を、19.6[t]と算出する。また、作業能力算出部64は、その際のブーム30の長さを、9.35[m]と算出する。また、作業能力算出部64は、作業半径入力部52aに入力された作業半径と、算出されたブーム30の長さと、に基づいて、ブーム30の起伏角度と、クレーン1の揚程と、を算出する。
 尚、ここでは、作業能力算出部64は、作業半径が5[m]で、且つ、アウトリガー80の張り出し量が6.6[m]の条件下で、図3の定格総荷重表Gに規定されたクレーン1の定格総荷重のうち、最大の定格総荷重である19.6[t]を選択して、この定格総荷重に対応するように、ブーム30の長さ等を算出している。但し、入力部52にブーム30の長さを入力可能である場合には、作業能力算出部64は、入力部52に入力された作業半径、アウトリガー80の張り出し量、及び、ブーム30の長さに基づいて、クレーン1の定格総荷重を決定してもよい。
 画像表示部53は、図4に示すように、情報処理部63が処理した情報に基づいて、作業半径入力部52aに入力された作業半径E1と、張出量入力部52cに入力されたアウトリガー80の張り出し量E2と、クレーン1の最大の定格総荷重F1と、ブーム30の長さF2(即ち、ブーム30の長さの限界値)と、ブーム30の起伏角度F3(即ち、ブーム30の起伏角度の限界値)と、クレーン1の揚程F4(即ち、クレーン1の揚程の限界値)とを、カメラ51で撮影したクレーン1とその周辺の現場環境の画像に、重畳して表示する。
 尚、このとき、画像表示部53は、ユーザが、クレーン1を現場で実際に稼働した際に、クレーン1の各部位が現場環境にどのような影響を与えるか等を、3次元で検討することができるように、カメラ51の画像に映るクレーン1又はクレーン1の周辺環境に重ね合わせるように、クレーン1の最大の定格総荷重F1、ブーム30の長さF2、ブーム30の起伏角度F3、及び、クレーン1の揚程F4の情報の少なくとも一部を、3次元画像で表示する。図4では、点線で、カメラ51の画像に映るクレーン1に重ね合わせるように、ブーム30の長さF2、及びブーム30の起伏角度F3の情報を、3次元画像で表示している。
[制御部による処理の流れ]
 図5は、実施例1のクレーン情報表示システム100の制御部60による処理の流れを示すフローチャートである。以下、実施例1のクレーン情報表示システム100の制御部60による処理の流れを説明する。
 作業者Mが、タブレット端末50のカメラ51で、作業現場に設置されたクレーン1と、その周辺の作業環境を撮影すると、図5に示すように、制御部60は、クレーン用受信部25から入力されたクレーン1の旋回中心の位置の情報と、カメラ用受信部55から入力されたカメラ51の位置の情報と、を取得する(ステップS101)。
 次いで、クレーン検出部62は、作業現場に置かれたクレーン1をカメラ51で撮影した画像に基づいて、クレーン1の旋回中心を検出する(ステップS102)。
 次いで、情報処理部63は、クレーン検出部62が検出したクレーン1の旋回中心に基づいて、カメラ51の向きを取得する(ステップS103)。
 次いで、情報処理部63は、カメラ51の向きと、カメラ用受信部55が受信したカメラ51の位置情報と、クレーン用受信部25が受信したクレーン1の旋回中心の位置情報と、に基づいて、カメラ51の位置と、クレーン1の旋回中心の位置を、カメラ51で撮影した画像に対応づける処理を行う(ステップS104)。
 次いで、制御部60は、作業半径入力部52aに入力された作業半径E1と、張出量入力部52cに入力されたアウトリガー80の張り出し量E2と、を取得する(ステップS105)。
 次いで、作業能力算出部64は、作業半径入力部52aに入力された作業半径E1と、張出量入力部52cに入力されたアウトリガー80の張り出し量E2と、に基づいて、クレーン1の最大の定格総荷重F1と、ブーム30の長さF2と、ブーム30の起伏角度F3と、クレーン1の揚程F4と、を算出する(ステップS106)。
 次いで、画像表示部53は、作業半径入力部52aに入力された作業半径E1と、張出量入力部52cに入力されたアウトリガー80の張り出し量E2と、クレーン1の最大の定格総荷重F1と、ブーム30の長さF2と、ブーム30の起伏角度F3と、クレーン1の揚程F4とを、カメラ51で撮影したクレーン1とその周辺の現場環境の画像に、重畳して表示して(ステップS107)、処理を終了する。
 なお、カメラ51の向きを変えた場合は、SLAM技術や加速度センサによって、初期化した時点からのベクトルを取得し、追従させるようにしてもよい。
[クレーン情報表示システムの作用] 
 以下、実施例1のクレーン情報表示システム100の作用を説明する。
 実施例1のクレーン情報表示システム100は、作業現場に置かれたクレーン1をカメラ51で撮影した画像に基づいて、クレーン1を検出するクレーン検出部62と、カメラ51に搭載された、カメラ51の位置情報を衛星90から受信するカメラ用受信部55と、クレーン1に搭載された、クレーン1の位置情報を衛星90から受信するクレーン用受信部25と、クレーン検出部62が検出したクレーン1と、カメラ用受信部55が受信したカメラ51の位置情報、及び、クレーン用受信部25が受信したクレーン1の位置情報と、を対応させる処理をする情報処理部63と、クレーン1に関する情報を入力する入力部52と、入力部52に入力されたクレーン1に関する情報に基づいて、クレーン1の作業能力を算出する作業能力算出部64と、情報処理部63が処理した情報に基づいて、作業能力算出部64が算出したクレーン1の作業能力を、カメラ51で撮影した画像に表示する画像表示部53と、を備える(図2及び図4)。
 これにより、作業現場に配置された実物のクレーン1の画像に、クレーン1の作業能力を重ね合わせて表示することができる。そのため、クレーン1と、その周辺環境と、クレーン1の作業能力と、をリアルタイムに3次元の画像で確認することができる。その結果、作業現場において、リアルタイムにクレーン1の作業計画を検討することができる。
 実施例1のクレーン情報表示システム100において、入力部52は、クレーン1の作業半径E1を入力する作業半径入力部52aを備え、作業能力算出部64は、作業半径入力部52aの入力値に基づいて、クレーン1の最大の定格総荷重F1を算出する(図2及び図4)。
 これにより、所望の地点の最大の定格総荷重を知ることができる。そのため、吊荷をクレーン1で始点位置から終点位置に移動させる間における、最大の定格総荷重を知ることができる。
 実施例1のクレーン情報表示システム100において、作業能力算出部64は、入力部52の入力値に基づいて、ブーム30の長さF2と、ブーム30の起伏角度F3と、を算出する(図2及び図4)。
 これにより、作業時のクレーン1の姿勢を知ることができる。
 実施例1のクレーン情報表示システム100において、入力部52は、アウトリガーの張り出し量E2を入力する張出量入力部52cを備え、作業能力算出部64は、張出量入力部52cの入力値に基づいて、クレーン1の作業能力を算出する(図2及び図4)。
 そのため、アウトリガー80の張り出し量E2に基づいた、クレーン1の作業能力を検討することができる。
 実施例2のクレーン情報表示システムは、作業能力算出部の構成が異なる点とで、実施例1のクレーン情報表示システムと相違する。
[クレーン情報表示システムの機能構成]
 図6は、実施例2の画像表示部に表示される画像を示す図である。以下、実施例2のクレーン情報表示システムの構成を説明する。なお、実施例1で説明した内容と同一乃至均等な部分の説明については、同一用語又は同一の符号を用いて説明する。
 作業能力算出部64は、入力部52に入力されたクレーン1に関する情報に基づいて、クレーン1の作業能力を算出する。実施例2では、作業能力算出部64は、吊荷荷重入力部52bに入力された吊荷荷重と、張出量入力部52cに入力されたアウトリガー80の張り出し量と、に基づいて、記憶部61に記憶された定格総荷重表Gを参照して、クレーン1の最大作業半径と、ブーム30の長さ(即ち、ブーム30の長さの限界値)と、ブーム30の起伏角度(即ち、ブーム30の起伏角度の限界値)と、クレーン1の揚程(即ち、ブーム30の揚程の限界値)と、を算出する。
 例えば、図3に示すように、吊荷荷重入力部52bに入力された吊荷荷重が15.0[t]であり、張出量入力部52cに入力されたアウトリガー80の張り出し量が6.6[m]であった場合、作業能力算出部64は、定格総荷重表Gを参照して、クレーン1の最大作業半径を6.5[m]と算出する。また、作業能力算出部64は、その際のブーム30の長さを、16.4[m]と算出する。また、作業能力算出部64は、算出された最大作業半径と、算出されたブーム30の長さと、に基づいて、ブーム30の起伏角度と、クレーン1の揚程と、を算出する。
 画像表示部53は、図6に示すように、情報処理部63が処理した情報に基づいて、吊荷荷重入力部52bに入力された作業予定の吊荷5の吊荷荷重G1と、張出量入力部52cに入力されたアウトリガー80の張り出し量G2と、クレーン1の最大作業半径H1と、ブーム30の長さH2と、ブーム30の起伏角度H3と、クレーン1の揚程H4とを、カメラ51で撮影したクレーン1とその周辺の現場環境の画像に、重畳して表示する。
[制御部による処理の流れ]
 図7は、実施例2のクレーン情報表示システム100の制御部60による処理の流れを示すフローチャートである。以下、実施例2のクレーン情報表示システム100の制御部60による処理の流れを説明する。
 作業者Mが、タブレット端末50のカメラ51で、作業現場に設置されたクレーン1と、その周辺の作業環境を撮影すると、図7に示すように、制御部60は、クレーン用受信部25から入力されたクレーン1の旋回中心の位置の情報と、カメラ用受信部55から入力されたカメラ51の位置の情報と、を取得する(ステップS201)。
 次いで、クレーン検出部62は、作業現場に置かれたクレーン1をカメラ51で撮影した画像に基づいて、クレーン1の旋回中心を検出する(ステップS202)。
 次いで、情報処理部63は、クレーン検出部62が検出したクレーン1の旋回中心に基づいて、カメラ51の向きを取得する(ステップS203)。
 次いで、情報処理部63は、カメラ51の向きと、カメラ用受信部55が受信したカメラ51の位置情報と、クレーン用受信部25が受信したクレーン1の旋回中心の位置情報と、に基づいて、カメラ51の位置と、クレーン1の旋回中心の位置を、カメラ51で撮影した画像に対応づける処理を行う(ステップS204)。
 次いで、制御部60は、吊荷荷重入力部52bに入力された吊荷荷重G1と、張出量入力部52cに入力されたアウトリガー80の張り出し量G2と、を取得する(ステップS105)。
 次いで、作業能力算出部64は、吊荷荷重入力部52bに入力された吊荷荷重G1と、張出量入力部52cに入力されたアウトリガー80の張り出し量G2と、に基づいて、クレーン1の最大作業半径H1と、ブーム30の長さH2と、ブーム30の起伏角度H3と、クレーン1の揚程H4と、を算出する(ステップS206)。
 次いで、画像表示部53は、吊荷荷重入力部52bに入力された吊荷荷重G1と、張出量入力部52cに入力されたアウトリガー80の張り出し量G2と、クレーン1の最大作業半径H1と、ブーム30の長さH2と、ブーム30の起伏角度H3と、クレーン1の揚程H4とを、カメラ51で撮影したクレーン1とその周辺の現場環境の画像に、重畳して表示して(ステップS207)、処理を終了する。
 なお、カメラ51の向きを変えた場合は、SLAM技術や加速度センサによって、初期化した時点からのベクトルを取得し、追従させるようにしてもよい。
[クレーン情報表示システムの作用] 
 以下、実施例2のクレーン情報表示システム100の作用を説明する。
 実施例2のクレーン情報表示システム100において、入力部52は、吊荷荷重G1を入力する吊荷荷重入力部52bを備え、作業能力算出部64は、吊荷荷重入力部52bの入力値に基づいて、クレーン1の最大作業半径H1を算出する(図2及び図6)。
 これにより、作業予定の吊荷に対して、最大作業半径H1を算出することができる。そのため、作業予定の吊荷に対して、クレーン1で移動させる始点位置と終点位置を容易に検討することができる。また、次にクレーン1を設置する設置位置の検討をすることもできる。また、複数のクレーンについて、それぞれ、最大作業半径H1を画像表示部53で確認することで、クレーン同士の干渉を回避することができる。
 なお、他の構成及び作用効果については、上記実施例と略同様であるので説明を省略する。
 実施例3のクレーン情報表示システムは、作業能力算出部の構成が異なる点とで、実施例1のクレーン情報表示システムと相違する。
[クレーン情報表示システムの機能構成]
 図8は、実施例3の画像表示部に表示される画像を示す図である。以下、実施例3のクレーン情報表示システムの構成を説明する。なお、実施例1で説明した内容と同一乃至均等な部分の説明については、同一用語又は同一の符号を用いて説明する。
 作業能力算出部64は、入力部52に入力されたクレーン1に関する情報に基づいて、クレーン1の作業能力を算出する。実施例3では、作業能力算出部64は、作業半径入力部52aに入力された作業半径と、吊荷荷重入力部52bに入力された吊荷荷重と、張出量入力部52cに入力されたアウトリガー80の張り出し量と、に基づいて、記憶部61に記憶された定格総荷重表Gを参照して、クレーン1の最も低い揚程と、ブーム30の長さ(即ち、ブーム30の長さの限界値)と、ブーム30の起伏角度(即ち、ブーム30の起伏角度の限界値)と、を算出する。
 例えば、図3に示すように、作業半径入力部52aに入力された作業半径が5.0[m]であり、吊荷荷重入力部52bに入力された吊荷荷重が18.0[t]であり、張出量入力部52cに入力されたアウトリガー80の張り出し量が6.6[m]であった場合、作業能力算出部64は、定格総荷重表Gを参照して、クレーン1の最も低い揚程と、ブーム30の長さを算出する。また、作業能力算出部64は、入力された作業半径と、算出されたブーム30の長さと、に基づいて、ブーム30の起伏角度を算出する。
 画像表示部53は、図8に示すように、情報処理部63が処理した情報に基づいて、作業半径入力部52aに入力された作業半径M1と、吊荷荷重入力部52bに入力された吊荷荷重M2と、張出量入力部52cに入力されたアウトリガー80の張り出し量M3と、クレーン1の最も低い揚程N1と、ブーム30の長さN2と、ブーム30の起伏角度N3とを、カメラ51で撮影したクレーン1とその周辺の現場環境の画像に、重畳して表示する。
 [制御部による処理の流れ]
 図9は、実施例3のクレーン情報表示システム100の制御部60による処理の流れを示すフローチャートである。以下、実施例3のクレーン情報表示システム100の制御部60による処理の流れを説明する。
 作業者Mが、タブレット端末50のカメラ51で、作業現場に設置されたクレーン1と、その周辺の作業環境を撮影すると、図9に示すように、制御部60は、クレーン用受信部25から入力されたクレーン1の旋回中心の位置の情報と、カメラ用受信部55から入力されたカメラ51の位置の情報と、を取得する(ステップS301)。
 次いで、クレーン検出部62は、作業現場に置かれたクレーン1をカメラ51で撮影した画像に基づいて、クレーン1の旋回中心を検出する(ステップS302)。
 次いで、情報処理部63は、クレーン検出部62が検出したクレーン1の旋回中心に基づいて、カメラ51の向きを取得する(ステップS303)。
 次いで、情報処理部63は、カメラ51の向きと、カメラ用受信部55が受信したカメラ51の位置情報と、クレーン用受信部25が受信したクレーン1の旋回中心の位置情報と、に基づいて、カメラ51の位置と、クレーン1の旋回中心の位置を、カメラ51で撮影した画像に対応づける処理を行う(ステップS304)。
 次いで、制御部60は、作業半径入力部52aに入力された作業半径M1と、吊荷荷重入力部52bに入力された吊荷荷重M2と、張出量入力部52cに入力されたアウトリガー80の張り出し量M3と、を取得する(ステップS305)。
 次いで、作業能力算出部64は、作業半径入力部52aに入力された作業半径M1と、吊荷荷重入力部52bに入力された吊荷荷重M2と、張出量入力部52cに入力されたアウトリガー80の張り出し量M3と、に基づいて、張出量入力部52cに入力されたアウトリガー80の張り出し量M3と、クレーン1の最も低い揚程N1と、ブーム30の長さN2と、ブーム30の起伏角度N3と、を算出する(ステップS306)。
 次いで、画像表示部53は、作業半径入力部52aに入力された作業半径M1と、吊荷荷重入力部52bに入力された吊荷荷重M2と、張出量入力部52cに入力されたアウトリガー80の張り出し量M3と、クレーン1の最も低い揚程N1と、ブーム30の長さN2と、ブーム30の起伏角度N3とを、カメラ51で撮影したクレーン1とその周辺の現場環境の画像に、重畳して表示して(ステップS307)、処理を終了する。
 なお、カメラ51の向きを変えた場合は、SLAM技術や加速度センサによって、初期化した時点からのベクトルを取得し、追従させるようにしてもよい。
[クレーン情報表示システムの作用] 
 以下、実施例3のクレーン情報表示システム100の作用を説明する。
 実施例3のクレーン情報表示システム100は、入力部52は、クレーン1の作業半径M1を入力する作業半径入力部52aと、吊荷荷重M2を入力する吊荷荷重入力部52bと、を備え、作業能力算出部64は、作業半径入力部52aの入力値と、吊荷荷重入力部52bの入力値に基づいて、クレーン1の最も低い揚程N1を算出する。
 これにより、所望の位置にある作業予定の吊荷に対して、最も低い揚程N1を算出することができる。そのため、クレーン1で作業予定の吊荷を始点位置から終点位置まで移動するのに、最も低い揚程を検討することができる。その結果、クレーン1の作業領域を小さくする検討をすることができる。
 なお、他の構成及び作用効果については、上記実施例と略同様であるので説明を省略する。
 以上、本発明のクレーン情報表示システムを実施例1~実施例3に基づき説明してきた。しかし、具体的な構成については、これらの実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、各実施例の組み合わせや、設計の変更や、追加等は許容される。
 実施例1~実施例3では、入力部52としてのタッチパネルをタップして、作業半径入力部52aに作業半径を入力する例を示した。しかし、作業現場のターゲット地点に衛星90としてのGNSS(Global Navigation Satellite System)衛星からのGNSS信号を受信する受信部を設置して、その受信部からの信号によって、入力部に入力されてもよい。
 実施例1~実施例3では、作業半径は、ブーム30の撓み量を考慮しない例を示した。しかし、作業半径は、ブームの撓み量を考慮することもできる。
 実施例1~実施例3では、ユーザ端末を、カメラ51と入力部52と画像表示部53を備えるタブレット端末50とする例を示した。しかし、ユーザ端末は、スマートフォンであってもよい。また、ユーザ端末は、カメラと画像表示部が別体のものであってもよい。
 実施例1~実施例3では、本発明を、ブーム30を備えたクレーン1に適用する例を示した。しかし、本発明は、ジブを備えたクレーンに適用できる。
 2019年9月27日出願の特願2019-176779の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 1 クレーン
 25 クレーン用受信部
 50 タブレット端末
 51 カメラ
 52 入力部
 52a 作業半径入力部
 52c 張出量入力部
 52b 吊荷荷重入力部
 53 画像表示部
 55 カメラ用受信部
 62 クレーン検出部
 63 情報処理部
 64 作業能力算出部
 90 衛星
 100 クレーン情報表示システム

Claims (6)

  1.  カメラを有する端末装置を備え、前記カメラにて、クレーンを撮影してカメラ画像を得るクレーン情報表示システムであって、
     前記カメラ画像の画像情報に基づいて、前記カメラ画像に映る前記クレーンを検出するクレーン検出部と、
     前記カメラ画像に映る前記クレーンから特定される前記クレーンに対する前記カメラの向きと、前記カメラに搭載された第1衛星測位信号受信部が示す実空間における前記カメラの位置と、前記クレーンに搭載された第2衛星測位信号受信部が示す実空間における前記クレーンの位置と、に基づいて、前記カメラ画像の座標系における前記クレーンの位置及び姿勢を特定する情報処理部と、
      入力部に入力されたクレーンに関する情報に基づいて、前記クレーンの作業能力を算出する作業能力算出部と、
     前記クレーンの作業能力を、前記情報処理部にて特定された前記クレーンの前記位置と前記姿勢に対応した三次元の画像情報に変換して、前記カメラ画像に重ねて表示する画像表示部と、
     を備える、クレーン情報表示システム。
  2.  前記入力部は、前記クレーンの作業半径を入力する作業半径入力部を備え、
     前記作業能力算出部は、前記作業半径入力部の入力値に基づいて、前記表示対象の前記クレーンの作業能力として、前記クレーンの最大の定格総荷重を算出する
     請求項1に記載のクレーン情報表示システム。
  3.  前記入力部は、吊荷荷重を入力する吊荷荷重入力部を備え、
     前記作業能力算出部は、前記吊荷荷重入力部の入力値に基づいて、前記表示対象の前記クレーンの作業能力として、前記クレーンの最大作業半径を算出する
     請求項1に記載のクレーン情報表示システム。
  4.  前記入力部は、前記クレーンの作業半径を入力する作業半径入力部と、吊荷荷重を入力する吊荷荷重入力部と、を備え、
     前記作業能力算出部は、前記作業半径入力部の入力値と、前記吊荷荷重入力部の入力値に基づいて、前記表示対象の前記クレーンの作業能力として、前記クレーンの最も低い揚程を算出する
     請求項1に記載のクレーン情報表示システム。
  5.  前記作業能力算出部は、前記表示対象の前記クレーンの作業能力として、前記ブームの長さの限界値と、前記ブームの起伏角度の限界値と、を算出する
     請求項1に記載のクレーン情報表示システム。
  6.  前記入力部は、前記アウトリガーの張り出し量を入力する張出量入力部を備え、
     前記作業能力算出部は、前記張出量入力部への入力値に基づいて、前記クレーンの作業能力を算出する
     請求項1に記載のクレーン情報表示システム。
PCT/JP2020/036283 2019-09-27 2020-09-25 クレーン情報表示システム WO2021060471A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20867090.1A EP4036044A4 (en) 2019-09-27 2020-09-25 CRANE INFORMATION DISPLAY SYSTEM
US17/642,077 US12012310B2 (en) 2019-09-27 2020-09-25 Crane information display system
JP2021549045A JP7107447B2 (ja) 2019-09-27 2020-09-25 クレーン情報表示システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-176779 2019-09-27
JP2019176779 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021060471A1 true WO2021060471A1 (ja) 2021-04-01

Family

ID=75165245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036283 WO2021060471A1 (ja) 2019-09-27 2020-09-25 クレーン情報表示システム

Country Status (4)

Country Link
US (1) US12012310B2 (ja)
EP (1) EP4036044A4 (ja)
JP (1) JP7107447B2 (ja)
WO (1) WO2021060471A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019113881A1 (de) * 2019-02-12 2020-08-13 Putzmeister Engineering Gmbh Betonpumpe und Verfahren zum Abstützen einer Betonpumpe
JP7416065B2 (ja) * 2019-06-20 2024-01-17 株式会社タダノ 可動範囲表示システムおよび可動範囲表示システムを備えるクレーン
WO2021060471A1 (ja) * 2019-09-27 2021-04-01 株式会社タダノ クレーン情報表示システム
CA3175122A1 (en) * 2021-09-28 2023-03-28 Industries N.R.C. Inc Lifting chart for tow vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031223A (ja) * 2012-08-01 2014-02-20 Tadano Ltd 作業範囲図および作業範囲図表示装置
JP2014227281A (ja) 2013-05-24 2014-12-08 株式会社タダノ 作業機の表示システム
JP2019024151A (ja) * 2017-07-21 2019-02-14 株式会社タダノ ガイド情報表示装置およびこれを備えたクレーンおよびガイド情報表示方法
JP2019059593A (ja) * 2017-09-27 2019-04-18 株式会社大林組 クレーン操縦支援装置
JP2019176779A (ja) 2018-03-30 2019-10-17 株式会社ササキコーポレーション 自走式作業機

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4727068B2 (ja) * 2001-05-29 2011-07-20 株式会社トプコン 施工監視システム、施工管理方法
US9238570B2 (en) * 2011-07-05 2016-01-19 Trimble Navigation Limited Crane maneuvering assistance
NL2013409B1 (en) * 2014-09-03 2016-09-27 Fugro N V Spatial positioning of offshore structures.
JP6776861B2 (ja) 2016-12-09 2020-10-28 株式会社タダノ 移動式クレーンの共吊り制御システム
JP6801421B2 (ja) 2016-12-09 2020-12-16 株式会社タダノ クレーン
JP6845106B2 (ja) * 2017-07-21 2021-03-17 株式会社タダノ 点群データのクラスタリング方法、ガイド情報表示装置およびクレーン
JP7114950B2 (ja) * 2018-03-09 2022-08-09 株式会社タダノ 遠隔操作端末及び作業車両
EP3594166B1 (de) * 2018-07-13 2024-01-24 EPSILON Kran GmbH. Kransteuerung mit visualisierungsvorrichtung
US20200140239A1 (en) * 2018-11-07 2020-05-07 Manitowoc Crane Companies, Llc System for determining crane status using optical and/or electromagnetic sensors
EP4036046A4 (en) * 2019-09-27 2023-11-01 Tadano Ltd. CRANE INFORMATION DISPLAY SYSTEM
WO2021060466A1 (ja) * 2019-09-27 2021-04-01 株式会社タダノ クレーン情報表示システム
WO2021060471A1 (ja) * 2019-09-27 2021-04-01 株式会社タダノ クレーン情報表示システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031223A (ja) * 2012-08-01 2014-02-20 Tadano Ltd 作業範囲図および作業範囲図表示装置
JP2014227281A (ja) 2013-05-24 2014-12-08 株式会社タダノ 作業機の表示システム
JP2019024151A (ja) * 2017-07-21 2019-02-14 株式会社タダノ ガイド情報表示装置およびこれを備えたクレーンおよびガイド情報表示方法
JP2019059593A (ja) * 2017-09-27 2019-04-18 株式会社大林組 クレーン操縦支援装置
JP2019176779A (ja) 2018-03-30 2019-10-17 株式会社ササキコーポレーション 自走式作業機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4036044A4

Also Published As

Publication number Publication date
EP4036044A1 (en) 2022-08-03
US12012310B2 (en) 2024-06-18
JPWO2021060471A1 (ja) 2021-04-01
US20220380184A1 (en) 2022-12-01
EP4036044A4 (en) 2023-10-25
JP7107447B2 (ja) 2022-07-27

Similar Documents

Publication Publication Date Title
WO2021060471A1 (ja) クレーン情報表示システム
JP5876679B2 (ja) 性能線表示装置
JP6121670B2 (ja) 作業計画確認装置
JP6202670B2 (ja) 作業機械の遠隔操作システム
JP7416063B2 (ja) 遠隔操作端末および遠隔操作端末を備える移動式クレーン
JP7114950B2 (ja) 遠隔操作端末及び作業車両
JP6053141B2 (ja) 作業確認装置
JP2016179889A (ja) 画像表示装置
JP7059724B2 (ja) 作業車両及び遠隔操作端末
JP2016166086A (ja) 画像表示装置
JP6402497B2 (ja) 高さ検出装置
WO2021060473A1 (ja) クレーン情報表示システム
JP7114949B2 (ja) 作業車両
JP6528474B2 (ja) 画像表示装置
EP4036047A1 (en) Crane information display system
JP6772765B2 (ja) 画像表示装置
JP6919548B2 (ja) 遠隔操作端末および遠隔操作端末を備える作業車両
JPH08245166A (ja) クレーンの作業状態表示装置
US20210017003A1 (en) Work vehicle
US20210061621A1 (en) Work vehicle
US20240208777A1 (en) Crane operation support device and crane
EP4357290A1 (en) Crane
JP7059703B2 (ja) 遠隔操作端末および遠隔操作端末を備える作業車両
JP2018034945A (ja) 画像表示装置
JP7069952B2 (ja) 作業車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021549045

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020867090

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020867090

Country of ref document: EP

Effective date: 20220428