WO2021057497A1 - 烘烤物、烘烤物的制作方法及烘烤物的微波加热方法 - Google Patents

烘烤物、烘烤物的制作方法及烘烤物的微波加热方法 Download PDF

Info

Publication number
WO2021057497A1
WO2021057497A1 PCT/CN2020/114540 CN2020114540W WO2021057497A1 WO 2021057497 A1 WO2021057497 A1 WO 2021057497A1 CN 2020114540 W CN2020114540 W CN 2020114540W WO 2021057497 A1 WO2021057497 A1 WO 2021057497A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
tobacco
temperature
component
absorber
Prior art date
Application number
PCT/CN2020/114540
Other languages
English (en)
French (fr)
Inventor
周宏明
张蛟
金鹤
肖俊杰
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to EP20868424.1A priority Critical patent/EP4035539A4/en
Publication of WO2021057497A1 publication Critical patent/WO2021057497A1/zh
Priority to US17/699,438 priority patent/US20220232882A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/287Treatment of tobacco products or tobacco substitutes by chemical substances by inorganic substances only
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/186Treatment of tobacco products or tobacco substitutes by coating with a coating composition, encapsulation of tobacco particles
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/22Treatment of tobacco products or tobacco substitutes by application of electric or wave energy or particle radiation
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B3/00Preparing tobacco in the factory
    • A24B3/18Other treatment of leaves, e.g. puffing, crimpling, cleaning
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/20Cigarettes specially adapted for simulated smoking devices
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/06Use of materials for tobacco smoke filters
    • A24D3/16Use of materials for tobacco smoke filters of inorganic materials
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors

Definitions

  • This application relates to the field of microwave heating, and in particular to a baking product, a method for making a baking product, and a microwave heating method of the baking product.
  • Heat-not-burn technology refers to a way that smoke is produced by baking a specific roasted object (such as cigarettes) by heating at a low temperature without burning, so that the user can inhale.
  • the traditional low-temperature baking device mainly energizes the heating element.
  • the heating element generates heat through the Joule effect, and the heating element is in direct contact with the roasted object (tobacco), thereby transferring heat to the tobacco for curing.
  • This method has a preheating time Long, uneven baking of cigarettes, and low tobacco utilization efficiency.
  • Microwave heating uses the continuous polarization of the heated material in the microwave electromagnetic field.
  • the dipole inside the heated material reciprocates with high frequency, resulting in dielectric loss (similar to internal friction).
  • the feature of simultaneous heating of all parts of the electric heating method can improve the problem of long preheating time and poor uniformity of cigarette baking.
  • a general microwave heating device heats traditional cigarettes, which cannot effectively heat the roasted product to a target temperature, and it is difficult to effectively roast the tobacco to obtain a suitable taste.
  • a baked product including tobacco and a microwave absorber. Both the tobacco and the microwave absorber can absorb microwaves to generate heat, and the microwave absorber is stabilized by a dielectric loss constant. , Made of non-volatile solid materials, the dielectric loss constant of the microwave absorber does not change with temperature, and the dielectric loss constant of the microwave absorber is higher than that of the lignocellulose in the tobacco The dielectric loss constant, the microwave absorber can stably absorb microwaves to generate heat, and then conduct conductive heating to the tobacco.
  • the microwave absorbent is one or any combination of ceramic powder, inorganic non-metal element, ferrite type absorbent and metal powder.
  • the ceramic powder includes one or any combination of silicon carbide, silicon nitride, and aluminum nitride; the inorganic non-metallic element includes one of coke, carbon powder, and graphite powder. Or any combination of several; the ferrite absorbent includes Fe 3 O 4 ; the metal powder includes one or any combination of Ti, Fe, and Ni metal powders.
  • the microwave absorber is uniformly distributed in the tobacco, and the particle size of the microwave absorber ranges from 2 ⁇ m to 200 ⁇ m.
  • the volume ratio of the microwave absorbent to tobacco ranges from 1% to 30%.
  • the thermal conductivity of the microwave absorber is higher than the thermal conductivity of the tobacco.
  • the roasted product is a cigarette
  • the cigarette includes a tobacco part, a filter part and a microwave filter membrane;
  • the tobacco part includes the tobacco and a microwave absorber;
  • the microwave filter membrane is arranged On the filter part or between the filter part and the tobacco part.
  • the microwave filter membrane is a metal foil, and a first through hole is arranged on the metal foil, and air flow can circulate through the first through hole.
  • the metal foil is used to reflect microwaves and prevent microwaves. Leak, the first through hole is used to cut off the transmission of microwaves.
  • This application also proposes a method for preparing the above-mentioned baked goods, which includes the following steps:
  • the additives in step S120 include one or any combination of acidity regulators, leavening agents, humectants, stabilizers/coagulants, thickeners, and natural flavors.
  • the method of shaping the third component or the fourth component in step S130 includes at least one of coating, die-casting or thermoplastic.
  • This application also proposes a microwave heating method of the above-mentioned baked goods, which includes the following steps:
  • the microwave generator emits microwaves to heat the baked goods
  • Both the tobacco and the microwave absorber absorb microwaves to generate heat, and the microwave absorber reheats the tobacco through heat conduction.
  • the microwave heating method of the baked goods further includes a temperature control step S230: the temperature detection unit detects the temperature of the baked goods, and sends the detection result to the circuit control unit, and the circuit control unit controls The working power of the microwave generator further controls the heating temperature of the baked goods.
  • the method for the temperature detection unit to detect the temperature of the baked goods in step S230 includes at least one of thermocouple temperature measurement, optical pyrometer temperature measurement, or infrared fiber temperature measurement.
  • the way in which the temperature detection unit detects the temperature of the baked goods in step S230 includes deriving the temperature of the cigarette according to changes in physical parameters of the cigarette or deriving the temperature of the cigarette according to the working power of the microwave generator. At least one of the temperature.
  • Figure 1 is a schematic diagram of the structure of a cigarette in an embodiment of the application
  • Figure 2 is a schematic structural diagram of a microwave heating device in an embodiment of the application
  • FIG. 3 is a schematic diagram of the electrical connection relationship between various electronic components in the microwave heating device in an embodiment of the application;
  • Figure 4 is a flow chart of a method for preparing baked goods in an embodiment of the application
  • Fig. 5 is a flowchart of a microwave heating method for baked goods in an embodiment of the application.
  • Cigarette 100 filter part 110, microwave filter membrane 120, first through hole 121, tobacco part 130, tobacco 131, microwave absorbent 132; housing 210, air passage hole 211, charging interface 212, power supply 220, circuit control Unit 230, microwave generator 240, containing cavity 250, second through hole 251, main control switch 260, display screen 270, microwave power control button 280, microwave transmission channel 290; temperature detection unit 400.
  • the moisture dielectric loss constant of 10-20
  • glycerin the dielectric loss of lignocellulose
  • the target temperature is usually 250- 400°C.
  • the roasted product is a cigarette 100.
  • the cigarette 100 includes a filter part 110, a microwave filter membrane 120 and a tobacco part 130.
  • the tobacco part 130 includes tobacco 131 and a microwave absorber 132, Tobacco 131 is the same as tobacco 131 in conventional low-temperature-cured cigarettes. Both tobacco 131 and microwave absorber 132 can absorb microwaves to generate heat.
  • the microwave absorber 132 is made of a solid material with stable dielectric loss constant and non-volatile. The absorbent 132 can stably absorb microwaves to generate heat, thereby conducting conductive heating of the tobacco 131.
  • the temperature of the tobacco 131 can be raised to an effective baking temperature under the dual heating of microwave radiation and heat conduction.
  • the microwave absorber 132 has a relatively stable dielectric loss constant. It should be noted that the dielectric loss constant of the microwave absorber mentioned here is relatively stable, which means that the microwave absorber is generally solid and will not volatilize or cause chemical reactions. In the reaction, the dielectric loss constant does not change with temperature changes, and it can absorb microwaves stably to generate heat.
  • the microwave absorbent 132 can be granular or flake ceramic powder (such as silicon carbide, silicon nitride, aluminum nitride), inorganic non-metallic element (such as coke, carbon powder, graphite powder), and ferrite type absorbent (such as Fe 3 O 4 ), or even metal powder (such as Ti, Fe, Ni, etc.), the microwave absorber 132 is added during the remanufacturing process of the tobacco sheet, so as to be evenly distributed among the tobacco 131.
  • the microwave absorber 132 may be one of the above-mentioned ceramic powder, inorganic non-metal element, ferrite type absorber, and metal powder, or a combination of multiple additions.
  • the dielectric loss constant of microwave absorbers is generally higher than that of lignocellulose in tobacco.
  • the dielectric loss constant of silicon carbide is about 0.02-0.2, and the dielectric loss constant of graphite is in the range of 0.01-0.2.
  • the dielectric loss constant of lignocellulose is generally below 1*10-3.
  • the preparation method of tobacco 131 products mainly includes the following steps:
  • the required additives mainly include acidity regulators, leavening agents, humectants, stabilizers/coagulants, and enhancers. Thickeners and natural flavors, etc.; mix the microwave absorbent 132 powder into the second component, and then mix it uniformly to obtain the third component; or add the microwave absorbent 132 and additives to the first component together, and mix evenly to obtain the fourth component ;
  • the third component or the fourth component is molded into a shape by coating, die-casting or thermoplastic.
  • the microwave absorber 132 can be mixed in the tobacco 131 very uniformly, which is beneficial to the subsequent uniform conductive heating of the tobacco 131.
  • the particle size of the microwave absorber 132 mainly considers the portability of being doped into the tobacco 131. If the particle size is too large, it is not easy to be incorporated into the tobacco sheet. Therefore, in one embodiment, the microwave absorber 132 ranges from 2 ⁇ m to 200 ⁇ m. In the embodiment, the microwave absorber 132 ranges from 2 ⁇ m to 50 ⁇ m, and the volume ratio of the microwave absorber 132 to the tobacco 131 ranges from 1% to 30%. In addition, under normal circumstances, the thermal conductivity of the powder of the microwave absorbent 132 is higher than that of the tobacco 131. The addition of the microwave absorbent 132 into the tobacco 131 can also increase the thermal conductivity of the entire cigarette 100 and further promote the Temperature uniformity after heating.
  • the tobacco 131 of the tobacco portion 130 not only absorbs the microwave and generates heat, but also is heated by the microwave absorber 132 through thermal conduction. Under the heating mechanism, the temperature of the tobacco 131 is more stable and uniform; during the volatilization of moisture and glycerin in the material of the tobacco 131, the microwave absorber 132 can provide stable conductive heating, so that the temperature of the tobacco 131 can continue to rise to the effective curing temperature. Pyrolysis volatilizes a unique smoky aroma and obtains a suitable taste.
  • the main function of the microwave filter membrane 120 is to prevent microwaves from leaking from the filter part 110, and its position can be in the middle of the filter part 110 or at the boundary between the filter part 110 and the tobacco part 130.
  • the microwave filter membrane 120 is located in the filter part 110.
  • the microwave filter membrane 120 is a thin metal sheet or a metal sheet, and a number of first through holes 121 are arranged on the thin metal sheet or metal sheet, and the first through holes 121 can allow the cigarette 100 to be smoked.
  • the metal material can reflect microwaves and prevent microwave leakage.
  • the first through hole 121 can cut off the transmission of microwaves and play a shielding role.
  • the structure of the microwave heating device for heating the above-mentioned cigarette 100 is shown in FIG. 2, and mainly includes a housing 210, a power supply 220, a circuit control unit 230, and a microwave generator 240 located in the housing 210.
  • ⁇ Accommodating cavity 250 is used to place the above-mentioned cigarette 100 containing the microwave absorber 132; the microwave generator 240 is used to generate microwaves, and then is used to heat the cigarette 100 in the accommodating cavity 250.
  • the electrical connection structure between the various electronic components in the microwave heating device is shown in FIG. 3.
  • the circuit control unit 230 is electrically connected to the microwave generator 240 for controlling the operation of the microwave generator 240; 220 is electrically connected to the circuit control unit 230, and is used to provide power for the microwave heating device.
  • the microwave heating device is further provided with a smoking set main control switch 260, a display screen 270, a microwave power control button 280, and a temperature detection unit (not shown in FIG. 2) on the housing 210.
  • the charging interface 212 and the air passage hole 211, the air passage hole 211 is in communication with the accommodating cavity 250.
  • the electrical connection relationship between the various electronic components in the microwave heating device is shown in Figure 3.
  • the smoking set main control switch 260 is electrically connected to the power supply 220 or the circuit control unit 230 for starting the microwave generator 240 to work; the display screen 270 and the circuit
  • the control unit 230 is electrically connected to display the working power of the microwave generator 240 and/or the temperature in the accommodating cavity 250; the microwave power control button 280 is electrically connected to the circuit control unit 230 to adjust and control the microwave generator 240
  • the temperature detection unit 400 is electrically connected to the circuit control unit 230, and is used to detect the temperature of the cigarette 100 in the accommodating cavity 250 and send the detected temperature to the circuit control unit 230; the charging interface 212 is electrically connected to the power supply 220 sexual connection, used to charge the power supply 220 in the microwave heating device.
  • the microwave generator 240 is a magnetron, which can generate microwaves with a frequency of 2.45 GHz, and a microwave transmission channel 290 is also provided between the microwave generator 240 and the accommodating cavity 250.
  • the microwave transmission channel 290 is used to transmit the microwaves generated by the microwave generator 240 to the accommodating cavity 250.
  • the accommodating cavity 250 is a cylindrical microwave resonant cavity.
  • the accommodating cavity 250 can be made of a metal material, or a high-temperature resistant organic material such as ceramic or polytetrafluoroethylene, but the inside of the accommodating cavity 250 must include a metal reflective layer.
  • the microwave is allowed to oscillate and propagate back and forth in the accommodating cavity 250.
  • a plurality of second through holes 251 are provided at the bottom of the accommodating cavity 250 to facilitate the entry of airflow during the suction process, and the suction resistance can be adjusted. 211 communicates with the receiving cavity 250 through the second through hole 251.
  • the accommodating cavity 250 plus the microwave filter film 120 in the cigarette 100 can form a microwave closed cavity.
  • the microwave generator 240 is activated, the microwave will go back and forth in the accommodating cavity 250 Shake to heat the tobacco portion 130 (including tobacco 131 and microwave absorber 132) in the cigarette 100, so as to heat the tobacco portion of the cigarette 100 to a suitable temperature, and roast and pyrolyze suitable smoke for the user to smoke .
  • the roasted product is a cigarette 100, and a microwave filter film 120 is provided on the cigarette 100. It is understandable that in other embodiments, if the roasted product only includes tobacco 131 and microwave Absorbent 132. When the microwave filter film 120 is not provided on the baked goods, the microwave filter film 120 must be installed at the airflow outlet of the containing cavity 250 on the microwave heating device for heating the baked goods to prevent microwaves in the containing cavity 250. Leak out.
  • the microwave heating method of the cigarette 100 includes the following steps:
  • the microwave generator 240 emits microwaves to heat the cigarette 100;
  • both the tobacco 131 and the microwave absorber 132 in the cigarette 100 absorb microwaves to generate heat.
  • the microwave absorber 132 reheats the tobacco 131 through heat conduction. Under the dual heating mechanism of microwave radiation and heat conduction, the tobacco 131 is heated to an effective drying temperature. Baking temperature.
  • the microwave heating method of the cigarette 100 further includes a temperature control step S230: the temperature detection unit 400 detects the temperature of the cigarette 100, and sends the detection result to the circuit control unit 230, and the circuit control unit 230 passes The working power of the microwave generator 240 is controlled to control the heating temperature of the cigarette 100.
  • the temperature detection unit 400 can detect the temperature of the cigarette 100 directly or indirectly.
  • the direct temperature measurement methods include thermocouple temperature measurement, optical pyrometer temperature measurement and infrared fiber temperature measurement. Among them, the infrared fiber temperature measurement is based on the cigarette Surface radiation is measured by infrared electromagnetic waves.
  • Indirect temperature measurement methods mainly include empirical derivation, for example, deriving the temperature of the cigarette according to the change of physical parameters of the cigarette, or deriving the temperature of the cigarette according to the working power of the microwave generator.
  • the temperature control method of the cigarette can be a power feedback temperature control, that is, the circuit control unit controls the heating temperature of the cigarette by controlling the working frequency of the microwave generator.
  • the microwave power control button 280 has a certain number of adjustment gear positions. For example, in one embodiment, the microwave power control button has six gear positions. The temperature ranges from 250°C to 250°C, with a step of 20°C.
  • a microwave absorber 132 is added to the tobacco 131.
  • the microwave absorber 132 is made of a solid material with a stable dielectric loss constant and is non-volatile.
  • the microwave absorber 132 can absorb microwaves stably to generate heat.
  • the tobacco 131 is conductively heated. When the roasted product of the present application is put into the microwave heating device, the tobacco 131 of the tobacco portion 130 will not only absorb the microwave itself and generate heat, but will also be heated by the microwave absorber 132 through thermal conduction.
  • the temperature of the tobacco 131 is more stable and uniform; during the volatilization of moisture and glycerin in the tobacco 131 material, the microwave absorber 132 can provide stable conductive heating, so that the temperature of the tobacco 131 can continue to rise to Effective baking temperature, pyrolysis volatilizes a unique smoky aroma, and obtains a suitable taste.
  • silicon carbide ceramic powder, carbon powder, Fe 3 0 4 powder, and a composite addition of silicon carbide and carbon powder (weight ratio 1:1) are used as the microwave absorber, and the comparison of different particle sizes and doping ratios is measured.
  • the heating rate of the cigarette under the action of microwave, the working power of the microwave generator is 30W, the microwave frequency is 2.45GHz, the internal temperature of the cigarette is measured by a thermocouple, and the temperature is controlled at about 300°C by the power feedback temperature control method, such as As shown in Table 1, D50 in Table 1 refers to the median particle size.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Tobacco Products (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种烘烤物(100)、烘烤物(100)的制作方法及烘烤物(100)的微波加热方法,其中,烘烤物(100)包括烟草(131)和微波吸收剂(132),烟草(131)和微波吸收剂(132)均能够吸收微波进行发热,微波吸收剂(132)由介电损耗常数稳定、非挥发性的固体材料制成,微波吸收剂用于稳定地吸收微波进行发热,进而对烟草(131)进行传导性加热。通过在烟草中添加微波吸收剂,微波吸收剂能够稳定地吸收微波进行发热,烟草除本身吸收微波发热外,还会被微波吸收剂通过热传导加热,烟草的升温更加稳定均匀,温度能继续上升至有效烘烤温度,能实现快速抽吸的功能,还能够热解挥发出独特烟熏香,而获得适宜口感。

Description

烘烤物、烘烤物的制作方法及烘烤物的微波加热方法 技术领域
本申请涉及微波加热领域,特别是涉及一种烘烤物、烘烤物的制作方法及烘烤物的微波加热方法。
背景技术
加热不燃烧技术,是指通过低温加热而不燃烧的方式烘烤特定的烘烤物(如:烟支)而产生烟雾,从而供使用者抽吸的一种方式。
传统的低温烘烤装置主要是对发热元件进行通电,发热元件通过焦耳效应产生热量,发热元件与烘烤物(烟草)直接接触,从而将热量传递到烟草进行烘烤,该方式存在预热时间长,烟支烘烤不均匀的问题,烟草利用效率低。
微波加热是利用加热物质在微波电磁场中的不断极化,加热物质内部偶极子随着高频往复运动,产生介质损耗(类似内摩擦)而加热,其存在加热速率快,能够对烘烤物的各个部分同时加热的特点,可以改善电热方式预热时间长、烟支烘烤均匀性差问题。但是一般的微波加热装置加热传统的烟支,无法有效加热烘烤物至目标温度,难以对烟草进行有效烘烤以获得适宜口感。
发明内容
根据本申请的各种实施例,提供一种烘烤物,包括烟草和微波吸收剂,所述烟草和所述微波吸收剂均能够吸收微波进行发热,所述微波吸收剂由介电损耗常数稳定、非挥发性的固体材料制成,所述微波吸收剂的介电损耗常数不会随温度变化而变化,并且所述微波吸收剂的介电损耗常数高于所述烟草中的木质纤维素的介电损耗常数,所述微波吸收剂能够稳定吸收微波进行发热,进而对所述烟草进行传导性加热。
在一个实施例中,所述微波吸收剂为陶瓷粉末、无机非金属单质、铁氧型吸收剂和金属粉体中的一种或者几种的任意组合。
在一个实施例中,所述陶瓷粉末包括碳化硅、氮化硅及氮化铝中的一种或者几种的任意组合;所述无机非金属单质包括焦炭、碳粉、石墨粉中的一种或者几种的任意组合;所述铁氧型吸收剂包括Fe 3O 4;所述金属粉体包括Ti、Fe、Ni金属粉体中的一种或者几种的任意组合。
在一个实施例中,所述微波吸收剂均匀分布在所述烟草中,所述微波吸收剂的粒径范围为2μm-200μm。
在一个实施例中,所述微波吸收剂与烟草的体积比范围为1%-30%。
在一个实施例中,所述微波吸收剂的导热系数高于所述烟草的导热系数。
在一个实施例中,所述烘烤物为烟支,所述烟支包括烟草部、滤嘴部和微波过滤膜;所述烟草部包括所述烟草和微波吸收剂;所述微波过滤膜设置于滤嘴部或者设置于滤嘴部与烟草部之间。
在一个实施例中,所述微波过滤膜为金属薄片,所述金属薄片上配置有第一通孔,气流能够从所述第一通孔处流通,所述金属薄片用于反射微波,防止微波泄露,所述第一通孔用于截止微波的传输。
本申请还提出一种上述烘烤物的制备方法,包括以下步骤:
S110,将烟草原料粉碎成第一成分;
S120,在所述第一成分内加入添加剂,并且混合均匀得到第二成分,在第二成分内混入微波吸收剂粉体,然后混合均匀,得到第三成分;或者,将微波吸收剂和添加剂一起加入第一成分中,混合均匀得到第四成分;
S130,将第三成分或者第四成分塑造成形。
在一个实施例中,所述步骤S120中的添加剂包括酸度调节剂、膨松剂、保润剂、稳定剂/凝固剂、增稠剂及天然香精中的一种或者几种的任意组合。
在一个实施例中,所述步骤S130中的将第三成分或者第四成分塑造成形的方式包括涂布、压铸或热塑中的至少一种。
本申请还提出一种上述烘烤物的微波加热方法,包括以下步骤:
S210,微波发生器发出微波对所述烘烤物进行加热;
S220,所述烟草和微波吸收剂均吸收微波进行发热,所述微波吸收剂通过热传导对所述烟草进行再次加热。
在一个实施例中,上述烘烤物的微波加热方法还包括温度控制步骤S230:温度检测单元检测所述烘烤物的温度,并将检测结果发送至电路控制单元,所述电路控制单元通过控制所述微波发生器的工作功率进而控制所述烘烤物的加热温度。在一个实施例中,所述步骤S230中温度检测单元检测所述烘烤物的温度的方式包括热电偶测温、光学高温计测温或红外光纤测温中的至少一种。
在一个实施例中,所述步骤S230中温度检测单元检测所述烘烤物的温度的方式包括根据烟支物理参数的变化来推导烟支的温度或根据微波发生器的工作功率推导烟支的温度中的至少一种。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
图1为本申请一个实施例中烟支的结构示意图;
图2为本申请一个实施例中微波加热装置的结构示意图;
图3为本申请一个实施例中微波加热装置中各个电子部件之间的电连接关系示意图;
图4为本申请一个实施例中烘烤物的制备方法的流程图;
图5为本申请一个实施例中烘烤物的微波加热方法的流程图。
附图标记:
烟支100,滤嘴部110,微波过滤膜120,第一通孔121,烟草部130,烟草131,微波吸收剂132;壳体210,气道孔211,充电接口212,电源220,电路控制单元230,微波发生器240,容纳腔250,第二通孔251,主控开关260,显示屏270,微波功率控制按钮280,微波传输通道290;温度检测单元400。
为了更好地描述和说明这里公开的那些申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的申请、目前描述的实施例和/或示例以及目前理解的那些申请的最佳模式中的任何一者的范围的限制。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
传统的烟支等烘烤物在被微波加热时,难以被有效烘烤至目标温度,从而难以获得适宜口感。通过研究发现,其具体原因主要为,微波加热常用频率为2.45GHz,单位体积材料的在微波场作用下的加热功率为:P=2πf·ε 0ε'tanδ·/E/ 2,其中f为微波频率,ε'tanδ为材料介电损耗常数;ε 0为真空介电常数;E为微波电场强度,所以微波加热跟材料介电损耗常数和微波电场强度紧密相关。烟支的主要成分为木质纤维素,部分水分,以及甘油和香料等添加剂,在烟草烘烤过程,主要存在水分、甘油、尼古丁和植物挥发性物质的挥发,以及部分纤维素和木质素的热解。烟支在微波加热初期,其中水分(介电损耗常数10-20)、甘油的介电损耗常数较高,烟草能快速升温,但是随着水分、甘油的挥发,而木质纤维素的介电损耗常数很小,升温速率会迅速下降,甚至不能继续升温,因此传统的烟支等烘烤物在被微波加热时,不能被有效地加热至目标温度,根据烟支设计,目标温度通常为250-400℃。
在一个实施例中,烘烤物为烟支100,如图1所示,烟支100包括滤嘴部110,微波过滤膜120和烟草部130,烟草部130包括烟草131和微波吸收剂132,烟草131与常规低温烘烤烟支中的烟草131相同,烟草131和微波吸收剂132均能够吸收微波进行发热,微波吸收剂132由介电损耗常数稳定、非挥发性的固体材料制成,微波吸收剂132能够稳定吸收微波进行发热,进而对烟草131进行传导性加热,烟草131在微波辐射和热传导的双重加热下,温度能够上升至有效烘烤温度。
微波吸收剂132具有较稳定的介电损耗常数,需要说明的是,此处所说的微波吸收剂的介电损耗常数较稳定,是指微波吸收剂一般为固态,不会挥发,不会发生化学反应,其介电损耗常数不会随温度的变化而变化,能够稳定地吸收微波进行发热。微波吸收剂132可以是颗粒状或者片状的陶瓷粉末(如碳化硅,氮化硅,氮化铝),无机非金属单质(如焦炭,碳粉,石墨粉),铁氧型吸收剂(如Fe 3O 4),甚至可以是金属粉体(如Ti,Fe,Ni等),微波吸收剂132在烟草片的再造过程中添入,从而在烟草131之间均匀分布。微波吸收剂132可以是上述陶瓷粉末、无机非金属单质、铁氧型吸收剂、金属粉体中的一种,也可以是多种复合添加。微波吸收剂的介电损耗常数一般比烟草中的木质纤维素的介电损耗常数高,例如,碳化硅的介电损耗常数在0.02-0.2左右,石墨的介电损耗常数在0.01-0.2范围,而木质纤维素的介电损耗常数一般在1*10-3以下。
微波吸收剂132与烟草131的混合,不是普通的机械混合,而是在烟草131的再造过程中掺入。在一个实施例中,烟草131制品的制备方法主要包括以下步骤:
S110,将烟草131原料粉碎成第一成分;
S120,将所需添加剂加入步骤一得到的所述第一成分内,并且混匀构成第二成分,所需添加剂主要包括酸度调节剂、膨松剂、保润剂、稳定剂/凝固剂、增稠剂以及天然香精等;在第二成分内混入微波吸收剂132粉体,然后混合均匀,得到第三成分;或者将微波吸收剂132和添加剂一同加入第一成分中,混合均匀得到第四成分;
S130,采用涂布、压铸或热塑的方式将第三成分或者第四成分塑造成形。通过上述烟草131制品的制备方法,微波吸收剂132能够非常均匀的混合在烟草131内,有利于后续对烟草131进行均匀的传导性加热。
微波吸收剂132的粒径主要考虑掺杂进入烟草131的便携性,粒径过大不容易掺入烟草片,因此,在一个实施例中,微波吸收剂132范围为2μm-200μm,在又一个实施例中,微波吸收剂132范围为2μm-50μm,微波吸收剂132与烟草131的体积比范围为1%-30%。另外,通常情况下,微波吸收剂132粉体的导热系数高于烟草131的导热系数,微波吸收剂132加入烟草131内,还能够提升整体烟支100的导热系数,更进一步促进烟支100被加热后的温度均匀性。
当上述含有微波吸收剂132的烟支100被放入微波加热装置后,烟草部130的烟草131除本身吸收微波发热外,还会被微波吸收剂132通过热传导加热,在微波辐射和热传导的双重加热机制下,烟草131的升温更加稳定均匀;在烟草131材料中水分与甘油等挥发过程中,微波吸收剂132能提供稳定的传导性加热,使烟草131温度能继续上升至有效烘烤温度,热解挥发出独特烟熏香,而获得适宜口感。
微波过滤膜120的主要作用是防止微波从滤嘴部110处泄露,其位置可以是滤嘴部110的中间,也可以是滤嘴部110与烟草部130分界处,在图1所示的实施例中,微波过滤膜120位于滤嘴部110中。在一个实施例中,如图1所示,微波过滤膜120是金属薄片或者金属片,金属薄片或者金属片上配置有许多第一通孔121,第一通孔121处可以使烟支100抽吸时气 流可以正常流动,金属材质可以反射微波,防止微波泄露,同时第一通孔121可以截止微波的传输,起到屏蔽作用。
在一个实施例中,用于加热上述烟支100的微波加热装置的结构如图2所示,主要包括壳体210,以及位于壳体210内的电源220、电路控制单元230、微波发生器240、容纳腔250。其中,容纳腔250内用于放置上述含有微波吸收剂132的烟支100;微波发生器240用于产生微波,进而用于对容纳腔250内的烟支100进行加热。微波加热装置内各个电子部件之间的电连接结构如图3所示,从图3中可以看到,电路控制单元230与微波发生器240电性连接,用于控制微波发生器240工作;电源220与电路控制单元230电性连接,用于为微波加热装置提供电力。
在一个实施例中,如图2所示,微波加热装置在壳体210上还设置有烟具主控开关260、显示屏270、微波功率控制按钮280、温度检测单元(图2中未示出)、充电接口212和气道孔211,气道孔211与容纳腔250相连通。微波加热装置内各个电子部件之间的电连接关系如图3所示,烟具主控开关260与电源220或者电路控制单元230电性连接,用于启动微波发生器240工作;显示屏270与电路控制单元230电性连接,用于显示微波发生器240的工作功率和/或容纳腔250内的温度;微波功率控制按钮280与电路控制单元230电性连接,用于调节和控制微波发生器240的工作频率;温度检测单元400与电路控制单元230电性连接,用于检测容纳腔250内烟支100的温度,并将检测到的温度发送至电路控制单元230;充电接口212与电源220电性连接,用于为微波加热装置中的电源220进行充电。
在一个具体的实施例中,如图2所示,微波发生器240为磁控管,可发生频率为2.45GHz的微波,在微波发生器240与容纳腔250之间还设置有微波传输通道290,微波传输通道290用于将微波发生器240产生的微波传递至容纳腔250。容纳腔250是一个圆柱形的微波谐振腔,容纳腔250可以是金属材料,也可以是陶瓷或者聚四氟乙烯等耐高温的有机材质,但容纳腔250的内侧必须包括一层金属反射层,让微波在容纳腔250内来回震荡传播,容纳腔250底部设置有多个第二通孔251,方便抽吸过程中气流的进入,并且能够调节吸阻,微波加热装置壳体210上气道孔211通过第二通孔251与容纳腔250相连通。当烟支100插入微波加热装置的容纳腔250后,容纳腔250加上烟支100中的微波过滤膜120能够形成一个微波的封闭腔,一旦微波发生器240启动,微波在容纳腔250内来回震荡,对烟支100中的烟草部130(包括烟草131和微波吸收剂132)进行加热,从而使烟支100的烟草部升温至合适温度,烘烤热解出合适烟气供使用者抽吸。
在图2所示的实施例中,烘烤物为烟支100,烟支100上设置有微波过滤膜120,可以理解的是,在其他实施例中,如果烘烤物仅包括烟草131和微波吸收剂132,烘烤物上没有设置微波过滤膜120时,在加热该烘烤物的微波加热装置上,容纳腔250的气流出口处需要设置微波过滤膜120,以防止容纳腔250内的微波泄露出去。
在一个实施例中,上述烟支100的微波加热方法,包括以下步骤:
S210,微波发生器240发出微波对烟支100进行加热;
S220,烟支100中的烟草131和微波吸收剂132均吸收微波进行发热,微波吸收剂132通过热传导对烟草131进行再次加热,在微波辐射和热传导的双重加热机制下,烟草131升温至有效烘烤温度。在另一些实施例中,上述烟支100的微波加热方法,还包括温度控制步骤S230:温度检测单元400检测烟支100的温度,并将检测结果发送至电路控制单元230,电路控制单元230通过控制微波发生器240的工作功率进而控制烟支100的加热温度。
温度检测单元400可以通过直接或者间接的方式检测烟支100的温度,直接测温的方式包括热电偶测温、光学高温计测温和红外光纤测温,其中,红外光纤测温是根据烟支表面辐射的红外电磁波而测量。间接测温方式主要包括经验式推导,例如,根据烟支物理参数的变化来推导烟支的温度,或者,根据微波发生器的工作功率推导烟支的温度。烟支的控温方式可以为功率反馈式控温,即电路控制单元通过控制微波发生器的工作频率进而控制烟支的加热温度。微波功率控制按钮280具有一定数量的调节档位,例如,在一个实施例中,微波功率控制按钮具有六个档位,表现在烟支上是具有六个不同的平衡温度,一般情况下,平衡温度在250℃到250℃,20℃一个台阶。
本申请的烘烤物,通过在烟草131中添加微波吸收剂132,微波吸收剂132由介电损耗常数稳定、非挥发性的固体材料制成,微波吸收剂132能够稳定地吸收微波进行发热,进而对烟草131进行传导性加热,当本申请的烘烤物被放入微波加热装置后,烟草部130的烟草131除本身吸收微波发热外,还会被微波吸收剂132通过热传导加热,在微波辐射和热传导的双重加热机制下,烟草131的升温更加稳定均匀;在烟草131材料中水分与甘油等挥发过程中,微波吸收剂132能提供稳定的传导性加热,使烟草131温度能继续上升至有效烘烤温度,热解挥发出独特烟熏香,而获得适宜口感。
在一个实施例中,采用碳化硅陶瓷粉末,炭粉,Fe 30 4粉以及碳化硅与碳粉(重量配比1:1)复合添加作为微波吸收剂,测量不同粒径和掺杂比例对微波作用下烟支的升温速率,微波发生器的工作功率为30W,发出的微波频率为2.45GHz,采用热电偶测量烟支的内部温度,采用功率反馈控温方式控温在300℃左右,如表1所示,表1中的D50是指粒径的中位数。
表1
Figure PCTCN2020114540-appb-000001
Figure PCTCN2020114540-appb-000002
从表1中的数据可以看到,普通烟支在温度升高到80℃左右后,温度难以继续上升,而添加微波吸收剂能够加快烟支的升温速率,能够将烟支的温度提升至温控设计温度,随着微波吸收剂比例增加,烟支的升温速率会有提高,而微波吸收剂的粒径对升温速率无明显影响。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种烘烤物,其特征在于,包括烟草和微波吸收剂,所述烟草和所述微波吸收剂均能够吸收微波进行发热,所述微波吸收剂由介电损耗常数稳定、非挥发性的固体材料制成,所述微波吸收剂的介电损耗常数不会随温度变化而变化,并且所述微波吸收剂的介电损耗常数高于所述烟草中的木质纤维素的介电损耗常数,所述微波吸收剂用于稳定地吸收微波进行发热,进而对所述烟草进行传导性加热。
  2. 根据权利要求1所述的烘烤物,其特征在于,所述微波吸收剂为陶瓷粉末、无机非金属单质、铁氧型吸收剂和金属粉体中的一种或者几种的任意组合。
  3. 根据权利要求2所述的烘烤物,其特征在于,所述陶瓷粉末包括碳化硅、氮化硅及氮化铝中的一种或者几种的任意组合;
    所述无机非金属单质包括焦炭、碳粉、石墨粉中的一种或者几种的任意组合;所述铁氧型吸收剂包括Fe 3O 4
    所述金属粉体包括Ti、Fe、Ni金属粉体中的一种或者几种的任意组合。
  4. 根据权利要求1所述的烘烤物,其特征在于,所述微波吸收剂均匀分布在所述烟草中,所述微波吸收剂的粒径范围为2μm-200μm。
  5. 根据权利要求1所述的烘烤物,其特征在于,所述微波吸收剂与烟草的体积比范围为1%-30%。
  6. 根据权利要求1所述的烘烤物,其特征在于,所述微波吸收剂的导热系数高于所述烟草的导热系数。
  7. 根据权利要求1-6中任一项所述的烘烤物,其特征在于,所述烘烤物为烟支,所述烟支包括烟草部、滤嘴部和微波过滤膜;所述烟草部包括所述烟草和微波吸收剂;所述微波过滤膜设置于滤嘴部或者设置于滤嘴部与烟草部之间。
  8. 根据权利要求7所述的烘烤物,其特征在于,所述微波过滤膜为金属薄片,所述金属薄片上配置有第一通孔,气流能够从所述第一通孔处流通,所述金属薄片用于反射微波,防止微波泄露,所述第一通孔用于截止微波的传输。
  9. 权利要求1-6任一所述烘烤物的制备方法,其特征在于,包括以下步骤:
    S110,将烟草原料粉碎成第一成分;
    S120,在所述第一成分内加入添加剂,并且混合均匀得到第二成分,在第二成分内混入微波吸收剂粉体,然后混合均匀,得到第三成分;或者,将微波吸收剂和添加剂一起加入第一成分中,混合均匀得到第四成分;
    S130,将第三成分或者第四成分塑造成形。
  10. 根据权利要求9所述的烘烤物的制备方法,其特征在于,所述步骤S120中的添加剂包括酸度调节剂、膨松剂、保润剂、稳定剂/凝固剂、增稠剂及天然香精中的一种或者几种的任意组合。
  11. 根据权利要求9所述的烘烤物的制备方法,其特征在于,所述步骤S130中的将第三 成分或者第四成分塑造成形的方式包括涂布、压铸或热塑中的至少一种。
  12. 权利要求1-6任一所述烘烤物的微波加热方法,其特征在于,包括以下步骤:
    S210,微波发生器发出微波对所述烘烤物进行加热;
    S220,所述烟草和微波吸收剂均吸收微波进行发热,所述微波吸收剂通过热传导对所述烟草进行再次加热。
  13. 根据权利要求12所述的烘烤物的微波加热方法,其特征在于,还包括温度控制步骤S230:温度检测单元检测所述烘烤物的温度,并将检测结果发送至电路控制单元,所述电路控制单元通过控制所述微波发生器的工作功率进而控制所述烘烤物的加热温度。
  14. 根据权利要求13所述的烘烤物的微波加热方法,其特征在于,所述步骤S230中温度检测单元检测所述烘烤物的温度的方式包括热电偶测温、光学高温计测温或红外光纤测温中的至少一种。
  15. 根据权利要求13所述的烘烤物的微波加热方法,其特征在于,所述步骤S230中温度检测单元检测所述烘烤物的温度的方式包括根据烟支物理参数的变化来推导烟支的温度或根据微波发生器的工作功率推导烟支的温度中的至少一种。
PCT/CN2020/114540 2019-09-23 2020-09-10 烘烤物、烘烤物的制作方法及烘烤物的微波加热方法 WO2021057497A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20868424.1A EP4035539A4 (en) 2019-09-23 2020-09-10 COOKING OBJECT, METHOD FOR MANUFACTURING A COOKING OBJECT AND METHOD FOR MICROWAVE HEATING A COOKING OBJECT
US17/699,438 US20220232882A1 (en) 2019-09-23 2022-03-21 Baked item, method for preparing baked item, and microwave heating method for baked item

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910899623.XA CN112535326A (zh) 2019-09-23 2019-09-23 烘烤物、烘烤物的制作方法及烘烤物的微波加热方法
CN201910899623.X 2019-09-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/699,438 Continuation US20220232882A1 (en) 2019-09-23 2022-03-21 Baked item, method for preparing baked item, and microwave heating method for baked item

Publications (1)

Publication Number Publication Date
WO2021057497A1 true WO2021057497A1 (zh) 2021-04-01

Family

ID=75012991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114540 WO2021057497A1 (zh) 2019-09-23 2020-09-10 烘烤物、烘烤物的制作方法及烘烤物的微波加热方法

Country Status (4)

Country Link
US (1) US20220232882A1 (zh)
EP (1) EP4035539A4 (zh)
CN (1) CN112535326A (zh)
WO (1) WO2021057497A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113519906B (zh) * 2021-08-25 2023-09-12 深圳麦克韦尔科技有限公司 气溶胶产生组件和气溶胶产生系统
CN113712265B (zh) * 2021-10-08 2024-08-13 海南摩尔兄弟科技有限公司 气溶胶生成品、电子雾化器和雾化系统
CN217509909U (zh) * 2022-02-21 2022-09-30 海南摩尔兄弟科技有限公司 加热雾化装置
WO2024100874A1 (ja) * 2022-11-11 2024-05-16 日本たばこ産業株式会社 香味発生物品
WO2024142147A1 (ja) * 2022-12-26 2024-07-04 日本たばこ産業株式会社 香味発生物品、香味吸引システムおよび香味発生物品の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020174874A1 (en) * 1996-12-02 2002-11-28 Regent Court Technologies Llc Method of treating tobacco to reduce nitrosamine content, and products produced thereby
CN1659985A (zh) * 2004-12-30 2005-08-31 将军烟草集团有限公司 利用微波技术进行烟草打叶复烤的方法
CN1796483A (zh) * 2004-12-25 2006-07-05 俞一哲 吸收微波发热材料的制造方法及其应用
CN102178347A (zh) * 2011-03-07 2011-09-14 云南烟草科学研究院 一种选择性降低卷烟烟气的滤嘴及其制备方法
CN102189580A (zh) * 2011-03-29 2011-09-21 罗轶 发泡复合改性防腐竹材
CN108077990A (zh) * 2017-11-30 2018-05-29 红云红河烟草(集团)有限责任公司 一种双节微波烘烤滚筒及其应用于烘烤提质的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3625843B2 (ja) * 1995-08-02 2005-03-02 ブラウン アンド ウイリアムソン タバココーポレーション たばこ茎部の蒸気破裂法
JP4154606B2 (ja) * 2003-02-06 2008-09-24 松下電器産業株式会社 マイクロ波焼成炉
CN103190705B (zh) * 2013-04-01 2015-05-20 上海烟草集团有限责任公司 用于加热不燃烧装置的烟草制品及其制备方法
CN103315405B (zh) * 2013-07-17 2015-08-19 中国烟草总公司郑州烟草研究院 一种基于微波加热的非燃烧型烟草抽吸装置
CN103315404A (zh) * 2013-07-17 2013-09-25 中国烟草总公司郑州烟草研究院 基于微波加热的非燃烧型烟草抽吸装置
TWI664918B (zh) * 2014-05-21 2019-07-11 瑞士商菲利浦莫里斯製品股份有限公司 可感應加熱的菸草產品
CN104366687B (zh) * 2014-09-15 2016-03-16 云南中烟新材料科技有限公司 一种低温不燃烧卷烟用抽吸材料及其制备方法
CN104432509B (zh) * 2014-11-25 2017-01-25 云南中烟工业有限责任公司 利用微波进行分组加热的烟斗式低温卷烟抽吸装置
US10499685B2 (en) * 2015-05-21 2019-12-10 Philip Morris Products S.A. Method for manufacturing inductively heatable tobacco rods
CN109688850B (zh) * 2016-09-14 2022-01-11 菲利普莫里斯生产公司 气溶胶生成系统以及用于控制气溶胶生成系统的方法
US10219544B2 (en) * 2017-03-24 2019-03-05 Rai Strategic Holdings, Inc. Aerosol delivery device and a related method
US11576424B2 (en) * 2017-04-05 2023-02-14 Altria Client Services Llc Susceptor for use with an inductively heated aerosol-generating device or system
PL3731669T3 (pl) * 2017-12-29 2023-06-05 Jt International Sa Indukcyjnie ogrzewalny materiał konsumpcyjny do wytwarzania aerozolu
CN109247619A (zh) * 2018-05-28 2019-01-22 宁波安百利印刷有限公司 一种电子烟烟支的加热控制方法及烟具
CN109567275A (zh) * 2018-11-30 2019-04-05 安徽中烟工业有限责任公司 一种利用感应加热方式实现烟草物料均匀加热的工作系统
KR102389832B1 (ko) * 2019-06-18 2022-04-22 주식회사 케이티앤지 마이크로웨이브를 통해 에어로졸을 생성하는 에어로졸 생성장치 및 그 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020174874A1 (en) * 1996-12-02 2002-11-28 Regent Court Technologies Llc Method of treating tobacco to reduce nitrosamine content, and products produced thereby
CN1796483A (zh) * 2004-12-25 2006-07-05 俞一哲 吸收微波发热材料的制造方法及其应用
CN1659985A (zh) * 2004-12-30 2005-08-31 将军烟草集团有限公司 利用微波技术进行烟草打叶复烤的方法
CN102178347A (zh) * 2011-03-07 2011-09-14 云南烟草科学研究院 一种选择性降低卷烟烟气的滤嘴及其制备方法
CN102189580A (zh) * 2011-03-29 2011-09-21 罗轶 发泡复合改性防腐竹材
CN108077990A (zh) * 2017-11-30 2018-05-29 红云红河烟草(集团)有限责任公司 一种双节微波烘烤滚筒及其应用于烘烤提质的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4035539A4 *

Also Published As

Publication number Publication date
EP4035539A4 (en) 2023-10-25
EP4035539A1 (en) 2022-08-03
US20220232882A1 (en) 2022-07-28
CN112535326A (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2021057497A1 (zh) 烘烤物、烘烤物的制作方法及烘烤物的微波加热方法
WO2021103915A1 (zh) 雾化介质、电子雾化装置及吸波相变体制备方法
CN103315405B (zh) 一种基于微波加热的非燃烧型烟草抽吸装置
CN205052881U (zh) 卷烟烘焙装置
CN110876492A (zh) 电子雾化装置
CN109567275A (zh) 一种利用感应加热方式实现烟草物料均匀加热的工作系统
CN103315404A (zh) 基于微波加热的非燃烧型烟草抽吸装置
CN108272140A (zh) 烘烤型电子烟的加热装置
WO2021052233A1 (zh) 烟具
WO2021143872A1 (zh) 一种加热装置
CN104432509B (zh) 利用微波进行分组加热的烟斗式低温卷烟抽吸装置
CN107467717A (zh) 电子烟
CN105433434A (zh) 一种用于抽吸的烟草材料及其制备方法
WO2023151330A1 (zh) 雾化器及电子雾化装置
CN114903208A (zh) 气溶胶产生系统及其气溶胶生成制品
CN103756103B (zh) 石墨烯/高密度聚乙烯热敏电阻复合材料及制备方法
WO2021168958A1 (zh) 一种分子共振复合式烟具
CN104356646A (zh) 铁氧体/导电高分子多相复合吸波材料的制备方法
CN203424291U (zh) 一种基于微波加热的非燃烧型烟草抽吸装置
CN114304489A (zh) 一种低频电磁场干燥挂面的方法
CN101828855A (zh) 可煎烤的微波炉陶瓷器
CN108113052A (zh) 一种电加热低温卷烟加热元件
WO2023179155A1 (zh) 一种微波式碳加热的点火方法、点火器具及加热系统
CN107692320A (zh) 一种利用热传导和气流对流发热的电子烟装置
CN208080547U (zh) 烘烤型电子烟的加热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020868424

Country of ref document: EP

Effective date: 20220425