WO2021103915A1 - 雾化介质、电子雾化装置及吸波相变体制备方法 - Google Patents

雾化介质、电子雾化装置及吸波相变体制备方法 Download PDF

Info

Publication number
WO2021103915A1
WO2021103915A1 PCT/CN2020/124792 CN2020124792W WO2021103915A1 WO 2021103915 A1 WO2021103915 A1 WO 2021103915A1 CN 2020124792 W CN2020124792 W CN 2020124792W WO 2021103915 A1 WO2021103915 A1 WO 2021103915A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature control
phase change
atomizing medium
wave
wave absorbing
Prior art date
Application number
PCT/CN2020/124792
Other languages
English (en)
French (fr)
Inventor
刘平昆
蒋玥
陈智超
柯志勇
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2021103915A1 publication Critical patent/WO2021103915A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • This application relates to the field of electronic atomization technology, in particular to an atomization medium, an electronic atomization device, and a preparation method of an absorbing phase change body.
  • the smoke contains a large amount of nicotine and flavor, which can well meet the habitual needs of smokers.
  • the electronic atomization device adopts the heating and non-combustion method to atomize it, it takes a long preheating time ranging from ten to thirty seconds to reach the required amount of cigarette smoking.
  • Temperature that is, the cigarette is difficult to quickly atomize in a short time to form smoke that can be smoked by the user, which makes it difficult to satisfy the user experience.
  • the maximum heating temperature cannot be controlled, and the cigarette produces smoke or other harmful substances when the temperature is too high, which also affects the user experience.
  • an atomization medium an electronic atomization device, and a preparation method of an absorbing phase change body are provided.
  • An atomizing medium including:
  • a substrate which can be heated to form aerosol
  • the temperature control body when the preset temperature threshold is reached, the temperature control body can produce a phase change to absorb heat;
  • the matrix body, the temperature control body and the wave absorbing body are mixed to form the atomizing medium.
  • the temperature control body and the wave absorbing body are mixed to form a wave absorbing phase change body, and the wave absorbing phase change body is mixed with the matrix body to form the atomizing medium.
  • a temperature control body is embedded inside the wave absorbing body to form the wave absorbing phase change body.
  • a plurality of temperature control bodies are discretely distributed inside the wave absorbing body to form the wave absorbing phase change body.
  • the atomizing medium further includes a heat conductor, the heat conductor, the temperature control body, and the wave absorbing body are mixed to form a wave absorbing phase change body, and the wave absorbing phase change body and the matrix The body mixes to form the atomizing medium.
  • a plurality of temperature control bodies and a plurality of wave absorbing bodies are discretely distributed inside the heat conductor to form the wave absorbing phase change body.
  • the temperature control body and the wave absorbing body are discrete from each other and directly mix with the matrix body to form the atomizing medium.
  • the temperature control body has a first solid phase and a second solid phase, and when the temperature control body reaches the preset temperature threshold, the temperature control body changes from the first solid phase Transform to the second solid phase.
  • the temperature control body has a solid phase and a liquid phase, and when the temperature control body reaches the preset temperature threshold, the temperature control body transforms from the solid phase to the liquid phase .
  • the preset temperature threshold is about 300°C to about 350°C.
  • the matrix body is in the form of granules or filaments.
  • the wave absorber is zinc oxide
  • the temperature control body is a mixture of potassium nitrate, calcium nitrate and sodium nitrate.
  • An aerosol-generating product includes the atomization medium and a protective layer as described in any of the above embodiments, and the atomization medium is coated in the protective layer.
  • the aerosol generating product further includes a filter section for suction and a cooling section for cooling the smoke, and the cooling section is connected between the filter section and the atomizing medium.
  • the aerosol-generating product further includes a filter film for preventing penetration of microwaves, and the filter film is arranged at an end of the filter section close to the atomizing medium.
  • An electronic atomization device includes a microwave generator and is provided with a heating cavity, the heating cavity is used for accommodating the atomization medium as described in any of the above embodiments, and the microwaves generated by the microwave generator are transmitted to the heating In the cavity, the wave absorber absorbs the microwave to generate heat.
  • a method for preparing a wave-absorbing phase change body including:
  • the molten liquid is kept warm for a period of time and then cooled to room temperature to obtain a mixed phase change powder
  • the gel is aged and dried and then calcined to obtain the wave-absorbing phase change body.
  • the mixed raw materials include about 10 to about 30 parts of potassium nitrate, about 10 to about 40 parts of calcium nitrate, and about 30 to about 80 parts of sodium nitrate by weight.
  • the temperature at which the molten liquid is formed by heating is about 330° C. to about 380° C., and the molten liquid is kept for about 3 hours to about 8 hours.
  • the preparation of the ethanol solution of zinc acetate dihydrate includes dissolving zinc acetate dihydrate in absolute ethanol at about 40° C. to about 60° C. to completely dissolve the zinc acetate dihydrate; heating; The temperature of stirring to form the gel is about 70°C to about 90°C.
  • the calcination temperature is about 400° C. to about 800° C.
  • the calcination time is about 2 h to about 8 h.
  • the mixed phase change powder before adding the mixed phase change powder and the oxalate ethanol solution to the ethanol solution of zinc acetate dihydrate, the mixed phase change powder is further dispersed by means of ultrasonic vibration, so The time of the ultrasonic vibration is about 10 minutes and about 20 minutes.
  • the absorber When the absorber absorbs microwaves, the absorber can quickly heat up in a very short time, so that the absorber can conduct a large amount of heat to the matrix in a short time to make the matrix heat up quickly, thereby shortening the rise of the matrix from normal temperature to fog The time required to change the temperature to ensure that the matrix body can be quickly atomized in a short time to form smoke that can be sucked.
  • the temperature control body due to the setting of the temperature control body, when the maximum temperature of the matrix body reaches the preset temperature threshold of the temperature control body, the temperature control body produces a phase change and continues to absorb heat, and part of the heat generated in the wave absorber is absorbed by the temperature control body Under the circumstance, the matrix body cannot absorb the excess heat and continue to heat up, thereby avoiding the matrix body from scorching due to exceeding the maximum temperature, and preventing the generation of soot and other harmful gases formed during the scorching process.
  • Fig. 1 is a schematic cross-sectional view of an atomizing medium provided by the first embodiment
  • FIG. 2 is a schematic cross-sectional view of the atomizing medium provided by the second embodiment
  • FIG. 3 is a schematic cross-sectional view of a wave absorbing phase change body provided by an embodiment
  • FIG. 4 is a schematic cross-sectional view of a wave-absorbing phase change body provided by another embodiment
  • FIG. 5 is a schematic cross-sectional view of a wave-absorbing phase change body provided by another embodiment
  • FIG. 6 is a schematic cross-sectional view of the aerosol generating product provided by the third embodiment.
  • FIG. 7 is a schematic cross-sectional view of the aerosol generating product provided by the fourth embodiment.
  • FIG. 8 is a schematic cross-sectional view of the aerosol generating product provided by the fifth embodiment.
  • Fig. 9 is a schematic cross-sectional view of an aerosol generating product provided by a sixth embodiment.
  • FIG. 10 is an exploded schematic diagram of the electronic atomization device provided by the first embodiment
  • FIG. 11 is a schematic diagram of the assembly of the electronic atomization device shown in FIG. 10;
  • FIG. 12 is an exploded schematic diagram of the electronic atomization device provided by the second embodiment
  • FIG. 13 is an exploded schematic diagram of the electronic atomization device provided by the third embodiment.
  • FIG. 15 is a flow chart of a method for preparing a wave absorbing phase change body provided by an embodiment.
  • an atomizing medium 11 provided by an embodiment includes a matrix body 100, a temperature control body 200, and a wave absorbing body 300.
  • the above-mentioned atomizing medium 11 can be formed by uniformly mixing the three. After the mixing is uniform, a compaction device can be used to perform compaction processing to make the atomizing medium 11 in a compacted rather than fluffy state, and to ensure that the atomizing medium 11 has a certain shape.
  • the compacted atomization medium 11 may be in a cylindrical shape, that is, a shape similar to a common cigarette.
  • the substrate 100 may be tobacco.
  • the matrix body 100 may be in the form of granules, or may be in the form of filaments with a certain length.
  • the substrate 100 can be atomized to form smoke by heating without burning, and its atomization temperature can be lower than 350°C.
  • the temperature control body 200 may be granular.
  • the temperature control body 200 may be a mixture of three materials: potassium nitrate, calcium nitrate and sodium nitrate.
  • the temperature control body 200 can produce a phase change to absorb heat. In the process of absorbing heat and produce a phase change, the temperature of the temperature control body 200 itself can remain unchanged or the temperature rises slowly And the increase is small, for example, the temperature rise is not higher than 1°C.
  • the preset temperature threshold may be about 300°C to about 350°C, and its specific value may be 300°C, 310°C, 340°C, 350°C, or the like.
  • the phase change of the temperature control body 200 may be a solid-solid phase change.
  • the temperature control body 200 has a first solid phase and a second solid phase.
  • the first solid phase is a crystalline solid state
  • the second solid phase is an amorphous solid state.
  • the phase change of the temperature control body 200 may be a solid-liquid phase change.
  • the temperature control body 200 has a solid phase and a liquid phase. The temperature control body 200 can convert from a solid phase to a liquid phase after absorbing heat. On the contrary, after releasing heat, the temperature control body 200 can convert from a liquid phase to a solid phase again.
  • the absorber 300 may also be granular.
  • the absorber 300 may be made of zinc oxide material.
  • the wave absorber 300 can absorb microwaves. The absorber 300 after absorbing the microwave can quickly heat up and generate heat, and the absorber 300 can conduct the heat to the matrix body 100 and the temperature control body 200.
  • the center and edge portions of the absorber 300 after the absorber 300 absorbs microwaves, due to the particularity of the microwave heating mechanism, the center and edge portions of the absorber 300 generate heat at the same time to heat up, so the absorber 300 can be heated in a very short time Rapid heating, so that the absorber 300 can conduct a large amount of heat to the matrix body 100 in a short time to make the matrix body 100 heat up quickly, thereby shortening the time required for the matrix body 100 to rise from normal temperature to the atomization temperature, and finally make the matrix
  • the body 100 can be quickly atomized in a short time (less than 0.5 seconds) to form smoke that can be sucked, ensuring that the entire atomizing medium 11 has a good user experience.
  • each absorbing body 300 can be regarded as a heat source, so that the matrix body 100 in the atomizing medium 11 has an equal chance of absorbing heat from each heat source, ensuring the mist
  • the matrix body 100 everywhere in the atomization medium 11 can be raised to the atomization temperature for atomization in the same short time, that is, the atomization speed in the entire atomization medium 11 is the same everywhere.
  • the maximum temperature of the substrate body 100 can be effectively controlled, ensuring that the maximum temperature of the substrate body 100 does not exceed the preset temperature threshold of the temperature control body 200.
  • the temperature control body 200 produces a phase change and continues to absorb heat, and the temperature control body 200 itself does not increase in temperature or has a small increase.
  • the temperature control body 200 and the wave absorber 300 are first combined. The two are mixed to form an integrated wave-absorbing phase change body 500.
  • the wave-absorbing phase change body 500 is marked as the first wave-absorbing phase change body 510, and then the first wave-absorbing phase change body 510 and the matrix body 100 are mixed together
  • the atomization medium 11 is formed.
  • the first wave-absorbing phase change body 510 may also be in a granular shape.
  • a temperature control body 200 is embedded in the inside of the wave absorbing body 300. Only one accommodating hole 310 with a relatively large volume is opened inside the wave absorbing body 300.
  • the accommodating hole 310 may have a spherical shape, and the temperature control body 200 can fill the accommodating hole 310.
  • the wave absorbing body 300 wraps the temperature control body 200 in the accommodating hole 310 to form the first wave absorbing phase change body 510.
  • the wave-absorbing body 300 wraps a temperature-controlling body 200 with a relatively large volume.
  • the volume of the wave-absorbing body 300 is slightly larger than the volume of the temperature-controlling body 200.
  • a plurality of discrete temperature control bodies 200 are embedded in the inside of the wave absorbing body 300.
  • a plurality of accommodating holes 310 with a relatively small volume are opened in the inside of the wave absorbing body 300.
  • the accommodating holes 310 may also be spherical and uniformly distributed inside the wave absorbing body 300, and the accommodating holes 310 are independent of each other and not connected to each other.
  • a plurality of temperature-controlling bodies 200 are discretely distributed inside the wave-absorbing body 300, that is, the wave-absorbing body 300 wraps a plurality of discrete and smaller temperature control bodies. 200.
  • the volume of the wave-absorbing body 300 is much larger than the volume of a single temperature-controlling body 200.
  • the heat generated by the absorbing body 300 is directly conducted to the temperature control body 200 and the matrix body 100, and the phase change of the temperature control body 200 can be a solid-liquid phase change.
  • the liquid temperature control body 200 will be contained in the containing hole 310 and cannot overflow outside the wave absorbing body 300 to form leakage loss.
  • the phase change of the temperature control body 200 may also be a solid-solid phase change.
  • the atomizing medium 11 further includes a heat conductor 400.
  • the thermal conductor 400 may be made of a material with good thermal conductivity.
  • the heat conductor 400, the temperature control body 200 and the wave absorbing body 300 are first mixed to form an integrated wave absorbing phase change body.
  • the wave absorbing phase change body 500 is denoted as the second wave absorbing phase change body 520, and then the second wave absorbing phase change body 520 and the matrix body 100 are mixed to form the atomizing medium 11.
  • the second wave-absorbing phase change body 520 may also be in a granular shape.
  • a plurality of accommodating holes 310 are opened in the heat conductor 400, and each accommodating hole 310 may be equal in size and spherical.
  • the plurality of accommodating holes 310 are also independent of each other and not connected to each other.
  • a part of the accommodating hole 310 is filled with the temperature control body 200, and another part of the accommodating hole 310 is filled with the wave absorbing body 300.
  • the heat conductor 400 wraps the temperature control body 200 and the wave absorbing body 300 to form the second wave absorbing phase change body 520.
  • a single second wave-absorbing phase change body 520 multiple temperature control bodies 200 and multiple wave-absorbing bodies 300 are distributed in a discrete manner inside the thermal conductor 400, that is, one thermal conductor 400 wraps multiple discrete and The temperature control body 200 and the wave absorbing body 300 are smaller in volume.
  • the volume of the temperature control body 200 and the wave absorber 300 may be approximately equal, and the volume of the heat conductor 400 is much larger than the volume of the temperature control body 200 and the wave absorber 300.
  • the heat generated by the absorbing body 300 will be indirectly transferred to the temperature control body 200 and the matrix body 100 through the heat conductor 400.
  • the liquid The temperature control body 200 will be contained in the accommodating hole 310 and cannot overflow outside the heat conductor 400, and the phase change of the temperature control body 200 may also be a solid-solid phase change.
  • the temperature control body 200 and the wave absorber 300 can be separated from each other and processed in a mutually independent state, that is, the temperature control body 200 and the wave absorber 300 are no longer combined into a middle In the form of the wave-absorbing phase change body 500, the temperature control body 200, the wave-absorbing body 300, and the matrix body 100 are directly mixed to form the atomizing medium 11. At this time, the wave absorbing body 300 will not produce a wrapping effect on the temperature control body 200, and both the wave absorbing body 300 and the temperature control body 200 will not be simultaneously wrapped by other substances. In this embodiment, in order to prevent the free flow and leakage of the liquid temperature control body 200 after the phase change, the phase change of the temperature control body 200 adopts a solid-solid phase change.
  • an aerosol generating product 10 which includes an atomizing medium 11 and a protective layer 12.
  • the protective layer 12 may be made of paper material.
  • the holding layer 12 is attached to the side peripheral surface of the atomizing medium 11, that is, the atomizing medium 11 is covered in the protective layer 12.
  • the protective layer 12 can also completely cover the entire surface of the atomizing medium 11.
  • the function of the protective layer 12 is to form a certain binding force on the atomizing medium 11, and to prevent the atomizing medium 11 from detaching from the material under the action of external force and causing local collapse.
  • the aerosol-generating article 10 further includes a filter section 610, a cooling section 630 and a first filter film 620.
  • the atomizing medium 11 and the filtering section 610 are separated at two ends, and the cooling section 630 is located in the middle, that is, the upper end of the cooling section 630 is connected with the filtering section 610, and the lower end of the cooling section 630 is connected with the atomizing medium 11.
  • the first filter film 620 is attached to the end of the filter section 610 close to the atomization assembly 700, that is, the first filter film 620 is located at the lower end of the filter section 610.
  • the first filter film 620 can prevent microwaves from penetrating to reduce microwave losses.
  • the filter section 610 can be made of cotton material, and its function is similar to that of a filter tip in an ordinary cigarette, and it can filter harmful suspended particles in the smoke to prevent it from being absorbed by the user.
  • the smoke will exchange heat with the cooling section 630, so that the temperature of the smoke is reasonably reduced, and the smoke with a high temperature can prevent the user from being hot and uncomfortable.
  • a method for preparing the wave-absorbing phase change body is also provided.
  • the above-mentioned first wave-absorbing phase change body 510 can be prepared and formed.
  • the method mainly includes the following steps:
  • step S901 potassium nitrate, calcium nitrate and sodium nitrate are uniformly mixed to form a mixed raw material, and the mixed raw material is heated and melted to form a molten liquid.
  • the mixed raw material includes about 10 to about 30 parts of potassium nitrate, about 10 to about 40 parts of calcium nitrate, and about 30 to about 80 parts of sodium nitrate by weight.
  • the mixed raw materials composed of potassium nitrate, calcium nitrate, and sodium nitrate can be placed in a crucible, and the crucible can be placed in heating equipment such as an electric furnace, and the temperature of the electric furnace is heated to about 330°C to about 380°C, so that the above-mentioned mixed raw materials are melted
  • the molten liquid of the liquid is then stirred to make the molten liquid uniformly mixed.
  • step S902 the molten liquid is kept warm for a period of time and then cooled to room temperature to obtain a mixed phase change powder.
  • the molten liquid is kept at its highest temperature point for about 3 hours to about 8 hours, and then the molten liquid is cooled to room temperature in an electric furnace along with the furnace. At this time, the molten liquid will be transformed into a mixed phase change powder.
  • step S903 an ethanol solution of zinc acetate dihydrate and an ethanol solution of oxalate are prepared.
  • zinc acetate dihydrate is dissolved in absolute ethanol to form an ethanol solution of zinc acetate dihydrate.
  • Oxalic acid is dissolved in additional absolute ethanol to form an oxalic acid ethanol solution.
  • a first container and a second container can be prepared, and anhydrous ethanol can be added to the first container and the second container respectively.
  • Add zinc acetate dihydrate to the absolute ethanol in the first container and heat the first container to completely dissolve the zinc acetate dihydrate in the absolute ethanol.
  • the heating temperature can be about 40°C to about 60°C.
  • zinc acetate dihydrate is completely dissolved, an ethanol solution of zinc acetate dihydrate is about to be formed.
  • Add oxalic acid to the absolute ethanol in the second container stir and dissolve thoroughly to form an oxalic acid ethanol solution.
  • Step S904 adding the mixed phase change powder and the ethanol oxalate solution to the ethanol solution of zinc acetate dihydrate, and heating and stirring to form a gel.
  • the mixed phase change powder can be dispersed by a method such as ultrasonic vibration, and the time of ultrasonic vibration is about 10 minutes and about 20 minutes. Then the dispersed mixed phase change powder is added to the ethanol solution of zinc acetate dihydrate in the first container. Then, slowly add the oxalic acid ethanol solution in the second container to the first container. Finally, the mixed solution in the first container is stirred at a high speed under the heating condition. The heating temperature can be about 70°C to about 90°C. At this time, the mixed solution in the first container will be transformed into a gel.
  • step S905 the gel is calcined after aging and drying to obtain the wave-absorbing phase change body.
  • the gel is calcined in a high-temperature furnace, the calcining temperature is about 400° C. to about 800° C., and the calcining time is about 2 h to about 8 h.
  • the gel will be transformed into the first wave-absorbing phase change body 510, that is, the wave-absorbing body 300 only covers one temperature-controlling body 200.
  • an electronic atomization device 20 is also provided.
  • the electronic atomization device 20 is used to atomize the atomization medium 11 to form smoke through heating without burning.
  • the electronic atomization device 20 includes an atomization assembly 700 and a microwave generator 800.
  • the atomization assembly 700 includes a heating part 710, the heating part 710 is provided with a heating cavity 711 and a transmission channel 712, the heating cavity 711 is in communication with the outside and the transmission channel 712, and the heating cavity 711 is used for accommodating the atomizing medium 11.
  • the microwave generator 800 is connected to the atomization assembly 700, and the microwave generated by the microwave generator 800 enters the heating cavity 711 through the transmission channel 712.
  • the absorbing body 300 in the atomizing medium 11 will absorb microwaves and generate heat, and the heat of the absorbing body 300 will be transferred to the matrix body 100 so that the matrix body 100 can reach the atomization area.
  • the required temperature At the same time, the temperature control body 200 can produce a phase change to absorb excess heat, thereby preventing the matrix body 100 from being burnt due to excessively high temperature.
  • the heating part 710 is made of a metal material, so that the heating part 710 has a good reflection function for microwaves, and prevents the microwave entering the heating cavity 711 from penetrating the heating part 710 and causing microwave loss. When microwaves are reflected multiple times in the heating cavity 711, the wave absorber 300 will absorb all the microwaves in the heating cavity 711, thereby improving energy utilization.
  • the heating part 710 may also be made of non-metallic materials such as ceramic materials or polytetrafluoroethylene materials.
  • the atomizing assembly 700 further includes a metal reflective layer (not shown). The metal reflective layer simultaneously covers the bottom wall 711b and the side wall 711a of the heating chamber 711. By providing a metal reflective layer, it is also possible to prevent the loss of microwaves from penetrating the heating part 710, and to ensure that the microwave absorber 300 will absorb all the microwaves.
  • the microwave generator 800 includes a cathode 810 and an anode 820 disposed around the heating cavity 711, and the cathode 810 is closer to the heating cavity 711 than the anode 820.
  • the side wall 711 a of the heating cavity 711 is arranged around the bottom wall 711 b of the heating cavity 711, and the transmission channel 712 is arranged on the bottom wall 711 b of the heating cavity 711.
  • the microwaves excited by the anode 820 and the cathode 810 enter the heating chamber 711 through the transmission channel 712 on the bottom wall 711b.
  • the number of transmission channels 712 may be one or more. With this arrangement, the structure of the entire electronic atomization device 20 can be made more compact.
  • the atomization assembly 700 further includes a filter body 720 and a second filter film 730.
  • the filter body 720 may be made of ceramic material, and the filter body 720 is used to be inserted into the heating cavity 711 to seal the heating cavity 711.
  • the filter 720 also functions similarly to a filter tip in ordinary cigarettes, and can filter harmful suspended particles in the smoke to prevent it from being absorbed by the user.
  • the second filter film 730 is attached to the end of the filter body 720. When the filter body 720 is inserted in the heating cavity 711, the second filter film 730 is located in the heating cavity 711.
  • the second filter film 730 can reflect microwaves.
  • the filter body 720 has the advantages of being reusable and convenient to plug and unplug.
  • the cross section of the heating cavity 711 can be designed to be circular, that is, the heating cavity 711 is also cylindrical, so that when the atomizing medium 11 or the filter body is matched with the heating cavity 711, 720 can form a sealing effect on the heating chamber 711.
  • the filter body 720 When the atomizing medium 11 is located in the heating cavity 711, the filter body 720 is inserted in the heating cavity 711. On the one hand, the filter body 720 has a sealing effect on the heating cavity 711, so that the heating cavity 711 forms a closed cavity. At this time, due to the reflection effect of the second filter film 730 and the heating part 710 on microwaves, or due to the reflection effect of the second filter film 730 and the metal reflective layer on microwaves, the microwaves entering the heating cavity 711 cannot escape from the closed heating cavity The leakage in 711 also enables the absorber 300 to absorb all the microwaves in the heating cavity 711, which improves the energy utilization rate of the electronic atomization device 20.
  • the filter body 720 exchanges heat with the smoke, which can reasonably reduce the temperature of the smoke.
  • the cooling section 630 has the cooling function of the filter body 720.
  • the filter section 610 of the aerosol generating product 10 can filter out harmful suspended particles in the smoke, and the cooling section 630 of the aerosol generating product 10 can reasonably reduce the temperature of the smoke.
  • the atomization assembly 700 is provided with a mounting cavity 713, and the transmission channel 712 connects the heating cavity 711 and the mounting cavity 713 at the same time.
  • the microwave generator 800 includes a magnetron 830 and an output tube 840. Microwaves can also be generated in the 713, one end of the output tube 840 is connected to the magnetron 830, and the other end of the output tube 840 penetrates the transmission channel 712.
  • the magnetron 830 generates microwaves, and the microwaves generated by the magnetron 830 enter the heating chamber 711 through the transmission channel 712 through the output tube 840.
  • the transmission channel 712 is disposed on the side wall 711a of the heating chamber 711, and the number of the transmission channel 712 can be one or more, for example, the number of the transmission channel 712 is three.
  • the electronic atomization device 20 further includes a battery 910 and a circuit board 920.
  • the battery 910 is electrically connected to the microwave generator 800 through the circuit board 920.
  • the microwave generator 800 can generate microwaves that are transmitted to the heating cavity 711.

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种雾化介质(11),包括基质体(100)、温控体(200)和吸波体(300);基质体(100)可被加热以形成烟雾;当达到预设温度阈值时,温控体(200)能够产生相变而吸收热量;吸波体(300)用于吸收微波以产生能够传导至基质体(100)和温控体(200)的热量;基质体(100)、温控体(200)和吸波体(300)混合形成雾化介质(11)。

Description

雾化介质、电子雾化装置及吸波相变体制备方法
相关申请的交叉引用
本申请要求于2019年11月26日提交中国专利局、申请号为2019111710844、发明名称为“气溶胶生成制品、电子雾化装置及吸波相变体制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子雾化技术领域,特别是涉及一种雾化介质、电子雾化装置以及吸波相变体制备方法。
技术背景
卷烟等气溶胶生成制品通过电子雾化装置进行雾化形成烟雾后,烟雾因含有大量尼古丁和香味而能够很好地满足烟民的习惯性需求。但是,对于传统的卷烟,当通过电子雾化装置采用加热不燃烧的方式对其进行雾化时,需要消耗十秒至三十秒不等的较长预热时间才能到达卷烟雾化所需的温度,即卷烟难以在短时间内快速雾化以形成用户可抽吸的烟雾,导致难以满足用户体验。同时,最高加热温度无法控制,卷烟在温度过高的情况下产生烟垢或其它有害物质,同样影响用户体验。
发明内容
根据本申请的各种实施例,提供一种雾化介质、电子雾化装置以及吸波相变体制备方法。
一种雾化介质,包括:
基质体,所述基质体可被加热以形成烟雾;
温控体,当达到预设温度阈值时,所述温控体能够产生相变而吸收热量;及
吸波体,用于吸收微波以产生能够传导至所述基质体和所述温控体的热量;
其中所述基质体、所述温控体和所述吸波体混合形成所述雾化介质。
在其中一个实施例中,所述温控体和所述吸波体混合形成吸波相变体,所述吸波相变体与所述基质体混合形成所述雾化介质。
在其中一个实施例中,一个温控体嵌入所述吸波体内部而形成所述吸波相变体。
在其中一个实施例中,多个温控体呈离散状分布在所述吸波体内部而形成所述吸波相变体。
在其中一个实施例中,雾化介质还包括导热体,所述导热体、所述温控体和所述吸波体混合形成吸波相变体,所述吸波相变体与所述基质体混合形成所述雾 化介质。
在其中一个实施例中,多个温控体和多个吸波体呈离散状分布在所述导热体内部而形成所述吸波相变体。
在其中一个实施例中,所述温控体和所述吸波体彼此离散而直接与所述基质体混合形成所述雾化介质。
在其中一个实施例中,所述温控体具有第一固相和第二固相,当所述温控体达到所述预设温度阈值时,所述温控体从所述第一固相转变至所述第二固相。
在其中一个实施例中,所述温控体具有固相和液相,当所述温控体达到所述预设温度阈值时,所述温控体从所述固相转变至所述液相。
在其中一个实施例中,所述预设温度阈值为约300℃至约350℃。
在其中一个实施例中,所述基质体呈颗粒状或丝条状。
在其中一个实施例中,所述吸波体为氧化锌,所述温控体为硝酸钾、硝酸钙和硝酸钠的混合物。
一种气溶胶生成制品,包括如上述任一实施例所述的雾化介质和保护层,所述雾化介质被包覆在所述保护层内。
在其中一个实施例中,气溶胶生成制品还包括用于抽吸的过滤段和用于使烟雾降温的冷却段,所述冷却段连接在所述过滤段与所述雾化介质之间。
在其中一个实施例中,气溶胶生成制品还包括用于防止微波穿透的滤波膜,所述滤波膜设置在所述过滤段靠近所述雾化介质的一端。
一种电子雾化装置,包括微波发生器并开设有加热腔,所述加热腔用于收容如上述任一实施例所述的雾化介质,所述微波发生器产生的微波传输至所述加热腔,所述吸波体吸收所述微波而产生热量。
一种制备吸波相变体的方法,包括:
将硝酸钾、硝酸钙和硝酸钠均匀混合后形成混合原料,并将所述混合原料加热熔化形成熔融液;
将所述熔融液保温一段时间后冷却至室温,得到混合相变粉末;
制备二水合乙酸锌的乙醇溶液,和草酸乙醇溶液;
将所述混合相变粉末和所述草酸乙醇溶液加入至所述二水合乙酸锌的乙醇溶液中,加热搅拌以形成凝胶;及
将所述凝胶经陈化和干燥处理后再煅烧得到所述吸波相变体。
在其中一个实施例中,所述混合原料按重量份计包括约10至约30份的硝酸钾、约10至约40份的硝酸钙,和约30至约80份的硝酸钠。
在其中一个实施例中,加热形成所述熔融液的温度为约330℃至约380℃,将所述熔融液保温约3h至约8h。
在其中一个实施例中,所述制备二水合乙酸锌的乙醇溶液包括将二水合乙酸锌溶解于约40℃至约60℃的无水乙醇中,以使所述二水合乙酸锌完全溶解;加 热搅拌以形成所述凝胶的温度为约70℃至约90℃。
在其中一个实施例中,所述煅烧的温度为约400℃至约800℃,所述煅烧的时间为约2h至约8h。
在其中一个实施例中,将所述混合相变粉末、所述草酸乙醇溶液依次加入至所述二水合乙酸锌的乙醇溶液之前,采用超声波振动的方式将所述混合相变粉末进一步分散,所述超声波振动的时间为约10min约20min。
当吸波体吸收微波后,吸波体能在极短时间内迅速升温,使得吸波体能在短时间内向基质体传导大量的热量而使基质体快速升温,从而缩短基质体从常温升高到雾化温度所需的时间,确保基质体能够在短时间内快速雾化以形成可供抽吸的烟雾。同时,由于设置温控体,当基质体的最高温度达到温控体的预设温度阈值时,温控体产生相变而持续吸收热量,在吸波体所产生的一部分热量被温控体吸收的情况下,基质体无法吸收多余的热量而继续升温,从而避免基质体因超过最高温度而产生烧焦,防止产生烧焦过程中所形成的烟垢和其它有害气体。
附图说明
图1为第一实施例提供的雾化介质的剖面示意图;
图2为第二实施例提供的雾化介质的剖面示意图;
图3为一实施例提供的吸波相变体的剖面示意图;
图4为另一实施例提供的吸波相变体的剖面示意图;
图5为另一实施例提供的吸波相变体的剖面示意图;
图6为第三实施例提供的气溶胶生成制品的剖面示意图;
图7为第四实施例提供的气溶胶生成制品的剖面示意图;
图8为第五实施例提供的气溶胶生成制品的剖面示意图;
图9为第六实施例提供的气溶胶生成制品的剖面示意图;
图10为第一实施例提供的电子雾化装置的分解示意图;
图11为图10所示电子雾化装置的装配示意图;
图12为第二实施例提供的电子雾化装置的分解示意图;
图13为第三实施例提供的电子雾化装置的分解示意图;
图14为第四实施例提供的电子雾化装置的分解示意图;
图15为一实施例提供的吸波相变体制备方法的流程图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
参阅图1,一实施例提供的雾化介质11,包括基质体100、温控体200和吸波体300,通过将该三者均匀混合即可形成上述雾化介质11。在混合均匀后,可以通过压实设备将者进行压实处理,使得雾化介质11处于压实而非蓬松的状态,确保雾化介质11具有一定的形状。本实施例中,压实后的雾化介质11可以呈圆柱体状,即类似于普通香烟的形状。
在一些实施例中,基质体100可以为烟草。基质体100可以呈颗粒状,也可以呈具有一定长度的丝条状。基质体100可以通过加热不燃烧的方式雾化形成烟雾,其雾化温度可以低于350℃。
温控体200可以呈颗粒状。温控体200可以为硝酸钾、硝酸钙和硝酸钠三种材料的混合物。当温控体200达到预设温度阈值时,温控体200可以产生相变而吸收热量,在吸收热量并产生相变的过程中,温控体200自身的温度可以保持不变,或者升温缓慢且升幅较小,例如升温不高于1℃。预设温度阈值的取值可以为约300℃至约350℃,其具体取值可以为300℃、310℃、340℃或350℃等。在一些实施例中,温控体200的相变可以为固-固相变。例如,温控体200具有第一固相和第二固相。第一固相为结晶固态,第二固相为无定型固态。温控体200吸收热量后可以从第一固相转化为第二固相,反之,释放热量后,温控体200可以从第二固相再转化为第一固相。在一些实施例中,温控体200的相变可以为固-液相变。例如,温控体200具有固相和液相,温控体200吸收热量后可以从固相转化为液相,反之,释放热量后,温控体200可以从液相再转化为固相。
吸波体300也可以呈颗粒状。吸波体300可以采用氧化锌材料制成。吸波体300能够吸收微波。吸收微波后的吸波体300能迅速升温并产生热量,吸波体300能够将热量传导至基质体100和温控体200。
传统的气溶胶生成制品通常采用发热片插入气溶胶生成制品的方式对其进行加热。上述电加热方式使得发热片相对吸波体300升温速度较慢,再加上热量从发热片传导至气溶胶生成制品还需要一段时间,导致气溶胶生成制品从常温升高至雾化温度往往需要10秒至30秒的时间,这难以快速雾化基质体形成烟雾。并且,距离发热片相对较远的部分气溶胶生成制品吸收热量的机会较少,使得该 部分气溶胶生成制品更加难以快速雾化形成烟雾,进一步导致气溶胶生成制品中各处的雾化速度存在快慢差异。
而根据本实施例,当吸波体300吸收微波之后,由于微波加热机制的特殊性,吸波体300的中心部和边缘部同时产生热量而升温,故吸波体300能在极短时间内迅速升温,这样使得吸波体300能在短时间内向基质体100传导大量的热量而使基质体100快速升温,从而缩短基质体100从常温升高到雾化温度所需的时间,最终使得基质体100能够在短时间(低于0.5秒)内快速雾化以形成可供抽吸的烟雾,确保整个雾化介质11具有良好的用户体验。同时,由于吸波体300均匀分布在雾化介质11中,每个吸波体300可以看成为一个热源,使得雾化介质11中的基质体100从各热源处吸收热量的机会均等,确保雾化介质11中各处的基质体100均能在相同的短时间内升高至雾化温度以雾化,即整个雾化介质11中各处的雾化速度相同。
另外,由于引入了温控体200,可以使得基质体100的最高温度能够被有效控制,确保基质体100的最高温度不超过温控体200的预设温度阈值。具体地,当基质体100的最高温度达到温控体200的预设温度阈值时,温控体200产生相变而持续吸收热量,温控体200本身不升温或升幅较小,在吸波体300所产生的一部分热量被温控体200吸收的情况下,基质体100无法吸收多余的热量而继续升温,从而避免基质体100因超过最高温度而产生烧焦,防止产生烧焦过程中所形成的烟垢和其它有害气体。
同时参阅图2至图4,在一些实施例中,在将基质体100、温控体200和吸波体300混合形成雾化介质11的过程中,首先将温控体200和吸波体300两者混合形成一体形式的吸波相变体500,该吸波相变体500记为第一吸波相变体510,然后再将第一吸波相变体510与基质体100两者混合形成雾化介质11。第一吸波相变体510同样可以呈颗粒状。
参阅图3,在一个实施例中,一个温控体200嵌入在吸波体300的内部。吸波体300的内部仅开设一个容积较大的容置孔310。容置孔310可以呈球形,并使得温控体200填满容置孔310。吸波体300包裹容置孔310中的温控体200而形成第一吸波相变体510。换言之,在单个的第一吸波相变体510中,吸波体300包裹一个体积较大的温控体200。在该第一吸波相变体510中,吸波体300的体积略大于温控体200的体积。
参阅图4,在另一个实施例中,多个离散的温控体200嵌入在吸波体300的内部。吸波体300的内部开设有多个容积较小的容置孔310。容置孔310同样可以呈球形并均匀分布在吸波体300的内部,各个容置孔310相互独立而互不连通。通过将每个容置孔310中都填满有温控体200,吸波体300包裹容置孔310中的全部温控体200而形成第一吸波相变体510。换言之,在单个的第一吸波相变体510中,多个温控体200呈离散状分布在吸波体300的内部,即吸波体300包裹 多个离散且体积较小的温控体200。在该第一吸波相变体510中,吸波体300的体积远大于单个温控体200的体积。
在上述第一吸波相变体510中,吸波体300产生的热量直接传导至温控体200和基质体100,温控体200的相变可以为固-液相变,由于吸波体300的包裹作用,液态的温控体200将收容在容置孔310中而无法溢出至吸波体300之外以构成泄露损失。当然,温控体200的相变也可以为固-固相变。
参阅图5,在一些实施例中,雾化介质11还包括导热体400。导热体400可以采用导热性能良好的材料制成。在将基质体100、温控体200和吸波体300混合形成雾化介质11的过程中,首先将导热体400、温控体200和吸波体300混合形成一体形式的吸波相变体500,该吸波相变体500记为第二吸波相变体520,然后再将第二吸波相变体520与基质体100两者混合形成雾化介质11。第二吸波相变体520同样可以呈颗粒状。
具体地,导热体400内开设有多个容置孔310,各容置孔310可以为大小相等且呈球形。多个容置孔310同样相互独立且互不连通。一部分容置孔310中填满温控体200,另一部分容置孔310中则填满吸波体300。导热体400包裹温控体200和吸波体300而形成第二吸波相变体520。换言之,在单个的第二吸波相变体520中,多个温控体200和多个吸波体300均呈离散状分布在导热体400的内部,即一个导热体400包裹多个离散且体积较小的温控体200和吸波体300。在该第二吸波相变体520中,温控体200和吸波体300两者的体积可以大致相等,而导热体400的体积则远大于温控体200和吸波体300的体积。
在上述第二吸波相变体520中,吸波体300产生的热量将通过导热体400间接传导至温控体200和基质体100,同样地,由于容置孔310的收容作用,液态的温控体200将收容在容置孔310中而无法溢出至导热体400之外,温控体200的相变也可以为固-固相变。
参阅图1,在其它实施例中,在混合的过程中,温控体200与吸波体300可以彼此分离而处理相互独立状态,即不再将温控体200和吸波体300合成一个中间形态的吸波相变体500,而是将温控体200、吸波体300、基质体100三者直接混合形成雾化介质11。此时,吸波体300不会对温控体200产生包裹作用,且吸波体300和温控体200两者也不会同时被其它物质包裹。在该实施例中,为防止相变后液态温控体200的自由流动和泄露,温控体200的相变采用固-固相变。
同时参阅图6和图7,在一些实施例中,提供了一种气溶胶生成制品10,其包括雾化介质11和保护层12。保护层12可以采用纸质材料制成。保持层12附着在雾化介质11的侧周面上,即雾化介质11被包覆在保护层12内。当然,在其他实施例中,保护层12也可以完全覆盖整个雾化介质11的表面。保护层12的作用是可以对雾化介质11形成一定的约束力,防止雾化介质11在外力作用下产生材料脱离而形成局部坍塌。
同时参阅图8和图9,在一些实施例中,气溶胶生成制品10还包括过滤段610、冷却段630和第一滤波膜620。雾化介质11和过滤段610分居两端,冷却段630位于中间,即冷却段630的上端与过滤段610连接,冷却段630的下端与雾化介质11连接。第一滤波膜620附着在过滤段610靠近雾化组件700的一端,即第一滤波膜620位于过滤段610的下端。第一滤波膜620可以防止微波穿透,以减少微波损失。过滤段610可以采用棉质材料制成,其功能与普通香烟中过滤嘴的功能类似,可以过滤烟雾中的有害悬浮微粒以防止其被用户吸收。同时,当烟雾经过冷却段630时,烟雾将与冷却段630产生热量交换,使得烟雾的温度合理降低,防止温度偏高的烟雾对用户形成烫热的不适感。
参阅图15,还提供一种制备吸波相变体的方法。通过该方法可以制备形成上述第一吸波相变体510。该方法主要包括以下步骤:
步骤S901,将硝酸钾、硝酸钙和硝酸钠均匀混合后形成混合原料,并将所述混合原料加热熔化形成熔融液。
具体地,混合原料按重量份计包括约10至约30份的硝酸钾、约10至约40份的硝酸钙和约30至约80份的硝酸钠。可以将硝酸钾、硝酸钙和硝酸钠构成的混合原料置于坩埚中,并将坩埚放入电炉等加热设备中,将电炉的温度加热至约330℃至约380℃,使得上述混合原料熔化形成液体的熔融液,再通过搅拌使熔融液混合均匀。
步骤S902,将所述熔融液保温一段时间后冷却至室温,得到混合相变粉末。
具体地,将熔融液在其最高温度点处保温约3h至约8h,然后将熔融液在电炉中随炉冷却至室温,此时,熔融液将转化形成混合相变粉末。
步骤S903,制备二水合乙酸锌的乙醇溶液,和草酸乙醇溶液。
具体地,将二水合乙酸锌溶解于无水乙醇中以形成二水合乙酸锌的乙醇溶液。将草酸溶解于另外的无水乙醇中以形成草酸乙醇溶液。
更具体的,可以准备第一容器和第二容器,在第一容器和第二容器中分别加入无水乙醇。在第一容器的无水乙醇中加入二水合乙酸锌,并对第一容器加热使得二水合乙酸锌完全溶解于无水乙醇中,加热的温度可以为约40℃至约60℃。当二水合乙酸锌完全溶解后,即将形成二水合乙酸锌的乙醇溶液。在第二容器的无水乙醇中加入草酸,充分搅拌溶解后形成草酸乙醇溶液。
步骤S904,将所述混合相变粉末和所述草酸乙醇溶液加入至所述二水合乙酸锌的乙醇溶液中,加热搅拌以形成凝胶。
具体地,首先可以采用诸如超声波振动的方式将混合相变粉末分散,超声波振动的时间为约10min约20min。然后将分散后的混合相变粉末加入至第一容器的二水合乙酸锌的乙醇溶液中。接着,再将第二容器中的草酸乙醇溶液缓慢加入至第一容器中。最后在加热的条件下对第一容器中的混合溶液进行高速搅拌,加热的温度可以为约70℃至约90℃,此时,第一容器中的混合溶液将转化为凝胶。
步骤S905,凝胶经陈化和干燥处理后再煅烧得到所述吸波相变体。
具体地,将凝胶放入高温炉中煅烧,煅烧的温度为约400℃至约800℃,煅烧的时间为约2h至约8h。经过上述煅烧处理后,凝胶将转化为第一吸波相变体510,即吸波体300仅包裹一个温控体200。
参阅图10,还提供一种电子雾化装置20。该电子雾化装置20用于将上述雾化介质11通过加热不燃烧的方式雾化形成烟雾。该电子雾化装置20包括雾化组件700和微波发生器800。雾化组件700包括加热部710,加热部710开设有加热腔711和传输通道712,加热腔711与外界和该传输通道712均连通,加热腔711用于收容雾化介质11。微波发生器800与雾化组件700连接,微波发生器800产生的微波通过传输通道712进入加热腔711。由于雾化介质11位于加热腔711内,雾化介质11中的吸波体300将吸收微波并产生热量,吸波体300的热量再传导至基质体100、以使基质体100达到雾化所需的温度。同时,温控体200可以产生相变以吸收多余的热量,从而防止基质体100温度过高而产生烧焦。
在一些实施例中,加热部710采用金属材料制成,使得加热部710对微波具有很好的反射功能,防止进入加热腔711内的微波穿透加热部710而造成微波损失。当微波在加热腔711内多次反射时,吸波体300将对加热腔711内的微波进行全部吸收,提高能量的利用率。在另一些实施例中,加热部710也可以采用陶瓷材料或聚四氟乙烯材料等非金属材料制成,此时,雾化组件700还包括金属反射层(图未示)。金属反射层同时覆盖在加热腔711的底壁711b和侧壁711a上。通过设置金属反射层,同样可以防止微波穿透加热部710损失,保证吸波体300将加微波进行全部吸收。
同时参阅图10至图13,在一些实施例中,微波发生器800包括环绕加热腔711设置的阴极810和阳极820,阴极810相对阳极820更加靠近加热腔711。加热腔711的侧壁711a环绕加热腔711的底壁711b设置,传输通道712设置在加热腔711的底壁711b上。阳极820和阴极810激发产生的微波通过底壁711b上的传输通道712进入加热腔711内。传输通道712的数量可以为一个或多个。通过该设置可以使得整个电子雾化装置20的结构更加紧凑。
参阅图12,在一些实施例中,雾化组件700还包括过滤体720和第二滤波膜730。过滤体720可以采用陶瓷材料制成,过滤体720用于插置在加热腔711中以密封加热腔711。过滤体720也与普通香烟中过滤嘴的功能类似,可以过滤烟雾中的有害悬浮微粒以防止其被用户吸收。第二滤波膜730附着在过滤体720的端部。当过滤体720插置在加热腔711中时,第二滤波膜730位于加热腔711中。第二滤波膜730能够对微波进行反射。过滤体720具有可重复使用和插拔方便的优点。考虑到雾化介质11和过滤体720呈圆柱形,加热腔711的横截面可以设计为圆形,即加热腔711也成圆柱性,以便与加热腔711配合时,雾化介质11或过滤体720能对加热腔711形成密封作用。
当雾化介质11位于加热腔711中时,将过滤体720插置在加热腔711中。一方面,过滤体720对加热腔711起到密封作用,使得加热腔711形成一个密闭的腔体。此时,由于第二滤波膜730和加热部710对微波的反射作用,或者由于第二滤波膜730和金属反射层对微波的反射作用,进入加热腔711中的微波将无法从密闭的加热腔711中泄露,也使得吸波体300能全部吸收加热腔711内的微波,提高电子雾化装置20的能量利用率。另一方面,当用户通过过滤体720抽吸烟雾时,气溶胶生成制品10所产生烟雾经过过滤体720的过滤作用,使得烟雾中的有害悬浮微粒无法经过该过滤体720而被用户抽吸,提高电子雾化装置20使用的健康安全性。同时,过滤体720与烟雾产生热量交换,可以合理降低烟雾的温度。
参阅图13,对于自带过滤段610和冷却段630的气溶胶生成制品10,由于过滤段610具有过滤体720的过滤功能,冷却段630具有过滤体720的冷却功能。此时,可以无需使用电子雾化装置20的过滤体720,直接将整个气溶胶生成制品10插置在加热腔711中即可。由于第一滤波膜620和加热部710对微波的反射作用,或者由于第一滤波膜620和金属反射层对微波的反射作用,微波将无法从密闭的加热腔711中泄露,吸波体300能全部吸收加热腔711内的微波。并且,气溶胶生成制品10自带的过滤段610能过滤掉烟雾中的有害悬浮微粒,其自带的冷却段630能合理降低烟雾的温度。
参阅图14,雾化组件700上开设有安装腔713,传输通道712同时连通加热腔711和安装腔713,微波发生器800包括磁控管830和输出管840,磁控管830收容在安装腔713中并能产生微波,输出管840的一端与磁控管830连接,输出管840的另一端穿设在传输通道712中。磁控管830产生微波,磁控管830产生的微波通过输出管840经传输通道712进入加热腔711。传输通道712设置在加热腔711的侧壁711a上,传输通道712的数量可以为一个或多个,譬如传输通道712的数量为三个。
电子雾化装置20还包括电池910和电路板920。电池910通过电路板920与微波发生器800电性连接。当电池910对微波发生器800供电时,微波发生器800能够产生传输至加热腔711中的微波。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (22)

  1. 一种雾化介质,包括:
    基质体,所述基质体可被加热以形成烟雾;
    温控体,当达到预设温度阈值时,所述温控体能够产生相变而吸收热量;及
    吸波体,用于吸收微波以产生能够传导至所述基质体和所述温控体的热量;
    其中所述基质体、所述温控体和所述吸波体混合形成所述雾化介质。
  2. 根据权利要求1所述的雾化介质,其中所述温控体和所述吸波体混合形成吸波相变体,所述吸波相变体与所述基质体混合形成所述雾化介质。
  3. 根据权利要求2所述的雾化介质,其中一个温控体嵌入所述吸波体内部而形成所述吸波相变体。
  4. 根据权利要求2所述的雾化介质,其中多个温控体呈离散状分布在所述吸波体内部而形成所述吸波相变体。
  5. 根据权利要求1所述的雾化介质,还包括导热体,所述导热体、所述温控体和所述吸波体混合形成吸波相变体,所述吸波相变体与所述基质体混合形成所述雾化介质。
  6. 根据权利要求5所述的雾化介质,其中多个温控体和多个吸波体呈离散状分布在所述导热体内部而形成所述吸波相变体。
  7. 根据权利要求1所述的雾化介质,其中所述温控体和所述吸波体彼此离散而直接与所述基质体混合形成所述雾化介质。
  8. 根据权利要求1所述的雾化介质,其中所述温控体具有第一固相和第二固相,当所述温控体达到所述预设温度阈值时,所述温控体从所述第一固相转变至所述第二固相。
  9. 根据权利要求1所述的雾化介质,其中所述温控体具有固相和液相,当所述温控体达到所述预设温度阈值时,所述温控体从所述固相转变至所述液相。
  10. 根据权利要求1所述的雾化介质,其中所述预设温度阈值为约300℃至约350℃。
  11. 根据权利要求1所述的雾化介质,其中所述基质体呈颗粒状或丝条状。
  12. 根据权利要求1所述的雾化介质,其中所述吸波体为氧化锌,所述温控体为硝酸钾、硝酸钙和硝酸钠的混合物。
  13. 一种气溶胶生成制品,包括如权利要求1所述的雾化介质和保护层,所述雾化介质被包覆在所述保护层内。
  14. 根据权利要求13所述的气溶胶生成制品,还包括用于抽吸的过滤段和用于使烟雾降温的冷却段,所述冷却段连接在所述过滤段与所述雾化介质之间。
  15. 根据权利要求14所述的气溶胶生成制品,还包括用于防止微波穿透的滤波膜,所述滤波膜设置在所述过滤段靠近所述雾化介质的一端。
  16. 一种电子雾化装置,包括微波发生器并开设有加热腔,所述加热腔用于 收容如权利要求1所述的雾化介质,所述微波发生器产生的微波传输至所述加热腔,所述吸波体吸收所述微波而产生热量。
  17. 一种制备吸波相变体的方法,包括:
    将硝酸钾、硝酸钙和硝酸钠均匀混合后形成混合原料,并将所述混合原料加热熔化形成熔融液;
    将所述熔融液保温一段时间后冷却至室温,得到混合相变粉末;
    制备二水合乙酸锌的乙醇溶液,和草酸乙醇溶液;
    将所述混合相变粉末和所述草酸乙醇溶液加入至所述二水合乙酸锌的乙醇溶液中,加热搅拌以形成凝胶;及
    将所述凝胶经陈化和干燥处理后再煅烧得到所述吸波相变体。
  18. 根据权利要求17所述的方法,其中所述混合原料按重量份计包括约10至约30份的硝酸钾、约10至约40份的硝酸钙,和约30至约80份的硝酸钠。
  19. 根据权利要求17所述的方法,其中加热形成所述熔融液的温度为约330℃至约380℃,将所述熔融液保温约3h至约8h。
  20. 根据权利要求17所述的方法,其中所述制备二水合乙酸锌的乙醇溶液包括将二水合乙酸锌溶解于约40℃至约60℃的无水乙醇中,以使所述二水合乙酸锌完全溶解;加热搅拌以形成所述凝胶的温度为约70℃至约90℃。
  21. 根据权利要求17所述的方法,其中所述煅烧的温度为约400℃至约800℃,所述煅烧的时间为约2h至约8h。
  22. 根据权利要求17所述的方法,其中将所述混合相变粉末、所述草酸乙醇溶液依次加入至所述二水合乙酸锌的乙醇溶液之前,采用超声波振动的方式将所述混合相变粉末进一步分散,所述超声波振动的时间为约10min约20min。
PCT/CN2020/124792 2019-11-26 2020-10-29 雾化介质、电子雾化装置及吸波相变体制备方法 WO2021103915A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911171084.4 2019-11-26
CN201911171084.4A CN110876493B (zh) 2019-11-26 2019-11-26 气溶胶生成制品、电子雾化装置及吸波相变体制备方法

Publications (1)

Publication Number Publication Date
WO2021103915A1 true WO2021103915A1 (zh) 2021-06-03

Family

ID=69730236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124792 WO2021103915A1 (zh) 2019-11-26 2020-10-29 雾化介质、电子雾化装置及吸波相变体制备方法

Country Status (2)

Country Link
CN (1) CN110876493B (zh)
WO (1) WO2021103915A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4193857A4 (en) * 2021-10-20 2023-09-13 Shenzhen Smoore Technology Limited AEROSOL GENERATING DEVICE AND CONTROL METHOD FOR THE AEROSOL GENERATING DEVICE

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110876493B (zh) * 2019-11-26 2021-11-09 深圳麦克韦尔科技有限公司 气溶胶生成制品、电子雾化装置及吸波相变体制备方法
CN112056625A (zh) * 2020-08-25 2020-12-11 泰新半导体(南京)有限公司 电小结构非全封闭电磁能量转换器及电子烟
CN114504121B (zh) * 2020-11-16 2024-04-09 深圳麦克韦尔科技有限公司 烟草制品及其制备方法
WO2022099701A1 (zh) * 2020-11-16 2022-05-19 深圳麦克韦尔科技有限公司 烟草制品及其制备方法
WO2022170466A1 (zh) * 2021-02-09 2022-08-18 深圳麦克韦尔科技有限公司 气溶胶产生装置及系统
WO2022170465A1 (zh) * 2021-02-09 2022-08-18 深圳麦克韦尔科技有限公司 气溶胶产生装置及系统
WO2022170467A1 (zh) * 2021-02-09 2022-08-18 深圳麦克韦尔科技有限公司 气溶胶产生系统及其气溶胶生成制品
CN115399515A (zh) * 2021-05-27 2022-11-29 深圳麦时科技有限公司 加热器及加热雾化装置
CN113925220A (zh) * 2021-11-16 2022-01-14 深圳麦时科技有限公司 气溶胶产生装置
CN113951573A (zh) * 2021-11-30 2022-01-21 海南摩尔兄弟科技有限公司 雾化基质、气溶胶生成品、电子雾化器和雾化系统
CN217509911U (zh) * 2022-03-08 2022-09-30 海南摩尔兄弟科技有限公司 加热雾化装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004094031A1 (en) * 2003-04-23 2004-11-04 Arka Holding Aps Manipulation of dispersed systems
CN108095195A (zh) * 2017-12-22 2018-06-01 安徽中烟工业有限责任公司 一种气雾产生物品
CN108777893A (zh) * 2018-06-26 2018-11-09 东莞市国研电热材料有限公司 一种电子烟用微波加热装置
CN108926037A (zh) * 2017-05-27 2018-12-04 深圳麦克韦尔股份有限公司 吸烟系统及其烟制品
CN108936788A (zh) * 2018-06-15 2018-12-07 南通金源新材料有限公司 一种具有降温增香功能的烟草颗粒
CN110313636A (zh) * 2018-03-29 2019-10-11 北京航天雷特机电工程有限公司 一种微波腔及具有微波腔的电子烟
CN110876493A (zh) * 2019-11-26 2020-03-13 深圳麦克韦尔科技有限公司 气溶胶生成制品、电子雾化装置及吸波相变体制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4858630A (en) * 1986-12-08 1989-08-22 R. J. Reynolds Tobacco Company Smoking article with improved aerosol forming substrate
CN100581335C (zh) * 2006-01-20 2010-01-13 傅敏恭 氧化锌吸波材料及其制备工艺
CN103750566B (zh) * 2013-12-13 2016-03-30 浙江中烟工业有限责任公司 一种基于电磁波加热的非燃烧吸烟装置
CN104720113B (zh) * 2015-01-29 2018-05-04 湖南中烟工业有限责任公司 一种加热不燃烧烟草制品
CN110313637A (zh) * 2018-03-29 2019-10-11 北京航天雷特机电工程有限公司 一种电子烟
WO2020087516A1 (zh) * 2018-11-02 2020-05-07 惠州市吉瑞科技有限公司深圳分公司 一种加热可抽吸材料的加热器及其加热不燃烧发烟设备
CN110279151A (zh) * 2019-06-19 2019-09-27 云南巴菰生物科技有限公司 一种微波加热不燃烧烟具
CN110324926A (zh) * 2019-06-19 2019-10-11 云南巴菰生物科技有限公司 一种适于微波加热烟具装置的温度控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004094031A1 (en) * 2003-04-23 2004-11-04 Arka Holding Aps Manipulation of dispersed systems
CN108926037A (zh) * 2017-05-27 2018-12-04 深圳麦克韦尔股份有限公司 吸烟系统及其烟制品
CN108095195A (zh) * 2017-12-22 2018-06-01 安徽中烟工业有限责任公司 一种气雾产生物品
CN110313636A (zh) * 2018-03-29 2019-10-11 北京航天雷特机电工程有限公司 一种微波腔及具有微波腔的电子烟
CN108936788A (zh) * 2018-06-15 2018-12-07 南通金源新材料有限公司 一种具有降温增香功能的烟草颗粒
CN108777893A (zh) * 2018-06-26 2018-11-09 东莞市国研电热材料有限公司 一种电子烟用微波加热装置
CN110876493A (zh) * 2019-11-26 2020-03-13 深圳麦克韦尔科技有限公司 气溶胶生成制品、电子雾化装置及吸波相变体制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4193857A4 (en) * 2021-10-20 2023-09-13 Shenzhen Smoore Technology Limited AEROSOL GENERATING DEVICE AND CONTROL METHOD FOR THE AEROSOL GENERATING DEVICE

Also Published As

Publication number Publication date
CN110876493A (zh) 2020-03-13
CN110876493B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2021103915A1 (zh) 雾化介质、电子雾化装置及吸波相变体制备方法
CN110876492B (zh) 电子雾化装置
RU2698847C1 (ru) Нагреватель игольчатого типа и способ его изготовления и электрически нагреваемая сигарета, содержащая указанный нагреватель
JP2022000015A (ja) 誘導的に加熱可能なたばこ製品
CN205337598U (zh) 烟雾发生器及电子烟
CN210143835U (zh) 一种同轴加热腔及具有同轴加热腔的电子烟装置
CN110141002A (zh) 一种同轴加热腔及具有同轴加热腔的电子烟装置
CN112021674A (zh) 加热不燃烧烟制品及其制造方法
CN104812115B (zh) 一种微波加热装置及方法
EP4035539A1 (en) Baking object, method for fabrication of baking object, and method for microwave heating of baking object
CN108926037A (zh) 吸烟系统及其烟制品
CN208338876U (zh) 一种用于电子烟烤烟设备的陶瓷发热体
CN112401297B (zh) 加热不燃烧烟支及其制备方法
WO2018218401A1 (zh) 吸烟系统及其烟制品
CN212014425U (zh) 多用途颗粒式香烟
WO2022179538A1 (zh) 雾化器及电子雾化装置
WO2022147898A1 (zh) 一种夹持加热一体式定量供应凝胶态烟油的电子烟
UA127234C2 (uk) Фільтрувальний наконечник і сигарета з перемінною вентиляцією
WO2022147899A1 (zh) 一种按压式定量供应凝胶态烟油的电子烟
CN208490860U (zh) 一种基于mch陶瓷外加热的非燃烧型烟草抽吸装置
CN108552602B (zh) 一种具有热量分配功能的电加热吸烟装置
WO2022104756A1 (zh) 一种电子烟
WO2017000905A1 (zh) 一种低温烘烤使用烟草产品的烟草加工方法
WO2022099701A1 (zh) 烟草制品及其制备方法
CN208064497U (zh) 一种低温烟加热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892173

Country of ref document: EP

Kind code of ref document: A1