WO2021057462A1 - 控制装置、摄像装置、控制方法以及程序 - Google Patents

控制装置、摄像装置、控制方法以及程序 Download PDF

Info

Publication number
WO2021057462A1
WO2021057462A1 PCT/CN2020/113964 CN2020113964W WO2021057462A1 WO 2021057462 A1 WO2021057462 A1 WO 2021057462A1 CN 2020113964 W CN2020113964 W CN 2020113964W WO 2021057462 A1 WO2021057462 A1 WO 2021057462A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
vibration signal
vibration
frequency
frequency band
Prior art date
Application number
PCT/CN2020/113964
Other languages
English (en)
French (fr)
Inventor
本庄谦一
小山高志
安田知长
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080003639.9A priority Critical patent/CN112369010B/zh
Publication of WO2021057462A1 publication Critical patent/WO2021057462A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/04Vertical adjustment of lens; Rising fronts
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/06Swinging lens about normal to the optical axis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present invention relates to a control device, an imaging device, a control method, and a program.
  • Patent Document 1 discloses that the first lens and the second lens constituting the afocal system are rotated to correct image shake.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-251127
  • the control device may be a control device that controls the image shake correction device, wherein the image shake correction device includes a first lens and a second lens that move in a direction intersecting the optical axis to correct image shake.
  • the control device may include a circuit configured to acquire a first vibration signal indicating vibration from a vibration sensor.
  • the circuit may be configured as follows: based on the first vibration signal, the first lens is vibrated at the frequency of the first frequency band, and the second lens is vibrated at the frequency of the second frequency band higher than the first frequency band, thereby correcting image shake.
  • the second lens is lighter than the first lens.
  • the diameter of the second lens may be smaller than the diameter of the first lens.
  • the circuit may be configured as follows: a second vibration signal showing the frequency of the first frequency band and a third vibration signal showing the frequency of the second frequency band are obtained from the first vibration signal.
  • the circuit may be configured as follows: based on the second vibration signal, the first lens is vibrated at the frequency of the first frequency band, and based on the third vibration signal, the second lens is vibrated at the frequency of the second frequency band, thereby correcting image shake.
  • the circuit can be configured as follows: based on the first vibration signal, the second lens is vibrated at the frequency of the second frequency band, and based on the difference between the third vibration signal showing the vibration of the second lens and the first vibration signal, the first lens is set to the first vibration signal.
  • the frequency of the band vibrates, thereby correcting image shake.
  • the control device may be a control device that controls the image shake correction device, wherein the image shake correction device includes a first lens and a second lens that move in a direction intersecting the optical axis to correct image shake.
  • the control device may include a circuit configured to acquire a first vibration signal indicating vibration from a vibration sensor.
  • the circuit may be configured as follows: vibrate the second lens based on the first vibration signal, and vibrate the first lens based on the difference between the second vibration signal showing the vibration of the second lens and the first vibration signal, thereby correcting image shake.
  • the sensitivity of the first lens which represents the ratio of the movement amount of the first lens to the image shake correction amount of the first lens
  • the sensitivity of the second lens which represents the ratio of the movement amount of the second lens to the image shake correction amount of the second lens
  • An image shake correction device may include: the above-mentioned control device; a first lens; a second lens; a first driving part that drives the first lens; and a second driving part that drives the second lens.
  • the first driving part may include a first voice coil motor.
  • the second driving part may include a second voice coil motor.
  • the first driving part may include a voice coil motor.
  • the second driving part may include a piezoelectric element or an ultrasonic motor.
  • An imaging device may include: the above-mentioned image shake correction device; a vibration sensor; and an image sensor that photographs an image formed by the first lens and the second lens.
  • the control method may be a control method for controlling an image shake correction device, wherein the image shake correction device includes a first lens and a second lens that move in a direction intersecting the optical axis to correct image shake.
  • the control method may include the following stages: acquiring a first vibration signal showing vibration from a vibration sensor.
  • the control method may include the following stages: based on the first vibration signal, the first lens is vibrated at a frequency of a first frequency band, and the second lens is vibrated at a frequency of a second frequency band higher than the first frequency band, thereby correcting image shake.
  • the program according to one aspect of the present invention may be a program for causing a computer to function as the above-mentioned control device.
  • the correction performance of image shake can be improved.
  • FIG. 1 is a diagram showing an example of an external perspective view of an imaging device.
  • Fig. 2 is a schematic diagram showing functional blocks of the imaging device.
  • Fig. 3 is a diagram showing an example of a block diagram of an optical image shake correction mechanism.
  • FIG. 4 is a diagram showing an example of vibration signals of the first frequency band and the second frequency band included in the image dither frequency.
  • FIG. 5 is a diagram showing an example of the frequency of the first frequency band and the frequency of the second frequency band included in the image dither frequency.
  • Fig. 6 is a diagram showing another example of a block diagram of an optical image shake correction mechanism.
  • FIG. 7 is a diagram showing an example of a vibration signal of an image shake frequency and a vibration signal of a lens that vibrates at a high frequency.
  • FIG. 8 is a diagram showing an example of a differential vibration signal of a vibration signal of an image shake frequency and a vibration signal of a lens vibrating at a high frequency.
  • Fig. 9 is a diagram showing an example of a hardware configuration.
  • the blocks may represent (1) a stage of a process of performing operations or (2) a "part" of a device that performs operations.
  • Specific stages and “parts” can be implemented by programmable circuits and/or processors.
  • Dedicated circuits may include digital and/or analog hardware circuits. May include integrated circuits (ICs) and/or discrete circuits.
  • Programmable circuits may include reconfigurable hardware circuits.
  • Reconfigurable hardware circuits can include logical AND, logical OR, logical exclusive OR, logical NAND, logical NOR, and other logical operations, flip-flops, registers, field programmable gate arrays (FPGA), programmable logic arrays (PLA) ) And other memory components.
  • the computer-readable medium may include any tangible device that can store instructions to be executed by a suitable device.
  • the computer-readable medium on which instructions are stored includes a product that includes instructions that can be executed to create means for performing operations specified by the flowchart or block diagram.
  • a computer-readable medium it may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, and the like.
  • the computer readable medium may include floopy (registered trademark) disk floppy disk, floppy disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM) Or flash memory), electrically erasable programmable read-only memory (EEPROM), static random access memory (SRAM), compact disc read-only memory (CD-ROM), digital versatile disc (DVD), Blu-ray (RTM) disc, memory Sticks, integrated circuit cards, etc.
  • floopy registered trademark
  • RAM random access memory
  • ROM read only memory
  • EPROM erasable programmable read only memory
  • flash memory electrically erasable programmable read-only memory
  • SRAM static random access memory
  • CD-ROM compact disc read-only memory
  • DVD digital versatile disc
  • Blu-ray (RTM) disc memory Sticks, integrated circuit cards, etc.
  • the computer-readable instructions may include any one of source code or object code described in any combination of one or more programming languages.
  • the source code or object code includes a traditional procedural programming language.
  • Traditional programming languages can be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, status setting data, or Smalltalk, JAVA (registered trademark), C++, etc.
  • the computer-readable instructions may be provided locally or via a wide area network (WAN) such as a local area network (LAN) or the Internet to a processor or programmable circuit of a general-purpose computer, a special-purpose computer, or other programmable data processing device.
  • WAN wide area network
  • LAN local area network
  • the processor or programmable circuit can execute computer-readable instructions to create means for performing the operations specified in the flowchart or block diagram.
  • Examples of processors include computer processors, processing units, microprocessors, digital signal processors, controllers, microcontrollers, and so on.
  • FIG. 1 is a diagram showing an example of an external perspective view of an imaging device 100 according to this embodiment.
  • FIG. 2 is a diagram showing functional blocks of the imaging device 100 according to this embodiment.
  • the imaging device 100 includes an imaging unit 102 and a lens unit 200.
  • the imaging unit 102 includes an image sensor 120, an imaging control unit 110, and a memory 130.
  • the image sensor 120 may be composed of CCD or CMOS.
  • the image sensor 120 outputs image data of the optical image formed by the zoom lens 211 and the focus lens 210 to the imaging control unit 110.
  • the imaging control unit 110 may be constituted by a microprocessor such as a CPU or an MPU, a microcontroller such as an MCU, or the like.
  • the memory 130 may be a computer-readable recording medium, and may also include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the memory 130 stores programs and the like necessary for the imaging control unit 110 to control the image sensor 120 and the like.
  • the memory 130 may be provided inside the housing of the imaging device 100.
  • the storage 130 may be configured to be detachable from the housing of the imaging device 100.
  • the imaging unit 102 may further include an indication unit 162 and a display unit 160.
  • the instruction unit 162 is a user interface that accepts instructions to the imaging device 100 from the user.
  • the display unit 160 displays an image captured by the image sensor 120, various setting information of the imaging device 100, and the like.
  • the display part 160 may be composed of a touch panel.
  • the lens unit 200 includes a focus lens 210, a zoom lens 211, a lens drive unit 212, a lens drive unit 213, and a lens control unit 220.
  • the focus lens 210 and the zoom lens 211 may include at least one lens. At least a part or all of the focus lens 210 and the zoom lens 211 are configured to be movable along the optical axis.
  • the lens unit 200 may be an interchangeable lens provided to be detachable from the imaging unit 102.
  • the lens driving unit 212 moves at least a part or all of the focus lens 210 along the optical axis via mechanical components such as a cam ring and a guide shaft.
  • the lens driving unit 213 moves at least a part or all of the zoom lens 211 along the optical axis via a mechanism member such as a cam ring and a guide shaft.
  • the lens control section 220 drives at least one of the lens drive section 212 and the lens drive section 213 in accordance with a lens control instruction from the imaging section 102, and makes at least one of the focus lens 210 and the zoom lens 211 along the optical axis direction via a mechanism member Move to perform at least one of a zooming action and a focusing action.
  • the lens control commands are, for example, zoom control commands and focus control commands.
  • the lens unit 200 further includes a memory 240, a position sensor 214, and a position sensor 215.
  • the memory 240 stores the control values of the focus lens 210 and the zoom lens 211 driven by the lens drive unit 212 and the lens drive unit 213.
  • the memory 240 may include at least one of flash memory such as SRAM, DRAM, EPROM, EEPROM, and USB memory.
  • the position sensor 214 detects the position of the focus lens 210.
  • the position sensor 214 can detect the current focus position.
  • the position sensor 215 detects the position of the zoom lens 211.
  • the position sensor 215 can detect the current zoom position of the zoom lens 211.
  • the lens unit 200 includes an optical image shake correction mechanism (OIS). More specifically, the lens unit 200 includes an image shake correction lens 231 and a lens 232, a lens driving unit 233, a lens driving unit 234, a position sensor 235, a position sensor 236, and a vibration sensor 250.
  • the vibration sensor 250 may be a gyro sensor that detects vibration of the imaging device 100.
  • the vibration sensor 250 may be an acceleration sensor that detects vibration of the imaging device 100.
  • the gyro sensor detects, for example, angular jitter and rotational jitter.
  • the acceleration sensor detects, for example, displacement jitter in the X direction and the Y direction.
  • the vibration sensor 250 may combine an acceleration sensor and a gyro sensor.
  • the lens driving section 233 moves the lens 231 in a direction intersecting the optical axis.
  • the lens driving part 233 can move the lens 231 in a direction perpendicular to the optical axis.
  • the lens driving part 233 may include a voice coil motor.
  • the lens driving section 234 moves the lens 232 in a direction intersecting the optical axis.
  • the lens driving part 234 can move the lens 232 in a direction perpendicular to the optical axis.
  • the lens driving part 234 may include a voice coil motor.
  • the position sensor 235 detects the position of the lens 231.
  • the position sensor 235 can detect the position of the lens 231 in a direction perpendicular to the optical axis.
  • the position sensor 235 may output the position of the lens 231 in a direction perpendicular to the optical axis as a vibration signal showing that the lens 231 vibrates.
  • the position sensor 236 detects the position of the lens 232.
  • the position sensor 236 can detect the position of the lens 232 in the direction perpendicular to the optical axis.
  • the position sensor 236 may output the position of the lens 232 in a direction perpendicular to the optical axis as a vibration signal indicating that the lens 232 vibrates.
  • the lens section 200 is an example of an image shake correction device.
  • the lens control unit 220 obtains the first vibration signal showing the vibration from the vibration sensor 250, and based on the first vibration signal, the lens 231 and the lens 232 are vibrated in the direction intersecting the optical axis through the lens driving unit 233 and the lens driving unit 234, thereby Correct image shake.
  • the image sensor 120 captures an image formed by the zoom lens 211, the focus lens 210, the lens 232, and the lens 232.
  • the lens control unit 220 vibrates the lens 232 at the frequency of the first frequency band by the lens drive unit 234, and vibrates the lens 231 at the frequency of the second frequency band higher than the first frequency band by the lens drive unit 233, thereby correcting image shake.
  • the lens driving section 233 and the lens driving section 234 that drive the lens 231 and the lens 232, respectively, can be miniaturized.
  • the lens driving section 233 and the lens driving section 234 that drive the lens 231 and the lens 232, respectively can be miniaturized.
  • By driving the lens 231 and the lens 232 in different frequency bands it is possible to reduce the influence of the error in the positions of the lens 231 and the lens 232 detected by the position sensor 235 and the position sensor 236 on the image shake correction.
  • image shake can be corrected in a wider frequency band.
  • the lens 231 may be lighter than the lens 232.
  • the diameter of the lens 231 may be smaller than the diameter of the lens 232.
  • the lens control unit 220 may extract the vibration signal of the first frequency band and the vibration signal of the second frequency band from the vibration signal from the vibration sensor 250 through a filter.
  • the lens control unit 220 can vibrate the lens 232 at the frequency of the first frequency band by the lens driving unit 234 based on the vibration signal of the first frequency band, and use the lens driving unit 233 to vibrate the lens 231 at the frequency of the first frequency band based on the vibration signal of the second frequency band. Frequency vibration.
  • the lens control unit 220 may vibrate the lens 231 at the frequency of the second frequency band through the lens driving unit 233 based on the vibration signal from the vibration sensor 250. Furthermore, the lens control unit 220 may vibrate the lens 232 at the frequency of the first frequency band through the lens driving unit 234 based on the difference between the vibration signal showing the vibration of the lens 231 detected by the position sensor 235 and the vibration signal from the vibration sensor 250.
  • the sensitivity of the lens 231 may be different from the sensitivity of the lens 232. Sensitivity shows the ratio between the amount of lens movement and the amount of image shake correction produced by the lens. Compared with a low-sensitivity lens, a high-sensitivity lens has a larger amount of image shake correction corresponding to the amount of lens movement. That is to say, compared with a low-sensitivity lens, a high-sensitivity lens can obtain a greater effect of correcting image shake through smaller movement.
  • the sensitivity of the lens 232 may be lower than the sensitivity of the lens 231.
  • the lens control unit 220 can cause the lens 231 with high sensitivity to vibrate at the frequency of the second frequency band, and the lens 232 with low sensitivity to vibrate at the frequency of the first frequency band lower than the second frequency band.
  • the lens control unit 220 can vibrate the highly sensitive lens 231 at the frequency of the second frequency band through the lens drive unit 233 based on the vibration signal from the vibration sensor 250, and based on the vibration signal detected by the position sensor 235 and the vibration signal from the display lens 231
  • the difference in the vibration signal of the vibration sensor 250 causes the lens 232 with low sensitivity to vibrate at the frequency of the first frequency band by the lens driving unit 234. That is, the lens control unit 220 first vibrates the lens 231 with high sensitivity based on the vibration signal from the vibration sensor 250, and then corrects the image shake that cannot be eliminated by the lens 231 by vibrating the lens 232 with low sensitivity.
  • the lens driving part 233 that drives the lens 231 may include a piezoelectric element or an ultrasonic motor instead of a voice coil motor. By using piezoelectric elements or ultrasonic motors, miniaturization can be achieved.
  • Fig. 3 is a diagram showing an example of a block diagram of an optical image shake correction mechanism.
  • the block diagram of FIG. 3 shows an example in which the vibration signal of the first frequency band and the vibration signal of the second frequency band are extracted from the vibration signal from the vibration sensor 250 to drive the respective voice coil motors 2312 and 2322.
  • the vibration signal from the vibration sensor 250 is input to the filter 252.
  • the filter 252 outputs a vibration signal showing the frequency component of image shake.
  • PID2311 extracts a vibration signal 502 showing vibration in the second frequency band from the vibration signal 500 from the filter 252, and PID2311 drives the voice coil motor 2312 based on the vibration signal 502 showing vibration in the second frequency band.
  • the position sensor 235 outputs a vibration signal indicating that the lens 231 vibrates.
  • the feedback control is performed by inputting a differential vibration signal of the vibration signal from the filter 252 and the vibration signal from the position sensor 235 to the PID 2311.
  • PID2321 extracts a vibration signal 501 showing vibration in the first frequency band from the vibration signal 500 from the filter 252, and PID2321 drives the voice coil based on the vibration signal 501 showing vibration in the first frequency band.
  • the motor 2322 causes the lens 232 to vibrate.
  • the position sensor 236 outputs a vibration signal indicating the vibration of the lens 232.
  • the feedback control is performed by inputting the differential vibration signal of the vibration signal from the filter 252 and the vibration signal from the position sensor 236 to the PID2321.
  • the filter 252 may extract a vibration signal 501 showing vibration in the first frequency band and a vibration signal 502 showing vibration in the second frequency band from the vibration signal 500.
  • Fig. 6 is a diagram showing another example of a block diagram of an optical image shake correction mechanism.
  • the block diagram of FIG. 6 shows the following example: based on the vibration signal from the vibration sensor 250, the lens 231 is vibrated at the frequency of the second frequency band, and the image shake that cannot be corrected by the lens 231 is caused to vibrate the lens 232 at the frequency of the first frequency band. Make corrections.
  • the vibration signal from the vibration sensor 250 is input to the filter 252.
  • the filter 252 outputs a vibration signal showing the frequency component of image shake.
  • the PID 2311 drives the voice coil motor 2312 based on the vibration signal 511 from the filter 252 to vibrate the lens 231.
  • the position sensor 235 outputs a vibration signal 512 indicating that the lens 231 vibrates.
  • the differential vibration signal 513 of the vibration signal 511 from the filter 252 and the vibration signal 512 from the position sensor 235 is input to PID2321 and PID2311.
  • the PID2321 drives the voice coil motor 2322 based on the differential vibration signal 513, thereby causing the lens 232 to vibrate.
  • the position sensor 236 outputs a vibration signal indicating the vibration of the lens 232.
  • the feedback control is performed by inputting the differential vibration signal of the differential vibration signal 513 and the vibration signal from the position sensor 236 to the PID2321.
  • the small lens 231 with a relatively small moment of inertia can be vibrated at a high frequency, and the large lens 232 with a relatively large moment of inertia can be vibrated at a low frequency. This can reduce power consumption and improve image shake correction performance.
  • FIG. 9 shows an example of a computer 1200 that can embody aspects of the present invention in whole or in part.
  • the program installed on the computer 1200 can make the computer 1200 function as an operation associated with the device according to the embodiment of the present invention or one or more "parts" of the device. Alternatively, the program can cause the computer 1200 to perform the operation or the one or more "parts".
  • This program enables the computer 1200 to execute the process or stages of the process involved in the embodiment of the present invention.
  • Such a program may be executed by the CPU 1212, so that the computer 1200 executes designated operations associated with some or all of the blocks in the flowcharts and block diagrams described in this specification.
  • the computer 1200 of this embodiment includes a CPU 1212 and a RAM 1214, which are connected to each other through a host controller 1210.
  • the computer 1200 further includes a communication interface 1222, an input/output unit, which is connected to the host controller 1210 through the input/output controller 1220.
  • the computer 1200 also includes a ROM 1230.
  • the CPU 1212 operates in accordance with programs stored in the ROM 1230 and RAM 1214 to control each unit.
  • the communication interface 1222 communicates with other electronic devices through a network.
  • the hard disk drive can store programs and data used by the CPU 1212 in the computer 1200.
  • the ROM 1230 stores therein a boot program executed by the computer 1200 during operation, and/or a program dependent on the hardware of the computer 1200.
  • the program is provided via a computer-readable recording medium such as CR-ROM, USB memory, or IC card, or a network.
  • the program is installed in RAM 1214 or ROM 1230 which is also an example of a computer-readable recording medium, and is executed by CPU 1212.
  • the information processing described in these programs is read by the computer 1200 and causes cooperation between the programs and the various types of hardware resources described above.
  • the apparatus or method can be constituted by realizing operation or processing of information according to the use of the computer 1200.
  • the CPU 1212 can execute a communication program loaded in the RAM 1214, and based on the processing described in the communication program, instructs the communication interface 1222 to perform communication processing.
  • the communication interface 1222 reads the transmission data stored in the transmission buffer provided in a recording medium such as RAM 1214 or USB memory under the control of the CPU 1212, and sends the read transmission data to the network or receives the data from the network.
  • the received data is written in the receiving buffer provided in the recording medium, etc.
  • the CPU 1212 can make the RAM 1214 read all or necessary parts of files or databases stored in an external recording medium such as a USB memory, and perform various types of processing on the data on the RAM 1214. Then, the CPU 1212 can write the processed data back to the external recording medium.
  • an external recording medium such as a USB memory
  • the CPU 1212 can perform various types of operations, information processing, conditional judgment, conditional transfer, unconditional transfer, and information retrieval/retrieval/information specified by the instruction sequence of the program described in various places in this disclosure. Replace various types of processing, and write the results back to RAM 1214.
  • the CPU 1212 can search for information in files, databases, and the like in the recording medium. For example, when multiple entries having the attribute value of the first attribute respectively associated with the attribute value of the second attribute are stored in the recording medium, the CPU 1212 may retrieve the attribute value of the specified first attribute from the multiple entries. And read the attribute value of the second attribute stored in the entry that matches the condition, so as to obtain the attribute value of the second attribute associated with the first attribute that satisfies the predetermined condition.
  • the programs or software modules described above may be stored on the computer 1200 or on a computer-readable storage medium near the computer 1200.
  • a recording medium such as a hard disk or RAM provided in a server system connected to a dedicated communication network or the Internet can be used as a computer-readable storage medium so that the program can be provided to the computer 1200 via the network.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)
  • Structure And Mechanism Of Cameras (AREA)

Abstract

一种图像抖动校正装置及其控制装置、摄像装置(100)、控制方法、程序。图像抖动校正装置包括通过沿与光轴相交方向而校正图像抖动的第一镜头和第二镜头,控制电路包括配置如下的电路:从振动传感器获取显示振动的第一振动信号,基于第一振动信号,使第一镜头以第一频带的频率振动,使第二镜头以比第一频带更高的第二频带的频率振动,从而校正图像抖动。

Description

控制装置、摄像装置、控制方法以及程序 技术领域
本发明涉及一种控制装置、摄像装置、控制方法以及程序。
背景技术
专利文献1中,公开有:使构成无焦系统的第一镜头和第二镜头转动,从而校正图像抖动。
背景技术文献:
[专利文献]
[专利文献1]日本专利特开平9-251127号公报
发明内容
发明所要解决的技术问题:
在通过使多个镜头移动来校正图像抖动的系统中,期望提高图像抖动的校正性能。用于解决技术问题的手段:
本发明的一个方面所涉及的控制装置可以是对图像抖动校正装置进行控制的控制装置,其中,图像抖动校正装置包括沿与光轴相交方向移动从而校正图像抖动的第一镜头和第二镜头。控制装置可以包括配置如下的电路:从振动传感器获取显示振动的第一振动信号。电路可以配置如下:基于第一振动信号,使第一镜头以第一频带的频率振动,使第二镜头以比第一频带更高的第二频带的频率振动,从而校正图像抖动。
第二镜头比第一镜头轻。
第二镜头的直径可以比第一镜头的直径小。
电路可以配置如下:从第一振动信号获取显示第一频带的频率的第二振动信号和显示第二频带的频率的第三振动信号。电路可以配置如下:基于第二振动信号,使第一镜头以第一频带的频率振动,基于第三振动信号,使第二镜头以第二频带的频率振动,从而校正图像抖动。
电路可以配置如下:基于第一振动信号,使第二镜头以第二频带的频率振动,基于显示第二镜头的振动的第三振动信号与第一振动信号之差,使第一镜头以第一频带的频率振动,从而校正图像抖动。
本发明的一个方面所涉及的控制装置可以是对图像抖动校正装置进行控制的控制装置,其中,图像抖动校正装置包括沿与光轴相交方向移动从而校正图像抖动的第一镜头和第二镜头。控制装置可以包括配置如下的电路:从振动传感器获取显示振动的第一振动信号。电路可以配置如下:基于第一振动信号,使第二镜头振动,基于显示 第二镜头的振动的第二振动信号与第一振动信号之差,使第一镜头振动,从而校正图像抖动。
表示第一镜头的移动量与第一镜头的图像抖动校正量之比的第一镜头的灵敏度低于表示第二镜头的移动量与第二镜头的图像抖动校正量之比的第二镜头的灵敏度。
本发明的一个方面所涉及的图像抖动校正装置可以包括:上述控制装置;第一镜头;第二镜头;驱动第一镜头的第一驱动部;以及驱动第二镜头的第二驱动部。
第一驱动部可以包括第一音圈电机。第二驱动部可以包括第二音圈电机。
第一驱动部可以包括音圈电机。第二驱动部可以包括压电元件或超声波电机。
本发明的一个方面所涉及的摄像装置可以包括:上述图像抖动校正装置;振动传感器;以及图像传感器,其对通过第一镜头和第二镜头成像的像进行拍摄。
本发明的一个方面所涉及的控制方法可以是对图像抖动校正装置进行控制的控制方法,其中,图像抖动校正装置包括沿与光轴相交方向移动从而校正图像抖动的第一镜头和第二镜头。控制方法可以包括以下阶段:从振动传感器获取显示振动的第一振动信号。控制方法可以包括以下阶段:基于第一振动信号,使第一镜头以第一频带的频率振动,使第二镜头以比第一频带更高的第二频带的频率振动,从而校正图像抖动。
本发明的一个方面所涉及的程序可以是一种用于使计算机作为上述控制装置发挥作用的程序。
根据本发明的一个方面,可以提高图像抖动的校正性能。
此外,上述发明内容未列举本发明的必要的全部特征。此外,这些特征组的子组合也可以构成发明。
附图说明
图1是示出摄像装置的外观立体图的一个示例的图。
图2是示出摄像装置的功能块的示意图。
图3是示出光学式图像抖动校正机构的框图的一个示例的图。
图4是示出图像抖动频率所包含的第一频段和第二频带的振动信号的一个示例的图。
图5是示出图像抖动频率所包含的第一频带的频率和第二频带的频率的一个示例的图。
图6是示出光学式图像抖动校正机构的框图的另一个示例的图。
图7是示出图像抖动频率的振动信号以及以高频率振动的镜头的振动信号的一个示例的图。
图8是示出图像抖动频率的振动信号与以高频率振动的镜头的振动信号的差分振动信号的一个示例的图。
图9是示出硬件构成的一个示例的图。
符号说明:
100                 摄像装置
102                 摄像部
110                 摄像控制部
120                 图像传感器
130                 存储器
160                 显示部
162                 指示部
200                 镜头部
210                 聚焦镜头
211                 变焦镜头
212,213,233,234  镜头驱动部
2312,2322          音圈电机
214,215,235,236  位置传感器
220                 镜头控制部
231,232            镜头
240                 存储器
250                 振动传感器
252                 滤波器
1200                计算机
1210                主机控制器
1212                CPU
1214                RAM
1220                输入/输出控制
1222                通信接口
1230                ROM
具体实施方式
以下,通过发明的实施方式来说明本发明,但是以下的实施方式并不限定权利要求书所涉及的发明。此外,实施方式中所说明的所有特征组合对于发明的解决方案未必是必须的。对本领域普通技术人员来说,显然可以对以下实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。
权利要求书、说明书、说明书附图以及说明书摘要中包含作为著作权所保护对象的事项。任何人只要如专利局的文档或者记录所表示的那样进行这些文件的复制,著作权人则不会提出异议。但是,在除此以外的情况下,保留一切的著作权。
本发明的各种实施方式可参照流程图及框图来描述,这里,方框可表示(1)执行操作的过程的阶段或者(2)具有执行操作的作用的装置的“部”。特定的阶段和“部” 可以通过可编程电路和/或处理器来实现。专用电路可以包括数字和/或模拟硬件电路。可以包括集成电路(IC)和/或分立电路。可编程电路可以包括可重构硬件电路。可重构硬件电路可以包括逻辑与、逻辑或、逻辑异或、逻辑与非、逻辑或非、及其它逻辑操作、触发器、寄存器、现场可编程门阵列(FPGA)、可编程逻辑阵列(PLA)等存储器元件等。
计算机可读介质可以包括可以对由适宜的设备执行的指令进行存储的任意有形设备。其结果是,其上存储有指令的计算机可读介质包括一种包括指令的产品,该指令可被执行以创建用于执行流程图或框图所指定的操作的手段。作为计算机可读介质的示例,可以包括电子存储介质、磁存储介质、光学存储介质、电磁存储介质、半导体存储介质等。作为计算机可读介质的更具体的示例,可以包括floopy(注册商标)disk软盘、软磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或者闪存)、电可擦可编程只读存储器(EEPROM)、静态随机存取存储器(SRAM)、光盘只读存储器(CD-ROM)、数字多用途光盘(DVD)、蓝光(RTM)光盘、记忆棒、集成电路卡等。
计算机可读指令可以包括由一种或多种编程语言的任意组合描述的源代码或者目标代码中的任意一个。源代码或者目标代码包括传统的程序式编程语言。传统的程序式编程语言可以为汇编指令、指令集架构(ISA)指令、机器指令、与机器相关的指令、微代码、固件指令、状态设置数据、或者Smalltalk、JAVA(注册商标)、C++等面向对象编程语言以及“C”编程语言或者类似的编程语言。计算机可读指令可以在本地或者经由局域网(LAN)、互联网等广域网(WAN)提供给通用计算机、专用计算机或者其它可编程数据处理装置的处理器或可编程电路。处理器或可编程电路可以执行计算机可读指令,以创建用于执行流程图或框图所指定操作的手段。处理器的示例包括计算机处理器、处理单元、微处理器、数字信号处理器、控制器、微控制器等。
图1是示出本实施方式所涉及的摄像装置100的外观立体图的一个示例的图。图2是示出本实施方式所涉及的摄像装置100的功能块的图。
摄像装置100包括摄像部102及镜头部200。摄像部102包括图像传感器120、摄像控制部110及存储器130。图像传感器120可以由CCD或CMOS构成。图像传感器120将通过变焦镜头211以及聚焦镜头210成像的光学图像的图像数据输出至摄像控制部110。摄像控制部110可以由CPU或MPU等微处理器、MCU等微控制器等构成。存储器130可以是计算机可读记录介质,也可以包括诸如SRAM、DRAM、EPROM、EEPROM和USB存储器等闪存中的至少一种。存储器130储存摄像控制部110对图像传感器120等进行控制所需的程序等。存储器130可以设置于摄像装置100的壳体内部。存储器130可以设置成可从摄像装置100的壳体上拆卸下来。
摄像部102还可以包括指示部162及显示部160。指示部162是从用户处接受对摄像装置100的指示的用户界面。显示部160显示由图像传感器120所摄像的图像、摄像装置100的各种设定信息等。显示部160可以由触控面板组成。
镜头部200包括聚焦镜头210、变焦镜头211、镜头驱动部212、镜头驱动部213以及镜头控制部220。聚焦镜头210和变焦镜头211可以包括至少一个镜头。聚焦镜头210和变焦镜头211的至少一部分或全部被配置为能够沿着光轴移动。镜头部200可以是被设置成能够相对摄像部102拆装的可更换镜头。镜头驱动部212经由凸轮环、引导轴等机构构件使聚焦镜头210的至少一部分或全部沿着光轴移动。镜头驱动部213经由凸轮环、引导轴等机构构件使变焦镜头211的至少一部分或全部沿着光轴移动。镜头控制部220按照来自摄像部102的镜头控制指令来驱动镜头驱动部212和镜头驱动部213中的至少一个,并经由机构构件使聚焦镜头210和变焦镜头211中的至少一个沿着光轴方向移动,以执行变焦动作和聚焦动作中的至少一个。镜头控制指令例如为变焦控制指令及对焦控制指令。
镜头部200还包括存储器240、位置传感器214以及位置传感器215。存储器240对由镜头驱动部212和镜头驱动部213驱动的聚焦镜头210和变焦镜头211的控制值进行存储。存储器240可以包括SRAM、DRAM、EPROM、EEPROM及USB存储器等闪存中的至少一个。位置传感器214检测聚焦镜头210的位置。位置传感器214可以检测当前的聚焦位置。位置传感器215检测变焦镜头211的位置。位置传感器215可以检测变焦镜头211的当前的变焦位置。
镜头部200包括光学式图像抖动校正机构(OIS)。更具体而言,镜头部200包括图像抖动校正用镜头231和镜头232、镜头驱动部233、镜头驱动部234、位置传感器235、位置传感器236以及振动传感器250。振动传感器250可以是检测摄像装置100振动的陀螺仪传感器。振动传感器250可以是检测摄像装置100振动的加速度传感器。陀螺仪传感器检测例如角度抖动和旋转抖动。加速度传感器检测例如X方向和Y方向的位移抖动。即便是陀螺仪传感器,也可以将角度和旋转转换为X方向的分量和Y方向的分量。即便加速度传感器,也可以将X方向和Y方向的位移抖动转换为角度抖动和旋转抖动。振动传感器250可以将加速度传感器和陀螺仪传感器组合。镜头驱动部233使镜头231沿与光轴相交的方向移动。镜头驱动部233可以使镜头231沿与光轴垂直的方向移动。镜头驱动部233可以包括音圈电机。镜头驱动部234使镜头232沿与光轴相交的方向移动。镜头驱动部234可以使镜头232沿与光轴垂直的方向移动。镜头驱动部234可以包括音圈电机。
位置传感器235检测镜头231的位置。位置传感器235可以检测镜头231与光轴垂直方向的位置。位置传感器235可以输出镜头231与光轴垂直方向的位置作为显示镜头231振动的振动信号。位置传感器236检测镜头232的位置。位置传感器236可以检测镜头232与光轴垂直方向的位置。位置传感器236可以输出镜头232与光轴垂直方向的位置作为显示镜头232振动的振动信号。
镜头部200是图像抖动校正装置的一个示例。镜头控制部220从振动传感器250获取显示振动第一振动信号,并基于第一振动信号,通过镜头驱动部233和镜头驱动 部234,使镜头231和镜头232沿与光轴相交的方向振动,从而校正图像抖动。图像传感器120拍摄通过变焦镜头211、聚焦镜头210、镜头232以及镜头232成像的图像。
镜头控制部220通过镜头驱动部234使镜头232以第一频带的频率振动,通过镜头驱动部233使镜头231以比第一频带更高的第二频带的频率振动,从而校正图像抖动。
由于单独驱动图像抖动校正用镜头231和镜头232,由此能够使分别驱动镜头231和镜头232的镜头驱动部233和镜头驱动部234小型化。通过在不同的频带驱动镜头231和镜头232,能够降低由位置传感器235和位置传感器236检测出的镜头231和镜头232的位置的误差对图像抖动校正的影响。此外,通过在不同的频带驱动镜头231和镜头232,能够在较宽频带对图像抖动进行校正。
镜头231可以比镜头232轻。镜头231的直径可以比镜头232的直径小。通过减小在相对较高频带进行驱动的镜头231的尺寸,能够降低镜头驱动部233消耗的电力。
镜头控制部220可以通过滤波器从来自振动传感器250的振动信号中提取第一频带的振动信号和第二频带的振动信号。镜头控制部220可以基于第一频带的振动信号,通过镜头驱动部234使镜头232以第一频带的频率振动,基于第二频带的振动信号,通过镜头驱动部233使镜头231以第一频带的频率振动。
镜头控制部220可以基于来自振动传感器250的振动信号,通过镜头驱动部233使镜头231以第二频带的频率振动。进而,镜头控制部220可以基于由位置传感器235检测出的显示镜头231振动的振动信号与来自振动传感器250的振动信号之差,通过镜头驱动部234使镜头232以第一频带的频率振动。
镜头231的灵敏度可以与镜头232的灵敏度不同。灵敏度显示镜头移动量和由镜头产生的图像抖动校正量之间的比值。与灵敏度低的镜头相比,灵敏度高的镜头对应镜头移动量的图像抖动校正量更大。也就是说,与灵敏度低的镜头相比,灵敏度高的镜头通过较小的移动得到更大的校正图像抖动的效果。镜头232的灵敏度可以比镜头231的灵敏度低。镜头控制部220可以使灵敏度高的镜头231以第二频带的频率振动,使灵敏度低的镜头232以比第二频带更低的第一频带的频率振动。
镜头控制部220可以基于来自振动传感器250的振动信号,通过镜头驱动部233使灵敏度高的镜头231以第二频带的频率振动,基于由位置传感器235检测出的显示镜头231振动的振动信号与来自振动传感器250的振动信号之差,通过镜头驱动部234使灵敏度低的镜头232以第一频带的频率振动。也就是说,镜头控制部220基于来自振动传感器250的振动信号,先使灵敏度高的镜头231振动,再通过使灵敏度低的镜头232振动来校正不能由镜头231消除的图像抖动。
驱动镜头231的镜头驱动部233可以包括压电元件或者超声波电机来代替音圈电机。通过利用压电元件或者超声波电机,能够实现小型化。
图3是示出光学式图像抖动校正机构的框图的一个示例的图。图3的框图示出以下示例:从来自振动传感器250的振动信号中提取第一频带的振动信号和第二频带的振动信号而驱动各自的音圈电机2312及2322。
将来自振动传感器250的振动信号输入至滤波器252。滤波器252输出显示图像抖动的频率分量的振动信号。如图4和图5所示,PID2311从来自滤波器252的振动信号500中提取显示第二频带振动的振动信号502,并且PID2311基于显示第二频带振动的振动信号502,驱动音圈电机2312而使镜头231振动。位置传感器235输出显示镜头231振动的振动信号。通过将来自滤波器252的振动信号与来自位置传感器235的振动信号的差分振动信号输入至PID2311从而执行反馈控制。
同样地,如图4和图5所示,PID2321从来自滤波器252的振动信号500中提取显示第一频带振动的振动信号501,并且PID2321基于显示第一频带振动的振动信号501,驱动音圈电机2322而使镜头232振动。位置传感器236输出显示镜头232振动的振动信号。通过将来自滤波器252的振动信号与来自位置传感器236的振动信号的差分振动信号输入至PID2321,从而执行反馈控制。滤波器252可以从振动信号500中提取显示第一频带的振动的振动信号501和显示第二频带的振动的振动信号502。
图6是示出光学式图像抖动校正机构的框图的另一个示例的图。图6的框图示出以下示例:基于来自振动传感器250的振动信号,使镜头231以第二频带的频率振动,将不能由镜头231校正的图像抖动通过使镜头232以第一频带的频率振动进行校正。
将来自振动传感器250的振动信号输入至滤波器252。滤波器252输出显示图像抖动的频率分量的振动信号。如图7所示,PID2311基于来自滤波器252的振动信号511驱动音圈电机2312,从而使镜头231振动。位置传感器235输出显示镜头231振动的振动信号512。如图8所示,将来自滤波器252的振动信号511与来自位置传感器235的振动信号512的差分振动信号513输入至PID2321和PID2311。PID2321基于差分振动信号513驱动音圈电机2322,从而使镜头232振动。位置传感器236输出显示镜头232振动的振动信号。通过将差分振动信号513与来自位置传感器236的振动信号的差分振动信号输入至PID2321,从而执行反馈控制。
根据本实施方式,能够使惯性矩相对较小的小型镜头231以高频率振动,使惯性矩相对较大的大型镜头232以低频率振动。由此能够降低电力消耗,并提高图像抖动的校正性能。
图9是示出可全部或部分地体现本发明的多个方面的计算机1200的一个示例。安装在计算机1200上的程序能够使计算机1200作为与本发明的实施方式所涉及的装置相关联的操作或者该装置的一个或多个“部”而起作用。或者,该程序能够使计算机1200执行该操作或者该一个或多个“部”。该程序能够使计算机1200执行本发明的实施方式所涉及的过程或者该过程的阶段。这种程序可以由CPU1212执行,以使计算机1200执行与本说明书所述的流程图及框图中的一些或者全部方框相关联的指定操作。
本实施方式的计算机1200包括CPU1212以及RAM1214,它们通过主机控制器1210相互连接。计算机1200还包括通信接口1222、输入/输出单元,它们通过输入/输出控制器1220与主机控制器1210连接。计算机1200还包括ROM1230。CPU1212按照ROM1230及RAM1214内存储的程序而工作,从而控制各单元。
通信接口1222通过网络与其他电子装置通信。硬盘驱动器可以存储计算机1200内的CPU1212所使用的程序及数据。ROM1230在其中存储运行时由计算机1200执行的引导程序等、和/或依赖于计算机1200的硬件的程序。程序通过CR-ROM、USB存储器或IC卡之类的计算机可读记录介质或者网络来提供。程序安装在也作为计算机可读记录介质的示例的RAM1214或ROM1230中,并通过CPU1212执行。这些程序中记述的信息处理由计算机1200读取,并引起程序与上述各种类型的硬件资源之间的协作。可以通过根据计算机1200的使用而实现信息的操作或者处理来构成装置或方法。
例如,当在计算机1200和外部装置之间执行通信时,CPU1212可执行加载在RAM1214中的通信程序,并且基于通信程序中描述的处理,命令通信接口1222进行通信处理。通信接口1222在CPU1212的控制下,读取存储在RAM1214或USB存储器之类的记录介质内提供的发送缓冲区中的发送数据,并将读取的发送数据发送到网络,或者将从网络接收的接收数据写入记录介质内提供的接收缓冲区等中。
此外,CPU1212可以使RAM1214读取USB存储器等外部记录介质所存储的文件或数据库的全部或者需要的部分,并对RAM1214上的数据执行各种类型的处理。接着,CPU1212可以将处理过的数据写回到外部记录介质中。
可以将各种类型的程序、数据、表格及数据库之类的各种类型的信息存储在记录介质中,并接受信息处理。对于从RAM1214读取的数据,CPU1212可执行在本公开的各处描述的、包括由程序的指令序列指定的各种类型的操作、信息处理、条件判断、条件转移、无条件转移、信息的检索/替换等各种类型的处理,并将结果写回到RAM1214中。此外,CPU1212可以检索记录介质内的文件、数据库等中的信息。例如,在记录介质中存储具有分别与第二属性的属性值相关联的第一属性的属性值的多个条目时,CPU1212可以从该多个条目中检索出与指定第一属性的属性值的条件相匹配的条目,并读取该条目内存储的第二属性的属性值,从而获取与满足预定条件的第一属性相关联的第二属性的属性值。
以上描述的程序或者软件模块可以存储在计算机1200上或者计算机1200附近的计算机可读存储介质上。另外,连接到专用通信网络或因特网的服务器系统中提供的诸如硬盘或RAM之类的记录介质可以用作计算机可读存储介质,从而可以经由网络将程序提供给计算机1200。
以上使用实施方式对本发明进行了说明,但是本发明的技术范围并不限于上述实施方式所描述的范围。对本领域普通技术人员来说,显然可对上述实施方式加以各种变更或改良。从权利要求书的描述显而易见的是,加以了这样的变更或改良的方式都可包含在本发明的技术范围之内。
应该注意的是,权利要求书、说明书以及说明书附图中所示的装置、系统、程序以及方法中的动作、顺序、步骤以及阶段等各项处理的执行顺序,只要没有特别明示“在...之前”、“事先”等,且只要前面处理的输出并不用在后面的处理中,则可以任意顺序实现。关于权利要求书、说明书以及说明书附图中的操作流程,为方便起见而使用“首先”、“接着”等进行了说明,但并不意味着必须按照这样的顺序实施。

Claims (13)

  1. 一种控制装置,其对包括沿与光轴相交方向移动从而校正图像抖动的第一镜头和第二镜头的图像抖动校正装置进行控制,其特征在于,包括配置如下的电路:
    从振动传感器获取显示振动的第一振动信号;
    基于所述第一振动信号,使所述第一镜头以第一频带的频率振动,使所述第二镜头以比所述第一频带更高的第二频带的频率振动,从而校正图像抖动。
  2. 根据权利要求1所述的控制装置,其特征在于,所述第二镜头比所述第一镜头轻。
  3. 根据权利要求1所述的控制装置,其特征在于,所述第二镜头的直径比所述第一镜头的直径小。
  4. 根据权利要求1所述的控制装置,其特征在于,所述电路配置如下:
    从所述第一振动信号获取显示所述第一频带的频率的第二振动信号和显示所述第二频带的频率的第三振动信号;
    基于所述第二振动信号,使所述第一镜头以所述第一频带的频率振动,基于所述第三振动信号,使所述第二镜头以所述第二频带的频率振动,从而校正图像抖动。
  5. 根据权利要求1所述的控制装置,其特征在于,所述电路配置如下:
    基于所述第一振动信号,使所述第二镜头以所述第二频带的频率振动,基于显示所述第二镜头的振动的第三振动信号与所述第一振动信号之差,使所述第一镜头以所述第一频带的频率振动,从而校正图像抖动。
  6. 一种控制装置,其对包括沿与光轴相交方向移动从而校正图像抖动的第一镜头和第二镜头的图像抖动校正装置进行控制,其特征在于,包括配置如下的电路:
    从振动传感器获取显示振动的第一振动信号;
    基于所述第一振动信号,使所述第二镜头振动,基于显示所述第二镜头的振动的第二振动信号与所述第一振动信号之差,使所述第一镜头振动,从而校正图像抖动。
  7. 根据权利要求6所述的控制装置,其特征在于,表示所述第一镜头的移动量与所述第一镜头的图像抖动校正量之比的所述第一镜头的灵敏度低于表示所述第二镜头的移动量与所述第二镜头的图像抖动校正量之比的所述第二镜头的灵敏度。
  8. 一种图像抖动校正装置,其特征在于,包括:根据权利要求1至7中任一项所述的控制装置;
    所述第一镜头;
    所述第二镜头;
    驱动所述第一镜头的第一驱动部;以及
    驱动所述第二镜头的第二驱动部。
  9. 根据权利要求8所述的图像抖动校正装置,其特征在于,所述第一驱动部包 括第一音圈电机,
    所述第二驱动部包括第二音圈电机。
  10. 根据权利要求8所述的图像抖动校正装置,其特征在于,所述第一驱动部包括音圈电机,
    所述第二驱动部包括压电元件或者超声波电机。
  11. 一种摄像装置,其特征在于,包括:根据权利要求8至10中任一项所述的图像抖动校正装置;
    所述振动传感器;以及
    图像传感器,其对通过所述第一镜头和所述第二镜头成像的像进行拍摄。
  12. 一种控制方法,其对包括沿与光轴相交方向移动从而校正图像抖动的第一镜头和第二镜头的图像抖动校正装置进行控制,其特征在于,包括以下阶段:
    从振动传感器获取显示振动的第一振动信号;以及
    基于所述第一振动信号,使所述第一镜头以第一频带的频率振动,使所述第二镜头以比所述第一频带更高的第二频带的频率振动,从而校正图像抖动。
  13. 一种程序,其特征在于,用于使计算机作为根据权利要求1至6中任一项所述的控制装置而发挥功能。
PCT/CN2020/113964 2019-09-24 2020-09-08 控制装置、摄像装置、控制方法以及程序 WO2021057462A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080003639.9A CN112369010B (zh) 2019-09-24 2020-09-08 控制装置、摄像装置以及控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-172784 2019-09-24
JP2019172784A JP6812618B1 (ja) 2019-09-24 2019-09-24 制御装置、撮像装置、制御方法、及びプログラム

Publications (1)

Publication Number Publication Date
WO2021057462A1 true WO2021057462A1 (zh) 2021-04-01

Family

ID=74096275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113964 WO2021057462A1 (zh) 2019-09-24 2020-09-08 控制装置、摄像装置、控制方法以及程序

Country Status (2)

Country Link
JP (1) JP6812618B1 (zh)
WO (1) WO2021057462A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251127A (ja) * 1996-03-14 1997-09-22 Matsushita Electric Ind Co Ltd 手振れ補正用光学系及びそれを用いたズームレンズ
JP2009042544A (ja) * 2007-08-09 2009-02-26 Sanyo Electric Co Ltd 防振制御回路
JP2010010796A (ja) * 2008-06-24 2010-01-14 Canon Inc カメラ
CN101738819A (zh) * 2008-11-18 2010-06-16 三洋电机株式会社 振动补偿控制电路以及摄像装置
CN101896850A (zh) * 2007-12-04 2010-11-24 黑眼睛光学有限公司 液体光学元件图像稳定
US20110013027A1 (en) * 2009-07-15 2011-01-20 Canon Kabushiki Kaisha Shake correction apparatus, image pickup apparatus, and method for controlling shake correction apparatus
CN103901590A (zh) * 2012-12-27 2014-07-02 佳能株式会社 透镜装置和包括透镜装置的图像拾取装置
CN105659138A (zh) * 2013-10-22 2016-06-08 株式会社尼康美景 光学设备、望远镜和双筒望远镜
US20190149727A1 (en) * 2017-11-16 2019-05-16 Canon Kabushiki Kaisha Processing apparatus, lens apparatus and image pickup apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4448420B2 (ja) * 2004-09-30 2010-04-07 富士フイルム株式会社 撮影装置
JP2016191763A (ja) * 2015-03-31 2016-11-10 キヤノン株式会社 像ブレ補正装置を有する光学機器
JP2017032653A (ja) * 2015-07-29 2017-02-09 キヤノン株式会社 像ブレ補正装置、その制御方法、撮像装置、及び光学機器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251127A (ja) * 1996-03-14 1997-09-22 Matsushita Electric Ind Co Ltd 手振れ補正用光学系及びそれを用いたズームレンズ
JP2009042544A (ja) * 2007-08-09 2009-02-26 Sanyo Electric Co Ltd 防振制御回路
CN101896850A (zh) * 2007-12-04 2010-11-24 黑眼睛光学有限公司 液体光学元件图像稳定
JP2010010796A (ja) * 2008-06-24 2010-01-14 Canon Inc カメラ
CN101738819A (zh) * 2008-11-18 2010-06-16 三洋电机株式会社 振动补偿控制电路以及摄像装置
US20110013027A1 (en) * 2009-07-15 2011-01-20 Canon Kabushiki Kaisha Shake correction apparatus, image pickup apparatus, and method for controlling shake correction apparatus
CN103901590A (zh) * 2012-12-27 2014-07-02 佳能株式会社 透镜装置和包括透镜装置的图像拾取装置
CN105659138A (zh) * 2013-10-22 2016-06-08 株式会社尼康美景 光学设备、望远镜和双筒望远镜
US20190149727A1 (en) * 2017-11-16 2019-05-16 Canon Kabushiki Kaisha Processing apparatus, lens apparatus and image pickup apparatus

Also Published As

Publication number Publication date
JP2021051138A (ja) 2021-04-01
JP6812618B1 (ja) 2021-01-13

Similar Documents

Publication Publication Date Title
US11237405B2 (en) Camera module having stabilizer providing stabilization function and electronic device including the camera module
WO2020192480A1 (zh) 摄像头防抖系统、方法、电子设备
WO2019120082A1 (zh) 控制装置、系统、控制方法以及程序
WO2019206052A1 (zh) 控制装置、摄像装置、控制方法以及程序
JP2020052378A (ja) 制御装置、出力装置、撮像装置、制御方法、及びプログラム
WO2021057462A1 (zh) 控制装置、摄像装置、控制方法以及程序
WO2021088669A1 (zh) 控制装置、摄像装置、控制方法以及程序
CN112369010B (zh) 控制装置、摄像装置以及控制方法
CN112585938B (zh) 控制装置、摄像装置、控制方法以及程序
JP2011160412A (ja) 撮像装置
US20210160420A1 (en) Determination device, control device, photographing device, determination method, and program
WO2020216037A1 (zh) 控制装置、摄像装置、移动体、控制方法以及程序
WO2019179374A1 (zh) 显示控制装置、摄像装置、显示控制方法
WO2020192551A1 (zh) 控制装置、摄像系统、控制方法以及程序
WO2019242617A1 (zh) 确定装置、摄像装置、确定方法以及程序
JP6743337B1 (ja) 制御装置、撮像装置、撮像システム、制御方法、及びプログラム
JP6519886B2 (ja) 撮像装置、撮像システム、移動体、方法、及びプログラム
WO2020156085A1 (zh) 图像处理装置、摄像装置、无人驾驶航空器、图像处理方法以及程序
US20230042136A1 (en) Image capturing method and electronic device
JP2021152595A (ja) 制御装置、撮像装置、制御方法、及びプログラム
JP7043706B2 (ja) 制御装置、撮像システム、制御方法、及びプログラム
US20150334281A1 (en) Image capturing apparatus, and control method therefor
JP2011244183A (ja) 撮像装置、画像表示装置、および画像表示プログラム
JP2021108431A (ja) 制御装置、撮像装置、制御方法、及びプログラム
JP2021153264A (ja) 制御装置、撮像システム、制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20869591

Country of ref document: EP

Kind code of ref document: A1