WO2021057280A1 - 电池包、车辆及缓解电池包热失控蔓延的控制方法 - Google Patents

电池包、车辆及缓解电池包热失控蔓延的控制方法 Download PDF

Info

Publication number
WO2021057280A1
WO2021057280A1 PCT/CN2020/107773 CN2020107773W WO2021057280A1 WO 2021057280 A1 WO2021057280 A1 WO 2021057280A1 CN 2020107773 W CN2020107773 W CN 2020107773W WO 2021057280 A1 WO2021057280 A1 WO 2021057280A1
Authority
WO
WIPO (PCT)
Prior art keywords
spray
battery pack
secondary battery
thermal runaway
pipeline
Prior art date
Application number
PCT/CN2020/107773
Other languages
English (en)
French (fr)
Inventor
黄小腾
洪家荣
汪文礼
项延火
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20869350.7A priority Critical patent/EP3913732B1/en
Priority to JP2021551826A priority patent/JP7289361B2/ja
Publication of WO2021057280A1 publication Critical patent/WO2021057280A1/zh
Priority to US17/540,262 priority patent/US11646465B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/07Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/02Permanently-installed equipment with containers for delivering the extinguishing substance
    • A62C35/023Permanently-installed equipment with containers for delivering the extinguishing substance the extinguishing material being expelled by compressed gas, taken from storage tanks, or by generating a pressure gas
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • A62C35/02Permanently-installed equipment with containers for delivering the extinguishing substance
    • A62C35/026Permanently-installed equipment with containers for delivering the extinguishing substance the extinguishing material being put under pressure by means other than pressure gas, e.g. pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application belongs to the technical field of energy storage devices, and specifically relates to a battery pack, a vehicle, and a control method for alleviating the thermal runaway spread of the battery pack.
  • the energy density of the battery pack is related to the range of electric vehicles.
  • the current battery pack uses a large number of secondary batteries to be combined in series and parallel.
  • the thermal safety problem becomes more and more serious.
  • the safety of battery packs directly affects the safety of electric vehicles and passengers. Therefore, the safety of battery packs has become an obstacle to the further promotion of electric vehicles. How to effectively solve the safety problem of the battery pack has become an urgent technical problem to be solved.
  • the first aspect of the application provides a battery pack, which includes:
  • a plurality of secondary batteries each of which has a weak portion in its casing, so that the heat flow generated by the thermal runaway of the secondary battery can break through the weak portion and be discharged;
  • the spray pipeline corresponds to the weak part of the secondary battery and is set apart from the weak part. At least the part of the spray pipeline corresponding to the weak part is the rupture area. The rupture area can be opened by the heat flow.
  • the spray pipe The spray medium in the road is sprayed through the opening to the abnormal secondary battery that is thermally out of control;
  • the weight A of the spray medium sprayed to alleviate the spread of thermal runaway of the abnormal secondary battery is determined according to formula (1),
  • A represents the weight of the spray medium in kg
  • D represents the latent heat of the spray medium in kJ/kg
  • B represents the capacity of the secondary battery in Ah.
  • the latent heat D of the spray medium may be 100 kJ/kg or more.
  • D is 200kJ/kg ⁇ 5000kJ/kg, and also optional is 200kJ/kg ⁇ 2000kJ/kg.
  • the spray pressure P of the spray pipeline can be determined according to formula (2)
  • P represents the spray pressure of the spray pipe in kPa
  • B represents the capacity of the secondary battery in Ah.
  • the spray pressure P of the spray pipeline may be 10 kPa or more, and may optionally be 12 kPa to 150 kPa.
  • the breach area of the spray pipeline may be arranged directly opposite to the weakened portion of the secondary battery.
  • the spraying medium may be selected from one or more of fire-fighting gas, fire-fighting fluid, fire-fighting colloid and fire-fighting powder.
  • the spraying medium is selected from one or more of water, ethylene glycol, liquid nitrogen, liquid argon, liquid carbon dioxide, liquid heptafluoropropane and fluorinated ketone.
  • the battery pack may further include a savings box; the spray pipeline is connected to the savings tank, and at least part of the spray pipeline is located above the secondary battery; or, the spray pipeline It includes a plurality of pipeline units arranged in parallel, each pipeline unit is arranged corresponding to at least one secondary battery, and each pipeline unit is connected with a storage box.
  • the storage tank may be optionally arranged higher than the breach area of the spray pipeline.
  • the money box may include:
  • Box body the box body has an inner cavity
  • the divider is located in the inner cavity of the box, and the divider divides the box into a liquid storage part and a gas storage part, wherein the liquid storage part is connected with the spray pipeline, and the gas storage part is provided with a compressed gas
  • the inlet and the partition can drive the spray medium in the liquid storage part into the spray pipeline under the action of the compressed gas in the gas storage part.
  • the partition may be an elastic partition film, optionally a skin film; or, the partition may be a partition plate, and the partition plate is slidably connected to the inner wall of the box.
  • the money box may include:
  • Box body the box body has an inner cavity
  • the driving device is arranged in the inner cavity of the box.
  • the driving device includes an elastic part and a driving part.
  • the elastic part is connected with the driving part.
  • the driving part and the wall of the storage tank are enclosed to form a liquid storage part, and the liquid storage part and the spray pipeline Connected
  • the driving component can drive the spray medium in the liquid storage part to enter the spray pipeline.
  • the rupture area has a heated melting part to be melted under the action of the heat flow sprayed from the weak part of the secondary battery to form an opening; or, the rupture area has a stress concentration part , Rupture under the impact of the heat flow jetted from the weak part of the secondary battery to form an opening.
  • the melting point of the heated melting portion may be 200°C to 500°C, and optionally 300°C to 500°C.
  • the weakened portion may be an explosion-proof valve provided on the housing; or, the weakened portion may be provided by scoring or thickness reduction on the housing. Formed by thin areas.
  • a second aspect of the present application provides a vehicle, which includes the battery pack of the first aspect of the present application.
  • the third aspect of the present application provides a control method for alleviating the thermal runaway spread of a battery pack, wherein the battery pack is the battery pack of the first aspect of the application, and the method includes:
  • the heat flow generated by the thermal runaway of the secondary battery breaks through the weak part and acts on the spray pipe, so that the rupture area is exposed to the heat flow to form an opening;
  • the spray medium is sprayed to the thermally runaway secondary battery through the opening to alleviate the thermal runaway spread of the secondary battery.
  • the heat flow generated by the thermal runaway of the secondary battery can break through the weak part of the shell and be discharged, and act on the break of the spray pipeline area.
  • the rupture area can be affected by the heat flow to form an opening, so that the spray medium in the spray pipeline is sprayed to the abnormal secondary battery that is thermally out of control through the opening.
  • the weight of the shower medium sprayed to the abnormal secondary battery satisfies the formula (1).
  • the spray medium can effectively reduce the high temperature generated by the thermal runaway of the secondary battery, and prevent the heat from spreading to other secondary batteries, so that the thermal runaway of the abnormal secondary battery can be effectively controlled, and at the same time effectively alleviate the spread of thermal runaway in the battery pack . Therefore, the battery pack of the present application has higher safety performance.
  • Fig. 1 is a schematic structural diagram of a battery pack according to an embodiment of the present application, in which the outer packaging and other accessories of the battery pack are omitted.
  • Fig. 2 is a partial enlarged schematic diagram of Fig. 1.
  • Fig. 3 is a schematic structural diagram of another battery pack according to an embodiment of the present application, in which the outer packaging and other accessories of the battery pack are omitted.
  • Fig. 4 is a schematic structural diagram of another battery pack according to an embodiment of the present application, in which the outer packaging and other accessories of the battery pack are omitted.
  • Fig. 5 is a schematic structural diagram of a savings box according to an embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of another savings box according to an embodiment of the present application.
  • any lower limit can be combined with any upper limit to form an unspecified range; and any lower limit can be combined with other lower limits to form an unspecified range, and any upper limit can be combined with any other upper limit to form an unspecified range.
  • every point or single value between the end points of the range is included in the range. Therefore, each point or single numerical value can be used as its own lower limit or upper limit, combined with any other point or single numerical value, or combined with other lower or upper limits to form an unspecified range.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or an optional connection. Disassembly connection, or integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or an optional connection.
  • the term "or” is inclusive. That is, the phrase “A or B” means “A, B, or both A and B.” More specifically, any of the following conditions satisfy the condition "A or B”: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists) ; Or both A and B are true (or exist).
  • the battery pack of the embodiment of the present application includes a plurality of secondary batteries 10 and a spray pipe 20.
  • each secondary battery 10 has a weak portion 11 so that the heat flow generated by the thermal runaway of the secondary battery 10 can break through the weak portion 11 and be discharged.
  • the spray line 20 corresponds to the weak part 11 of the secondary battery 10 and is arranged at a distance from the weak part 11. At least the part of the spray pipeline 20 corresponding to the weakened portion 11 is a breached area 21, and the breached area 21 can form an opening by the action of the heat flow.
  • the spray medium in the spray pipe 20 is sprayed to the abnormal secondary battery 10 that is thermally out of control through the opening.
  • the weight A of the spray medium sprayed to alleviate the spread of thermal runaway of the abnormal secondary battery 10 is determined according to formula (1),
  • A represents the weight of the spray medium in kg
  • D represents the latent heat of the spray medium in kJ/kg
  • B represents the capacity of the secondary battery in Ah.
  • the formula (1) only involves the calculation of numerical values.
  • the weight A of the spray medium is 0.27kg
  • the latent heat D of the spray medium is 2000kJ/kg
  • the capacity B of the secondary battery is 180Ah, that is,
  • the heat flow generated by the thermal runaway of the secondary battery 10 can break through the weak portion 11 of the casing and be discharged, and act on the breach area 21 of the spray pipe 20.
  • the rupture area 21 can be affected by the heat flow to form an opening, so that the spray medium in the spray pipe 20 is sprayed to the abnormal secondary battery 10 that is thermally out of control through the opening.
  • the weight of the shower medium sprayed to the abnormal secondary battery 10 satisfies the formula (1). Therefore, the spray medium can effectively reduce the high temperature generated by the thermal runaway of the secondary battery 10 and prevent the heat from spreading to other secondary batteries 10, so that the thermal runaway of the abnormal secondary battery 10 can be effectively controlled, and the thermal runaway can be effectively alleviated.
  • the battery pack of the embodiment of the present application has a higher safety performance.
  • the heat flow discharged from the thermal runaway of the secondary battery 10 triggers the spray pipe 20 to spray.
  • the battery pack responds quickly and accurately to the thermal runaway of the secondary battery 10.
  • the battery pack does not need to be equipped with a thermal runaway monitoring device and a spray control device, so its structure is simple, especially the weight and volume of the battery pack are small, which is conducive to making it have a higher weight energy density and volume energy density.
  • the present application has no particular limitation on the type of the secondary battery 10, and the positive and negative active materials, electrolyte, etc., can all be materials known in the art.
  • the electrode assembly and the electrolyte are usually enclosed in a case.
  • the weak portion 11 may be an explosion-proof valve provided on the case.
  • the case of the secondary battery 10 may be provided with a score or a thinned area to form the weakened portion 11.
  • the heat flow is a high-temperature and high-pressure mixed fluid ejected through the weakened portion 11 when the secondary battery 10 undergoes thermal runaway.
  • the mixed fluid contains high-temperature and high-pressure gas and liquid, and the liquid is mainly electrolyte.
  • the breach area 21 of the spray pipe 20 is arranged corresponding to the weak portion 11 of the secondary battery 10 so that the heat flow injected from the thermal runaway of the secondary battery 10 can directly act on the breach area 21 to form an opening.
  • the spray pipe 20 can spray the spray medium corresponding to the outflow source of the heat flow, which can more effectively reduce the spread of the heat flow, thereby improving the control efficiency of thermal runaway and its spread.
  • the disposition of the breach area 21 and the weakened portion 11 in correspondence with it also enables the spraying medium to flow into the inside of the casing of the secondary battery 10. This can inhibit further thermal decomposition, combustion and other reactions of the material inside the shell, and control the continuous generation of heat flow, thereby further improving the control efficiency of thermal runaway and its spread.
  • the breach area 21 of the spray pipe 20 is arranged directly opposite to the weak portion 11 of the secondary battery 10.
  • an explosion-proof valve is installed on the top of the casing of the secondary battery 10, and the breach area 21 of the spray pipe 20 is located directly above the explosion-proof valve and is separated from the explosion-proof valve.
  • the part of the spray pipe 20 at least corresponding to (or directly opposite to) the weak part 11 has a heated melting part.
  • the melting point of the heated melting part is lower than the melting point of other areas of the spray pipe 20, and under the high temperature action of the heat flow sprayed by the secondary battery 10, the heated melting part can be melted to form an opening to realize spraying.
  • the heat flow temperature of the thermal runaway injection of the secondary battery 10 can reach 500°C or more, such as 600°C.
  • the melting point of the heated melting part is lower than the temperature of the heat flow, so that it can be melted under the high temperature of the heat flow.
  • the melting point of the heated melting part may be 200°C to 500°C, such as 300°C to 500°C.
  • the melting point of other areas of the spray pipeline 20 is greater than the temperature of the heat flow, so that it can provide a flow channel for the spray medium to flow to the thermally runaway secondary battery 10 for positioning spray.
  • the part of the spray pipe 20 at least corresponding to (or directly opposite to) the weakened portion 11 may have a stress concentration portion.
  • the pressure of the heat flow injected from the weak part 11 of the secondary battery 10 is relatively high. Under the high pressure impact of the heat flow, the stress concentration part ruptures due to low strength and stress accumulation, thereby forming an opening to realize the injection. Other areas of the spray pipe 20 have sufficient strength without being damaged.
  • the structure of the spray pipeline 20 is complete, and the spray medium is stored inside it.
  • the spray medium stored in the spray pipeline 20 can also play a role in cooling the secondary battery 10, which is beneficial to improve the cycle life of the secondary battery 10.
  • the heat flow makes the spray pipe 20 open. A spray medium with a weight of A is sprayed from the opening to the secondary battery 10 that is thermally runaway, so as to achieve effective control of thermal runaway and its spread.
  • the spray medium can be a material known in the art that can be used to control the thermal runaway of the battery.
  • the spray medium can be selected from fire-fighting gas, fire-fighting fluid, fire-fighting colloid, and fire-fighting powder.
  • the spraying medium may be selected from one or more of water, ethylene glycol, liquid nitrogen, liquid argon, liquid carbon dioxide, liquid heptafluoropropane, and fluorinated ketone.
  • the latent heat D of the spray medium may be above 100 kJ/kg, above 200 kJ/kg, above 500 kJ/kg, above 1000 kJ/kg, above 1500 kJ/kg, or above 2000 kJ/kg.
  • the spray medium has a larger latent heat and can absorb more heat, so that the temperature of the thermal runaway secondary battery 10 and the heat flow released by it can be quickly reduced, and the effect of alleviating the thermal runaway spread of the battery pack is improved.
  • the amount of heat released by the thermal runaway of the secondary battery 10 is constant, the greater the latent heat of the spray medium, the smaller the amount of spray medium required. This helps reduce the weight of the entire system.
  • the latent heat D of the spray medium may be below 5000 kJ/kg, below 4500 kJ/kg, below 4000 kJ/kg, below 3500 kJ/kg, or below 3000 kJ/kg.
  • the weight A of the spray medium that satisfies the formula (1) is appropriate, so that the volume of the spray medium sprayed to alleviate the spread of thermal runaway is appropriate, and can fully act on the thermal runaway secondary battery 10 and the heat flow it releases, thereby The thermal runaway and the spread of thermal runaway of the secondary battery 10 are effectively controlled.
  • the spray pipe 20 may be a continuous pipe at least partially corresponding to all the secondary batteries 10 in the battery pack.
  • a spray medium with a weight greater than or equal to A can be encapsulated in the pipeline.
  • the spray pipeline 20 may include a plurality of pipeline units 22, and each pipeline unit 22 corresponds to at least one battery unit in the battery pack, and can be installed in each pipeline
  • the unit 22 may be encapsulated with a spray medium greater than or equal to the weight A.
  • Each battery cell may include more than one secondary battery 10.
  • the battery pack may include a plurality of battery cells arranged in the width direction of the battery pack, and each battery cell may include a plurality of secondary batteries 10 arranged in the length direction of the battery pack.
  • a pipeline unit 22 may be provided for each battery unit.
  • the battery pack may also include a savings box 30.
  • the storage tank 30 may be connected to either end or both ends of the continuous pipeline.
  • one savings tank 30 may be connected to both ends of the continuous pipeline; or, one of the two savings tanks 30 may be connected to one end of the continuous pipeline, and the other may be connected to the continuous pipeline. The other end is connected.
  • the spray pipe 20 may be at least partially located above the secondary battery 10.
  • the storage tank 30 can be connected to any one or both ends of each pipeline unit 22.
  • each savings box 30 is independently connected to any one or both ends of the at least one pipeline unit 22.
  • the battery pack may include a distributor 40.
  • the distributor 40 has a plurality of medium outlets (not shown in the figure), and it can communicate with a plurality of pipeline units 22 through the plurality of medium outlets, respectively.
  • two distributors 40 are separately provided at both ends of the plurality of pipeline units 22, and one of the distributors 40 is in communication with one end of the plurality of pipeline units 22, and the other distributor 40 is connected to the plurality of pipeline units 22.
  • the other end of the pipe unit 22 communicates with each other.
  • the connection port 41 of the distributor 40 communicates with the storage tank 30.
  • the distributor 40 is arranged between the storage tank 30 and the spray pipeline 20, and is used to divide the spray medium in the storage tank 30 to different pipeline units 22.
  • the storage tank 30 in the battery pack can store spray media, and the storage tank 30 is in communication with the spray pipeline 20.
  • the storage tank 30 can provide spray medium to the spray pipe 20 to meet the demand of the spray medium for controlling thermal runaway. That is, the spray medium greater than or equal to the weight A is stored in the spray pipe 20 and the storage tank 30.
  • storing part of the spray medium in the storage tank 30 can reduce the volume and weight of the spray pipe 20, thereby reducing the volume and weight of the entire system.
  • the spray pressure P sprayed to the thermal runaway secondary battery 10 through the opening of the spray pipe 20 satisfies the following relationship (2), which can effectively overcome the spraying medium in the spray pipe 20
  • the resistance of conveying and the pressure of the high-temperature fluid realize the spraying of the spraying medium to the thermal runaway secondary battery 10 in a timely and efficient manner.
  • the control efficiency of thermal runaway and thermal runaway propagation of the secondary battery 10 in the battery pack can be further improved.
  • P represents the spray pressure of the spray pipe 20 in kPa
  • B represents the capacity of the secondary battery 10 in Ah.
  • formula (2) only involves calculation of numerical values.
  • the spray pressure P of the spray pipe 20 is 120kPa
  • the capacity of the secondary battery 10 is 180Ah, which satisfies:
  • the spray pressure P of the spray pipeline 20 may be 10 kPa or more, 12 kPa or more, 20 kPa or more, 30 kPa or more, or 50 kPa or more. This is conducive to more effective control of the thermal runaway and spread of the secondary battery 10.
  • the spray pressure P of the spray pipeline 20 may be 150 kPa or less, 120 kPa or less, 100 kPa or less, or 80 kPa or less. This can prevent damages such as damage to the casing of the secondary battery 10 caused by excessive spray pressure, so as to prevent the high-temperature and high-pressure fluid from rapidly spreading to the surroundings, which is beneficial to alleviate the spread of thermal runaway in the battery pack.
  • the battery pack includes a savings box 30 with a height difference between the savings box 30 and the opening.
  • the location of the storage tank 30 is higher than the opening of the spray pipe 20. In this way, when the spray pipe 20 forms an opening for spraying, the spray medium in the storage tank 30 exerts pressure on the spray medium in the spray pipe 20 due to the height difference, so that the spray pressure of the spray pipe 20 reaches P.
  • the savings box 30 includes a box body 31 with an inner cavity, and a partition 32 is provided in the box body, and the partition 32 divides the box body 31 into a liquid storage portion 31a and a storage portion 31a. ⁇ 31b.
  • the liquid storage portion 31a is in communication with the spray pipe 20.
  • the gas storage portion 31b has an inlet for inflow of compressed gas to fill the gas storage portion 31b with gas.
  • the partition 32 can drive the spray medium in the liquid storage portion 31a into the spray pipeline 20 under the action of the compressed gas in the gas storage portion 31b.
  • the spray medium is stored in the liquid storage portion 31 a and the spray pipe 20.
  • the force of the spray medium in the liquid storage portion 31a on the partition 32 is balanced with the force of the compressed gas in the gas storage portion 31b on the partition 32.
  • the spray pipe 20 When a thermal runaway occurs in the secondary battery 10, the spray pipe 20 generates an opening under the action of the heat flow, and the spraying medium is sprayed from the opening to the thermal runaway secondary battery 10.
  • the force of the spray medium in the liquid storage portion 31a on the partition 32 is reduced, and the compressed gas in the gas storage portion 31b applies a driving force to the spray medium on the opposite side through the partition 32, thereby causing the spray
  • the spray pressure of the shower line 20 reaches P.
  • the gas storage portion 31b can also be supplemented with gas through the inlet of the gas storage portion 31b to ensure that the compressed gas in the gas storage portion 31b has sufficient pressure, so as to meet the weight A and the spraying medium of the spray pipe 20. Pour pressure P demand.
  • the partition 32 may be an elastic partition film.
  • the elastic separation film may be a film, such as EPDM (Ethylene Propylene Diene Monomer, EPDM) film.
  • the partition 32 may also be a partition plate, and the partition plate is slidably connected to the inner wall of the box body 31. Therefore, when the spray pipe 20 is sprayed, the force of the spray medium in the liquid storage portion 31a on the partition plate is reduced, and the partition plate can be directed toward the partition plate under the action of the compressed gas in the gas storage portion 31b. The fluid outlet direction of the liquid reservoir 31a moves. In this way, the compressed gas can exert pressure on the spray medium through the partition plate.
  • a sliding seal may be provided between the outer peripheral wall of the partition plate and the inner wall of the box body 31.
  • the partition plate can move relative to the inner wall of the box body 31 while maintaining a good sealing effect, reducing the spraying medium and/or compressed gas from the outer peripheral wall of the partition plate and the box body. The risk of circulation between the inner walls of 31, thereby improving the sensitivity of the movement of the partition plate.
  • the sliding seal may have a structure such as a packing seal.
  • the savings box 30 includes a box body 31 with an inner cavity, and a driving device 33 is also provided in the box body.
  • the driving device 33 includes an elastic member 33a and a driving member 33b.
  • the elastic member 33a is connected to the driving member 33b.
  • the driving member 33b and the wall of the box 31 form a liquid storage portion 31a, and the liquid storage portion 31a and the spray pipe 20 Connected.
  • the driving member 33b can drive the spray medium in the liquid storage portion 31a into the spray pipe 20 under the action of the elastic force of the elastic member 33a.
  • the spray medium is stored in the liquid storage portion 31 a and the spray pipe 20.
  • the force of the spray medium in the liquid reservoir 31a on the drive member 33b is balanced with the pressure of the elastic member 33a on the drive member 33b.
  • the spray pipe 20 generates an opening under the action of the heat flow, and the spraying medium is sprayed from the opening to the thermal runaway secondary battery 10.
  • the force of the spraying medium in the liquid reservoir 31a on the driving member 33b is reduced, and the elastic member 33a applies a driving force to the spraying medium on the opposite side through the driving member 33b, thereby causing the spraying of the spraying pipe 20 to be driven.
  • the shower pressure reaches P.
  • the elastic component 33a with appropriate elasticity can be selected according to actual needs to ensure that it can provide sufficient pressure to the spray medium, so as to meet the spray volume and spray pressure requirements of the spray medium at the opening.
  • the elastic member 33a may be selected from a spring, an elastic rubber, and the like.
  • the driving part 33b may be a driving board.
  • the driving board is slidably connected with the inner wall of the box body 31.
  • a sliding seal may be provided between the outer peripheral wall of the drive plate and the inner wall of the box body 31. The function and type of the sliding seal can be as described above.
  • one end of the elastic member 33a is connected to the inner wall of the box body 31, which may be an interference connection or a fixed connection.
  • the other end of the elastic member 33a is connected to the driving member 33b.
  • the two ends of the elastic member 33a are respectively connected with the driving member 33b.
  • the two driving parts 33b respectively enclose the inner wall of the box body 31 to form two liquid storage parts 31b.
  • the two liquid storage parts 31b are each provided with a fluid outlet, which can be connected to one port of the spray pipe 20 respectively.
  • the two liquid storage parts 31b are respectively connected to both ends of the aforementioned continuous pipeline; or, the two liquid storage parts 31b are respectively connected to both ends of the aforementioned pipeline unit 22. That is, the spraying medium can enter from both ends of the continuous pipeline or the pipeline unit 22 and be sprayed from the opening. In this way, the weight A and pressure P of the spray medium can be increased, and the effect of controlling thermal runaway and thermal runaway spread can be improved.
  • a limiting member 33c may be provided between the driving members 33b at both ends of the elastic member 33a.
  • the limiting component 33c can enhance the balance and stability of the drive system; when the spraying pipe 20 sprays the spraying medium, the limiting component 33c is under the elastic force of the elastic component 33a. The limit function is released, and the elastic member 33a applies a driving force to the spray medium.
  • the limiting member 33c includes a first limiting arm c1 connected to one of the two driving members 33b, and a second limiting arm c2 connected to the other of the two driving members 33b.
  • the first limit arm c1 and the second limit arm c2 are bonded together, so that the limit member 33c plays a limiting role to enhance the balance and stability of the drive system.
  • the spray pipe 20 is spraying, under the elastic force of the elastic member 33a, the adhesion between the first limit arm c1 and the second limit arm c2 is released, thereby releasing the limit effect and causing the elastic member 33a to spray the medium. Apply driving force.
  • the bonding of the first limit arm c1 and the second limit arm c2 can be achieved by glue, adhesive strips, etc.
  • the limiting member 33c may be one or more disposed on the outer peripheral side of the elastic member 33a, such as two or three evenly distributed on the outer peripheral side of the elastic member 33a.
  • the embodiment of the present application also provides a vehicle.
  • the vehicle includes any battery pack of the embodiments of the present application.
  • the vehicle can be, but is not limited to, a hybrid vehicle, a pure electric vehicle, and so on.
  • the vehicle may include a power source that provides power to the vehicle, and the battery pack is configured to provide power to the power source.
  • the vehicle of the embodiment of the present application adopts the battery pack of the embodiment of the present application, it can also have corresponding beneficial effects, and the vehicle has higher safety performance.
  • the thermal runaway spread of the battery pack can be effectively alleviated, which greatly prolongs the escape time of the personnel in the vehicle, thereby ensuring the safety of the personnel to a greater extent.
  • the embodiment of the present application also provides a control method for alleviating the thermal runaway spread of the battery pack, where the battery pack is any battery pack of the embodiments of the present application.
  • the control method for alleviating the thermal runaway spread of the battery pack in the embodiment of the present application includes:
  • the spraying medium is sprayed to the abnormal secondary battery with thermal runaway through the opening to alleviate the thermal runaway spread of the secondary battery.
  • the weight A of the spray medium sprayed to alleviate the spread of thermal runaway of the abnormal secondary battery is determined according to the above formula (1).
  • the heat flow generated by the thermal runaway of the secondary battery can break through the weak part of the shell and be discharged, and act on the broken area of the spray pipeline.
  • the rupture area is affected by the heat flow to form an opening, so that the spray medium in the spray pipeline is sprayed to the abnormal secondary battery that is thermally out of control through the opening.
  • the weight of the shower medium sprayed to the abnormal secondary battery satisfies the formula (1).
  • the spray medium can effectively reduce the high temperature generated by the thermal runaway of the secondary battery, and prevent the heat from spreading to other secondary batteries, so that the thermal runaway of the abnormal secondary battery can be effectively controlled, and the thermal runaway can be effectively alleviated in the battery pack.
  • the spread Therefore, adopting the control method for alleviating the thermal runaway spread of the battery pack according to the embodiment of the present application can enable the battery pack to have a higher safety performance.
  • the heat flow discharged from the thermal runaway of the secondary battery triggers the spray pipeline to spray.
  • This method responds quickly and accurately to the thermal runaway of the secondary battery.
  • it is not necessary to install a thermal runaway monitoring device and a spray control device in the battery pack, thereby simplifying the structure of the battery pack, especially making the weight and volume of the battery pack smaller, which is conducive to making the battery pack more compact. High weight energy density and volume energy density.
  • the battery pack is shown in FIG. 1, which includes a plurality of lithium ion secondary batteries, a spray pipeline located above the plurality of secondary batteries and spaced apart from the secondary battery, and a savings box connected to the spray pipeline .
  • the casing of each secondary battery has a weak portion so that the heat flow generated by the thermal runaway of the secondary battery can break through the weak portion and be discharged.
  • the part of the spray pipe facing the weak part of the lithium-ion secondary battery is a rupture area, and the rupture area can be subjected to heat flow to form an opening.
  • the structure of the savings box is shown in Fig.
  • the savings box includes a box body with an inner cavity and a partition plate located in the inner cavity of the box body, and the partition plate separates the box body into a liquid storage part and a gas storage part.
  • the liquid storage part is connected with the spray pipeline, and the liquid storage part and the spray pipeline have spray liquid.
  • the partition plate can drive the spray liquid in the liquid storage part into the spray pipeline under the action of the compressed gas in the gas storage part.
  • the capacity B of the secondary battery is 180Ah
  • the latent heat D of the spray liquid is 2000kJ/kg
  • the weight A of the spray liquid sprayed by the spray pipeline is 0.27kg.
  • One of the secondary batteries in the battery pack can be thermally runaway, for example, by overcharging, acupuncture, or heating the secondary battery to make it thermally runaway.
  • the heat flow generated by the thermal runaway of the secondary battery breaks through the weak part and acts on the spray pipe.
  • the rupture area is affected by the heat flow to form an opening.
  • the spray liquid is sprayed to the thermally runaway secondary battery through the opening to control the thermal runaway and the spread of thermal runaway of the secondary battery.
  • Test 10 battery packs and record the success rate of thermal runaway spread control.
  • thermal runaway spread control the number of battery packs without thermal runaway spread/the total number of battery packs tested ⁇ 100%
  • the spray line is provided in the battery pack of the present application, and the spray line corresponds to the weak part of the secondary battery casing with a breach area, which can be heated by the secondary battery.
  • the heat flow generated by the runaway acts to form an opening, so that the spray medium in the spray pipeline is sprayed to the abnormal secondary battery that is thermally runaway through the opening.
  • the weight of the shower medium sprayed to the abnormal secondary battery satisfies the formula (1).
  • the spray medium can effectively reduce the high temperature generated by the thermal runaway of the secondary battery, and prevent the heat from spreading to other secondary batteries, so that the thermal runaway of the abnormal secondary battery can be effectively controlled, and at the same time effectively alleviate the spread of thermal runaway in the battery pack . Therefore, the battery pack of the present application has higher safety performance.
  • the weight of the spray medium sprayed by the battery pack to the abnormal secondary battery in the comparative example cannot satisfy the formula (1).
  • the thermal runaway of the secondary battery cannot be controlled, resulting in Thermal runaway spread in the battery pack, posing serious safety hazards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请公开了一种电池包、车辆及缓解电池包热失控蔓延的控制方法。电池包包括:多个二次电池,各二次电池的壳体具有薄弱部,以使二次电池热失控产生的热流能冲破所述薄弱部而排出;喷淋管路,对应二次电池的薄弱部、且与薄弱部相间隔设置,喷淋管路至少对应于薄弱部的部分为破口区域,破口区域能够受热流作用形成开口,喷淋管路中的喷淋介质通过开口喷射至热失控的异常二次电池;其中,缓解异常二次电池的热失控蔓延所喷射的喷淋介质的重量A根据式(0.8A) 0.85×D/B≥2.6确定,其中,D表示喷淋介质的潜热,B表示二次电池的容量。本申请公开的电池包及缓解电池包热失控蔓延的控制方法能有效缓解电池包内的热失控蔓延,从而提高电池包和车辆的安全性能。

Description

电池包、车辆及缓解电池包热失控蔓延的控制方法
相关申请的交叉引用
本申请要求享有于2019年09月26日提交的名称为“电池包、车辆及缓解电池包热失控蔓延的控制方法”的中国专利申请201910914629.X的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于储能装置技术领域,具体涉及一种电池包、车辆及缓解电池包热失控蔓延的控制方法。
背景技术
随着环境保护问题日益受到重视,新能源电动汽车日益普及。电池包的能量密度关乎电动汽车的续航里程。为了获得高能量的要求,目前电池包采用数量较多的二次电池进行串并联组合。而随着电池包的能量密度越来越高,其热安全问题也越来越严重。电池包的安全直接影响着电动汽车与乘客的安全,因此,电池包的安全问题成为阻碍电动汽车进一步推广的一道阻力。如何有效解决电池包的安全问题成为亟待解决的技术问题。
发明内容
本申请第一方面提供一种电池包,其包括:
多个二次电池,各二次电池的壳体具有薄弱部,以使二次电池热失控产生的热流能冲破薄弱部而排出;
喷淋管路,对应二次电池的薄弱部、且与薄弱部相间隔设置,喷淋管路至少对应于薄弱部的部分为破口区域,破口区域能够受热流作用形成开口,喷淋管路中的喷淋介质通过开口喷射至热失控的异常二次电池;
其中,缓解异常二次电池的热失控蔓延所喷射的喷淋介质的重量A根 据式(1)确定,
Figure PCTCN2020107773-appb-000001
式(1)中,A表示以kg计的喷淋介质的重量;D表示喷淋介质以kJ/kg计的潜热;B表示二次电池以Ah计的容量。
可选的,
Figure PCTCN2020107773-appb-000002
可选的,
Figure PCTCN2020107773-appb-000003
在本申请第一方面的上述任意实施方式中,喷淋介质的潜热D可以为100kJ/kg以上。可选的,D为200kJ/kg~5000kJ/kg,还可选的为200kJ/kg~2000kJ/kg。
在本申请第一方面的上述任意实施方式中,喷淋管路的喷淋压力P可根据式(2)确定,
Figure PCTCN2020107773-appb-000004
式(2)中,P表示喷淋管路以kPa计的喷淋压力,B表示二次电池以Ah计的容量。
可选的,
Figure PCTCN2020107773-appb-000005
在本申请第一方面的上述任意实施方式中,喷淋管路的喷淋压力P可以为10kPa以上,可选的为12kPa~150kPa。
在本申请第一方面的上述任意实施方式中,所述喷淋管路的所述破口区域可正对所述二次电池的所述薄弱部设置。
在本申请第一方面的上述任意实施方式中,所述喷淋介质可选自消防气体、消防液、消防胶体和消防粉体中的一种或多种。可选的,所述喷淋介质选自水、乙二醇、液氮、液氩、液态二氧化碳、液态七氟丙烷和氟化酮中的一种或多种。
在本申请第一方面的上述任意实施方式中,电池包进一步可包括储蓄箱;喷淋管路与储蓄箱连接,且至少部分喷淋管路位于二次电池的上方; 或,喷淋管路包括并联设置的多个管路单元,各管路单元对应至少一个二次电池设置,各管路单元均与储蓄箱连接。
在本申请第一方面的上述任意实施方式中,所述储蓄箱可选的高于所述喷淋管路的所述破口区域设置。
在本申请第一方面的上述任意实施方式中,储蓄箱可包括:
箱体,箱体具有内腔;
分隔件,分隔件位于箱体的内腔,且分隔件将箱体分隔为储液部和储气部,其中,储液部与喷淋管路连通,储气部具有用于压缩气体流入的进口,分隔件能够在储气部中压缩气体的作用下驱动储液部中的喷淋介质进入喷淋管路。
在本申请第一方面的上述任意实施方式中,分隔件可以为弹性分隔膜,可选皮膜;或,分隔件为分隔板,分隔板与箱体的内壁可滑动连接。
在本申请第一方面的上述任意实施方式中,储蓄箱可包括:
箱体,箱体具有内腔;
驱动装置,设置于箱体的内腔,驱动装置包括弹性部件和驱动部件,弹性部件与驱动部件相连,驱动部件与储蓄箱的壁部围合形成储液部,储液部与喷淋管路连通;
其中,在弹性部件的弹力作用下,驱动部件能够驱动储液部中的喷淋介质进入喷淋管路。
在本申请第一方面的上述任意实施方式中,破口区域具有受热熔化部,以在由二次电池的薄弱部喷射的热流的作用下熔化而形成开口;或,破口区域具有应力集中部,以在由二次电池的薄弱部喷射的热流的冲击作用下破裂而形成开口。
在本申请第一方面的上述任意实施方式中,所述受热熔化部的熔点可以为200℃~500℃,可选的为300℃~500℃。
在本申请第一方面的上述任意实施方式中,所述薄弱部可以是设置于所述壳体上的防爆阀;或,所述薄弱部是通过在所述壳体上设置刻痕或厚度减薄区而形成的。
本申请第二方面提供一种车辆,其包括本申请第一方面的电池包。
本申请第三方面提供一种缓解电池包热失控蔓延的控制方法,其中电池包为本申请第一方面的电池包,方法包括:
二次电池热失控产生的热流冲破薄弱部,并作用于喷淋管路,使破口区域受热流作用形成开口;
喷淋介质经由开口向热失控的二次电池喷射,以缓解二次电池热失控蔓延。
本申请提供的电池包、车辆及缓解电池包热失控蔓延的控制方法中,二次电池发生热失控产生的热流能够冲破其壳体的薄弱部而排出,并作用于喷淋管路的破口区域。破口区域能够受热流作用而形成开口,使得喷淋管路中的喷淋介质通过开口喷射至热失控的异常二次电池。并且,向异常二次电池喷射的喷淋介质的重量满足式(1)。由此,喷淋介质能有效降低二次电池热失控产生的高温,且防止热量扩散至其它二次电池,从而使异常二次电池的热失控得到有效控制,同时有效缓解电池包内热失控的蔓延。因此,本申请的电池包具有较高的安全性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为根据本申请实施例的一种电池包的结构示意图,其中省去电池包的外包装及其它配件。
图2为图1的局部放大示意图。
图3为根据本申请实施例的另一种电池包的结构示意图,其中省去电池包的外包装及其它配件。
图4为根据本申请实施例的另一种电池包的结构示意图,其中省去电池包的外包装及其它配件。
图5为根据本申请实施例的一种储蓄箱的结构示意图。
图6为根据本申请实施例的另一种储蓄箱的结构示意图。
标号说明:
10、二次电池;11、薄弱部;
20、喷淋管路;21、破口区域;22、管路单元;
30、储蓄箱;31、箱体;31a、储液部;31b、储气部;32、分隔件;33、驱动装置;33a、弹性部件;33b、驱动部件;33c、限位部件;c1、第一限位臂;c2、第二限位臂;
40、分布器;41、连接口。
需要说明的是,附图未按照实际比例绘制。
具体实施方式
为了使本申请的发明目的、技术方案和有益技术效果更加清晰,以下结合实施例对本申请进行进一步详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本申请,并非为了限定本申请。
为了简便,本文仅明确地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因而,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
在本文的描述中,需要说明的是,除非另有说明,“若干”的含义是一个或者一个以上;“多个/种”的含义是两个/种以上;“以上”、“以下”为包括本数;术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本文的限制。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过 中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本文的描述中,除非另有说明,术语“或”是包括性的。也就是说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
本申请的上述发明内容并不意欲描述本申请中的每个公开的实施方式或每种实现方式。如下描述更具体地举例说明示例性实施方式。在整篇申请中的多处,通过一系列实施例提供了指导,这些实施例可以以各种组合形式使用。在各个实例中,列举仅作为代表性组,不应解释为穷举。
为了解决电池包的热安全问题,提高电池包的安全性能,本申请实施例提供一种电池包。请参照图1和图2,本申请实施例的电池包包含多个二次电池10和喷淋管路20。
每个二次电池10的壳体具有薄弱部11,以使二次电池10热失控产生的热流能冲破薄弱部11而排出。
喷淋管路20对应二次电池10的薄弱部11、且与薄弱部11相间隔设置。喷淋管路20至少对应于薄弱部11的部分为破口区域21,破口区域21能够受热流作用形成开口。喷淋管路20中的喷淋介质通过开口喷射至热失控的异常二次电池10。
在电池包中,缓解异常二次电池10的热失控蔓延所喷射的喷淋介质的重量A根据式(1)确定,
Figure PCTCN2020107773-appb-000006
式(1)中,A表示以kg计的喷淋介质的重量;D表示喷淋介质以kJ/kg计的潜热;B表示二次电池以Ah计的容量。
式(1)中仅涉及数值的计算。例如,喷淋介质的重量A为0.27kg,喷淋介质的潜热D为2000kJ/kg,二次电池的容量B为180Ah,即,
Figure PCTCN2020107773-appb-000007
本申请实施例的电池包,二次电池10发生热失控产生的热流能够冲破其壳体的薄弱部11而排出,并作用于喷淋管路20的破口区域21。破口区域21能够受热流作用而形成开口,使得喷淋管路20中的喷淋介质通过开口喷射至热失控的异常二次电池10。并且,向异常二次电池10喷射的喷淋介质的重量满足式(1)。由此,喷淋介质能有效降低二次电池10热失控产生的高温,且防止热量扩散至其它二次电池10,从而使异常二次电池10的热失控得到有效控制,同时有效缓解热失控在电池包中的蔓延。因此,本申请实施例的电池包具有较高的安全性能。
可选的,
Figure PCTCN2020107773-appb-000008
可选的,
Figure PCTCN2020107773-appb-000009
此外,本申请实施例的电池包中,是由二次电池10热失控排出的热流触发喷淋管路20进行喷射。该电池包对二次电池10热失控的响应快速且准确。以及,该电池包可以无需设置热失控监测装置和喷淋控制装置,因此其结构简单,尤其是使得电池包的重量和体积均较小,有利于使其具有较高的重量能量密度和体积能量密度。
本申请对二次电池10的类型没有特别的限制,其中的正、负极活性材料和电解液等均可以采用本领域已知的材料。二次电池10通常是将电极组件和电解液封装于壳体中。在二次电池10的壳体中,薄弱部11可以是设置于壳体上的防爆阀。或者,可以是在二次电池10的壳体上设置刻痕或厚度减薄区形成薄弱部11。
热失控发生时,二次电池10内的各种材料发生热分解、甚至燃烧等反应,使其内部的温度和压力急剧升高。当二次电池10内的压力达到一定限度时,高温高压的混合流体会冲破壳体的薄弱部11,降低壳体内的压力,起到防爆作用。也就是,热流为二次电池10发生热失控时经由薄弱部11喷出的高温高压的混合流体。该混合流体包含高温高压的气体和液体,其中液体主要为电解液。
喷淋管路20的破口区域21与二次电池10的薄弱部11对应设置,以使二次电池10热失控喷射的热流能直接作用于破口区域21而形成开口。 此外,这样使得喷淋管路20对应热流的流出源头喷射喷淋介质,能更有效地降低热流的扩散,从而提高热失控及其蔓延的控制效率。尤其是,破口区域21与薄弱部11对应设置还使得喷淋介质能流入二次电池10的壳体内部。这能抑制壳体内部材料的进一步热分解、燃烧等反应,控制热流的继续产生,从而更进一步地提高热失控及其蔓延的控制效率。
在一些实施例中,喷淋管路20的破口区域21正对二次电池10的薄弱部11设置。例如,二次电池10的壳体顶部安装有防爆阀,喷淋管路20的破口区域21位于防爆阀的正上方、且与防爆阀彼此相间隔。
可以有多种方式在喷淋管路20设置破口区域21。作为一个示例,可以是喷淋管路20至少对应(或正对)于薄弱部11的部分具有受热熔化部。受热熔化部的熔点小于喷淋管路20其它区域的熔点,且在二次电池10喷射的热流的高温作用下,受热熔化部能被熔化而形成开口,实现喷射。例如,二次电池10热失控喷射的热流温度可达到500℃以上,如600℃。受热熔化部的熔点小于热流温度,以使其在热流的高温作用下能被熔化。受热熔化部的熔点可以为200℃~500℃,如300℃~500℃。喷淋管路20其它区域的熔点大于热流温度,以使其能为喷淋介质提供流向热失控二次电池10处的流动通道,进行定位喷射。
作为另一个示例,可以使喷淋管路20至少对应(或正对)于薄弱部11的部分具有应力集中部。由二次电池10的薄弱部11喷射的热流压力较大,在热流的高压冲击作用下,应力集中部因强度较低且应力聚集而发生破裂,从而形成开口,实现喷射。喷淋管路20其它区域具有足够的强度而不被损害。
可见,在电池包正常工作状态下,喷淋管路20的结构完整,将喷淋介质储存于其内部。在充放电循环过程中,二次电池10内部会发生复杂的化学反应,且其一般具有一定的内阻,使得二次电池10在正常工作过程中会产生热量。此时,储存于喷淋管路20中的喷淋介质还可以起到对二次电池10的降温作用,有利于提高二次电池10的循环寿命。当有二次电池10发生热失控而喷射出热流时,热流使得喷淋管路20产生开口。由该开口向热失控的二次电池10喷射重量为A的喷淋介质,实现热失控及其蔓延的有效 控制。
喷淋介质可以是本领域已知的能用于控制电池热失控的材料。例如,喷淋介质可以选自消防气体、消防液、消防胶体、消防粉体等。作为具体的示例,喷淋介质可以选自水、乙二醇、液氮、液氩、液态二氧化碳、液态七氟丙烷、氟化酮中的一种或多种。
在一些实施例中,喷淋介质的潜热D可以为100kJ/kg以上,200kJ/kg以上,500kJ/kg以上,1000kJ/kg以上,1500kJ/kg以上,或2000kJ/kg以上。喷淋介质的潜热较大,其能吸收较多的热量,从而能快速降低热失控二次电池10及其释放的热流的温度,使电池包热失控蔓延缓解效果得到提高。并且,在二次电池10热失控所释放的热量一定的情况下,喷淋介质的潜热越大,所需要的喷淋介质的用量也就越少。这有利于降低整个系统的重量。
在一些实施例中,喷淋介质的潜热D可以为5000kJ/kg以下,4500kJ/kg以下,4000kJ/kg以下,3500kJ/kg以下,或3000kJ/kg以下。这样,满足式(1)的喷淋介质的重量A适当,使得缓解热失控蔓延所喷射的喷淋介质的体积适当,能充分地作用于热失控的二次电池10及其释放的热流,从而有效控制二次电池10热失控和热失控蔓延。
可以有多种方式实现由喷淋管路20向热失控的异常二次电池10喷射重量A的喷淋介质。
在一些实施例中,请参照图3,喷淋管路20可以为至少部分对应于电池包内所有二次电池10的连续性管路。管路内可以封装有大于或等于重量A的喷淋介质。当电池包内的某一个二次电池10发生热失控时,热流使喷淋管路20对应该二次电池10的破口区域11产生开口,管路内的喷淋介质由开口喷射至该二次电池10,实现对热失控和热失控蔓延的有效控制。
在另一些实施例中,请参照图4,喷淋管路20可以包括多个管路单元22,每个管路单元22对应于电池包内至少一个电池单元设置,且可以在每个管路单元22内可以封装有大于或等于重量A的喷淋介质。每个电池单元可以包括一个以上的二次电池10。
例如,电池包可以包括沿电池包的宽度方向排列的多个电池单元,每 个电池单元可以包括沿电池包的长度方向排列的多个二次电池10。可以对应每个电池单元分别设置有一个管路单元22。
当任意一个电池单元中的某个二次电池10发生热失控时,对应该电池单元的管路单元22的破口区域11在热流作用下产生开口,使该管路单元22内的喷淋介质喷射至热失控的二次电池10,实现对二次电池10热失控和热失控蔓延的有效控制。由于对应每个电池单元各设置有装有喷淋介质的管路单元22,因此当不同的几个电池单元中的二次电池10发生热失控时,都能由与其对应的管路单元22独立且快速地向它们喷射满足重量A的喷淋介质,进行定位喷射。电池包内热失控和热失控蔓延的控制效率得到进一步提高。
在一些实施例中,电池包还可以包括储蓄箱30。
若喷淋管路20为对应于电池包内所有二次电池10的连续性管路,储蓄箱30可以与连续性管路的任意一端或两端连通。并且,可以是一个储蓄箱30与连续性管路的两端分别连通;或者,可以是两个储蓄箱30中的一者与连续性管路的一端连通,另一者与连续性管路的另一端连通。进一步地,喷淋管路20可以是至少部分位于二次电池10的上方。
若喷淋管路20包括多个管路单元22,储蓄箱30可以与每个管路单元22的任意一端或两端连通。例如,可以是有多个储蓄箱30,每个储蓄箱30独立地与至少一个管路单元22的任意一端或两端连通。或者,储蓄箱30可以有一个,多个管路单元22中的每个管路单元22的任意一端或两端均与该储蓄箱30连接。即,喷淋管路20中的多个管路单元22并联设置。
可选地,电池包可以包括分布器40。分布器40具有多个介质出口(图中未示出),其可以通过该多个介质出口分别与多个管路单元22连通。例如图4所示,两个分布器40分设于多个管路单元22的两端,且其中一个分布器40与该多个管路单元22的一端连通,另一个分布器40与该多个管路单元22的另一端连通。分布器40的连接口41与储蓄箱30连通。分布器40设置于储蓄箱30和喷淋管路20之间,用于将储蓄箱30中的喷淋介质分流至不同的管路单元22中。
电池包中的储蓄箱30可以储存喷淋介质,且储蓄箱30与喷淋管路20 连通。当喷淋管路20向热失控的二次电池10喷射喷淋介质时,储蓄箱30可以向喷淋管路20提供喷淋介质,满足控制热失控的喷淋介质用量需求。也就是,大于或等于重量A的喷淋介质被储存于喷淋管路20和储蓄箱30中。并且,将部分喷淋介质储存于储蓄箱30可以减小喷淋管路20的体积和重量,从而可以减小整个系统的体积和重量。
由于二次电池10发生热失控时会产生大量的高温流体,致使二次电池10的壳体内部压力急剧增大。本发明人研究发现,通过使喷淋管路20的开口向热失控二次电池10进行喷射的喷淋压力P满足以下关系式(2),能有效克服喷淋介质在喷淋管路20内输送的阻力以及高温流体的压力,从而实现将喷淋介质更加及时、高效地喷射至热失控二次电池10。由此,电池包内二次电池10的热失控及热失控蔓延的控制效率能得到进一步提高。
Figure PCTCN2020107773-appb-000010
式(2)中,P表示喷淋管路20以kPa计的喷淋压力,B表示二次电池10以Ah计的容量。
可选的,
Figure PCTCN2020107773-appb-000011
同样地,式(2)仅涉及数值的计算。例如,喷淋管路20的喷淋压力P为120kPa,二次电池10的容量为180Ah,满足:
Figure PCTCN2020107773-appb-000012
在一些实施例中,喷淋管路20的喷淋压力P可以为10kPa以上,12kPa以上,20kPa以上,30kPa以上,或50kPa以上。这有利于对二次电池10的热失控及其蔓延进行更加有效地控制。喷淋管路20的喷淋压力P可以为150kPa以下,120kPa以下,100kPa以下,或80kPa以下。这能防止因喷淋压力过大而对二次电池10的壳体造成的破损等损害,以免高温高压流体迅速向周围扩散,这有利于缓解电池包内的热失控蔓延。
可以有多种方式实现由喷淋管路20的开口向热失控二次电池10进行喷射的喷淋压力为P。
在一些实施例中,电池包包括储蓄箱30,储蓄箱30与开口之间具有 高度差。具体来说,储蓄箱30的位置高于喷淋管路20的开口。这样,喷淋管路20形成开口进行喷射时,储蓄箱30内的喷淋介质由于高度差而对喷淋管路20内的喷淋介质施加压力,使得喷淋管路20的喷淋压力达到P。
在另一些实施例中,请参照图5,储蓄箱30包括具有内腔的箱体31,在箱体内设置有分隔件32,且该分隔件32将箱体31分隔为储液部31a和储气部31b。其中,储液部31a与喷淋管路20连通。储气部31b具有用于压缩气体流入的进口,以向储气部31b填充气体。分隔件32能够在储气部31b中压缩气体的作用下驱动储液部31a中的喷淋介质进入喷淋管路20。
在电池包正常工作状态下,喷淋介质储存于储液部31a和喷淋管路20。此时,储液部31a中的喷淋介质对分隔件32的作用力与储气部31b中的压缩气体对分隔件32的作用力相平衡。而当有二次电池10发生热失控时,喷淋管路20在热流作用下产生开口,并由该开口向热失控的二次电池10喷射喷淋介质。此时,储液部31a中的喷淋介质对分隔件32的作用力减小,在储气部31b中的压缩气体通过分隔件32向对侧的喷淋介质施加驱动力,由此使得喷淋管路20的喷淋压力达到P。必要时,还可以通过储气部31b的进口向储气部31b补充气体,以保证储气部31b内压缩气体具有足够的压力,从而满足喷淋管路20喷射喷淋介质的重量A和喷淋压力P的需求。
可选地,分隔件32可以为弹性分隔膜。喷淋管路20进行喷射时,储液部31a中的喷淋介质对弹性分隔膜的作用力减小,使得弹性分隔膜在储气部31b中的压缩气体的作用下膨胀,从而使压缩气体对喷淋介质施加压力。作为示例,弹性分隔膜可以为皮膜,如EPDM(Ethylene Propylene Diene Monomer,三元乙丙橡胶)皮膜。
可选地,分隔件32还可以为分隔板,分隔板与箱体31的内壁可滑动连接。由此,当喷淋管路20进行喷射时,储液部31a中的喷淋介质对分隔板的作用力减小,在储气部31b中的压缩气体的作用下,分隔板能朝向储液部31a的流体出口方向运动。这样,压缩气体能通过分隔板对喷淋介质施加压力。
进一步地,在分隔板的外周壁与箱体31的内壁之间还可以设置有滑动 密封件。通过设置滑动密封件,使得分隔板能够相对于箱体31的内壁运动的同时,还能保持良好的密封作用,减小喷淋介质和/或压缩气体从分隔板的外周壁与箱体31的内壁之间流通的风险,从而提高分隔板运动的灵敏性。例如,滑动密封件可以为填料密封等结构。
在另一些实施例中,请参照图6,储蓄箱30包括具有内腔的箱体31,在箱体内还设置有驱动装置33。该驱动装置33包括弹性部件33a和驱动部件33b,弹性部件33a与驱动部件33b相连,驱动部件33b与箱体31的壁部围合形成储液部31a,储液部31a与喷淋管路20连通。其中,驱动部件33b能够在弹性部件33a的弹力作用下驱动储液部31a中的喷淋介质进入喷淋管路20。
在电池包正常工作状态下,喷淋介质储存于储液部31a和喷淋管路20。此时,储液部31a中的喷淋介质对驱动部件33b的作用力与弹性部件33a对驱动部件33b的压力相平衡。而当有二次电池10发生热失控时,喷淋管路20在热流作用下产生开口,并由该开口向热失控的二次电池10喷射喷淋介质。此时,储液部31a中的喷淋介质对驱动部件33b的作用力减小,弹性部件33a通过驱动部件33b向对侧的喷淋介质施加驱动力,由此使得喷淋管路20的喷淋压力达到P。
可以根据实际需求选择具有适当的弹力的弹性部件33a,以保证其能向喷淋介质提供足够的压力,从而满足开口处喷淋介质的喷淋量和喷淋压力的需求。例如,弹性部件33a可以选自弹簧、弹性橡胶等。
驱动部件33b可以是驱动板。驱动板与箱体31的内壁可滑动连接。进一步地,在驱动板的外周壁与箱体31的内壁之间还可以设置有滑动密封件。滑动密封件的作用及种类可以如前文所述。
作为一个示例,弹性部件33a的一端与箱体31的内壁连接,可以是抵触连接或固定连接。弹性部件33a的另一端与驱动部件33b连接。喷淋管路20未进行喷射时,储液部31a内的喷淋介质通过驱动部件33b压缩弹性部件33a,驱动系统处于平衡稳定状态。喷淋管路20进行喷射喷淋介质时,储液部31a内的喷淋介质对驱动部件33b的作用力减小,弹性部件33a的弹性回复力通过驱动部件33b作用于喷淋介质,从而使得喷淋管路20的 喷淋压力达到P。
作为另一个示例,弹性部件33a的两端分别连接有驱动部件33b。两个驱动部件33b分别与箱体31的内壁围合形成两个储液部31b。该两个储液部31b各自设置有流体出口,可以分别与喷淋管路20的一个端口连接。例如,该两个储液部31b分别与上述连续性管路的两端连接;或者,该两个储液部31b分别与上述管路单元22的两端连接。即,喷淋介质能够从连续性管路或管路单元22的两端进入,并从开口实现喷射。这样可以增大喷射喷淋介质的重量A和压力P,提高控制热失控和热失控蔓延的效果。
进一步地,在弹性部件33a两端的驱动部件33b之间还可以设置有限位部件33c。喷淋管路20未进行喷射喷淋介质时,限位部件33c可以加强驱动系统的平衡稳定性;喷淋管路20进行喷射喷淋介质时,限位部件33c在弹性部件33a的弹力作用下解除限位作用,使弹性部件33a向喷淋介质施加驱动力。
作为示例,限位部件33c包括连接于两个驱动部件33b中的一者的第一限位臂c1、以及连接于两个驱动部件33b中的另一者的第二限位臂c2。喷淋管路20未进行喷射时,第一限位臂c1和第二限位臂c2相粘接,由此,限位部件33c发挥限位作用,以加强驱动系统的平衡稳定性。喷淋管路20进行喷射时,在弹性部件33a的弹力作用下,第一限位臂c1和第二限位臂c2的粘连作用解除,从而解除限位作用,使弹性部件33a向喷淋介质施加驱动力。可以通过胶水、胶条等实现第一限位臂c1和第二限位臂c2的粘接。
限位部件33c可以是设置于弹性部件33a外周侧的一个或多个,如均匀分布于弹性部件33a外周侧的两个或三个。
本申请实施例还提供一种车辆。该车辆包括本申请实施例的任意一种电池包。
可以理解的是,车辆可以但不限于是混合动力汽车、纯电动汽车等。在一些实施例中,车辆可包括动力源,该动力源向车辆提供动力,电池包被配置为向动力源供电。
本申请实施例的车辆由于采用了本申请实施例的电池包,因而也能具 有相应的有益效果,其中车辆具有较高的安全性能。当车辆的电池包中有二次电池发生热失控时,由于电池包的热失控蔓延能得到有效缓解,这大大延长了车内人员的逃生时间,从而更大程度上保障人员的安全。
本申请实施例还提供一种缓解电池包热失控蔓延的控制方法,其中电池包为本申请实施例的任意一种电池包。本申请实施例缓解电池包热失控蔓延的控制方法包括:
S10,二次电池热失控产生的热流冲破薄弱部,并作用于喷淋管路,使喷淋管路的破口区域受热流作用形成开口。
S20,喷淋介质经由开口向热失控的异常二次电池喷射,以缓解二次电池热失控蔓延。其中,缓解异常二次电池的热失控蔓延所喷射的喷淋介质的重量A是根据上述式(1)确定的。
本申请实施例的缓解电池包热失控蔓延的控制方法,二次电池发生热失控产生的热流能够冲破其壳体的薄弱部而排出,并作用于喷淋管路的破口区域。破口区域受热流作用而形成开口,使得喷淋管路中的喷淋介质通过开口喷射至热失控的异常二次电池。并且,向异常二次电池喷射的喷淋介质的重量满足式(1)。由此,喷淋介质能有效降低二次电池热失控产生的高温,且防止热量扩散至其它二次电池,从而使异常二次电池的热失控得到有效控制,同时有效缓解热失控在电池包中的蔓延。因此,采用本申请实施例的缓解电池包热失控蔓延的控制方法,能使电池包具有较高的安全性能。
此外,本申请实施例的缓解电池包热失控蔓延的控制方法中,是由二次电池热失控排出的热流触发喷淋管路进行喷射。该方法对二次电池热失控的响应快速且准确。以及,采用该方法可以无需在电池包设置热失控监测装置和喷淋控制装置,由此使电池包的结构简单,尤其是使得电池包的重量和体积均较小,有利于使电池包具有较高的重量能量密度和体积能量密度。
本文中,对本申请实施例的电池包所描述的其他细节也可以适用于本申请的方法中,在此不再赘述。
实施例
下述实施例更具体地描述了本申请公开的内容,这些实施例仅仅用于阐述性说明,因为在本申请公开内容的范围内进行各种修改和变化对本领域技术人员来说是明显的。除非另有声明,实施例中使用的所有试剂都可商购获得或是按照常规方法进行合成获得,并且可直接使用而无需进一步处理,以及实施例中使用的仪器均可商购获得。
实施例1
电池包为图1所示,其包含多个锂离子二次电池、位于该多个二次电池上方且与二次电池相间隔设置的喷淋管路、以及与喷淋管路连接的储蓄箱。每个二次电池的壳体具有薄弱部,以使二次电池热失控产生的热流能冲破薄弱部而排出。喷淋管路正对锂离子二次电池的薄弱部的部分为破口区域,该破口区域能够受热流作用能够形成开口。储蓄箱的结构如图5所示,储蓄箱包括具有内腔的箱体及位于箱体内腔的分隔板,且分隔板将箱体分隔为储液部和储气部。储液部与喷淋管路连通,储液部和喷淋管路中具有喷淋液。储气部内具有压缩气体。分隔板能够在储气部中压缩气体的作用下驱动储液部中的喷淋液进入喷淋管路。其中,二次电池的容量B为180Ah;喷淋液的潜热D为2000kJ/kg;喷淋管路喷射的喷淋液的重量A为0.27kg。
使电池包中的一个二次电池发生热失控,例如通过对二次电池进行过充、针刺或加热等手段使其热失控。二次电池热失控产生的热流冲破薄弱部并作用于喷淋管路。破口区域受热流作用形成开口。喷淋液经由开口向热失控的二次电池喷射,以对二次电池的热失控及热失控蔓延进行控制。
测试10个电池包,记录热失控蔓延控制成功率。
热失控蔓延控制成功率=未发生热失控蔓延的电池包数量/测试的电池包总数量×100%
实施例2~19及对比例1~5
与实施例类似,不同的是,调整电池包的相关参数,详见表1。
表1
Figure PCTCN2020107773-appb-000013
注:表1中,
Figure PCTCN2020107773-appb-000014
由表1的结果可知,本申请的电池包中通过设置喷淋管路,且喷淋管路对应二次电池的壳体的薄弱部具有破口区域,该破口区域能够受二次电池热失控产生的热流作用而形成开口,使得喷淋管路中的喷淋介质通过开口喷射至热失控的异常二次电池。并且,向异常二次电池喷射的喷淋介质的重量满足式(1)。由此,喷淋介质能有效降低二次电池热失控产生的高温,且防止热量扩散至其它二次电池,从而使异常二次电池的热失控得到有效控制,同时有效缓解电池包内热失控的蔓延。因此,本申请的电池包具有较高的安全性能。
而对比例中的电池包向异常二次电池喷射的喷淋介质的重量不能满足式(1),当电池包中的二次电池发生热失控时,无法控制该二次电池的热失控,导致电池包内发生热失控蔓延,存在严重的安全隐患。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种电池包,包括:
    多个二次电池,各所述二次电池的壳体具有薄弱部,以使所述二次电池热失控产生的热流能冲破所述薄弱部而排出;
    喷淋管路,对应所述二次电池的所述薄弱部、且与所述薄弱部相间隔设置,所述喷淋管路至少对应于所述薄弱部的部分为破口区域,所述破口区域能够受所述热流作用形成开口,所述喷淋管路中的喷淋介质通过所述开口喷射至热失控的异常二次电池;
    其中,缓解所述异常二次电池的热失控蔓延所喷射的喷淋介质的重量A根据式(1)确定,
    Figure PCTCN2020107773-appb-100001
    所述式(1)中,A表示以kg计的喷淋介质的重量;D表示所述喷淋介质以kJ/kg计的潜热;B表示二次电池以Ah计的容量。
  2. 根据权利要求1所述的电池包,其中,
    Figure PCTCN2020107773-appb-100002
    可选的,
    Figure PCTCN2020107773-appb-100003
  3. 根据权利要求1或2所述的电池包,其中,所述喷淋介质的潜热D为100kJ/kg以上,可选的为200kJ/kg~5000kJ/kg,还可选的为200kJ/kg~2000kJ/kg。
  4. 根据权利要求1-3任一项所述的电池包,其中,所述喷淋管路的喷淋压力P根据式(2)确定,
    Figure PCTCN2020107773-appb-100004
    所述式(2)中,P表示所述喷淋管路以kPa计的喷淋压力,B表示二次电池以Ah计的容量。
  5. 根据权利要求4所述的电池包,其中,
    Figure PCTCN2020107773-appb-100005
  6. 根据权利要求1-5任一项所述的电池包,其中,所述喷淋管路的喷淋压力P为10kPa以上,可选的为12kPa~150kPa。
  7. 根据权利要求1-6任一项所述的电池包,其中,所述喷淋管路的所述破口区域正对所述二次电池的所述薄弱部设置。
  8. 根据权利要求1-7任一项所述的电池包,其中,所述喷淋介质选自消防气体、消防液、消防胶体和消防粉体中的一种或多种;可选的,所述喷淋介质选自水、乙二醇、液氮、液氩、液态二氧化碳、液态七氟丙烷和氟化酮中的一种或多种。
  9. 根据权利要求1-8任一项所述的电池包,其中,进一步包括储蓄箱;
    所述喷淋管路与所述储蓄箱连接,且至少部分所述喷淋管路位于所述二次电池的上方;或,
    所述喷淋管路包括并联设置的多个管路单元,各所述管路单元对应至少一个所述二次电池设置,各所述管路单元均与所述储蓄箱连接。
  10. 根据权利要求9所述的电池包,其中,所述储蓄箱高于所述喷淋管路的所述破口区域设置。
  11. 根据权利要求9所述的电池包,其中,所述储蓄箱包括:
    箱体,所述箱体具有内腔;
    分隔件,所述分隔件位于所述箱体的内腔,且所述分隔件将所述箱体分隔为储液部和储气部,其中,所述储液部与所述喷淋管路连通,所述储气部具有用于压缩气体流入的进口,所述分隔件能够在所述储气部中压缩气体的作用下驱动所述储液部中的喷淋介质进入所述喷淋管路。
  12. 根据权利要求11所述的电池包,其中,
    所述分隔件为弹性分隔膜,可选的为皮膜;或,
    所述分隔件为分隔板,所述分隔板与所述箱体的内壁可滑动连接。
  13. 根据权利要求9所述的电池包,其中,所述储蓄箱包括:
    箱体,所述箱体具有内腔;
    驱动装置,设置于所述箱体的所述内腔,所述驱动装置包括弹性部件和驱动部件,所述弹性部件与所述驱动部件相连,所述驱动部件与所述储蓄箱的壁部围合形成储液部,所述储液部与所述喷淋管路连通;
    其中,在所述弹性部件的弹力作用下,所述驱动部件能够驱动所述储液部中的喷淋介质进入所述喷淋管路。
  14. 根据权利要求1-13任一项所述的电池包,其中,
    所述破口区域具有受热熔化部,以在由所述二次电池的所述薄弱部喷射的热流的作用下熔化而形成所述开口;或,
    所述破口区域具有应力集中部,以在由所述二次电池的所述薄弱部喷射的热流的冲击作用下破裂而形成所述开口。
  15. 根据权利要求14所述的电池包,其中,所述受热熔化部的熔点为200℃~500℃,可选的为300℃~500℃。
  16. 根据权利要求1-15任一项所述的电池包,其中,所述薄弱部是设置于所述壳体上的防爆阀;或,
    所述薄弱部是通过在所述壳体上设置刻痕或厚度减薄区而形成的。
  17. 一种车辆,包括如权利要求1-16任一项所述的电池包。
  18. 一种缓解电池包热失控蔓延的控制方法,所述电池包为如权利要求1-16任一项所述的电池包,所述方法包括:
    所述二次电池热失控产生的热流冲破所述薄弱部,并作用于所述喷淋管路,使所述破口区域受所述热流作用形成所述开口;
    所述喷淋介质经由所述开口向热失控的二次电池喷射,以缓解所述二次电池热失控蔓延。
PCT/CN2020/107773 2019-09-26 2020-08-07 电池包、车辆及缓解电池包热失控蔓延的控制方法 WO2021057280A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20869350.7A EP3913732B1 (en) 2019-09-26 2020-08-07 Battery pack, vehicle, and control method for mitigating spread of thermal runaway of battery pack
JP2021551826A JP7289361B2 (ja) 2019-09-26 2020-08-07 電池パック、車両及び電池パックの熱暴走の拡散を緩和する制御方法
US17/540,262 US11646465B2 (en) 2019-09-26 2021-12-02 Battery pack, vehicle and control method for alleviating spreading of thermal runaway of battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910914629.XA CN112331990B (zh) 2019-09-26 2019-09-26 电池包、车辆及缓解电池包热失控蔓延的控制方法
CN201910914629.X 2019-09-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/540,262 Continuation US11646465B2 (en) 2019-09-26 2021-12-02 Battery pack, vehicle and control method for alleviating spreading of thermal runaway of battery pack

Publications (1)

Publication Number Publication Date
WO2021057280A1 true WO2021057280A1 (zh) 2021-04-01

Family

ID=74319264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107773 WO2021057280A1 (zh) 2019-09-26 2020-08-07 电池包、车辆及缓解电池包热失控蔓延的控制方法

Country Status (6)

Country Link
US (1) US11646465B2 (zh)
EP (1) EP3913732B1 (zh)
JP (1) JP7289361B2 (zh)
CN (1) CN112331990B (zh)
HU (1) HUE062849T2 (zh)
WO (1) WO2021057280A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230033063A (ko) * 2021-08-26 2023-03-08 전지혜 냉각 및 소화기능을 갖는 배터리팩 장치
KR20230056184A (ko) * 2021-10-20 2023-04-27 엘티정밀 주식회사 배터리용 냉각장치
EP4175017A3 (en) * 2021-10-05 2023-11-01 Samsung SDI Co., Ltd. Cell cooling cover for a battery module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140827A (zh) * 2021-04-19 2021-07-20 胡定灏 动力电池冷却液共轨技术
CN115911743B (zh) * 2021-08-18 2023-12-15 宁德时代新能源科技股份有限公司 电池以及用电装置
WO2024065202A1 (zh) * 2022-09-27 2024-04-04 宁德时代新能源科技股份有限公司 热失控实验装置及其使用方法
CN115472964B (zh) * 2022-11-14 2023-03-24 中创新航科技股份有限公司 一种电池包及用电设备
CN116505185B (zh) * 2023-06-27 2023-10-03 楚能新能源股份有限公司 浸默阀总成和具有其的浸默式二次电池装置
CN117913445B (zh) * 2024-03-19 2024-05-17 常州市成渊汽车零部件有限公司 一种电池包防护装置及其工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035229A (ja) * 1998-07-17 2000-02-02 Taisei Corp 躯体蓄熱を利用した空調システム
JP2014192028A (ja) * 2013-03-27 2014-10-06 Primearth Ev Energy Co Ltd 電池システム
CN104882639A (zh) * 2015-04-28 2015-09-02 湖北长海新能源科技有限公司 抑制和阻止锂离子电池热失控方法及装置
CN106684499A (zh) * 2017-01-09 2017-05-17 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) 一种抑制和阻止锂离子电池热失控方法及装置
US20170179551A1 (en) * 2015-12-18 2017-06-22 Hamilton Sundstrand Corporation Thermal management for electrical storage devices
CN209104233U (zh) * 2018-12-28 2019-07-12 宁德时代新能源科技股份有限公司 一种电池包的喷淋管路组件及电池包
CN110013626A (zh) * 2019-04-01 2019-07-16 北京工业大学 一种车载锂离子电池包分级式灭火系统及其控制策略

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433794B1 (en) * 2007-07-18 2008-10-07 Tesla Motors, Inc. Mitigation of propagation of thermal runaway in a multi-cell battery pack
JP2009037934A (ja) * 2007-08-02 2009-02-19 Sanyo Electric Co Ltd 車両用の電源装置
US9093726B2 (en) * 2009-09-12 2015-07-28 Tesla Motors, Inc. Active thermal runaway mitigation system for use within a battery pack
US9490507B2 (en) * 2012-05-22 2016-11-08 Lawrence Livermore National Security, Llc Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections
KR101489837B1 (ko) * 2012-11-19 2015-02-04 자동차부품연구원 리튬이온 배터리 화재 방지 장치 및 방법
US9806310B1 (en) * 2014-04-04 2017-10-31 Olaeris, Inc. Battery failure venting system
US9620830B2 (en) * 2014-12-16 2017-04-11 Xinen Technology Hong Kong Company, Ltd. Vehicle battery module with cooling and safety features
CN106785182B (zh) 2015-11-23 2019-06-11 宁德时代新能源科技股份有限公司 电池包
JP2017147128A (ja) * 2016-02-17 2017-08-24 三菱重工業株式会社 電池モジュール、および、電池システム
DE102016115627A1 (de) * 2016-08-23 2018-03-01 Benteler Automobiltechnik Gmbh Batterieträger mit Kühlsystem
EP3333932B1 (en) * 2016-12-06 2019-02-13 Samsung SDI Co., Ltd. Battery system
CN108237927A (zh) * 2016-12-25 2018-07-03 谷涛 一种电动汽车及配套的多功能充电桩
CN106816668A (zh) * 2017-03-22 2017-06-09 北京航盛新能科技有限公司 一种动力电池热失控降温灭火液冷装置、监控系统及方法
CN109103539A (zh) * 2017-06-20 2018-12-28 苏州科易新动力科技有限公司 一种抑制电芯热失控的装置及方法
CN107398049B (zh) * 2017-06-22 2020-11-20 哲弗智能系统(上海)有限公司 一种使用混合灭火剂的车载电池灭火结构
JP2019029245A (ja) * 2017-08-01 2019-02-21 株式会社Gsユアサ 蓄電装置
CN107658512A (zh) * 2017-10-13 2018-02-02 重庆聚陆新能源有限公司 一种灌液式消防的电池模组仓储与充放电箱体系统
KR102394801B1 (ko) * 2017-10-20 2022-05-04 현대자동차주식회사 차량용 배터리 냉각 장치
CN108075084A (zh) * 2018-01-17 2018-05-25 华霆(合肥)动力技术有限公司 电池模组、灭火装置及支撑结构
CN208835139U (zh) * 2018-09-30 2019-05-07 吉林大学 一种新型纯电动汽车动力锂电池箱体
CN208908248U (zh) * 2018-10-17 2019-05-28 浙江大学 一种动力电池的热失控处理系统
CN109244594A (zh) * 2018-10-17 2019-01-18 浙江大学 一种动力电池热管理系统及动力电池热管理方法
CN113521599A (zh) * 2018-12-28 2021-10-22 宁德时代新能源科技股份有限公司 一种电池包
CN209490404U (zh) * 2018-12-28 2019-10-15 宁德时代新能源科技股份有限公司 一种电池包的消防流体储存装置
CN209434244U (zh) * 2019-01-04 2019-09-24 蜂巢能源科技有限公司 电池包、电池及电动汽车
US11749851B2 (en) * 2019-03-20 2023-09-05 Hamilton Sundstrand Corporation Thermal regulation of batteries
JP2022529607A (ja) * 2019-04-16 2022-06-23 ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ,アズ リプレゼンテッド バイ ザ セクレタリー オブ ザ ネイビー 二相発熱急冷

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000035229A (ja) * 1998-07-17 2000-02-02 Taisei Corp 躯体蓄熱を利用した空調システム
JP2014192028A (ja) * 2013-03-27 2014-10-06 Primearth Ev Energy Co Ltd 電池システム
CN104882639A (zh) * 2015-04-28 2015-09-02 湖北长海新能源科技有限公司 抑制和阻止锂离子电池热失控方法及装置
US20170179551A1 (en) * 2015-12-18 2017-06-22 Hamilton Sundstrand Corporation Thermal management for electrical storage devices
CN106684499A (zh) * 2017-01-09 2017-05-17 武汉船用电力推进装置研究所(中国船舶重工集团公司第七二研究所) 一种抑制和阻止锂离子电池热失控方法及装置
CN209104233U (zh) * 2018-12-28 2019-07-12 宁德时代新能源科技股份有限公司 一种电池包的喷淋管路组件及电池包
CN110013626A (zh) * 2019-04-01 2019-07-16 北京工业大学 一种车载锂离子电池包分级式灭火系统及其控制策略

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3913732A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230033063A (ko) * 2021-08-26 2023-03-08 전지혜 냉각 및 소화기능을 갖는 배터리팩 장치
KR102649109B1 (ko) * 2021-08-26 2024-03-20 전지혜 냉각 및 소화기능을 갖는 배터리팩 장치
EP4175017A3 (en) * 2021-10-05 2023-11-01 Samsung SDI Co., Ltd. Cell cooling cover for a battery module
KR20230056184A (ko) * 2021-10-20 2023-04-27 엘티정밀 주식회사 배터리용 냉각장치
KR102638722B1 (ko) 2021-10-20 2024-02-20 엘티정밀(주) 배터리용 냉각장치

Also Published As

Publication number Publication date
CN112331990A (zh) 2021-02-05
EP3913732A1 (en) 2021-11-24
CN112331990B (zh) 2021-09-14
JP2022536440A (ja) 2022-08-17
EP3913732B1 (en) 2023-07-26
HUE062849T2 (hu) 2023-12-28
US11646465B2 (en) 2023-05-09
US20220209333A1 (en) 2022-06-30
EP3913732A4 (en) 2022-05-11
JP7289361B2 (ja) 2023-06-09

Similar Documents

Publication Publication Date Title
WO2021057280A1 (zh) 电池包、车辆及缓解电池包热失控蔓延的控制方法
WO2021057283A1 (zh) 电池包、车辆及缓解电池包热失控蔓延的控制方法
WO2022006894A1 (zh) 电池及其相关装置、制备方法和制备设备
JP7419533B2 (ja) 電池、その関連装置、製造方法及び製造機器
JP7321300B2 (ja) 電池、その関連装置、製造方法及び製造機器
CN213636145U (zh) 电池、包括电池的装置和制备电池的设备
US11894583B2 (en) Box body applied to battery, battery assembly, electric apparatus, and method and device for preparing battery assembly
WO2024077789A1 (zh) 电池及用电装置
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022082395A1 (zh) 电池、用电装置、制备电池的方法和设备
EP4009435B1 (en) Battery, power consuming apparatus and method and apparatus for producing battery
EP4329069A1 (en) Battery, electrical apparatus, method and apparatus for preparing battery
WO2022082390A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
JP2023528296A (ja) 電池、電力消費装置、電池を製造する方法と装置
WO2022082391A1 (zh) 电池、用电装置、制备电池的方法和设备
WO2024065739A1 (zh) 电池以及用电装置
WO2023020162A1 (zh) 电池以及用电装置
US20230361423A1 (en) Battery, electric device, and method and device for manufacturing battery
WO2022082388A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020869350

Country of ref document: EP

Effective date: 20210817

ENP Entry into the national phase

Ref document number: 2021551826

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE