WO2024065202A1 - 热失控实验装置及其使用方法 - Google Patents

热失控实验装置及其使用方法 Download PDF

Info

Publication number
WO2024065202A1
WO2024065202A1 PCT/CN2022/121840 CN2022121840W WO2024065202A1 WO 2024065202 A1 WO2024065202 A1 WO 2024065202A1 CN 2022121840 W CN2022121840 W CN 2022121840W WO 2024065202 A1 WO2024065202 A1 WO 2024065202A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
thermal runaway
injection
reaction chamber
experimental device
Prior art date
Application number
PCT/CN2022/121840
Other languages
English (en)
French (fr)
Inventor
牛凡超
程容
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/121840 priority Critical patent/WO2024065202A1/zh
Publication of WO2024065202A1 publication Critical patent/WO2024065202A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Definitions

  • the present application relates to the field of battery technology, and in particular to a thermal runaway experimental device and a method for using the same.
  • the battery mainly includes multiple battery cells.
  • the battery cell is assembled into an electrode assembly (bare cell) by winding or stacking the positive electrode sheet, the negative electrode sheet and the isolation membrane, and then loaded into the shell and injected with electrolyte.
  • the requirements for the endurance of new energy vehicles have also increased, and the requirements for the specific capacity of battery cells have also become higher and higher. Therefore, the probability of thermal runaway of battery cells is also increasing.
  • the embodiments of the present application provide a thermal runaway experimental device and a method of using the same, which can effectively reduce the difficulty of revealing the causes and reaction mechanisms of thermal runaway inside a battery cell.
  • an embodiment of the present application provides a thermal runaway experimental device, comprising a heating mechanism and a cooling mechanism; the heating mechanism has a reaction chamber for accommodating a battery cell inside, and the heating mechanism is configured to heat the battery cell to trigger thermal runaway of the battery cell; the cooling mechanism is configured to provide a cooling medium into the reaction chamber to cool the battery cell so as to terminate the thermal runaway of the battery cell.
  • the thermal runaway experimental device is provided with a heating mechanism and a cooling mechanism. Heating the battery cell by the heating mechanism can trigger the thermal runaway reaction of the battery cell, and the cooling mechanism can provide a cooling medium into the reaction chamber, thereby cooling the battery cell to terminate the thermal runaway reaction of the battery cell.
  • the thermal runaway experimental device with such a structure can cool the battery cell at any stage or any temperature point in the thermal runaway experiment of the battery cell to terminate the thermal runaway reaction of the battery cell, thereby being able to study and reveal the internal reaction mechanism of the battery cell at any stage and any temperature point in the thermal runaway process, which is conducive to reducing the difficulty of revealing the cause of thermal runaway inside the battery cell, and then being able to effectively and specifically discover and solve the problem of thermal runaway of the battery cell, which is conducive to providing important theoretical reference for the safety design of the battery cell to improve the safety of the use of the battery cell.
  • the cooling mechanism includes a storage unit and an injection unit, the injection unit is connected to the storage unit, the storage unit is used to provide the cooling medium to the injection unit, the injection unit is arranged in the reaction chamber, and the injection unit is used to inject the cooling medium into the reaction chamber.
  • the cooling mechanism is provided with a storage unit and an injection unit.
  • the storage unit can provide cooling medium to the injection unit, so that the injection unit accommodated in the reaction chamber can inject cooling medium into the reaction chamber to achieve better cooling effect on the battery cell.
  • the structure of this cooling mechanism is relatively simple and easy to implement.
  • the injection unit includes an injection pipe; a medium flow channel is formed inside the injection pipe, the medium flow channel is connected to the storage unit, and a plurality of injection holes connected to the medium flow channel are arranged on the injection pipe.
  • the injection unit is provided with an injection pipe for injecting cooling medium into the reaction chamber.
  • the storage unit can provide cooling medium to the medium flow channel of the injection pipe, and a plurality of injection holes are provided on the injection pipe, so that the cooling medium in the medium flow channel can be injected into the reaction chamber through the injection holes.
  • the injection unit adopting this structure can realize that a plurality of injection holes simultaneously inject cooling medium into the reaction chamber, and the injection effect is better, so as to facilitate the rapid cooling of the battery cell to terminate the thermal runaway reaction of the battery cell.
  • the injection pipe is an annular pipe, and the plurality of injection holes are spaced apart along an extension direction of the injection pipe.
  • the injection pipe with this structure can spray cooling medium to the battery cells accommodated in the reaction chamber from multiple directions, which is beneficial to improving the cooling effect on the battery cells.
  • the spray unit further includes a plurality of support members; the plurality of support members are connected to the spray pipe, the plurality of support members are arranged at intervals along the extension direction of the spray pipe, and the plurality of support members are used to cooperate in supporting the spray pipe.
  • the injection unit is also provided with a plurality of support members for supporting the injection tube, the plurality of support members are all connected to the injection tube, and the plurality of support members are spaced apart along the extension direction of the injection tube.
  • the injection unit adopting such a structure can, on the one hand, improve the stability of the injection tube in the reaction chamber, so as to facilitate the placement of the injection tube in the reaction chamber, and on the other hand, can realize that the injection tube is suspended in the reaction chamber to alleviate the phenomenon of contact between the injection tube and the cavity wall of the reaction chamber, thereby helping to reduce the influence of the high temperature of the cavity wall of the reaction chamber on the injection tube.
  • the support member is a telescopic structure with adjustable length.
  • the length of the support member can be adjusted to adjust the height of the injection tube, and then the height position of the injection tube can be adjusted according to different experimental conditions to meet different experimental requirements.
  • the diameter of the injection hole is D 1 , satisfying 2 mm ⁇ D 1 ⁇ 3 mm.
  • the injection tube using this structure can, on the one hand, alleviate the risk of the cooling medium clogging the injection hole due to the injection hole being too small, so as to ensure the normal use of the injection tube; on the other hand, it can alleviate the phenomenon that the pressure of the cooling medium in the medium flow channel of the injection tube is insufficient due to the injection hole being too large, resulting in the injection distance of the cooling medium being too short or some injection holes being unable to spray the cooling medium.
  • the thickness of the wall of the injection pipe is D 2 , satisfying 1 mm ⁇ D 2 ⁇ 2 mm.
  • the thickness of the tube wall of the injection pipe by setting the thickness of the tube wall of the injection pipe to 1mm to 2mm, on the one hand, the phenomenon of insufficient structural strength of the injection pipe caused by the small thickness of the tube wall of the injection pipe can be alleviated, thereby helping to reduce the risk of rupture or deformation damage of the injection pipe under the impact of the cooling medium; on the other hand, the phenomenon of material waste or excessive manufacturing difficulty caused by the excessive thickness of the tube wall of the injection pipe can be alleviated, thereby helping to reduce the manufacturing cost of the injection pipe.
  • the thermal runaway experimental device further comprises a placement rack; the placement rack is arranged in the reaction chamber, and the placement rack is used to place the battery cells; wherein the injection pipe is arranged around the placement rack, and the injection hole is arranged toward the placement rack.
  • a placement rack for placing battery cells is provided in the reaction chamber of the heating mechanism, so that the battery cells can be suspended in the reaction chamber, thereby alleviating the phenomenon of the battery cells contacting the cavity wall of the reaction chamber, which is conducive to ensuring uniform heating of the battery cells.
  • the spray hole can spray cooling medium to the battery cells from multiple directions, which is conducive to improving the cooling effect of the cooling mechanism on the battery cells, so as to terminate the thermal runaway reaction of the battery cells.
  • the injection pipe is located at a position higher than the placement rack; the injection pipe has a first central axis, the first central axis extends along the extension direction of the injection pipe, the injection hole has a second central axis, and the angle between the second central axis and the plane where the first central axis is located is ⁇ , satisfying 40° ⁇ 60°.
  • the injection hole can be aimed at the battery cell placed on the placement rack for spraying, which is beneficial to improve the cooling effect on the battery cell.
  • an embodiment of the present application further provides a method for using a thermal runaway experimental device, which is applicable to the above-mentioned thermal runaway experimental device, and the method for using the thermal runaway experimental device includes: placing a battery cell in the reaction chamber; heating the battery cell by the heating mechanism to trigger thermal runaway of the battery cell; when the temperature T1 on the surface of the battery cell reaches a preset temperature, the heating mechanism stops heating the battery cell, and provides a cooling medium into the reaction chamber by the cooling mechanism to cool the battery cell, so that the thermal runaway of the battery cell is terminated.
  • the heating mechanism stops heating the battery cell, and provides a cooling medium into the reaction chamber through the cooling mechanism to cool the battery cell, so that the thermal runaway of the battery cell is terminated.
  • the method for using the thermal runaway experimental device further includes: obtaining the temperature T2 on the surface of the battery cell; when T2 ⁇ 0°C, turning off the cooling mechanism.
  • the method for using the thermal runaway experimental device further includes: obtaining the temperature rise rate R on the surface of the battery cell, the temperature fluctuation M 1 on the surface of the battery cell, and the voltage fluctuation M 2 of the battery cell after the battery cell is left to stand for a preset time; if R ⁇ 0.02°C/min, M 1 ⁇ 0.01°C, and M 2 ⁇ 0.01V, taking out the battery cell from the reaction chamber.
  • the cooling mechanism when the cooling mechanism is turned off and the battery cell is left to stand for a preset time, if the temperature rise rate R on the surface of the battery cell is less than 0.02°C/min, the temperature fluctuation M1 on the surface of the battery cell is less than 0.01°C, and the voltage fluctuation M2 of the battery cell is less than 0.01V, it can be determined that the thermal runaway reaction of the battery cell has been terminated, so that the battery cell can be removed from the reaction chamber for subsequent research.
  • This method can accurately identify that the thermal runaway of the battery cell has been terminated, so as to ensure that the battery cell is removed after the thermal runaway reaction of the battery cell has been terminated, which is conducive to improving the accuracy of subsequent research on the battery cell and can reduce the risk of thermal runaway of the battery cell after being removed.
  • FIG1 is a schematic diagram of the structure of a thermal runaway experimental device provided in some embodiments of the present application.
  • FIG2 is a schematic diagram of the assembly of a heating mechanism and an injection unit of a thermal runaway experimental device provided in some embodiments of the present application;
  • FIG3 is a schematic diagram of the structure of a spray unit provided in some embodiments of the present application.
  • FIG4 is a cross-sectional view of an injection pipe of an injection unit provided in some embodiments of the present application.
  • FIG5 is an axial side view of a spray unit provided in some embodiments of the present application.
  • FIG6 is a partial enlarged view of the injection unit at A shown in FIG5 ;
  • FIG7 is a schematic diagram of a partial structure of a first supporting section of a supporting member provided in some embodiments of the present application.
  • FIG8 is a schematic flow chart of a method for using a thermal runaway experimental device provided in some embodiments of the present application.
  • FIG9 is a schematic flow chart of a method for using a thermal runaway experimental device provided in yet other embodiments of the present application.
  • FIG10 is a flow chart of a method for using a thermal runaway experimental device provided in some further embodiments of the present application.
  • Icons 100-thermal runaway experimental device; 10-heating mechanism; 11-reaction chamber; 20-cooling mechanism; 21-storage unit; 22-injection unit; 221-injection pipe; 2211-medium flow channel; 2212-injection hole; 2213-first central axis; 2214-second central axis; 222-support member; 2221-first support section; 2221a-threaded hole; 2222-second support section; 2222a-external thread; 23-connecting pipe; 30-battery cell; 40-placing rack; X-extension direction of the support member.
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-ion batteries or magnesium-ion batteries, etc., and the embodiments of the present application do not limit this.
  • Battery cells may be cylindrical, flat, rectangular or other shapes, etc., and the embodiments of the present application do not limit this. Battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application do not limit this.
  • the battery cell includes a shell, an electrode assembly and an electrolyte, and the electrode assembly and the electrolyte are both contained in the shell.
  • the electrode assembly is the component in the battery cell where the electrochemical reaction occurs, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive electrode sheet and the negative electrode sheet to work.
  • the positive electrode sheet includes a positive electrode collector and a positive electrode active material layer, and the positive electrode active material layer is coated on the surface of the positive electrode collector.
  • the positive electrode collector not coated with the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer, and the positive electrode collector not coated with the positive electrode active material layer serves as a positive electrode ear.
  • the material of the positive electrode collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer. The negative electrode active material layer is coated on the surface of the negative electrode current collector. The negative electrode current collector not coated with the negative electrode active material layer protrudes from the negative electrode current collector coated with the negative electrode active material layer.
  • the negative electrode current collector not coated with the negative electrode active material layer serves as a negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon, etc.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film may be polypropylene (PP) or polyethylene (PE), etc.
  • the electrode assembly may be a winding structure or a stacked structure, but the embodiments of the present application are not limited thereto.
  • Batteries have outstanding advantages such as high energy density, low environmental pollution, high power density, long service life, wide adaptability, and low self-discharge coefficient. They are an important part of the development of new energy today. With the continuous development of battery technology, higher requirements have been put forward in terms of battery endurance and safety of use. Among them, the battery is composed of multiple battery cells, so that the specific capacity and safety of the battery cells determine the battery endurance and safety of use.
  • ARC accelerated adiabatic calorimeter
  • the thermal characteristics of the exothermic reaction process when the internal heat of the battery cell cannot be dissipated in time are simulated, thereby providing an approximately adiabatic environment to make the reaction closer to the real reaction process, and then the kinetic parameters of the apparent exothermic reaction of the battery cell under thermal runaway conditions can be obtained to study the mechanism of thermal runaway of the battery cell.
  • the existing accelerated adiabatic calorimeter (ARC) cannot stop cooling at any stage or specified temperature point during the thermal runaway experiment on the battery cell. It can only study and explore the internal reaction mechanism of the battery cell after the thermal runaway ends, which cannot meet the research needs of the thermal runaway of the battery cell.
  • the thermal runaway experimental device includes a heating mechanism and a cooling mechanism.
  • the heating mechanism has a reaction chamber for accommodating battery cells inside, and the heating mechanism is configured to heat the battery cells to trigger thermal runaway of the battery cells.
  • the cooling mechanism is configured to provide a cooling medium into the reaction chamber to cool the battery cells so that the thermal runaway of the battery cells is terminated.
  • the thermal runaway experimental device is provided with a heating mechanism and a cooling mechanism. Heating the battery cell by the heating mechanism can trigger the thermal runaway reaction of the battery cell, and the cooling mechanism can provide a cooling medium into the reaction chamber, thereby cooling the battery cell to terminate the thermal runaway reaction of the battery cell.
  • the thermal runaway experimental device of this structure can cool the battery cell at any stage or any temperature point in the thermal runaway experiment of the battery cell to terminate the thermal runaway reaction of the battery cell, thereby being able to study and reveal the internal reaction mechanism of the battery cell at any stage and any temperature point in the thermal runaway process, which is conducive to reducing the difficulty of revealing the cause of thermal runaway inside the battery cell, and then being able to effectively and specifically discover and solve the problem of thermal runaway of the battery cell, which is conducive to providing important theoretical reference for the safety design of the battery cell to improve the safety of the use of the battery cell.
  • the embodiment of the present application provides a thermal runaway experimental device, which can improve the problem in the prior art that during the thermal runaway experiment on the battery cell, cooling cannot be stopped at any stage or specified temperature point, and only the internal reaction mechanism of the battery cell after the thermal runaway ends can be studied and explored, thereby failing to meet the research needs of the thermal runaway of the battery cell, resulting in great difficulty in revealing the cause and reaction mechanism of the thermal runaway inside the battery cell.
  • the specific structure of the thermal runaway experimental device is described in detail below in conjunction with the accompanying drawings.
  • FIG. 1 is a structural schematic diagram of a thermal runaway experimental device 100 provided in some embodiments of the present application
  • FIG. 2 is an assembly schematic diagram of a heating mechanism 10 and an injection unit 22 of the thermal runaway experimental device 100 provided in some embodiments of the present application.
  • the present application provides a thermal runaway experimental device 100, and the thermal runaway experimental device 100 includes a heating mechanism 10 and a cooling mechanism 20.
  • the heating mechanism 10 has a reaction chamber 11 for accommodating a battery cell 30 inside, and the heating mechanism 10 is configured to heat the battery cell 30 to trigger thermal runaway of the battery cell 30.
  • the cooling mechanism 20 is configured to provide a cooling medium into the reaction chamber 11 to cool the battery cell 30, so that the thermal runaway of the battery cell 30 is terminated.
  • the heating mechanism 10 may be an accelerated adiabatic calorimeter (ARC), etc.
  • ARC accelerated adiabatic calorimeter
  • the accelerated adiabatic calorimeter can be used to perform a thermal runaway test on the battery cell 30.
  • the specific structure of the accelerated adiabatic calorimeter can be referred to in the relevant art, and will not be described in detail here.
  • the cooling mechanism 20 provides a cooling medium for the reaction chamber 11 of the heating mechanism 10 to cool the battery cell 30 in thermal runaway.
  • the cooling medium provided by the cooling mechanism 20 may be a variety of cooling mediums, such as liquid nitrogen, liquid helium, or dry ice.
  • the cooling medium provided by the cooling mechanism 20 is liquid nitrogen.
  • the cooling medium with this structure has a good cooling effect and will not pollute the external environment.
  • the thermal runaway experiment device 100 is provided with a heating mechanism 10 and a cooling mechanism 20.
  • the heating mechanism 10 heats the battery cell 30 to trigger the thermal runaway reaction of the battery cell 30, and the cooling mechanism 20 provides a cooling medium into the reaction chamber 11, thereby cooling the battery cell 30 to terminate the thermal runaway reaction of the battery cell 30.
  • the thermal runaway experiment device 100 with such a structure can cool the battery cell 30 at any stage or any temperature point in the thermal runaway experiment of the battery cell 30 to terminate the thermal runaway reaction of the battery cell 30, thereby being able to study and reveal the internal reaction mechanism of the battery cell 30 at any stage and any temperature point in the thermal runaway process, which is conducive to reducing the difficulty of revealing the cause of the internal thermal runaway of the battery cell 30, and further being able to effectively and specifically discover and solve the problem of thermal runaway of the battery cell 30, which is conducive to providing an important theoretical reference for the safety design of the battery cell 30 to improve the safety of the battery cell 30.
  • Figure 3 is a schematic diagram of the structure of the injection unit 22 provided in some embodiments of the present application.
  • the cooling mechanism 20 includes a storage unit 21 and an injection unit 22, the injection unit 22 is connected to the storage unit 21, the storage unit 21 is used to provide a cooling medium to the injection unit 22, the injection unit 22 is disposed in the reaction chamber 11, and the injection unit 22 is used to inject the cooling medium into the reaction chamber 11.
  • the storage unit 21 serves to store the cooling medium, thereby providing the cooling medium to the injection unit 22.
  • the storage unit 21 is a liquid nitrogen tank, and compressed liquid nitrogen is stored in the storage unit 21, so that after the storage unit 21 provides the cooling medium to the injection unit 22, the injection unit 22 can inject the cooling medium into the reaction chamber 11.
  • the cooling mechanism 20 further includes a connecting pipe 23 , which is connected between the storage unit 21 and the injection unit 22 to connect the storage unit 21 and the injection unit 22 to each other.
  • the cooling mechanism 20 is provided with a storage unit 21 and an injection unit 22.
  • the storage unit 21 can provide a cooling medium to the injection unit 22, so that the injection unit 22 accommodated in the reaction chamber 11 can inject the cooling medium into the reaction chamber 11 to achieve a better cooling effect on the battery cell 30.
  • the structure of this cooling mechanism 20 is relatively simple and easy to implement.
  • FIG 3 is a cross-sectional view of the injection pipe 221 of the injection unit 22 provided in some embodiments of the present application.
  • the injection unit 22 includes the injection pipe 221, and a medium flow channel 2211 is formed inside the injection pipe 221, and the medium flow channel 2211 is connected to the storage unit 21.
  • the injection pipe 221 is provided with a plurality of injection holes 2212 connected to the medium flow channel 2211.
  • the injection pipe 221 is connected to the storage unit 21 through the connecting pipe 23, so that the medium flow channel 2211 in the injection pipe 221 and the storage unit 21 are interconnected, so that after the storage unit 21 provides cooling medium to the medium flow channel 2211, the cooling medium can be sprayed from the injection hole 2212 into the reaction chamber 11 of the heating mechanism 10.
  • the injection pipe 221 may be made of various materials, such as steel, copper, or iron.
  • the injection unit 22 is provided with an injection pipe 221 for injecting cooling medium into the reaction chamber 11.
  • the storage unit 21 can provide cooling medium to the medium flow channel 2211 of the injection pipe 221, and a plurality of injection holes 2212 are provided on the injection pipe 221, so that the cooling medium in the medium flow channel 2211 can be injected into the reaction chamber 11 through the injection holes 2212.
  • the injection unit 22 with such a structure can realize that a plurality of injection holes 2212 simultaneously inject cooling medium into the reaction chamber 11, and the injection effect is better, so as to facilitate the rapid cooling of the battery cell 30 to terminate the thermal runaway reaction of the battery cell 30.
  • the injection pipe 221 is an annular pipe, and a plurality of injection holes 2212 are arranged at intervals along the extension direction of the injection pipe 221 .
  • the injection pipe 221 is a circular ring structure, and the plurality of injection holes 2212 are arranged at intervals along the circumference of the injection pipe 221, that is, the injection pipe 221 is a structure connected end to end.
  • the injection pipe 221 may also be a rectangular ring structure, a triangular ring structure, or an elliptical ring structure.
  • the injection pipe 221 may be a non-ring structure, for example, the injection pipe 221 is a strip structure, an L-shaped structure, or a U-shaped structure.
  • the injection tube 221 By configuring the injection tube 221 as an annular tube, that is, the injection tube 221 is an annular structure, and arranging the plurality of injection holes 2212 at intervals along the extension direction of the injection tube 221, so that the plurality of injection holes 2212 are circumferentially arranged on the injection tube 221, the injection tube 221 with such a structure can spray cooling medium to the battery cells 30 accommodated in the reaction chamber 11 from multiple directions, which is beneficial to improving the cooling effect on the battery cells 30.
  • FIG. 3 is an axial side view of the spray unit 22 provided in some embodiments of the present application.
  • the spray unit 22 also includes a plurality of support members 222, which are connected to the spray pipe 221, and the plurality of support members 222 are arranged at intervals along the extension direction of the spray pipe 221, and the plurality of support members 222 are used to cooperate with and support the spray pipe 221.
  • the plurality of support members 222 are arranged at intervals along the extension direction of the injection pipe 221 , that is, the arrangement direction of the plurality of support members 222 is the extension direction of the injection pipe 221 .
  • the spray unit 22 is provided with three support members 222, and the three support members 222 are arranged at intervals along the circumference of the spray pipe 221.
  • the spray unit 22 with such a structure has a higher structural stability.
  • the number of the support members 222 can also be four, five or six.
  • the injection unit 22 is also provided with a plurality of support members 222 for supporting the injection tube 221.
  • the plurality of support members 222 are all connected to the injection tube 221, and the plurality of support members 222 are spaced apart along the extension direction of the injection tube 221.
  • the injection unit 22 with such a structure can, on the one hand, improve the stability of the injection tube 221 in the reaction chamber 11, so as to facilitate the placement of the injection tube 221 in the reaction chamber 11; on the other hand, it can realize that the injection tube 221 is suspended in the reaction chamber 11, so as to alleviate the phenomenon that the injection tube 221 contacts the cavity wall of the reaction chamber 11, thereby helping to reduce the influence of the high temperature of the cavity wall of the reaction chamber 11 on the injection tube 221.
  • Figure 6 is a partial enlarged view of the A portion of the spray unit 22 shown in Figure 5
  • Figure 7 is a partial structural schematic diagram of the first support section 2221 of the support member 222 provided in some embodiments of the present application.
  • the support member 222 is a telescopic structure with adjustable length.
  • the support member 222 is a telescopic structure with adjustable length, that is, the length of the support member 222 is adjustable, that is, in the extension direction X of the support member, the height position of the injection pipe 221 is adjustable.
  • the structure of the support member 222 can be various.
  • the support member 222 includes a first support segment 2221 and a second support segment 2222.
  • one end of the first support segment 2221 is connected to the injection pipe 221, and the other end is provided with a threaded hole 2221a.
  • the outer peripheral surface of the second support segment 2222 is provided with an external thread 2222a.
  • the second support segment 2222 is screwed into the threaded hole 2221a of the first support segment 2221, so that the length of the support member 222 can be adjusted by tightening or loosening the second support segment 2222.
  • the support member 222 can also be other structures.
  • the first support section 2221 is sleeved on the outside of the second support section 2222, and the first support section 2221 is provided with a plurality of snap-in holes arranged at intervals along the extension direction X of the support member.
  • a snap-in block is provided on the outer peripheral surface of the second support section 2222.
  • the length of the support member 222 can be adjusted to adjust the height of the injection tube 221, and then the height position of the injection tube 221 can be adjusted according to different experimental conditions to meet different experimental requirements.
  • the diameter of the injection hole 2212 is D 1 , which satisfies 2 mm ⁇ D 1 ⁇ 3 mm.
  • the aperture of the injection hole 2212 is D 1 , that is, the diameter of the injection hole 2212 .
  • the injection tube 221 with such a structure can, on the one hand, alleviate the risk of the cooling medium clogging the injection hole 2212 due to the injection hole 2212 being too small, so as to ensure the normal use of the injection tube 221; on the other hand, it can alleviate the phenomenon that the pressure of the cooling medium in the medium flow channel 2211 of the injection tube 221 is insufficient due to the injection hole 2212 being too large, resulting in the injection distance of the cooling medium being too short or some injection holes 2212 being unable to spray the cooling medium.
  • the thickness of the wall of the injection pipe 221 is D 2 , which satisfies 1 mm ⁇ D 2 ⁇ 2 mm.
  • the thickness of the tube wall of the injection tube 221 is D 2 , that is, the distance between the outer wall surface and the inner wall surface of the injection tube 221 in the radial direction of the injection tube 221 .
  • the thickness of the tube wall of the injection tube 221 By setting the thickness of the tube wall of the injection tube 221 to 1 mm to 2 mm, on the one hand, the phenomenon of insufficient structural strength of the injection tube 221 caused by the thin thickness of the tube wall of the injection tube 221 can be alleviated, thereby helping to reduce the risk of the injection tube 221 being broken or deformed and damaged under the impact of the cooling medium. On the other hand, the phenomenon of material waste or excessive manufacturing difficulty caused by the excessive thickness of the tube wall of the injection tube 221 can be alleviated, thereby helping to reduce the manufacturing cost of the injection tube 221.
  • the thermal runaway experimental device 100 further includes a placement rack 40, which is disposed in the reaction chamber 11 and is used to place the battery cells 30.
  • the injection pipe 221 is disposed around the placement rack 40, and the injection hole 2212 is disposed toward the placement rack 40.
  • the spray pipe 221 is disposed around the placement rack 40 , and the spray hole 2212 is disposed toward the placement rack 40 , that is, the spray pipe 221 surrounds the outside of the placement rack 40 , and the spray hole 2212 is disposed on a side of the spray pipe 221 facing the placement rack 40 .
  • a placement rack 40 for placing the battery cell 30 is provided in the reaction chamber 11 of the heating mechanism 10, so that the battery cell 30 can be suspended in the reaction chamber 11, thereby alleviating the phenomenon of the battery cell 30 contacting the cavity wall of the reaction chamber 11, which is conducive to ensuring uniform heating of the battery cell 30.
  • the spray hole 2212 can spray the cooling medium to the battery cell 30 from multiple directions, which is conducive to improving the cooling effect of the cooling mechanism 20 on the battery cell 30, so as to terminate the thermal runaway reaction of the battery cell 30.
  • the injection pipe 221 is located at a position higher than the placement rack 40, the injection pipe 221 has a first central axis 2213, the first central axis 2213 extends along the extension direction of the injection pipe 221, the injection hole 2212 has a second central axis 2214, and the angle between the second central axis 2214 and the plane where the first central axis 2213 is located is ⁇ , satisfying 40° ⁇ 60°.
  • the injection pipe 221 is located higher than the placement rack 40 , that is, in the extension direction X of the support, the injection pipe 221 is located higher than the placement rack 40 , so that the injection pipe 221 is located higher than the battery cell 30 placed on the placement rack 40 .
  • the first center axis 2213 is the center axis of the medium flow channel 2211 of the injection tube 221, that is, the first center axis 2213 is formed by connecting the center points of the cross sections of multiple injection tubes 221, and the plane where the first center axis 2213 is located, that is, the plane defined by the center points of the cross sections of multiple injection tubes 221, is also a plane perpendicular to the extension direction X of the support member.
  • the injection hole 2212 can be aimed at the battery cell 30 placed on the placement rack 40 for spraying, which is beneficial to improve the cooling effect on the battery cell 30.
  • the present application provides a thermal runaway experimental device 100, which includes a heating mechanism 10, a cooling mechanism 20, and a placement rack 40.
  • the heating mechanism 10 has a reaction chamber 11 for accommodating a battery cell 30, and the heating mechanism 10 is configured to heat the battery cell 30 to trigger thermal runaway of the battery cell 30.
  • the cooling mechanism 20 includes a storage unit 21 and an injection unit 22, and the injection unit 22 includes an injection pipe 221 and a plurality of support members 222.
  • a medium flow channel 2211 is formed inside the injection pipe 221, and the medium flow channel 2211 is connected to the storage unit 21.
  • the storage unit 21 is used to provide cooling medium to the injection unit 22, and a plurality of injection holes 2212 connected to the medium flow channel 2211 are provided on the injection pipe 221.
  • the injection pipe 221 is an annular pipe, and a plurality of injection holes 2212 are arranged at intervals along the extension direction of the injection pipe 221.
  • a plurality of support members 222 are connected to the injection pipe 221, and a plurality of support members 222 are arranged at intervals along the extension direction of the injection pipe 221.
  • the plurality of support members 222 are used to cooperate with the injection pipe 221, and the support member 222 is a telescopic structure with adjustable length.
  • the placement rack 40 is arranged in the reaction chamber 11, and the placement rack 40 is used to place the battery cell 30.
  • the injection pipe 221 is arranged around the placement rack 40, and the injection hole 2212 is arranged toward the placement rack 40. Among them, the position of the injection pipe 221 is higher than the placement rack 40, the injection pipe 221 has a first central axis 2213, and the first central axis 2213 extends along the extension direction of the injection pipe 221.
  • the injection hole 2212 has a second central axis 2214, and the angle between the second central axis 2214 and the plane where the first central axis 2213 is located is ⁇ , which satisfies 40° ⁇ 60°.
  • the embodiments of the present application further provide a method for using a thermal runaway experimental device 100, which is applicable to the above-mentioned thermal runaway experimental device 100.
  • FIG. 8 is a flow chart of a method for using a thermal runaway experimental device 100 provided in some embodiments of the present application.
  • the method for using the thermal runaway experimental device 100 includes:
  • the starting temperature in the reaction chamber 11 of the heating mechanism 10 is generally 40°C, the ending temperature is 300°C, the step temperature is 5°C, and the mode is heat-wait-search.
  • the heating mechanism 10 will track the surface temperature of the battery cell 30, keep the temperature consistent, and simulate an adiabatic environment.
  • the thermal runaway experiment of the battery cell 30 can be found in the relevant technology and will not be repeated here.
  • the heating mechanism 10 stops heating the battery cell 30 and provides a cooling medium to the reaction chamber 11 through the cooling mechanism 20. That is, the preset temperature is the target temperature at which the researchers want to study the thermal runaway of the battery cell 30.
  • the preset temperature is the target temperature at which the researchers want to study the thermal runaway of the battery cell 30.
  • FIG. 9 is a flow chart of a method for using a thermal runaway experimental device 100 provided by some other embodiments of the present application.
  • the heating mechanism 10 stops heating the battery cell 30, and provides a cooling medium to the reaction chamber 11 through the cooling mechanism 20 to cool the battery cell 30, so that the thermal runaway of the battery cell 30 is stopped, and the method for using the thermal runaway experimental device 100 also includes:
  • the cooling mechanism 20 can stop providing cooling medium to the reaction chamber 11, which is beneficial to reduce the waste of cooling medium.
  • FIG. 10 is a flow chart of a method for using a thermal runaway test device 100 provided in some other embodiments of the present application.
  • the method for using the thermal runaway test device 100 further includes:
  • step S600 after the battery cell 30 is left to stand for a preset time, that is, after the temperature of the battery cell 30 and the ambient temperature are balanced with each other, the temperature fluctuation M1 on the surface of the battery cell 30 is measured.
  • the temperature fluctuation M1 on the surface of the battery cell 30 refers to the temperature fluctuation after the temperature of the battery cell 30 and the ambient temperature are balanced.
  • step S600 the battery cell 30 is left in the reaction chamber 11 for 1 hour, that is, the preset time is 1 hour.
  • the preset time may also be 50 minutes, 1.5 hours, or 2 hours.
  • the cooling mechanism 20 When the cooling mechanism 20 is turned off and the battery cell 30 is left standing for a preset time, if the temperature rise rate R on the surface of the battery cell 30 is less than 0.02°C/min, the temperature fluctuation M1 on the surface of the battery cell 30 is less than 0.01°C, and the voltage fluctuation M2 of the battery cell 30 is less than 0.01V, it can be determined that the thermal runaway reaction of the battery cell 30 has been terminated, so that the battery cell 30 can be taken out from the reaction chamber 11 for subsequent research.
  • This method can accurately identify that the thermal runaway of the battery cell 30 has been terminated, so as to ensure that the battery cell 30 is taken out after the thermal runaway reaction of the battery cell 30 has been terminated, which is conducive to improving the accuracy of subsequent research on the battery cell 30 and can reduce the risk of thermal runaway of the battery cell 30 after being taken out.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了一种热失控实验装置及其使用方法,属于电池技术领域。其中,热失控实验装置包括加热机构和冷却机构。加热机构内部具有用于容纳电池单体的反应腔,加热机构被配置为加热电池单体,以触发电池单体热失控。冷却机构被配置为向反应腔内提供冷却介质,以冷却电池单体,使得电池单体的热失控中止。这种热失控实验装置能够在电池单体进行热失控实验中的任意阶段或任意温度点对电池单体进行冷却并中热失控反应,从而能够研究电池单体在热失控过程中的任意阶段和任意温度点时的内部反应机理,有利于降低电池单体热失控的成因被揭露的难度,进而能够针对性地发现和解决电池单体热失控的问题,有利于为电池单体的安全设计提供重要理论参考。

Description

热失控实验装置及其使用方法 技术领域
本申请涉及电池技术领域,具体而言,涉及一种热失控实验装置及其使用方法。
背景技术
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。电池主包括多个电池单体,电池单体是由正极极片、负极极片和隔离膜通过卷绕或者叠片等方式组装成电极组件(裸电芯),之后装入外壳,再注入电解液后得到的。随着新能源汽车的大力推广,对新能源汽车的续航能力要求也随之提高,从而对电池单体的比容量要求也越来越高,因此,电池单体出现热失控的概率也越来越高。
目前,为了解决电池单体热失控的问题,在现有技术中,通常会采用实验或热失控机理研究等方法研究造成电池单体热失控的成因,然而,随着电池单体的制造材料不断更新换代,正极极片和负极极片的材料以及电解液的种类越来越多,以导致电池单体内部热失控的成因和反应机理被揭露的难度较大,从而无法有效且针对性地解决电池单体热失控的问题,不利于提升电池单体的使用安全性。
发明内容
本申请实施例提供一种热失控实验装置及其使用方法,能够有效降低电池单体内部热失控的成因和反应机理被揭露的难度。
第一方面,本申请实施例提供一种热失控实验装置,包括加热机构和冷却机构;所述加热机构内部具有用于容纳电池单体的反应腔,所述加热机构被配置为加热所述电池单体,以触发所述电池单体热失控;所述冷却机构被配置为向所述反应腔内提供冷却介质,以冷却所述电池单体,使得所述电池单体的热失控中止。
在上述技术方案中,热失控实验装置设置有加热机构和冷却机构,通过加热机构对电池单体进行加热能够触发电池单体的热失控反应,并通过冷却机构能够向反应腔内提供冷却介质,从而能够对电池单体起到冷却降温的作用,以中止电池单体的热失控反应,采用这种结构的热失控实验装置能够在电池单体进行热失控实验中的任意阶段或任意温度点对电池单体进行冷却,以使电池单体的热失控反应中止,从而能够研究和揭露电池单体在热失控过程中的任意阶段和任意温度点时的内部反应机理,有利于降低电池单体内部热失控的成因被揭露的难度,进而能够有效且针对性地发现和解决电池单体热失控的问题,有利于为电池单体的安全设计提供重要理论参考,以提升电池单体的使用安全性。
在一些实施例中,所述冷却机构包括储存单元和喷射单元,所述喷射单元与所述储存单元连通,所述储存单元用于向所述喷射单元提供所述冷却介质,所述喷射单元设置于所述反应腔内,所述喷射单元用于向所述反应腔内喷射所述冷却介质。
在上述技术方案中,冷却机构设置有储存单元和喷射单元,通过储存单元能够向喷射单元提供冷却介质,以使容纳于反应腔内的喷射单元能够向反应腔内喷射冷却介质,以对电池单体起到较好的冷却作用,这种冷却机构的结构较为简单,且便于实 现。
在一些实施例中,所述喷射单元包括喷射管;所述喷射管内部形成有介质流道,所述介质流道与所述储存单元连通,所述喷射管上设置有与所述介质流道连通的多个喷射孔。
在上述技术方案中,喷射单元设置有用于向反应腔内喷射冷却介质的喷射管,通过将喷射管与储存单元连通,使得储存单元能够向喷射管的介质流道提供冷却介质,且在喷射管上设置有多个喷射孔,使得介质流道内的冷却介质能够通过喷射孔喷射于反应腔内,采用这种结构的喷射单元能够实现多个喷射孔同时向反应腔内喷射冷却介质,喷射效果较好,从而便于快速对电池单体起到冷却的作用,以中止电池单体的热失控反应。
在一些实施例中,所述喷射管为环形管,多个所述喷射孔沿所述喷射管的延伸方向间隔设置。
在上述技术方案中,通过将喷射管设置为环形管,即喷射管为环形结构,并将多个喷射孔沿喷射管的延伸方向间隔排布,使得多个喷射孔周向布置于喷射管上,采用这种结构的喷射管能够从多个方向对容纳于反应腔内的电池单体的喷射冷却介质,有利于提升对电池单体的冷却效果。
在一些实施例中,所述喷射单元还包括多个支撑件;多个所述支撑件连接于所述喷射管,多个所述支撑件沿所述喷射管的延伸方向间隔设置,多个所述支撑件用于配合支撑所述喷射管。
在上述技术方案中,喷射单元还设置有用于支撑喷射管的多个支撑件,多个支撑件均与喷射管相连,且多个支撑件沿喷射管的延伸方向间隔设置,采用这种结构的喷射单元一方面能够提高喷射管放置于反应腔内的稳定性,以便于将喷射管放置于反应腔内,另一方面能够实现喷射管悬空于反应腔内,以缓解喷射管与反应腔的腔壁接触的现象,从而有利于减少反应腔的腔壁的高温对喷射管的影响。
在一些实施例中,所述支撑件为长度可调的伸缩结构。
在上述技术方案中,通过将喷射单元用于支撑喷射管的支撑件设置为长度可调的伸缩结构,从而能够调节支撑件的长度,以调整喷射管的高度,进而能够根据不同的实验情况调整喷射管的高度位置,以满足不同实验需求。
在一些实施例中,所述喷射孔的孔径为D 1,满足,2mm≤D 1≤3mm。
在上述技术方案中,通过将喷射孔的孔径设置在2mm到3mm,采用这种结构的喷射管一方面能够缓解因喷射孔的孔径过小而导致冷却介质堵塞喷射孔的风险,以保证喷射管的正常使用,另一方面能够缓解因喷射孔的孔径过大而造成喷射管的介质流道内的冷却介质的压力不足,以导致冷却介质的喷射距离过小或部分喷射孔无法喷射冷却介质的现象。
在一些实施例中,所述喷射管的管壁的厚度为D 2,满足,1mm≤D 2≤2mm。
在上述技术方案中,通过将喷射管的管壁的厚度设置在1mm到2mm,一方面能够缓解因喷射管的管壁的厚度过小而导致喷射管的结构强度不足的现象,从而有利于降低喷射管在冷却介质的冲击下中出现破裂或变形损坏的风险,另一方面能够缓解因喷射管的管壁的厚度过大而造成材料浪费或制造难度过大的现象,从而有利于降低 喷射管的制造成本。
在一些实施例中,所述热失控实验装置还包括放置架;所述放置架设置于所述反应腔内,所述放置架用于放置所述电池单体;其中,所述喷射管环绕所述放置架设置,且所述喷射孔朝向所述放置架设置。
在上述技术方案中,加热机构的反应腔内设置有用于放置电池单体的放置架,以使电池单体能够悬空于反应腔内,从而能够缓解电池单体与反应腔的腔壁接触的现象,有利于保证电池单体的均匀受热。此外,通过将喷射管环绕放置架的外侧设置,且喷射孔朝向放置架设置,使得喷射孔能够从多个方向对电池单体进行喷射冷却介质,有利于提升冷却机构对电池单体的冷却效果,以中止电池单体的热失控反应。
在一些实施例中,所述喷射管所在的位置高于所述放置架;所述喷射管具有第一中心轴线,所述第一中心轴线沿所述喷射管的延伸方向延伸,所述喷射孔具有第二中心轴线,所述第二中心轴线与所述第一中心轴线所在的平面的夹角为α,满足,40°≤α≤60°。
在上述技术方案中,通过将喷射管的位置设置为高于放置架,即喷射管所在的位置高于电池单体,且将喷射孔的第二中心轴线与喷射管的第一中心轴线所在的面之间的夹角设置在40度到60度,从而喷射孔能够对准放置于放置架上的电池单体进行喷射,有利于提高对电池单体的冷却效果。
第二方面,本申请实施例还提供一种热失控实验装置的使用方法,适用于上述的热失控实验装置,所述热失控实验装置的使用方法包括:将电池单体放置于所述反应腔内;通过所述加热机构对所述电池单体进行加热,以触发所述电池单体热失控;当所述电池单体表面的温度T 1达到预设温度时,所述加热机构停止对所述电池单体进行加热,并通过所述冷却机构向所述反应腔内提供冷却介质,以冷却所述电池单体,使得所述电池单体的热失控中止。
在一些实施例中,在所述当所述电池单体表面的温度T 1达到预设温度时,所述加热机构停止对所述电池单体进行加热,并通过所述冷却机构向所述反应腔内提供冷却介质,以冷却所述电池单体,使得所述电池单体的热失控中止之后,所述热失控实验装置的使用方法还包括:获取所述电池单体表面的温度T 2;当T 2<0℃时,关闭所述冷却机构。
在上述技术方案中,通过获取到的电池单体表面的温度T 2小于0℃时能够初步判定电池单体的热失控已经中止,从而能够停止冷却机构向反应腔内提供冷却介质,有利于减少冷却介质的浪费。
在一些实施例中,在所述当T 2<0℃时,关闭所述冷却机构之后,所述热失控实验装置的使用方法还包括:在所述电池单体静置预设时间后,获取所述电池单体表面的温升速率R、所述电池单体表面的温度波动M 1和所述电池单体的电压波动M 2;若R<0.02℃/min、M 1<0.01℃且M 2<0.01V,从所述反应腔内取出所述电池单体。
在上述技术方案中,当关闭冷却机构并在电池单体静置预设时间后,若电池单体表面的温升速率R小于0.02℃/min、电池单体表面的温度波动M 1小于0.01℃且电池单体的电压波动M 2小于0.01V,则能够判定电池单体的热失控反应已经中止,从而能够从反应腔内取出电池单体,以进行后续的研究,采用这种方法能够准确识别到电池单体的热失控已经中止,以保证电池单体的热失控反应已经中止后再将电池单体取 出,有利于提升对电池单体后续研究的准确性,且能够降低电池单体在被取出后继续发生热失控的风险。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的热失控实验装置的结构示意图;
图2为本申请一些实施例提供的热失控实验装置的加热机构与喷射单元的装配示意图;
图3为本申请一些实施例提供的喷射单元的结构示意图;
图4为本申请一些实施例提供的喷射单元的喷射管的截面图;
图5为本申请一些实施例提供的喷射单元的轴侧视图;
图6为图5所示的喷射单元的A处的局部放大图;
图7为本申请一些实施例提供的支撑件的第一支撑段的局部结构示意图;
图8为本申请一些实施例提供的热失控实验装置的使用方法的流程示意图;
图9为本申请又一些实施例提供的热失控实验装置的使用方法的流程示意图;
图10为本申请再一些实施例提供的热失控实验装置的使用方法的流程示意图。
图标:100-热失控实验装置;10-加热机构;11-反应腔;20-冷却机构;21-储存单元;22-喷射单元;221-喷射管;2211-介质流道;2212-喷射孔;2213-第一中心轴线;2214-第二中心轴线;222-支撑件;2221-第一支撑段;2221a-螺纹孔;2222-第二支撑段;2222a-外螺纹;23-连接管;30-电池单体;40-放置架;X-支撑件的延伸方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性 可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
电池单体包括外壳、电极组件和电解质,电极组件和电解质均容纳于外壳内。电极组件是电池单体中发生电化学反应的部件,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池具有能量密度高、环境污染小、功率密度大、使用寿命长、适应范围广、自放电系数小等突出的优点,是现今新能源发展的重要组成部分。随着电池技术的不断发展,随着电池技术的不断发展,在电池的续航能力方面和使用安全方面也提出了更高的要求。其中,电池由多个电池单体组成,使得电池单体的比容量和使用安全决定了电池的续航能力和使用安全性。
发明人发现,对于一般的电池单体而言,电池单体的比容量越高,从而造成电池单体在使用过程中出现热失控的几率也越大,为了研究电池单体热失控的机理,以从根源上解决电池单体热失控的问题,在现有技术中,通常采用加速绝热量热仪(ARC)对电池单体进行绝热热失控实验,通过对电池单体进行反复的加热、等待和搜索三个过程,以模拟电池单体的内部热量不能及时散失时放热反应过程的热特性,从而能够提供一个近似绝热的环境,以使反应更接近于真实反应过程,进而能够获得电池单体在热失控条件下表观放热反应的动力学参数,以研究电池单体热失控的机理。然而,现有的加速绝热量热仪(ARC)在对电池单体进行热失控实验的过程中无法在任意阶段或指定温度点进行冷却中止,只能对电池单体在热失控结束后的内部反应机理进行研究和探索,从而无法满足电池单体热失控的研究需求,导致电池单体内部热失控的成因和反应机理被揭露的难度较大,进而无法有效且针对性地发现和解决电池单体热失控的问题,不利于电池单体的安全设计改善。
基于上述考虑,为了解决电池单体内部热失控的成因和反应机理被揭露的难度较大的问题,发明人经过深入研究,设计了一种热失控实验装置,热失控实验装置包括加热机构和冷却机构。加热机构内部具有用于容纳电池单体的反应腔,加热机构被配置为加热电池单体,以触发电池单体热失控。冷却机构被配置为向反应腔内提供冷却介质,以冷却电池单体,使得电池单体的热失控中止。
在这种结构的热失控实验装置中,热失控实验装置设置有加热机构和冷却机构,通过加热机构对电池单体进行加热能够触发电池单体的热失控反应,并通过冷却机构能够向反应腔内提供冷却介质,从而能够对电池单体起到冷却降温的作用,以中止电池单体的热失控反应,采用这种结构的热失控实验装置能够在电池单体进行热失控实验中的任意阶段或任意温度点对电池单体进行冷却,以使电池单体的热失控反应中止,从而能够研究和揭露电池单体在热失控过程中的任意阶段和任意温度点时的内部反应机理,有利于降低电池单体内部热失控的成因被揭露的难度,进而能够有效且针对性地发现和解决电池单体热失控的问题,有利于为电池单体的安全设计提供重要理论参考,以提升电池单体的使用安全性。
本申请实施例提供一种热失控实验装置,其能够改善现有技术中在对电池单体进行热失控实验的过程中无法在任意阶段或指定温度点进行冷却中止,只能对电池单体在热失控结束后的内部反应机理进行研究和探索,从而无法满足电池单体热失控的研究需求,导致电池单体内部热失控的成因和反应机理被揭露的难度较大的问题,以下结合附图对热失控实验装置的具体结构进行详细阐述。
根据本申请的一些实施例,请参照图1和图2,图1为本申请一些实施例提供的热失控实验装置100的结构示意图,图2为本申请一些实施例提供的热失控实验装置100的加热机构10与喷射单元22的装配示意图。本申请提供了一种热失控实验装置100,热失控实验装置100包括加热机构10和冷却机构20。加热机构10内部具有用于容纳电池单体30的反应腔11,加热机构10被配置为加热电池单体30,以触发电池单体30热失控。冷却机构20被配置为向反应腔11内提供冷却介质,以冷却电池单体30,使得电池单体30的热失控中止。
其中,加热机构10可以是加速绝热量热仪(ARC)等,通过将电池单体30放置于加速绝热量热仪的腔体内能够通过加速绝热量热仪对电池单体30进行热失控实验。加速绝热量热仪的具体结构可参见相关技术,在此不再赘述。
冷却机构20起到为加热机构10的反应腔11内提供冷却介质,以冷却处于热失控的电池单体30的作用。可选地,冷却机构20提供的冷却介质可以是多种,比如,液氮、液氦或干冰等。示例性的,在本申请实施例中,冷却机构20提供的冷却介质为液氮,采用这种结构的冷却介质具有良好的冷却效果,且不会对外部环境造成污染。
热失控实验装置100设置有加热机构10和冷却机构20,通过加热机构10对电池单体30进行加热能够触发电池单体30的热失控反应,并通过冷却机构20能够向反应腔11内提供冷却介质,从而能够对电池单体30起到冷却降温的作用,以中止电池单体30的热失控反应,采用这种结构的热失控实验装置100能够在电池单体30进行热失控实验中的任意阶段或任意温度点对电池单体30进行冷却,以使电池单体30的热失控反应中止,从而能够研究和揭露电池单体30在热失控过程中的任意阶段和任意温度点时的内部反应机理,有利于降低电池单体30内部热失控的成因被揭露的难度,进而能够有效且针对性地发现和解决电池单体30热失控的问题,有利于为电池单体30的安全设计提供重要理论参考,以提升电池单体30的使用安全性。
根据本申请的一些实施例,参照图1和图2,并请进一步参照图3,图3为本申请一些实施例提供的喷射单元22的结构示意图。冷却机构20包括储存单元21和喷射单元22,喷射单元22与储存单元21连通,储存单元21用于向喷射单元22提供冷却介质,喷射单元22设置于反应腔11内,喷射单元22用于向反应腔11内喷射冷却介质。
其中,储存单元21起到存储冷却介质的作用,从而能够为喷射单元22提供冷却介质。示例性的,由于冷却机构20用于向反应腔11内提供液氮作为冷却介质,因此,储存单元21为液氮罐,储存单元21的内部存储有压缩的液氮,使得储存单元21向喷射单元22提供冷却介质后,喷射单元22能够向反应腔11内喷射冷却介质。
在一些实施例中,冷却机构20还包括连接管23,连接管23连接于储存单元21与喷射单元22之间,以将储存单元21与喷射单元22相互连通。
冷却机构20设置有储存单元21和喷射单元22,通过储存单元21能够向喷射单元22提供冷却介质,以使容纳于反应腔11内的喷射单元22能够向反应腔11内喷射冷却介质,以对电池单体30起到较好的冷却作用,这种冷却机构20的结构较为简单,且便于实现。
根据本申请的一些实施例,参见图3,并请进一步参见图4,图4为本申请一些实施例提供的喷射单元22的喷射管221的截面图。喷射单元22包括喷射管221,喷射管221内部形成有介质流道2211,介质流道2211与储存单元21连通,喷射管221上设置有与介质流道2211连通的多个喷射孔2212。
其中,喷射管221通过连接管23与储存单元21相连,使得喷射管221内的介质流道2211与储存单元21相互连通,从而在储存单元21向介质流道2211内提供冷却介质后,冷却介质能够从喷射孔2212喷射至加热机构10的反应腔11内。
示例性的,喷射管221的材质可以是多种,比如,钢、铜或铁等。
喷射单元22设置有用于向反应腔11内喷射冷却介质的喷射管221,通过将喷射管221与储存单元21连通,使得储存单元21能够向喷射管221的介质流道2211提供冷却介质,且在喷射管221上设置有多个喷射孔2212,使得介质流道2211内的冷却 介质能够通过喷射孔2212喷射于反应腔11内,采用这种结构的喷射单元22能够实现多个喷射孔2212同时向反应腔11内喷射冷却介质,喷射效果较好,从而便于快速对电池单体30起到冷却的作用,以中止电池单体30的热失控反应。
在一些实施例中,请参见图3所示,喷射管221为环形管,多个喷射孔2212沿喷射管221的延伸方向间隔设置。
示例性的,在图3中,喷射管221为圆环形结构,且多个喷射孔2212沿喷射管221的周向间隔排布,即喷射管221为首尾相连的结构。当然,在其他实施例中,喷射管221也可以是矩形环状结构、三角形环状结构或椭圆形环状结构。可理解的是,喷射管221可以为非环状结构,比如,喷射管221为条状结构、L型结构或U型结构等。
通过将喷射管221设置为环形管,即喷射管221为环形结构,并将多个喷射孔2212沿喷射管221的延伸方向间隔排布,使得多个喷射孔2212周向布置于喷射管221上,采用这种结构的喷射管221能够从多个方向对容纳于反应腔11内的电池单体30的喷射冷却介质,有利于提升对电池单体30的冷却效果。
根据本申请的一些实施例,参照图3,并请进一步参照图5,图5为本申请一些实施例提供的喷射单元22的轴侧视图。喷射单元22还包括多个支撑件222,多个支撑件222连接于喷射管221,多个支撑件222沿喷射管221的延伸方向间隔设置,多个支撑件222用于配合支撑喷射管221。
其中,多个支撑件222沿喷射管221的延伸方向间隔设置,即多个支撑件222的排布方向为喷射管221的延伸方向。
示例性的,在图3中,喷射单元22设置有三个支撑件222,三个支撑件222沿喷射管221的周向间隔排布,采用这种结构的喷射单元22的结构稳定性更高。当然,在其他实施例中,支撑件222的数量也可以为四个、五个或六个等。
喷射单元22还设置有用于支撑喷射管221的多个支撑件222,多个支撑件222均与喷射管221相连,且多个支撑件222沿喷射管221的延伸方向间隔设置,采用这种结构的喷射单元22一方面能够提高喷射管221放置于反应腔11内的稳定性,以便于将喷射管221放置于反应腔11内,另一方面能够实现喷射管221悬空于反应腔11内,以缓解喷射管221与反应腔11的腔壁接触的现象,从而有利于减少反应腔11的腔壁的高温对喷射管221的影响。
在一些实施例中,参照图3和图5,并请进一步参照图6和图7,图6为图5所示的喷射单元22的A处的局部放大图,图7为本申请一些实施例提供的支撑件222的第一支撑段2221的局部结构示意图。支撑件222为长度可调的伸缩结构。
其中,支撑件222为长度可调的伸缩结构,即支撑件222的长度可调节,也就是说,在支撑件的延伸方向X上,喷射管221的高度位置可调节。
可选地,支撑件222的结构可以是多种,比如,在图6和图7中,支撑件222包括第一支撑段2221和第二支撑段2222,在支撑件的延伸方向X上,第一支撑段2221的一端连接于喷射管221,另一端设置有螺纹孔2221a,第二支撑段2222的外周面设置有外螺纹2222a,第二支撑段2222螺接于第一支撑段2221的螺纹孔2221a内,从而通过拧紧或拧松第二支撑段2222即可实现支撑件222的长度可调。当然,在其他实施例中,支撑件222还可以为其他结构,比如,第一支撑段2221套设于第二支撑段 2222的外侧,第一支撑段2221上设置有沿支撑件的延伸方向X间隔排布的多个卡接孔,第二支撑段2222的外周面上设置有卡接块,通过将卡接块卡于不同的卡接孔内能够实现支撑件222的长度可调。
通过将喷射单元22用于支撑喷射管221的支撑件222设置为长度可调的伸缩结构,从而能够调节支撑件222的长度,以调整喷射管221的高度,进而能够根据不同的实验情况调整喷射管221的高度位置,以满足不同实验需求。
根据本申请的一些实施例,参见图4所示,喷射孔2212的孔径为D 1,满足,2mm≤D 1≤3mm。
其中,喷射孔2212的孔径为D 1,即喷射孔2212的直径的大小。
通过将喷射孔2212的孔径设置在2mm到3mm,采用这种结构的喷射管221一方面能够缓解因喷射孔2212的孔径过小而导致冷却介质堵塞喷射孔2212的风险,以保证喷射管221的正常使用,另一方面能够缓解因喷射孔2212的孔径过大而造成喷射管221的介质流道2211内的冷却介质的压力不足,以导致冷却介质的喷射距离过小或部分喷射孔2212无法喷射冷却介质的现象。
根据本申请的一些实施例,参见图4所示,喷射管221的管壁的厚度为D 2,满足,1mm≤D 2≤2mm。
其中,喷射管221的管壁的厚度为D 2,即在喷射管221的径向上,喷射管221的外壁面与内壁面之间的距离。
通过将喷射管221的管壁的厚度设置在1mm到2mm,一方面能够缓解因喷射管221的管壁的厚度过小而导致喷射管221的结构强度不足的现象,从而有利于降低喷射管221在冷却介质的冲击下中出现破裂或变形损坏的风险,另一方面能够缓解因喷射管221的管壁的厚度过大而造成材料浪费或制造难度过大的现象,从而有利于降低喷射管221的制造成本。
根据本申请的一些实施例,参见图2和图3所示,热失控实验装置100还包括放置架40,放置架40设置于反应腔11内,放置架40用于放置电池单体30。其中,喷射管221环绕放置架40设置,且喷射孔2212朝向放置架40设置。
喷射管221环绕放置架40设置,且喷射孔2212朝向放置架40设置,即喷射管221环绕于放置架40的外侧,且喷射孔2212设置于喷射管221面向放置架40的一侧。
加热机构10的反应腔11内设置有用于放置电池单体30的放置架40,以使电池单体30能够悬空于反应腔11内,从而能够缓解电池单体30与反应腔11的腔壁接触的现象,有利于保证电池单体30的均匀受热。此外,通过将喷射管221环绕放置架40的外侧设置,且喷射孔2212朝向放置架40设置,使得喷射孔2212能够从多个方向对电池单体30进行喷射冷却介质,有利于提升冷却机构20对电池单体30的冷却效果,以中止电池单体30的热失控反应。
在一些实施例中,参见图2、图3和图4所示,喷射管221所在的位置高于放置架40,喷射管221具有第一中心轴线2213,第一中心轴线2213沿喷射管221的延伸方向延伸,喷射孔2212具有第二中心轴线2214,第二中心轴线2214与第一中心轴线2213所在的平面的夹角为α,满足,40°≤α≤60°。
其中,喷射管221所在的位置高于放置架40,即在支撑件的延伸方向X上,喷射管221所在的位置高于放置架40,使得喷射管221所在的位置高于放置于放置架40上的电池单体30。
第一中心轴线2213为喷射管221的介质流道2211的中心轴线,即第一中心轴线2213由多个喷射管221的横截面的中心点相互连接而成,第一中心轴线2213所在的面,即多个喷射管221的横截面的中心点限定的平面,也为与支撑件的延伸方向X相互垂直的平面。
通过将喷射管221的位置设置为高于放置架40,即喷射管221所在的位置高于电池单体30,且将喷射孔2212的第二中心轴线2214与喷射管221的第一中心轴线2213所在的面之间的夹角设置在40度到60度,从而喷射孔2212能够对准放置于放置架40上的电池单体30进行喷射,有利于提高对电池单体30的冷却效果。
根据本申请的一些实施例,参见图1至图7,本申请提供了一种热失控实验装置100,热失控实验装置100包括加热机构10、冷却机构20和放置架40。加热机构10内部具有用于容纳电池单体30的反应腔11,加热机构10被配置为加热电池单体30,以触发电池单体30热失控。冷却机构20包括储存单元21和喷射单元22,喷射单元22包括喷射管221和多个支撑件222,喷射管221内部形成有介质流道2211,介质流道2211与储存单元21连通,储存单元21用于向喷射单元22提供冷却介质,喷射管221上设置有与介质流道2211连通的多个喷射孔2212。喷射管221为环形管,多个喷射孔2212沿喷射管221的延伸方向间隔设置,多个支撑件222连接于喷射管221,多个支撑件222沿喷射管221的延伸方向间隔设置,多个支撑件222用于配合支撑喷射管221,且支撑件222为长度可调的伸缩结构。放置架40设置于反应腔11内,放置架40用于放置电池单体30,喷射管221环绕放置架40设置,且喷射孔2212朝向放置架40设置。其中,喷射管221所在的位置高于放置架40,喷射管221具有第一中心轴线2213,第一中心轴线2213沿喷射管221的延伸方向延伸,喷射孔2212具有第二中心轴线2214,第二中心轴线2214与第一中心轴线2213所在的平面的夹角为α,满足,40°≤α≤60°。
根据本申请的一些实施例,本申请实施例还提供一种热失控实验装置100的使用方法,适用于上述的热失控实验装置100,参照图8,图8为本申请一些实施例提供的热失控实验装置100的使用方法的流程示意图,热失控实验装置100的使用方法包括:
S100:将电池单体30放置于反应腔11内;
S200:通过加热机构10对电池单体30进行加热,以触发电池单体30热失控;
S300:当电池单体30表面的温度T 1达到预设温度时,加热机构10停止对电池单体30进行加热,并通过冷却机构20向反应腔11内提供冷却介质,以冷却电池单体30,使得电池单体30的热失控中止。
其中,加热机构10的反应腔11内的起始温度一般为40℃,结束温度为300℃,阶梯温度5℃,模式为加热-等待-搜索(heat-wait-search),当检测到电池单体30的表面温升速率大于0.02℃/min时,加热机构10将跟踪电池单体30的表面温度,保持温度一致,模拟绝热环境。电池单体30的热失控实验可参见相关技术,在此不再赘述。
需要说明的是,当电池单体30表面的温度T 1达到预设温度时,加热机构10停止对电池单体30进行加热,并通过冷却机构20向反应腔11内提供冷却介质,即预设温度为研究人员想要在此处对电池单体30的热失控进行研究的目标温度,使得在电池单体30的表面温度达到目标温度时,便通过冷却机构20对电池单体30进行冷却,以中止电池单体30的热失控反应。
根据本申请的一些实施例,参照图9,图9为本申请又一些实施例提供的热失控实验装置100的使用方法的流程示意图。在当电池单体30表面的温度T 1达到预设温度时,加热机构10停止对电池单体30进行加热,并通过冷却机构20向反应腔11内提供冷却介质,以冷却电池单体30,使得电池单体30的热失控中止之后,热失控实验装置100的使用方法还包括:
S400:获取电池单体30表面的温度T 2
S500:当T 2<0℃时,关闭冷却机构20。
通过获取到的电池单体30表面的温度T 2小于0℃时能够初步判定电池单体30的热失控已经中止,从而能够停止冷却机构20向反应腔11内提供冷却介质,有利于减少冷却介质的浪费。
根据本申请的一些实施例,参照图10,图10为本申请再一些实施例提供的热失控实验装置100的使用方法的流程示意图。在当T 2<0℃时,关闭冷却机构20之后,热失控实验装置100的使用方法还包括:
S600:在电池单体30静置预设时间后,获取电池单体30表面的温升速率R、电池单体30表面的温度波动M 1和电池单体30的电压波动M 2
S700:若R<0.02℃/min、M 1<0.01℃且M 2<0.01V,从反应腔11内取出电池单体30。
其中,在步骤S600中,在电池单体30静置预设时间后,即需要在电池单体30的温度和环境温度相互平衡后再对电池单体30表面的温度波动M 1进行测量,也就是说,电池单体30表面的温度波动M 1是指电池单体30的温度和环境温度平衡后的温度波动。
示例性的,在步骤S600中,电池单体30在反应腔11内的静置时间为1小时,即预设时间为1小时,当然,在其他实施例中,预设时间也可以为50分钟、1.5小时或2小时等。
当关闭冷却机构20并在电池单体30静置预设时间后,若电池单体30表面的温升速率R小于0.02℃/min、电池单体30表面的温度波动M 1小于0.01℃且电池单体30的电压波动M 2小于0.01V,则能够判定电池单体30的热失控反应已经中止,从而能够从反应腔11内取出电池单体30,以进行后续的研究,采用这种方法能够准确识别到电池单体30的热失控已经中止,以保证电池单体30的热失控反应已经中止后再将电池单体30取出,有利于提升对电池单体30后续研究的准确性,且能够降低电池单体30在被取出后继续发生热失控的风险。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术 人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种热失控实验装置,包括:
    加热机构,内部具有用于容纳电池单体的反应腔,所述加热机构被配置为加热所述电池单体,以触发所述电池单体热失控;以及
    冷却机构,被配置为向所述反应腔内提供冷却介质,以冷却所述电池单体,使得所述电池单体的热失控中止。
  2. 根据权利要求1所述的热失控实验装置,其中,所述冷却机构包括储存单元和喷射单元,所述喷射单元与所述储存单元连通,所述储存单元用于向所述喷射单元提供所述冷却介质,所述喷射单元设置于所述反应腔内,所述喷射单元用于向所述反应腔内喷射所述冷却介质。
  3. 根据权利要求2所述的热失控实验装置,其中,所述喷射单元包括:
    喷射管,内部形成有介质流道,所述介质流道与所述储存单元连通,所述喷射管上设置有与所述介质流道连通的多个喷射孔。
  4. 根据权利要求3所述的热失控实验装置,其中,所述喷射管为环形管,多个所述喷射孔沿所述喷射管的延伸方向间隔设置。
  5. 根据权利要求4所述的热失控实验装置,其中,所述喷射单元还包括:
    多个支撑件,连接于所述喷射管,多个所述支撑件沿所述喷射管的延伸方向间隔设置,多个所述支撑件用于配合支撑所述喷射管。
  6. 根据权利要求5所述的热失控实验装置,其中,所述支撑件为长度可调的伸缩结构。
  7. 根据权利要求3-6任一项所述的热失控实验装置,其中,所述喷射孔的孔径为D 1,满足,2mm≤D 1≤3mm。
  8. 根据权利要求3-7任一项所述的热失控实验装置,其中,所述喷射管的管壁的厚度为D 2,满足,1mm≤D 2≤2mm。
  9. 根据权利要求3-8任一项所述的热失控实验装置,其中,所述热失控实验装置还包括:
    放置架,设置于所述反应腔内,所述放置架用于放置所述电池单体;
    其中,所述喷射管环绕所述放置架设置,且所述喷射孔朝向所述放置架设置。
  10. 根据权利要求9所述的热失控实验装置,其中,所述喷射管所在的位置高于所述放置架;
    所述喷射管具有第一中心轴线,所述第一中心轴线沿所述喷射管的延伸方向延伸,所述喷射孔具有第二中心轴线,所述第二中心轴线与所述第一中心轴线所在的平面的夹角为α,满足,40°≤α≤60°。
  11. 一种热失控实验装置的使用方法,适用于权利要求1-10任一项所述的热失控实验装置,所述热失控实验装置的使用方法包括:
    将电池单体放置于所述反应腔内;
    通过所述加热机构对所述电池单体进行加热,以触发所述电池单体热失控;
    当所述电池单体表面的温度T 1达到预设温度时,所述加热机构停止对所述电池单体进行加热,并通过所述冷却机构向所述反应腔内提供冷却介质,以冷却所述电池单体,使得所述电池单体的热失控中止。
  12. 根据权利要求11所述的热失控实验装置的使用方法,其中,在所述当所述电池单体表面的温度T 1达到预设温度时,所述加热机构停止对所述电池单体进行加热, 并通过所述冷却机构向所述反应腔内提供冷却介质,以冷却所述电池单体,使得所述电池单体的热失控中止之后,所述热失控实验装置的使用方法还包括:
    获取所述电池单体表面的温度T 2
    当T 2<0℃时,关闭所述冷却机构。
  13. 根据权利要求12所述的热失控实验装置的使用方法,其中,在所述当T 2<0℃时,关闭所述冷却机构之后,所述热失控实验装置的使用方法还包括:
    在所述电池单体静置预设时间后,获取所述电池单体表面的温升速率R、所述电池单体表面的温度波动M 1和所述电池单体的电压波动M 2
    若R<0.02℃/min、M 1<0.01℃且M 2<0.01V,从所述反应腔内取出所述电池单体。
PCT/CN2022/121840 2022-09-27 2022-09-27 热失控实验装置及其使用方法 WO2024065202A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121840 WO2024065202A1 (zh) 2022-09-27 2022-09-27 热失控实验装置及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121840 WO2024065202A1 (zh) 2022-09-27 2022-09-27 热失控实验装置及其使用方法

Publications (1)

Publication Number Publication Date
WO2024065202A1 true WO2024065202A1 (zh) 2024-04-04

Family

ID=90475232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121840 WO2024065202A1 (zh) 2022-09-27 2022-09-27 热失控实验装置及其使用方法

Country Status (1)

Country Link
WO (1) WO2024065202A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102116720B1 (ko) * 2020-01-20 2020-05-29 (주)테스 전기에너지 저장시스템 및 전기에너지 저장시스템의 화재예방 방법
CN112331990A (zh) * 2019-09-26 2021-02-05 宁德时代新能源科技股份有限公司 电池包、车辆及缓解电池包热失控蔓延的控制方法
CN212586522U (zh) * 2020-06-24 2021-02-23 蜂巢能源科技有限公司 用于电池的热失控试验工装和热失控试验装置
CN113440768A (zh) * 2021-09-01 2021-09-28 中国建筑科学研究院有限公司 一种锂电池热失控及灭火实验系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331990A (zh) * 2019-09-26 2021-02-05 宁德时代新能源科技股份有限公司 电池包、车辆及缓解电池包热失控蔓延的控制方法
KR102116720B1 (ko) * 2020-01-20 2020-05-29 (주)테스 전기에너지 저장시스템 및 전기에너지 저장시스템의 화재예방 방법
CN212586522U (zh) * 2020-06-24 2021-02-23 蜂巢能源科技有限公司 用于电池的热失控试验工装和热失控试验装置
CN113440768A (zh) * 2021-09-01 2021-09-28 中国建筑科学研究院有限公司 一种锂电池热失控及灭火实验系统

Similar Documents

Publication Publication Date Title
KR100614390B1 (ko) 권취형 전극 조립체와 이를 구비하는 리튬 이온 이차 전지및 이의 제조 방법
JP4971599B2 (ja) 電極組立体及びこれを用いたリチウムイオン二次電池
US20210257652A1 (en) Secondary battery
US8455124B2 (en) Secondary battery and method of fabricating the same
CN101785137A (zh) 圆筒形非水电解液二次电池
US20220216544A1 (en) Rechargeable battery
CN111656602B (zh) 二次电池及包括该二次电池的设备
KR100490548B1 (ko) 권취형 전극 조립체를 구비한 이차 전지
WO2024065202A1 (zh) 热失控实验装置及其使用方法
CN113224474A (zh) 一种大容量电池的极柱连接结构
KR20100066196A (ko) 이차전지 및 이에 적용된 전극군
WO2023004822A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
CN115663342A (zh) 一种圆环型锂离子电池
WO2023078190A1 (zh) 一种卷绕内衬与长圆柱电池
KR100591435B1 (ko) 캔형 리튬이온 이차전지
KR20080032911A (ko) 이차 전지
WO2024086981A1 (zh) 电池单体及其制造方法、电池及用电装置
KR20040022919A (ko) 젤리-롤형의 전극조립체와 이를 채용한 이차전지
CN215299462U (zh) 一种大容量电池的极柱连接结构
EP4020678A1 (en) Cylindrical battery and method for manufacturing cylindrical battery
CN215834670U (zh) 一种锂电池中心管结构
WO2024055257A1 (zh) 电池单体、电池及用电装置
US20240145887A1 (en) Battery cell, battery, electric apparatus, and manufacturing method and device of battery cell
CN221009054U (zh) 圆柱电池及电池组
CN219610524U (zh) 全极耳电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959851

Country of ref document: EP

Kind code of ref document: A1