WO2021056137A1 - 一种手性等离激元纳米结构及其在圆偏振发光体系的应用 - Google Patents

一种手性等离激元纳米结构及其在圆偏振发光体系的应用 Download PDF

Info

Publication number
WO2021056137A1
WO2021056137A1 PCT/CN2019/107251 CN2019107251W WO2021056137A1 WO 2021056137 A1 WO2021056137 A1 WO 2021056137A1 CN 2019107251 W CN2019107251 W CN 2019107251W WO 2021056137 A1 WO2021056137 A1 WO 2021056137A1
Authority
WO
WIPO (PCT)
Prior art keywords
chiral
optionally
precious metal
sulfhydryl
concentration
Prior art date
Application number
PCT/CN2019/107251
Other languages
English (en)
French (fr)
Inventor
陈佳琪
孟德静
吴晓春
Original Assignee
国家纳米科学中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家纳米科学中心 filed Critical 国家纳米科学中心
Priority to PCT/CN2019/107251 priority Critical patent/WO2021056137A1/zh
Publication of WO2021056137A1 publication Critical patent/WO2021056137A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/19Dichroism

Definitions

  • This application relates to the field of nanomaterials, for example, to a chiral precious metal nanoparticle and its preparation method and application.
  • Chirality is almost the basic feature of life material, and may even be a necessary condition for the existence of life. It is the discovery of the double helix chiral structure of DNA that unlocks the replication and transmission of life genetic information. Therefore, understanding the chirality of molecules and the selectivity of chiral enantiomers is essential for understanding the biochemical reactions of life.
  • chiral plasmonic nanostructures have attracted wide attention from researchers.
  • the first is through micromachining (photolithography, plasma etching or wet etching, etc.) and vapor deposition methods.
  • the “down” processing method constructs chiral nanostructures. This method requires high precision and stability of production equipment and processing materials, low production efficiency, and relatively low yield, and the products obtained are prone to oxidation and failure in the atmosphere.
  • the second method is to use chiral biological macromolecules (such as DNA, peptides, amino acids, etc.) to assemble multiple non-chiral precious metal nanoparticles into a chiral space structure.
  • chiral biological macromolecules such as DNA, peptides, amino acids, etc.
  • CN103940746A discloses a method of using gold nanorods and sulfhydryl-containing chiral small molecules to incubate under heating to obtain a "side-by-side” chiral structure.
  • the circular dichroism is formed by twisting between two gold nanorods.
  • the material obtained is as described in its use, which is susceptible to interference from the impurity ions in the solution, and its optical performance is not stable.
  • the maximum ellipticity is only 20 millidegrees, which limits its use in other fields. application.
  • those skilled in the art need to develop a simple, easy-to-follow and high-yield "bottom-up” chiral noble metal nanoparticle synthesis method, so that the resulting product has the advantages of "bottom-up” chiral noble metal nanoparticles.
  • the structural stability brought by the “top-down” synthesis method and the high yield brought by the self-assembly synthesis method further satisfy the increasing demand for optically active materials.
  • the purpose of this application is to provide a method for synthesizing "bottom-up" chiral noble metal nanoparticles that is simple and easy to implement and has a higher yield, and chiral noble metal nanoparticles obtained by the method, so as to meet the growing demand for Demand for optically active materials.
  • one of the objectives of the present application is to provide a chiral precious metal nanoparticle, which is a precious metal nanorod whose long axis is coated with a precious metal shell arranged spirally in a single direction.
  • the spiral arrangement of the precious metal shell layer in a single direction means that the noble metal nanoparticles or the crystal lattice of the precious metal crystals constituting the precious metal shell layer are spirally arranged in a single direction.
  • the spiral arrangement in a single direction includes arrangement only in the left-hand spiral direction and arrangement only in the right-hand spiral direction.
  • Chiral plasmonic nanostructures are expected to have potential applications in highly sensitive biological detection, asymmetric catalysis, chiral separation and polarization optics, but their application in inducing chiral luminescence has not been reported yet.
  • Our system also combines inorganic chiral nanostructures with achiral luminescent materials for the first time, and uses the chiral near-field generated by chiral metal particles to induce circularly polarized fluorescence of the achiral fluorescent materials.
  • the inorganic chiral nanostructure core is used as the chiral source, and the coated mesoporous silica shell is used to enrich the fluorescent substance into the chiral near-field region to generate circularly polarized light.
  • the mesoporous silica shell can also reduce the fluorescence quenching caused by the direct adsorption of fluorescent substances to the metal surface and enhance the stability of chiral nuclei in various polar solvents.
  • the choice of fluorescent materials is also very wide, which can be organic achiral fluorescent materials or inorganic quantum dots.
  • the system described in this application is a new breakthrough in the circularly polarized luminescence system, and is the first use of chiral near-field to realize circularly polarized luminescence of an achiral substance.
  • the construction of the system can be completed only by loading the fluorescent substance into the shell, which has the characteristics of simple and easy operation, stable luminescence and wide application range.
  • the realized asymmetry factor of circularly polarized luminescence is as high as ⁇ 0.01, which is in a leading position among other induced luminescence systems. It is expected to be used in the fields of chiral recognition, chiral catalysis, photothermal, and photodynamic therapy. At the same time, in circularly polarized light-emitting devices, 3D technology has huge application prospects.
  • the coating makes the surface of the precious metal nanorods contain threads.
  • the coating makes the surface of the noble metal nanorods contain equally spaced threads.
  • the pitch of the thread is 25-36nm, for example, 26nm, 27nm, 28nm, 29nm, 30nm, 31nm, 32nm, 33nm, 34nm or 35nm.
  • the thread depth of the thread is less than or equal to 15nm, for example 0.5nm, 1nm, 2nm, 3nm, 5nm, 7nm, 9nm, 11nm, 12nm, 13nm or 14nm.
  • the obtained chiral precious metal nanoparticles have larger circular dichroism, and are more suitable for use as chiral detection materials.
  • the noble metal nanorods are nanorods composed of any one of gold, silver, platinum, or palladium or an alloy formed of at least two noble metals, and may further be gold nanorods.
  • the aspect ratio of the noble metal nanorods is ⁇ 2, for example, 3, 4, 7, 10, 15, 20, 25, 30, 40, or 50.
  • the precious metal shell layer is a precious metal shell layer composed of any one of gold, silver, platinum, or palladium or an alloy formed of at least two precious metals, and may optionally be composed of gold, silver or a gold-silver alloy Shell.
  • the content of silver in the shell layer composed of the gold-silver alloy is 10 to 80 wt%, and further optionally 35 to 50 wt%.
  • the selection of the above-mentioned precious metal components and their content can form the chirality with the most complete spiral structure. Precious metal nanoparticles give it the largest circular dichroic signal.
  • chiral molecules containing sulfhydryl groups are dispersed in the surface of the noble metal nanorods and the noble metal shell.
  • the sulfhydryl-containing chiral molecule is a sulfhydryl-containing chiral small organic molecule or a sulfhydryl-containing chiral polypeptide molecule.
  • the sulfhydryl-containing chiral molecule is L-cysteine and its enantiomers, L-glutathione and its enantiomers, L-acetylcysteine and its enantiomers Any of the enantiomers.
  • achiral molecules containing mercapto groups are dispersed on the surface of the noble metal nanorods and the noble metal shell.
  • the mercapto group-containing achiral molecule is an achiral molecule containing a mercapto group and a benzene ring, and the introduction of an achiral molecule containing a mercapto group and a benzene ring can improve chiral precious metal nanoparticles containing only chiral molecules.
  • the circular dichroism signal of the chromatogram is about 2 to 3 times. The above phenomenon may be caused by the limiting effect of the benzene ring.
  • the mercapto group-containing achiral molecule is any one or a mixture of at least two of p-aminothiophenol, p-hydroxythiophenol, p-mercaptobenzoic acid or p-mercaptophenylboronic acid.
  • the second purpose of this application is to provide a method for preparing the chiral noble metal nanoparticles, which includes the following steps:
  • Step (1) Disperse water-soluble precious metal nanorods in water, add sulfhydryl-containing chiral molecules or a mixture of sulfhydryl-containing chiral molecules and sulfhydryl-containing achiral molecules, and obtain the surface after incubation.
  • Step (2) Add soluble precious metal salt and reducing agent to the precious metal nanorod solution with sulfhydryl-containing chiral molecules adsorbed on the surface obtained in step (1), and mix uniformly to obtain a mixed solution, and wait for the soluble precious metal in the mixed solution After the salt is reduced, a noble metal shell layer spirally arranged in a single direction is formed on the surface of the long axis of the noble metal nanorod to obtain the chiral noble metal nanoparticles.
  • the temperature of the incubation treatment described in step (1) is 25-60°C, for example, 30°C, 35°C, 40°C, 45°C, 50°C, or 55°C.
  • the incubation treatment time described in step (1) is 0.5-24h, for example, 1h, 2h, 4h, 6h, 8h, 10h, 13h, 15h, 17h, 20h, 22h or 23h.
  • the incubation treatment is carried out under the conditions of standing or uniform stirring.
  • the concentration of noble metal atoms in the noble metal nanorods described in step (1) in the solution is 0.02-0.5 mmol/L, for example, 0.03 mmol/L , 0.05mmol/L, 0.08mmol/L, 0.10mmol/L, 0.15mmol/L, 0.20mmol/L, 0.25mmol/L, 0.30mmol/L, 0.35mmol/L, 0.40mmol/L, 0.45mmol/L Or 0.48mmol/L and so on.
  • the concentration of the sulfhydryl-containing chiral molecule in the solution in step (1) is 20-200 ⁇ mol/L, for example, 25 ⁇ mol/L, 30 ⁇ mol/L, 40 ⁇ mol/L, 50 ⁇ mol/L, 60 ⁇ mol/L. L, 70 ⁇ mol/L, 80 ⁇ mol/L, 90 ⁇ mol/L, 100 ⁇ mol/L, 110 ⁇ mol/L, 130 ⁇ mol/L, 150 ⁇ mol/L, 170 ⁇ mol/L or 190 ⁇ mol/L etc.
  • the concentration of the sulfhydryl-containing achiral molecule in the solution in step (1) is 0-150 ⁇ mol/L, for example, 5 ⁇ mol/L, 15 ⁇ mol/L, 25 ⁇ mol/L, 35 ⁇ mol/L, 45 ⁇ mol /L, 55 ⁇ mol/L, 65 ⁇ mol/L, 75 ⁇ mol/L, 85 ⁇ mol/L, 95 ⁇ mol/L, 105 ⁇ mol/L, 115 ⁇ mol/L, 125 ⁇ mol/L, 135 ⁇ mol/L or 145 ⁇ mol/L etc.
  • step (1) After the water-soluble noble metal nanorods described in step (1) are dispersed in water, a surfactant needs to be added to promote their dispersion.
  • the concentration of the surfactant is 5-20 mmol/L, for example, 6 mmol/L, 7 mmol/L, 8 mmol/L, 9 mmol/L, 10 mmol/L, 11 mmol/L, 12 mmol/L, 13 mmol/L L, 14mmol/L, 15mmol/L, 16mmol/L, 17mmol/L, 18mmol/L or 19mmol/L etc.
  • the surfactant is cetyltrimethylammonium bromide.
  • the temperature of the reduction treatment in step (2) is 30 to 80°C, for example, 35°C, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C or 75°C Wait.
  • the time of the reduction treatment in step (2) is 20-120 min, for example, 25 min, 30 min, 40 min, 50 min, 60 min, 70 min, 80 min, 90 min, 100 min, 110 min or 115 min.
  • the concentration of the soluble precious metal salt in the solution described in step (2) is 0.025 to 0.4 mmol/L, for example, 0.03 mmol/L, 0.05 mmol/L, 0.08 mmol/L, 0.10 mmol/L, 0.13 mmol/L, 0.15mmol/L, 0.20mmol/L, 0.25mmol/L, 0.30mmol/L, 0.33mmol/L, 0.36mmol/L or 0.39mmol/L etc.
  • the reducing agent described in step (2) is ascorbic acid.
  • the ratio of the concentration of the ascorbic acid to the soluble precious metal salt is 1:1.5-5, for example, 1:1.6, 1:2, 1:2.5, 1:3, 1:3.5, 1:4, 1: 4.5 or 1:4.8 etc.
  • the preparation method includes the following steps:
  • Step (1) Disperse the water-soluble precious metal nanorods in water so that the concentration of the precious metal atoms in the water is 0.02-0.5 mmol/L, and add the surfactant cetyltrimethylammonium bromide, The mixture of sulfhydryl-containing chiral molecules or sulfhydryl-containing chiral molecules and sulfhydryl-containing achiral molecules, so that the concentration of cetyltrimethylammonium bromide is 5-20mmol/L, and the sulfhydryl-containing chiral molecules The concentration of sulfhydryl-containing achiral molecules is 20-200 ⁇ mol/L, and the concentration of sulfhydryl-containing achiral molecules is 0-150 ⁇ mol/L. After incubating at 25-60°C for 0.5-24h, precious metals with sulfhydryl-containing chiral molecules adsorbed on the surface are obtained.
  • Nanorod solution After incubating at 25-60°C for 0.5-24h
  • step (2) the soluble precious metal salt and ascorbic acid as the reducing agent are added to the precious metal nanorod solution obtained in step (1) on which the chiral molecules containing sulfhydryl groups are adsorbed on the surface, so that the concentration of the soluble precious metal salt in the solution is 0.025-0.4 mmol/L and the ratio of the concentration of ascorbic acid to the soluble precious metal salt is 1:1.5 ⁇ 5, and the mixed solution is obtained after uniform mixing.
  • the soluble precious metal salt in the mixed solution is reduced at 30 ⁇ 80°C for 20 ⁇ 120min,
  • the surface of the long axis of the noble metal nanorods forms a noble metal shell layer that spirally grows in a single direction to obtain the chiral noble metal nanoparticles.
  • the third purpose of this application is to provide a use of the chiral plasmonic nanostructure, that is, the chiral noble metal nanoparticles have excellent optical stability and strong optical rotation ability, and can be used for chiral catalysis , Chiral separation or detection of chiral compounds, and for the production of chiral optical devices or polarizers.
  • the fourth purpose of this application is to provide an application of chiral nanostructures in a circularly polarized luminescence system, wherein the system consists of chiral nanostructure core/silica shell particles (host) dispersed in a solvent and Fluorescent material (guest) composition.
  • This construction method is not limited to the aforementioned chiral spiral nanoparticles, but is a new mechanism for inducing chiral luminescence.
  • the method of constructing a chiral luminescence system based on this mechanism is to use the chiral near-field generated by the plasmon chiral nanostructure to induce the achiral fluorescent substance to produce circularly polarized luminescence, and to coat the dispersed chiral nanostructure with two
  • the silica shell (host) adsorbs the achiral fluorescent substance (guest) to form a host-guest structure, in which the chiral nanostructure core acts as a chiral source, which can induce the achiral fluorescent substance to produce circularly polarized luminescence.
  • a chiral nanostructure core uniformly dispersed in the solution is prepared.
  • the host core refers to a chiral nanostructure core with plasmon circular dichroism.
  • the chiral nanostructure core is any one or more of noble metal nanoparticles having a chiral shape, and a spatial chiral structure formed by the assembly of achiral noble metal nanoparticles.
  • the chiral nanostructure core is a nanorod with a chiral spiral structure
  • the maximum asymmetry factor is about 0.02
  • it is soluble in water
  • the surfactant is CTAB.
  • step (4) various methods are used to coat silica to obtain chiral nanostructure core/silica shell particles (main body).
  • the main body silica shell has a mesoporous structure with moderate thickness and adjustable positive and negative surface charges.
  • the thickness of the main silica shell is 10-100 nanometers
  • the zeta potential of the surface charge is adjustable between -30 mV and +30 mV
  • the size of the mesopore is adjustable between 1-20 nanometers.
  • the fluorescent substance (guest) is dissolved in the solvent.
  • the fluorescent substance is a non-circularly polarized luminescent fluorescent substance dispersed in a solvent, and the solvent is any one or more of water, alcohols or oil-soluble solvents.
  • the fluorescent substance is chlorin e6, and the solvent is ethanol or an aqueous solution.
  • step (6) after the main body is purified by centrifugation, it is uniformly dispersed in the same solvent as in step (5).
  • the centrifugal purification process is to centrifuge the main particles coated with silica in step (4), remove the supernatant, re-add the same solvent as in step (5), and ultrasonically disperse uniformly; the above steps are repeated more frequently. Until the solvent is completely replaced.
  • step (7) the guest in step (5) is added to the host in step (6) and mixed evenly to achieve circularly polarized light emission of the guest.
  • the fifth purpose of this application is to provide an application of chiral nanostructured core/silica shell in circularly polarized luminescence.
  • the system described in this application can be used for chiral recognition, chiral catalysis, photothermal, optical Kinetic therapy and other medical fields, as well as in many aspects such as circularly polarized light-emitting devices, chiral displays, and 3D technology.
  • the method for preparing chiral noble metal nanoparticles provided by this application can prepare chiral noble metal nanoparticles with extremely high efficiency, and the yield and cost can be controlled, and the obtained chiral noble metal nanoparticles have an exceptionally stable and clear microstructure
  • the circular dichroic signal can reach about 600 millidegrees, leading other materials with similar structures. It has great advantages in the fields of chiral catalysis, chiral separation, chiral compound detection, and chiral optics. Application prospects.
  • the driving system provided by the present application has the leading asymmetric luminescence factor in the chiral induced luminescence system, and the magnitude is as high as 0.01, which can be used in many aspects such as circularly polarized light-emitting devices, chiral displays, 3D technology and so on. Compared with the traditional system, it has the characteristics of stable chiral luminescence, simple operation, and can be applied to a variety of solvents. It is expected to be used in medical fields such as chiral recognition, chiral catalysis, photothermal, and photodynamic therapy.
  • FIG. 1 is a scanning electron micrograph of the chiral precious metal nanoparticles 1 obtained in Example 1 of the specific examples of the application.
  • FIG. 2 is a scanning electron micrograph of the chiral precious metal nanoparticles 2 obtained in Example 2 of the specific examples of the application.
  • FIG. 3 is a scanning electron micrograph of the chiral precious metal nanoparticles 3 obtained in Example 3 of the specific examples of the application.
  • Example 4 is a circular dichroism chart of the chiral precious metal nanoparticles 1 obtained in Example 1 in the specific examples of the application.
  • Fig. 5 is a circular dichroism chart of the chiral precious metal nanoparticles 2 obtained in Example 2 in the specific examples of the application.
  • Example 6 is a circular dichroism chart of the chiral precious metal nanoparticles 3 obtained in Example 3 in the specific examples of the application.
  • FIG. 7 is a circular dichroism chart of the chiral precious metal nanoparticles 4 obtained in Example 4 in the specific examples of the application.
  • FIG. 8 is a circular dichrograph of the chiral precious metal nanoparticles 5 obtained in Example 5 in the specific examples of the application.
  • Figure 9 is a TEM characterization diagram of negatively charged L-helical rod core/silica shell nanoparticles.
  • Figure 10 is a TEM characterization diagram of negatively charged D-helical rod core/silica shell nanoparticles.
  • FIG. 11 is a graph of extinction spectrum in Example 11.
  • FIG. 12 is a circular dichroism spectrum diagram in Example 11.
  • FIG. 12 is a circular dichroism spectrum diagram in Example 11.
  • FIG. 13 shows the circularly polarized light emission spectrum in Example 11.
  • FIG. 14 is the calculated value of the asymmetric luminescence factor in Example 11.
  • FIG. 15 shows the circularly polarized light emission spectrum in Example 12.
  • FIG. 16 shows the circularly polarized light emission spectrum in Example 13.
  • FIG. 17 shows the circularly polarized light emission spectrum in Example 14.
  • FIG. 18 shows the circularly polarized light emission spectrum in Example 15.
  • FIG. 19 shows the circularly polarized light emission spectrum in Example 16.
  • Example 20 is a transmission electron microscope image of negatively charged achiral gold nanorods/silica shell particles in Example 17.
  • FIG. 21 shows the circularly polarized light emission spectrum in Example 17.
  • Step (1) Disperse water-soluble gold nanorods (length-to-diameter ratio of 7) in water so that the concentration of gold atoms in the water is 0.05 mmol/L, and add the surfactant cetyltrimethyl to it Base ammonium bromide (CTAB) and L-cysteine (L-Cys) make the concentration of CATB 10mmol/L and the concentration of L-Cys 60 ⁇ mol/L. After the solution is incubated at 30°C for 2.5h, Obtain a gold nanorod solution with L-Cys adsorbed on the surface;
  • CTAB Base ammonium bromide
  • L-Cys L-cysteine
  • step (2) add 20 ⁇ L of silver nitrate solution with a concentration of 10 mmol/L and 8.11 ⁇ L of chloroauric acid solution with a concentration of 24.29 mmol to the 2 mL of gold nanorod solution with L-Cys adsorbed on the surface obtained in step (1) ( That is, the amount of silver atoms accounts for 50% of the total amount of both gold and silver atoms) and 32 ⁇ L of ascorbic acid solution with a concentration of 20 mmol, so that the total concentration of soluble precious metal salts in the solution is 0.2 mmol/L and ascorbic acid and soluble precious metals
  • the ratio of the salt concentration is 1:1.6, and the mixed solution is obtained after uniform mixing.
  • the soluble precious metal salt in the mixed solution is reduced in a water bath at 70°C for 30 minutes, a single-direction spiral growth is formed on the surface of the long axis of the gold nanorods.
  • the mixed solution is centrifuged at a rotation speed of 6000 revolutions/min for 5 minutes, the precipitate is the chiral precious metal nanoparticles 1.
  • Example 1 The only difference from Example 1 is that in addition to CTAB and L-Cys, para-aminothiophenol (4-ATP) is added to the aqueous solution in step (1), and the concentration of 4-ATP in the water is 40 ⁇ mol. /L.
  • Example 2 The only difference from Example 2 is that the L-cysteine (L-Cys) in step (1) is replaced with the same molar amount of its enantiomer D-cysteine (D-Cys).
  • Example 3 chiral noble metal nanoparticles 3 were obtained.
  • step (2) 10 ⁇ L of silver nitrate solution with a concentration of 10 mmol/L and 12.16 ⁇ L of chloroauric acid solution with a concentration of 24.29 mmol are added (that is, the amount of silver atoms in the shell accounts for the amount of gold 25.3% of the total amount of both silver atoms).
  • Example 4 chiral noble metal nanoparticles 4 were obtained.
  • step (2) 14 ⁇ L of silver nitrate solution with a concentration of 10 mmol/L and 10.54 ⁇ L of chloroauric acid solution with a concentration of 24.29 mmol are added (that is, the amount of silver atoms in the shell accounts for the amount of gold 35% of the total amount of both silver atoms).
  • Step (1) Disperse the water-soluble platinum nanorods (length-to-diameter ratio of 4) in water so that the concentration of platinum atoms in the water is 0.05 mmol/L, and add the surfactant cetyltrimethyl to it Base ammonium bromide (CTAB) and L-cysteine (L-Cys) make the concentration of CATB 10mmol/L and the concentration of L-Cys 60 ⁇ mol/L. After the solution is incubated at 30°C for 2.5h, Obtain a platinum nanorod solution with L-Cys adsorbed on the surface;
  • CTAB Base ammonium bromide
  • L-Cys L-cysteine
  • Step (2) to the platinum nanorod solution with L-Cys adsorbed on the surface obtained in step (1), add 20 ⁇ L of silver nitrate solution with a concentration of 10 mmol/L and 8.11 ⁇ L of chloroauric acid solution with a concentration of 24.29 mmol (ie The amount of silver atoms accounts for 50% of the total amount of both gold and silver atoms) and 32 ⁇ L of ascorbic acid solution with a concentration of 20mmol, so that the concentration of soluble precious metal salt in the solution is 0.025 ⁇ 0.4mmol/L and ascorbic acid and soluble precious metals The ratio of the salt concentration is 1:1.6, and the mixed solution is obtained after uniform mixing.
  • the soluble precious metal salt in the mixed solution is reduced in a water bath at 70°C for 90 minutes, a spiral growth in a single direction is formed on the surface of the platinum nanorod’s long axis.
  • the mixed solution is centrifuged at 6000 revolutions/min for 5 minutes, the precipitate is the chiral precious metal nanoparticles 6.
  • Example 1 The only difference from Example 1 is that L-Cys is not added to the aqueous solution in step (1), but the same concentration of L-glutathione is added.
  • Example 7 chiral noble metal nanoparticles 7 were obtained.
  • Example 1 The only difference from Example 1 is that the temperature of the incubation treatment in step (1) is 60° C. and the time is 1 h.
  • Example 2 The only difference from Example 2 is that the concentration of L-Cys in step (1) is 180 ⁇ mol/L, and the concentration of 4-ATP is 150 ⁇ mol/L.
  • Example 9 chiral noble metal nanoparticles 9 were obtained.
  • the chiral precious metal nanoparticles 10 are prepared through the following steps:
  • Example 1 The only difference from Example 1 is that the amount of ascorbic acid added in step (2) is such that the ratio of the concentration of the soluble precious metal salt is 1:5, the temperature of the reduction treatment is 30° C., and the time of the reduction treatment is 120 min.
  • the surface of the chiral precious metal nanoparticles obtained in this application is coated with a precious metal shell layer spirally arranged in a single direction, so that the surface of the precious metal nanorods contains equally spaced threads, and the thread pitch is 25-36nm.
  • the thread depth of the thread is less than or equal to 15nm.
  • the present application can modify the chiral sulfhydryl molecules on the surface of the precious metal nanorods, and by introducing water-soluble precious metal salts into the system and regulating the reduction process, the long axis of the precious metal nanorods can be coated with a single surface along the long axis.
  • the noble metal shells arranged spirally in the direction, and then "bottom-up" generate chiral noble metal nanoparticles with optical activity.
  • the chiral precious metal nanoparticles obtained have an exceptionally stable and clear microstructure.
  • the color signal can reach about 600 millidegrees, leading other materials with similar structures. It has huge application prospects in the fields of chiral catalysis, chiral separation, chiral compound detection and chiral optics.
  • the chiral host and achiral guest fluorescent material designed in the present application only need to be simply mixed to achieve chiral circularly polarized light emission.
  • the chirality of the system comes from the chirality of the host nucleus, and the sign of the circularly polarized luminescence of the system also depends entirely on the chiral direction of the chiral nucleus.
  • the system is suitable for a variety of solvent systems. The control of the surface charge and the increase of the host concentration can improve the efficiency of circularly polarized luminescence.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本文公开了一种手性等离激元纳米结构及其制备方法在圆偏振发光体系的应用,所述手性等离激元纳米结构为长轴表面包覆有沿单一方向螺旋排列的贵金属壳层的贵金属纳米棒;通过在贵金属纳米棒表面修饰手性的巯基分子后,实现"自下而上"地生成具有旋光活性的手性等离激元纳米结构;上述结构、该结构的合成方法以及构筑的应用体系,均属于纳米结构及其调控生长方法和圆偏振发光领域的新突破,本制备方法能够以极高的效率制备手性等离激元纳米结构,产量和成本均可控,得到的手性等离激元纳米结构具有异常稳定和清晰的微观结构,不对称g因子可达±0.04。

Description

一种手性等离激元纳米结构及其在圆偏振发光体系的应用 技术领域
本申请涉及纳米材料领域,例如涉及一种手性贵金属纳米颗粒及其制备方法和用途。
背景技术
自然界的生物分子都具有手性,手性几乎是生命物质的基本特征,甚至可能是生命存在的必要条件,人们正是发现了DNA的双螺旋手性结构才解开了生命遗传信息复制和传递的秘密,因而,理解分子的手性及手性对映体的选择性对于理解生命生化反应至关重要。
近年来,由于具有优异的光学特性、化学稳定性和生物亲和性,手性等离激元纳米结构引起了研究者的广泛关注。目前,制备具有手性结构的贵金属纳米材料的方法主要有两种,第一种是通过微加工(光刻蚀、等离子刻蚀或湿法刻蚀等)和气相沉积的方法,通过“自上而下”的加工方式构筑具有手性的纳米结构,这种方法对于生产设备和加工材料的精度和稳定性要求高,生产效率低,产量也比较低,得到的产品在大气中容易氧化失效。第二种是借助具有手性的生物大分子(如DNA、多肽、氨基酸等)将多个不具有手性的贵金属纳米颗粒组装成具有手性空间结构,这种方法虽然今年来应用较广,但也存在产物结构难以精确控制、产率低、产物结构不稳定、在储存过程中容易发生消旋化而影响进一步应用等问题。例如,CN103940746A中公开了一种利用金纳米棒和含巯基的手性小分子在加热下孵化得到“肩并肩”的手性结构的方法,通过两 根金纳米棒之间发生扭转形成圆二色谱信号,并利用其检测铜离子;其得到的材料正如其用途所述,易受溶液中杂离子干扰,光学性能并不稳定,最大椭圆度仅有20毫度,限制了其在其他领域中的应用。在相关技术的基础上,本领域的技术人员需要开发出一种简便易行且具有较高产率的“自下而上”的手性贵金属纳米颗粒的合成方法,使得得到的产品同时具有由“自上而下”的合成方法带来的结构稳定性和由自组装的合成方法带来的高产率,进而满足日益增长的对于光学活性材料的需求。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种简便易行且具有较高产率的“自下而上”的手性贵金属纳米颗粒的合成方法以及通过该方法得到的手性贵金属纳米颗粒,以满足日益增长的对于光学活性材料的需求。
为达此目的,本申请的目的之一在于提供一种手性贵金属纳米颗粒,所述手性贵金属纳米颗粒为长轴表面包覆有沿单一方向螺旋排列的贵金属壳层的贵金属纳米棒。
所述贵金属壳层沿单一方向螺旋排列是指组成贵金属壳层的贵金属纳米粒子或贵金属晶体的晶格沿单一方向螺旋排列。
所述沿单一方向螺旋排列包括仅沿左手螺旋方向排列和仅沿右手螺旋方向排列。
手性等离激元纳米结构可望在高灵敏生物检测、不对称催化、手性分离和 偏振光学器件中具有潜在应用,但其在诱导手性发光上的应用还未见报道。我们的体系也首次将无机的手性纳米结构与非手性发光的荧光物质相结合,利用手性金属颗粒产生的手性近场诱导非手性荧光物质产生圆偏振荧光。其中,无机的手性纳米结构核作为手性源,包覆的介孔二氧化硅壳用于将荧光物质富集到手性近场区域从而产生圆偏振发光。此外,介孔二氧化硅壳还可减轻荧光物质直接吸附到金属表面导致的荧光淬灭和增强手性核在各种极性溶剂中的稳定性。所选择的荧光物质也很广泛,可以是有机的非手性的荧光物质,也可以是无机的量子点。与现有的手性发光体系比较,本申请描述的体系属于圆偏振发光体系的新突破,是首次利用手性近场实现非手性物质的圆偏振发光。此外,只需将荧光物质负载到壳层中即完成体系的构建,具有简单易操作,发光稳定,适用范围广的特点。实现的圆偏振发光非对称因子高达±0.01,在其他诱导发光体系中处于领先地位,可望用于手性识别、手性催化、光热、光动力治疗等领域,同时在圆偏振发光器件,3D技术方面有着巨大的应用前景。
可选地,所述包覆使得贵金属纳米棒表面含有螺纹。
可选地,所述包覆使得贵金属纳米棒表面含有等间距的螺纹。
可选地,所述螺纹的螺距为25~36nm,例如为26nm、27nm、28nm、29nm、30nm、31nm、32nm、33nm、34nm或35nm等。
可选地,所述螺纹的螺纹深度≤15nm,例如为0.5nm、1nm、2nm、3nm、5nm、7nm、9nm、11nm、12nm、13nm或14nm等。
在上述螺距和螺纹深度下,得到的手性贵金属纳米颗粒具有较大的圆二色性,更适用于作为手性检测材料使用。
可选地,所述贵金属纳米棒为由金、银、铂或钯中的任意一种贵金属或至少两种贵金属形成的合金组成的纳米棒,进一步可选为金纳米棒。
可选地,所述贵金属纳米棒的长径比≥2,例如为3、4、7、10、15、20、25、30、40或50等。
可选地,所述贵金属壳层为由金、银、铂或钯中的任意一种贵金属或至少两种贵金属形成的合金组成的贵金属壳层,可选为由金、银或金银合金组成的壳层。
可选地,所述金银合金组成的壳层中银的含量为10~80wt%,进一步可选为35~50wt%,上述贵金属组分及其含量的选择能够形成具有最完整螺旋结构的手性贵金属纳米颗粒,使其具有最大的圆二色信号。
可选地,所述贵金属纳米棒表面和贵金属壳层中分散有含巯基的手性分子。
可选地,所述含巯基的手性分子为含巯基的手性有机小分子或含巯基的手性多肽分子。
可选地,所述含巯基的手性分子为L-半胱氨酸及其对映异构体、L-谷胱甘肽及其对映异构体、L-乙酰半胱氨酸及其对映异构体中的任意一种。
可选地,所述贵金属纳米棒表面和贵金属壳层中还分散有含巯基的非手性分子。
可选地,所述含巯基的非手性分子为含巯基和苯环的非手性分子,含巯基和苯环的非手性分子的引入能够提高仅含有手性分子的手性贵金属纳米颗粒的圆二色谱信号达2~3倍左右,上述现象的产生可能是由于苯环的限位效应导致的。
可选地,所述含巯基的非手性分子为对氨基苯硫酚、对羟基苯硫酚、对巯基苯甲酸或对巯基苯硼酸中的一任意种或至少两种的混合物。
本申请的目的之二在于提供一种所述手性贵金属纳米颗粒的制备方法,所述制备方法包括如下步骤:
步骤(1),将水溶性的贵金属纳米棒分散在水中,向其中加入含巯基的手性分子或含巯基的手性分子与含巯基的非手性分子的混合物,经孵化处理后,得到表面吸附有含巯基的手性分子的贵金属纳米棒溶液;
步骤(2),向步骤(1)中得到的表面吸附有含巯基的手性分子的贵金属纳米棒溶液中加入可溶性贵金属盐和还原剂,混合均匀后得到混合溶液,待混合溶液中的可溶性贵金属盐经还原处理后,在贵金属纳米棒长轴表面形成沿单一方向螺旋排列的贵金属壳层,得到所述手性贵金属纳米颗粒。
可选地,步骤(1)中所述的孵化处理的温度为25~60℃,例如为30℃、35℃、40℃、45℃、50℃或55℃等。
可选地,步骤(1)中所述的孵化处理的时间为0.5~24h,例如为1h、2h、4h、6h、8h、10h、13h、15h、17h、20h、22h或23h等。
可选地,所述孵化处理在静置或匀速搅拌的条件下进行。
可选地,按其中含有的贵金属原子的物质的量计算,步骤(1)中所述的贵金属纳米棒中的贵金属原子在溶液中的浓度为0.02~0.5mmol/L,例如为0.03mmol/L、0.05mmol/L、0.08mmol/L、0.10mmol/L、0.15mmol/L、0.20mmol/L、0.25mmol/L、0.30mmol/L、0.35mmol/L、0.40mmol/L、0.45mmol/L或0.48mmol/L等。
可选地,步骤(1)中所述的含巯基的手性分子在溶液中的浓度为20~200μmol/L,例如为25μmol/L、30μmol/L、40μmol/L、50μmol/L、60μmol/L、70μmol/L、80μmol/L、90μmol/L、100μmol/L、110μmol/L、130μmol/L、150μmol/L、170μmol/L或190μmol/L等。
可选地,步骤(1)中所述的含巯基的非手性分子在溶液中的浓度为0~150μmol/L,例如为5μmol/L、15μmol/L、25μmol/L、35μmol/L、45μmol/L、55μmol/L、65μmol/L、75μmol/L、85μmol/L、95μmol/L、105μmol/L、115μmol/L、125μmol/L、135μmol/L或145μmol/L等。
可选地,步骤(1)中所述的水溶性的贵金属纳米棒分散在水中后,还需加入表面活性剂促进其分散。
可选地,所述表面活性剂的浓度为5~20mmol/L,例如为6mmol/L、7mmol/L、8mmol/L、9mmol/L、10mmol/L、11mmol/L、12mmol/L、13mmol/L、14mmol/L、15mmol/L、16mmol/L、17mmol/L、18mmol/L或19mmol/L等。
可选地,所述表面活性剂为十六烷基三甲基溴化铵。
可选地,步骤(2)中所述的还原处理的温度为30~80℃,例如为35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃或75℃等。
可选地,步骤(2)中所述的还原处理的时间为20~120min,例如为25min、30min、40min、50min、60min、70min、80min、90min、100min、110min或115min等。
可选地,步骤(2)中所述的可溶性贵金属盐在溶液中的浓度为0.025~0.4mmol/L,例如为0.03mmol/L、0.05mmol/L、0.08mmol/L、0.10mmol/L、0.13 mmol/L、0.15mmol/L、0.20mmol/L、0.25mmol/L、0.30mmol/L、0.33mmol/L、0.36mmol/L或0.39mmol/L等。
可选地,步骤(2)中所述的还原剂为抗坏血酸。
可选地,所述抗坏血酸与可溶性贵金属盐的浓度之比为1:1.5~5,例如为1:1.6、1:2、1:2.5、1:3、1:3.5、1:4、1:4.5或1:4.8等。
可选地,所述制备方法包括如下步骤:
步骤(1),将水溶性的贵金属纳米棒分散在水中,使得其中的贵金属原子在水中的浓度为0.02~0.5mmol/L,向其中加入表面活性剂十六烷基三甲基溴化铵、含巯基的手性分子或含巯基的手性分子与含巯基的非手性分子的混合物,使得十六烷基三甲基溴化铵的浓度为5~20mmol/L,含巯基的手性分子的浓度为20~200μmol/L,含巯基的非手性分子的浓度为0~150μmol/L,在25~60℃下孵化处理0.5~24h后,得到表面吸附有含巯基的手性分子的贵金属纳米棒溶液;
步骤(2),向步骤(1)中得到的表面吸附有含巯基的手性分子的贵金属纳米棒溶液中加入可溶性贵金属盐和还原剂抗坏血酸,使得可溶性贵金属盐在溶液中的浓度为0.025~0.4mmol/L且抗坏血酸与可溶性贵金属盐的浓度之比为1:1.5~5,混合均匀后得到混合溶液,待混合溶液中的可溶性贵金属盐在30~80℃下进行还原处理20~120min后,在贵金属纳米棒长轴表面形成沿单一方向螺旋生长的贵金属壳层,即得到所述手性贵金属纳米颗粒。
本申请的目的之三在于提供一种所述手性等离激元纳米结构的用途,即所述手性贵金属纳米颗粒具有优异的光学稳定性和较强的旋光能力,可以用于手性催化、手性分离或手性化合物的检测以及用于制作手性光学器件或偏振片。
本申请的目的之四在于提供了一种手性纳米结构在圆偏振发光体系的应用,其中,所述的体系由分散在溶剂中的手性纳米结构核/二氧化硅壳颗粒(主体)与荧光物质(客体)构成。此构筑方法,不只局限于上述手性螺旋纳米颗粒,属于一种诱导手性发光的新机制。基于此机制的手性发光体系的构筑方法,是利用等离激元手性纳米结构产生的手性近场诱导非手性荧光物质产生圆偏振发光,将分散的手性纳米结构包覆上二氧化硅壳(主体),吸附非手性荧光物质(客体)形成主客体结构,其中手性纳米结构核作为手性源,可诱导非手性荧光物质产生圆偏振发光。
本部分申请的技术方案如下:
步骤(3),准备均匀分散于溶液中的手性纳米结构核(主体核)。所述的主体核是指具有等离激元圆二色性的手性纳米结构核。
可选地,所述的手性纳米结构核为具有手性形状的贵金属纳米颗粒,非手性贵金属纳米颗粒组装形成的空间手性结构中的任意一种或多种。
可选地,所述的手性纳米结构核为具有手性螺旋结构的纳米棒,最大不对称因子为0.02左右,溶于水中,表面活性剂为CTAB。
步骤(4),采用各种方法包覆二氧化硅后,得到手性纳米结构核/二氧化硅壳颗粒(主体)。所述的主体二氧化硅壳是厚度适中,表面电荷可调正负的介孔结构。
可选地,所述的主体二氧化硅壳厚度为10-100纳米,表面电荷的zeta电势在-30mV到+30mV之间可调,介孔的大小在1-20纳米之间可调。
步骤(5),将荧光物质(客体)溶于溶剂中。所述的荧光物质为分散于溶 剂中的非圆偏振发光的荧光物质,所述溶剂为水、醇类或油溶性溶剂当中的任意一种或者多种。
可选地,所述荧光物质为二氢卟吩e6,所述的溶剂为乙醇或水溶液。
步骤(6),将主体离心纯化后,均匀分散在与步骤(5)相同的溶剂中。所述的离心纯化过程,是将步骤(4)中包覆二氧化硅后的主体颗粒离心后,去除上清液,重新加入与步骤(5)相同的溶剂,超声分散均匀;以上步骤重复多次至完全替换溶剂为止。
步骤(7),将步骤(5)中的客体加入步骤(6)的主体中,混合均匀,即可实现客体的圆偏振发光。
本申请的目的之五,在于提供一种手性纳米结构核/二氧化硅壳在圆偏振发光上的应用,本申请所述的此体系可用于手性识别,手性催化,光热、光动力治疗等医学领域,以及在圆偏振发光器件、手性显示、3D技术等多个方面。
本申请所述的数值范围不仅包括上述例举的点值,还包括没有例举出的上述数值范围之间的任意的点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举所述范围包括的具体点值。
与现有技术相比,本申请的有益效果为:
(1)本申请在贵金属纳米棒表面修饰手性的巯基分子后,通过在体系内引入水溶性贵金属盐并调控其还原过程,能够在贵金属纳米棒表面长轴表面包覆有沿单一方向螺旋排列的贵金属壳层,进而“自下而上”地生成具有旋光活性的手性贵金属纳米颗粒,上述结构及该结构的合成方法未被任何现有技术所公开,属于纳米结构调控领域的新突破。
(2)本申请提供的手性贵金属纳米颗粒的制备方法能够以极高的效率制备手性贵金属纳米颗粒,产量和成本均可控,得到的手性贵金属纳米颗粒具有异常稳定和清晰的微观结构,在同等颗粒浓度的情况下,圆二色信号可达600毫度左右,领先其他具有类似结构的材料,在手性催化、手性分离、手性化合物的检测以及手性光学器件领域具有巨大的应用前景。
(3)现有手性发光材料多是基于手性荧光物质发光,或手性有机分子诱导非手性荧光物质发光,有易聚集易淬灭或溶剂体系单一的特点。本申请第一次将手性等离激元纳米材料引入圆偏振发光领域,是等离激元圆二色纳米结构用于驱动非手性荧光物质产生圆偏振发光的先例。而且本申请提供的驱动体系,具有手性诱导发光体系中领先的发光不对称发光因子,量级高达0.01,可用于圆偏振发光器件、手性显示、3D技术等多个方面。与传统体系相比,具有手性发光稳定,操作简单,可适用于多种溶剂的特点,可望用于手性识别,手性催化,光热、光动力治疗等医学领域。
在阅读并理解了详细描述和附图后,可以明白其他方面。
附图说明
图1为本申请具体实施例中实施例1得到的手性贵金属纳米颗粒1的扫描电镜照片。
图2为本申请具体实施例中实施例2得到的手性贵金属纳米颗粒2的扫描电镜照片。
图3为本申请具体实施例中实施例3得到的手性贵金属纳米颗粒3的扫描电镜照片。
图4为本申请具体实施例中实施例1得到的手性贵金属纳米颗粒1的圆二色谱图。
图5为本申请具体实施例中实施例2得到的手性贵金属纳米颗粒2的圆二色谱图。
图6为本申请具体实施例中实施例3得到的手性贵金属纳米颗粒3的圆二色谱图。
图7为本申请具体实施例中实施例4得到的手性贵金属纳米颗粒4的圆二色谱图。
图8为本申请具体实施例中实施例5得到的手性贵金属纳米颗粒5的圆二色谱图。
图9为带负电荷的L-螺旋棒核/二氧化硅壳的纳米颗粒的透射电镜表征图。
图10为带负电荷的D-螺旋棒核/二氧化硅壳的纳米颗粒的透射电镜表征图。
图11为实施例11中的消光光谱图。
图12为实施例11中的圆二色光谱图。
图13为实施例11中的圆偏振发光光谱。
图14为实施例11中的不对称发光因子计算值。
图15为实施例12中的圆偏振发光光谱。
图16为实施例13中的圆偏振发光光谱。
图17为实施例14中的圆偏振发光光谱。
图18为实施例15中的圆偏振发光光谱。
图19为实施例16中的圆偏振发光光谱。
图20为实施例17中带负电荷的非手性金纳米棒/二氧化硅壳颗粒的透射电镜图。
图21为实施例17中的圆偏振发光光谱。
下面通过具体实施方式来进一步说明本申请的技术方案。
具体实施方式
实施例1
通过如下步骤制备手性贵金属纳米颗粒1:
步骤(1),将水溶性的金纳米棒(长径比为7)分散在水中,使得其中的金原子在水中的浓度为0.05mmol/L,向其中加入表面活性剂十六烷基三甲基溴化铵(CTAB)和L-半胱氨酸(L-Cys),使得CATB的浓度为10mmol/L,L-Cys的浓度为60μmol/L,溶液在30℃下孵化处理2.5h后,得到表面吸附有L-Cys的金纳米棒溶液;
步骤(2),向2mL步骤(1)中得到的表面吸附有L-Cys的金纳米棒溶液中加入20μL浓度为10mmol/L的硝酸银溶液、8.11μL浓度为24.29mmol的氯 金酸溶液(即银原子的物质的量占金银原子二者总物质的量的50%)和32μL浓度为20mmol的抗坏血酸溶液,使得可溶性贵金属盐在溶液中的总浓度为0.2mmol/L且抗坏血酸与可溶性贵金属盐的浓度之比为1:1.6,混合均匀后得到混合溶液,待混合溶液中的可溶性贵金属盐在70℃水浴下进行还原处理30min后,在金纳米棒长轴表面形成沿单一方向螺旋生长的金银合金壳层,混合溶液以6000转/min的转速离心处理5min后,沉淀即为所述手性贵金属纳米颗粒1。
实施例2
通过如下步骤制备手性贵金属纳米颗粒2:
与实施例1的区别仅在于,步骤(1)中的水溶液中除了加入CTAB和L-Cys外,还加入了对氨基苯硫酚(4-ATP),且4-ATP在水中的浓度为40μmol/L。
实施列2得到手性贵金属纳米颗粒2。
实施例3
通过如下步骤制备手性贵金属纳米颗粒3:
与实施例2的区别仅在于,步骤(1)中的L-半胱氨酸(L-Cys)替换为相同摩尔量的其对映异构体D-半胱氨酸(D-Cys)。
实施列3得到手性贵金属纳米颗粒3。
实施例4
通过如下步骤制备手性贵金属纳米颗粒4:
与实施例2的区别仅在于,步骤(2)中加入10μL浓度为10mmol/L的硝酸银溶液、12.16μL浓度为24.29mmol的氯金酸溶液(即使得壳层中银原子的物质的量占金银原子二者总物质的量的25.3%)。
实施列4得到手性贵金属纳米颗粒4。
实施例5
通过如下步骤制备手性贵金属纳米颗粒5:
与实施例2的区别仅在于,步骤(2)中加入14μL浓度为10mmol/L的硝酸银溶液、10.54μL浓度为24.29mmol的氯金酸溶液(即使得壳层中银原子的物质的量占金银原子二者总物质的量的35%)。
实施列5得到手性贵金属纳米颗粒5。
实施例6
通过如下步骤制备手性贵金属纳米颗粒6:
步骤(1),将水溶性的铂纳米棒(长径比为4)分散在水中,使得其中的铂原子在水中的浓度为0.05mmol/L,向其中加入表面活性剂十六烷基三甲基溴化铵(CTAB)和L-半胱氨酸(L-Cys),使得CATB的浓度为10mmol/L,L-Cys的浓度为60μmol/L,溶液在30℃下孵化处理2.5h后,得到表面吸附有L-Cys的铂纳米棒溶液;
步骤(2),向步骤(1)中得到的表面吸附有L-Cys的铂纳米棒溶液中加入20μL浓度为10mmol/L的硝酸银溶液、8.11μL浓度为24.29mmol的氯金酸溶液(即银原子的物质的量占金银原子二者总物质的量的50%)和32μL浓度为20mmol的抗坏血酸溶液,使得可溶性贵金属盐在溶液中的浓度为0.025~0.4mmol/L且抗坏血酸与可溶性贵金属盐的浓度之比为1:1.6,混合均匀后得到混合溶液,待混合溶液中的可溶性贵金属盐在70℃水浴下进行还原处理90min后,在铂纳米棒长轴表面形成沿单一方向螺旋生长的金银合金壳层,混合溶液以 6000转/min的转速离心处理5min后,沉淀即为所述手性贵金属纳米颗粒6。
实施例7
通过如下步骤制备手性贵金属纳米颗粒7:
与实施例1的区别仅在于,步骤(1)中的水溶液中不加入L-Cys,而是加入相同浓度的L-谷胱甘肽。
实施列7得到手性贵金属纳米颗粒7。
实施例8
通过如下步骤制备手性贵金属纳米颗粒8:
与实施例1的区别仅在于,步骤(1)中孵化处理的温度为60℃,时间为1h。
实施列8得到手性贵金属纳米颗粒8。
实施例9
通过如下步骤制备手性贵金属纳米颗粒9:
与实施例2的区别仅在于,步骤(1)中L-Cys的浓度为180μmol/L,4-ATP的浓度为150μmol/L。
实施列9得到手性贵金属纳米颗粒9。
实施例10
通过如下步骤制备手性贵金属纳米颗粒10:
与实施例1的区别仅在于,步骤(2)中抗坏血酸的加入量为使其与可溶性贵金属盐的浓度之比为1:5,且还原处理的温度为30℃,还原处理的时间为120min。
实施列10得到手性贵金属纳米颗粒10。
通过形貌测试得到,本申请得到的手性贵金属纳米颗粒表面包覆有沿单一方向螺旋排列的贵金属壳层,包覆使得贵金属纳米棒表面含有等间距的螺纹,螺纹的螺距为25~36nm,螺纹的螺纹深度≤15nm。
从图1和图2的对比中可以明显看出,向体系内引入含巯基的非手性分子后,得到的手性贵金属纳米颗粒形貌更规整,表面出现明显的具有较大的螺纹深度螺纹,从图4和图5之间的对比也可看出,引入含巯基的非手性分子后,得到的手性贵金属纳米颗粒在其吸收峰处呈现出更大的圆二色谱信号,强度可达600毫度(椭圆度)左右,是不引入含巯基的非手性分子的实施例1的3倍,上述表征测试说明含巯基的非手性分子的引入能够得到形貌更规整,旋光能力更强的手性贵金属纳米颗粒。
从图2和图3以及图5和图6之间的对比可知,将体系内的含巯基手性分子替换为其对映异构体后,得到的手性贵金属纳米颗粒表面的贵金属壳层具有与之相反的螺旋方向,且相应的旋光性能也发生反转。
从图5与图7和图8之间的对比可知,手性贵金属纳米颗粒表面包覆的贵金属壳层的成分亦对其旋光性能具有一定的影响,若以金银合金作为手性贵金属纳米颗粒表面包覆的贵金属壳层的材料,则当其中银的含量为35~50wt%时,得到的手性贵金属纳米颗粒的旋光性能相对较强。
综上所述,本申请通过在贵金属纳米棒表面修饰手性的巯基分子后,通过在体系内引入水溶性贵金属盐并调控其还原过程,能够在贵金属纳米棒表面长轴表面包覆有沿单一方向螺旋排列的贵金属壳层,进而“自下而上”地生成具 有旋光活性的手性贵金属纳米颗粒,上述结构及该结构的合成方法未被任何现有技术所公开,属于纳米结构调控领域的新突破。本申请提供的手性贵金属纳米颗粒的制备方法能够以极高的效率制备手性贵金属纳米颗粒,产量和成本均可控,得到的手性贵金属纳米颗粒具有异常稳定和清晰的微观结构,圆二色信号可达600毫度左右,领先其他具有类似结构的材料,在手性催化、手性分离、手性化合物的检测以及手性光学器件领域具有巨大的应用前景。
实施例11
将60μL形貌为图9和图10的带负电荷的L-和D-螺旋棒核/二氧化硅壳的纳米颗粒(L-和D-主体)和20μM的Ce6溶于2mL的乙醇溶液中,超声5秒,测得消光光谱如图11,测得圆二色光谱如图12,测得圆偏振发光光谱如图13,计算得不对称发光因子如图14。在乙醇溶液中,由图9和图10,可以知道两种颗粒大小均匀,表面有较清晰的螺旋结构,二氧化硅壳层介孔清晰。由图11和图12,可知两种主体的圆二色吸收峰与消光光谱特征峰位对应,但圆二色性呈现了镜像的对称,是典型的手性对映体特征。由图13可知,单独的Ce6不产生圆偏振发光,但是两种颗粒诱导的Ce6发光同样呈现出镜像对称,其发光的手性随主体核的手性而变化,即产生圆偏振发光特性。
实施例12
将60μL带负电荷的L-和D-主体和10μM的Ce6溶于2mL的水溶液中,超声5秒,测得圆偏振发光光谱如图15。对比图13和图15,发现两种手性的主体核和Ce6在水溶液体系中,仍然可以实现圆偏振发光。且发光的手性与溶液无光,只与主体核的手性有关。
实施例13
将60μL带负电荷的L-主体和不同浓度的Ce6溶于2mL的水溶液中,超声5秒,测得圆偏振发光光谱如图16。表明在主体核浓度相同的情况下,5μM以上的Ce6产生的圆偏振发光信号几乎不变,说明Ce6在5μM时就已经达到饱和。
实施例14
将60μL带负电荷的D-主体和不同浓度的Ce6溶于2mL的水溶液中,超声5秒,测得圆偏振发光光谱如图17。对比图16和图17,两种颗粒对于Ce6分子的浓度效应同样呈现出相似的镜像特征。
实施例15
将30、60和90μL带负电荷的D-主体和20μM的Ce6溶于2mL的水溶液中,超声5秒,测得圆偏振发光光谱如图18。表明在Ce6分子充足的情况下,体系圆偏振发光效应随着主体核的浓度增加而增加。
实施例16
将60μL的带正电荷的L-主体和20μM的Ce6溶于2mL的乙醇溶液中,超声5秒,测得圆偏振发光光谱如图19。表明在Ce6分子充足的情况下,主体电荷对体系圆偏振发光的影响。对比图19和图13,带正电荷的主体能实现更强的圆偏振发光。
实施例17
将形貌为图20的60μL的带负电荷的非手性金纳米棒/二氧化硅壳颗粒和20μM的Ce6溶于2mL的乙醇溶液中,超声5秒,测得圆偏振发光光谱如图21。 表明不具有手性结构的主体不能实现圆偏振发光,作为一个对比例说明手性来源于主体中的手性核。
综上所述,本申请设计的手性主体和非手性客体荧光物质之间只需简单混合,即可实现手性圆偏振发光。体系的手性来源于主体核的手性,体系圆偏振发光的符号也完全依赖于手性核的手性方向。体系适用于多种溶剂体系。表面电荷的控制和主体浓度的增加,可以提高圆偏振发光的效率。
以上所述的具体实施例,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施例而已,并不用于限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种手性等离激元纳米结构,其中,所述手性等离激元纳米结构为长轴表面包覆有沿单一方向螺旋排列的贵金属壳层的贵金属纳米棒。
  2. 根据权利要求1所述的手性等离激元纳米结构,其中,所述贵金属纳米棒表面和贵金属壳层中分散有含巯基的手性分子;
    可选地,所述含巯基的手性分子为含巯基的手性有机小分子或含巯基的手性多肽分子;
    可选地,所述含巯基的手性分子为L-半胱氨酸及其对映异构体或L-半胱氨酸及其对映异构体中的任意一种。
  3. 根据权利要求2所述的手性等离激元纳米结构,其中,所述贵金属纳米棒表面和贵金属壳层中还分散有含巯基的非手性分子;
    可选地,所述含巯基的非手性分子为含巯基和苯环的非手性分子;
    可选地,所述含巯基的非手性分子为对氨基苯硫酚、对羟基苯硫酚、对巯基苯甲酸或对巯基苯硼酸中的一任意种或至少两种的混合物。
  4. 根据权利要求1所述的手性等离激元纳米结构,其中,所述包覆使得贵金属纳米棒表面含有螺纹;
    可选地,所述包覆使得贵金属纳米棒表面含有等间距的螺纹;
    可选地,所述螺纹的螺距为25~36nm;
    可选地,所述螺纹的螺纹深度≤15nm。
  5. 根据权利要求1或4所述的手性等离激元纳米结构,其中,所述贵金属纳米棒为由金、银、铂或钯中的任意一种贵金属或至少两种贵金属形成的合金组成的纳米棒,可选为金纳米棒;
    可选地,所述贵金属纳米棒的长径比≥2。
  6. 根据权利要求1~5任一项所述的手性等离激元纳米结构,其中,所述贵金属壳层为由金、银、铂或钯中的任意一种贵金属或至少两种贵金属形成的合金组成的贵金属壳层,可选为由金、银或金银合金组成的壳层;
    可选地,所述金银合金组成的壳层中银的含量为10~80wt%,可选为35~50wt%。
  7. 一种如权利要求1~6任一项所述的手性等离激元纳米结构的制备方法,其中,所述制备方法包括如下步骤:
    步骤(1),将水溶性的贵金属纳米棒分散在水中,向其中加入含巯基的手性分子或含巯基的手性分子与含巯基的非手性分子的混合物,经孵化处理后,得到表面吸附有含巯基的手性分子的贵金属纳米棒溶液;
    步骤(2),向步骤(1)中得到的表面吸附有含巯基的手性分子的贵金属纳米棒溶液中加入可溶性贵金属盐和还原剂,混合均匀后得到混合溶液,待混合溶液中的可溶性贵金属盐经还原处理后,在贵金属纳米棒长轴表面形成沿单一方向螺旋排列的贵金属壳层,得到所述手性等离激元纳米结构。
  8. 根据权利要求7所述的制备方法,其中,步骤(2)中所述的可溶性贵金属盐在溶液中的浓度为0.025~0.4mmol/L。
  9. 根据权利要求7或8所述的制备方法,其中,步骤(2)中所述的还原剂为抗坏血酸;所述抗坏血酸与可溶性贵金属盐的浓度之比为1:1.5~5。
  10. 根据权利要求7~9任一项所述的制备方法,其中,步骤(1)中所述的孵化处理的温度为25~60℃;
    可选地,步骤(1)中所述的孵化处理的时间为0.5~24h;
    可选地,按其中含有的贵金属原子的物质的量计算,步骤(1)中所述的贵金属纳米棒中的贵金属原子在溶液中的浓度为0.02~0.5mmol/L;
    可选地,步骤(1)中所述的含巯基的手性分子在溶液中的浓度为20~200μmol/L;
    可选地,步骤(1)中所述的含巯基的非手性分子在溶液中的浓度为0~150μmol/L;
    可选地,步骤(1)中所述的水溶性的贵金属纳米棒分散在水中后,还需加入表面活性剂促进其分散;
    可选地,所述表面活性剂的浓度为5~20mmol/L;
    可选地,所述表面活性剂为十六烷基三甲基溴化铵;
    可选地,步骤(2)中所述的还原处理的温度为30~80℃;
    可选地,步骤(2)中所述的还原处理的时间为20~120min。
  11. 根据权利要求7~10任一项所述的制备方法,其中,所述制备方法包括如下步骤:
    步骤(1),将水溶性的贵金属纳米棒分散在水中,使得其中的贵金属原子在水中的浓度为0.02~0.5mmol/L,向其中加入表面活性剂十六烷基三甲基溴化铵、含巯基的手性分子或含巯基的手性分子与含巯基的非手性分子的混合物,使得十六烷基三甲基溴化铵的浓度为5~20mmol/L,含巯基的手性分子的浓度为20~200μmol/L,含巯基的非手性分子的浓度为0~150μmol/L,在25~60℃下孵化处理0.5~24h后,得到表面吸附有含巯基的手性分子的贵金属纳米棒溶液;
    步骤(2),向步骤(1)中得到的表面吸附有含巯基的手性分子的贵金属纳米棒溶液中加入可溶性贵金属盐和还原剂抗坏血酸,使得可溶性贵金属盐在溶液中的浓度为0.025~0.4mmol/L且抗坏血酸与可溶性贵金属盐的浓度之比为1:1.5~5,混合均匀后得到混合溶液,待混合溶液中的可溶性贵金属盐在30~80℃下进行还原处理20~120min后,在贵金属纳米棒长轴表面形成沿单一方向螺旋生长的贵金属壳层,即得到所述手性等离激元纳米结构。
  12. 一种如权利要求1~6任一项所述的手性等离激元纳米结构的用途,其中,所述手性等离激元纳米结构用于手性催化、手性分离、手性化合物的检测或用于手性光学的应用。
  13. 一种圆偏振发光体系,其包括手性纳米结构,所述手性纳米结构包括根据权利要求1~6任一项所述的手性等离激元纳米结构,所述圆偏振发光体系包括主体和客体;
    所述主体包括手性纳米结构核和二氧化硅壳层,所述二氧化硅壳层包覆在所述手性纳米结构核表面;
    所述客体为荧光物质;
    所述荧光物质吸附在所述二氧化硅壳层上。
  14. 根据权利要求13所述圆偏振发光体系,其中,所述手性纳米结构核为具有圆二色性的结构;
    可选地,所述手性纳米结构核为具有手性形状的贵金属纳米颗粒或由非手性贵金属纳米颗粒组装形成的空间手性结构,可选为具有手性形状的贵金属纳米颗粒。
  15. 根据权利要求13或14所述的圆偏振发光体系,其中,所述二氧化硅壳层为表面具有电荷的介孔结构;
    可选地,所述二氧化硅壳层的厚度为10-100nm;
    可选地,所述二氧化硅壳层的表面电荷zeta电势为-30~30mV;
    可选地,所述二氧化硅壳层的介孔孔径为1-20nm;
    可选地,所述荧光物质为非圆偏振发光的荧光物质;
    可选地,所述荧光物质选自二氢卟吩、四苯基乙烯或六苯基硅中的任意一种或至少两种的组合,可选为二氢卟吩。
  16. 根据权利要求13~15任一项所述的圆偏振发光体系,其中,所述圆偏振发光体系还包括溶剂;
    可选地,所述荧光物质在所述体系中的浓度为1-200μmol/L;
    可选地,所述溶剂为水、甲醇、乙醇、丙醇、二氯甲烷、氯仿、四氯化碳或正己烷中的任意一种或至少两种的组合;
    可选地,所述溶剂为水和/或乙醇。
  17. 一种根据权利要求13~15任一项所述圆偏振发光体系的制备方法,其中,所述方法包括以下步骤:
    (1)对手性纳米结构核进行二氧化硅壳层包覆,得到主体;
    (2)将步骤(1)得到的主体与荧光物质的溶液混合,干燥,得到所述圆偏振发光体系。
  18. 根据权利要求17所述的制备方法,其中,步骤(1)中所述手性纳米结构核的制备步骤包括:根据权利要求7-11任一项所述制备方法制备手性等离 激元纳米结构,然后离心,去除上清液,得到所述手性纳米结构核;
    可选地,步骤(1)所述对手性纳米结构核进行二氧化硅壳层包覆的方法为:将手性纳米结构核重新分散在水中,加入表面活性剂,并调节pH至8-11,加入硅源,搅拌,离心,去除上清液,得到所述主体;
    可选地,步骤(2)所述混合的方法为涡旋、震荡或超声中的任意一种或至少两种的组合。
  19. 根据权利要求18所述的制备方法,其中,所述表面活性剂为十六烷基三甲基溴化铵;
    可选地,所述还原剂为抗坏血酸;
    可选地,所述硅源为正硅酸乙酯;
    可选地,所述圆偏振发光体系的制备方法包括以下步骤:
    (1)将含有十六烷基三甲基溴化铵的贵金属纳米棒分散在水中,之后加入含巯基的手性分子,孵化处理,再加入可溶性贵金属盐和抗坏血酸,混合生长完成后,离心,去除上清液,得到所述手性纳米结构核,将得到的手性纳米结构核重新分散在水中,再加入十六烷基三甲基溴化铵,调节反应pH至11,加入正硅酸乙酯,搅拌,离心,去除上清液,得到所述主体;其中,在水溶液中,贵金属纳米棒的浓度为0.02-0.5mmol/L,十六烷基三甲基溴化铵的浓度为5-20mmol/L,含巯基的手性分子的浓度为20-200μmol/L,可溶性贵金属盐的浓度为0.025-0.4mmol/L,抗坏血酸与可溶性贵金属盐的浓度之比为1:(1.5-5),孵化处理的温度为25-60℃,孵化处理的时间为0.5-24h;
    (2)将步骤(1)得到的主体与荧光物质的溶液混合,干燥,得到所述圆 偏振发光体系。
  20. 根据权利要求13-16任一项所述的圆偏振发光体系在手性识别、手性催化、圆偏振发光器件、手性显示、3D显示以及用于光热治疗或光动力治疗的材料中的应用。
PCT/CN2019/107251 2019-09-23 2019-09-23 一种手性等离激元纳米结构及其在圆偏振发光体系的应用 WO2021056137A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107251 WO2021056137A1 (zh) 2019-09-23 2019-09-23 一种手性等离激元纳米结构及其在圆偏振发光体系的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107251 WO2021056137A1 (zh) 2019-09-23 2019-09-23 一种手性等离激元纳米结构及其在圆偏振发光体系的应用

Publications (1)

Publication Number Publication Date
WO2021056137A1 true WO2021056137A1 (zh) 2021-04-01

Family

ID=75165345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107251 WO2021056137A1 (zh) 2019-09-23 2019-09-23 一种手性等离激元纳米结构及其在圆偏振发光体系的应用

Country Status (1)

Country Link
WO (1) WO2021056137A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113634240A (zh) * 2021-08-26 2021-11-12 山东交通学院 荧光磁性复合纳米纤维、其制备方法及应用
CN114289729A (zh) * 2021-12-31 2022-04-08 广东粤港澳大湾区国家纳米科技创新研究院 巯基修饰纳米金胶体液及其制备方法和应用
CN114815020A (zh) * 2022-04-21 2022-07-29 岭南师范学院 一种高品质因数折射率传感器的设计方法及折射率传感器
CN115724801A (zh) * 2022-11-24 2023-03-03 北京师范大学 一种具有圆偏振发光特性的金属配合物玻璃材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1970140A (zh) * 2005-11-25 2007-05-30 中国科学院生态环境研究中心 纳米金属手性识别固定相、手性分离色谱仪及制备方法
CN103940746A (zh) * 2014-05-05 2014-07-23 国家纳米科学中心 一种金纳米棒手性结构构建方法及一种铜离子的检测方法
CN104713833A (zh) * 2015-02-04 2015-06-17 国家纳米科学中心 一种放大金纳米棒组装体等离激元圆二色响应的方法
CN105036070A (zh) * 2015-06-30 2015-11-11 国家纳米科学中心 一种金纳米棒-二氧化硅核壳结构纳米材料、制备方法及用途
US20160167136A1 (en) * 2014-11-14 2016-06-16 The Regents Of The University Of Michigan Synthesis of chiral nanoparticles using circularly polarized light
CN106238728A (zh) * 2016-09-08 2016-12-21 国家纳米科学中心 一种离散贵金属纳米颗粒及其制备方法
CN107987291A (zh) * 2017-12-04 2018-05-04 吉林大学 一种基于晶态纳米纤维素的圆偏振发光材料、制备方法及其在防伪上的应用
CN108680554A (zh) * 2018-03-28 2018-10-19 国家纳米科学中心 一种增强诱导等离激元圆二色性的方法
US20180312636A1 (en) * 2017-04-28 2018-11-01 Lg Display Co., Ltd. Metal Nanostructure and Method for Manufacturing Thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1970140A (zh) * 2005-11-25 2007-05-30 中国科学院生态环境研究中心 纳米金属手性识别固定相、手性分离色谱仪及制备方法
CN103940746A (zh) * 2014-05-05 2014-07-23 国家纳米科学中心 一种金纳米棒手性结构构建方法及一种铜离子的检测方法
US20160167136A1 (en) * 2014-11-14 2016-06-16 The Regents Of The University Of Michigan Synthesis of chiral nanoparticles using circularly polarized light
CN104713833A (zh) * 2015-02-04 2015-06-17 国家纳米科学中心 一种放大金纳米棒组装体等离激元圆二色响应的方法
CN105036070A (zh) * 2015-06-30 2015-11-11 国家纳米科学中心 一种金纳米棒-二氧化硅核壳结构纳米材料、制备方法及用途
CN106238728A (zh) * 2016-09-08 2016-12-21 国家纳米科学中心 一种离散贵金属纳米颗粒及其制备方法
US20180312636A1 (en) * 2017-04-28 2018-11-01 Lg Display Co., Ltd. Metal Nanostructure and Method for Manufacturing Thereof
CN107987291A (zh) * 2017-12-04 2018-05-04 吉林大学 一种基于晶态纳米纤维素的圆偏振发光材料、制备方法及其在防伪上的应用
CN108680554A (zh) * 2018-03-28 2018-10-19 国家纳米科学中心 一种增强诱导等离激元圆二色性的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113634240A (zh) * 2021-08-26 2021-11-12 山东交通学院 荧光磁性复合纳米纤维、其制备方法及应用
CN113634240B (zh) * 2021-08-26 2023-10-27 宏葵生物(中国)股份有限公司 荧光磁性复合纳米纤维、其制备方法及应用
CN114289729A (zh) * 2021-12-31 2022-04-08 广东粤港澳大湾区国家纳米科技创新研究院 巯基修饰纳米金胶体液及其制备方法和应用
CN114289729B (zh) * 2021-12-31 2023-04-25 广东粤港澳大湾区国家纳米科技创新研究院 巯基修饰纳米金胶体液及其制备方法和应用
CN114815020A (zh) * 2022-04-21 2022-07-29 岭南师范学院 一种高品质因数折射率传感器的设计方法及折射率传感器
CN114815020B (zh) * 2022-04-21 2023-09-22 岭南师范学院 一种高品质因数折射率传感器的设计方法及折射率传感器
CN115724801A (zh) * 2022-11-24 2023-03-03 北京师范大学 一种具有圆偏振发光特性的金属配合物玻璃材料及其制备方法

Similar Documents

Publication Publication Date Title
WO2021056137A1 (zh) 一种手性等离激元纳米结构及其在圆偏振发光体系的应用
WO2018082204A1 (zh) 一种具有高产率和量子产率的红光碳点及其制备方法
Ankamwar et al. Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution
CN111112596B (zh) 一种手性贵金属纳米颗粒及其制备方法和用途
Liu et al. Synthesis of DNA-templated fluorescent gold nanoclusters
Wang et al. Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis
CN106141200B (zh) 一种碳点/金复合纳米粒子的制备方法及用途
JP4429602B2 (ja) ナノ粒子の相間移動
CN105036070B (zh) 一种金纳米棒‑二氧化硅核壳结构纳米材料、制备方法及用途
JP6006319B2 (ja) 分子拘束下で金属量子クラスターを調製する方法
CN101348713A (zh) 能发射荧光的磁性复合纳米微球及其制备方法
CN104209538B (zh) 一种在水相介质中制备纳米银线的方法
BRPI0719483A8 (pt) processo para produção de nanoparticula sestáveis e monodispersas de prata metálica e pasta de nanoparticulas de prata metálica
CN107350484B (zh) 一种多刺金纳米颗粒的制备方法
KR20190042668A (ko) 리간드가 결합된 금 나노클러스터를 함유하는 용액의 제조 방법
Maity et al. Stability and binding interaction of bilirubin on a gold nano-surface: steady state fluorescence and FT-IR investigation
CN110669506A (zh) 半胱胺和n-乙酰l-半胱氨酸共同保护的水溶性金纳米团簇荧光材料的制备方法
Yong et al. Templated synthesis of gold nanorods (NRs): the effects of cosurfactants and electrolytes on the shape and optical properties
Liu et al. Hydrothermal synthesis of novel photosensitive gold and silver bimetallic nanoclusters protected by adenosine monophosphate (AMP)
Pham et al. Synthesis and in-depth study of the mechanism of silver nanoplate and nanodecahedra growth by LED irradiation for SERS application
Guo et al. Intrinsic optical properties and emerging applications of gold nanostructures
He et al. The evidence for synthesis of truncated triangular silver nanoplates in the presence of CTAB
Ragupathi et al. Preparation and physicochemical characterization of Ag nanorods phytosynthesis by the Petroselinum crispum plant extract
Zheng et al. Fluorescence enhancement of acridine orange in a water solution by Au nanoparticles
Ujihara Solution-phase synthesis of branched metallic nanoparticles for plasmonic applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946924

Country of ref document: EP

Kind code of ref document: A1