WO2021054609A1 - 고흡수성 수지의 제조 방법 - Google Patents

고흡수성 수지의 제조 방법 Download PDF

Info

Publication number
WO2021054609A1
WO2021054609A1 PCT/KR2020/010612 KR2020010612W WO2021054609A1 WO 2021054609 A1 WO2021054609 A1 WO 2021054609A1 KR 2020010612 W KR2020010612 W KR 2020010612W WO 2021054609 A1 WO2021054609 A1 WO 2021054609A1
Authority
WO
WIPO (PCT)
Prior art keywords
super absorbent
absorbent polymer
water
polymer
weight
Prior art date
Application number
PCT/KR2020/010612
Other languages
English (en)
French (fr)
Inventor
김규팔
정의석
안균혁
김기철
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200099394A external-priority patent/KR102578742B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2021518711A priority Critical patent/JP7086433B2/ja
Priority to EP20864302.3A priority patent/EP3842477B1/en
Priority to US17/286,212 priority patent/US11613591B2/en
Priority to CN202080005548.9A priority patent/CN112839993B/zh
Publication of WO2021054609A1 publication Critical patent/WO2021054609A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof

Definitions

  • the present invention is capable of suppressing crushing during transport by appropriately controlling the moisture content of the super absorbent polymer by means of water, etc., while suppressing deterioration of physical properties such as generation of large particles or non-uniform moisture content during the hydrolysis process. It relates to a method for producing a resin.
  • Super Absorbent Polymer is a synthetic polymer material that has the ability to absorb moisture of 500 to 1,000 times its own weight, and each developer has a SAM (Super Absorbency Material), AGM (Absorbent Gel). Material) and so on. Since the above-described superabsorbent resin has begun to be put into practical use as a sanitary tool, nowadays, in addition to hygiene products such as paper diapers for children, soil repair agents for horticultural use, water resistant materials for civil engineering and construction, sheets for seedlings, freshness maintenance agents in the food distribution field, It is widely used as a material for poultice.
  • SAM Super Absorbency Material
  • AGM Absorbent Gel
  • super absorbent polymers are widely used in the field of hygiene products such as diapers and sanitary napkins.
  • superabsorbent polymers typically have a form in which fine powders are gathered, and as these fine powders have a uniform particle diameter and a large surface area in the sanitary material, they rapidly absorb a large amount of moisture. Need to be indicated.
  • the super absorbent polymer in the process of manufacturing the super absorbent polymer, there are many cases in which the super absorbent polymer is transferred in order to proceed with a subsequent process or apply to a packaging or sanitary material.
  • the super absorbent polymer has a form in which fine powders are collected, there are many cases where the super absorbent polymer powders physically collide and crush during the resin transfer process. Accordingly, various physical properties such as the overall absorption ability of the super absorbent polymer There is a problem that a decline occurs.
  • the resin powders agglomerate with each other, for example, large particles having a particle diameter larger than 850 ⁇ m ( There were many cases where a large amount of particles that did not pass through the standard body #20) occurred.
  • the generation of such a large amount of large particles may lead to a decrease in properties of the overall superabsorbent polymer, and as a result, it is necessary to additionally remove the large particles by a classification process or the like, resulting in a decrease in the overall productivity of the super absorbent polymer.
  • the water content of the super absorbent polymer can be properly controlled by water, etc. to suppress crushing during transport, while also reducing problems such as generation of large particles during the hydrolysis process.
  • the development of is continuously required.
  • the present invention is capable of suppressing crushing during transport by appropriately controlling the moisture content of the super absorbent polymer by means of a water number, etc., while suppressing degradation of physical properties such as generation of large particles or non-uniform moisture content during the hydrolysis process. It is to provide a method for producing a water absorbent resin.
  • the present invention provides a super absorbent property comprising a base resin powder comprising a crosslinked polymer of a water-soluble ethylenically unsaturated monomer having at least partially neutralized acidic groups, and a surface crosslinked layer formed on the surface of the base resin powder by further crosslinking the crosslinked polymer.
  • a base resin powder comprising a crosslinked polymer of a water-soluble ethylenically unsaturated monomer having at least partially neutralized acidic groups, and a surface crosslinked layer formed on the surface of the base resin powder by further crosslinking the crosslinked polymer.
  • It provides a method for producing a super absorbent polymer comprising the step of forming a hydrolyzed super absorbent polymer by mixing water and an additive including a polyoxyalkylene aliphatic hydrocarbon ether carboxylic acid with the super absorbent polymer particles.
  • the water content of the superabsorbent polymer may be appropriately controlled in the hydrolysis step or the like to suppress crushing or deterioration of physical properties during transport. Furthermore, by the use of the specific additive, it is possible to solve the problem that the physical properties of the super absorbent polymer are deteriorated due to phenomena such as generation of large particles or non-uniform moisture content during the hydrolysis process.
  • the present invention while being able to suppress crushing during transfer of the super absorbent polymer, the decrease in physical properties during the hydrolysis process or decrease in productivity due to the generation of large particles does not appear substantially, so that the super absorbent polymer exhibiting excellent physical properties is highly productive.
  • By manufacturing and transferring it can be preferably applied to the manufacture of various sanitary materials.
  • polymer or “polymer” used in the specification of the present invention means that a water-soluble ethylenically unsaturated monomer is polymerized, and may encompass all ranges of moisture content or particle size.
  • a polymer having a moisture content (moisture content) of about 40% by weight or more, which is in a state before drying after polymerization may be referred to as a hydrogel polymer.
  • “super absorbent polymer” means the polymer or the base resin itself, depending on the context, or an additional process, such as surface crosslinking, fine powder reassembly, drying, grinding, classifying, for the polymer or the base resin, It is used to cover all products made suitable for commercialization through singers, etc.
  • a base resin powder comprising a crosslinked polymer of a water-soluble ethylenically unsaturated monomer having at least partially neutralized acidic groups, and a surface crosslinked layer formed on the surface of the base resin powder by further crosslinking the crosslinked polymer Providing a super absorbent polymer particle comprising;
  • a method for producing a super absorbent polymer comprising the step of forming a hydrolyzed super absorbent polymer by mixing water and an additive including a polyoxyalkylene aliphatic hydrocarbon ether carboxylic acid with the super absorbent polymer particles.
  • the polyoxyalkylene may be a polyoxyethylene-derived unit having a repetition number of 1 to 20, or 2 to 15, or 3 to 10, and the aliphatic hydrocarbon bonded thereto has a carbon number of 10 to 30 carbon atoms. It may be a structure derived from an aliphatic linear alkyl, for example, a functional group such as stearyl or lauryl.
  • such an additive has a hydrophobic functional group of a long-chain hydrocarbon in a molecule, and together with a hydrophilic functional group of a carboxylic acid terminally bonded to the hydrophobic functional group through an ether bond.
  • the additive is a polyoxyalkylene-derived unit having a constant repetition number is further bonded together with the hydrophobic and hydrophilic functional groups.
  • the specific additive includes a hydrophilic functional group of a carboxylic acid together with the hydrophobic functional group, and further, since a polyoxyalkylene-derived unit is further bonded, a hydrophilic atmosphere can be formed around the super absorbent polymer particles, In addition, the super absorbent polymer particles are evenly dispersed and distributed in the water mixed during the hydrolysis process, so that crushing during transfer of the super absorbent polymer may be more effectively suppressed.
  • a polycarboxylic acid copolymer previously known as an agglomeration inhibitor, or polyethylene glycol, which is a representative hydrophilic polymer in the hydrolysis process, the hydrolysis process It was confirmed that agglomeration in the polymer was not properly suppressed, and a large amount of large particles exceeding 850 ⁇ m was generated or the moisture content became non-uniform, resulting in a decrease in overall physical properties or a decrease in productivity of the super absorbent polymer. This is predicted because a number of hydrophilic functional groups exist in the polymer.
  • the decrease in physical properties during the hydrolysis process or decrease in productivity due to the generation of large particles substantially does not appear.
  • super absorbent polymer particles are prepared. These super absorbent polymer particles are crosslinked, polymerized, and dried according to the manufacturing process and conditions of a general super absorbent polymer. It can be manufactured through processes such as pulverization, classification, and surface crosslinking. Hereinafter, an example of manufacturing super absorbent polymer particles will be described in detail.
  • a monomer composition is formed by mixing each component of a water-soluble ethylenically unsaturated monomer, an internal crosslinking agent, and a polymerization initiator having an acidic group at least partially neutralized.
  • the water-soluble ethylenically unsaturated monomer may be any monomer commonly used in the preparation of a super absorbent polymer.
  • the water-soluble ethylenically unsaturated monomer may be a compound represented by the following Formula 1:
  • R 1 is an alkyl group having 2 to 5 carbon atoms containing an unsaturated bond
  • M 1 is a hydrogen atom, a monovalent or divalent metal, an ammonium group, or an organic amine salt.
  • the monomer may be at least one selected from the group consisting of acrylic acid, methacrylic acid, and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts of these acids.
  • acrylic acid or a salt thereof is used as a water-soluble ethylenically unsaturated monomer, a super absorbent polymer having improved water absorption can be obtained, which is advantageous.
  • the monomers include maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethanesulfonic acid, 2-methacryloylethanesulfonic acid, 2-(meth)acryloylpropanesulfonic acid, or 2-( Anionic monomers of meth)acrylamide-2-methyl propane sulfonic acid and salts thereof; (Meth)acrylamide, N-substituted (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, methoxypolyethylene glycol (meth)acrylate or polyethylene glycol ( Nonionic hydrophilic-containing monomers of meth)acrylate; And (N,N)-dimethylaminoethyl (meth)acrylate or an amino group-containing unsaturated monomer of (N,N)-dimethylaminopropyl (meth)acrylamide and a quaternary product thereof; Can be
  • the water-soluble ethylenically unsaturated monomer may have an acidic group, and at least a part of the acidic group may be neutralized.
  • the monomer partially neutralized with an alkaline substance such as sodium hydroxide, potassium hydroxide or ammonium hydroxide may be used.
  • the degree of neutralization of the monomer may be 40 to 95 mol%, or 40 to 80 mol%, or 45 to 75 mol%.
  • the range of the degree of neutralization may vary depending on the final physical properties, but if the degree of neutralization is too high, the neutralized monomer precipitates and it may be difficult for the polymerization to proceed smoothly. On the contrary, if the degree of neutralization is too low, the absorbency of the polymer is greatly reduced. It may exhibit properties such as elastic rubber that are difficult to handle.
  • the internal crosslinking agent is a term used to distinguish it from the surface crosslinking agent for further crosslinking the surface of the base resin to be described later, and serves to crosslink and polymerize the unsaturated bonds of the water-soluble ethylenically unsaturated monomers described above.
  • the crosslinking in the above step proceeds without distinction between the surface or the interior, but by the surface crosslinking process of the base resin to be described later, the surface of the finally prepared superabsorbent polymer has a structure crosslinked by a surface crosslinking agent, and the interior is the internal crosslinking agent. It is made of a crosslinked structure by.
  • the internal crosslinking agent any compound may be used as long as it allows the introduction of a crosslinking bond during polymerization of the water-soluble ethylenically unsaturated monomer.
  • the internal crosslinking agent is N,N'-methylenebisacrylamide, trimethylolpropane tri(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, polyethylene glycol (meth)acrylate, ( Poly)propylene glycol di(meth)acrylate, polypropylene glycol (meth)acrylate, butanediol di(meth)acrylate, (poly)butylene glycol di(meth)acrylate, diethylene glycol di(meth) Acrylate, hexanedioldi(meth)acrylate, triethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, dipentaerythrito
  • This internal crosslinking agent may be used in an amount of 0.01 to 5 parts by weight based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer.
  • the internal crosslinking agent may be used in an amount of 0.01 parts by weight or more, 0.03 parts by weight or more, or 0.05 parts by weight or more, and 5 parts by weight or less and 3 parts by weight or less based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer.
  • the polymerization initiator may be appropriately selected according to the polymerization method, and when a thermal polymerization method is used, a thermal polymerization initiator is used, when a photopolymerization method is used, a photopolymerization initiator is used, and a hybrid polymerization method (heat and light In the case of using all of the methods), both a thermal polymerization initiator and a photopolymerization initiator can be used.
  • a certain amount of heat is generated by light irradiation such as ultraviolet irradiation, and a certain amount of heat is generated according to the progress of the polymerization reaction, which is an exothermic reaction, and thus a thermal polymerization initiator may be additionally used.
  • the photopolymerization initiator may be used without limitation of its configuration as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone, phenyl glyoxylate, and benzyl dimethyl ketone.
  • Ketal examples include acyl phosphine, and alpha-aminoketone ( ⁇ -aminoketone) may be used at least one selected from the group.
  • specific examples of acylphosphine include diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide, ethyl (2,4,6- Trimethylbenzoyl)phenylphosphineate and the like. More various photoinitiators are well specified in Reinhold Schwalm's book “UV Coatings: Basics, Recent Developments and New Application (Elsevier 2007)" p115, and are not limited to the above examples.
  • the photopolymerization initiator may be included in a concentration of 0.0001 to 2.0% by weight based on the monomer composition. If the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow, and if the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be small and physical properties may become uneven.
  • thermal polymerization initiator at least one selected from the group of initiators consisting of persulfate-based initiators, azo-based initiators, hydrogen peroxide and ascorbic acid may be used.
  • persulfate-based initiators include sodium persulfate (Na 2 S 2 O 8 ), potassium persulfate (Potassium persulfate; K 2 S 2 O 8 ), and ammonium persulfate (Ammonium persulfate; (NH 4 )) 2 S 2 O 8 ), etc.
  • examples of azo-based initiators include 2,2-azobis-(2-amidinopropane)dihydrochloride (2,2-azobis(2-amidinopropane) dihydrochloride), 2 ,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride (2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(carb
  • the thermal polymerization initiator may be included in a concentration of 0.001 to 2.0% by weight based on the monomer composition. If the concentration of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, so the effect of the addition of the thermal polymerization initiator may be insignificant. If the concentration of the thermal polymerization initiator is too high, the molecular weight of the super absorbent polymer may be small and physical properties may become uneven. have.
  • the monomer composition may further include additives such as a thickener, a plasticizer, a storage stabilizer, an antioxidant, or a surfactant, if necessary.
  • additives such as a thickener, a plasticizer, a storage stabilizer, an antioxidant, or a surfactant, if necessary.
  • the above-described water-soluble ethylenically unsaturated monomer, an internal crosslinking agent, and a polymerization initiator may be mixed together with a solvent. Therefore, the monomer composition prepared in the above step is in a form dissolved in the solvent, and the content of the solid content in the monomer composition may be 20 to 60% by weight.
  • the solvent that can be used at this time can be used without limitation of its composition as long as the above-described components can be dissolved.
  • the mixing of the above-described components is not particularly limited, and may be performed through a method commonly used in the art, for example, stirring.
  • crosslinking polymerization of the monomer composition is performed to form a hydrogel polymer.
  • the above step may be carried out without any particular limitation of the composition as long as the prepared monomer composition can be crosslinked and polymerized by a method of thermal polymerization, photopolymerization, or hybrid polymerization to form a hydrogel polymer.
  • thermal polymerization when performing thermal polymerization, it may be performed in a reactor having a stirring shaft such as a kneader. In addition, when the thermal polymerization is performed, it may be performed at a temperature of about 80°C or more and less than about 110°C.
  • the means for achieving the polymerization temperature in the above-described range is not particularly limited, and heating may be performed by supplying a heat medium to the reactor or directly supplying a heat source.
  • a heated fluid such as steam, hot air, or hot oil may be used, but the temperature of the heat medium supplied is not limited thereto. You can choose appropriately.
  • the heat source directly supplied may include heating through electricity and heating through gas, but is not limited to the above-described example.
  • the photopolymerization when it is performed, it may be performed in a reactor equipped with a movable conveyor belt, but the polymerization method described above is an example, and the present invention is not limited to the polymerization method described above.
  • a hydrogel polymer discharged to the reactor outlet may be obtained.
  • the hydrogel polymer thus obtained may be obtained in a size of several centimeters to several millimeters, depending on the shape of the stirring shaft provided in the reactor.
  • the size of the resulting hydrogel polymer may vary depending on the concentration and injection speed of the monomer composition to be injected.
  • the form of the hydrogel polymer usually obtained may be a hydrogel polymer on a sheet having a width of the belt.
  • the thickness of the polymer sheet varies depending on the concentration and injection speed of the monomer composition to be injected, but it is preferable to supply the monomer composition so that a sheet-like polymer having a thickness of about 0.5 to about 10 cm can be obtained.
  • the production efficiency is not preferable, and when the thickness of the polymer on the sheet exceeds 10 cm, due to the excessively thick thickness, the polymerization reaction is evenly performed over the entire thickness. It may not happen.
  • the polymerization time of the monomer composition is not particularly limited, and may be adjusted to about 30 seconds to 60 minutes.
  • a typical moisture content of the hydrogel polymer obtained by this method may be about 30 to about 80% by weight.
  • water content refers to a value obtained by subtracting the weight of the dried polymer from the weight of the hydrous gel polymer as the content of water occupied with respect to the total weight of the hydrogel polymer. Specifically, it is defined as a calculated value by measuring the weight loss due to evaporation of moisture in the polymer during drying by raising the temperature of the polymer through infrared heating.
  • the drying condition is a method of increasing the temperature from room temperature to about 180°C and then maintaining it at 180°C.
  • the total drying time is set to 40 minutes including 5 minutes in the temperature raising step, and the moisture content is measured.
  • the hydrogel polymer is dried, pulverized and classified to form a powdery base resin.
  • a process of coarsely pulverizing the hydrogel polymer before drying may be included in order to increase drying efficiency.
  • the grinder used is not limited in configuration, and specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter mill, and cutting Cutter mill, disc mill, shred crusher, crusher, chopper, and disc cutter. However, it is not limited to the above-described example.
  • the particle diameter of the hydrogel polymer may be adjusted to about 0.1 to about 10 mm. Grinding so that the particle diameter is less than 0.1 mm is not technically easy due to the high moisture content of the hydrogel polymer, and a phenomenon of agglomeration between the pulverized particles may occur. On the other hand, when pulverizing so that the particle diameter exceeds 10 mm, the effect of increasing the efficiency of the subsequent drying step may be insignificant.
  • the drying temperature may be about 60°C to about 250°C.
  • the drying temperature is less than about 70° C., the drying time is too long, and when the drying temperature exceeds about 250° C., only the polymer surface is dried excessively, and fine powder may be generated in a subsequent pulverization process.
  • the drying may be performed at a temperature of about 100°C to about 240°C, more preferably about 110°C to about 220°C.
  • drying time it may be performed for about 20 minutes to about 12 hours in consideration of process efficiency and the like. For example, it may be dried for about 10 minutes to about 100 minutes, or about 20 minutes to about 60 minutes.
  • the drying method in the drying step is also commonly used as a drying process of the hydrous gel polymer, it may be selected and used without limitation of its configuration.
  • the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the moisture content of the polymer after such a drying step may be about 0.1 to about 10% by weight.
  • the dried polymer obtained through the drying step is pulverized using a grinder.
  • the pulverizer used to pulverize the powdered base resin to be made of particles having a particle diameter of about 150 ⁇ m to about 850 ⁇ m is specifically, a pin mill, a hammer mill, and a screw. Mill (screw mill), roll mill (roll mill), disk mill (disc mill), may be a jog mill (jog mill), etc., but is not limited to the above-described example.
  • a separate process of classifying the polymer powder obtained after pulverization according to the particle size may be performed.
  • a polymer having a particle diameter of 150 to 850 ⁇ m is classified, and only a polymer powder having such a particle diameter can be produced through a surface crosslinking reaction step.
  • the classified base resin powder has a particle diameter of 150 to 850 ⁇ m, and may include 50% by weight or more of particles having a particle diameter of 300 to 600 ⁇ m.
  • a step of forming a surface crosslinking layer by further crosslinking the surface of the base resin in the presence of a surface crosslinking agent is performed.
  • the step is a step of forming a surface crosslinking layer using a surface crosslinking agent to increase the surface crosslinking density of the base resin, so that the unsaturated bonds of the water-soluble ethylenically unsaturated monomer remaining on the surface without crosslinking are crosslinked by the surface crosslinking agent.
  • a super absorbent polymer having a high surface crosslinking density is formed.
  • the surface crosslinking density that is, the external crosslinking density, is increased by this heat treatment process, while the internal crosslinking density does not change, so that the superabsorbent polymer having a surface crosslinked layer formed thereon has a structure having a higher crosslinking density on the outside than on the inside.
  • a surface crosslinking agent composition including a surface crosslinking agent, an alcohol-based solvent, and water may be used.
  • the surface crosslinking agent included in the surface crosslinking agent composition any surface crosslinking agent that has been conventionally used to manufacture a super absorbent polymer may be used without any particular limitation.
  • the surface crosslinking agent is ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,2-hexanediol, 1,3-hexanediol, 2- One selected from the group consisting of methyl-1,3-propanediol, 2,5-hexanediol, 2-methyl-1,3-pentanediol, 2-methyl-2,4-pentanediol, tripropylene glycol and glycerol Or more polyols; At least one carbonate-based compound selected from the group consisting of ethylene carbonate and propylene carbonate; Epoxy compounds such as ethylene glycol diglycidyl ether
  • Such a surface crosslinking agent may be used in an amount of 0.001 to 2 parts by weight based on 100 parts by weight of the base resin.
  • the surface crosslinking agent may be used in an amount of 0.005 parts by weight or more, 0.01 parts by weight or more, or 0.02 parts by weight or more, and 0.5 parts by weight or less and 0.3 parts by weight or less based on 100 parts by weight of the base resin.
  • the configuration of the method of mixing the surface crosslinking agent composition with the base resin there is no limitation on the configuration of the method of mixing the surface crosslinking agent composition with the base resin.
  • a method of mixing a surface crosslinking agent composition and a base resin in a reaction tank, or spraying a surface crosslinking agent composition onto the base resin, a method of continuously supplying and mixing the base resin and the surface crosslinking agent composition to a continuously operated mixer, etc. Can be used.
  • the surface crosslinking process may be performed at a temperature of about 80°C to about 250°C. More specifically, the surface crosslinking process may be performed at a temperature of about 100°C to about 220°C, or about 120°C to about 200°C, for about 20 minutes to about 2 hours, or about 40 minutes to about 80 minutes. .
  • the surface of the base resin is sufficiently crosslinked, so that the absorbency under pressure or liquid permeability may be increased.
  • the means for increasing the temperature for the surface crosslinking reaction is not particularly limited. It can be heated by supplying a heat medium or by directly supplying a heat source. At this time, as the type of the heat medium that can be used, a heated fluid such as steam, hot air, or hot oil may be used, but the temperature of the heat medium supplied is not limited thereto. It can be appropriately selected in consideration.
  • the heat source directly supplied may include heating through electricity and heating through gas, but is not limited to the above-described example.
  • super absorbent polymer particles may be manufactured and provided.
  • Such super absorbent polymer particles include, for example, a base resin powder comprising a crosslinked polymer in which a water-soluble ethylenically unsaturated monomer having at least a partly neutralized acidic group is polymerized through an internal crosslinking agent, and the crosslinked polymer is a surface crosslinking agent. It may have a form including a surface crosslinked layer formed on the surface of the base resin powder by being further crosslinked.
  • the super absorbent polymer particles may be in a form in which fine powders having a particle diameter of 150 to 850 ⁇ m are collected so that a large amount of moisture can be rapidly absorbed over a large surface area in the sanitary material. .
  • such super absorbent polymer particles may be crushed by physical collision in the process of being transferred to a subsequent packaging process or a subsequent sanitary material manufacturing process, etc., in order to suppress this, a predetermined additive and a predetermined additive to the super absorbent polymer particles and A hydrolysis process of forming a hydrolyzed superabsorbent resin is performed by mixing water.
  • polyoxyalkylene aliphatic hydrocarbon ether carboxylic acid is used as an additive.
  • Such an additive has a structure in which a polyoxyalkylene aliphatic hydrocarbon functional group and a functional group of a carboxylic acid are ether bonded, and has a hydrophobic functional group of a long-chain hydrocarbon, a hydrophilic functional group of a carboxylic acid, and a unit derived from polyoxyalkylene in the molecule. It is possible to effectively suppress the crushing and agglomeration of the super absorbent polymer during the process and transport.
  • the additive has higher hydrophilicity, including units derived from polyoxyalkylene, and may exhibit a liquid state at room temperature. Therefore, in the process of the hydrolysis process, since a separate dissolution or stirring device is not required for forming and adding an aqueous solution of such an additive, the hydrolysis process can be relatively easily performed.
  • the polyoxyalkylene contained in the additive structure may be a polyoxyethylene-derived unit having a repetition number of 1 to 20, or 2 to 15, or 3 to 10, and the aliphatic hydrocarbon bonded thereto May be a structure derived from an aliphatic linear alkyl having a carbon number of 10 to 30, or 12 to 20 carbon atoms, for example, a functional group such as stearyl or lauryl.
  • the above-described additives are based on the weight of the super absorbent polymer particles so as to effectively suppress the formation of large particles due to the aggregation of the super absorbent polymer particles during the hydrolysis process, and not inhibit the uniform increase of the moisture content due to the hydrolysis process. It may be mixed in an amount of 5 to 20,000ppmw. In a more specific example, the additive may be mixed in an amount of 5 to 100 ppmw based on the weight of the super absorbent polymer particles.
  • the additive is used in such a content range, aggregation between super absorbent polymer particles and generation of large particles during the hydrolysis process are more effectively suppressed, while the moisture content of the super absorbent polymer is uniform throughout the desired range due to the hydrolysis process and subsequent drying. Can be controlled.
  • the water is 1 to 10 parts by weight of the super absorbent polymer particles so that water is uniformly mixed with the super absorbent polymer particles in the hydrolysis process so that the moisture content of the final super absorbent polymer can be uniformly controlled as a whole. It is appropriate to mix in an amount of 3 to 8 parts by weight, or 4 to 6 parts by weight.
  • the hydrolysis process of mixing the above-described additive and water may be performed while cooling the surface-crosslinked superabsorbent polymer particles under a temperature of, for example, 40 to 80°C or 45 to 75°C.
  • the step of drying and classifying the hydrolyzing superabsorbent resin may be further performed. While drying the hydrolyzed superabsorbent resin in which water and additives are uniformly mixed in the hydrolysis process, a desired moisture content, for example, a moisture content of 1 to 2.5% by weight may be finally achieved.
  • This moisture content range is an increase compared to the moisture content of about 0.5% by weight or less, or 0.3% by weight or less of the same superabsorbent polymer particles immediately after surface crosslinking, and due to the constant increase in the moisture content, physical crushing is effectively prevented during transport of the superabsorbent polymer. Can be suppressed.
  • Such a drying process can be performed under a drying apparatus and conditions equivalent to those performed in the manufacturing process of the super absorbent polymer particles, and a person skilled in the art can proceed with an appropriate drying time in consideration of the target moisture content.
  • the super absorbent polymer may be further classified.
  • large particles generated in the hydrolysis process for example, particles having a particle diameter of more than 850 ⁇ m and particles having a particle size of less than 150 ⁇ m are removed, and the super absorbent polymer has a particle diameter of 150 to 850 ⁇ m. It can be manufactured to have.
  • the particles having a particle diameter of more than 850 ⁇ m removed in the classification process may be less than 5% by weight, or less than 3% by weight, or 0.1 to 3% by weight based on the total weight of the dried super absorbent polymer. have.
  • a large amount of large particles are still generated during the hydrolysis process, so that particles having a particle diameter of more than 850 ⁇ m removed in the classification process are It may be about 20% by weight or more based on the total weight of the dried super absorbent polymer.
  • the superabsorbent polymer finally prepared by the method according to one embodiment through the above-described drying and classification process when measured for the resin having a particle diameter of 150 to 850 ⁇ m, physiological saline solution (0.9% by weight sodium chloride) Aqueous solution) for 30 minutes centrifugation water retention capacity (CRC) is 30 to 45 g / g, it is possible to maintain excellent absorption performance.
  • the water holding capacity may be measured according to the European Disposables and Nonwovens Association (EDANA) standard EDANA WSP 241.3, and may be calculated according to the calculation formula A described in Test Examples to be described later.
  • the above-described dried and classified super absorbent polymer may be additionally transferred for application to a subsequent packaging or sanitary material manufacturing process.
  • Such a super absorbent polymer does not substantially cause crushing or deterioration in physical properties due to appropriate control of the moisture content even during the transfer process. Furthermore, since the generation of large particles is also minimized in the hydrolysis process, it can be manufactured to have excellent physical properties and productivity as a whole.
  • Acrylic acid 100g, 32% caustic soda 123.5g, thermal polymerization initiator sodium persulfate 0.2g, photopolymerization initiator diphenyl (2,4,6-trimethylbenzoyl)-phosphine oxide 0.008g, internal crosslinking agent polyethylene glycol diacrylate 2.25 g and 59.0 g of water were mixed to prepare a monomer composition having a total solid content of 45% by weight.
  • the monomer composition was supplied at a rate of 500 mL/min to 2000 mL/min on a rotary belt having a width of 10 cm and a length of 2 m and rotating at a speed of 50 cm/min.
  • the supplied monomer composition was irradiated with ultraviolet rays at an intensity of 10 mW/cm 2 to perform crosslinking polymerization for 60 seconds.
  • the hydrogel polymer was coarsely pulverized with a meat chopper, and dried at 190° C. for 40 minutes using an air-flow oven.
  • a surface crosslinking agent composition which is a mixed solution of 3 g of ultrapure water, 3.5 g of methanol, 0.25 g of 1,3-propanediol, and 0.16 g of oxalic acid, was added, and mixed for 2 minutes. This was heat-treated at 185° C. for 50 minutes to perform surface crosslinking, and then classified to take particles having a particle diameter of 150 to 850 ⁇ m to prepare super absorbent polymer particles.
  • a final product of a super absorbent polymer was obtained in the same manner as in Example 1, except that polyoxyethylene (5) lauryl ether carboxylic acid was used in the same amount instead of the polyoxyethylene (3) lauryl ether carboxylic acid.
  • a final product of a super absorbent polymer was obtained in the same manner as in Example 1, except that polyoxyethylene (7) lauryl ether carboxylic acid was used in the same amount instead of the polyoxyethylene (3) lauryl ether carboxylic acid.
  • a final product of a super absorbent polymer was obtained in the same manner as in Example 1, except that polyoxyethylene (10) lauryl ether carboxylic acid was used in the same amount instead of the polyoxyethylene (3) lauryl ether carboxylic acid.
  • Super absorbent polymer particles were prepared in the same manner as in Example 1. However, the step of administering and mixing the mixed solution of ultrapure water and polyoxyethylene (3) lauryl ether carboxylic acid added in Example 1, followed by no further drying and classification steps, and comparing the super absorbent polymer particles themselves. It was set as the final product of the super absorbent polymer of Example 1.
  • the final superabsorbent polymer was prepared in the same manner as in Example 1, except that 0.0250 g of the polycarboxylic acid copolymer disclosed in Preparation Example 1 of Korean Laid-Open Patent No. 2015-0143167 was used. I got the product.
  • a final product of a super absorbent polymer was obtained in the same manner as in Example 1, except that 0.25 g of polyethylene glycol having Mw 600 was used instead of the polyoxyethylene (3) lauryl ether carboxylic acid.
  • the superabsorbent polymer (or base resin powder; hereinafter the same) W 0 (g, about 0.2 g) is uniformly placed in a nonwoven bag and sealed, and the physiology of 0.9% by weight sodium chloride aqueous solution at room temperature. It was immersed in saline. After 30 minutes, the bag was centrifuged and dried at 250 G for 3 minutes, and the mass W 2 (g) of the bag was measured. In addition, after performing the same operation without using a super absorbent polymer, the mass W 1 (g) at that time was measured. Using each of the masses thus obtained, CRC (g/g) was calculated according to the following calculation formula A to confirm the water holding capacity.
  • a super absorbent polymer was classified using a standard mesh of ASTM standard. More specifically, standard mesh bodies having eye sizes of 850 ⁇ m, 600 ⁇ m, 300 ⁇ m, and 150 ⁇ m, respectively, were sequentially stacked, and then 100 g of a super absorbent polymer was put on the top and set in a sieve shaker (AS200). Classification was performed for 10 minutes at Amplitude 1.0mm/g. The superabsorbent polymer remaining between each standard mesh was taken out, weighed, and calculated as a percentage, to calculate the particle size distribution of the superabsorbent polymer.
  • the weight loss due to evaporation of moisture in the superabsorbent polymer was measured and measured as a calculated value.
  • the drying conditions were set to a total drying time of 10 minutes in a manner that the temperature was raised from room temperature to about 140°C and then maintained at 140°C.
  • the moisture content was calculated from the measurement result of the above weight reduction.
  • Comparative Example 1 in which the hydrolysis process was not performed, it is predicted that physical crushing will occur during the subsequent transfer process because the moisture content is low.
  • Comparative Examples 2 to 4 are predicted to be controlled to an appropriate moisture content by the hydrolysis process to suppress crushing during transport, but due to the non-use of additives or the use of other additives such as polycarboxylic acid or polyethylene glycol during the hydrolysis process, large particles are It was confirmed that a number of occurrences occurred, resulting in a decrease in physical properties and a decrease in productivity of the super absorbent polymer.
  • Examples 1 to 4 were found to be able to suppress crushing during transport by appropriate control of the moisture content, but also significantly reduced the amount of large particles generated in the hydrolysis process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

본 발명은 가수 등에 의해 고흡수성 수지의 함수율을 적절히 제어하여 이송 중의 파쇄 등을 억제할 수 있으면서도, 상기 가수 과정에서 거대 입자가 발생하거나 함수율이 불균일하게 되는 등의 물성 저하를 억제할 수 있는 고흡수성 수지의 제조 방법에 관한 것이다.

Description

고흡수성 수지의 제조 방법
관련 출원(들)과의 상호 인용
본 출원은 2019년 9월 18일자 한국 특허 출원 제 10-2019-0114791 호 및 2020년 8월 7일자 한국 특허 출원 제 10-2020-0099394 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 가수 등에 의해 고흡수성 수지의 함수율을 적절히 제어하여 이송 중의 파쇄 등을 억제할 수 있으면서도, 상기 가수 과정에서 거대 입자가 발생하거나 함수율이 불균일하게 되는 등의 물성 저하를 억제할 수 있는 고흡수성 수지의 제조 방법에 관한 것이다.
고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.
가장 많은 경우에, 이러한 고흡수성 수지는 기저귀나 생리대 등 위생재 분야에서 널리 사용되고 있다. 이러한 위생재에 대한 적용을 위해, 고흡수성 수지는 대표적으로 미세 분말들이 모인 형태를 가지며, 이들 미세 분말들이 위생재 내에서 균일한 입경 및 넓은 표면적으로 가짐에 따라, 수분을 빠르게 다량 흡수하는 특성을 나타낼 필요가 있다.
한편, 상기 고흡수성 수지를 제조하는 과정에서는, 후속 공정의 진행, 포장 또는 위생재에 대한 적용 등을 위해, 고흡수성 수지를 이송하는 경우가 다수 발생한다. 그런데, 상기 고흡수성 수지가 미세 분말들이 모인 형태를 가짐에 따라, 수지 이송 과정에서 고흡수성 수지 분말들이 물리적으로 충돌하여 파쇄되는 경우가 다수 발생하며, 이로 인해 고흡수성 수지의 전체적인 흡수능 등 제반 물성의 하락이 발생하는 문제점이 있다.
이러한 문제점을 해결하기 위해, 이전부터 고흡수성 수지를 최종 제조한 후에, 상기 고흡수성 수지를 냉각하면서 소량의 물을 첨가하여 함수율을 제어하는 가수 공정이 진행되어 왔다. 이러한 가수 공정에 의해, 상기 고흡수성 수지의 함수율을 일부 증가시키는 경우, 고흡수성 수지 분말들의 이송 중에 전체적인 파쇄율 및 물성 저하가 크게 감소될 수 있다.
그러나, 상기 가수 공정을 진행하는 과정에서, 고흡수성 수지 분말들과 물의 충분하고도 균일한 혼합이 이루어지지 못하는 경우, 수지 분말들이 서로 뭉쳐, 예를 들어, 850㎛ 보다 큰 입경을 갖는 거대 입자(표준체 #20을 통과하지 못하는 입자)가 다량 발생하는 경우가 많았다. 이러한 거대 입자의 다량 발생은 전체적인 고흡수성 수지의 물성 저하를 초래할 수 있으며, 결국, 상기 거대 입자를 분급 공정 등에 의해 추가 제거할 필요가 생기게 되어 전체적인 고흡수성 수지의 생산성 저하를 초래하였다.
상술한 문제점으로 인해, 가수 등에 의해 고흡수성 수지의 함수율을 적절히 제어하여 이송 중의 파쇄 등을 억제할 수 있으면서도, 상기 가수 과정에서 거대 입자가 발생하는 등의 문제점을 줄일 수 있는 고흡수성 수지의 제조 기술의 개발이 계속적으로 요구되고 있다.
이에 본 발명은 가수 등에 의해 고흡수성 수지의 함수율을 적절히 제어하여 이송 중의 파쇄 등을 억제할 수 있으면서도, 상기 가수 과정에서 거대 입자가 발생하거나 함수율이 불균일하게 되는 등의 물성 저하를 억제할 수 있는 고흡수성 수지의 제조 방법을 제공하는 것이다.
이에 본 발명은 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 가교 중합체를 포함하는 베이스 수지 분말과, 상기 가교 중합체가 추가 가교되어 상기 베이스 수지 분말 표면에 형성된 표면 가교층을 포함하는 고흡수성 수지 입자를 제공하는 단계; 및
상기 고흡수성 수지 입자에, 폴리옥시알킬렌 지방족 탄화수소 에테르 카르복시산을 포함한 첨가제 및 물을 혼합하여 가수 고흡수성 수지를 형성하는 단계를 포함하는 고흡수성 수지의 제조 방법을 제공한다.
본 발명의 고흡수성 수지의 제조 방법에 따르면, 가수 공정에서 특정한 첨가제를 사용함에 따라, 상기 가수 공정 등에서 고흡수성 수지의 함수율을 적절히 제어하여 이송 중의 파쇄나 물성 저하 등을 억제할 수 있다. 더 나아가, 상기 특정 첨가제의 사용에 의해, 상기 가수 과정에서 거대 입자가 발생하거나 함수율이 불균일하게 되는 등의 현상으로 인해 고흡수성 수지의 물성이 저하되는 문제점 역시 해결할 수 있다.
결국, 본 발명에 의하면, 고흡수성 수지 이송 중의 파쇄를 억제할 수 있으면서도, 가수 과정 중의 물성 저하나 거대 입자의 생성에 따른 생산성 저하가 실질적으로 나타나지 않게 되므로, 우수한 물성을 나타내는 고흡수성 수지를 생산성 높게 제조 및 이송하여, 각종 위생재의 제조에 바람직하게 적용할 수 있다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 발명의 구체적인 구현예들에 따른 고흡수성 수지의 제조 방법에 대하여 보다 상세하게 설명하기로 한다.
그에 앞서, 본 명세서에 사용되는 전문 용어는 단지 특정 구현예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 그리고, 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 발명의 명세서에 사용되는 용어 "중합체", 또는 "고분자"는 수용성 에틸렌계 불포화 단량체가 중합된 상태인 것을 의미하며, 모든 수분 함량 범위 또는 입경 범위를 포괄할 수 있다. 상기 중합체 중, 중합 후 건조 전 상태의 것으로 함수율(수분 함량)이 약 40 중량% 이상의 중합체를 함수겔 중합체로 지칭할 수 있다.
또한, "고흡수성 수지"는 문맥에 따라 상기 중합체 또는 베이스 수지 자체를 의미하거나, 또는 상기 중합체나 상기 베이스 수지에 대해 추가의 공정, 예를 들어 표면 가교, 미분 재조립, 건조, 분쇄, 분급, 가수 등을 거쳐 제품화에 적합한 상태로 한 것을 모두 포괄하는 것으로 사용된다.
발명의 일 구현예에 따르면, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 가교 중합체를 포함하는 베이스 수지 분말과, 상기 가교 중합체가 추가 가교되어 상기 베이스 수지 분말 표면에 형성된 표면 가교층을 포함하는 고흡수성 수지 입자를 제공하는 단계; 및
상기 고흡수성 수지 입자에, 폴리옥시알킬렌 지방족 탄화수소 에테르 카르복시산을 포함한 첨가제 및 물을 혼합하여 가수 고흡수성 수지를 형성하는 단계를 포함하는 고흡수성 수지의 제조 방법이 제공된다.
일 구현예의 제조 방법에서는, 표면 가교까지를 진행하여 고흡수성 수지를 제조한 후, 상기 고흡수성 수지에 가수 공정을 진행하면서, 폴리옥시알킬렌 지방족 탄화수소 작용기 및 카르복시산의 작용기가 에테르 결합된 첨가제를 소량 함께 첨가하게 된다. 이때, 상기 폴리옥시알킬렌은 1 내지 20, 혹은 2 내지 15, 혹은 3 내지 10의 반복수를 갖는 폴리옥시에틸렌 유래 단위로 될 수 있으며, 이에 결합된 지방족 탄화수소는 탄소수 10 내지 30의 탄소수를 갖는 지방족 선형 알킬 유래 구조, 예를 들어, 스테아릴 또는 라우릴 등의 작용기로 될 수 있다.
즉, 이러한 첨가제는 분자 중에 장쇄 탄화수소의 소수성 작용기를 가지며, 이와 함께, 상기 소수성 작용기에 에테르 결합을 매개로 말단 결합된 카르복시산의 친수성 작용기를 함께 갖는 것이다. 또한, 상기 첨가제는 상기 소수성 및 친수성 작용기와 함께, 일정한 반복수를 갖는 폴리옥시알킬렌 유래 단위가 더 결합된 것이다.
이러한 특정 첨가제를 가수 공정에서 함께 첨가함에 따라, 가수 공정의 진행 과정에서 수지 입자들 간의 뭉침 현상을 크게 줄일 수 있는 것으로 확인되었다. 이는 상기 장쇄 탄화수소의 소수성 작용기가 가수 공정에서 첨가된 물과, 수지 입자의 접촉 및 수분 흡수를 지연시킬 수 있기 때문으로 보인다. 그 결과, 수지 입자 간의 부착성이 낮아져, 가수 공정 및 이송 과정에서 고흡수성 수지 입자 간의 뭉침이나 거대 입자의 형성 및 물성 저하를 억제할 수 있다.
또한, 상기 특정 첨가제는 상기 소수성 작용기와 함께, 카르복시산의 친수성 작용기를 함께 포함하며, 더 나아가, 폴리옥시알킬렌 유래 단위가 더 결합되므로, 고흡수성 수지 입자들의 주위에 친수성 분위기를 형성할 수 있고, 또, 가수 공정시 혼합된 물에 고흡수성 수지 입자들이 고르게 분산 및 분포하게 하여 고흡수성 수지 이송 중의 파쇄 등을 더욱 효과적으로 억제할 수 있다.
결과적으로, 일 구현예의 제조 방법에 따르면, 상기 가수 공정 등에서 고흡수성 수지의 함수율을 적절히 제어하여 상기 고흡수성 수지 이송 중의 파쇄나 물성 저하 등을 억제할 수 있으면서도, 상기 가수 과정에서 거대 입자가 발생하거나 함수율이 불균일하게 되는 등의 현상으로 인해 고흡수성 수지의 물성이 저하되는 문제점 역시 해결할 수 있다.
한편, 상기 일 구현예의 방법과 상이한 다른 첨가제, 예를 들어, 기존에 응집 억제제로 알려진 폴리카르본산 공중합체나, 대표적인 친수성 고분자인 폴리에틸렌글리콜 등 다른 첨가제를 상기 가수 공정에서 사용할 경우에는, 상기 가수 과정에서의 응집이 제대로 억제되지 못하고 850㎛ 초과의 거대 입자가 다량 발생하거나 함수율이 불균일하게 되어, 고흡수성 수지의 전체적인 물성 저하 또는 생산성 저하가 나타남이 확인되었다. 이는 해당 고분자 내에, 다수의 친수성 작용기가 존재하기 때문으로 예측된다.
이와 같이, 일 구현예의 방법에 따르면, 가수 공정에 의해 고흡수성 수지 이송 중의 파쇄를 효과적으로 억제할 수 있으면서도, 가수 과정 중의 물성 저하나 거대 입자의 생성에 따른 생산성 저하가 실질적으로 나타나지 않게 되므로, 우수한 물성을 나타내는 고흡수성 수지를 생산성 높게 제조 및 이송하여, 각종 위생재의 제조에 바람직하게 적용할 수 있게 된다.
이하, 일 구현예의 고흡수성 수지의 제조 방법에 대하여 각 단계별로 보다 구체적으로 설명하기로 한다.
일 구현예에 따른 고흡수성 수지의 제조 방법에서는, 먼저 고흡수성 수지 입자를 제조한다. 이러한 고흡수성 수지 입자는 일반적인 고흡수성 수지의 제조 공정 및 조건에 따라, 가교 중합, 건조. 분쇄, 분급 및 표면 가교 등의 공정을 거쳐 제조할 수 있다. 이하, 고흡수성 수지 입자를 제조하는 일 예에 대해 구체적으로 설명하기로 한다.
먼저, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합 개시제의 각 성분을 혼합하여 단량체 조성물을 형성한다.
상기 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상적으로 사용되는 임의의 단량체일 수 있다. 비제한적인 예로, 상기 수용성 에틸렌계 불포화 단량체는 하기 화학식 1로 표시되는 화합물일 수 있다:
[화학식 1]
R 1-COOM 1
상기 화학식 1에서,
R 1는 불포화 결합을 포함하는 탄소수 2 내지 5의 알킬 그룹이고,
M 1는 수소원자, 1가 또는 2가 금속, 암모늄기 또는 유기 아민염이다.
적절하게는, 상기 단량체는 아크릴산, 메타크릴산, 및 이들 산의 1가 금속염, 2가 금속염, 암모늄염 및 유기 아민염으로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 이처럼 수용성 에틸렌계 불포화 단량체로 아크릴산 또는 그 염을 사용할 경우 흡수성이 향상된 고흡수성 수지를 얻을 수 있어 유리하다. 이 밖에도 상기 단량체로는 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타크릴로일에탄술폰산, 2-(메트)아크릴로일프로판술폰산, 또는 2-(메트)아크릴아미드-2-메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메트)아크릴아미드, N-치환(메트)아크릴레이트, 2-히드록시에틸(메트)아크릴레이트, 2-히드록시프로필(메트)아크릴레이트, 메톡시폴리에틸렌글리콜(메트)아크릴레이트 또는 폴리에틸렌 글리콜(메트)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (N,N)-디메틸아미노에틸(메트)아크릴레이트 또는 (N,N)-디메틸아미노프로필(메트)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4급화물;로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.
여기서, 상기 수용성 에틸렌계 불포화 단량체는 산성기를 가지며, 상기 산성기의 적어도 일부가 중화된 것일 수 있다. 바람직하게는 상기 단량체를 수산화나트륨, 수산화칼륨 또는 수산화암모늄 등과 같은 알칼리 물질로 부분적으로 중화시킨 것이 사용될 수 있다.
이때, 상기 단량체의 중화도는 40 내지 95 몰%, 또는 40 내지 80 몰%, 또는 45 내지 75 몰%일 수 있다. 상기 중화도의 범위는 최종 물성에 따라 달라질 수 있지만, 중화도가 지나치게 높으면 중화된 단량체가 석출되어 중합이 원활하게 진행되기 어려울 수 있으며, 반대로 중화도가 지나치게 낮으면 고분자의 흡수성이 크게 떨어질 뿐만 아니라 취급하기 곤란한 탄성 고무와 같은 성질을 나타낼 수 있다.
한편, 상기 내부 가교제는 후술하는 베이스 수지의 표면을 추가 가교시키는 위한 표면 가교제와 구분짓기 위해 사용하는 용어로, 상술한 수용성 에틸렌계 불포화 단량체들의 불포화 결합을 가교 중합시키는 역할을 한다. 상기 단계에서의 가교는 표면 또는 내부 구분 없이 진행되나, 후술하는 베이스 수지의 표면 가교 공정에 의해, 최종 제조된 고흡수성 수지의 표면은 표면 가교제에 의해 가교된 구조로 이루어져 있고, 내부는 상기 내부 가교제에 의해 가교된 구조로 이루어져 있게 된다.
상기 내부 가교제로는 상기 수용성 에틸렌계 불포화 단량체의 중합시 가교 결합의 도입을 가능케 하는 것이라면 어떠한 화합물도 사용 가능하다. 비제한적인 예로, 상기 내부 가교제는 N,N'-메틸렌비스아크릴아미드, 트리메틸롤프로판 트리(메트)아크릴레이트, (폴리)에틸렌글리콜 다이(메트)아크릴레이트, 폴리에틸렌글리콜(메트)아크릴레이트, (폴리)프로필렌글리콜 다이(메트)아크릴레이트, 폴리프로필렌글리콜(메트)아크릴레이트, 부탄다이올다이(메트)아크릴레이트, (폴리)부틸렌글리콜다이(메트)아크릴레이트, 다이에틸렌글리콜 다이(메트)아크릴레이트, 헥산다이올다이(메트)아크릴레이트, 트리에틸렌글리콜 다이(메트)아크릴레이트, 트리프로필렌글리콜 다이(메트)아크릴레이트, 테트라에틸렌글리콜 다이(메트)아크릴레이트, 다이펜타에리스리톨 펜타아크릴레이트, 글리세린 트리(메트)아크릴레이트, 펜타에리스톨 테트라아크릴레이트, 트리아릴아민, 에틸렌글리콜 디글리시딜 에테르 등의 알킬렌글리콜의 디글리시딜 에테르계 화합물, 프로필렌 글리콜, 글리세린, 또는 에틸렌카보네이트와 같은 다관능성 가교제가 단독 사용 또는 2 이상 병용될 수 있으며, 이에 제한되는 것은 아니다.
이러한 내부 가교제는 상기 수용성 에틸렌계 불포화 단량체 100 중량부에 대하여 0.01 내지 5 중량부로 사용될 수 있다. 예를 들어, 상기 내부 가교제는 수용성 에틸렌계 불포화 단량체 100 중량부 대비 0.01 중량부 이상, 0.03 중량부 이상, 또는 0.05 중량부 이상이고, 5 중량부 이하, 3 중량부 이하로 사용될 수 있다. 상기 내부 가교제의 함량이 지나치게 낮을 경우 가교가 충분히 일어나지 않아 적정 수준 이상의 강도 구현이 어려울 수 있고, 내부 가교제의 함량이 지나치게 높을 경우 내부 가교 밀도가 높아져 원하는 흡수 성능의 구현이 어려울 수 있다.
또한, 상기 중합 개시제는 중합 방법에 따라 적절하게 선택될 수 있으며, 열중합 방법을 이용할 경우에는 열중합 개시제를 사용하고, 광중합 방법을 이용할 경우에는 광중합 개시제를 사용하며, 혼성 중합 방법(열 및 광을 모두 사용하는 방법)을 이용할 경우에는 열중합 개시제와 광중합 개시제를 모두 사용할 수 있다. 다만, 광중합 방법에 의하더라도, 자외선 조사 등의 광 조사에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 사용할 수도 있다.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl Dimethyl Ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(α-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로는 디페닐(2,4,6-트리메틸벤조일)포스핀 옥사이드, 페닐비스(2,4,6-트리메틸벤조일)포스핀 옥사이드, 에틸 (2,4,6-트리메틸벤조일)페닐포스핀에이트 등을 들 수 있다. 보다 다양한 광개시제에 대해서는 Reinhold Schwalm 저서인 "UV Coatings: Basics, Recent Developments and New Application(Elsevier 2007년)" p115에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
상기 광중합 개시제는 상기 단량체 조성물에 대하여 0.0001 내지 2.0 중량%의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮을 경우 중합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.
또한, 상기 열중합 개시제로는 과황산염계 개시제, 아조계 개시제, 과산화수소 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨(Sodium persulfate; Na 2S 2O 8), 과황산칼륨(Potassium persulfate; K 2S 2O 8), 과황산암모늄(Ammonium persulfate; (NH 4) 2S 2O 8) 등이 있으며, 아조(Azo)계 개시제의 예로는 2,2-아조비스-(2-아미디노프로판)이염산염 (2,2-azobis(2-amidinopropane) dihydrochloride), 2,2-아조비스-(N,N-디메틸렌)이소부티라마이딘 디하이드로클로라이드 (2,2-azobis-(N,N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴 (2-(carbamoylazo)isobutylonitril), 2,2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭 산) (4,4-azobis-(4-cyanovaleric acid)) 등이 있다. 보다 다양한 열중합 개시제에 대해서는 Odian 저서인 'Principle of Polymerization(Wiley, 1981)', p203에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.
상기 열중합 개시제는 상기 단량체 조성물에 대하여 0.001 내지 2.0 중량%의 농도로 포함될 수 있다. 이러한 열중합 개시제의 농도가 지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열중합 개시제의 추가에 따른 효과가 미미할 수 있고, 열중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.
상기 단량체 조성물은 필요에 따라 증점제(thickener), 가소제, 보존안정제, 산화방지제 또는 계면 활성제 등의 첨가제를 더 포함할 수 있다.
또한, 상술한 수용성 에틸렌계 불포화 단량체, 내부 가교제 및 중합 개시제를 용매와 함께 혼합할 수 있다. 따라서, 상기 단계에서 제조된 단량체 조성물은 상기 용매에 용해된 형태로, 상기 단량체 조성물에서의 고형분의 함량은 20 내지 60 중량%일 수 있다.
이 때 사용할 수 있는 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1,4-부탄디올, 프로필렌글리콜, 에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로헥사논, 시클로펜타논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 톨루엔, 크실렌, 부틸로락톤, 카르비톨, 메틸셀로솔브아세테이트 및 N,N-디메틸아세트아미드 등에서 선택된 1 종 이상을 조합하여 사용할 수 있다.
한편, 상술한 각 성분의 혼합은, 특별히 한정되지 않으며, 당 분야에서 통상적으로 사용되는 방법, 예를 들어 교반을 통해 수행될 수 있다.
다음으로, 상기 단량체 조성물을 가교 중합하여 함수겔 중합체를 형성하는 단계를 수행한다.
상기 단계는 제조된 단량체 조성물을 열중합, 광중합 또는 혼성 중합의 방법으로 가교 중합하여 함수겔 중합체를 형성할 수 있으면, 특별히 구성의 한정이 없이 진행될 수 있다.
구체적으로, 열중합을 진행하는 경우, 니더(kneader)와 같은 교반축을 가진 반응기에서 진행될 수 있다. 또한, 열중합을 진행하는 경우 약 80℃ 이상 그리고 약 110℃ 미만의 온도에서 진행될 수 있다. 상술한 범위의 중합 온도를 달성하기 위한 수단은 특별히 한정되지 않으며, 상기 반응기에 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 한정되는 것은 아니다.
반면, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한 중합 방법에 한정되지는 않는다.
일 예로, 상술한 바와 같이 교반축을 구비한 니더(kneader)와 같은 반응기에, 열매체를 공급하거나 반응기를 가열하여 열중합을 진행하는 경우, 반응기 배출구로 배출되는 함수겔 중합체를 얻을 수 있다. 이렇게 얻어진 함수겔 중합체는 반응기에 구비된 교반축의 형태에 따라, 수 센티미터 내지 수 밀리미터의 크기로 얻어질 수 있다. 구체적으로, 얻어지는 함수겔 중합체의 크기는 주입되는 단량체 조성물의 농도 및 주입 속도 등에 따라 다양하게 나타날 수 있다.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반응기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔 중합체일 수 있다. 이 때, 중합체 시트의 두께는 주입되는 단량체 조성물의 농도 및 주입속도에 따라 달라지나, 통상 약 0.5 내지 약 10 cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 10 cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다.
상기 단량체 조성물의 중합 시간은 특별히 한정되지 않으며, 약 30 초 내지 60 분으로 조절될 수 있다.
이와 같은 방법으로 얻어진 함수겔 중합체의 통상 함수율은 약 30 내지 약 80 중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔 중합체 중량에 대해 차지하는 수분의 함량으로 함수겔 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 180℃까지 온도를 상승시킨 뒤 180℃에서 유지하는 방식으로 총 건조시간은 온도상승단계 5 분을 포함하여 40 분으로 설정하여, 함수율을 측정한다.
다음으로, 상기 함수겔 중합체를 건조, 분쇄 및 분급하여 분말 형태의 베이스 수지를 형성하는 단계를 수행한다.
한편, 상기 베이스 수지를 형성하는 단계에서는 건조 효율을 높이기 위해 함수겔 중합체를 건조하기 전에 조분쇄하는 공정을 포함할 수도 있다.
이때, 사용되는 분쇄기는 구성의 한정이 없으며, 구체적으로, 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 쵸퍼(chopper) 및 원판식 절단기(Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다.
이러한 조분쇄 공정을 통해 함수겔 중합체의 입경은 약 0.1 내지 약 10 mm로 조절될 수 있다. 입경이 0.1 mm 미만이 되도록 분쇄하는 것은 함수겔 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있다. 한편, 입경이 10 mm를 초과하도록 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미할 수 있다.
상기와 같이 조분쇄 공정을 거치거나, 혹은 조분쇄 공정을 거치지 않은 중합 직후의 함수겔 중합체에 대해 건조를 수행한다. 이때 상기 건조 온도는 약 60℃ 내지 약 250℃일 수 있다. 이때 건조 온도가 약 70℃ 미만인 경우, 건조 시간이 지나치게 길어지며, 상기 건조 온도가 약 250℃를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 약 100℃ 내지 약 240℃의 온도에서, 더욱 바람직하게는 약 110℃ 내지 약 220℃의 온도에서 진행될 수 있다.
또한, 건조 시간의 경우에는 공정 효율 등을 고려하여 약 20 분 내지 약 12 시간 동안 진행될 수 있다. 일 예로, 약 10 분 내지 약 100 분, 또는 약 20 분 내지 약 60 분 동안 건조될 수 있다.
상기 건조 단계의 건조 방법 역시 함수겔 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 약 0.1 내지 약 10 중량%일 수 있다.
이후, 상기 건조 단계를 거쳐 얻어진 건조된 중합체는 분쇄기를 사용하여 분쇄된다.
구체적으로, 상기 분말 형태의 베이스 수지가 입경이 약 150 ㎛ 내지 약 850 ㎛인 입자들로 이루어지도록 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill) 또는 조그 밀(jog mill) 등을 일 수 있으나, 상술한 예에 한정되는 것은 아니다.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 150 내지 850㎛인 중합체를 분급하여, 이와 같은 입경을 가진 중합체 분말에 대해서만 표면 가교 반응 단계를 거쳐 제품화할 수 있다. 보다 구체적으로, 상기 분급이 진행된 베이스 수지 분말은 150 내지 850㎛의 입경을 가지며, 300 내지 600㎛의 입경을 갖는 입자를 50 중량% 이상 포함할 수 있다.
한편, 상술한 분급 공정까지를 거쳐 베이스 수지를 형성한 후에는, 표면 가교제의 존재 하에, 상기 베이스 수지의 표면을 추가 가교하여 표면 가교층을 형성하는 단계를 수행한다.
상기 단계는, 베이스 수지의 표면 가교 밀도를 높이기 위해 표면 가교제를 사용하여 표면 가교층을 형성시키는 단계로, 가교되지 않고 표면에 남아 있던 수용성 에틸렌계 불포화 단량체의 불포화 결합이 상기 표면 가교제에 의해 가교되게 되어, 표면 가교 밀도가 높아진 고흡수성 수지가 형성된다. 이러한 열처리 공정으로 표면 가교 밀도, 즉 외부 가교 밀도는 증가하게 되는 반면 내부 가교 밀도는 변화가 없어, 제조된 표면 가교층이 형성된 고흡수성 수지는 내부보다 외부의 가교 밀도가 높은 구조를 갖게 된다.
일 구현예의 방법에서는, 상기 표면 가교층 형성 단계에서, 표면 가교제, 알코올계 용매 및 물을 포함하는 표면 가교제 조성물을 사용할 수 있다.
한편, 상기 표면 가교제 조성물에 포함되는 표면 가교제로는 기존부터 고흡수성 수지의 제조에 사용되던 표면 가교제를 별다른 제한 없이 모두 사용할 수 있다. 예를 들어, 상기 표면 가교제는 에틸렌 글리콜, 프로필렌 글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,6-헥산디올, 1,2-헥산디올, 1,3-헥산디올, 2-메틸-1,3-프로판디올, 2,5-헥산디올, 2-메틸-1,3-펜탄디올, 2-메틸-2,4-펜탄디올, 트리프로필렌 글리콜 및 글리세롤로 이루어진 군에서 선택된 1 종 이상의 폴리올; 에틸렌 카보네이트 및 프로필렌 카보네이트로 이루어진 군에서 선택된 1 종 이상의 카보네이트계 화합물; 에틸렌글리콜 디글리시딜 에테르 등의 에폭시 화합물; 옥사졸리디논 등의 옥사졸린 화합물; 폴리아민 화합물; 옥사졸린 화합물; 모노-, 디- 또는 폴리옥사졸리디논 화합물; 또는 환상 우레아 화합물; 등을 포함할 수 있다. 바람직하게는 상술한 내부 가교제와 동일한 것이 사용될 수 있고, 예를 들어, 에틸렌글리콜 디글리시딜 에테르 등의 알킬렌글리콜의 디글리시딜 에테르계 화합물이 사용될 수 있다.
이러한 표면 가교제는 베이스 수지 100 중량부에 대하여 0.001 내지 2 중량부로 사용될 수 있다. 예를 들어, 상기 표면 가교제는 베이스 수지 100 중량부에 대하여 0.005 중량부 이상, 0.01 중량부 이상, 또는 0.02 중량부 이상이고, 0.5 중량부 이하, 0.3 중량부 이하의 함량으로 사용될 수 있다. 표면 가교제의 함량 범위를 상술한 범위로 조절하여 우수한 흡수 성능 및 통액성 등 제반 물성을 나타내는 고흡수성 수지를 제조할 수 있다.
또한, 상기 표면 가교제 조성물을 베이스 수지와 혼합하는 방법에 대해서는 그 구성의 한정은 없다. 예를 들어, 표면 가교제 조성물과, 베이스 수지를 반응조에 넣고 혼합하거나, 베이스 수지에 표면 가교제 조성물을 분사하는 방법, 연속적으로 운전되는 믹서에 베이스 수지와 표면 가교제 조성물을 연속적으로 공급하여 혼합하는 방법 등을 사용할 수 있다.
상기 표면 가교 공정은 약 80℃ 내지 약 250℃의 온도에서 수행될 수 있다. 보다 구체적으로, 상기 표면 가교 공정은 약 100℃ 내지 약 220℃, 또는 약 120℃ 내지 약 200℃의 온도에서, 약 20 분 내지 약 2 시간, 또는 약 40 분 내지 약 80 분 동안 수행될 수 있다. 상술한 표면 가교 공정 조건의 충족 시 베이스 수지의 표면이 충분히 가교되어 가압 흡수능이나 통액성이 증가될 수 있다.
상기 표면 가교 반응을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원을 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀, 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 한정되는 것은 아니다.
한편, 이상에서 예시적으로 설명한 공정을 통해, 표면 가교 공정까지를 진행하면, 고흡수성 수지 입자가 제조 및 제공될 수 있다. 이러한 고흡수성 수지 입자는, 예를 들어, 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체가 내부 가교제를 매개로 중합된 가교 중합체를 포함하는 베이스 수지 분말과, 상기 가교 중합체가 표면 가교제를 매개로 추가 가교되어 상기 베이스 수지 분말 표면에 형성된 표면 가교층을 포함하는 형태를 가질 수 있다.
또한, 상기 고흡수성 수지 입자는, 예를 들어, 위생재 내에서 넓은 표면적에 걸쳐 빠른 속도로 다량의 수분을 흡수할 수 있도록, 150 내지 850㎛의 입경을 갖는 미세 분말들이 모인 형태로 될 수 있다.
그런데, 이러한 고흡수성 수지 입자는, 후속 포장 공정 또는 후속 위생재 제조 공정 등으로 이송되는 과정에서, 물리적 충돌 등에 의해 파쇄될 수 있는 바, 이를 억제하기 위해, 상기 고흡수성 수지 입자에 소정의 첨가제 및 물을 혼합하여 가수 고흡수성 수지를 형성하는 가수 공정을 진행하게 된다.
이러한 가수 공정에 있어서는, 이미 상술한 바와 같이, 폴리옥시알킬렌 지방족 탄화수소 에테르 카르복시산이 첨가제로서 사용된다. 이러한 첨가제는 폴리옥시알킬렌 지방족 탄화수소 작용기 및 카르복시산의 작용기가 에테르 결합된 구조를 갖는 것으로서, 분자 중에 장쇄 탄화수소의 소수성 작용기와, 카르복시산의 친수성 작용기 및 폴리옥시알킬렌 유래 단위를 함께 가짐에 따라, 가수 공정 및 이송 중의 고흡수성 수지의 파쇄 및 뭉침 현상을 함께 효과적으로 억제할 수 있다. 또한, 상기 첨가제는 폴리옥시알킬렌 유래 단위를 포함하여 보다 높은 친수성을 가지며, 상온에서 액체 상태를 나타낼 수 있다. 따라서, 상기 가수 공정 과정에서, 이러한 첨가제의 수용액 형성 및 첨가를 위한, 별도의 용해 또는 교반 장치가 필요 없게 되므로, 상대적으로 가수 공정의 진행이 용이하게 될 수 있다.
보다 구체적인 예에서, 상기 첨가제 구조 중에 포함된 상기 폴리옥시알킬렌은 1 내지 20, 혹은 2 내지 15, 혹은 3 내지 10의 반복수를 갖는 폴리옥시에틸렌 유래 단위로 될 수 있으며, 이에 결합된 지방족 탄화수소는 탄소수 10 내지 30, 혹은 12 내지 20의 탄소수를 갖는 지방족 선형 알킬 유래 구조, 예를 들어, 스테아릴 또는 라우릴 등의 작용기로 될 수 있다.
이러한 화합물을 가수 공정 중의 첨가제로 사용하여, 가수 공정 및 고흡수성 수지 이송 중의 파쇄 및 뭉침에 의한 거대 입자의 형성이나, 이에 따른 고흡수성 수지의 물성 저하를 더욱 효과적으로 억제할 수 있다.
또한, 상술한 첨가제는, 가수 과정에서 고흡수성 수지 입자들이 뭉쳐 거대 입자가 형성되는 것을 효과적으로 억제하면서도, 상기 가수 공정에 의한 함수율의 균일한 상승을 저해하지 않도록, 상기 고흡수성 수지 입자의 중량을 기준으로 5 내지 20,000ppmw의 함량으로 혼합될 수 있다. 보다 구체적인 일 예에서, 상기 첨가제는 고흡수성 수지 입자의 중량을 기준으로 5 내지 100ppmw의 함량으로 혼합될 수 있다.
이러한 함량 범위로 상기 첨가제가 사용됨에 따라, 가수 과정에서의 고흡수성 수지 입자 간의 응집 및 거대 입자의 생성이 더욱 효과적으로 억제되면서도, 가수 공정 및 후속 건조 등에 의해 고흡수성 수지의 함수율은 원하는 범위로 전체적으로 균일하게 제어될 수 있다.
한편, 상기 가수 공정에서 상기 고흡수성 수지 입자에 물이 균일하게 혼합되어 최종 고흡수성 수지의 함수율이 전체적으로 균일하게 제어될 수 있도록, 상기 물은 상기 고흡수성 수지 입자의 100 중량부에 대해 1 내지 10 중량부, 혹은 3 내지 8 중량부, 혹은 4 내지 6 중량부의 함량으로 혼합됨이 적절하다.
상술한 첨가제 및 물을 혼합하는 가수 공정은, 예를 들어, 40 내지 80℃, 혹은 45 내지 75℃의 온도 하에 표면 가교된 고흡수성 수지 입자를 냉각하면서 진행할 수 있다. 이로서, 전체적인 공정을 단순화하면서도, 고흡수성 수지의 물성 열화를 억제할 수 있다.
상술한 방법으로 가수 공정을 진행하여, 가수 고흡수성 수지를 형성한 후에는, 이러한 가수 고흡수성 수지를 건조 및 분급하는 단계를 더 진행할 수 있다. 상기 가수 공정에서 물 및 첨가제가 균일하게 혼합된 가수 고흡수성 수지를 건조하면서, 최종적으로 원하는 함수율, 예를 들어, 1 내지 2.5 중량%의 함수율을 달성할 수 있다. 이러한 함수율 범위는 표면 가교 직후의 고흡수성 수지 입자가 같은 약 0.5 중량% 이하, 혹은 0.3 중량% 이하의 함수율에 비해 증가된 것으로서, 이러한 함수율의 일정한 증가로 인해 고흡수성 수지의 이송 중에 물리적 파쇄를 효과적으로 억제할 수 있다.
이러한 건조 공정은, 고흡수성 수지 입자의 제조 공정에서 진행하는 것과 동등한 건조 장치 및 조건 하에 진행할 수 있고, 상기 목표 함수율을 고려하여 당업자가 적절한 건조 시간 동인 진행할 수 있다.
한편, 상기 건조를 통해 목표 함수율을 달성한 후에는, 상기 고흡수성 수지를 추가 분급할 수 있다. 이러한 추가 분급 과정에서는, 상기 가수 공정 등에서 발생한 거대 입자, 예를 들어, 850㎛ 초과의 입경을 갖는 입자와, 150㎛ 미만의 입경을 갖는 입자를 제거하고, 고흡수성 수지가 150 내지 850㎛의 입경을 갖도록 제조할 수 있다.
단, 일 구현예의 방법에서는, 상기 가수 과정에서 특정한 첨가제가 사용됨에 따라, 가수에 의한 거대 입자의 생성이 크게 줄어들 수 있다. 따라서, 상기 상기 분급 과정에서 제거되는 850㎛ 초과의 입경을 갖는 입자는 상기 건조된 고흡수성 수지의 전체 중량을 기준으로 5 중량% 미만, 혹은 3 중량% 미만, 혹은 0.1 내지 3 중량%로 될 수 있다.
이에 비해, 가수 과정에서 첨가제를 사용하지 않거나, 일 구현예의 방법과 다른 첨가제를 사용한 경우에는, 가수 과정에서 여전히 거대 입자가 다량 발생하여, 상기 분급 과정에서 제거되는 850㎛ 초과의 입경을 갖는 입자는 상기 건조된 고흡수성 수지의 전체 중량을 기준으로 약 20 중량% 이상으로 될 수 있다.
한편, 상술한 건조 및 분급 공정까지를 거쳐, 일 구현에의 방법으로 최종 제조된 고흡수성 수지는, 상기 150 내지 850㎛의 입경을 갖는 수지에 대해 측정하였을 때, 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능(CRC)이 30 내지 45 g/g으로 되어 우수한 흡수 성능을 유지할 수 있다. 상기 보수능은 유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 241.3에 따라 측정될 수 있고, 후술하는 시험예에 기재된 계산식 A에 따라 산출될 수 있다.
상술한 건조 및 분급된 고흡수성 수지는 후속 포장 또는 위생재 제조 공정 등에 대한 적용을 위해, 추가로 이송될 수 있다. 이러한 고흡수성 수지는 이송 과정에서도 함수율의 적절한 제어로 인해 파쇄나 물성 저하를 실질적으로 일으키지 않는다. 더 나아가, 가수 공정에서 거대 입자의 생성 역시 최소화되므로, 전체적으로 우수한 물성 및 생산성을 갖도록 제조될 수 있다.
이하, 발명의 이해를 돕기 위하여 바람직한 실시예들이 제시된다. 그러나 하기의 실시예들은 발명을 예시하기 위한 것일 뿐, 발명을 이들만으로 한정하는 것은 아니다.
<실시예>
실시예 1: 고흡수성 수지의 제조
아크릴산 100g, 32% 가성소다 123.5g, 열중합 개시제인 과황산나트륨 0.2g, 광중합 개시제인 디페닐(2,4,6-트리메틸벤조일)-포스핀 옥사이드 0.008g, 내부 가교제인 폴리에틸렌글리콜 디아크릴레이트 2.25g 및 물 59.0g을 혼합하여 전체 고형분 농도가 45 중량%인 단량체 조성물을 제조하였다. 상기 단량체 조성물을 10cm의 폭 및 2m의 길이를 갖고 50cm/min의 속도로 회전하는 회전식 벨트 상에, 500mL/min 내지 2000mL/min의 속도로 공급하였다. 상기 공급된 단량체 조성물에 10mW/cm 2의 세기로 자외선을 조사하여 60초 동안 가교 중합을 진행하였다.
상기 가교 중합 반응 후, meat chopper로 함수겔 중합체를 조분쇄하고, Air-flow 오븐을 사용하여 190℃에서 40분 동안 건조하였다.
이렇게 제조된 베이스 수지 100g에, 초순수 3g, 메탄올 3.5g, 1,3-프로판디올 0.25g 및 옥살산 0.16g의 혼합 용액인 표면 가교제 조성물을 투여하고, 2분간 혼합하였다. 이를 185℃에서 50분 간 열처리하여 표면 가교를 진행한 후, 분급하여 150 내지 850㎛의 입경을 갖는 입자들을 취함으로서, 고흡수성 수지 입자를 제조하였다.
이어서, 상기 고흡수성 수지 입자 200g을 60℃ 도가니에서 회전시키면서, 초순수 10g, 폴리옥시에틸렌(3) 라우릴 에테르 카르복시산 0.0075g의 혼합 용액을 2분 간 투여 및 혼합하였다. 그 결과물을 25분간 추가 건조한 후, 분급하여 최종 제품을 얻었다.
실시예 2: 고흡수성 수지의 제조
상기 폴리옥시에틸렌(3) 라우릴 에테르 카르복시산 대신 폴리옥시에틸렌(5) 라우릴 에테르 카르복시산을 동량으로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지의 최종 제품을 얻었다.
실시예 3: 고흡수성 수지의 제조
상기 폴리옥시에틸렌(3) 라우릴 에테르 카르복시산 대신 폴리옥시에틸렌(7) 라우릴 에테르 카르복시산을 동량으로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지의 최종 제품을 얻었다.
실시예 4: 고흡수성 수지의 제조
상기 폴리옥시에틸렌(3) 라우릴 에테르 카르복시산 대신 폴리옥시에틸렌(10) 라우릴 에테르 카르복시산을 동량으로 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지의 최종 제품을 얻었다.
비교예 1: 고흡수성 수지의 제조
고흡수성 수지 입자는 실시예 1과 동일한 방법으로 제조하였다. 다만, 실시예 1에서 추가 진행된 초순수 및 폴리옥시에틸렌(3) 라우릴 에테르 카르복시산의 혼합 용액을 투여 및 혼합하는 단계, 이후의 추가 건조 및 분급 단계를 진행하지 않고, 상기 고흡수성 수지 입자 자체를 비교예 1의 고흡수성 수지의 최종 제품으로 하였다.
비교예 2: 고흡수성 수지의 제조
먼저, 고흡수성 수지 입자는 실시예 1과 동일한 방법으로 제조하였다.
이어서, 상기 고흡수성 수지 입자 200g을 60℃ 도가니에서 회전시키면서, 폴리옥시에틸렌(3) 라우릴 에테르 카르복시산을 혼합하지 않은 초순수 10g을 2분 간 투여 및 혼합하였다. 그 결과물을 25분간 추가 건조한 후, 분급하여 최종 제품을 얻었다.
비교예 3: 고흡수성 수지의 제조
상기 폴리옥시에틸렌(3) 라우릴 에테르 카르복시산 대신 대한민국 공개 특허 제 2015-0143167 호의 제조예 1에 개시된 폴리카르본산 공중합체 0.0250g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지의 최종 제품을 얻었다.
비교예 4: 고흡수성 수지의 제조
상기 폴리옥시에틸렌(3) 라우릴 에테르 카르복시산 대신 Mw 600인 폴리에틸렌 글리콜 0.25g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 고흡수성 수지의 최종 제품을 얻었다.
시험예
상기 실시예 및 비교예에서 제조한 고흡수성 수지에 대하여, 아래와 같은 방법으로 제반 물성을 측정하였고, 그 결과를 하기 표 1에 나타내었다.
(1) 원심분리 보수능 (CRC, centrifuge retention capacity)
먼저, 고흡수성 수지 중 150 내지 850㎛의 입경을 갖는 것(#20~100의 표준체 사이)을 취하여, 유럽부직포산업협회(European Disposables and Nonwovens Association, EDANA) 규격 EDANA WSP 241.3에 따라 무하중하 흡수 배율에 의한 원심분리 보수능(CRC)을 측정하였다.
구체적으로, 고흡수성 수지(또는 베이스 수지 분말; 이하 동일) W 0(g, 약 0.2g)을 부직포제의 봉투에 균일하게 넣고 밀봉(seal)한 후에, 상온에 0.9 중량%의 염화나트륨 수용액의 생리 식염수에 침수시켰다. 30분 후에 봉투를 원심 분리기를 이용하고 250G로 3분간 물기를 뺀 후에 봉투의 질량 W 2(g)을 측정했다. 또한, 고흡수성 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 W 1(g)을 측정했다. 이렇게 얻어진 각 질량을 이용하여 다음의 계산식 A에 따라 CRC (g/g)를 산출하여 보수능을 확인하였다.
[계산식 A]
CRC(g/g) = {[W 2(g) - W 1(g) - W 0(g)]/W 0(g)}
(2) 입도 분포
입도 분포의 측정을 위해, ASTM 규격의 표준 망체를 사용하여, 고흡수성 수지를 분급하였다. 보다 구체적으로, 눈 크기가 각각 850㎛, 600㎛, 300㎛, 150㎛인 표준 망체를 순차적으로 적층한 후, 제일 위에 고흡수성 수지 100g을 넣고 sieve shaker (AS200)에 세팅하였다. Amplitude 1.0mm/g으로 10분간 분급을 진행하였다. 각각의 표준 망체 사이에 남아 있는 고흡수성 수지를 꺼내어 무게를 재고 백분율로 계산하여, 고흡수성 수지의 입도 분포를 산출하였다.
(3) 함수율
고흡수성 수지를 적외선 가열하면서 건조하는 과정에서, 고흡수성 수지 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 측정하였다. 이때, 건조 조건은 상온에서 약 140℃까지 온도를 상승시킨 뒤 140℃에서 유지하는 방식으로 총 건조시간은 10 분으로 설정하였다. 위 무게감소분의 측정 결과로부터 함수율을 산출하였다.
물성 비교예 1 비교예 2 비교예 3 비교예 4 실시예 1 실시예 2 실시예 3 실시예 4
CRC(#20~100; g/g) 33.4 31.8 32.0 31.5 32.4 32.3 32.5 32.8
함수율(#20~100; 중량%) 0.3 2.2 1.98 1.89 2.21 2.13 2.08 2.37
입도분포 #20 초과(850㎛ 초과) 0.4 39.3 21.2 20.0 0.6 0.7 1.2 1.8
#20~30(600~850㎛) 17.2 30.0 31.2 30.6 19.8 21.5 21.3 23.7
#30~50(300~600㎛) 65.1 29.2 37.7 39.7 62.6 64.3 62.3 61.2
#50~100(300~150㎛) 16.2 1.5 9.4 9.4 15.7 13.0 14.3 12.6
#100 미만(150㎛ 미만) 1.1 0 0.5 0.3 1.3 0.5 0.9 0.7
상기 표 1을 참고하면, 가수 공정이 진행되지 않은 비교예 1은 함수율이 낮아 후속 이송 과정 중에 물리적 파쇄가 일어날 것으로 예측된다. 또한, 비교예 2 내지 4는 가수 공정에 의해 적절한 함수율로 제어되어 이송 중 파쇄는 억제될 것으로 예측되나, 가수 공정 중에 첨가제 미사용 또는 폴리카르본산이나 폴리에틸렌글리콜 등의 다른 첨가제 사용으로 인해, 거대 입자가 다수 발생하여 고흡수성 수지의 물성 저하 및 생산성 저하가 나타난 것으로 확인되었다.
이에 비해, 실시예 1 내지 4는 함수율의 적절한 제어에 의해 이송 중 파쇄의 억제가 가능하면서도, 가수 공정에서 거대 입자의 발생량 또한 크게 감소된 것으로 확인되었다.

Claims (10)

  1. 적어도 일부가 중화된 산성기를 갖는 수용성 에틸렌계 불포화 단량체의 가교 중합체를 포함하는 베이스 수지 분말과, 상기 가교 중합체가 추가 가교되어 상기 베이스 수지 분말 표면에 형성된 표면 가교층을 포함하는 고흡수성 수지 입자를 제공하는 단계; 및
    상기 고흡수성 수지 입자에, 폴리옥시알킬렌 지방족 탄화수소 에테르 카르복시산을 포함한 첨가제 및 물을 혼합하여 가수 고흡수성 수지를 형성하는 단계를 포함하는 고흡수성 수지의 제조 방법.
  2. 제 1 항에 있어서, 상기 첨가제는 폴리옥시에틸렌(반복수 = 1 내지 20) 지방족 알킬에테르 카르복시산을 포함하는 고흡수성 수지의 제조 방법.
  3. 제 1 항에 있어서, 상기 첨가제에 결합된 지방족 알킬은 탄소수 10 내지 30의 탄소수를 갖는 고흡수성 수지의 제조 방법.
  4. 제 1 항에 있어서, 상기 첨가제는 상기 고흡수성 수지 입자의 중량을 기준으로 5 내지 20,000ppmw의 함량으로 혼합되는 고흡수성 수지의 제조 방법.
  5. 제 1 항에 있어서, 상기 물은 상기 고흡수성 수지 입자의 100 중량부에 대해 1 내지 10 중량부의 함량으로 혼합되는 고흡수성 수지의 제조 방법.
  6. 제 1 항에 있어서, 상기 첨가제 및 물의 혼합 단계는 40 내지 80℃의 온도 하에 진행되는 고흡수성 수지의 제조 방법.
  7. 제 1 항에 있어서, 상기 첨가제 및 물의 혼합 단계 후에, 상기 가수 고흡수성 수지를 건조 및 분급하는 단계를 더 포함하고,
    상기 건조 및 분급된 고흡수성 수지는 150 내지 850㎛의 입경과, 1 내지 2.5 중량%의 함수율을 갖는 고흡수성 수지의 제조 방법.
  8. 제 7 항에 있어서, 상기 분급 과정에서 제거되는 850㎛ 초과의 입경을 갖는 입자는 상기 건조된 고흡수성 수지의 전체 중량을 기준으로 5 중량% 미만으로 되는 고흡수성 수지의 제조 방법.
  9. 제 7 항에 있어서, 상기 건조 및 분급된 고흡수성 수지는 생리 식염수(0.9 중량% 염화 나트륨 수용액)에 대한 30분 동안의 원심분리 보수능(CRC)이 30 내지 45 g/g인 고흡수성 수지의 제조 방법.
  10. 제 7 항에 있어서, 상기 건조 및 분급된 고흡수성 수지를 이송하는 단계를 더 포함하는 고흡수성 수지의 제조 방법.
PCT/KR2020/010612 2019-09-18 2020-08-11 고흡수성 수지의 제조 방법 WO2021054609A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021518711A JP7086433B2 (ja) 2019-09-18 2020-08-11 高吸水性樹脂の製造方法
EP20864302.3A EP3842477B1 (en) 2019-09-18 2020-08-11 Preparation method of super absorbent polymer
US17/286,212 US11613591B2 (en) 2019-09-18 2020-08-11 Method for preparing super absorbent polymer
CN202080005548.9A CN112839993B (zh) 2019-09-18 2020-08-11 用于制备超吸收性聚合物的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190114791 2019-09-18
KR10-2019-0114791 2019-09-18
KR1020200099394A KR102578742B1 (ko) 2019-09-18 2020-08-07 고흡수성 수지의 제조 방법
KR10-2020-0099394 2020-08-07

Publications (1)

Publication Number Publication Date
WO2021054609A1 true WO2021054609A1 (ko) 2021-03-25

Family

ID=74883868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010612 WO2021054609A1 (ko) 2019-09-18 2020-08-11 고흡수성 수지의 제조 방법

Country Status (1)

Country Link
WO (1) WO2021054609A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633316A (en) * 1991-04-15 1997-05-27 The Dow Chemical Company Surface crosslinked and surfactant coated absorbent resin particles and method of preparation
KR20060023116A (ko) * 2003-04-25 2006-03-13 스톡하우젠, 인코포레이티드 투과성이 높은 초흡수성 중합체
KR20100019416A (ko) * 2007-05-22 2010-02-18 에보니크 스톡하우젠 게엠바하 초흡수제의 약한 혼합 및 코팅 방법
KR20150143167A (ko) 2014-06-13 2015-12-23 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
JP5989650B2 (ja) * 2011-08-30 2016-09-07 住友精化株式会社 吸水性樹脂の製造方法、及びそれにより得られる吸水性樹脂
KR101720423B1 (ko) * 2014-07-25 2017-03-27 에보니크 데구사 게엠베하 점착 방지 가공 조제 및 흡수성 입자 제조에 이들을 이용하는 방법
KR20190069311A (ko) * 2017-12-11 2019-06-19 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633316A (en) * 1991-04-15 1997-05-27 The Dow Chemical Company Surface crosslinked and surfactant coated absorbent resin particles and method of preparation
KR20060023116A (ko) * 2003-04-25 2006-03-13 스톡하우젠, 인코포레이티드 투과성이 높은 초흡수성 중합체
KR20100019416A (ko) * 2007-05-22 2010-02-18 에보니크 스톡하우젠 게엠바하 초흡수제의 약한 혼합 및 코팅 방법
JP5989650B2 (ja) * 2011-08-30 2016-09-07 住友精化株式会社 吸水性樹脂の製造方法、及びそれにより得られる吸水性樹脂
KR20150143167A (ko) 2014-06-13 2015-12-23 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
KR101720423B1 (ko) * 2014-07-25 2017-03-27 에보니크 데구사 게엠베하 점착 방지 가공 조제 및 흡수성 입자 제조에 이들을 이용하는 방법
KR20190069311A (ko) * 2017-12-11 2019-06-19 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ODIAN: "Principle of Polymerization", 1981, WILEY, pages: 203
REINHOLD SCHWALM: "UV Coatings: Basics, Recent Developments and New Application", ELSEVIER, 2007, pages 115
See also references of EP3842477A4 *

Similar Documents

Publication Publication Date Title
WO2015084059A1 (ko) 고흡수성 수지의 제조방법
WO2020122442A1 (ko) 고흡수성 수지의 제조 방법
WO2020145533A1 (ko) 고흡수성 수지의 제조 방법
EP3842477B1 (en) Preparation method of super absorbent polymer
WO2020122444A1 (ko) 고흡수성 수지의 제조 방법
WO2021054609A1 (ko) 고흡수성 수지의 제조 방법
WO2020067705A1 (ko) 고흡수성 수지의 제조 방법 및 고흡수성 수지
WO2021054610A1 (ko) 고흡수성 수지의 제조 방법
EP3722351A1 (en) Super absorbent polymer and method for preparing same
WO2020122390A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2020122426A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2020122471A1 (ko) 고흡수성 수지의 제조방법, 및 고흡수성 수지
WO2020101287A1 (ko) 고흡수성 수지의 제조 방법
WO2024014636A1 (ko) 고흡수성 수지 복합체의 제조방법
WO2022169227A1 (ko) 고흡수성 수지의 제조 방법
WO2021049738A1 (ko) 고흡수성 수지의 제조 방법
WO2023068861A1 (ko) 고흡수성 수지의 제조 방법
WO2016148397A1 (ko) 고흡수성 수지의 제조방법
WO2024085336A1 (ko) 고흡수성 수지의 제조 방법
WO2021054711A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2021066313A1 (ko) 고흡수성 수지 조성물 및 이의 제조 방법
KR20210038255A (ko) 고흡수성 수지의 제조 방법
WO2023120907A1 (ko) 고흡수성 수지의 제조방법
WO2021054718A1 (ko) 고흡수성 수지 및 이의 제조 방법
WO2024106836A1 (ko) 고흡수성 수지의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020864302

Country of ref document: EP

Effective date: 20210325

ENP Entry into the national phase

Ref document number: 2021518711

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE