WO2021054560A1 - 통신 시스템 - Google Patents

통신 시스템 Download PDF

Info

Publication number
WO2021054560A1
WO2021054560A1 PCT/KR2020/005825 KR2020005825W WO2021054560A1 WO 2021054560 A1 WO2021054560 A1 WO 2021054560A1 KR 2020005825 W KR2020005825 W KR 2020005825W WO 2021054560 A1 WO2021054560 A1 WO 2021054560A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
tracking unit
controller
communication device
communication system
Prior art date
Application number
PCT/KR2020/005825
Other languages
English (en)
French (fr)
Inventor
이현욱
손민선
Original Assignee
(주)인텔리안테크놀로지스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)인텔리안테크놀로지스 filed Critical (주)인텔리안테크놀로지스
Priority to EP20865016.8A priority Critical patent/EP4033607A4/en
Priority to US17/637,135 priority patent/US20220285835A1/en
Publication of WO2021054560A1 publication Critical patent/WO2021054560A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • H01Q3/10Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation to produce a conical or spiral scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/34Adaptation for use in or on ships, submarines, buoys or torpedoes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave

Definitions

  • embodiments relate to a communication system.
  • US Patent Application Publication No. 2014/0299734 discloses a pedestal for tracking an antenna. While tracking an artificial satellite on a field of view, a phenomenon in which the antenna rotates relatively sharply in a specific area of the field of view compared to other areas may occur. This phenomenon is also known as the "key hole effect". In order to control the rotational speed of the antenna in such a specific area, a power source with a relatively large capacity is required in the communication system.
  • An object according to an embodiment is to provide a communication system that avoids a specific area on a field of view where a keyhole effect occurs.
  • a communication system includes a communication device including a tracking unit that rotates about a first axis, a second axis, and a third axis that are orthogonal to each other and communicates radio waves with a moving object moving in a watch; And a controller for controlling the communication device based on a trajectory angle of the moving object, wherein the controller rotates the tracking unit with respect to the first axis and the second axis in a first trajectory angle range of the moving object, and the The communication device is controlled to rotate about the second axis and the third axis in a second orbital angle range of the moving body.
  • the controller may suppress rotation of the tracking unit with respect to the third axis in the first trajectory angle range.
  • the controller may determine a rotation angle of the tracking unit with respect to the third axis so that the tracking unit remains tilted by the track angle of the moving body in the second orbit angle range.
  • the controller may suppress rotation of the tracking unit with respect to the first axis in the second trajectory angle range.
  • the first axis may be an azimuth axis
  • the second axis may be an elevation axis
  • the third axis may be a cross level axis.
  • the cross-level axis may be an axis for a roll motion of a fixed system in which the communication device is installed.
  • the fixed system may be a ship.
  • the controller may limit the angular velocity of the azimuth angle of the tracking unit below a critical angular velocity.
  • the communication system may avoid a specific area on the field of view where the keyhole effect occurs.
  • FIG. 1 is a block diagram of a communication system according to an embodiment.
  • FIG. 2 is a perspective view of a communication device according to an embodiment.
  • 3 and 4 are diagrams illustrating an operation of a first trajectory angle range of a communication device according to an exemplary embodiment.
  • 5 and 6 are diagrams illustrating an operation of a second trajectory angle range of a communication device according to an exemplary embodiment.
  • FIG. 7 is a conceptual diagram illustrating a control method of a communication device according to an embodiment.
  • FIG 8 and 9 are graphs for explaining another control method of a communication device according to an embodiment.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the component from other components, and the nature, order, or order of the component is not limited by the term.
  • a component is described as being “connected”, “coupled” or “connected” to another component, the component may be directly connected or connected to that other component, but another component between each component It should be understood that may be “connected”, “coupled” or “connected”.
  • FIG. 1 is a block diagram of a communication system according to an embodiment
  • FIG. 2 is a perspective view of a communication device according to an embodiment.
  • the communication system 1 is configured to perform radio wave communication with a moving object ST on a watch.
  • the communication system 1 may include a communication device 10 and a controller 20.
  • the communication device 10 is configured to transmit radio waves to or receive radio waves from the mobile object ST on the watch.
  • the communication device 10 may include a tracking unit 110 and a pedestal 120.
  • the tracking unit 110 is configured to track the moving object ST on the watch.
  • the tracking unit 110 may include a reflector having a reflective surface having a substantially parabolic shape in cross section.
  • the tracking unit 110 may be configured to rotate about the elevation axis EL, the azimuth axis AZ, and/or the cross level axis CL.
  • the elevation axis EL, the azimuth axis AZ, and the cross level axis CL may be orthogonal to each other.
  • the pedestal 120 is configured to support the tracking unit 110.
  • the pedestal 120 may include a shaft 121, a first gimble 122 and a second gimble 123.
  • the shaft 121 is configured to rotate about the azimuth axis AZ.
  • the shaft 121 may have an elongated cylindrical shape.
  • the shaft 121 may be installed on the reference plane of the stationary system FW.
  • the first gimble 122 may be configured to rotate about the azimuth axis AZ.
  • the first gimble 122 may be connected to the shaft 121.
  • the first gimble 122 may be supported by the shaft 121.
  • the first gimble 122 may include a pair of first arms extending from the sides of the shaft 121 at the top of the shaft 121 and then extending along the azimuth axis AZ. .
  • the second gimble 123 supports the tracking unit 110 and may be configured to rotate about the elevation axis EL.
  • the second gimble 123 may be connected to the first gimble 122.
  • the second gimble 123 may be supported by the first gimble 122.
  • the second gimble 123 is connected to the tracking unit 110 and surrounds the body portion and the body portion configured to rotate with respect to the cross level axis CL, and a pair of first arms of the first gimble 122 It may include a pair of second arms rotatably connected to the field.
  • the communication device 10 may be installed in a fixed system (FW).
  • the fixed system FW may include a surface of the earth, a ship, and the like.
  • the fixed system (FW) on which the communication device 10 is installed is a ship. Since the ship performs 6-degree-of-freedom motions on the water surface, the communication device 10 installed on the ship must track the moving object ST on the clock while also considering the motions in the multi-axis direction or in the multi-axis direction of the ship. .
  • the controller 20 may also be installed in the fixed system FW together with the communication device 10.
  • the controller 20 is configured to control the tilting and rotation of the communication device 10 with respect to the elevation axis EL, the azimuth axis AZ and/or the cross level axis CL.
  • the controller 20 may control tilting and rotation of the communication device 10 according to the position of the moving object ST on the watch.
  • the controller 20 may control the tilting and rotation of the communication device 10 in consideration of the trajectory angle of the moving object ST on the watch. A detailed control method of the controller 20 for the communication device 10 will be described in detail with reference to FIGS. 3 to 7.
  • 3 and 4 are diagrams illustrating an operation of a first trajectory angle range of a communication device according to an exemplary embodiment.
  • the tracking unit 110 when the moving object ST is in the first trajectory angle range ( ⁇ X° to ⁇ Y°) on the watch, the tracking unit 110 is the moving object ST.
  • the controller 20 includes the shaft 121 and the first gimble so that the first gimble 122 rotates about the azimuth axis AZ and the second gimble 123 rotates about the elevation axis EL. 122) and/or the rotation of the second gimble 123 may be controlled.
  • the first orbit angle range when the communication device 10 (see FIG. 2) is installed on the ground, the first orbit angle range may be ⁇ 10° to ⁇ 54°. In a non-limiting example, when the communication device 10 is installed on a ship, it may be ⁇ 35° to ⁇ 79°.
  • the controller 20 may suppress the rotation of the tracking unit 110 with respect to the cross-level axis CL.
  • the controller 20 may suppress rotation of the body portion of the second gimble 123 with respect to the cross-level axis CL.
  • 5 and 6 are diagrams illustrating an operation of a second trajectory angle range of a communication device according to an exemplary embodiment.
  • the tracking unit 110 moves the moving object ST In order to track ), it is possible to control the operation of the communication device 10 so that the tracking unit 110 rotates about the elevation axis EL and the cross-level axis CL, respectively.
  • the controller 20 is the second gimble 123 so that the second gimble 123 rotates on the elevation axis EL and the body portion of the second gimble 123 rotates about the cross level axis CL. The rotation of the can be controlled.
  • the second orbit angle range when the communication device 10 (see FIG. 2) is installed on the ground, the second orbit angle range may be -10° to +10°. In a non-limiting example, when the communication device 10 is installed on a ship, it may be -35° to +35°.
  • the controller 20 includes a tracking unit for the cross level axis CL so that the rotation angle of the tracking unit 110 with respect to the cross level axis CL in the second orbit angle range is substantially the same as the orbit angle of the moving body ST. 110) can be tilted.
  • the controller 20 may control the communication device 10 so that the tilting angle of the tracking unit 110 remains substantially the same as the trajectory angle of the moving object ST in the second trajectory angle range.
  • the controller 20 may suppress the rotation of the tracking unit 110 with respect to the azimuth axis AZ.
  • the controller 20 may suppress the rotation of the first gimble 122 with respect to the azimuth axis AZ.
  • FIG. 7 is a conceptual diagram illustrating a control method of a communication device according to an embodiment.
  • FIG. 7 it helps to intuitively understand the specific control method of the controller 20 of the tracking unit 110 for the elevation axis EL, the azimuth axis AZ and/or the cross level axis CL.
  • a conceptual diagram is shown.
  • the tracking unit 110 is not rotated and tilted with respect to the cross-level axis CL, and the tracking unit 110 has a first orbital angle range R1 and a second orbital angle range R2. It follows the first movement path P1 that rotates about the elevation axis EL throughout.
  • the tracking unit 110 on the first movement path P1 has no choice but to pass through the specific area PA on the watch where the keyhole effect phenomenon occurs.
  • the tracking unit 110 passes through the specific area PA, the tracking unit 110 needs a rapid rotation of the tracking unit 110 with respect to the azimuth axis AZ in order to smoothly track the moving object ST. , A relatively large amount of driving torque required for rotation of the tracking unit 110 may be required.
  • the tracking unit 110 avoids the singular area PA over the entire first orbital angle range R1 and the second orbital angle range R2. It follows the second movement path P2. For example, in the first trajectory angle range R1, the tracking unit 110 rotates about the elevation axis EL similarly to the first movement path P1, and then a second specific area PA exists.
  • the specific area PA can be avoided by tilting and/or maintaining the trajectory angle of the moving object ST with respect to the cross-level axis CL before entering the trajectory angle range R2.
  • the controller 20 allows the tracking unit 110 to establish a path similar to the first movement path P1. In order to move along, the rotation angle of the tracking unit 110 with respect to the cross level axis CL may be adjusted.
  • FIG 8 and 9 are graphs for explaining another control method of a communication device according to an embodiment.
  • the communication device may control the communication device in an alternative method different from the method described above.
  • the controller can limit the angular velocity of the azimuth angle of the tracking unit to less than the critical angular velocity, and if an angular velocity above the critical angular velocity is requested, it is tracked by driving based on the trajectory of 3 axes (azimuth axis, elevation axis and cross level axis) By controlling the unit, it is possible to reduce the generation of the load required to drive the tracking unit.
  • the controller may control the tracking unit using a two-axis (azimuth axis and elevation axis) trajectory in an environment driven below a critical angular velocity.
  • FIG. 8 is a graph showing the change in azimuth angle over time when the maximum value of the elevation angle of the tracking unit is 90°, 88°, 85° and 80°
  • FIG. 9 is a graph showing the maximum value of the elevation angle of the tracking unit is 90°
  • the critical angular velocity may be 5 deg/sec. In this case, it can be seen that a section exceeding the critical angular velocity exists when the maximum azimuth angle is 90° and 88°.
  • the method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the medium may be specially designed and configured for the embodiment, or may be known and usable to those skilled in computer software.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks.
  • -A hardware device specially configured to store and execute program instructions such as magneto-optical media, and ROM, RAM, flash memory, and the like.
  • Examples of program instructions include not only machine language codes such as those produced by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operation of the embodiment, and vice versa.
  • the software may include a computer program, code, instructions, or a combination of one or more of these, configuring the processing unit to operate as desired or processed independently or collectively. You can command the device.
  • Software and/or data may be interpreted by a processing device or, to provide instructions or data to a processing device, of any type of machine, component, physical device, virtual equipment, computer storage medium or device. , Or may be permanently or temporarily embodyed in a transmitted signal wave.
  • the software may be distributed over networked computer systems and stored or executed in a distributed manner. Software and data may be stored on one or more computer-readable recording media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

일 실시예에 따른 통신 시스템은 서로 직교하는 제1축, 제2축 및 제3축에 대해 회전하며 시계 내 이동하는 이동체와 전파 통신하는 추적부를 포함하는 통신 장치; 및 상기 추적부가 상기 이동체의 제1 궤도각 범위에서 상기 제1축 및 상기 제2축에 대해 회전하고 상기 이동체의 제2 궤도각 범위에서 상기 제2축 및 상기 제3축에 대해 회전하도록 상기 통신 장치를 제어하는 컨트롤러를 포함한다.

Description

통신 시스템
이하, 실시예들은 통신 시스템에 관한 것이다.
안테나를 통해 전파를 송수신하는 통신 시스템이 개발되고 있다. 예를 들어, 미국특허출원공보 제2014/0299734호는 안테나를 추적하기 위한 페데스탈을 개시한다. 시계(field of view) 상에서 인공 위성을 추적하는 동안, 안테나가 시계 상의 특정 영역에서 다른 영역에 비해 상대적으로 급격하게 회전되는 현상이 발생할 수 있다. 이러한 현상은 "열쇠 구멍 효과(key hole effect)"로도 알려져 있다. 상기와 같은 특정 영역에서 안테나의 회전 속도를 제어하기 위해 통신 시스템에는 상대적으로 큰 용량의 동력원이 요구된다.
일 실시예에 따른 목적은 열쇠 구멍 효과가 발생하는 시계 상의 특정 영역을 회피하는 통신 시스템을 제공하는 것이다.
일 실시예에 따른 통신 시스템은 서로 직교하는 제1축, 제2축 및 제3축에 대해 회전하며 시계 내 이동하는 이동체와 전파 통신하는 추적부를 포함하는 통신 장치; 및 상기 이동체의 궤도각에 기초하여 상기 통신 장치를 제어하는 컨트롤러를 포함하고, 상기 컨트롤러는, 상기 추적부가 상기 이동체의 제1 궤도각 범위에서 상기 제1축 및 상기 제2축에 대해 회전하고 상기 이동체의 제2 궤도각 범위에서 상기 제2축 및 상기 제3축에 대해 회전하도록 상기 통신 장치를 제어한다.
상기 컨트롤러는 상기 제1 궤도각 범위에서 상기 제3축에 대한 상기 추적부의 회전을 억제할 수 있다.
상기 컨트롤러는 상기 제2 궤도각 범위에서 상기 추적부가 상기 이동체의 궤도각만큼 틸트된 상태를 유지하도록 상기 제3축에 대한 상기 추적부의 회전 각도를 결정할 수 있다.
상기 컨트롤러는 상기 제2 궤도각 범위에서 상기 제1축에 대한 상기 추적부의 회전을 억제할 수 있다.
상기 제1축은 방위축이고, 상기 제2축은 고도축이고, 상기 제3축은 크로스레벨축일 수 있다.
상기 크로스레벨축은 상기 통신 장치가 설치되는 고정계의 롤 모션에 대한 축일 수 있다.
상기 고정계는 선박일 수 있다.
상기 컨트롤러는 상기 추적부의 방위각의 각속도를 임계 각속도 이하로 제한할 수 있다.
일 실시예에 따른 통신 시스템은 열쇠 구멍 효과가 발생하는 시계 상의 특정 영역을 회피할 수 있다.
일 실시예에 따른 통신 시스템의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 일 실시예에 따른 통신 시스템의 블록도이다.
도 2는 일 실시예에 따른 통신 장치의 사시도이다.
도 3 및 도 4는 일 실시예에 따른 통신 장치의 제1 궤도각 범위의 동작을 나타내는 도면이다.
도 5 및 도 6은 일 실시예에 따른 통신 장치의 제2 궤도각 범위의 동작을 나타내는 도면이다.
도 7은 일 실시예에 따른 통신 장치의 제어 방식을 설명하기 위한 개념도이다.
도 8 및 도 9는 일 실시예에 따른 통신 장치의 또 다른 제어 방식을 설명하기 위한 그래프이다.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
또한, 실시예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
어느 하나의 실시예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시예에 기재한 설명은 다른 실시예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.
도 1은 일 실시예에 따른 통신 시스템의 블록도이고, 도 2는 일 실시예에 따른 통신 장치의 사시도이다.
도 1 및 도 2를 참조하면, 일 실시예에 따른 통신 시스템(1)은 시계 상의 이동체(ST)와 전파 통신하도록 구성된다. 통신 시스템(1)은 통신 장치(10) 및 컨트롤러(20)를 포함할 수 있다.
통신 장치(10)는 시계 상의 이동체(ST)로 전파를 송신하거나 이동체(ST)로부터 전파를 수신하도록 구성된다. 통신 장치(10)는 추적부(110) 및 페데스탈(120)을 포함할 수 있다.
추적부(110)는 시계 상의 이동체(ST)를 추적하도록 구성된다. 추적부(110)는 그 단면이 대략 파라볼릭 형태의 반사면을 가진 반사체를 포함할 수 있다. 추적부(110)는 고도축(EL), 방위축(AZ) 및/또는 크로스레벨축(CL)에 대해 회전하도록 구성될 수 있다. 고도축(EL), 방위축(AZ) 및 크로스레벨축(CL)은 서로 직교할 수 있다.
페데스탈(120)은 추적부(110)를 지지하도록 구성된다. 페데스탈(120)은 샤프트(121), 제1김블(122) 및 제2김블(123)을 포함할 수 있다.
샤프트(121)는 방위축(AZ)에 대해 회전하도록 구성된다. 샤프트(121)는 길쭉한 원통 형상을 가질 수 있다. 샤프트(121)는 고정계(FW)의 기준 평면에 설치될 수 있다.
제1김블(122)은 방위축(AZ)에 대해 회전하도록 구성될 수 있다. 제1김블(122)은 샤프트(121)에 연결될 수 있다. 제1김블(122)은 샤프트(121)에 의해 지지될 수 있다. 예를 들어, 제1김블(122)은 샤프트(121)의 상단에서 샤프트(121)의 사이드들로부터 연장하고나서, 방위축(AZ)을 따라 연장하는 한 쌍의 제1아암들을 포함할 수 있다.
제2김블(123)은 추적부(110)를 지지하며 고도축(EL)에 대해 회전하도록 구성될 수 있다. 제2김블(123)은 제1김블(122)에 연결될 수 있다. 제2김블(123)은 제1김블(122)에 의해 지지될 수 있다. 예를 들어, 제2김블(123)은 추적부(110)에 연결되고 크로스레벨축(CL)에 대해 회전하도록 구성된 바디 부분 및 바디 부분을 둘러싸고 제1김블(122)의 한 쌍의 제1아암들에 회전 가능하게 연결되는 한 쌍의 제2아암들을 포함할 수 있다.
통신 장치(10)는 고정계(FW)에 설치될 수 있다. 예를 들어, 고정계(FW)는 지면(surface of the earth), 선박(ship) 등을 포함할 수 있다. 바람직한 예로, 통신 장치(10)가 설치되는 고정계(FW)는 선박이다. 선박은 수면 위에서 6-자유도의 모션들을 수행하므로, 선박에 설치되는 통신 장치(10)는 선박의 다축 방향으로의 또는 다축 방향에 대한 모션들도 함께 고려하면서 시계 상의 이동체(ST)를 추적하여야 한다. 도시되지 않았지만, 컨트롤러(20)도 통신 장치(10)와 함께 고정계(FW)에 설치될 수도 있다.
컨트롤러(20)는 고도축(EL), 방위축(AZ) 및/또는 크로스레벨축(CL)에 대한 통신 장치(10)의 틸팅 및 회전을 제어하도록 구성된다. 컨트롤러(20)는 시계 상의 이동체(ST)의 위치에 따라 통신 장치(10)의 틸팅 및 회전을 제어할 수 있다. 예를 들어, 컨트롤러(20)는 시계 상의 이동체(ST)의 궤도각을 고려하여 통신 장치(10)의 틸팅 및 회전을 제어할 수 있다. 통신 장치(10)에 대한 컨트롤러(20)의 구체적인 제어 방식은 도 3 내지 도 7을 참조하며 상세하게 설명하기로 한다.
도 3 및 도 4는 일 실시예에 따른 통신 장치의 제1 궤도각 범위의 동작을 나타내는 도면이다.
도 3 및 도 4를 함께 참조하면 컨트롤러(20)는, 이동체(ST)가 시계 상에서 제1 궤도각 범위(±X° ~ ±Y°)에 있을 때, 추적부(110)가 이동체(ST)를 추적하기 위해, 추적부(110)가 방위축(AZ) 및 고도축(EL)에 대해 각각 회전하도록 통신 장치(10)의 작동을 제어할 수 있다. 예를 들어, 컨트롤러(20)는 제1김블(122)이 방위축(AZ)에 대해 회전하고 제2김블(123)이 고도축(EL)에 대해 회전하도록 샤프트(121), 제1김블(122) 및/또는 제2김블(123)의 회전을 제어할 수 있다.
비제한적인 예에서, 통신 장치(10)(도 2 참조)가 지상에 설치되는 경우, 제1 궤도각 범위는 ±10° ~ ±54°일 수 있다. 비제한적인 예에서, 통신 장치(10)가 선박에 설치되는 경우, ±35° ~ ±79°일 수 있다.
한편, 제1 궤도각 범위에서 크로스레벨축(CL)에 대한 추적부(110)의 회전은 필요하지 않은 경우가 있다. 이 경우, 컨트롤러(20)는 크로스레벨축(CL)에 대한 추적부(110)의 회전을 억제할 수 있다. 예를 들어, 컨트롤러(20)는 제2김블(123)의 바디 부분의 크로스레벨축(CL)에 대한 회전을 억제할 수 있다.
도 5 및 도 6은 일 실시예에 따른 통신 장치의 제2 궤도각 범위의 동작을 나타내는 도면이다.
도 5 및 도 6을 함께 참조하면, 컨트롤러(20)는, 이동체(ST)가 시계 상에서 제2 궤도각 범위(-X° ~ +X°)에 있을 때, 추적부(110)가 이동체(ST)를 추적하기 위해, 추적부(110)가 고도축(EL) 및 크로스레벨축(CL)에 대해 각각 회전하도록 통신 장치(10)의 작동을 제어할 수 있다. 예를 들어, 컨트롤러(20)는 제2김블(123)이 고도축(EL)에 회전하고 제2김블(123)의 바디 부분이 크로스레벨축(CL)에 대해 회전하도록 제2김블(123)의 회전을 제어할 수 있다.
비제한적인 예에서, 통신 장치(10)(도 2 참조)가 지상에 설치되는 경우, 제2 궤도각 범위는 -10° ~ +10°일 수 있다. 비제한적인 예에서, 통신 장치(10)가 선박에 설치되는 경우, -35° ~ +35°일 수 있다.
컨트롤러(20)는 제2 궤도각 범위에서 크로스레벨축(CL)에 대한 추적부(110)의 회전 각도가 이동체(ST)의 궤도각과 실질적으로 동일하도록 크로스레벨축(CL)에 대해 추적부(110)를 틸팅시킬 수 있다. 컨트롤러(20)는 추적부(110)의 틸팅 각도가 제2 궤도각 범위에서 이동체(ST)의 궤도각과 실질적으로 동일하게 유지되도록 통신 장치(10)를 제어할 수 있다.
한편, 제2 궤도각 범위에서 방위축(AZ)에 대한 추적부(110)의 회전은 필요하지 않은 경우가 있다. 이 경우, 컨트롤러(20)는 방위축(AZ)에 대한 추적부(110)의 회전을 억제할 수 있다. 예를 들어, 컨트롤러(20)는 제1김블(122)의 방위축(AZ)에 대한 회전을 억제할 수 있다.
도 7은 일 실시예에 따른 통신 장치의 제어 방식을 설명하기 위한 개념도이다.
도 7을 함께 참조하면, 고도축(EL), 방위축(AZ) 및/또는 크로스레벨축(CL)에 대한 추적부(110)의 컨트롤러(20)의 구체적인 제어 방식을 직관적으로 이해하는 것을 돕는 개념도가 도시된다.
통상적인 제어 방식에 의하면, 추적부(110)는 크로스레벨축(CL)에 대해 회전 및 틸트되지 않고, 추적부(110)가 제1 궤도각 범위(R1) 및 제2 궤도각 범위(R2)의 전체에 걸쳐 고도축(EL)에 대해 회전하는 제1 이동 경로(P1)를 따른다. 제1 이동 경로(P1) 상의 추적부(110)는 열쇠 구멍 효과 현상이 발생하는 시계 상의 특이 영역(PA)을 통과할 수밖에 없다. 추적부(110)가 특이 영역(PA)을 통과할 때, 추적부(110)가 이동체(ST)를 원활하게 추적하기 위해 방위축(AZ)에 대한 추적부(110)의 급격한 회전이 필요하므로, 추적부(110)의 회전에 요구되는 구동 토크가 상대적으로 많이 요구될 수 있다.
일 실시예에 따른 컨트롤러(20)의 제어 방식에 의하면, 추적부(110)는 제1 궤도각 범위(R1) 및 제2 궤도각 범위(R2)의 전체에 걸쳐 특이 영역(PA)을 회피하는 제2 이동 경로(P2)를 따른다. 예를 들어, 제1 궤도각 범위(R1)에서, 추적부(110)는 제1 이동 경로(P1)와 유사하게 고도축(EL)에 대해 회전하다가, 특이 영역(PA)이 존재하는 제2 궤도각 범위(R2)에 진입하기 전에 크로스레벨축(CL)에 대해 이동체(ST)의 궤도각만큼 틸트 및/또는 유지함으로써 특이 영역(PA)을 회피할 수 있다. 추적부(110)가 특이 영역(PA)이 멀어지기 시작하는 제1 궤도각 범위(R1)에 진입하면, 컨트롤러(20)는 추적부(110)가 제1 이동 경로(P1)와 유사한 경로를 따라 이동하기 위해 크로스레벨축(CL)에 대한 추적부(110)의 회전 각도를 조절할 수 있다.
도 8 및 도 9는 일 실시예에 따른 통신 장치의 또 다른 제어 방식을 설명하기 위한 그래프이다.
도 8 및 도 9를 참조하면, 일 실시예에 따른 통신 장치는 앞서 설명한 방식과 다른 대안적인 방식으로 통신 장치를 제어할 수도 있다. 예를 들어, 컨트롤러는 추적부의 방위각의 각속도를 임계 각속도 이하로 제한할 수 있고, 임계 각속도 이상의 각속도를 요구하는 경우에는 3축(방위축, 고도축 및 크로스레벨축) 궤적에 기초한 구동을 통해 추적부를 제어함으로써 추적부의 구동에 요구되는 부하의 발생을 감소시킬 수 있다. 또한, 컨트롤러는 임계 각속도 이하로 구동되는 환경에서 2축(방위축 및 고도축) 궤적을 이용하여 추적부를 제어할 수 있다.
도 8은 추적부의 고도각의 최대값이 90°, 88°, 85° 및 80°일 경우의 시간에 따른 방위각의 변화를 나타내는 그래프이고, 도 9는 추적부의 고도각의 최대값이 90°, 88°, 85° 및 80°일 경우의 추적부의 방위각의 각속도를 나타내는 그래프이다. 도 8의 예시에서, 임계 각속도는 5 deg/sec일 수 있다. 이 때, 최대 방위각이 90°인 경우와, 88°인 경우는 임계 각속도를 초과하는 구간이 존재함을 확인할 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.

Claims (8)

  1. 서로 직교하는 제1축, 제2축 및 제3축에 대해 회전하며 시계 내 이동하는 이동체와 전파 통신하는 추적부를 포함하는 통신 장치; 및
    상기 이동체의 궤도각에 기초하여 상기 통신 장치를 제어하는 컨트롤러;
    를 포함하고,
    상기 컨트롤러는, 상기 추적부가 상기 이동체의 제1 궤도각 범위에서 상기 제1축 및 상기 제2축에 대해 회전하고 상기 이동체의 제2 궤도각 범위에서 상기 제2축 및 상기 제3축에 대해 회전하도록 상기 통신 장치를 제어하는 통신 시스템.
  2. 제1항에 있어서,
    상기 컨트롤러는 상기 제1 궤도각 범위에서 상기 제3축에 대한 상기 추적부의 회전을 억제하는 통신 시스템.
  3. 제1항에 있어서,
    상기 컨트롤러는 상기 제2 궤도각 범위에서 상기 추적부가 상기 이동체의 궤도각만큼 틸트된 상태를 유지하도록 상기 제3축에 대한 상기 추적부의 회전 각도를 결정하는 통신 시스템.
  4. 제1항에 있어서,
    상기 컨트롤러는 상기 제2 궤도각 범위에서 상기 제1축에 대한 상기 추적부의 회전을 억제하는 통신 시스템.
  5. 제1항에 있어서,
    상기 제1축은 방위축이고, 상기 제2축은 고도축이고, 상기 제3축은 크로스레벨축인 통신 시스템.
  6. 제5항에 있어서,
    상기 크로스레벨축은 상기 통신 장치가 설치되는 고정계의 롤 모션에 대한 축인 통신 시스템.
  7. 제6항에 있어서,
    상기 고정계는 선박인 통신 시스템.
  8. 제1항에 있어서,
    상기 컨트롤러는 상기 추적부의 방위각의 각속도를 임계 각속도 이하로 제한하는 통신 시스템.
PCT/KR2020/005825 2019-09-18 2020-05-04 통신 시스템 WO2021054560A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20865016.8A EP4033607A4 (en) 2019-09-18 2020-05-04 COMMUNICATION SYSTEM
US17/637,135 US20220285835A1 (en) 2019-09-18 2020-05-04 Communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0114980 2019-09-18
KR1020190114980A KR102195419B1 (ko) 2019-09-18 2019-09-18 통신 시스템

Publications (1)

Publication Number Publication Date
WO2021054560A1 true WO2021054560A1 (ko) 2021-03-25

Family

ID=74086921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005825 WO2021054560A1 (ko) 2019-09-18 2020-05-04 통신 시스템

Country Status (4)

Country Link
US (1) US20220285835A1 (ko)
EP (1) EP4033607A4 (ko)
KR (1) KR102195419B1 (ko)
WO (1) WO2021054560A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070107663A (ko) * 2004-10-28 2007-11-07 씨스페이스 코퍼레이션 안테나 위치설정기 시스템
KR20090081628A (ko) * 2008-01-24 2009-07-29 인하대학교 산학협력단 시선벡터의 연속 회전이 가능한 피치-롤 기반의 안테나추적 짐발 시스템
KR20110112343A (ko) * 2008-12-15 2011-10-12 씨텔, 인크. 추적 안테나용 받침대
WO2013137126A1 (ja) * 2012-03-13 2013-09-19 三菱電機株式会社 アンテナ検査システム、アンテナ検査装置、アンテナ検査方法およびプログラム
US20140299734A1 (en) 2011-12-08 2014-10-09 Spacecom Holding Aps Pedestal for tracking antenna
KR101793834B1 (ko) * 2016-08-10 2017-11-06 국방과학연구소 위성 지향 안테나의 안정화 제어 장치 및 그 방법

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043737A (en) * 1990-06-05 1991-08-27 Hughes Aircraft Company Precision satellite tracking system
US5166689A (en) * 1991-11-25 1992-11-24 United Technologies Corporation Azimuth correction for radar antenna roll and pitch
DE19742446B4 (de) * 1997-09-26 2006-05-24 Daimlerchrysler Ag Fehlerdiagnoseverfahren
US6285338B1 (en) * 2000-01-28 2001-09-04 Motorola, Inc. Method and apparatus for eliminating keyhole problem of an azimuth-elevation gimbal antenna
US6433736B1 (en) * 2000-11-22 2002-08-13 L-3 Communications Corp. Method and apparatus for an improved antenna tracking system mounted on an unstable platform
EP1745526A4 (en) * 2004-03-11 2008-03-19 Intellian Technologies Inc SATELLITE TRACKING ANTENNA SYSTEM AND METHOD THEREFOR
US7463191B2 (en) * 2004-06-17 2008-12-09 New Jersey Institute Of Technology Antenna beam steering and tracking techniques
US7095376B1 (en) * 2004-11-30 2006-08-22 L3 Communications Corporation System and method for pointing and control of an antenna
US7324046B1 (en) * 2005-03-25 2008-01-29 The Boeing Company Electronic beam steering for keyhole avoidance
US7239276B1 (en) * 2005-10-24 2007-07-03 Lockheed Martin Corporation Method and system for fast synthesis of shaped phased-array beams
US20070241244A1 (en) * 2006-04-18 2007-10-18 X-Ether, Inc. Method and apparatus for eliminating keyhole problems in an X-Y gimbal assembly
JP5016464B2 (ja) * 2007-12-07 2012-09-05 古野電気株式会社 2軸ジンバル構造を有するアンテナの指向誤差を低減する制御方法およびその方法を備えた制御装置
US8059048B2 (en) * 2008-03-11 2011-11-15 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Rotating antenna steering mount
US8193975B2 (en) * 2008-11-12 2012-06-05 Atc Technologies Iterative antenna beam forming systems/methods
JP4810582B2 (ja) * 2009-03-26 2011-11-09 株式会社東芝 移動体画像追尾装置および方法
US20110068989A1 (en) * 2009-09-22 2011-03-24 Cory Zephir Bousquet Antenna System with Three Degrees of Freedom
US20110304737A1 (en) * 2010-06-15 2011-12-15 Flir Systems, Inc. Gimbal positioning with target velocity compensation
US9000995B2 (en) * 2010-06-27 2015-04-07 Sea Tel, Inc. Three-axis pedestal having motion platform and piggy back assemblies
US9093742B2 (en) * 2011-10-17 2015-07-28 McDonald, Dettwiler and Associates Corporation Wide scan steerable antenna with no key-hole
WO2014188752A1 (ja) * 2013-05-20 2014-11-27 三菱電機株式会社 3軸制御空中線装置
WO2015001848A1 (ja) * 2013-07-03 2015-01-08 三菱電機株式会社 追尾システム、追尾方法およびプログラム
US9083072B2 (en) * 2013-08-27 2015-07-14 Winegard Company Antenna mount for selectively adjusting the azimuth, elevation, and skew alignments of an antenna
GB2517710A (en) * 2013-08-28 2015-03-04 Aveillant Ltd Radar system and associated apparatus and methods
WO2015108095A1 (ja) * 2014-01-17 2015-07-23 三菱電機株式会社 アンテナ制御装置およびアンテナ装置
KR101782259B1 (ko) * 2016-04-21 2017-09-27 한국항공우주연구원 위성 안테나 속도 제어 장치 및 방법
WO2018053877A1 (zh) * 2016-09-26 2018-03-29 深圳市大疆创新科技有限公司 控制方法、控制设备和运载系统
SG11201906993RA (en) * 2017-02-17 2019-09-27 Mitsubishi Electric Corp Antenna device, antenna control device, and method for controlling antenna device
WO2019006012A1 (en) * 2017-06-27 2019-01-03 Sea Tel, Inc. (Dba Cobham Satcom) PURSING ANTENNA SYSTEM WITH A THREE-AXIS MODULAR BASE
CN111742444A (zh) * 2018-03-08 2020-10-02 维尔塞特公司 具有偏心倾斜定位机构的天线定位器
KR102103666B1 (ko) * 2019-01-18 2020-04-23 (주)인텔리안테크놀로지스 틸트된 방위축을 구비하는 페데스탈
KR102195422B1 (ko) * 2019-09-02 2020-12-28 (주)인텔리안테크놀로지스 안테나 제어 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070107663A (ko) * 2004-10-28 2007-11-07 씨스페이스 코퍼레이션 안테나 위치설정기 시스템
KR20090081628A (ko) * 2008-01-24 2009-07-29 인하대학교 산학협력단 시선벡터의 연속 회전이 가능한 피치-롤 기반의 안테나추적 짐발 시스템
KR20110112343A (ko) * 2008-12-15 2011-10-12 씨텔, 인크. 추적 안테나용 받침대
US20140299734A1 (en) 2011-12-08 2014-10-09 Spacecom Holding Aps Pedestal for tracking antenna
WO2013137126A1 (ja) * 2012-03-13 2013-09-19 三菱電機株式会社 アンテナ検査システム、アンテナ検査装置、アンテナ検査方法およびプログラム
KR101793834B1 (ko) * 2016-08-10 2017-11-06 국방과학연구소 위성 지향 안테나의 안정화 제어 장치 및 그 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4033607A4

Also Published As

Publication number Publication date
EP4033607A1 (en) 2022-07-27
US20220285835A1 (en) 2022-09-08
KR102195419B1 (ko) 2020-12-28
EP4033607A4 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2007121393A2 (en) Eliminating keyhole problems in an x-y gimbal assembly
US7969375B2 (en) Spherical motor positioning
US7298342B2 (en) Antenna positioner system
US8174581B2 (en) Moving object image tracking apparatus and method
US20090281660A1 (en) Gunshot detection stabilized turret robot
WO2021054560A1 (ko) 통신 시스템
CN112937923B (zh) 一种近地倾斜轨道卫星双轴太阳翼驱动机构控制方法
CN106628261A (zh) 一种电推位保过程中的卫星高精度高稳度姿态控制方法
GB2182624A (en) Pivot actuated nutation damping system for a dual-spin spacecraft
CN113296529A (zh) 用于低轨卫星的动中通相控阵天线及其控制方法
KR102195422B1 (ko) 안테나 제어 방법 및 장치
JPH07202541A (ja) 3軸制御空中線装置
US6853349B1 (en) Method and device for prevention of gimbal-locking
EP3913737A1 (en) Pedestal including tilted azimuth axis
CN115639849A (zh) 一种机电复合的目标过顶跟踪方法及装置
JP2005504670A5 (ko)
JPH05108159A (ja) 指向追尾装置
JP2973919B2 (ja) 衛星用アンテナの捕捉制御装置及びその制御方法
JP2842963B2 (ja) 移動体用アンテナ装置
JPH0626284B2 (ja) 3軸アンテナ制御方法
KR100392250B1 (ko) 저가형 다중위성 이동수신 추적안테나의 위성추적 제어장치 및 제어 방법
KR20240053338A (ko) 슬라이딩 페데스탈 장치 및 이를 포함하는 안테나
Augustin et al. XL-L: A Novel Two Axis Pedestal System Which Eliminates Keyholes and Has Complete Continuous Hemispherical Coverage Without the Use of Rotary Joints or Sliprings
JPH0294801A (ja) アンテナマウント装置
JP2002043999A (ja) 周回衛星による衛星通信用地上端末装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020865016

Country of ref document: EP

Effective date: 20220419