WO2021054055A1 - Inspection module, inversion module, and inspection device - Google Patents

Inspection module, inversion module, and inspection device Download PDF

Info

Publication number
WO2021054055A1
WO2021054055A1 PCT/JP2020/031843 JP2020031843W WO2021054055A1 WO 2021054055 A1 WO2021054055 A1 WO 2021054055A1 JP 2020031843 W JP2020031843 W JP 2020031843W WO 2021054055 A1 WO2021054055 A1 WO 2021054055A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
inspected
inspection
unit
control unit
Prior art date
Application number
PCT/JP2020/031843
Other languages
French (fr)
Japanese (ja)
Inventor
真稔 島田
佐藤 祐介
慎也 谷口
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2021054055A1 publication Critical patent/WO2021054055A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q7/00Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications

Definitions

  • the present invention relates to an inspection module, an inversion module and an inspection device.
  • an inspection device in which a part having a three-dimensional shape used in a drive unit of an automobile or the like and its surroundings is an inspection object (also referred to as a work) (for example, Patent Document 1 and the like).
  • the inspection device is designed for each specification according to the user's request. It is not easy to provide an inspection device that meets the needs of users.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique for easily manufacturing an inspection device that flexibly responds to a user's request.
  • the inspection module includes a transport unit, a sensor unit, a moving mechanism, a detection unit, and a control unit.
  • the transport unit transports the object to be inspected between the inspection module and the outside of the inspection module.
  • the sensor unit performs processing for inspection of at least one of imaging and measurement of the object to be inspected.
  • the moving mechanism moves the position of the sensor unit relative to the object to be inspected.
  • the detection unit is for obtaining information on the posture and position of the object to be inspected.
  • the control unit adjusts the relative position of the sensor unit with respect to the object to be inspected by the moving mechanism based on the information obtained by the detection unit.
  • the inspection module according to the second aspect is the inspection module according to the first aspect, and the sensor unit includes an imaging unit with the object to be inspected as a subject.
  • the inspection module according to the third aspect is the inspection module according to the first or second aspect, and the transport unit includes a belt conveyor.
  • the reversing module according to the fifth aspect is the reversing module according to the fourth aspect, and the transport unit includes a belt conveyor.
  • the inspection device includes two or more modules connected to each other.
  • the two or more modules include a first module and a second module.
  • the first module includes a first transport unit, a first sensor unit, a first movement mechanism, a first detection unit, and a first control unit.
  • the first transport unit transports the object to be inspected between the first module and the outside of the first module.
  • the first sensor unit performs processing for inspection of at least one of imaging and measurement of the object to be inspected.
  • the first moving mechanism moves the position of the first sensor unit relative to the object to be inspected.
  • the first detection unit is for obtaining information relating to the posture and position of the object to be inspected.
  • the first control unit adjusts the relative position of the first sensor unit with respect to the object to be inspected by the moving mechanism based on the information obtained by the first detection unit.
  • the second module includes a second transport unit, a second sensor unit, a second moving mechanism, a second detection unit, and a second control unit.
  • the second transport unit transports the object to be inspected between the second module and the outside of the second module.
  • the second sensor unit performs processing for inspection of at least one of imaging and measurement of the object to be inspected.
  • the second moving mechanism moves the position of the second sensor unit relative to the object to be inspected.
  • the second detection unit is for obtaining information relating to the posture and position of the object to be inspected.
  • the second control unit adjusts the relative position of the second sensor unit with respect to the object to be inspected by the second moving mechanism based on the information obtained by the second detection unit.
  • the inspection device is the inspection device according to the eighth aspect, and the second control unit uses the information obtained by using the first detection unit and the second detection unit. Based on the information obtained in the above, the second moving mechanism adjusts the relative position of the second sensor unit with respect to the object to be inspected, or the first control unit causes the first detection unit. The relative position of the first sensor unit with respect to the object to be inspected is adjusted by the first moving mechanism based on the information obtained by using the second detection unit and the information obtained by using the second detection unit. Let me.
  • the inspection device is an inspection device according to any one of the sixth to ninth aspects, and transports the object to be inspected located in each of the two or more modules. It is transported to the module on the downstream side of the above at the same time.
  • the inspection device according to the eleventh aspect is an inspection device according to any one of the sixth to tenth aspects, and the first transport section and the second transport section each include a belt conveyor.
  • the inspection module for example, by moving the sensor unit relative to the object to be inspected, one sensor unit is used for inspection of one or more locations of the object to be inspected. Can be processed. Therefore, for example, an inspection device can be manufactured by appropriately combining two or more modules including one or two or more inspection modules. Further, for example, even if at least one of the posture and the position of the inspected object deviates when the inspected object is carried into the inspection module from another module, the relative of the sensor unit to the inspected object according to the deviation. Position can be adjusted. Therefore, for example, it is possible to easily manufacture an inspection device that flexibly meets the user's request such as the shape and size of the object to be inspected, the space for installing the device, and the budget.
  • one imaging unit can take an image of one or more locations of the object to be inspected. It can be carried out. Therefore, for example, an inspection device can be manufactured by appropriately combining two or more modules including one or two or more imaging modules. Further, for example, even if at least one of the posture and the position of the inspected object deviates when the inspected object is carried into the inspection module from another module, the relative of the imaging unit to the inspected object according to the deviation. Position can be adjusted.
  • the inspection module for example, when the inspected object is transferred from the belt conveyor of the adjacent module to the belt conveyor of the inspection module, at least one of the posture and the position of the inspected object is changed. Even if there is a deviation, the relative position of the sensor unit with respect to the object to be inspected can be adjusted according to the deviation.
  • the inversion module for example, two or more inversion modules including an inspection module for performing an inspection process for an inspected object and an inversion module for inversion of the inspected object.
  • the inspection device can be manufactured by appropriately combining the modules. Further, for example, even if at least one of the posture and the position of the object to be inspected is deviated when the object to be inspected is carried from another module to the reversing module, the holding portion is relative to the object to be inspected according to the deviation. By adjusting the position, the object to be inspected can be held and inverted by the holding portion. Therefore, for example, it is possible to easily manufacture an inspection device that flexibly meets the user's request such as the shape and size of the object to be inspected, the space for installing the device, and the budget.
  • the reversing module for example, when the object to be inspected is transferred from the belt conveyor of the adjacent module to the belt conveyor of the reversing module, at least one of the posture and the position of the object to be inspected is displaced. However, the relative position of the holding portion with respect to the object to be inspected can be adjusted according to the deviation.
  • two or more modules including a first module for performing an inspection process for an inspected object and a second module for inverting the inspected object.
  • the inspection device can be manufactured by appropriately combining the above modules. Further, for example, even if at least one of the posture and the position of the object to be inspected deviates when the object to be inspected is carried from another module to the first module, the relative of the sensor unit to the object to be inspected according to the deviation. Position can be adjusted. Further, for example, even if at least one of the posture and the position of the object to be inspected is deviated when the object to be inspected is carried from another module to the second module, the relative of the holding portion to the object to be inspected according to the deviation. Position can be adjusted. Therefore, for example, it is possible to easily manufacture an inspection device that flexibly meets the user's request such as the shape and size of the object to be inspected, the space for installing the device, and the budget.
  • the inspection device for example, when the object to be inspected is carried into the second module after the first module, it is obtained in the second module by using the detection unit in the first module.
  • the information is used to adjust the relative position of the holding part with respect to the object to be inspected, and when the object to be inspected is carried into the first module after the second module, in the first module, in the second module.
  • the position of the sensor unit relative to the object to be inspected can be adjusted by using the information obtained by using the detection unit. This can reduce, for example, the configuration and time required to obtain the information.
  • an inspection device in which two or more modules including a first module and a second module for performing inspection processing on an object to be inspected are appropriately combined. Can be manufactured. Further, for example, even if at least one of the posture and the position of the object to be inspected is displaced when the object to be inspected is carried from another module to the first module or the second module, the sensor for the object to be inspected is displaced according to the deviation. The relative position of the parts can be adjusted. Therefore, for example, it is possible to easily manufacture an inspection device that flexibly meets the user's request such as the shape and size of the object to be inspected, the space for installing the device, and the budget.
  • the inspection process for a plurality of locations of the objects to be inspected may be shared and carried out in two or more inspection modules. It is possible to increase the number of objects to be inspected that have been processed for inspection discharged from the inspection device per hour.
  • the inspection device for example, when the object to be inspected is carried into the second module after the first module, in the second module, the first detection unit in the first module is used. Using the obtained information, the position of the second sensor unit relative to the object to be inspected is adjusted, and when the object to be inspected is carried into the first module after the second module, in the first module, The position of the first sensor unit relative to the object to be inspected can be adjusted by using the information obtained by using the second detection unit in the second module. This can reduce, for example, the configuration and time required to obtain the information.
  • the inspection device for example, by simultaneously transporting the object to be inspected between all the modules to the adjacent module on the downstream side, the inspection device is discharged from the inspection device per unit time.
  • the number of objects to be inspected that have been processed can be increased.
  • the inspection device for example, when the object to be inspected is transferred from the belt conveyor of one module to the belt conveyor of the next module, at least one of the posture and the position of the object to be inspected is displaced.
  • the relative position of the sensor unit or the holding unit with respect to the object to be inspected can be adjusted according to the deviation.
  • FIG. 1A is a perspective view schematically showing the appearance of the inspection device according to the first example of the first embodiment.
  • FIG. 1B is a diagram showing a schematic configuration of an inspection device according to a first example of the first embodiment.
  • FIG. 2A is a perspective view showing a state of manufacturing the inspection device according to the first example of the first embodiment.
  • FIG. 2B is a diagram schematically showing a state of manufacturing the inspection device according to the first example of the first embodiment.
  • FIG. 3A is a diagram showing an example of a main physical configuration of the inspection module.
  • FIG. 3B is a diagram showing an example of the main physical configuration of the inversion module.
  • FIG. 4 is a diagram showing an example of a partial functional configuration of the inspection device according to the first embodiment.
  • FIG. 1A is a perspective view schematically showing the appearance of the inspection device according to the first example of the first embodiment.
  • FIG. 1B is a diagram showing a schematic configuration of an inspection device according to a first example of the first embodiment
  • FIG. 5 is a diagram showing an example of a partial functional configuration of the inspection device according to the first embodiment.
  • FIG. 6 is a diagram showing an example of a partial functional configuration of the inspection device according to the first embodiment.
  • FIG. 7 is a diagram showing an example of a partial functional configuration of the inspection device according to the first embodiment.
  • FIG. 8 is a diagram showing an example of a partial functional configuration of the inspection device according to the first embodiment.
  • FIG. 9 is a diagram showing an example of a partial functional configuration of the inspection device according to the first embodiment.
  • FIG. 10 is a diagram showing an example of a partial functional configuration of the inspection device according to the first embodiment.
  • FIG. 11A is a diagram showing a schematic configuration of an inspection device according to a second example composed of a combination of a plurality of modules.
  • FIG. 11A is a diagram showing a schematic configuration of an inspection device according to a second example composed of a combination of a plurality of modules.
  • FIG. 11B is a diagram showing a schematic configuration of an inspection device according to a third example, which is composed of a combination of a plurality of modules.
  • FIG. 12A is a diagram showing a schematic configuration of an inspection device according to a fourth example composed of a combination of a plurality of modules.
  • FIG. 12B is a diagram showing a schematic configuration of an inspection device according to a fifth example, which is composed of a combination of a plurality of modules.
  • FIG. 12C is a diagram showing a schematic configuration of an inspection device according to a sixth example composed of one module.
  • FIG. 13 is a diagram showing a timing chart relating to an example of an operation targeting one object to be inspected in the inspection device according to the first example of the first embodiment.
  • FIG. 12A is a diagram showing a schematic configuration of an inspection device according to a fourth example composed of a combination of a plurality of modules.
  • FIG. 12B is a diagram showing a schematic configuration of an inspection device according to a fifth example
  • FIG. 14 is a diagram showing a timing chart relating to an example of an operation targeting a plurality of objects to be inspected in the inspection device according to the first example of the first embodiment.
  • FIG. 15 is a diagram showing a schematic configuration of an example of an inspection device composed of a combination of a plurality of modules including a transfer module having a curved belt conveyor.
  • FIG. 16 is a diagram showing a schematic configuration of another example of an inspection device composed of a combination of a plurality of modules including a transfer module having a curved belt conveyor.
  • FIG. 17A is a diagram showing a schematic configuration of an example of an inspection device composed of a combination of a plurality of modules including a transfer module having a transfer robot.
  • FIG. 17B is a diagram showing a schematic configuration of another example of an inspection device composed of a combination of a plurality of modules including a transfer module having a transfer robot.
  • FIG. 18A is a diagram showing an example of an acquisition mode of information relating to the posture and position of the object to be inspected in one module on the upstream side.
  • FIG. 18B is a diagram showing an example of an acquisition mode of information relating to the posture and position of the object to be inspected in one module on the downstream side.
  • the expression indicating the shape not only expresses the shape strictly geometrically, but also, for example, unevenness or unevenness or within a range in which the same effect can be obtained.
  • a shape having a chamfer or the like shall also be represented.
  • the expressions “equipped”, “equipped”, “equipped”, “included”, or “have” one component are not exclusive expressions that exclude the existence of other components.
  • the expression “concatenation” includes a state in which two elements are in contact with each other and a state in which the two elements are separated from each other with another element in between.
  • FIG. 1A is a perspective view schematically showing the appearance of the inspection device 1 according to the first example of the first embodiment.
  • FIG. 1B is a diagram showing a schematic configuration of the inspection device 1 according to the first example of the first embodiment.
  • FIG. 2A is a perspective view showing a state in which the inspection device 1 according to the first example of the first embodiment is manufactured.
  • FIG. 2B is a diagram schematically showing a state in which the inspection device 1 according to the first example of the first embodiment is manufactured.
  • the inspection device 1 includes, for example, an input module 11, four inspection modules 12, an inversion module 13, and an discharge module 14. There is. More specifically, in the inspection device 1, for example, the input module 11, the first inspection module (also referred to as the first inspection module) 121, and the second inspection module (second inspection module) 122, inversion module 13, third inspection module (also referred to as third inspection module) 123, fourth inspection module (also referred to as fourth inspection module) 124, and discharge. Module 14 and the module 14 are located in the + X direction in a state of being connected in the order described in this description.
  • the loading module 11, the inspection module 12, the reversing module 13, and the discharging module 14 are also abbreviated as “modules” as appropriate.
  • the plurality of modules 11, 12, 13, 14 can be manufactured separately.
  • the inspection apparatus 1 can be manufactured by connecting the plurality of modules 11, 12, 13, and 14 to each other in the + X direction. Therefore, for example, an inspection device can be manufactured by appropriately combining two or more modules including one or two or more inspection modules 12.
  • the connection between the modules 11, 12, 13 and 14 can be realized by, for example, a member for connection and a fastening member such as a screw.
  • Modules 11, 12, 13 and 14 have, for example, a tubular portion (also referred to as a tubular portion) having an internal space on which an object to be inspected (also referred to as an inspected object or a work) W0 is placed and conveyed on the upper portion. Has).
  • This tubular portion is positioned so as to penetrate in the + X direction, for example.
  • the loading module 11 has a tubular portion 11tb
  • the inspection module 12 has a tubular portion 12tb
  • the reversing module 13 has a tubular portion 13tb
  • the discharging module 14 Has a tubular portion 14tb.
  • one tubular portion (cylindrical portion) 1tb forming a path (also referred to as a transport path) Rt1 capable of transporting the inspected object W0 between the plurality of modules 11, 12, 13, and 14 is formed.
  • a plurality of modules 11, 12, 13, 14 are connected to each other.
  • a two-dot chain line arrow is drawn along the transport path Rt1 along the + X direction.
  • the tubular portion 1tb includes a tubular portion 11tb of the input module 11, a tubular portion 12tb of the first inspection module 121, a tubular portion 12tb of the second inspection module 122, and an inversion module 13.
  • the tubular portion 13tb of the third inspection module 123, the tubular portion 12tb of the fourth inspection module 124, and the tubular portion 14tb of the discharge module 14 are connected in this order in the + X direction. It is configured in the state that it is.
  • the inspection device 1 for example, from the input module 11, the first inspection module 121, the second inspection module 122, the reversing module 13, the third inspection module 123, the fourth inspection module 124, and the discharge module 14 are in this order.
  • the upper surface portion located in the + Z direction and the side surface portion located in the ⁇ Y direction in each of the tubular portions 11tb, 12tb, 13tb, and 14tb may or may not be transparent, for example.
  • the charging module 11 is a module in which the object to be inspected W0 is charged from the outside of the inspection device 1.
  • the input module 11 is located first in the transport path Rt1 of the object to be inspected W0 among two or more modules including one or two or more inspection modules 12 included in the inspection device 1, for example. ..
  • the charging module 11 has a belt conveyor which is a transport unit Cv1 capable of transporting the object to be inspected W0, and each inspection module 12 has the object to be inspected W0.
  • the reversing module 13 has a belt conveyor which is a transport unit Cv3 capable of transporting the inspected object W0, and the discharge module 14 conveys the inspected object W0. It has a belt conveyor which is a possible transport unit Cv4.
  • the belt conveyor has, for example, a pulley that rotates according to a driving force of a driving unit such as a motor, a roller, and a belt that is located along the pulley and the outer periphery of the roller.
  • the charging module 11 has an openable / closable portion (also referred to as an opening / closing portion) 11oc at the end portion of the tubular portion 11tb opposite to the inspection module 12 in the ⁇ X direction.
  • the opening / closing unit 11oc has, for example, a door or shutter that can be opened / closed.
  • the unit to be inspected W0 is charged into the charging module 11 via, for example, the opening / closing unit 11oc.
  • the worker Op0 throws the inspected object W0 into the throwing module 11.
  • the operator Op0 places the object to be inspected W0 on the belt according to the mark drawn or projected on the belt of the belt conveyor as the transport unit Cv1.
  • a sensor that detects the object to be inspected W0 placed on the belt may detect that the object to be inspected W0 has been charged into the charging module 11.
  • a robot or the like provided outside the inspection device 1 may inject the object to be inspected W0 into the injection module 11.
  • the object to be inspected W0 placed on the belt of the belt conveyor as the transport unit Cv1 is located outside the loading module 11 in the + X direction by the transport unit Cv1.
  • Can be delivered to the transport unit Cv2 also referred to as the transport unit Cv21).
  • the inspection module 12 is, for example, a module that performs imaging as an inspection process for an object to be inspected W0.
  • the first inspection module 121 is, for example, a process for inspection of the object to be inspected W0 delivered from the transport unit Cv1 of the input module 11 to the transport unit Cv21 of the first inspection module 121. Imaging can be performed.
  • the object to be inspected W0 imaged by the first inspection module 121 is located outside the first inspection module 121 in the + X direction from the first inspection module 121 by the transport unit Cv21. Can be delivered to the transport unit Cv2 (also referred to as the transport unit Cv22).
  • the posture and position of the inspected object W0 are displaced. In some cases.
  • the second inspection module 122 is, for example, a process for inspection of the object to be inspected W0 delivered from the transport unit Cv21 of the first inspection module 121 to the transport unit Cv22 of the second inspection module 122. Imaging can be performed.
  • the object to be inspected W0 imaged by the second inspection module 122 is a transport portion of the reversing module 13 located outside the second inspection module 122 in the + X direction from the second inspection module 122 by the transport unit Cv22. It can be delivered to Cv3.
  • the posture and position of the inspected object W0 may deviate. ..
  • the third inspection module 123 is for inspection, for example, targeting the object to be inspected W0 delivered from the transport unit Cv3 of the reversing module 13 to the transport unit Cv2 (also referred to as the transport unit Cv23) of the third inspection module 123. Imaging can be performed as a process of.
  • the object to be inspected W0 imaged by the third inspection module 123 is located outside the third inspection module 123 in the + X direction from the third inspection module 123 by the transport unit Cv23. Can be delivered to the transport unit Cv2 (also referred to as the transport unit Cv24).
  • the fourth inspection module 124 targets the object to be inspected W0 delivered from the transport unit Cv23 of the third inspection module 123 to the transport unit Cv24 of the fourth inspection module 124, and serves as an inspection process. Imaging can be performed.
  • the object to be inspected W0 imaged by the fourth inspection module 124 is the transport portion of the discharge module 14 located outside the fourth inspection module 124 in the + X direction from the fourth inspection module 124 by the transport unit Cv24. It can be delivered to Cv4.
  • FIG. 3A is a diagram showing an example of a main physical configuration of the inspection module 12.
  • the inspection module 12 includes, for example, a sensor unit 12s, a moving mechanism 12t, and a detection unit 12d.
  • the sensor unit 12s can perform imaging as an inspection process for the object to be inspected W0, for example.
  • the inspection module 12 may have one sensor unit 12s, or may have two or more sensor units 12s.
  • the inspection module 12 has two sensor units 12s including a first sensor unit 12s1 and a second sensor unit 12s2.
  • an image pickup unit having an image pickup device such as a charge-coupled device (CCD) is applied to the sensor section 12s.
  • This imaging unit can take an image of at least a part of the object to be inspected W0 as a subject.
  • the sensor unit 12s may have illumination, for example.
  • illumination for illumination, for example, planar illumination using a light emitting diode (LED) or the like is applied.
  • LED light emitting diode
  • the moving mechanism 12t can move the relative position of the sensor unit 12s with respect to the object to be inspected W0, for example.
  • the inspection module 12 may have one moving mechanism 12t or two or more moving mechanisms 12t according to the number of sensor units 12s, for example.
  • the inspection module 12 includes a first moving mechanism 12t1 and a second moving mechanism 12t2 arranged so as to face each other in the ⁇ Y direction so as to sandwich the transport portion Cv2. It has two moving mechanisms 12t.
  • the first moving mechanism 12t1 can move the relative position of the first sensor unit 12s1 with respect to the object to be inspected W0.
  • the second moving mechanism 12t2 can move the relative position of the second sensor unit 12s2 with respect to the object to be inspected W0. Thereby, for example, even if the inspected object W0 becomes large, the inspected object W0 can be imaged from multiple directions by moving the sensor unit 12s by the moving mechanism 12t.
  • the object W0 to be inspected may have a size of, for example, about 550 mm in length, about 550 mm in width, and about 200 mm in height.
  • the inspection apparatus 1 may be combined with one or more inspection modules 12. Can be manufactured.
  • the reference portion Pt0 has, for example, a rotating portion Pr1 that rotatably holds the first movable portion Pt1 about the first axis Pl1 along the + Z direction.
  • the first movable portion Pt1 has, for example, a second rotating portion Pr2 that rotatably holds the second movable portion Pt2 about the second axis Pl2 along the horizontal direction.
  • the second movable portion Pt2 has, for example, a third rotating portion Pr3 that holds the third movable portion Pt3 rotatably around the third axis Pl3 along the horizontal direction.
  • the third movable portion Pt3 has, for example, a fourth rotating portion Pr4 that rotatably holds the fourth movable portion Pt4 around the fourth axis Pl4 that is perpendicular to the third axis Pl3.
  • the fourth movable portion Pt4 has, for example, a fifth rotating portion Pr5 that holds the fifth movable portion Pt5 rotatably around the fifth axis Pl5 that is perpendicular to the fourth axis Pl4.
  • the fifth movable portion Pt5 has, for example, a sixth rotating portion Pr6 that holds the sixth movable portion Pt6 rotatably around the sixth axis Pl6 that is perpendicular to the fifth axis Pl5.
  • the sensor unit 12s is fixed to the sixth movable unit Pt6.
  • the detection unit 12d can obtain information related to the posture and position of the object to be inspected W0, for example.
  • the inspection module 12 may have one detection unit 12d, or may have two or more detection units 12d.
  • the inspection module 12 has one detection unit 12d located in the + Z direction as the upward direction of the transport unit Cv2.
  • an image pickup device having a charge-coupled device (CCD) or the like is applied to the detection unit 12d.
  • the detection unit 12d may have illumination, for example.
  • the information obtained by the detection unit 12d is used, for example, to adjust the relative position of the sensor unit 12s with respect to the object to be inspected W0 by the moving mechanism 12t.
  • the holding unit 13h can hold the inspected object W0 in order to invert the inspected object W0, for example.
  • the reversing module 13 may have one holding portion 13h, or may have two or more holding portions 13h.
  • the reversing module 13 has one holding portion 13h.
  • a hand having two or more fingers capable of holding the object to be inspected W0 is applied to the holding portion 13h.
  • the moving mechanism 13t can reverse the inspected object W0 by moving the holding portion 13h while the inspected object W0 is held by the holding portion 13h, for example.
  • the reversing module 13 may have, for example, one moving mechanism 13t for one holding portion 13h. More specifically, for example, when one holding portion 13h is present, the reversing module 13 may have one moving mechanism 13t, and when two or more holding portions 13h are present. May have two or more moving mechanisms 13t. In the example of FIG. 3B, the reversing module 13 has one moving mechanism 13t arranged on the side of the transport portion Cv3.
  • the discharge module 14 is, for example, a module in which the object to be inspected W0 is discharged from the inside of the inspection device 1 to the outside of the inspection device 1.
  • the discharge module 14 is located at the end of the transport path Rt1 of the object to be inspected W0 among two or more modules including one or two or more inspection modules 12 included in the inspection device 1, for example. ..
  • the discharge module 14 has, for example, a portion (opening / closing portion) 14oc of the tubular portion 14tb that can be opened / closed at an end portion in the + X direction opposite to the inspection module 12.
  • the opening / closing unit 14oc has, for example, a door or shutter that can be opened / closed.
  • the inspected portion W0 is discharged to the outside of the discharge module 14 via, for example, the opening / closing unit 14oc.
  • the worker Op0 discharges the inspected object W0 to the outside of the discharge module 14.
  • a robot or the like provided outside the inspection device 1 may discharge the inspected object W0 from the inside of the discharge module 14 to the outside.
  • FIG. 4 is a block diagram mainly showing an example of the functional configuration of the input module 11.
  • FIG. 5 is a block diagram mainly showing an example of the functional configuration of the inspection module 12 (specifically, the first inspection module 121).
  • FIG. 6 is a block diagram mainly showing an example of the functional configuration of the inspection module 12 (specifically, the second inspection module 122).
  • FIG. 7 is a block diagram mainly showing an example of the functional configuration of the inversion module 13.
  • FIG. 8 is a block diagram mainly showing an example of the functional configuration of the inspection module 12 (specifically, the third inspection module 123).
  • FIG. 9 is a block diagram mainly showing an example of the functional configuration of the inspection module 12 (specifically, the fourth inspection module 124).
  • FIG. 10 is a block diagram mainly showing an example of the functional configuration of the discharge module 14.
  • the input module 11 includes, for example, the integrated control unit C0, the input unit 11i, the transport control unit Cc1, and the connection unit 11h, which are electrically connected via the wiring Wr1. Have. Further, the input module 11 has, for example, an output unit 11d connected to the overall control unit C0 and a transfer unit Cv1 connected to the transfer control unit Cc1.
  • the integrated control unit C0 can control the operation of the inspection device 1 in an integrated manner, for example.
  • the integrated control unit C0 has, for example, a calculation unit, a memory, a storage unit, and the like.
  • the arithmetic unit is composed of, for example, one or more central processing units (CPU) and the like.
  • the memory is composed of, for example, a volatile storage medium such as RAM (Random Access Memory).
  • the storage unit is composed of, for example, a non-volatile storage medium such as a hard disk drive (Hard Disk Drive HDD) or a solid state drive (Solid State Drive: SSD).
  • the storage unit can store, for example, a program, various types of information, and the like.
  • the arithmetic unit realizes various functions by reading and executing a program stored in the storage unit, for example.
  • the RAM is used as, for example, a workspace, and information that is temporarily generated or acquired is stored.
  • At least a part of the functions of the functional configuration realized by the integrated control unit C0 may be configured by hardware such as a dedicated electronic circuit, for example.
  • the transport control unit Cc1 can control the operation of the transport unit Cv1, for example.
  • the transport control unit Cc1 has, for example, a configuration similar to that of a computer including a calculation unit, a memory, and a storage unit.
  • the transfer control unit Cc1 can realize the function of the transfer control unit Cc1 by, for example, executing the program in the storage unit in the calculation unit.
  • the transport control unit Cc1 can control the operation of the transport unit Cv1 by controlling the rotation of at least one pulley on the belt conveyor, for example.
  • At least a part of the functions of the functional configuration realized by the transport control unit Cc1 may be configured by hardware such as a dedicated electronic circuit, for example.
  • connection portion 11h is, for example, a portion that electrically connects to a module other than the input module 11 among a plurality of modules constituting the inspection device 1.
  • the connection portion 11h is, for example, a hub type in which the wirings Wr2 of a plurality of modules are electrically connected separately, but is a type in which the wirings Wr2 of a plurality of modules are electrically connected in series. There may be.
  • the portion of the wiring Wr2 in the module of interest is drawn with a solid line, and the portion of the module not of interest is drawn with a chain double-dashed line.
  • the inspection module 12 has two sensor control units Cs2 and two movement control units Ct2.
  • the inspection module 12 includes, for example, the first sensor control unit Cs2 (also referred to as the first sensor control unit Cs21) and the second sensor control unit Cs2 (also referred to as the second sensor control unit Cs22). 2 including two sensor control units Cs2 including, a first movement control unit Ct2 (also referred to as a first movement control unit Ct21) and a second movement control unit Ct2 (also referred to as a second movement control unit Ct22). It has two movement control units Ct2. In this case, as shown in FIG.
  • the inspection module 12 has two sensor units 12s including a first sensor unit 12s1 and a second sensor unit 12s2, and has a first sensor unit 12s. It has two moving mechanisms 12t including a moving mechanism 12t1 and a second moving mechanism 12t2.
  • the first sensor unit 12s1 is connected to the first sensor control unit Cs21
  • the second sensor unit 12s2 is connected to the second sensor control unit Cs22.
  • the first movement mechanism 12t1 is connected to the first movement control unit Ct21
  • the second movement mechanism 12t2 is connected to the second movement control unit Ct22.
  • one sensor control unit Cs2 and one movement control unit Ct2 may be present.
  • Each of the transport control unit Cc2, the detection control unit Cd2, the sensor control unit Cs2, and the movement control unit Ct2 has a configuration similar to that of a computer including, for example, a calculation unit, a memory, and a storage unit.
  • the transfer control unit Cc2 can realize the function of the transfer control unit Cc2 by, for example, executing the program in the storage unit in the calculation unit.
  • the transport control unit Cc2 can control the operation of the transport unit Cv2 by controlling the rotation of at least one pulley on the belt conveyor, for example.
  • At least a part of the functions of the functional configuration realized by the transport control unit Cc2 may be configured by hardware such as a dedicated electronic circuit.
  • the detection control unit Cd2 can realize the function of the detection control unit Cd2 by, for example, executing the program in the storage unit in the calculation unit.
  • the detection control unit Cd2 can control the operation of the detection unit 12d and acquire information related to the posture and position of the object to be inspected W0 obtained by the detection unit 12d.
  • the detection control unit Cd2 may perform calculations based on information related to the posture and position of the object to be inspected W0, for example.
  • the detection control unit Cd2 captures an image (also referred to as an actual image) of the object to be inspected W0 obtained from the detection unit 12d, and a reference posture and position of the object to be inspected W0 prepared in advance.
  • the master image may be, for example, an image that actually captures the object W0 to be inspected, or an image drawn by computer graphics.
  • a method of detecting and matching feature points, template matching, and the like can be used.
  • the calculation for detecting the deviation amount of the object to be detected W0 from the reference posture and position may be performed by another control unit such as the integrated control unit C0.
  • At least a part of the functions of the functional configuration realized by the detection control unit Cd2 may be configured by hardware such as a dedicated electronic circuit, for example.
  • the sensor control unit Cs2 can realize the function of the sensor control unit Cs2 by, for example, executing a program in the storage unit in the calculation unit.
  • the sensor control unit Cs2 can control the operation of the sensor unit 12s and acquire information (also referred to as imaging information) obtained by imaging the object to be inspected W0 by the sensor unit 12s.
  • the sensor control unit Cs2 can output the imaging information related to the object to be inspected W0 to the integrated control unit C0 as it is or after performing various information processing via the wiring Wr2 and the wiring Wr1.
  • the imaging information as a result of imaging as a process for inspection of the object to be inspected W0 can be acquired.
  • the movement control unit Ct2 can realize the function of the movement control unit Ct2 by, for example, executing the program in the storage unit in the calculation unit.
  • the movement control unit Ct2 can control the operation of the movement mechanism 12t, for example.
  • the movement control unit Ct2 can adjust the relative position of the sensor unit 12s with respect to the object to be inspected W0 by the movement mechanism 12t, for example, based on the information obtained by the detection unit 12d.
  • the movement control unit Ct2 is based on, for example, the amount of deviation detected by the detection control unit Cd2 or the like from the information related to the posture and position of the object to be inspected W0 obtained by using the detection unit 12d.
  • the position of the sensor unit 12s relative to the object to be inspected W0 is adjusted by 12t. If such a configuration is adopted, for example, when the inspected object W0 is carried into the inspection module 12 from another module, even if at least one of the posture and the position of the inspected object W0 deviates, the deviation will occur.
  • the relative position of the sensor unit 12s with respect to the object to be inspected W0 can be adjusted accordingly. More specifically, for example, when the inspected object W0 is transferred from the belt conveyor of the adjacent module onto the belt conveyor of the inspection module 12, even if at least one of the posture and the position of the inspected object W0 deviates.
  • the relative position of the sensor unit 12s with respect to the object to be inspected W0 can be adjusted according to the deviation. Further, for example, it is easier and faster to adjust the relative position of the sensor unit 12s with respect to the inspected object W0 by the moving mechanism 12t than to adjust the posture and the position of the inspected object W0. obtain.
  • This makes it possible to easily manufacture the inspection device 1 that flexibly meets the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget.
  • At least a part of the functions of the functional configuration realized by the movement control unit Ct2 may be configured by hardware such as a dedicated electronic circuit, for example.
  • the inversion module 13 includes, for example, a transfer control unit Cc3, a detection control unit Cd3, and an inversion control unit Cr3, which are electrically connected to each other via wiring Wr2.
  • the reversing module 13 includes, for example, a detecting unit 13d connected to the detection control unit Cd3, a transporting unit Cv3 connected to the transport control unit Cc3, a holding unit 13h connected to the reversing control unit Cr3, and a moving mechanism 13t. And have.
  • the inversion module 13 has one inversion control unit Cr3.
  • the reversing module 13 has one holding portion 13h and one moving mechanism 13t.
  • the inversion module 13 may have two holding units 13h and two moving mechanisms 13t, and two inversion control units Cr3 may be present.
  • Each of the transport control unit Cc3, the detection control unit Cd3, and the inversion control unit Cr3 has a configuration similar to that of a computer including, for example, a calculation unit, a memory, and a storage unit.
  • the detection control unit Cd3 can realize the function of the detection control unit Cd3 by, for example, executing the program in the storage unit in the calculation unit.
  • the detection control unit Cd3 can, for example, control the operation of the detection unit 13d and acquire information related to the posture and position of the object to be inspected W0 obtained by the detection unit 13d.
  • the detection control unit Cd3 may perform calculations based on information related to the posture and position of the object to be inspected W0, for example.
  • the detection control unit Cd3 relates to an image (actual image) of the object to be inspected W0 obtained from the detection unit 13d and a reference posture and position of the object to be inspected W0 prepared in advance.
  • the image (master image) By comparing with the image (master image), it is possible to detect the amount of deviation of the object to be detected W0 from the reference posture and position.
  • a method of detecting and matching feature points, template matching, and the like can be used for comparison between the actual image and the master image.
  • the calculation for detecting the deviation amount of the object to be detected W0 from the reference posture and position may be performed by another control unit such as the integrated control unit C0.
  • the detection control unit Cd3 At least a part of the functions of the functional configuration realized by the detection control unit Cd3 may be configured by hardware such as a dedicated electronic circuit, for example.
  • the relative position of the holding portion 13h with respect to the object to be inspected W0 can be adjusted according to the deviation. Thereby, for example, even if at least one of the posture and the position of the object to be inspected W0 is deviated, the object to be inspected W0 can be held and inverted by the holding portion 13h.
  • At least a part of the functions of the functional configuration realized by the inversion control unit Cr3 may be configured by hardware such as a dedicated electronic circuit.
  • the discharge module 14 has, for example, a transfer control unit Cc4 electrically connected to the wiring Wr2 and a transfer unit Cv4 connected to the transfer control unit Cc4.
  • the transport control unit Cc4 has, for example, a configuration similar to that of a computer including a calculation unit, a memory, and a storage unit.
  • the transfer control unit Cc4 can realize the function of the transfer control unit Cc4 by, for example, executing the program in the storage unit in the calculation unit.
  • the transport control unit Cc4 can control the operation of the transport unit Cv4 by controlling the rotation of at least one pulley on the belt conveyor, for example.
  • At least a part of the functions of the functional configuration realized by the transport control unit Cc4 may be configured by hardware such as a dedicated electronic circuit, for example.
  • the first module is the first inspection module 12 (first inspection module 121), and the second module is the second inspection module 12 (second inspection module 122).
  • the first inspection module 121 includes, for example, a transport unit Cv21 as a first transport unit, a sensor unit 12s as a first sensor unit, a movement mechanism 12t as a first movement mechanism, and a first. It has a detection unit 12d as a detection unit and a movement control unit Ct2 as a first control unit.
  • the second inspection module 122 includes, for example, a transport unit Cv22 as a second transport unit, a sensor unit 12s as a second sensor unit, a movement mechanism 12t as a second movement mechanism, and a second detection unit. 12d, and a movement control unit Ct2 as a second control unit.
  • the inspection apparatus 1 may appropriately combine two or more modules including the first module and the second module for performing inspection processing on the object to be inspected W0, respectively. Can be manufactured. Further, for example, the posture and position of the inspected object W0 when the inspected object W0 is carried into the first inspection module 121 as the first module or the second inspection module 122 as the second module from another module. Even if at least one of the two is displaced, the relative position of the sensor unit 12s with respect to the object to be inspected W0 can be adjusted according to the deviation.
  • the inspection device 1 that flexibly meets the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget. Further, for example, when the object to be inspected W0 is transferred from the conveyor belt of the module to the conveyor belt of the next module, even if at least one of the posture and the position of the object to be inspected W0 is displaced, the object to be inspected is inspected according to the deviation. The relative position of the sensor unit 12s with respect to the object W0 can be adjusted.
  • the first module is the inspection module 12 and the second module is the inversion module 13.
  • the inspection module 12 includes, for example, a transport unit Cv21 as a first transport unit, a sensor unit 12s, a movement mechanism 12t as a first movement mechanism, and a detection unit 12d as a first detection unit.
  • a movement control unit Ct2 as a first control unit.
  • the reversing module 13 includes, for example, a transport unit Cv3 as a second transport unit, a holding unit 13h, a movement mechanism 13t as a second movement mechanism, a detection unit 13d as a second detection unit, and a second control. It has an inversion control unit Cr3 as a unit.
  • the inspection device 1 can be manufactured by appropriately combining the modules of the above. Further, for example, even if at least one of the posture and the position of the object to be inspected W0 deviates when the object to be inspected is carried into the inspection module 12 as the first module from another module, the object to be inspected is inspected according to the deviation. The relative position of the sensor unit 12s with respect to the object W0 can be adjusted.
  • the object to be inspected is inspected according to the deviation.
  • the relative position of the holding portion 13h with respect to the object W0 can be adjusted. Therefore, for example, it is possible to easily manufacture the inspection device 1 that flexibly meets the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget.
  • FIG. 11A is a diagram showing a schematic configuration of the inspection device 1A according to the second example, which is composed of a combination of a plurality of modules.
  • FIG. 11B is a diagram showing a schematic configuration of the inspection device 1B according to the third example, which is composed of a combination of a plurality of modules.
  • the inspection device 1A according to the second example and the inspection device 1B according to the third example are examples of inspection devices including the reversing module 13, respectively.
  • the first inspection module 121 performs imaging, which is a process for inspection, on one surface (for example, the front surface) of the object to be inspected W0, and the inversion module 13 inspects.
  • the second inspection module 122 can perform imaging, which is a process for inspection, on the other surface (for example, the back surface) of the object W0 to be detected.
  • the inspection device 1A according to the second example having such a configuration has, for example, a separately manufactured input module 11, two inspection modules 12, an inversion module 13, and an discharge module 14 in the + X direction. Can be manufactured by connecting to each other in.
  • the inspection device 1B according to the third example includes, for example, an input module 11, one inspection module 12, and an inversion module 13, as shown in FIG. 11B. More specifically, for example, the input module 11, the inspection module 12 (first inspection module 121), and the inversion module 13 are located in a state of being connected in the + X direction in the order described in this description. ..
  • the inspection device 1B according to the third example for example, the object to be inspected W0 is conveyed from the charging module 11 in the order of the first inspection module 121, the reversing module 13, the first inspection module 121, and the charging module 11. Then, the inspection of the object to be inspected W0 can be performed.
  • the first inspection module 121 performs imaging, which is a process for inspection, on one surface (for example, the front surface) of the object to be inspected W0, and the inversion module 13 inspects.
  • the first inspection module 121 can perform imaging, which is an inspection process, on the other surface (for example, the back surface) of the object W0 to be detected.
  • the input module 11 can serve as, for example, the discharge module 14.
  • the inspection device 1B according to the third example having such a configuration connects, for example, a separately manufactured input module 11, one inspection module 12, and an inversion module 13 to each other in the + X direction. Can be manufactured by
  • the first inspection module 121 and the second inspection module 122 target one surface (for example, the front surface or the back surface) of the object to be inspected W0, which is an imaging process for inspection. It can be performed.
  • the inspection device 1C according to the fourth example having such a configuration connects, for example, the separately manufactured input module 11, the two inspection modules 12, and the discharge module 14 to each other in the + X direction. Can be manufactured by
  • the first inspection module 121 can perform imaging, which is a process for inspection, on one surface (for example, the front surface or the back surface) of the object to be inspected W0.
  • the inspection device 1D according to the fifth example having such a configuration connects, for example, the separately manufactured input module 11, one inspection module 12, and the discharge module 14 to each other in the + X direction. Can be manufactured by
  • the input module 11 may be omitted, or the discharge module 14 may be omitted.
  • two or more separately manufactured modules including one or two or more inspection modules 12 for performing an inspection process on the object W0 to be inspected may be appropriately combined.
  • Inspection devices 1C and 1D can be manufactured. Thereby, for example, the inspection devices 1C and 1D that flexibly meet the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget can be easily manufactured.
  • the inspection device 1E according to the sixth example includes, for example, one inspection module 12 as shown in FIG. 12 (c). More specifically, the inspection device 1E according to the sixth example has, for example, a configuration in which the input module 11 and the discharge module 14 are omitted from the inspection device 1E according to the fifth example.
  • one inspection module 12 covers one surface (for example, the front surface or the back surface) of the object to be inspected W0. Imaging, which is a process for inspection, can be performed.
  • FIG. 13 is a diagram showing a timing chart relating to an operation of one inspected object W0 in the inspection device 1 according to the first example of the first embodiment.
  • the period during which the operation for one object W0 to be inspected in the inspection device 1 is performed is a period Pd11, a period Pd12 (period Pd121), and a period Pd12 (period) that are continuous in time. It is composed of Pd122), period Pd13, period Pd12 (period pd123), period Pd12 (period Pd124) and period Pd14.
  • the period Pd11 is a period in which the object to be inspected W0 is located in the charging module 11.
  • the period Pd12 (period Pd121) is a period in which the object to be inspected W0 is located in the first inspection module 12 (first inspection module 121).
  • the period Pd12 (period Pd122) is a period in which the object to be inspected W0 is located in the second inspection module 12 (second inspection module 122).
  • the period Pd13 is a period in which the object to be inspected W0 is located in the inversion module 13.
  • the period Pd12 (period Pd123) is a period in which the object to be inspected W0 is located in the third inspection module 12 (third inspection module 123).
  • the period Pd12 (period Pd124) is a period in which the object to be inspected W0 is located in the fourth inspection module 12 (fourth inspection module 124).
  • the period Pd14 is a period during which the inspected object W0 is located in the discharge module 14.
  • the period Pd 11 is a period (also referred to as a charging period) Pin during which the operation of charging the object W0 to be inspected into the charging module 11 is performed, the charging module 11 and the first inspection module 12. It is composed of the first half of Ptr during the period (also referred to as the transfer period) for transporting the inspected object W0 to and from (the first inspection module 121).
  • the period Pd12 (Pd121) includes the latter half of the transport period Ptr for transporting the inspected object W0 between the input module 11 and the first inspection module 12 (first inspection module 121), and the subject by the detection unit 12d.
  • the period Pas for acquiring information related to the position and orientation of the inspection object W0 and adjusting the position of the sensor unit 12s based on the information (also referred to as the sensor unit adjustment period) and the inspection object W0 by the sensor unit 12s were targeted.
  • a period of one or more imaging as an inspection process also called an imaging period
  • Pca a first inspection module 12
  • second inspection module 12 second inspection module 12
  • the object to be inspected W0 is conveyed between the first inspection module 12 (first inspection module 121) and the second inspection module 12 (second inspection module 122).
  • the inspected object W0 is transported between the latter half of the transport period Ptr, the sensor unit adjustment period Pas, the imaging period Pca, the second inspection module 12 (second inspection module 122), and the inversion module 13.
  • Period (transportation period) It is composed of the first half of Ptr and.
  • the period Pd 13 includes the latter half of the transport period Ptr for transporting the inspected object W0 between the second inspection module 12 (second inspection module 122) and the inversion module 13, and the inspected object W0 by the detection unit 13d.
  • the inspected object W0 is inverted by the period (also referred to as the holding unit adjustment period) Pah for acquiring information related to the position and posture of the holding unit 13h and adjusting the position of the holding unit 13h based on the information, and the holding unit 13h and the moving mechanism 13t.
  • Period to be inspected also referred to as inversion period
  • the inspected object W0 is transported between the latter half of the transport period Ptr, the sensor unit adjustment period Pas, the imaging period Pca, the fourth inspection module 12 (fourth inspection module 124), and the discharge module 14.
  • Period (transportation period) It is composed of the first half of Ptr and.
  • the period Pd 14 includes the latter half of the transport period Ptr for transporting the inspected object W0 between the fourth inspection module 12 (fourth inspection module 124) and the discharge module 14, and the inspected object W0 from the discharge module 14.
  • Pdi which is the period during which the operation of discharging is performed (also referred to as the discharging period).
  • the input period Pin is 6 seconds
  • the transport period Ptr is 4 seconds
  • the sensor unit adjustment period Pas and the holding unit adjustment period Pah are 1 second
  • the imaging period Pca is 5 seconds
  • the inversion period Pre is 5.
  • the second is set
  • the discharge period Pdi is set to 6 seconds.
  • imaging is performed five times as an inspection process for one location of the object to be inspected W0, which requires one second in each of the four imaging periods Pca.
  • the period during which the operation for one inspected object W0 in the inspection device 1 shown in FIG. 13 is performed is 66 seconds.
  • the period during which the operation for one object W0 to be inspected in the inspection device 1D according to the fifth example shown in FIG. 12B is performed is a 6-second input period Pin and 4 A transport period of Ptr per second, a sensor unit adjustment period of 1 second, Pas, an imaging period of 20 seconds, Pca, in which imaging is performed 20 times for one location of the object W0 to be inspected, which requires 1 second, and 4 seconds. It is assumed that it is composed of a transport period Ptr and a discharge period Pdi for 6 seconds. In this case, the period during which the operation for one object W0 to be inspected is performed is 41 seconds. In other words, it is possible to inspect the object to be inspected W0 at one pace every 41 seconds.
  • FIG. 14 is a timing chart relating to the operation of a plurality of objects to be inspected W0 in the inspection device 1 according to the first example of the first embodiment.
  • the integrated control unit C0 sets the input module 11 and the inspected object W0 located in each of the plurality of modules located between the input module 11 and the discharge module 14 in the transport path Rt1. It shall be controlled so that it is transported to the module on the downstream side at the same time.
  • a plurality of inspected objects W0 to be continuously inspected are the first inspected object W0 (also referred to as the first inspected object W01) and the second inspected object W0 (the first inspected object W0).
  • 2 Inspected object W02 3rd inspected object W0 (also referred to as 3rd inspected object W03), 4th inspected object W0 (also referred to as 4th inspected object W04) and 5th Inspected object W0 (also referred to as fifth inspected object W05).
  • 3rd inspected object W0 also referred to as 3rd inspected object W03
  • 4th inspected object W0 also referred to as 4th inspected object W04
  • 5th Inspected object W0 also referred to as fifth inspected object W05.
  • the timing of the operation related to the first object to be inspected W01 is indicated by a rectangle with the hatching of the first diagonal line
  • the timing of the operation related to the second object to be inspected W02 is the hatching of the second diagonal line
  • the timing of the operation related to the third object W03 is indicated by the rectangle with the hatching of the sand
  • the timing of the operation related to the fourth object W04 is indicated by the black rectangle.
  • the timing of the operation related to the fifth object W05 to be inspected is indicated by a white rectangle.
  • the period during which the operation for each object W0 to be inspected in the inspection device 1 is performed is one charging period Pin (6 seconds) and six transport periods Ptr (4 seconds each). , 4 sensor unit adjustment period Pas (1 second each), 1 holding unit adjustment period Pah (1 second), 4 imaging period Pca (5 seconds each), and 1 inversion period Pre (5 seconds). And one discharge period Pdi (6 seconds).
  • the inspected object W0 imaged as an inspection process is discharged from the inspection device 1 at a pace of once every 10 seconds.
  • imaging can be completed as an inspection process for the object W0 to be inspected at a pace of 1 in 10 seconds.
  • the pace at which imaging as an inspection process for the object W0 to be inspected can be completed can be shortened.
  • imaging as an inspection process for the inspected object W0 is completed. The pace can be shortened.
  • the number of inspection modules 12 constituting the inspection device is increased to perform imaging as an inspection process for the object W0 to be inspected. It is possible to shorten the pace of completion. In other words, for example, as the number of a plurality of objects to be inspected W0 to be continuously inspected increases, the processing for inspection of a plurality of locations in the inspected object W0 is shared among the two or more inspection modules 12. By carrying out this procedure, it is possible to increase the number of objects W0 to be inspected that have been processed for inspection and are discharged from the inspection device per unit time. That is, the tact in the inspection device can be improved.
  • the space or budget for installing the inspection device is insufficient, it is conceivable to increase the number of inspection modules 12 constituting the inspection device within an acceptable range.
  • the number of inspection objects W0 can be increased.
  • the inspection module 12 for example, since the sensor unit 12s can be moved relative to the object to be inspected W0, imaging as one sensor unit 12s It is possible to perform imaging as a process for inspection on one place or two or more places of the object to be inspected.
  • the inspection devices 1, 1A, 1B, 1C, and 1D can be manufactured by appropriately combining two or more modules including one or two or more inspection modules 12. Therefore, for example, in response to the user's request such as the shape and size of the inspected object W0, the space for installing the device, and the budget, all the configurations for processing the inspected object W0 are incorporated.
  • the sensor for the object to be inspected W0 corresponds to the deviation.
  • the relative position of the imaging unit as the unit 12s can be adjusted. Therefore, for example, it is possible to easily manufacture the inspection devices 1, 1A, 1B, 1C, and 1D that flexibly meet the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget. it can.
  • Inspection devices 1, 1A and 1B can be manufactured by appropriately combining two or more modules including. Therefore, for example, in response to the user's request such as the shape and size of the inspected object W0, the space for installing the device, and the budget, all the configurations for processing the inspected object W0 are incorporated. It is not necessary to redesign the specifications of the device from scratch.
  • the holding portion for the inspected object W0 can be adjusted.
  • the object to be inspected W0 can be held and inverted by the holding portion 13h. Therefore, for example, the inspection devices 1, 1A, and 1B that flexibly meet the user's request such as the shape and size of the object to be inspected, the space for installing the device, and the budget can be easily manufactured.
  • an inspection module 12 as a first module for performing an inspection process for the object W0 to be inspected, and an inspection module 12 to be inspected.
  • Inspection devices 1, 1A, and 1B can be manufactured by appropriately combining two or more modules including an inversion module 13 as a second module for inversion of the object W0. Further, for example, even if at least one of the posture and the position of the object to be inspected W0 deviates when the object to be inspected is carried into the inspection module 12 as the first module from another module, the object to be inspected is inspected according to the deviation. The relative position of the sensor unit 12s with respect to the object W0 can be adjusted.
  • the object to be inspected W0 is inspected according to the deviation.
  • the relative position of the holding portion 13h with respect to the object W0 can be adjusted. Therefore, for example, the inspection devices 1, 1A, and 1B that flexibly meet the user's request such as the shape and size of the object to be inspected, the space for installing the device, and the budget can be easily manufactured.
  • the inspection devices 1, 1A, 1C for example, two or more including a first module and a second module for performing inspection processing for the object to be inspected W0, respectively.
  • the inspection devices 1, 1A and 1C can be manufactured by appropriately combining the above modules. Further, for example, the posture and position of the inspected object W0 when the inspected object W0 is carried into the first inspection module 121 as the first module or the second inspection module 122 as the second module from another module. Even if at least one of the two is displaced, the relative position of the sensor unit 12s with respect to the object to be inspected W0 can be adjusted according to the deviation.
  • the inspection device 1 that flexibly meets the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget. Further, for example, as the number of a plurality of objects to be inspected W0 to be continuously inspected increases, the processing for inspection of a plurality of locations in the inspected object W0 is shared and carried out in two or more inspection modules 12. By doing so, it is possible to increase the number of objects W0 to be inspected that have been processed for inspection and are discharged from the inspection devices 1, 1A and 1C per unit time.
  • the sensor unit 12s may, for example, perform processing for inspection of at least one of imaging and measurement of the object to be inspected W0.
  • the measurement for the object to be inspected W0 for example, the measurement of the flow rate or the pressure of the gas in the hole of the object to be inspected W0 can be considered.
  • the sensor unit 12s is appropriately combined with, for example, a valve for adjusting the amount of gas supplied, a flow meter for measuring the gas flowing through the hole, a pressure gauge for measuring the pressure of the gas flowing through the hole, and the like. Can be realized with.
  • a plurality of modules connected to each other may include a transport module (also referred to as a transport module) 15 for changing the transport direction of the object to be inspected W0.
  • a transport module also referred to as a transport module
  • a belt conveyor also referred to as a curved belt conveyor
  • a transport robot that can appropriately change the transport direction of the object to be inspected W0, and the like can be applied to the transport module 15.
  • FIG. 15 is a diagram showing a schematic configuration of an example of an inspection device 1F composed of a combination of a plurality of modules including a transport module 15 having a curved belt conveyor.
  • FIG. 16 is a diagram showing a schematic configuration of an example of an inspection device 1G composed of a combination of a plurality of modules including a transport module 15 having a curved belt conveyor.
  • Each of the inspection device 1F and the inspection device 1G has a first transfer module 151 arranged between the second inspection module 122 and the reversing module 13 with respect to the inspection device 1 according to the first example described above.
  • a second transport module 152 arranged between the reversing module 13 and the third inspection module 123 has an additional configuration.
  • the object to be inspected W0 is conveyed from the second inspection module 122 to the reversing module 13 via the curved belt conveyor of the first transfer module 151, the object to be inspected is to be inspected. At least one of the posture and position of W0 is likely to deviate significantly.
  • the reversing module 13 can adjust the relative position of the holding portion 13h with respect to the inspected object W0 according to the deviation of at least one of the posture and the position of the inspected object W0.
  • the inspection module 12 can adjust the relative position of the sensor unit 12s with respect to the inspected object W0 according to the deviation of at least one of the posture and the position of the inspected object W0. Therefore, for example, it is possible to easily manufacture the inspection devices 1F and 1G that flexibly meet the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget.
  • FIG. 17A is a diagram showing a schematic configuration of an example of an inspection device 1H composed of a combination of a plurality of modules including a transfer module 15 having a transfer robot.
  • the inspection device 1H places a transfer robot between the input module 11, the first inspection module 121, the second inspection module 122, and the third inspection module 123.
  • the transport module 15 to have is located.
  • the transport module 15 may be used for the first inspection module 121, the second inspection module 122, and the third inspection.
  • the object to be inspected W0 can be conveyed to the inspection module 12 of any one of the modules 123.
  • FIG. 17B is a diagram showing a schematic configuration of an example of an inspection device 1I composed of a combination of a plurality of modules including a transfer module 15 having a transfer robot.
  • the inspection device 1I has a first input module 11 (also referred to as a first input module 111), a second input module 11 (second input module 112), and a first input module for inspection.
  • a transfer module 15 having a transfer robot is located between the module 121 and the second inspection module 122.
  • the inspected object W0 appropriately carried in from the two input modules 11 is subjected to the first inspection module 121 and the first inspected module W0 by the transport module 15 according to the shape and size of the inspected object W0.
  • the object to be inspected W0 can be conveyed to the inspection module 12 of any one of the two inspection modules 122.
  • the method of acquiring information on the posture and position of the object to be inspected W0 by the detection unit 12d includes, for example, a method of measuring a three-dimensional surface shape or an object using a displacement sensor.
  • a method of measuring the distance to an object or the like may be applied.
  • a pattern light projection method, a light cutting method, white light interference, and the like can be applied to the method for measuring the three-dimensional shape.
  • an optical displacement sensor based on the detection principle of triangular ranging can be applied to the displacement sensor.
  • the width of the belt of the belt conveyor is widened to accommodate the transportation of the large object W0 to be inspected, it is necessary to increase the diameters of the pulleys and rollers that support the belts, and they are adjacent to each other.
  • Large triangular columnar grooves are likely to occur between the modules and between the belt conveyors.
  • a member having a slippery surface may be arranged so as to fill the triangular columnar groove.
  • a belt conveyor also referred to as a knife edge conveyor
  • a member for sharpening the end portion may be used to make it difficult to form a triangular columnar groove between the belt conveyors.
  • the movement control unit Ct2 as the first control unit is relative to the transport path Rt1.
  • Information obtained by using the detection unit 12d as the second detection unit of the inspection module 12 (for example, the second inspection module 122) as the second module on the upstream side, and the inspection module 12 as the first module.
  • the first sensor for the object to be inspected W0 by the movement mechanism 12t as the first movement mechanism.
  • the relative position of the sensor unit 12s as a unit may be adjusted.
  • the imaging information related to the inspected object W0 obtained by the detection unit 12d of the first module as shown in FIG. 18A, eight feature points (1st to 8th feature points) in the inspected object W0.
  • the positions of P1 to P8) are detected, and then, from the imaging information related to the inspected object W0 obtained by the detection unit 12d of the second module, 4 in the inspected object W0 as shown in FIG. 18B.
  • the positions of one feature point (first feature point P1a, fourth feature point P4a, fifth feature point P5a, eighth feature point P8a) are detected, and the other four feature points (second feature point P2a, third feature point P2a, third) are detected.
  • the positions of the feature points P3a, the sixth feature point P6a, and the seventh feature point P7a) are estimated from the relationship of the eight feature points (1st to 8th feature points P1 to P8) obtained for the first module.
  • the configuration is conceivable. Even with such a configuration, for example, for each of the first module and the second module, the amount of deviation in the posture and position of the object to be inspected W0 due to rotational movement, parallel movement, or the like can be detected.
  • the reversing control unit Cr3 as the second control unit is relatively upstream in the transport path Rt1.
  • the relative position of the holding unit 13h with respect to the object to be inspected W0 may be adjusted by the moving mechanism 13t as the second moving mechanism based on the information obtained by using the detecting unit 13d.
  • the movement control unit Ct2 as the first control unit is relative to the transport path Rt1.
  • the relative position of the sensor unit 12s with respect to the object to be inspected W0 may be adjusted by the moving mechanism 12t as the first moving mechanism.
  • the reversing as the second module is carried out.
  • the relative position of the holding portion 13h with respect to the inspected object W0 is adjusted by using the information obtained by using the detection unit 12d in the inspection module 12 as the first module, and the inspected object W0 becomes
  • the detection unit 13d in the inversion module 13 as the second module in the inspection module 12 as the first module is carried into the inspection module 12 as the first module, the detection unit 13d in the inversion module 13 as the second module in the inspection module 12 as the first module.
  • the relative position of the sensor unit 12s with respect to the object to be inspected W0 can be adjusted by using the information obtained by using. This can reduce, for example, the configuration and time required to obtain the information.
  • the integrated control unit C0 may exist in a module other than the input module 11.
  • the integrated control unit C0 may exist in any of the input module 11, the inspection module 12, the reversing module 13, and the discharge module 14.

Abstract

In order to easily manufacture an inspection device that flexibly responds to user requirements, an inspection module is provided with a conveyance unit, a sensor unit, a movement mechanism, a detection unit, and a control unit. The conveyance unit is capable of conveying an object being inspected between the inspection module and outside of the inspection module. The sensor unit performs at least one inspection process among an imaging process and a measurement process that have the object being inspected as a subject. The movement mechanism moves the position of the sensor unit relative to the object being inspected. The detection unit is for obtaining information that pertains to the attitude and the position of the object being inspected. The control unit adjusts the position of the sensor unit relative to the object being inspected by means of the movement mechanism, on the basis of the information obtained by the detection unit.

Description

検査用モジュール、反転モジュールおよび検査装置Inspection module, reversing module and inspection equipment
 本発明は、検査用モジュール、反転モジュールおよび検査装置に関する。 The present invention relates to an inspection module, an inversion module and an inspection device.
 従来、自動車等の駆動部およびその周辺に用いられる立体的な形状を有する部品を検査対象物(ワークともいう)とする検査装置が知られている(例えば、特許文献1等)。 Conventionally, an inspection device is known in which a part having a three-dimensional shape used in a drive unit of an automobile or the like and its surroundings is an inspection object (also referred to as a work) (for example, Patent Document 1 and the like).
 この検査装置では、例えば、ワークの移動経路に沿って、複数台のカメラが配置されており、ワークを多方向から撮像することができる。 In this inspection device, for example, a plurality of cameras are arranged along the movement path of the work, and the work can be imaged from multiple directions.
特開2018-205197号公報JP-A-2018-205197
 しかしながら、ワークのうちの撮像する対象となる場所が増えると、カメラの台数が増加し、検査装置の大型化を招く。例えば、ワークの大型化に伴って、カメラの台数はさらに増加し、検査装置のさらなる大型化を招き得る。また、例えば、ワークの形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に応えた検査装置を製造するためには、ユーザーの要望に応じた仕様毎に検査装置の設計を行う必要があり、ユーザーの要望に応えた検査装置を提供することは容易でない。 However, if the number of places to be imaged in the work increases, the number of cameras will increase, leading to an increase in the size of the inspection device. For example, as the size of the work increases, the number of cameras further increases, which may lead to a further increase in the size of the inspection device. Further, for example, in order to manufacture an inspection device that meets the user's request such as the shape and size of the work, the space for installing the device, and the budget, the inspection device is designed for each specification according to the user's request. It is not easy to provide an inspection device that meets the needs of users.
 上記問題は、自動車用部品および自動車以外の用途の部品等を含む検査対象物を対象として、撮像および撮像以外の測定等を含む検査用の処理を行う検査装置一般に共通する。 The above problem is common to all inspection devices that perform inspection processing including imaging and measurement other than imaging, etc., for inspection objects including automobile parts and parts for applications other than automobiles.
 本発明は、上記課題に鑑みてなされたものであり、ユーザーの要望に柔軟に応えた検査装置を容易に製造するための技術を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a technique for easily manufacturing an inspection device that flexibly responds to a user's request.
 上記課題を解決するために、第1の態様に係る検査用モジュールは、搬送部と、センサ部と、移動機構と、検知部と、制御部と、を備える。前記搬送部は、前記検査用モジュールと該検査用モジュールの外部との間で被検査物を搬送する。前記センサ部は、前記被検査物を対象とした撮像および測定のうちの少なくとも一方の検査用の処理を行う。前記移動機構は、前記被検査物に対する前記センサ部の相対的な位置を移動させる。前記検知部は、前記被検査物の姿勢および位置に係る情報を得るためのものである。前記制御部は、前記検知部で得られた情報に基づいて、前記移動機構によって前記被検査物に対する前記センサ部の相対的な位置を調整させる。 In order to solve the above problem, the inspection module according to the first aspect includes a transport unit, a sensor unit, a moving mechanism, a detection unit, and a control unit. The transport unit transports the object to be inspected between the inspection module and the outside of the inspection module. The sensor unit performs processing for inspection of at least one of imaging and measurement of the object to be inspected. The moving mechanism moves the position of the sensor unit relative to the object to be inspected. The detection unit is for obtaining information on the posture and position of the object to be inspected. The control unit adjusts the relative position of the sensor unit with respect to the object to be inspected by the moving mechanism based on the information obtained by the detection unit.
 第2の態様に係る検査用モジュールは、第1の態様に係る検査用モジュールであって、前記センサ部は、前記被検査物を被写体とした撮像部を含む。 The inspection module according to the second aspect is the inspection module according to the first aspect, and the sensor unit includes an imaging unit with the object to be inspected as a subject.
 第3の態様に係る検査用モジュールは、第1または第2の態様に係る検査用モジュールであって、前記搬送部は、ベルトコンベアを含む。 The inspection module according to the third aspect is the inspection module according to the first or second aspect, and the transport unit includes a belt conveyor.
 第4の態様に係る反転モジュールは、搬送部と、保持部と、移動機構と、検知部と、制御部と、を備える。前記搬送部は、前記反転モジュールと該反転モジュールの外部との間で被検査物を搬送する。前記保持部は、前記被検査物を反転させるために該被検査物を保持する。前記移動機構は、前記保持部によって前記被検査物を保持させた状態で該保持部を移動させることで前記被検査物を反転させる。前記検知部は、前記被検査物の姿勢および位置に係る情報を得るためのものである。前記制御部は、前記検知部で得られた情報に基づいて、前記移動機構によって前記被検査物に対する前記保持部の相対的な位置を調整させる。 The reversing module according to the fourth aspect includes a transport unit, a holding unit, a moving mechanism, a detecting unit, and a control unit. The transport unit transports the object to be inspected between the reversing module and the outside of the reversing module. The holding portion holds the inspected object in order to invert the inspected object. The moving mechanism inverts the inspected object by moving the holding portion while the inspected object is being held by the holding portion. The detection unit is for obtaining information on the posture and position of the object to be inspected. The control unit adjusts the relative position of the holding unit with respect to the object to be inspected by the moving mechanism based on the information obtained by the detection unit.
 第5の態様に係る反転モジュールは、第4の態様に係る反転モジュールであって、前記搬送部は、ベルトコンベアを含む。 The reversing module according to the fifth aspect is the reversing module according to the fourth aspect, and the transport unit includes a belt conveyor.
 第6の態様に係る検査装置は、相互に連結された2つ以上のモジュール、を備える。該2つ以上のモジュールは、第1モジュールと、第2モジュールと、を含む。前記第1モジュールは、第1搬送部と、センサ部と、第1移動機構と、第1検知部と、第1制御部と、を有する。前記第1搬送部は、前記第1モジュールと該第1モジュールの外部との間で被検査物を搬送する。前記センサ部は、前記被検査物を対象とした撮像および測定のうちの少なくとも一方の検査用の処理を行う。前記第1移動機構は、前記被検査物に対する前記センサ部の相対的な位置を移動させる。前記第1検知部は、前記被検査物の姿勢および位置に係る情報を得るためのものである。前記第1制御部は、前記第1検知部で得られた情報に基づいて、前記第1移動機構によって前記被検査物に対する前記センサ部の相対的な位置を調整させる。前記第2モジュールは、第2搬送部と、保持部と、第2移動機構と、第2検知部と、第2制御部と、を有する。前記第2搬送部は、前記第2モジュールと該第2モジュールの外部との間で前記被検査物を搬送する。前記保持部は、前記被検査物を反転させるために該被検査物を保持する。前記第2移動機構は、前記保持部によって前記被検査物を保持させた状態で該保持部を移動させることで前記被検査物を反転させる。前記第2検知部は、前記被検査物の姿勢および位置に係る情報を得るためのものである。前記第2制御部は、前記第2検知部で得られた情報に基づいて、前記第2移動機構によって前記被検査物に対する前記保持部の相対的な位置を調整させる。 The inspection device according to the sixth aspect includes two or more modules connected to each other. The two or more modules include a first module and a second module. The first module includes a first transport unit, a sensor unit, a first movement mechanism, a first detection unit, and a first control unit. The first transport unit transports the object to be inspected between the first module and the outside of the first module. The sensor unit performs processing for inspection of at least one of imaging and measurement of the object to be inspected. The first moving mechanism moves the position of the sensor unit relative to the object to be inspected. The first detection unit is for obtaining information relating to the posture and position of the object to be inspected. The first control unit adjusts the relative position of the sensor unit with respect to the object to be inspected by the first moving mechanism based on the information obtained by the first detection unit. The second module includes a second transport unit, a holding unit, a second moving mechanism, a second detection unit, and a second control unit. The second transport unit transports the object to be inspected between the second module and the outside of the second module. The holding portion holds the inspected object in order to invert the inspected object. The second moving mechanism reverses the inspected object by moving the holding portion in a state where the inspected object is held by the holding portion. The second detection unit is for obtaining information relating to the posture and position of the object to be inspected. The second control unit adjusts the relative position of the holding unit with respect to the object to be inspected by the second moving mechanism based on the information obtained by the second detection unit.
 第7の態様に係る検査装置は、第6の態様に係る検査装置であって、前記第2制御部が、前記第1検知部を用いて得られた情報と、前記第2検知部を用いて得られた情報と、に基づいて、前記第2移動機構によって前記被検査物に対する前記保持部の相対的な位置を調整させるか、または前記第1制御部が、前記第1検知部を用いて得られた情報と、前記第2検知部を用いて得られた情報と、に基づいて、前記第1移動機構によって前記被検査物に対する前記センサ部の相対的な位置を調整させる。 The inspection device according to the seventh aspect is the inspection device according to the sixth aspect, and the second control unit uses the information obtained by using the first detection unit and the second detection unit. Based on the information obtained above, the second moving mechanism adjusts the relative position of the holding unit with respect to the object to be inspected, or the first control unit uses the first detecting unit. Based on the information obtained by the above and the information obtained by using the second detection unit, the first moving mechanism adjusts the relative position of the sensor unit with respect to the object to be inspected.
 第8の態様に係る検査装置は、相互に連結された2つ以上のモジュール、を備える。該2つ以上のモジュールは、第1モジュールと、第2モジュールと、を含む。前記第1モジュールは、第1搬送部と、第1センサ部と、第1移動機構と、第1検知部と、第1制御部と、を有する。前記第1搬送部は、前記第1モジュールと該第1モジュールの外部との間で被検査物を搬送する。前記第1センサ部は、前記被検査物を対象とした撮像および測定のうちの少なくとも一方の検査用の処理を行う。前記第1移動機構は、前記被検査物に対する前記第1センサ部の相対的な位置を移動させる。前記第1検知部は、前記被検査物の姿勢および位置に係る情報を得るためのものである。前記第1制御部は、前記第1検知部で得られた情報に基づいて、前記移動機構によって前記被検査物に対する前記第1センサ部の相対的な位置を調整させる。前記第2モジュールは、第2搬送部と、第2センサ部と、第2移動機構と、第2検知部と、第2制御部と、を有する。前記第2搬送部は、前記第2モジュールと該第2モジュールの外部との間で前記被検査物を搬送する。前記第2センサ部は、前記被検査物を対象とした撮像および測定のうちの少なくとも一方の検査用の処理を行う。前記第2移動機構は、前記被検査物に対する前記第2センサ部の相対的な位置を移動させる。前記第2検知部は、前記被検査物の姿勢および位置に係る情報を得るためのものである。前記第2制御部は、前記第2検知部で得られた情報に基づいて、前記第2移動機構によって前記被検査物に対する前記第2センサ部の相対的な位置を調整させる。 The inspection device according to the eighth aspect includes two or more modules connected to each other. The two or more modules include a first module and a second module. The first module includes a first transport unit, a first sensor unit, a first movement mechanism, a first detection unit, and a first control unit. The first transport unit transports the object to be inspected between the first module and the outside of the first module. The first sensor unit performs processing for inspection of at least one of imaging and measurement of the object to be inspected. The first moving mechanism moves the position of the first sensor unit relative to the object to be inspected. The first detection unit is for obtaining information relating to the posture and position of the object to be inspected. The first control unit adjusts the relative position of the first sensor unit with respect to the object to be inspected by the moving mechanism based on the information obtained by the first detection unit. The second module includes a second transport unit, a second sensor unit, a second moving mechanism, a second detection unit, and a second control unit. The second transport unit transports the object to be inspected between the second module and the outside of the second module. The second sensor unit performs processing for inspection of at least one of imaging and measurement of the object to be inspected. The second moving mechanism moves the position of the second sensor unit relative to the object to be inspected. The second detection unit is for obtaining information relating to the posture and position of the object to be inspected. The second control unit adjusts the relative position of the second sensor unit with respect to the object to be inspected by the second moving mechanism based on the information obtained by the second detection unit.
 第9の態様に係る検査装置は、第8の態様に係る検査装置であって、前記第2制御部が、前記第1検知部を用いて得られた情報と、前記第2検知部を用いて得られた情報と、に基づいて、前記第2移動機構によって前記被検査物に対する前記第2センサ部の相対的な位置を調整させるか、または前記第1制御部が、前記第1検知部を用いて得られた情報と、前記第2検知部を用いて得られた情報と、に基づいて、前記第1移動機構によって前記被検査物に対する前記第1センサ部の相対的な位置を調整させる。 The inspection device according to the ninth aspect is the inspection device according to the eighth aspect, and the second control unit uses the information obtained by using the first detection unit and the second detection unit. Based on the information obtained in the above, the second moving mechanism adjusts the relative position of the second sensor unit with respect to the object to be inspected, or the first control unit causes the first detection unit. The relative position of the first sensor unit with respect to the object to be inspected is adjusted by the first moving mechanism based on the information obtained by using the second detection unit and the information obtained by using the second detection unit. Let me.
 第10の態様に係る検査装置は、第6から第9の何れか1つの態様に係る検査装置であって、前記2つ以上のモジュールのそれぞれに位置している前記被検査物を、搬送経路の下流側のモジュールに同時期に搬送する。 The inspection device according to the tenth aspect is an inspection device according to any one of the sixth to ninth aspects, and transports the object to be inspected located in each of the two or more modules. It is transported to the module on the downstream side of the above at the same time.
 第11の態様に係る検査装置は、第6から第10の何れか1つの態様に係る検査装置であって、前記第1搬送部および前記第2搬送部は、それぞれベルトコンベアを含む。 The inspection device according to the eleventh aspect is an inspection device according to any one of the sixth to tenth aspects, and the first transport section and the second transport section each include a belt conveyor.
 第1の態様に係る検査用モジュールによれば、例えば、被検査物に対してセンサ部を相対的に移動させることで、1つのセンサ部で被検査物の1箇所または2箇所以上について検査用の処理を行うことができる。このため、例えば、1つまたは2つ以上の検査用モジュールを含む2つ以上のモジュールを適宜組み合わせて検査装置を製造することができる。また、例えば、他のモジュールから検査用モジュールに被検査物が搬入される際に被検査物の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物に対するセンサ部の相対的な位置を調整することができる。したがって、例えば、被検査物の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置を容易に製造することができる。 According to the inspection module according to the first aspect, for example, by moving the sensor unit relative to the object to be inspected, one sensor unit is used for inspection of one or more locations of the object to be inspected. Can be processed. Therefore, for example, an inspection device can be manufactured by appropriately combining two or more modules including one or two or more inspection modules. Further, for example, even if at least one of the posture and the position of the inspected object deviates when the inspected object is carried into the inspection module from another module, the relative of the sensor unit to the inspected object according to the deviation. Position can be adjusted. Therefore, for example, it is possible to easily manufacture an inspection device that flexibly meets the user's request such as the shape and size of the object to be inspected, the space for installing the device, and the budget.
 第2の態様に係る検査用モジュールによれば、例えば、被検査物に対して撮像部を相対的に移動させることで、1つの撮像部で被検査物の1箇所または2箇所以上について撮像を行うことができる。このため、例えば、1つまたは2つ以上の撮像用のモジュールを含む2つ以上のモジュールを適宜組み合わせて検査装置を製造することができる。また、例えば、他のモジュールから検査用モジュールに被検査物が搬入される際に被検査物の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物に対する撮像部の相対的な位置を調整することができる。 According to the inspection module according to the second aspect, for example, by moving the imaging unit relative to the object to be inspected, one imaging unit can take an image of one or more locations of the object to be inspected. It can be carried out. Therefore, for example, an inspection device can be manufactured by appropriately combining two or more modules including one or two or more imaging modules. Further, for example, even if at least one of the posture and the position of the inspected object deviates when the inspected object is carried into the inspection module from another module, the relative of the imaging unit to the inspected object according to the deviation. Position can be adjusted.
 第3の態様に係る検査用モジュールによれば、例えば、隣のモジュールのベルトコンベア上から検査用モジュールのベルトコンベア上に被検査物が乗り移る際に、被検査物の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物に対するセンサ部の相対的な位置を調整することができる。 According to the inspection module according to the third aspect, for example, when the inspected object is transferred from the belt conveyor of the adjacent module to the belt conveyor of the inspection module, at least one of the posture and the position of the inspected object is changed. Even if there is a deviation, the relative position of the sensor unit with respect to the object to be inspected can be adjusted according to the deviation.
 第4の態様に係る反転モジュールによれば、例えば、被検査物を対象とした検査用の処理を行うための検査用モジュールと、被検査物を反転させる反転モジュールと、を含む2つ以上のモジュールを適宜組み合わせて検査装置を製造することができる。また、例えば、他のモジュールから反転モジュールに被検査物が搬入される際に被検査物の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物に対する保持部の相対的な位置を調整することで、保持部で被検査物を保持して反転させることができる。したがって、例えば、被検査物の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置を容易に製造することができる。 According to the inversion module according to the fourth aspect, for example, two or more inversion modules including an inspection module for performing an inspection process for an inspected object and an inversion module for inversion of the inspected object. The inspection device can be manufactured by appropriately combining the modules. Further, for example, even if at least one of the posture and the position of the object to be inspected is deviated when the object to be inspected is carried from another module to the reversing module, the holding portion is relative to the object to be inspected according to the deviation. By adjusting the position, the object to be inspected can be held and inverted by the holding portion. Therefore, for example, it is possible to easily manufacture an inspection device that flexibly meets the user's request such as the shape and size of the object to be inspected, the space for installing the device, and the budget.
 第5の態様に係る反転モジュールによれば、例えば、隣のモジュールのベルトコンベア上から反転モジュールのベルトコンベア上に被検査物が乗り移る際に、被検査物の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物に対する保持部の相対的な位置を調整することができる。 According to the reversing module according to the fifth aspect, for example, when the object to be inspected is transferred from the belt conveyor of the adjacent module to the belt conveyor of the reversing module, at least one of the posture and the position of the object to be inspected is displaced. However, the relative position of the holding portion with respect to the object to be inspected can be adjusted according to the deviation.
 第6の態様に係る検査装置によれば、例えば、被検査物を対象とした検査用の処理を行うための第1モジュールと、被検査物を反転させる第2モジュールと、を含む2つ以上のモジュールを適宜組み合わせて検査装置を製造することができる。また、例えば、他のモジュールから第1モジュールに被検査物が搬入される際に被検査物の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物に対するセンサ部の相対的な位置を調整することができる。また、例えば、他のモジュールから第2モジュールに被検査物が搬入される際に被検査物の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物に対する保持部の相対的な位置を調整することができる。したがって、例えば、被検査物の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置を容易に製造することができる。 According to the inspection apparatus according to the sixth aspect, for example, two or more modules including a first module for performing an inspection process for an inspected object and a second module for inverting the inspected object. The inspection device can be manufactured by appropriately combining the above modules. Further, for example, even if at least one of the posture and the position of the object to be inspected deviates when the object to be inspected is carried from another module to the first module, the relative of the sensor unit to the object to be inspected according to the deviation. Position can be adjusted. Further, for example, even if at least one of the posture and the position of the object to be inspected is deviated when the object to be inspected is carried from another module to the second module, the relative of the holding portion to the object to be inspected according to the deviation. Position can be adjusted. Therefore, for example, it is possible to easily manufacture an inspection device that flexibly meets the user's request such as the shape and size of the object to be inspected, the space for installing the device, and the budget.
 第7の態様に係る検査装置によれば、例えば、被検査物が第1モジュールの後に第2モジュールに搬入される場合には、第2モジュールにおいて、第1モジュールにおける検知部を用いて得た情報を利用して、被検査物に対する保持部の相対的な位置を調整し、被検査物が第2モジュールの後に第1モジュールに搬入される場合には、第1モジュールにおいて、第2モジュールにおける検知部を用いて得た情報を利用して、被検査物に対するセンサ部の相対的な位置を調整することができる。これにより、例えば、情報の取得に要する構成および時間が削減され得る。 According to the inspection device according to the seventh aspect, for example, when the object to be inspected is carried into the second module after the first module, it is obtained in the second module by using the detection unit in the first module. The information is used to adjust the relative position of the holding part with respect to the object to be inspected, and when the object to be inspected is carried into the first module after the second module, in the first module, in the second module. The position of the sensor unit relative to the object to be inspected can be adjusted by using the information obtained by using the detection unit. This can reduce, for example, the configuration and time required to obtain the information.
 第8の態様に係る検査装置によれば、例えば、被検査物を対象とした検査用の処理をそれぞれ行うための第1モジュールおよび第2モジュールを含む2つ以上のモジュールを適宜組み合わせて検査装置を製造することができる。また、例えば、他のモジュールから第1モジュールまたは第2モジュールに被検査物が搬入される際に被検査物の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物に対するセンサ部の相対的な位置を調整することができる。したがって、例えば、被検査物の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置を容易に製造することができる。また、例えば、連続して検査を行う複数の被検査物の数の増加に伴い、2つ以上の検査用モジュールにおいて被検査物の複数箇所についての検査用の処理を分担して実施することで、単位時間あたりに検査装置から排出される検査用の処理が完了した被検査物の数を増加させることができる。 According to the inspection device according to the eighth aspect, for example, an inspection device in which two or more modules including a first module and a second module for performing inspection processing on an object to be inspected are appropriately combined. Can be manufactured. Further, for example, even if at least one of the posture and the position of the object to be inspected is displaced when the object to be inspected is carried from another module to the first module or the second module, the sensor for the object to be inspected is displaced according to the deviation. The relative position of the parts can be adjusted. Therefore, for example, it is possible to easily manufacture an inspection device that flexibly meets the user's request such as the shape and size of the object to be inspected, the space for installing the device, and the budget. Further, for example, as the number of a plurality of objects to be inspected to be continuously inspected increases, the inspection process for a plurality of locations of the objects to be inspected may be shared and carried out in two or more inspection modules. It is possible to increase the number of objects to be inspected that have been processed for inspection discharged from the inspection device per hour.
 第9の態様に係る検査装置によれば、例えば、被検査物が第1モジュールの後に第2モジュールに搬入される場合には、第2モジュールにおいて、第1モジュールにおける第1検知部を用いて得た情報を利用して、被検査物に対する第2センサ部の相対的な位置を調整し、被検査物が第2モジュールの後に第1モジュールに搬入される場合には、第1モジュールにおいて、第2モジュールにおける第2検知部を用いて得た情報を利用して、被検査物に対する第1センサ部の相対的な位置を調整することができる。これにより、例えば、情報の取得に要する構成および時間が削減され得る。 According to the inspection device according to the ninth aspect, for example, when the object to be inspected is carried into the second module after the first module, in the second module, the first detection unit in the first module is used. Using the obtained information, the position of the second sensor unit relative to the object to be inspected is adjusted, and when the object to be inspected is carried into the first module after the second module, in the first module, The position of the first sensor unit relative to the object to be inspected can be adjusted by using the information obtained by using the second detection unit in the second module. This can reduce, for example, the configuration and time required to obtain the information.
 第10の態様に係る検査装置によれば、例えば、全てのモジュール間において被検査物を下流側の隣のモジュールに一斉に搬送することで、単位時間あたりに検査装置から排出される検査用の処理が完了した被検査物の数を増加させることができる。 According to the inspection device according to the tenth aspect, for example, by simultaneously transporting the object to be inspected between all the modules to the adjacent module on the downstream side, the inspection device is discharged from the inspection device per unit time. The number of objects to be inspected that have been processed can be increased.
 第11の態様に係る検査装置によれば、例えば、1つのモジュールのベルトコンベア上から次のモジュールのベルトコンベア上に被検査物が乗り移る際に、被検査物の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物に対するセンサ部もしくは保持部の相対的な位置を調整することができる。 According to the inspection device according to the eleventh aspect, for example, when the object to be inspected is transferred from the belt conveyor of one module to the belt conveyor of the next module, at least one of the posture and the position of the object to be inspected is displaced. However, the relative position of the sensor unit or the holding unit with respect to the object to be inspected can be adjusted according to the deviation.
図1(a)は、第1実施形態の第1例に係る検査装置の外観を模式的に示す斜視図である。図1(b)は、第1実施形態の第1例に係る検査装置の概略的な構成を示す図である。FIG. 1A is a perspective view schematically showing the appearance of the inspection device according to the first example of the first embodiment. FIG. 1B is a diagram showing a schematic configuration of an inspection device according to a first example of the first embodiment. 図2(a)は、第1実施形態の第1例に係る検査装置を製造する様子を示す斜視図である。図2(b)は、第1実施形態の第1例に係る検査装置を製造する様子を概略的に示す図である。FIG. 2A is a perspective view showing a state of manufacturing the inspection device according to the first example of the first embodiment. FIG. 2B is a diagram schematically showing a state of manufacturing the inspection device according to the first example of the first embodiment. 図3(a)は、検査用モジュールの主要な物理的構成の一例を示す図である。図3(b)は、反転モジュールの主要な物理的構成の一例を示す図である。FIG. 3A is a diagram showing an example of a main physical configuration of the inspection module. FIG. 3B is a diagram showing an example of the main physical configuration of the inversion module. 図4は、第1実施形態に係る検査装置の一部の機能的な構成の一例を示す図である。FIG. 4 is a diagram showing an example of a partial functional configuration of the inspection device according to the first embodiment. 図5は、第1実施形態に係る検査装置の一部の機能的な構成の一例を示す図である。FIG. 5 is a diagram showing an example of a partial functional configuration of the inspection device according to the first embodiment. 図6は、第1実施形態に係る検査装置の一部の機能的な構成の一例を示す図である。FIG. 6 is a diagram showing an example of a partial functional configuration of the inspection device according to the first embodiment. 図7は、第1実施形態に係る検査装置の一部の機能的な構成の一例を示す図である。FIG. 7 is a diagram showing an example of a partial functional configuration of the inspection device according to the first embodiment. 図8は、第1実施形態に係る検査装置の一部の機能的な構成の一例を示す図である。FIG. 8 is a diagram showing an example of a partial functional configuration of the inspection device according to the first embodiment. 図9は、第1実施形態に係る検査装置の一部の機能的な構成の一例を示す図である。FIG. 9 is a diagram showing an example of a partial functional configuration of the inspection device according to the first embodiment. 図10は、第1実施形態に係る検査装置の一部の機能的な構成の一例を示す図である。FIG. 10 is a diagram showing an example of a partial functional configuration of the inspection device according to the first embodiment. 図11(a)は、複数のモジュールの組み合わせで構成される第2例に係る検査装置の概略的な構成を示す図である。図11(b)は、複数のモジュールの組み合わせで構成される第3例に係る検査装置の概略的な構成を示す図である。FIG. 11A is a diagram showing a schematic configuration of an inspection device according to a second example composed of a combination of a plurality of modules. FIG. 11B is a diagram showing a schematic configuration of an inspection device according to a third example, which is composed of a combination of a plurality of modules. 図12(a)は、複数のモジュールの組み合わせで構成される第4例に係る検査装置の概略的な構成を示す図である。図12(b)は、複数のモジュールの組み合わせで構成される第5例に係る検査装置の概略的な構成を示す図である。図12(c)は、1つのモジュールで構成される第6例に係る検査装置の概略的な構成を示す図である。FIG. 12A is a diagram showing a schematic configuration of an inspection device according to a fourth example composed of a combination of a plurality of modules. FIG. 12B is a diagram showing a schematic configuration of an inspection device according to a fifth example, which is composed of a combination of a plurality of modules. FIG. 12C is a diagram showing a schematic configuration of an inspection device according to a sixth example composed of one module. 図13は、第1実施形態の第1例に係る検査装置における1つの被検査物を対象とした動作の一例に関するタイミングチャートを示す図である。FIG. 13 is a diagram showing a timing chart relating to an example of an operation targeting one object to be inspected in the inspection device according to the first example of the first embodiment. 図14は、第1実施形態の第1例に係る検査装置における複数の被検査物を対象とした動作の一例に関するタイミングチャートを示す図である。FIG. 14 is a diagram showing a timing chart relating to an example of an operation targeting a plurality of objects to be inspected in the inspection device according to the first example of the first embodiment. 図15は、カーブベルトコンベアを有する搬送モジュールを含む複数のモジュールの組み合わせで構成される検査装置の一例の概略的な構成を示す図である。FIG. 15 is a diagram showing a schematic configuration of an example of an inspection device composed of a combination of a plurality of modules including a transfer module having a curved belt conveyor. 図16は、カーブベルトコンベアを有する搬送モジュールを含む複数のモジュールの組み合わせで構成される検査装置の他の一例の概略的な構成を示す図である。FIG. 16 is a diagram showing a schematic configuration of another example of an inspection device composed of a combination of a plurality of modules including a transfer module having a curved belt conveyor. 図17(a)は、搬送ロボットを有する搬送モジュールを含む複数のモジュールの組み合わせで構成される検査装置の一例の概略的な構成を示す図である。図17(b)は、搬送ロボットを有する搬送モジュールを含む複数のモジュールの組み合わせで構成される検査装置の他の一例の概略的な構成を示す図である。FIG. 17A is a diagram showing a schematic configuration of an example of an inspection device composed of a combination of a plurality of modules including a transfer module having a transfer robot. FIG. 17B is a diagram showing a schematic configuration of another example of an inspection device composed of a combination of a plurality of modules including a transfer module having a transfer robot. 図18(a)は、上流側の1つのモジュールにおける被検査物の姿勢および位置に係る情報の取得態様の一例を示す図である。図18(b)は、下流側の1つのモジュールにおける被検査物の姿勢および位置に係る情報の取得態様の一例を示す図である。FIG. 18A is a diagram showing an example of an acquisition mode of information relating to the posture and position of the object to be inspected in one module on the upstream side. FIG. 18B is a diagram showing an example of an acquisition mode of information relating to the posture and position of the object to be inspected in one module on the downstream side.
 以下、添付の図面を参照しながら、本発明の各実施形態について説明する。各実施形態に記載されている構成要素はあくまでも例示であり、本発明の範囲をそれらのみに限定する趣旨のものではない。図面は、あくまでも模式的に示したものである。図面においては、容易に理解が可能となるように、必要に応じて各部の寸法および数が誇張または簡略化されて図示されている場合がある。また、図面においては、同様な構成および機能を有する部分に対して同じ符号が付されており、重複した説明が適宜省略されている。図1(a)から図3(b)および図11(a)から図12(c)には、右手系のXYZ座標系が付されている。このXYZ座標系では、投入モジュール11の搬送部Cv1によって水平面に沿って被検査物W0が搬送される方向が+X方向とされ、水平面に沿って被検査物W0が搬送される方向に垂直な方向が+Y方向とされ、+X方向と+Y方向との両方に直交する重力方向が-Z方向とされている。 Hereinafter, each embodiment of the present invention will be described with reference to the accompanying drawings. The components described in each embodiment are merely examples, and the scope of the present invention is not limited to them. The drawings are only schematically shown. In the drawings, the dimensions and number of parts may be exaggerated or simplified as necessary for easy understanding. Further, in the drawings, the same reference numerals are given to parts having the same configuration and function, and duplicate explanations are appropriately omitted. A right-handed XYZ coordinate system is attached to FIGS. 1 (a) to 3 (b) and 11 (a) to 12 (c). In this XYZ coordinate system, the direction in which the inspected object W0 is conveyed along the horizontal plane by the conveying portion Cv1 of the charging module 11 is the + X direction, and the direction perpendicular to the direction in which the inspected object W0 is conveyed along the horizontal plane. Is the + Y direction, and the gravity direction orthogonal to both the + X direction and the + Y direction is the −Z direction.
 また、本明細書では、相対的または絶対的な位置関係を示す表現(例えば「平行」「直交」「中心」等)は、特に断らない限り、その位置関係を厳密に表すのみならず、公差も含む状態を表すとともに、同程度の機能が得られる範囲で相対的に角度または距離に関して変位された状態も表すものとする。2つ以上のものが等しい状態であることを示す表現(例えば「同一」「等しい」「均質」等)は、特に断らない限り、定量的に厳密に等しい状態を表すのみならず、公差もしくは同程度の機能が得られる差が存在する状態も表すものとする。形状を示す表現(例えば「四角形状」または「円筒形状」等)は、特に断らない限り、幾何学的に厳密に形状を表すのみならず、同程度の効果が得られる範囲で、例えば凹凸または面取り等を有する形状も表すものとする。1つの構成要素を「備える」「具える」「具備する」「含む」または「有する」という表現は、他の構成要素の存在を除外する排他的表現ではない。「連結」という表現は、特に断らない限り、2つの要素が接している状態のほか、2つの要素が他の要素を挟んで離れている状態も含む表現である。 Further, in the present specification, expressions indicating relative or absolute positional relationships (for example, "parallel", "orthogonal", "center", etc.) not only strictly represent the positional relationship but also tolerances, unless otherwise specified. In addition to representing the state including, the state of being displaced relative to the angle or distance within the range in which the same function can be obtained is also represented. Expressions indicating that two or more things are equal (for example, "same", "equal", "homogeneous", etc.) not only represent quantitatively exactly equal states, but also tolerances or the same. It shall also represent a state in which there is a difference in obtaining a degree of function. Unless otherwise specified, the expression indicating the shape (for example, "square shape" or "cylindrical shape") not only expresses the shape strictly geometrically, but also, for example, unevenness or unevenness or within a range in which the same effect can be obtained. A shape having a chamfer or the like shall also be represented. The expressions "equipped", "equipped", "equipped", "included", or "have" one component are not exclusive expressions that exclude the existence of other components. Unless otherwise specified, the expression "concatenation" includes a state in which two elements are in contact with each other and a state in which the two elements are separated from each other with another element in between.
 <1.第1実施形態>
 <1-1.検査装置の構成>
 第1実施形態に係る検査装置1について、図1(a)から図10を参照しながら、説明する。図1(a)は、第1実施形態の第1例に係る検査装置1の外観を模式的に示す斜視図である。図1(b)は、第1実施形態の第1例に係る検査装置1の概略的な構成を示す図である。図2(a)は、第1実施形態の第1例に係る検査装置1を製造する様子を示す斜視図である。図2(b)は、第1実施形態の第1例に係る検査装置1を製造する様子を概略的に示す図である。
<1. First Embodiment>
<1-1. Inspection device configuration>
The inspection device 1 according to the first embodiment will be described with reference to FIGS. 1A to 10A. FIG. 1A is a perspective view schematically showing the appearance of the inspection device 1 according to the first example of the first embodiment. FIG. 1B is a diagram showing a schematic configuration of the inspection device 1 according to the first example of the first embodiment. FIG. 2A is a perspective view showing a state in which the inspection device 1 according to the first example of the first embodiment is manufactured. FIG. 2B is a diagram schematically showing a state in which the inspection device 1 according to the first example of the first embodiment is manufactured.
 図1(a)および図1(b)で示されるように、検査装置1は、例えば、投入モジュール11と、4つの検査用モジュール12と、反転モジュール13と、排出モジュール14と、を備えている。より具体的には、検査装置1では、例えば、投入モジュール11と、1つ目の検査用モジュール(第1検査用モジュールともいう)121と、2つ目の検査用モジュール(第2検査用モジュールともいう)122と、反転モジュール13と、3つ目の検査用モジュール(第3検査用モジュールともいう)123と、4つ目の検査用モジュール(第4検査用モジュールともいう)124と、排出モジュール14と、が+X方向においてこの記載の順に連結されている状態で位置している。投入モジュール11、検査用モジュール12、反転モジュール13および排出モジュール14は、適宜「モジュール」とも略称される。複数のモジュール11,12,13,14は、それぞれ別々に作製され得る。そして、例えば、図2(a)および図2(b)で示されるように、複数のモジュール11,12,13,14を+X方向において相互に連結することで、検査装置1が製造され得る。このため、例えば、1つまたは2つ以上の検査用モジュール12を含む2つ以上のモジュールを適宜組み合わせて検査装置を製造することができる。モジュール11,12,13,14の間の連結は、例えば、連結用の部材およびネジ等の締結部材等によって実現され得る。 As shown in FIGS. 1 (a) and 1 (b), the inspection device 1 includes, for example, an input module 11, four inspection modules 12, an inversion module 13, and an discharge module 14. There is. More specifically, in the inspection device 1, for example, the input module 11, the first inspection module (also referred to as the first inspection module) 121, and the second inspection module (second inspection module) 122, inversion module 13, third inspection module (also referred to as third inspection module) 123, fourth inspection module (also referred to as fourth inspection module) 124, and discharge. Module 14 and the module 14 are located in the + X direction in a state of being connected in the order described in this description. The loading module 11, the inspection module 12, the reversing module 13, and the discharging module 14 are also abbreviated as “modules” as appropriate. The plurality of modules 11, 12, 13, 14 can be manufactured separately. Then, for example, as shown in FIGS. 2A and 2B, the inspection apparatus 1 can be manufactured by connecting the plurality of modules 11, 12, 13, and 14 to each other in the + X direction. Therefore, for example, an inspection device can be manufactured by appropriately combining two or more modules including one or two or more inspection modules 12. The connection between the modules 11, 12, 13 and 14 can be realized by, for example, a member for connection and a fastening member such as a screw.
 モジュール11,12,13,14は、例えば、それぞれ上部に検査の対象物(被検査物とも、ワークともいう)W0が載置および搬送される内部空間を有する筒状の部分(筒状部ともいう)を有する。この筒状部は、例えば、+X方向に貫通するように位置している。具体的には、例えば、投入モジュール11は、筒状部11tbを有し、検査用モジュール12は、筒状部12tbを有し、反転モジュール13は、筒状部13tbを有し、排出モジュール14は、筒状部14tbを有する。そして、例えば、複数のモジュール11,12,13,14の間で被検査物W0の搬送が可能な経路(搬送経路ともいう)Rt1を成す1つの筒状の部分(筒状部)1tbを形成するように、複数のモジュール11,12,13,14が相互に連結されている。図1(b)では、+X方向に沿った搬送経路Rt1に沿って2点鎖線の矢印が描かれている。 Modules 11, 12, 13 and 14 have, for example, a tubular portion (also referred to as a tubular portion) having an internal space on which an object to be inspected (also referred to as an inspected object or a work) W0 is placed and conveyed on the upper portion. Has). This tubular portion is positioned so as to penetrate in the + X direction, for example. Specifically, for example, the loading module 11 has a tubular portion 11tb, the inspection module 12 has a tubular portion 12tb, the reversing module 13 has a tubular portion 13tb, and the discharging module 14 Has a tubular portion 14tb. Then, for example, one tubular portion (cylindrical portion) 1tb forming a path (also referred to as a transport path) Rt1 capable of transporting the inspected object W0 between the plurality of modules 11, 12, 13, and 14 is formed. As such, a plurality of modules 11, 12, 13, 14 are connected to each other. In FIG. 1B, a two-dot chain line arrow is drawn along the transport path Rt1 along the + X direction.
 ここでは、例えば、筒状部1tbは、投入モジュール11の筒状部11tbと、第1検査用モジュール121の筒状部12tbと、第2検査用モジュール122の筒状部12tbと、反転モジュール13の筒状部13tbと、第3検査用モジュール123の筒状部12tbと、第4検査用モジュール124の筒状部12tbと、排出モジュール14の筒状部14tbと、が+X方向においてこの順に連結されている状態で構成されている。検査装置1では、例えば、投入モジュール11から、第1検査用モジュール121、第2検査用モジュール122、反転モジュール13、第3検査用モジュール123、第4検査用モジュール124および排出モジュール14の順に、被検査物W0が搬送されることで、被検査物W0の検査が行われ得る。 Here, for example, the tubular portion 1tb includes a tubular portion 11tb of the input module 11, a tubular portion 12tb of the first inspection module 121, a tubular portion 12tb of the second inspection module 122, and an inversion module 13. The tubular portion 13tb of the third inspection module 123, the tubular portion 12tb of the fourth inspection module 124, and the tubular portion 14tb of the discharge module 14 are connected in this order in the + X direction. It is configured in the state that it is. In the inspection device 1, for example, from the input module 11, the first inspection module 121, the second inspection module 122, the reversing module 13, the third inspection module 123, the fourth inspection module 124, and the discharge module 14 are in this order. By transporting the inspected object W0, the inspected object W0 can be inspected.
 ここで、筒状部11tb,12tb,13tb,14tbのそれぞれにおける+Z方向に位置する上面部および±Y方向に位置する側面部は、例えば、透明であっても透明でなくてもよい。 Here, the upper surface portion located in the + Z direction and the side surface portion located in the ± Y direction in each of the tubular portions 11tb, 12tb, 13tb, and 14tb may or may not be transparent, for example.
 <1-1-1.投入モジュールの構成>
 投入モジュール11は、検査装置1の外部から被検査物W0が投入されるモジュールである。この投入モジュール11は、例えば、検査装置1に含まれる1つまたは2つ以上の検査用モジュール12を含む2つ以上のモジュールのうちの被検査物W0の搬送経路Rt1における最初に位置している。
<1-1-1. Input module configuration>
The charging module 11 is a module in which the object to be inspected W0 is charged from the outside of the inspection device 1. The input module 11 is located first in the transport path Rt1 of the object to be inspected W0 among two or more modules including one or two or more inspection modules 12 included in the inspection device 1, for example. ..
 図1(a)および図1(b)の例では、投入モジュール11は、被検査物W0を搬送可能な搬送部Cv1であるベルトコンベアを有し、各検査用モジュール12は、被検査物W0を搬送可能な搬送部Cv2であるベルトコンベアを有し、反転モジュール13は、被検査物W0を搬送可能な搬送部Cv3であるベルトコンベアを有し、排出モジュール14は、被検査物W0を搬送可能な搬送部Cv4であるベルトコンベアを有する。ベルトコンベアは、例えば、モーター等の駆動部の駆動力に応じて回転するプーリーと、ローラーと、プーリーおよびローラーの外周に沿って位置するベルトと、を有する。投入モジュール11の搬送部Cv1は、例えば、投入モジュール11と該投入モジュール11の外部との間で被検査物W0を搬送することができる。検査用モジュール12の搬送部Cv2は、例えば、検査用モジュール12と検査用モジュール12の外部との間で被検査物W0を搬送することができる。反転モジュール13の搬送部Cv3は、例えば、反転モジュール13と反転モジュール13の外部との間で被検査物W0を搬送することができる。排出モジュール14の搬送部Cv4は、例えば、排出モジュール14と該排出モジュール14の外部との間で被検査物W0を搬送することができてもよいし、排出モジュール14内における所定の位置まで被検査物W0を搬送することができてもよい。 In the examples of FIGS. 1 (a) and 1 (b), the charging module 11 has a belt conveyor which is a transport unit Cv1 capable of transporting the object to be inspected W0, and each inspection module 12 has the object to be inspected W0. The reversing module 13 has a belt conveyor which is a transport unit Cv3 capable of transporting the inspected object W0, and the discharge module 14 conveys the inspected object W0. It has a belt conveyor which is a possible transport unit Cv4. The belt conveyor has, for example, a pulley that rotates according to a driving force of a driving unit such as a motor, a roller, and a belt that is located along the pulley and the outer periphery of the roller. The transport unit Cv1 of the charging module 11 can transport the object to be inspected W0 between the charging module 11 and the outside of the charging module 11, for example. The transport unit Cv2 of the inspection module 12 can transport the object to be inspected W0 between the inspection module 12 and the outside of the inspection module 12, for example. The transport unit Cv3 of the reversing module 13 can, for example, transport the object to be inspected W0 between the reversing module 13 and the outside of the reversing module 13. The transport unit Cv4 of the discharge module 14 may be able to transport the inspected object W0 between the discharge module 14 and the outside of the discharge module 14, or may be covered to a predetermined position in the discharge module 14. The inspection object W0 may be able to be transported.
 例えば、投入モジュール11は、筒状部11tbのうちの検査用モジュール12とは逆側の-X方向の端部に開閉可能な部分(開閉部ともいう)11ocを有する。開閉部11ocは、例えば、開閉可能な扉またはシャッターを有する。被検査部W0は、例えば、開閉部11ocを介して投入モジュール11の内部に投入される。例えば、作業者Op0が、投入モジュール11に被検査物W0を投入する態様が考えられる。この場合には、例えば、搬送部Cv1としてのベルトコンベアのベルト上に描画もしくは投影された目印に合わせて作業者Op0がベルト上に被検査物W0を載置する態様が考えられる。この場合には、例えば、ベルト上に載置される被検査物W0を検知するセンサによって、投入モジュール11に被検査物W0が投入されたことが検知されてもよい。また、例えば、検査装置1の外部に設けられたロボット等が、投入モジュール11の内部に被検査物W0を投入してもよい。ここで、例えば、搬送部Cv1としてのベルトコンベアのベルト上に載置された被検査物W0は、搬送部Cv1によって、投入モジュール11の+X方向の外部に位置している第1検査用モジュール121の搬送部Cv2(搬送部Cv21ともいう)に受け渡され得る。ここで、第1検査用モジュール121の前のモジュールである投入モジュール11の搬送部Cv1から第1検査用モジュール121の搬送部Cv21に被検査物W0が受け渡される際に、被検査物W0の姿勢および位置にずれが生じる場合がある。 For example, the charging module 11 has an openable / closable portion (also referred to as an opening / closing portion) 11oc at the end portion of the tubular portion 11tb opposite to the inspection module 12 in the −X direction. The opening / closing unit 11oc has, for example, a door or shutter that can be opened / closed. The unit to be inspected W0 is charged into the charging module 11 via, for example, the opening / closing unit 11oc. For example, it is conceivable that the worker Op0 throws the inspected object W0 into the throwing module 11. In this case, for example, it is conceivable that the operator Op0 places the object to be inspected W0 on the belt according to the mark drawn or projected on the belt of the belt conveyor as the transport unit Cv1. In this case, for example, a sensor that detects the object to be inspected W0 placed on the belt may detect that the object to be inspected W0 has been charged into the charging module 11. Further, for example, a robot or the like provided outside the inspection device 1 may inject the object to be inspected W0 into the injection module 11. Here, for example, the object to be inspected W0 placed on the belt of the belt conveyor as the transport unit Cv1 is located outside the loading module 11 in the + X direction by the transport unit Cv1. Can be delivered to the transport unit Cv2 (also referred to as the transport unit Cv21). Here, when the inspected object W0 is delivered from the conveying portion Cv1 of the loading module 11 which is the module before the first inspection module 121 to the conveying portion Cv21 of the first inspection module 121, the inspected object W0 There may be deviations in posture and position.
 <1-1-2.検査用モジュールの構成>
 検査用モジュール12は、例えば、被検査物W0を対象とした検査用の処理としての撮像を行うモジュールである。ここで、第1検査用モジュール121は、例えば、投入モジュール11の搬送部Cv1から第1検査用モジュール121の搬送部Cv21に受け渡された被検査物W0を対象として、検査用の処理としての撮像を行うことができる。第1検査用モジュール121で撮像された被検査物W0は、搬送部Cv21によって第1検査用モジュール121から該第1検査用モジュール121の+X方向の外部に位置している第2検査用モジュール122の搬送部Cv2(搬送部Cv22ともいう)に受け渡され得る。ここで、例えば、第1検査用モジュール121の搬送部Cv21から第2検査用モジュール122の搬送部Cv22に被検査物W0が受け渡される際に、被検査物W0の姿勢および位置にずれが生じる場合がある。
<1-1-2. Inspection module configuration>
The inspection module 12 is, for example, a module that performs imaging as an inspection process for an object to be inspected W0. Here, the first inspection module 121 is, for example, a process for inspection of the object to be inspected W0 delivered from the transport unit Cv1 of the input module 11 to the transport unit Cv21 of the first inspection module 121. Imaging can be performed. The object to be inspected W0 imaged by the first inspection module 121 is located outside the first inspection module 121 in the + X direction from the first inspection module 121 by the transport unit Cv21. Can be delivered to the transport unit Cv2 (also referred to as the transport unit Cv22). Here, for example, when the inspected object W0 is delivered from the conveying portion Cv21 of the first inspection module 121 to the conveying portion Cv22 of the second inspection module 122, the posture and position of the inspected object W0 are displaced. In some cases.
 第2検査用モジュール122は、例えば、第1検査用モジュール121の搬送部Cv21から第2検査用モジュール122の搬送部Cv22に受け渡された被検査物W0を対象として、検査用の処理としての撮像を行うことができる。第2検査用モジュール122で撮像された被検査物W0は、搬送部Cv22によって第2検査用モジュール122から該第2検査用モジュール122の+X方向の外部に位置している反転モジュール13の搬送部Cv3に受け渡され得る。ここで、例えば、第2検査用モジュール122の搬送部Cv22から反転モジュール13の搬送部Cv3に被検査物W0が受け渡される際に、被検査物W0の姿勢および位置にずれが生じる場合がある。 The second inspection module 122 is, for example, a process for inspection of the object to be inspected W0 delivered from the transport unit Cv21 of the first inspection module 121 to the transport unit Cv22 of the second inspection module 122. Imaging can be performed. The object to be inspected W0 imaged by the second inspection module 122 is a transport portion of the reversing module 13 located outside the second inspection module 122 in the + X direction from the second inspection module 122 by the transport unit Cv22. It can be delivered to Cv3. Here, for example, when the inspected object W0 is delivered from the conveying portion Cv22 of the second inspection module 122 to the conveying portion Cv3 of the reversing module 13, the posture and position of the inspected object W0 may deviate. ..
 第3検査用モジュール123は、例えば、反転モジュール13の搬送部Cv3から第3検査用モジュール123の搬送部Cv2(搬送部Cv23ともいう)に受け渡された被検査物W0を対象として、検査用の処理としての撮像を行うことができる。第3検査用モジュール123で撮像された被検査物W0は、搬送部Cv23によって第3検査用モジュール123から該第3検査用モジュール123の+X方向の外部に位置している第4検査用モジュール124の搬送部Cv2(搬送部Cv24ともいう)に受け渡され得る。ここで、例えば、反転モジュール13の搬送部Cv3から第3検査用モジュール123の搬送部Cv23に被検査物W0が受け渡される際に、被検査物W0の姿勢および位置にずれが生じる場合がある。また、例えば、第3検査用モジュール123の搬送部Cv23から第4検査用モジュール124の搬送部Cv24に被検査物W0が受け渡される際に、被検査物W0の姿勢および位置にずれが生じる場合がある。 The third inspection module 123 is for inspection, for example, targeting the object to be inspected W0 delivered from the transport unit Cv3 of the reversing module 13 to the transport unit Cv2 (also referred to as the transport unit Cv23) of the third inspection module 123. Imaging can be performed as a process of. The object to be inspected W0 imaged by the third inspection module 123 is located outside the third inspection module 123 in the + X direction from the third inspection module 123 by the transport unit Cv23. Can be delivered to the transport unit Cv2 (also referred to as the transport unit Cv24). Here, for example, when the inspected object W0 is delivered from the conveying portion Cv3 of the reversing module 13 to the conveying portion Cv23 of the third inspection module 123, the posture and position of the inspected object W0 may deviate. .. Further, for example, when the object to be inspected W0 is delivered from the transport section Cv23 of the third inspection module 123 to the transport section Cv24 of the fourth inspection module 124, the posture and position of the object to be inspected W0 are displaced. There is.
 第4検査用モジュール124は、例えば、第3検査用モジュール123の搬送部Cv23から第4検査用モジュール124の搬送部Cv24に受け渡された被検査物W0を対象として、検査用の処理としての撮像を行うことができる。第4検査用モジュール124で撮像された被検査物W0は、搬送部Cv24によって第4検査用モジュール124から該第4検査用モジュール124の+X方向の外部に位置している排出モジュール14の搬送部Cv4に受け渡され得る。 The fourth inspection module 124, for example, targets the object to be inspected W0 delivered from the transport unit Cv23 of the third inspection module 123 to the transport unit Cv24 of the fourth inspection module 124, and serves as an inspection process. Imaging can be performed. The object to be inspected W0 imaged by the fourth inspection module 124 is the transport portion of the discharge module 14 located outside the fourth inspection module 124 in the + X direction from the fourth inspection module 124 by the transport unit Cv24. It can be delivered to Cv4.
 図3(a)は、検査用モジュール12の主要な物理的な構成の一例を示す図である。検査用モジュール12は、例えば、センサ部12sと、移動機構12tと、検知部12dと、を有する。 FIG. 3A is a diagram showing an example of a main physical configuration of the inspection module 12. The inspection module 12 includes, for example, a sensor unit 12s, a moving mechanism 12t, and a detection unit 12d.
 センサ部12sは、例えば、被検査物W0を対象とした検査用の処理としての撮像を行うことができる。ここで、検査用モジュール12は、1つのセンサ部12sを有していてもよいし、2つ以上のセンサ部12sを有していてもよい。図3(a)の例では、検査用モジュール12は、第1のセンサ部12s1と第2のセンサ部12s2とを含む2つのセンサ部12sを有する。センサ部12sには、例えば、電荷結合素子(Charge Coupled Device:CCD)等の撮像素子を有する撮像部が適用される。この撮像部は、被検査物W0の少なくとも一部を被写体として撮像を行うことができる。センサ部12sは、例えば、照明を有していてもよい。照明には、例えば、発光ダイオード(Light Emitting Diode:LED)を用いた面状の照明等が適用される。 The sensor unit 12s can perform imaging as an inspection process for the object to be inspected W0, for example. Here, the inspection module 12 may have one sensor unit 12s, or may have two or more sensor units 12s. In the example of FIG. 3A, the inspection module 12 has two sensor units 12s including a first sensor unit 12s1 and a second sensor unit 12s2. For example, an image pickup unit having an image pickup device such as a charge-coupled device (CCD) is applied to the sensor section 12s. This imaging unit can take an image of at least a part of the object to be inspected W0 as a subject. The sensor unit 12s may have illumination, for example. For illumination, for example, planar illumination using a light emitting diode (LED) or the like is applied.
 移動機構12tは、例えば、被検査物W0に対するセンサ部12sの相対的な位置を移動させることができる。ここで、検査用モジュール12は、例えば、センサ部12sの数に合わせて、1つの移動機構12tを有していてもよいし、2つ以上の移動機構12tを有していてもよい。図3(a)の例では、検査用モジュール12は、搬送部Cv2を挟むように±Y方向において対向するように配置されている第1の移動機構12t1と第2の移動機構12t2とを含む2つの移動機構12tを有する。第1の移動機構12t1は、被検査物W0に対する第1のセンサ部12s1の相対的な位置を移動させることができる。第2の移動機構12t2は、被検査物W0に対する第2のセンサ部12s2の相対的な位置を移動させることができる。これにより、例えば、被検査物W0が大型化しても、移動機構12tによってセンサ部12sを移動させることで、被検査物W0を多方向から撮像することができる。ここで、被検査物W0は、例えば、縦が550mm程度、横が550mm程度、高さが200mm程度のサイズの態様が考えられる。 The moving mechanism 12t can move the relative position of the sensor unit 12s with respect to the object to be inspected W0, for example. Here, the inspection module 12 may have one moving mechanism 12t or two or more moving mechanisms 12t according to the number of sensor units 12s, for example. In the example of FIG. 3A, the inspection module 12 includes a first moving mechanism 12t1 and a second moving mechanism 12t2 arranged so as to face each other in the ± Y direction so as to sandwich the transport portion Cv2. It has two moving mechanisms 12t. The first moving mechanism 12t1 can move the relative position of the first sensor unit 12s1 with respect to the object to be inspected W0. The second moving mechanism 12t2 can move the relative position of the second sensor unit 12s2 with respect to the object to be inspected W0. Thereby, for example, even if the inspected object W0 becomes large, the inspected object W0 can be imaged from multiple directions by moving the sensor unit 12s by the moving mechanism 12t. Here, the object W0 to be inspected may have a size of, for example, about 550 mm in length, about 550 mm in width, and about 200 mm in height.
 このように、例えば、被検査物W0に対してセンサ部12sを相対的に移動させることができるため、1つのセンサ部12sで被検査物W0の1箇所または2箇所以上について検査用の処理としての撮像を行うことができる。このため、例えば、被検査物W0の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望を考慮して、1つまたは2つ以上の検査用モジュール12を組み合わせて検査装置1を製造することが可能となる。 In this way, for example, since the sensor unit 12s can be moved relative to the object W0 to be inspected, one sensor unit 12s can be used as an inspection process for one or more locations of the object W0 to be inspected. Can be imaged. Therefore, for example, in consideration of the user's request such as the shape and size of the object to be inspected W0, the space for installing the apparatus, and the budget, the inspection apparatus 1 may be combined with one or more inspection modules 12. Can be manufactured.
 移動機構12tには、例えば、ロボットアーム等が適用される。ロボットアームには、例えば、基準部Pt0と、第1可動部Pt1と、第2可動部Pt2と、第3可動部Pt3と、第4可動部Pt4と、第5可動部Pt5と、第6可動部Pt6と、を有する6軸で回動可能なロボットアーム(6軸ロボットアームともいう)が適用される。この場合には、基準部Pt0は、例えば、検査用モジュール12のベース部Bs12等に固定されている。このベース部Bs12には、例えば、搬送部Cv2のベルトコンベアが固定されていてもよい。基準部Pt0は、例えば、+Z方向に沿った第1軸Pl1を中心として第1可動部Pt1を回動可動に保持する回動部Pr1を有する。第1可動部Pt1は、例えば、水平方向に沿った第2軸Pl2を中心として第2可動部Pt2を回動可動に保持する第2回動部Pr2を有する。第2可動部Pt2は、例えば、水平方向に沿った第3軸Pl3を中心として第3可動部Pt3を回動可動に保持する第3回動部Pr3を有する。第3可動部Pt3は、例えば、第3軸Pl3に垂直である第4軸Pl4を中心として第4可動部Pt4を回動可動に保持する第4回動部Pr4を有する。第4可動部Pt4は、例えば、第4軸Pl4に垂直である第5軸Pl5を中心として第5可動部Pt5を回動可動に保持する第5回動部Pr5を有する。第5可動部Pt5は、例えば、第5軸Pl5に垂直である第6軸Pl6を中心として第6可動部Pt6を回動可動に保持する第6回動部Pr6を有する。そして、第6可動部Pt6にセンサ部12sが固定された状態で位置している。 For example, a robot arm or the like is applied to the moving mechanism 12t. The robot arm includes, for example, a reference portion Pt0, a first movable portion Pt1, a second movable portion Pt2, a third movable portion Pt3, a fourth movable portion Pt4, a fifth movable portion Pt5, and a sixth movable portion. A 6-axis rotatable robot arm (also referred to as a 6-axis robot arm) having a portion Pt6 is applied. In this case, the reference portion Pt0 is fixed to, for example, the base portion Bs12 of the inspection module 12. For example, the belt conveyor of the transport unit Cv2 may be fixed to the base portion Bs12. The reference portion Pt0 has, for example, a rotating portion Pr1 that rotatably holds the first movable portion Pt1 about the first axis Pl1 along the + Z direction. The first movable portion Pt1 has, for example, a second rotating portion Pr2 that rotatably holds the second movable portion Pt2 about the second axis Pl2 along the horizontal direction. The second movable portion Pt2 has, for example, a third rotating portion Pr3 that holds the third movable portion Pt3 rotatably around the third axis Pl3 along the horizontal direction. The third movable portion Pt3 has, for example, a fourth rotating portion Pr4 that rotatably holds the fourth movable portion Pt4 around the fourth axis Pl4 that is perpendicular to the third axis Pl3. The fourth movable portion Pt4 has, for example, a fifth rotating portion Pr5 that holds the fifth movable portion Pt5 rotatably around the fifth axis Pl5 that is perpendicular to the fourth axis Pl4. The fifth movable portion Pt5 has, for example, a sixth rotating portion Pr6 that holds the sixth movable portion Pt6 rotatably around the sixth axis Pl6 that is perpendicular to the fifth axis Pl5. The sensor unit 12s is fixed to the sixth movable unit Pt6.
 検知部12dは、例えば、被検査物W0の姿勢および位置に係る情報を得ることができる。ここで、検査用モジュール12は、1つの検知部12dを有していてもよいし、2つ以上の検知部12dを有していてもよい。図3(a)の例では、検査用モジュール12は、搬送部Cv2の上方向としての+Z方向に位置している1つの検知部12dを有する。検知部12dには、例えば、電荷結合素子(CCD)等を有する撮像素子が適用される。検知部12dは、例えば、照明を有していてもよい。検知部12dで得られた情報は、例えば、移動機構12tによって被検査物W0に対するセンサ部12sの相対的な位置を調整するために利用される。 The detection unit 12d can obtain information related to the posture and position of the object to be inspected W0, for example. Here, the inspection module 12 may have one detection unit 12d, or may have two or more detection units 12d. In the example of FIG. 3A, the inspection module 12 has one detection unit 12d located in the + Z direction as the upward direction of the transport unit Cv2. For example, an image pickup device having a charge-coupled device (CCD) or the like is applied to the detection unit 12d. The detection unit 12d may have illumination, for example. The information obtained by the detection unit 12d is used, for example, to adjust the relative position of the sensor unit 12s with respect to the object to be inspected W0 by the moving mechanism 12t.
 <1-1-3.反転モジュールの構成>
 反転モジュール13は、例えば、被検査物W0の反転を行うモジュールである。被検査物W0の反転には、例えば、被検査物W0の上下の反転が含まれる。ここで、反転モジュール13は、例えば、第2検査用モジュール122の搬送部Cv22から搬送部Cv3に受け渡された被検査物W0を反転させることができる。図3(b)は、反転モジュール13の主要な物理的な構成の一例を示す図である。反転モジュール13は、例えば、保持部13hと、移動機構13tと、検知部13dと、を有する。
<1-1-3. Inversion module configuration>
The inversion module 13 is, for example, a module that inverts the object to be inspected W0. The inversion of the inspected object W0 includes, for example, an upside down inversion of the inspected object W0. Here, the reversing module 13 can, for example, invert the object to be inspected W0 delivered from the transporting unit Cv22 of the second inspection module 122 to the transporting unit Cv3. FIG. 3B is a diagram showing an example of a main physical configuration of the inversion module 13. The reversing module 13 has, for example, a holding unit 13h, a moving mechanism 13t, and a detecting unit 13d.
 保持部13hは、例えば、被検査物W0を反転させるために被検査物W0を保持することができる。ここで、反転モジュール13は、1つの保持部13hを有していてもよいし、2つ以上の保持部13hを有していてもよい。図3(b)の例では、反転モジュール13は、1つの保持部13hを有する。保持部13hには、例えば、被検査物W0を挟持することが可能な2本以上の指部を有するハンド等が適用される。 The holding unit 13h can hold the inspected object W0 in order to invert the inspected object W0, for example. Here, the reversing module 13 may have one holding portion 13h, or may have two or more holding portions 13h. In the example of FIG. 3B, the reversing module 13 has one holding portion 13h. For example, a hand having two or more fingers capable of holding the object to be inspected W0 is applied to the holding portion 13h.
 移動機構13tは、例えば、保持部13hによって被検査物W0を保持させた状態で保持部13hを移動させることで被検査物W0を反転させることができる。ここで、反転モジュール13は、例えば、1つの保持部13hに対して1つの移動機構13tを有していればよい。より具体的には、反転モジュール13は、例えば、1つの保持部13hが存在する場合には、1つの移動機構13tを有していればよいし、2つ以上の保持部13hが存在する場合には、2つ以上の移動機構13tを有していればよい。図3(b)の例では、反転モジュール13は、搬送部Cv3の側方に配置されている1つの移動機構13tを有する。反転モジュール13の移動機構13tには、例えば、検査用モジュール12の移動機構12tと同様にロボットアーム等が適用される。図3(b)で示されるように、例えば、移動機構13tに図3(a)の移動機構12tと同様な6軸ロボットアームが適用される場合には、基準部Pt0は、例えば、反転モジュール13のベース部Bs13等に固定されており、第6可動部Pt6に保持部13hが固定された状態で位置している。ベース部Bs13には、例えば、搬送部Cv3のベルトコンベアが固定されていてもよい。 The moving mechanism 13t can reverse the inspected object W0 by moving the holding portion 13h while the inspected object W0 is held by the holding portion 13h, for example. Here, the reversing module 13 may have, for example, one moving mechanism 13t for one holding portion 13h. More specifically, for example, when one holding portion 13h is present, the reversing module 13 may have one moving mechanism 13t, and when two or more holding portions 13h are present. May have two or more moving mechanisms 13t. In the example of FIG. 3B, the reversing module 13 has one moving mechanism 13t arranged on the side of the transport portion Cv3. For example, a robot arm or the like is applied to the moving mechanism 13t of the reversing module 13 in the same manner as the moving mechanism 12t of the inspection module 12. As shown in FIG. 3B, for example, when a 6-axis robot arm similar to the moving mechanism 12t of FIG. 3A is applied to the moving mechanism 13t, the reference unit Pt0 is, for example, an inversion module. It is fixed to the base portion Bs13 or the like of 13, and is located in a state where the holding portion 13h is fixed to the sixth movable portion Pt6. For example, the belt conveyor of the transport portion Cv3 may be fixed to the base portion Bs13.
 検知部13dは、例えば、被検査物W0の姿勢および位置に係る情報を得ることができる。ここで、反転モジュール13は、1つの検知部13dを有していてもよいし、2つ以上の検知部13dを有していてもよい。図3(b)の例では、反転モジュール13は、搬送部Cv3の上方向としての+Z方向に位置している1つの検知部13dを有する。検知部13dには、例えば、電荷結合素子(CCD)等を有する撮像素子が適用される。検知部13dは、例えば、照明を有していてもよい。検知部13dで得られた情報は、例えば、移動機構13tによって被検査物W0に対する保持部13hの相対的な位置を調整するために利用される。 The detection unit 13d can obtain information related to the posture and position of the object to be inspected W0, for example. Here, the inversion module 13 may have one detection unit 13d, or may have two or more detection units 13d. In the example of FIG. 3B, the reversing module 13 has one detection unit 13d located in the + Z direction as the upward direction of the transport unit Cv3. For example, an image pickup device having a charge-coupled device (CCD) or the like is applied to the detection unit 13d. The detection unit 13d may have illumination, for example. The information obtained by the detection unit 13d is used, for example, to adjust the relative position of the holding unit 13h with respect to the object to be inspected W0 by the moving mechanism 13t.
 <1-1-4.排出モジュールの構成>
 排出モジュール14は、例えば、検査装置1の内部から検査装置1の外部に被検査物W0が排出されるモジュールである。この排出モジュール14は、例えば、検査装置1に含まれる1つまたは2つ以上の検査用モジュール12を含む2つ以上のモジュールのうちの被検査物W0の搬送経路Rt1における最後に位置している。排出モジュール14は、例えば、筒状部14tbのうちの検査用モジュール12とは逆側の+X方向の端部に開閉可能な部分(開閉部)14ocを有する。開閉部14ocは、例えば、開閉可能な扉またはシャッターを有する。被検査部W0は、例えば、開閉部14ocを介して排出モジュール14の外部に排出される。例えば、作業者Op0が、排出モジュール14の外部に被検査物W0を排出する態様が考えられる。また、例えば、検査装置1の外部に設けられたロボット等が、排出モジュール14の内部から外部に被検査物W0を排出してもよい。
<1-1-4. Discharge module configuration>
The discharge module 14 is, for example, a module in which the object to be inspected W0 is discharged from the inside of the inspection device 1 to the outside of the inspection device 1. The discharge module 14 is located at the end of the transport path Rt1 of the object to be inspected W0 among two or more modules including one or two or more inspection modules 12 included in the inspection device 1, for example. .. The discharge module 14 has, for example, a portion (opening / closing portion) 14oc of the tubular portion 14tb that can be opened / closed at an end portion in the + X direction opposite to the inspection module 12. The opening / closing unit 14oc has, for example, a door or shutter that can be opened / closed. The inspected portion W0 is discharged to the outside of the discharge module 14 via, for example, the opening / closing unit 14oc. For example, it is conceivable that the worker Op0 discharges the inspected object W0 to the outside of the discharge module 14. Further, for example, a robot or the like provided outside the inspection device 1 may discharge the inspected object W0 from the inside of the discharge module 14 to the outside.
 <1-2.検査装置の機能的な構成>
 図4から図10は、第1実施形態に係る検査装置1の機能的な構成の一例を示すブロック図である。図4は、主に投入モジュール11の機能的な構成の一例を示すブロック図である。図5は、主に検査用モジュール12(具体的には、第1検査用モジュール121)の機能的な構成の一例を示すブロック図である。図6は、主に検査用モジュール12(具体的には、第2検査用モジュール122)の機能的な構成の一例を示すブロック図である。図7は、主に反転モジュール13の機能的な構成の一例を示すブロック図である。図8は、主に検査用モジュール12(具体的には、第3検査用モジュール123)の機能的な構成の一例を示すブロック図である。図9は、主に検査用モジュール12(具体的には、第4検査用モジュール124)の機能的な構成の一例を示すブロック図である。図10は、主に排出モジュール14の機能的な構成の一例を示すブロック図である。
<1-2. Functional configuration of inspection equipment>
4 to 10 are block diagrams showing an example of the functional configuration of the inspection device 1 according to the first embodiment. FIG. 4 is a block diagram mainly showing an example of the functional configuration of the input module 11. FIG. 5 is a block diagram mainly showing an example of the functional configuration of the inspection module 12 (specifically, the first inspection module 121). FIG. 6 is a block diagram mainly showing an example of the functional configuration of the inspection module 12 (specifically, the second inspection module 122). FIG. 7 is a block diagram mainly showing an example of the functional configuration of the inversion module 13. FIG. 8 is a block diagram mainly showing an example of the functional configuration of the inspection module 12 (specifically, the third inspection module 123). FIG. 9 is a block diagram mainly showing an example of the functional configuration of the inspection module 12 (specifically, the fourth inspection module 124). FIG. 10 is a block diagram mainly showing an example of the functional configuration of the discharge module 14.
 <1-2-1.投入モジュールの機能的な構成>
 図4で示されるように、投入モジュール11は、例えば、配線Wr1を介して電気的に接続された、統括制御部C0と、入力部11iと、搬送制御部Cc1と、接続部11hと、を有する。また、投入モジュール11は、例えば、統括制御部C0に接続された出力部11dと、搬送制御部Cc1に接続された搬送部Cv1と、を有する。
<1-2-1. Functional configuration of input module>
As shown in FIG. 4, the input module 11 includes, for example, the integrated control unit C0, the input unit 11i, the transport control unit Cc1, and the connection unit 11h, which are electrically connected via the wiring Wr1. Have. Further, the input module 11 has, for example, an output unit 11d connected to the overall control unit C0 and a transfer unit Cv1 connected to the transfer control unit Cc1.
 統括制御部C0は、例えば、検査装置1の動作を統括して制御することができる。統括制御部C0は、例えば、演算部、メモリおよび記憶部などを有する。演算部は、例えば、1つ以上の中央演算ユニット(Central Processing Unit:CPU)等で構成される。メモリは、例えば、RAM(Random Access Memory)等の揮発性の記憶媒体で構成される。記憶部は、例えば、ハードディスクドライブ(Hard Disk DriveHDD)またはソリッドステートドライブ(Solid State Drive:SSD)等の不揮発性の記憶媒体で構成される。記憶部は、例えば、プログラムおよび各種情報等を記憶することができる。演算部は、例えば、記憶部に記憶されたプログラムを読み込んで実行することで、各種の機能を実現する。このとき、RAMは、例えば、ワークスペースとして使用され、一時的に生成もしくは取得される情報等が記憶される。統括制御部C0で実現される機能的な構成の少なくとも一部の機能は、例えば、専用の電子回路等のハードウェアで構成されてもよい。 The integrated control unit C0 can control the operation of the inspection device 1 in an integrated manner, for example. The integrated control unit C0 has, for example, a calculation unit, a memory, a storage unit, and the like. The arithmetic unit is composed of, for example, one or more central processing units (CPU) and the like. The memory is composed of, for example, a volatile storage medium such as RAM (Random Access Memory). The storage unit is composed of, for example, a non-volatile storage medium such as a hard disk drive (Hard Disk Drive HDD) or a solid state drive (Solid State Drive: SSD). The storage unit can store, for example, a program, various types of information, and the like. The arithmetic unit realizes various functions by reading and executing a program stored in the storage unit, for example. At this time, the RAM is used as, for example, a workspace, and information that is temporarily generated or acquired is stored. At least a part of the functions of the functional configuration realized by the integrated control unit C0 may be configured by hardware such as a dedicated electronic circuit, for example.
 入力部11iは、例えば、作業者Op0の動作に応答して、各種の情報を入力することができる。入力部11iには、例えば、ボタンもしくはタッチパネル等の操作部または音声入力が可能なマイク部等が適用される。作業者Op0の動作には、例えば、操作および発声等の動作が含まれ得る。 The input unit 11i can input various information in response to the operation of the worker Op0, for example. For example, an operation unit such as a button or a touch panel, a microphone unit capable of voice input, or the like is applied to the input unit 11i. The operation of the operator Op0 may include, for example, operations such as operation and vocalization.
 出力部11dは、例えば、統括制御部C0からの情報に基づいて、作業者Op0が認識可能な態様で情報を出力することができる。出力部11dには、例えば、情報を可視的に出力する表示部もしくはランプおよび情報を可聴的に出力するスピーカー等が適用される。 The output unit 11d can output information in a manner recognizable by the operator Op0, for example, based on the information from the integrated control unit C0. For example, a display unit or a lamp that visually outputs information, a speaker that outputs information audibly, and the like are applied to the output unit 11d.
 搬送制御部Cc1は、例えば、搬送部Cv1の動作を制御することができる。搬送制御部Cc1は、例えば、演算部とメモリと記憶部とを含むコンピュータと同様な構成を有する。搬送制御部Cc1は、例えば、記憶部内のプログラムを演算部で実行することで、搬送制御部Cc1の機能を実現することができる。搬送制御部Cc1は、例えば、ベルトコンベアにおける少なくとも1つのプーリーの回転を制御することで、搬送部Cv1の動作を制御することができる。搬送制御部Cc1で実現される機能的な構成の少なくとも一部の機能は、例えば、専用の電子回路等のハードウェアで構成されてもよい。 The transport control unit Cc1 can control the operation of the transport unit Cv1, for example. The transport control unit Cc1 has, for example, a configuration similar to that of a computer including a calculation unit, a memory, and a storage unit. The transfer control unit Cc1 can realize the function of the transfer control unit Cc1 by, for example, executing the program in the storage unit in the calculation unit. The transport control unit Cc1 can control the operation of the transport unit Cv1 by controlling the rotation of at least one pulley on the belt conveyor, for example. At least a part of the functions of the functional configuration realized by the transport control unit Cc1 may be configured by hardware such as a dedicated electronic circuit, for example.
 接続部11hは、例えば、検査装置1を構成する複数のモジュールのうちの投入モジュール11以外のモジュールと電気的に接続する部分である。接続部11hは、例えば、複数のモジュールの配線Wr2が別々に電気的に接続されるハブ方式のものであっても、複数のモジュールの配線Wr2が電気的に直列に接続される方式のものであってもよい。図4から図10では、配線Wr2のうち、着目しているモジュールにおける部分が実線で描かれ、着目していないモジュールにおける部分が2点鎖線で描かれている。 The connection portion 11h is, for example, a portion that electrically connects to a module other than the input module 11 among a plurality of modules constituting the inspection device 1. The connection portion 11h is, for example, a hub type in which the wirings Wr2 of a plurality of modules are electrically connected separately, but is a type in which the wirings Wr2 of a plurality of modules are electrically connected in series. There may be. In FIGS. 4 to 10, the portion of the wiring Wr2 in the module of interest is drawn with a solid line, and the portion of the module not of interest is drawn with a chain double-dashed line.
 <1-2-2.検査用モジュールの機能的な構成>
 図5、図6、図8および図9でそれぞれ示されるように、第1検査用モジュール121、第2検査用モジュール122、第3検査用モジュール123および第4検査用モジュール124は、それぞれ同一の機能的な構成を有する。
<1-2-2. Functional configuration of inspection module>
As shown in FIGS. 5, 6, 8 and 9, the first inspection module 121, the second inspection module 122, the third inspection module 123, and the fourth inspection module 124 are the same, respectively. It has a functional configuration.
 検査用モジュール12は、例えば、配線Wr2を介して相互に電気的に接続された、搬送制御部Cc2と、検知制御部Cd2と、センサ制御部Cs2と、移動制御部Ct2と、を有する。また、検査用モジュール12は、例えば、搬送制御部Cc2に接続された搬送部Cv2と、検知制御部Cd2に接続された検知部12dと、センサ制御部Cs2に接続されたセンサ部12sと、移動制御部Ct2に接続された移動機構12tと、を有する。 The inspection module 12 includes, for example, a transport control unit Cc2, a detection control unit Cd2, a sensor control unit Cs2, and a movement control unit Ct2, which are electrically connected to each other via wiring Wr2. Further, the inspection module 12 moves, for example, with the transport unit Cv2 connected to the transport control unit Cc2, the detection unit 12d connected to the detection control unit Cd2, and the sensor unit 12s connected to the sensor control unit Cs2. It has a moving mechanism 12t connected to the control unit Ct2.
 ここで、図5、図6、図8および図9の各例では、検査用モジュール12は、2つのセンサ制御部Cs2と、2つの移動制御部Ct2と、を有する。具体的には、検査用モジュール12は、例えば、1つ目のセンサ制御部Cs2(第1センサ制御部Cs21ともいう)および2つ目のセンサ制御部Cs2(第2センサ制御部Cs22ともいう)を含む2つのセンサ制御部Cs2と、1つ目の移動制御部Ct2(第1移動制御部Ct21ともいう)および2つ目の移動制御部Ct2(第2移動制御部Ct22ともいう)を含む2つの移動制御部Ct2とを有する。この場合には、図3(a)で示されるように、検査用モジュール12は、第1のセンサ部12s1と第2のセンサ部12s2とを含む2つのセンサ部12sを有し、第1の移動機構12t1と第2の移動機構12t2とを含む2つの移動機構12tを有する。ここでは、例えば、第1センサ制御部Cs21に第1のセンサ部12s1が接続され、第2センサ制御部Cs22に第2のセンサ部12s2が接続されている。また、例えば、第1移動制御部Ct21に第1の移動機構12t1が接続され、第2移動制御部Ct22に第2の移動機構12t2が接続されている。ここで、例えば、検査用モジュール12が、1つのセンサ部12sおよび1つの移動機構12tを有する場合には、1つのセンサ制御部Cs2および1つの移動制御部Ct2が存在していればよい。 Here, in each of the examples of FIGS. 5, 6, 8 and 9, the inspection module 12 has two sensor control units Cs2 and two movement control units Ct2. Specifically, the inspection module 12 includes, for example, the first sensor control unit Cs2 (also referred to as the first sensor control unit Cs21) and the second sensor control unit Cs2 (also referred to as the second sensor control unit Cs22). 2 including two sensor control units Cs2 including, a first movement control unit Ct2 (also referred to as a first movement control unit Ct21) and a second movement control unit Ct2 (also referred to as a second movement control unit Ct22). It has two movement control units Ct2. In this case, as shown in FIG. 3A, the inspection module 12 has two sensor units 12s including a first sensor unit 12s1 and a second sensor unit 12s2, and has a first sensor unit 12s. It has two moving mechanisms 12t including a moving mechanism 12t1 and a second moving mechanism 12t2. Here, for example, the first sensor unit 12s1 is connected to the first sensor control unit Cs21, and the second sensor unit 12s2 is connected to the second sensor control unit Cs22. Further, for example, the first movement mechanism 12t1 is connected to the first movement control unit Ct21, and the second movement mechanism 12t2 is connected to the second movement control unit Ct22. Here, for example, when the inspection module 12 has one sensor unit 12s and one movement mechanism 12t, one sensor control unit Cs2 and one movement control unit Ct2 may be present.
 搬送制御部Cc2、検知制御部Cd2、センサ制御部Cs2および移動制御部Ct2のそれぞれは、例えば、演算部とメモリと記憶部とを含むコンピュータと同様な構成を有する。 Each of the transport control unit Cc2, the detection control unit Cd2, the sensor control unit Cs2, and the movement control unit Ct2 has a configuration similar to that of a computer including, for example, a calculation unit, a memory, and a storage unit.
 搬送制御部Cc2は、例えば、記憶部内のプログラムを演算部で実行することで、搬送制御部Cc2の機能を実現することができる。搬送制御部Cc2は、例えば、ベルトコンベアにおける少なくとも1つのプーリーの回転を制御することで、搬送部Cv2の動作を制御することができる。搬送制御部Cc2で実現される機能的な構成の少なくとも一部の機能は、例えば、専用の電子回路等のハードウェアで構成されてもよい。 The transfer control unit Cc2 can realize the function of the transfer control unit Cc2 by, for example, executing the program in the storage unit in the calculation unit. The transport control unit Cc2 can control the operation of the transport unit Cv2 by controlling the rotation of at least one pulley on the belt conveyor, for example. At least a part of the functions of the functional configuration realized by the transport control unit Cc2 may be configured by hardware such as a dedicated electronic circuit.
 検知制御部Cd2は、例えば、記憶部内のプログラムを演算部で実行することで、検知制御部Cd2の機能を実現することができる。検知制御部Cd2は、例えば、検知部12dの動作を制御するとともに、検知部12dで得られる被検査物W0の姿勢および位置に係る情報を取得することができる。検知制御部Cd2は、例えば、被検査物W0の姿勢および位置に係る情報に基づく演算を行ってもよい。この場合には、例えば、検知制御部Cd2は、検知部12dから得られた被検査物W0を捉えた画像(実画像ともいう)と、予め準備された被検出物W0の基準の姿勢および位置に係る画像(マスタ画像ともいう)と、を比較することで、被検出物W0の基準の姿勢および位置からのずれ量を検出することができる。マスタ画像は、例えば、被検査物W0を実際に捉えた画像であってもよいし、コンピュータグラフィックスで描かれた画像であってもよい。実画像とマスタ画像との比較には、例えば、特徴点の検出とマッチングとを行う方法、およびテンプレートマッチング等が利用され得る。被検出物W0の基準の姿勢および位置からのずれ量を検出する演算は、例えば、統括制御部C0等の他の制御部で行われてもよい。検知制御部Cd2で実現される機能的な構成の少なくとも一部の機能は、例えば、専用の電子回路等のハードウェアで構成されてもよい。 The detection control unit Cd2 can realize the function of the detection control unit Cd2 by, for example, executing the program in the storage unit in the calculation unit. For example, the detection control unit Cd2 can control the operation of the detection unit 12d and acquire information related to the posture and position of the object to be inspected W0 obtained by the detection unit 12d. The detection control unit Cd2 may perform calculations based on information related to the posture and position of the object to be inspected W0, for example. In this case, for example, the detection control unit Cd2 captures an image (also referred to as an actual image) of the object to be inspected W0 obtained from the detection unit 12d, and a reference posture and position of the object to be inspected W0 prepared in advance. By comparing with the image (also referred to as a master image) according to the above, it is possible to detect the amount of deviation of the object to be detected W0 from the reference posture and position. The master image may be, for example, an image that actually captures the object W0 to be inspected, or an image drawn by computer graphics. For comparison between the actual image and the master image, for example, a method of detecting and matching feature points, template matching, and the like can be used. The calculation for detecting the deviation amount of the object to be detected W0 from the reference posture and position may be performed by another control unit such as the integrated control unit C0. At least a part of the functions of the functional configuration realized by the detection control unit Cd2 may be configured by hardware such as a dedicated electronic circuit, for example.
 センサ制御部Cs2は、例えば、記憶部内のプログラムを演算部で実行することで、センサ制御部Cs2の機能を実現することができる。センサ制御部Cs2は、例えば、センサ部12sの動作を制御するとともに、センサ部12sによる被検査物W0の撮像によって得られる情報(撮像情報ともいう)を取得することができる。センサ制御部Cs2は、例えば、被検査物W0に係る撮像情報をそのままあるいは各種の情報処理を施した上で配線Wr2および配線Wr1等を介して統括制御部C0に出力することができる。これにより、被検査物W0を対象とした検査用の処理としての撮像の結果としての撮像情報が取得され得る。ここで、例えば、統括制御部C0が出力部11dに撮像情報に基づく画像を表示し、作業者Op0が目視で被検査物W0の外観を検査してもよいし、統括制御部C0が撮像情報に係る画像と被検査物W0の少なくとも一部に係る標準的な画像とを比較することで被検査物W0の外観を検査する演算を行ってもよい。ここで、例えば、センサ制御部Cs2が、被検査物W0の外観を検査する演算を行い、その演算の結果を示す情報を統括制御部C0に送ってもよい。センサ制御部Cs2で実現される機能的な構成の少なくとも一部の機能は、例えば、専用の電子回路等のハードウェアで構成されてもよい。 The sensor control unit Cs2 can realize the function of the sensor control unit Cs2 by, for example, executing a program in the storage unit in the calculation unit. For example, the sensor control unit Cs2 can control the operation of the sensor unit 12s and acquire information (also referred to as imaging information) obtained by imaging the object to be inspected W0 by the sensor unit 12s. For example, the sensor control unit Cs2 can output the imaging information related to the object to be inspected W0 to the integrated control unit C0 as it is or after performing various information processing via the wiring Wr2 and the wiring Wr1. As a result, the imaging information as a result of imaging as a process for inspection of the object to be inspected W0 can be acquired. Here, for example, the integrated control unit C0 may display an image based on the imaging information on the output unit 11d, the operator Op0 may visually inspect the appearance of the object to be inspected W0, or the integrated control unit C0 may inspect the imaging information. The calculation for inspecting the appearance of the inspected object W0 may be performed by comparing the image according to the above with a standard image relating to at least a part of the inspected object W0. Here, for example, the sensor control unit Cs2 may perform a calculation for inspecting the appearance of the object to be inspected W0, and send information indicating the result of the calculation to the overall control unit C0. At least a part of the functions of the functional configuration realized by the sensor control unit Cs2 may be configured by hardware such as a dedicated electronic circuit, for example.
 移動制御部Ct2は、例えば、記憶部内のプログラムを演算部で実行することで、移動制御部Ct2の機能を実現することができる。移動制御部Ct2は、例えば、移動機構12tの動作を制御することができる。ここでは、移動制御部Ct2は、例えば、検知部12dで得られた情報に基づいて、移動機構12tによって被検査物W0に対するセンサ部12sの相対的な位置を調整することができる。具体的には、移動制御部Ct2は、例えば、検知部12dを用いて得た被検査物W0の姿勢および位置に係る情報から検知制御部Cd2等で検出されるずれ量に基づいて、移動機構12tによって被検査物W0に対するセンサ部12sの相対的な位置を調整する態様が考えられる。このような構成が採用されれば、例えば、他のモジュールから検査用モジュール12に被検査物W0が搬入される際に被検査物W0の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物W0に対するセンサ部12sの相対的な位置を調整することができる。より具体的には、例えば、隣のモジュールのベルトコンベア上から検査用モジュール12のベルトコンベア上に被検査物W0が乗り移る際に、被検査物W0の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物W0に対するセンサ部12sの相対的な位置を調整することができる。また、例えば、被検査物W0の姿勢および位置を調整するのに比較して、移動機構12tによって被検査物W0に対するセンサ部12sの相対的な位置を調整する方が、容易かつ高速で実現され得る。これにより、例えば、被検査物W0の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置1を容易に製造することが可能となる。移動制御部Ct2で実現される機能的な構成の少なくとも一部の機能は、例えば、専用の電子回路等のハードウェアで構成されてもよい。 The movement control unit Ct2 can realize the function of the movement control unit Ct2 by, for example, executing the program in the storage unit in the calculation unit. The movement control unit Ct2 can control the operation of the movement mechanism 12t, for example. Here, the movement control unit Ct2 can adjust the relative position of the sensor unit 12s with respect to the object to be inspected W0 by the movement mechanism 12t, for example, based on the information obtained by the detection unit 12d. Specifically, the movement control unit Ct2 is based on, for example, the amount of deviation detected by the detection control unit Cd2 or the like from the information related to the posture and position of the object to be inspected W0 obtained by using the detection unit 12d. It is conceivable that the position of the sensor unit 12s relative to the object to be inspected W0 is adjusted by 12t. If such a configuration is adopted, for example, when the inspected object W0 is carried into the inspection module 12 from another module, even if at least one of the posture and the position of the inspected object W0 deviates, the deviation will occur. The relative position of the sensor unit 12s with respect to the object to be inspected W0 can be adjusted accordingly. More specifically, for example, when the inspected object W0 is transferred from the belt conveyor of the adjacent module onto the belt conveyor of the inspection module 12, even if at least one of the posture and the position of the inspected object W0 deviates. The relative position of the sensor unit 12s with respect to the object to be inspected W0 can be adjusted according to the deviation. Further, for example, it is easier and faster to adjust the relative position of the sensor unit 12s with respect to the inspected object W0 by the moving mechanism 12t than to adjust the posture and the position of the inspected object W0. obtain. This makes it possible to easily manufacture the inspection device 1 that flexibly meets the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget. At least a part of the functions of the functional configuration realized by the movement control unit Ct2 may be configured by hardware such as a dedicated electronic circuit, for example.
 また、例えば、移動制御部Ct2は、被検査物W0に対するセンサ部12sの相対的な位置を移動させることで、センサ部12sによって被検査物W0の複数箇所について検査用の処理としての撮像を行うように制御してもよい。 Further, for example, the movement control unit Ct2 moves the position of the sensor unit 12s relative to the object to be inspected W0, so that the sensor unit 12s takes an image of a plurality of locations of the object to be inspected W0 as an inspection process. It may be controlled as follows.
 <1-2-3.反転モジュールの機能的な構成>
 図7で示されるように、反転モジュール13は、例えば、配線Wr2を介して相互に電気的に接続された、搬送制御部Cc3と、検知制御部Cd3と、反転制御部Cr3と、を有する。また、反転モジュール13は、例えば、検知制御部Cd3に接続された検知部13dと、搬送制御部Cc3に接続された搬送部Cv3と、反転制御部Cr3に接続された保持部13hおよび移動機構13tと、を有する。ここで、図7の例では、反転モジュール13は、1つの反転制御部Cr3を有する。この場合には、図3(b)で示されるように、反転モジュール13は、1つの保持部13hおよび1つの移動機構13tを有する。ここで、例えば、反転モジュール13が、2つの保持部13hおよび2つの移動機構13tを有し、2つの反転制御部Cr3が存在していてもよい。
<1-2-3. Functional configuration of inversion module>
As shown in FIG. 7, the inversion module 13 includes, for example, a transfer control unit Cc3, a detection control unit Cd3, and an inversion control unit Cr3, which are electrically connected to each other via wiring Wr2. Further, the reversing module 13 includes, for example, a detecting unit 13d connected to the detection control unit Cd3, a transporting unit Cv3 connected to the transport control unit Cc3, a holding unit 13h connected to the reversing control unit Cr3, and a moving mechanism 13t. And have. Here, in the example of FIG. 7, the inversion module 13 has one inversion control unit Cr3. In this case, as shown in FIG. 3B, the reversing module 13 has one holding portion 13h and one moving mechanism 13t. Here, for example, the inversion module 13 may have two holding units 13h and two moving mechanisms 13t, and two inversion control units Cr3 may be present.
 搬送制御部Cc3、検知制御部Cd3および反転制御部Cr3のそれぞれは、例えば、演算部とメモリと記憶部とを含むコンピュータと同様な構成を有する。 Each of the transport control unit Cc3, the detection control unit Cd3, and the inversion control unit Cr3 has a configuration similar to that of a computer including, for example, a calculation unit, a memory, and a storage unit.
 搬送制御部Cc3は、例えば、記憶部内のプログラムを演算部で実行することで、搬送制御部Cc3の機能を実現することができる。搬送制御部Cc3は、例えば、ベルトコンベアにおける少なくとも1つのプーリーの回転を制御することで、搬送部Cv3の動作を制御することができる。搬送制御部Cc3で実現される機能的な構成の少なくとも一部の機能は、例えば、専用の電子回路等のハードウェアで構成されてもよい。 The transfer control unit Cc3 can realize the function of the transfer control unit Cc3 by, for example, executing the program in the storage unit in the calculation unit. The transport control unit Cc3 can control the operation of the transport unit Cv3 by controlling the rotation of at least one pulley on the belt conveyor, for example. At least a part of the functions of the functional configuration realized by the transport control unit Cc3 may be configured by hardware such as a dedicated electronic circuit, for example.
 検知制御部Cd3は、例えば、記憶部内のプログラムを演算部で実行することで、検知制御部Cd3の機能を実現することができる。検知制御部Cd3は、例えば、検知部13dの動作を制御するとともに、検知部13dで得られる被検査物W0の姿勢および位置に係る情報を取得することができる。検知制御部Cd3は、例えば、被検査物W0の姿勢および位置に係る情報に基づく演算を行ってもよい。この場合には、例えば、検知制御部Cd3は、検知部13dから得られた被検査物W0を捉えた画像(実画像)と、予め準備された被検出物W0の基準の姿勢および位置に係る画像(マスタ画像)と、を比較することで、被検出物W0の基準の姿勢および位置からのずれ量を検出することができる。実画像とマスタ画像との比較には、例えば、特徴点の検出とマッチングとを行う方法、およびテンプレートマッチング等が利用され得る。被検出物W0の基準の姿勢および位置からのずれ量を検出する演算は、例えば、統括制御部C0等の他の制御部で行われてもよい。検知制御部Cd3で実現される機能的な構成の少なくとも一部の機能は、例えば、専用の電子回路等のハードウェアで構成されてもよい。 The detection control unit Cd3 can realize the function of the detection control unit Cd3 by, for example, executing the program in the storage unit in the calculation unit. The detection control unit Cd3 can, for example, control the operation of the detection unit 13d and acquire information related to the posture and position of the object to be inspected W0 obtained by the detection unit 13d. The detection control unit Cd3 may perform calculations based on information related to the posture and position of the object to be inspected W0, for example. In this case, for example, the detection control unit Cd3 relates to an image (actual image) of the object to be inspected W0 obtained from the detection unit 13d and a reference posture and position of the object to be inspected W0 prepared in advance. By comparing with the image (master image), it is possible to detect the amount of deviation of the object to be detected W0 from the reference posture and position. For comparison between the actual image and the master image, for example, a method of detecting and matching feature points, template matching, and the like can be used. The calculation for detecting the deviation amount of the object to be detected W0 from the reference posture and position may be performed by another control unit such as the integrated control unit C0. At least a part of the functions of the functional configuration realized by the detection control unit Cd3 may be configured by hardware such as a dedicated electronic circuit, for example.
 反転制御部Cr3は、例えば、記憶部内のプログラムを演算部で実行することで、反転制御部Cr3の機能を実現することができる。反転制御部Cr3は、例えば、保持部13hおよび移動機構13tの動作を制御することができる。ここでは、反転制御部Cr3は、例えば、検知部12dで得た情報に基づいて、移動機構13tによって被検査物W0に対する保持部13hの相対的な位置を調整することができる。具体的には、反転制御部Cr3は、例えば、検知部13dを用いて得た被検査物W0の姿勢および位置に係る情報から検知制御部Cd3で検出されるずれ量に基づいて、移動機構13tによって被検査物W0に対する保持部13hの相対的な位置を調整する態様が考えられる。このような構成が採用されれば、例えば、他のモジュールから反転モジュール13に被検査物W0が搬入される際に被検査物W0の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物W0に対する保持部13hの相対的な位置を調整することができる。より具体的には、例えば、隣のモジュールのベルトコンベア上から反転モジュール13のベルトコンベア上に被検査物W0が乗り移る際に、被検査物W0の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物W0に対する保持部13hの相対的な位置を調整することができる。これにより、例えば、被検査物W0の姿勢および位置の少なくとも一方がずれていても、保持部13hで被検査物W0を保持して反転させることができる。反転制御部Cr3で実現される機能的な構成の少なくとも一部の機能は、例えば、専用の電子回路等のハードウェアで構成されてもよい。 The inversion control unit Cr3 can realize the function of the inversion control unit Cr3 by, for example, executing the program in the storage unit in the calculation unit. The inversion control unit Cr3 can control the operation of the holding unit 13h and the moving mechanism 13t, for example. Here, the inversion control unit Cr3 can adjust the relative position of the holding unit 13h with respect to the object to be inspected W0 by the moving mechanism 13t, for example, based on the information obtained by the detecting unit 12d. Specifically, the inversion control unit Cr3 has, for example, the moving mechanism 13t based on the amount of deviation detected by the detection control unit Cd3 from the information related to the posture and position of the object to be inspected W0 obtained by using the detection unit 13d. It is conceivable to adjust the relative position of the holding portion 13h with respect to the object to be inspected W0. If such a configuration is adopted, for example, when the inspected object W0 is carried into the reversing module 13 from another module, even if at least one of the posture and the position of the inspected object W0 is displaced, the deviation is accommodated. The relative position of the holding portion 13h with respect to the object to be inspected W0 can be adjusted. More specifically, for example, when the inspected object W0 is transferred from the belt conveyor of the adjacent module to the belt conveyor of the reversing module 13, even if at least one of the posture and the position of the inspected object W0 is deviated. The relative position of the holding portion 13h with respect to the object to be inspected W0 can be adjusted according to the deviation. Thereby, for example, even if at least one of the posture and the position of the object to be inspected W0 is deviated, the object to be inspected W0 can be held and inverted by the holding portion 13h. At least a part of the functions of the functional configuration realized by the inversion control unit Cr3 may be configured by hardware such as a dedicated electronic circuit.
 また、例えば、検査用モジュール12と、反転モジュール13と、を含む2つ以上のモジュールを適宜組み合わせて検査装置1を製造することができる。したがって、例えば、被検査物W0の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置1を容易に製造することが可能となる。 Further, for example, the inspection device 1 can be manufactured by appropriately combining two or more modules including the inspection module 12 and the inversion module 13. Therefore, for example, it is possible to easily manufacture the inspection device 1 that flexibly meets the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget.
 <1-2-4.排出モジュールの機能的な構成>
 図10で示されるように、排出モジュール14は、例えば、配線Wr2に電気的に接続された搬送制御部Cc4と、この搬送制御部Cc4に接続された搬送部Cv4と、を有する。搬送制御部Cc4は、例えば、演算部とメモリと記憶部とを含むコンピュータと同様な構成を有する。搬送制御部Cc4は、例えば、記憶部内のプログラムを演算部で実行することで、搬送制御部Cc4の機能を実現することができる。搬送制御部Cc4は、例えば、ベルトコンベアにおける少なくとも1つのプーリーの回転を制御することで、搬送部Cv4の動作を制御することができる。搬送制御部Cc4で実現される機能的な構成の少なくとも一部の機能は、例えば、専用の電子回路等のハードウェアで構成されてもよい。
<1-2-4. Functional configuration of discharge module>
As shown in FIG. 10, the discharge module 14 has, for example, a transfer control unit Cc4 electrically connected to the wiring Wr2 and a transfer unit Cv4 connected to the transfer control unit Cc4. The transport control unit Cc4 has, for example, a configuration similar to that of a computer including a calculation unit, a memory, and a storage unit. The transfer control unit Cc4 can realize the function of the transfer control unit Cc4 by, for example, executing the program in the storage unit in the calculation unit. The transport control unit Cc4 can control the operation of the transport unit Cv4 by controlling the rotation of at least one pulley on the belt conveyor, for example. At least a part of the functions of the functional configuration realized by the transport control unit Cc4 may be configured by hardware such as a dedicated electronic circuit, for example.
 <1-3.検査装置の製造のバリエーション>
 上述した第1実施形態の第1例に係る検査装置1は、1つの投入モジュール11と、4つの検査用モジュール12と、1つの反転モジュール13と、1つの排出モジュールと、を組み合わせることで製造可能であったが、別々に作製されるモジュールの組み合わせについては、種々の態様が考えられる。換言すれば、例えば、検査装置1が、第1モジュールと第2モジュールとを含む相互に連結された2つ以上のモジュールを備えていればよい。
<1-3. Variations in manufacturing inspection equipment>
The inspection device 1 according to the first example of the first embodiment described above is manufactured by combining one input module 11, four inspection modules 12, one inversion module 13, and one discharge module. Although possible, various aspects can be considered for the combination of modules produced separately. In other words, for example, the inspection device 1 may include two or more interconnected modules including a first module and a second module.
 ここで、例えば、第1モジュールが1つ目の検査用モジュール12(第1検査用モジュール121)であり、第2モジュールが2つ目の検査用モジュール12(第2検査用モジュール122)である場合が考えられる。この場合には、第1検査用モジュール121は、例えば、第1搬送部としての搬送部Cv21と、第1センサ部としてのセンサ部12sと、第1移動機構としての移動機構12tと、第1検知部としての検知部12dと、第1制御部としての移動制御部Ct2と、を有する。また、第2検査用モジュール122は、例えば、第2搬送部としての搬送部Cv22と、第2センサ部としてのセンサ部12sと、第2移動機構としての移動機構12tと、第2検知部としての検知部12dと、第2制御部としての移動制御部Ct2と、を有する。 Here, for example, the first module is the first inspection module 12 (first inspection module 121), and the second module is the second inspection module 12 (second inspection module 122). There are cases. In this case, the first inspection module 121 includes, for example, a transport unit Cv21 as a first transport unit, a sensor unit 12s as a first sensor unit, a movement mechanism 12t as a first movement mechanism, and a first. It has a detection unit 12d as a detection unit and a movement control unit Ct2 as a first control unit. Further, the second inspection module 122 includes, for example, a transport unit Cv22 as a second transport unit, a sensor unit 12s as a second sensor unit, a movement mechanism 12t as a second movement mechanism, and a second detection unit. 12d, and a movement control unit Ct2 as a second control unit.
 このような構成が採用されれば、例えば、被検査物W0を対象とした検査用の処理をそれぞれ行うための第1モジュールおよび第2モジュールを含む2つ以上のモジュールを適宜組み合わせて検査装置1を製造することができる。また、例えば、他のモジュールから第1モジュールとしての第1検査用モジュール121または第2モジュールとしての第2検査用モジュール122に被検査物W0が搬入される際に被検査物W0の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物W0に対するセンサ部12sの相対的な位置を調整することができる。したがって、例えば、被検査物W0の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置1を容易に製造することができる。また、例えば、モジュールのベルトコンベア上から次のモジュールのベルトコンベア上に被検査物W0が乗り移る際に、被検査物W0の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物W0に対するセンサ部12sの相対的な位置を調整することができる。 If such a configuration is adopted, for example, the inspection apparatus 1 may appropriately combine two or more modules including the first module and the second module for performing inspection processing on the object to be inspected W0, respectively. Can be manufactured. Further, for example, the posture and position of the inspected object W0 when the inspected object W0 is carried into the first inspection module 121 as the first module or the second inspection module 122 as the second module from another module. Even if at least one of the two is displaced, the relative position of the sensor unit 12s with respect to the object to be inspected W0 can be adjusted according to the deviation. Therefore, for example, it is possible to easily manufacture the inspection device 1 that flexibly meets the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget. Further, for example, when the object to be inspected W0 is transferred from the conveyor belt of the module to the conveyor belt of the next module, even if at least one of the posture and the position of the object to be inspected W0 is displaced, the object to be inspected is inspected according to the deviation. The relative position of the sensor unit 12s with respect to the object W0 can be adjusted.
 また、ここで、例えば、第1モジュールが検査用モジュール12であり、第2モジュールが反転モジュール13である場合も考えられる。この場合には、検査用モジュール12は、例えば、第1搬送部としての搬送部Cv21と、センサ部12sと、第1移動機構としての移動機構12tと、第1検知部としての検知部12dと、第1制御部としての移動制御部Ct2と、を有する。また、反転モジュール13は、例えば、第2搬送部としての搬送部Cv3と、保持部13hと、第2移動機構としての移動機構13tと、第2検知部としての検知部13dと、第2制御部としての反転制御部Cr3と、を有する。 Further, here, for example, it is conceivable that the first module is the inspection module 12 and the second module is the inversion module 13. In this case, the inspection module 12 includes, for example, a transport unit Cv21 as a first transport unit, a sensor unit 12s, a movement mechanism 12t as a first movement mechanism, and a detection unit 12d as a first detection unit. , A movement control unit Ct2 as a first control unit. Further, the reversing module 13 includes, for example, a transport unit Cv3 as a second transport unit, a holding unit 13h, a movement mechanism 13t as a second movement mechanism, a detection unit 13d as a second detection unit, and a second control. It has an inversion control unit Cr3 as a unit.
 このような構成が採用されれば、例えば、被検査物W0を対象とした検査用の処理を行うための第1モジュールと、被検査物W0を反転させる第2モジュールと、を含む2つ以上のモジュールを適宜組み合わせて検査装置1を製造することができる。また、例えば、他のモジュールから第1モジュールとしての検査用モジュール12に被検査物が搬入される際に被検査物W0の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物W0に対するセンサ部12sの相対的な位置を調整することができる。また、例えば、他のモジュールから第2モジュールとしての反転モジュール13に被検査物W0が搬入される際に被検査物W0の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物W0に対する保持部13hの相対的な位置を調整することができる。したがって、例えば、被検査物W0の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置1を容易に製造することができる。また、例えば、モジュールのベルトコンベア上から次のモジュールのベルトコンベア上に被検査物W0が乗り移る際に、被検査物W0の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物W0に対するセンサ部12sおよび保持部13hの相対的な位置を調整することができる。 If such a configuration is adopted, for example, two or more modules including a first module for performing an inspection process for the inspected object W0 and a second module for inverting the inspected object W0. The inspection device 1 can be manufactured by appropriately combining the modules of the above. Further, for example, even if at least one of the posture and the position of the object to be inspected W0 deviates when the object to be inspected is carried into the inspection module 12 as the first module from another module, the object to be inspected is inspected according to the deviation. The relative position of the sensor unit 12s with respect to the object W0 can be adjusted. Further, for example, even if at least one of the posture and the position of the object to be inspected W0 is displaced when the object to be inspected W0 is carried into the reversing module 13 as the second module from another module, the object to be inspected is inspected according to the deviation. The relative position of the holding portion 13h with respect to the object W0 can be adjusted. Therefore, for example, it is possible to easily manufacture the inspection device 1 that flexibly meets the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget. Further, for example, when the object to be inspected W0 is transferred from the conveyor belt of the module to the conveyor belt of the next module, even if at least one of the posture and the position of the object to be inspected W0 is displaced, the object to be inspected is inspected according to the deviation. The relative positions of the sensor unit 12s and the holding unit 13h with respect to the object W0 can be adjusted.
 図11(a)は、複数のモジュールの組み合わせで構成される第2例に係る検査装置1Aの概略的な構成を示す図である。図11(b)は、複数のモジュールの組み合わせで構成される第3例に係る検査装置1Bの概略的な構成を示す図である。第2例に係る検査装置1Aおよび第3例に係る検査装置1Bは、それぞれ反転モジュール13を含む検査装置の例である。 FIG. 11A is a diagram showing a schematic configuration of the inspection device 1A according to the second example, which is composed of a combination of a plurality of modules. FIG. 11B is a diagram showing a schematic configuration of the inspection device 1B according to the third example, which is composed of a combination of a plurality of modules. The inspection device 1A according to the second example and the inspection device 1B according to the third example are examples of inspection devices including the reversing module 13, respectively.
 第2例に係る検査装置1Aは、例えば、図11(a)で示されるように、投入モジュール11と、2つの検査用モジュール12と、反転モジュール13と、排出モジュール14と、を備えている。より具体的には、例えば、投入モジュール11と、1つ目の検査用モジュール12(第1検査用モジュール121)と、反転モジュール13と、2つ目の検査用モジュール12(第2検査用モジュール122)と、排出モジュール14と、が+X方向においてこの記載の順に連結されている状態で位置している。第2例に係る検査装置1Aでは、例えば、投入モジュール11から、第1検査用モジュール121、反転モジュール13、第2検査用モジュール122および排出モジュール14の順に、被検査物W0が搬送されることで、被検査物W0の検査が行われ得る。このとき、例えば、第1検査用モジュール121で被検査物W0の一方の面(例えば、表(おもて)面)を対象として検査用の処理である撮像を行い、反転モジュール13で被検査物W0を上下反転させた後に、第2検査用モジュール122で被検出物W0の他方の面(例えば、裏面)を対象として検査用の処理である撮像を行うことができる。このような構成を有する第2例に係る検査装置1Aは、例えば、別々に作製された、投入モジュール11と、2つの検査用モジュール12と、反転モジュール13と、排出モジュール14と、を+X方向において相互に連結することで製造され得る。 The inspection device 1A according to the second example includes, for example, an input module 11, two inspection modules 12, an inversion module 13, and an discharge module 14, as shown in FIG. 11A. .. More specifically, for example, the input module 11, the first inspection module 12 (first inspection module 121), the inversion module 13, and the second inspection module 12 (second inspection module). 122) and the discharge module 14 are located in a state of being connected in the + X direction in the order described in this description. In the inspection device 1A according to the second example, for example, the inspected object W0 is conveyed from the input module 11 in the order of the first inspection module 121, the reversing module 13, the second inspection module 122, and the discharge module 14. Then, the inspection of the object to be inspected W0 can be performed. At this time, for example, the first inspection module 121 performs imaging, which is a process for inspection, on one surface (for example, the front surface) of the object to be inspected W0, and the inversion module 13 inspects. After the object W0 is turned upside down, the second inspection module 122 can perform imaging, which is a process for inspection, on the other surface (for example, the back surface) of the object W0 to be detected. The inspection device 1A according to the second example having such a configuration has, for example, a separately manufactured input module 11, two inspection modules 12, an inversion module 13, and an discharge module 14 in the + X direction. Can be manufactured by connecting to each other in.
 第3例に係る検査装置1Bは、例えば、図11(b)で示されるように、投入モジュール11と、1つの検査用モジュール12と、反転モジュール13と、を備えている。より具体的には、例えば、投入モジュール11と、検査用モジュール12(第1検査用モジュール121)と、反転モジュール13と、が+X方向においてこの記載の順に連結されている状態で位置している。第3例に係る検査装置1Bでは、例えば、投入モジュール11から、第1検査用モジュール121、反転モジュール13、第1検査用モジュール121および投入モジュール11の順に、被検査物W0が搬送されることで、被検査物W0の検査が行われ得る。このとき、例えば、第1検査用モジュール121で被検査物W0の一方の面(例えば、表(おもて)面)を対象として検査用の処理である撮像を行い、反転モジュール13で被検査物W0の上下を反転させた後に、第1検査用モジュール121で被検出物W0の他方の面(例えば、裏面)を対象として検査用の処理である撮像を行うことができる。そして、投入モジュール11は、例えば、排出モジュール14としての役割を果たすことができる。このような構成を有する第3例に係る検査装置1Bは、例えば、別々に作製された、投入モジュール11と、1つの検査用モジュール12と、反転モジュール13と、を+X方向において相互に連結することで製造され得る。 The inspection device 1B according to the third example includes, for example, an input module 11, one inspection module 12, and an inversion module 13, as shown in FIG. 11B. More specifically, for example, the input module 11, the inspection module 12 (first inspection module 121), and the inversion module 13 are located in a state of being connected in the + X direction in the order described in this description. .. In the inspection device 1B according to the third example, for example, the object to be inspected W0 is conveyed from the charging module 11 in the order of the first inspection module 121, the reversing module 13, the first inspection module 121, and the charging module 11. Then, the inspection of the object to be inspected W0 can be performed. At this time, for example, the first inspection module 121 performs imaging, which is a process for inspection, on one surface (for example, the front surface) of the object to be inspected W0, and the inversion module 13 inspects. After the object W0 is turned upside down, the first inspection module 121 can perform imaging, which is an inspection process, on the other surface (for example, the back surface) of the object W0 to be detected. Then, the input module 11 can serve as, for example, the discharge module 14. The inspection device 1B according to the third example having such a configuration connects, for example, a separately manufactured input module 11, one inspection module 12, and an inversion module 13 to each other in the + X direction. Can be manufactured by
 ここで、例えば、上記第1例に係る検査装置1、上記第2例に係る検査装置1A、上記第3例に係る検査装置1Bのそれぞれにおいて、投入モジュール11が省略されてもよいし、排出モジュール14が省略されてもよい。この場合にも、例えば、被検査物W0を対象とした検査用の処理を行うための検査用モジュール12と、被検査物を反転させる反転モジュール13と、を含む別々に作製された2つ以上のモジュールを適宜組み合わせて検査装置1,1A,1Bを製造することができる。これにより、例えば、被検査物W0の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置1,1A,1Bを容易に製造することができる。 Here, for example, in each of the inspection device 1 according to the first example, the inspection device 1A according to the second example, and the inspection device 1B according to the third example, the input module 11 may be omitted or discharged. Module 14 may be omitted. Also in this case, for example, two or more separately manufactured ones including an inspection module 12 for performing an inspection process for the object W0 to be inspected and an inversion module 13 for inverting the object to be inspected. The inspection devices 1, 1A and 1B can be manufactured by appropriately combining the above modules. Thereby, for example, the inspection devices 1, 1A and 1B that flexibly meet the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget can be easily manufactured.
 図12(a)は、複数のモジュールの組み合わせで構成される第4例に係る検査装置1Cの概略的な構成を示す図である。図12(b)は、複数のモジュールの組み合わせで構成される第5例に係る検査装置1Dの概略的な構成を示す図である。図12(c)は、1つの検査用モジュール12によって構成される第6例に係る検査装置1Eの概略的な構成を示す図である。第4例に係る検査装置1C、第5例に係る検査装置1Dおよび第6例に係る検査装置1Eは、それぞれ反転モジュール13を含まない検査装置の例である。 FIG. 12A is a diagram showing a schematic configuration of the inspection device 1C according to the fourth example, which is composed of a combination of a plurality of modules. FIG. 12B is a diagram showing a schematic configuration of the inspection device 1D according to the fifth example, which is composed of a combination of a plurality of modules. FIG. 12C is a diagram showing a schematic configuration of the inspection device 1E according to the sixth example, which is composed of one inspection module 12. The inspection device 1C according to the fourth example, the inspection device 1D according to the fifth example, and the inspection device 1E according to the sixth example are examples of inspection devices that do not include the reversing module 13, respectively.
 第4例に係る検査装置1Cは、例えば、図12(a)で示されるように、投入モジュール11と、2つの検査用モジュール12と、排出モジュール14と、を備えている。より具体的には、例えば、投入モジュール11と、1つ目の検査用モジュール12(第1検査用モジュール121)と、2つ目の検査用モジュール12(第2検査用モジュール122)と、排出モジュール14と、が+X方向においてこの記載の順に連結されている状態で位置している。第4例に係る検査装置1Cでは、例えば、投入モジュール11から、第1検査用モジュール121、第2検査用モジュール122および排出モジュール14の順に、被検査物W0が搬送されることで、被検査物W0の検査が行われ得る。このとき、例えば、第1検査用モジュール121および第2検査用モジュール122によって被検査物W0の一方の面(例えば、表(おもて)面または裏面)を対象として検査用の処理である撮像を行うことができる。このような構成を有する第4例に係る検査装置1Cは、例えば、別々に作製された、投入モジュール11と、2つの検査用モジュール12と、排出モジュール14と、を+X方向において相互に連結することで製造され得る。 The inspection device 1C according to the fourth example includes, for example, an input module 11, two inspection modules 12, and an discharge module 14, as shown in FIG. 12 (a). More specifically, for example, the input module 11, the first inspection module 12 (first inspection module 121), the second inspection module 12 (second inspection module 122), and discharge. Module 14 and the module 14 are located in the + X direction in a state of being connected in the order described in this description. In the inspection device 1C according to the fourth example, for example, the inspected object W0 is conveyed in the order of the first inspection module 121, the second inspection module 122, and the discharge module 14 from the input module 11, and thus the inspected object W0 is inspected. Inspection of object W0 can be performed. At this time, for example, the first inspection module 121 and the second inspection module 122 target one surface (for example, the front surface or the back surface) of the object to be inspected W0, which is an imaging process for inspection. It can be performed. The inspection device 1C according to the fourth example having such a configuration connects, for example, the separately manufactured input module 11, the two inspection modules 12, and the discharge module 14 to each other in the + X direction. Can be manufactured by
 第5例に係る検査装置1Dは、例えば、図12(b)で示されるように、投入モジュール11と、1つの検査用モジュール12と、排出モジュール14と、を備えている。より具体的には、例えば、投入モジュール11と、検査用モジュール12(第1検査用モジュール121)と、排出モジュール14と、が+X方向においてこの記載の順に連結されている状態で位置している。第5例に係る検査装置1Dでは、例えば、投入モジュール11から、第1検査用モジュール121および排出モジュール14の順に、被検査物W0が搬送されることで、被検査物W0の検査が行われ得る。このとき、例えば、第1検査用モジュール121によって被検査物W0の一方の面(例えば、表(おもて)面または裏面)を対象として検査用の処理である撮像を行うことができる。このような構成を有する第5例に係る検査装置1Dは、例えば、別々に作製された、投入モジュール11と、1つの検査用モジュール12と、排出モジュール14と、を+X方向において相互に連結することで製造され得る。 The inspection device 1D according to the fifth example includes, for example, an input module 11, one inspection module 12, and an discharge module 14, as shown in FIG. 12 (b). More specifically, for example, the input module 11, the inspection module 12 (first inspection module 121), and the discharge module 14 are located in a state of being connected in the + X direction in the order described in this description. .. In the inspection device 1D according to the fifth example, for example, the inspected object W0 is inspected by transporting the inspected object W0 in the order of the first inspection module 121 and the discharge module 14 from the input module 11. obtain. At this time, for example, the first inspection module 121 can perform imaging, which is a process for inspection, on one surface (for example, the front surface or the back surface) of the object to be inspected W0. The inspection device 1D according to the fifth example having such a configuration connects, for example, the separately manufactured input module 11, one inspection module 12, and the discharge module 14 to each other in the + X direction. Can be manufactured by
 ここで、例えば、上記第4例に係る検査装置1Cおよび上記第5例に係る検査装置1Dのそれぞれにおいて、投入モジュール11が省略されてもよいし、排出モジュール14が省略されてもよい。この場合にも、例えば、被検査物W0を対象とした検査用の処理を行うための1つまたは2つ以上の検査用モジュール12を含む別々に作製された2つ以上のモジュールを適宜組み合わせて検査装置1C,1Dを製造することができる。これにより、例えば、被検査物W0の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置1C,1Dを容易に製造することができる。 Here, for example, in each of the inspection device 1C according to the fourth example and the inspection device 1D according to the fifth example, the input module 11 may be omitted, or the discharge module 14 may be omitted. Also in this case, for example, two or more separately manufactured modules including one or two or more inspection modules 12 for performing an inspection process on the object W0 to be inspected may be appropriately combined. Inspection devices 1C and 1D can be manufactured. Thereby, for example, the inspection devices 1C and 1D that flexibly meet the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget can be easily manufactured.
 第6例に係る検査装置1Eは、例えば、図12(c)で示されるように、1つの検査用モジュール12、を備えている。より具体的には、第6例に係る検査装置1Eは、例えば、第5例に係る検査装置1Eから投入モジュール11および排出モジュール14が省略された構成を有する。第6例に係る検査装置1Eでは、例えば、1つの検査用モジュール12(第1検査用モジュール121)によって被検査物W0の一方の面(例えば、表(おもて)面または裏面)を対象として検査用の処理である撮像を行うことができる。 The inspection device 1E according to the sixth example includes, for example, one inspection module 12 as shown in FIG. 12 (c). More specifically, the inspection device 1E according to the sixth example has, for example, a configuration in which the input module 11 and the discharge module 14 are omitted from the inspection device 1E according to the fifth example. In the inspection device 1E according to the sixth example, for example, one inspection module 12 (first inspection module 121) covers one surface (for example, the front surface or the back surface) of the object to be inspected W0. Imaging, which is a process for inspection, can be performed.
 <1-4.検査装置における動作の一例>
 図13は、第1実施形態の第1例に係る検査装置1における1つの被検査物W0を対象とした動作に関するタイミングチャートを示す図である。例えば、図13で示されるように、検査装置1における1つの被検査物W0を対象とした動作が行われる期間は、時間的に連続する期間Pd11、期間Pd12(期間Pd121)、期間Pd12(期間Pd122)、期間Pd13、期間Pd12(期間pd123)、期間Pd12(期間Pd124)および期間Pd14によって構成される。期間Pd11は、被検査物W0が投入モジュール11に位置している期間である。期間Pd12(期間Pd121)は、被検査物W0が1つ目の検査用モジュール12(第1検査用モジュール121)に位置している期間である。期間Pd12(期間Pd122)は、被検査物W0が2つ目の検査用モジュール12(第2検査用モジュール122)に位置している期間である。期間Pd13は、被検査物W0が反転モジュール13に位置している期間である。期間Pd12(期間Pd123)は、被検査物W0が3つ目の検査用モジュール12(第3検査用モジュール123)に位置している期間である。期間Pd12(期間Pd124)は、被検査物W0が4つ目の検査用モジュール12(第4検査用モジュール124)に位置している期間である。期間Pd14は、被検査物W0が排出モジュール14に位置している期間である。
<1-4. An example of operation in an inspection device>
FIG. 13 is a diagram showing a timing chart relating to an operation of one inspected object W0 in the inspection device 1 according to the first example of the first embodiment. For example, as shown in FIG. 13, the period during which the operation for one object W0 to be inspected in the inspection device 1 is performed is a period Pd11, a period Pd12 (period Pd121), and a period Pd12 (period) that are continuous in time. It is composed of Pd122), period Pd13, period Pd12 (period pd123), period Pd12 (period Pd124) and period Pd14. The period Pd11 is a period in which the object to be inspected W0 is located in the charging module 11. The period Pd12 (period Pd121) is a period in which the object to be inspected W0 is located in the first inspection module 12 (first inspection module 121). The period Pd12 (period Pd122) is a period in which the object to be inspected W0 is located in the second inspection module 12 (second inspection module 122). The period Pd13 is a period in which the object to be inspected W0 is located in the inversion module 13. The period Pd12 (period Pd123) is a period in which the object to be inspected W0 is located in the third inspection module 12 (third inspection module 123). The period Pd12 (period Pd124) is a period in which the object to be inspected W0 is located in the fourth inspection module 12 (fourth inspection module 124). The period Pd14 is a period during which the inspected object W0 is located in the discharge module 14.
 図13の例では、例えば、期間Pd11は、投入モジュール11に被検査物W0が投入される動作が行われる期間(投入期間ともいう)Pinと、投入モジュール11と1つ目の検査用モジュール12(第1検査用モジュール121)との間で被検査物W0を搬送する期間(搬送期間ともいう)Ptrの前半と、で構成される。期間Pd12(Pd121)は、投入モジュール11と1つ目の検査用モジュール12(第1検査用モジュール121)との間で被検査物W0を搬送する搬送期間Ptrの後半と、検知部12dによる被検査物W0の位置および姿勢に係る情報の取得および該情報に基づくセンサ部12sの位置の調整を行う期間(センサ部調整期間ともいう)Pasと、センサ部12sによる被検査物W0を対象とした検査用の処理としての1回以上の撮像を行う期間(撮像期間ともいう)Pcaと、1つ目の検査用モジュール12(第1検査用モジュール121)と2つ目の検査用モジュール12(第2検査用モジュール122)との間で被検査物W0を搬送する期間(搬送期間)Ptrの前半と、で構成される。期間Pd12(Pd122)は、1つ目の検査用モジュール12(第1検査用モジュール121)と2つ目の検査用モジュール12(第2検査用モジュール122)との間で被検査物W0を搬送する搬送期間Ptrの後半と、センサ部調整期間Pasと、撮像期間Pcaと、2つ目の検査用モジュール12(第2検査用モジュール122)と反転モジュール13との間で被検査物W0を搬送する期間(搬送期間)Ptrの前半と、で構成される。期間Pd13は、2つ目の検査用モジュール12(第2検査用モジュール122)と反転モジュール13との間で被検査物W0を搬送する搬送期間Ptrの後半と、検知部13dによる被検査物W0の位置および姿勢に係る情報の取得および該情報に基づく保持部13hの位置の調整を行う期間(保持部調整期間ともいう)Pahと、保持部13hおよび移動機構13tとによって被検査物W0を反転させる期間(反転期間ともいう)Preと、反転モジュール13と3つ目の検査用モジュール12(第3検査用モジュール123)との間で被検査物W0を搬送する期間(搬送期間)Ptrの前半と、で構成される。期間Pd12(Pd123)は、反転モジュール13と3つ目の検査用モジュール12(第3検査用モジュール123)との間で被検査物W0を搬送する搬送期間Ptrの後半と、センサ部調整期間Pasと、撮像期間Pcaと、3つ目の検査用モジュール12(第3検査用モジュール123)と4つ目の検査用モジュール12(第4検査用モジュール124)との間で被検査物W0を搬送する期間(搬送期間)Ptrの前半と、で構成される。期間Pd12(Pd124)は、3つ目の検査用モジュール12(第3検査用モジュール123)と4つ目の検査用モジュール12(第4検査用モジュール124)との間で被検査物W0を搬送する搬送期間Ptrの後半と、センサ部調整期間Pasと、撮像期間Pcaと、4つ目の検査用モジュール12(第4検査用モジュール124)と排出モジュール14との間で被検査物W0を搬送する期間(搬送期間)Ptrの前半と、で構成される。期間Pd14は、4つ目の検査用モジュール12(第4検査用モジュール124)と排出モジュール14との間で被検査物W0を搬送する搬送期間Ptrの後半と、排出モジュール14から被検査物W0が排出される動作が行われる期間(排出期間ともいう)Pdiと、で構成される。 In the example of FIG. 13, for example, the period Pd 11 is a period (also referred to as a charging period) Pin during which the operation of charging the object W0 to be inspected into the charging module 11 is performed, the charging module 11 and the first inspection module 12. It is composed of the first half of Ptr during the period (also referred to as the transfer period) for transporting the inspected object W0 to and from (the first inspection module 121). The period Pd12 (Pd121) includes the latter half of the transport period Ptr for transporting the inspected object W0 between the input module 11 and the first inspection module 12 (first inspection module 121), and the subject by the detection unit 12d. The period Pas for acquiring information related to the position and orientation of the inspection object W0 and adjusting the position of the sensor unit 12s based on the information (also referred to as the sensor unit adjustment period) and the inspection object W0 by the sensor unit 12s were targeted. A period of one or more imaging as an inspection process (also called an imaging period) Pca, a first inspection module 12 (first inspection module 121), and a second inspection module 12 (second inspection module 12). 2 It is composed of the first half of the period (transportation period) Ptr for transporting the inspected object W0 to and from the inspection module 122). During the period Pd12 (Pd122), the object to be inspected W0 is conveyed between the first inspection module 12 (first inspection module 121) and the second inspection module 12 (second inspection module 122). The inspected object W0 is transported between the latter half of the transport period Ptr, the sensor unit adjustment period Pas, the imaging period Pca, the second inspection module 12 (second inspection module 122), and the inversion module 13. Period (transportation period) It is composed of the first half of Ptr and. The period Pd 13 includes the latter half of the transport period Ptr for transporting the inspected object W0 between the second inspection module 12 (second inspection module 122) and the inversion module 13, and the inspected object W0 by the detection unit 13d. The inspected object W0 is inverted by the period (also referred to as the holding unit adjustment period) Pah for acquiring information related to the position and posture of the holding unit 13h and adjusting the position of the holding unit 13h based on the information, and the holding unit 13h and the moving mechanism 13t. Period to be inspected (also referred to as inversion period) Pre and the period (transportation period) to convey the inspected object W0 between the inversion module 13 and the third inspection module 12 (third inspection module 123) The first half of Ptr. And consists of. The period Pd12 (Pd123) includes the latter half of the transport period Ptr for transporting the object to be inspected W0 between the reversing module 13 and the third inspection module 12 (third inspection module 123), and the sensor unit adjustment period Pas. And the imaging period Pca, and the object W0 to be inspected is transported between the third inspection module 12 (third inspection module 123) and the fourth inspection module 12 (fourth inspection module 124). Period (transportation period) It is composed of the first half of Ptr and. During the period Pd12 (Pd124), the object to be inspected W0 is transported between the third inspection module 12 (third inspection module 123) and the fourth inspection module 12 (fourth inspection module 124). The inspected object W0 is transported between the latter half of the transport period Ptr, the sensor unit adjustment period Pas, the imaging period Pca, the fourth inspection module 12 (fourth inspection module 124), and the discharge module 14. Period (transportation period) It is composed of the first half of Ptr and. The period Pd 14 includes the latter half of the transport period Ptr for transporting the inspected object W0 between the fourth inspection module 12 (fourth inspection module 124) and the discharge module 14, and the inspected object W0 from the discharge module 14. It is composed of Pdi, which is the period during which the operation of discharging is performed (also referred to as the discharging period).
 ここで、例えば、投入期間Pinを6秒間とし、搬送期間Ptrを4秒間とし、センサ部調整期間Pasおよび保持部調整期間Pahを1秒間とし、撮像期間Pcaを5秒間とし、反転期間Preを5秒間とし、排出期間Pdiを6秒間とする。ここでは、4つの撮像期間Pcaのそれぞれにおいて1秒間を要する被検査物W0の1箇所に対する検査用の処理としての撮像を5回行うものとする。この場合には、図13で示す検査装置1における1つの被検査物W0を対象とした動作が行われる期間は、66秒間となる。 Here, for example, the input period Pin is 6 seconds, the transport period Ptr is 4 seconds, the sensor unit adjustment period Pas and the holding unit adjustment period Pah are 1 second, the imaging period Pca is 5 seconds, and the inversion period Pre is 5. The second is set, and the discharge period Pdi is set to 6 seconds. Here, it is assumed that imaging is performed five times as an inspection process for one location of the object to be inspected W0, which requires one second in each of the four imaging periods Pca. In this case, the period during which the operation for one inspected object W0 in the inspection device 1 shown in FIG. 13 is performed is 66 seconds.
 ここで、例えば、仮に、図12(b)で示した第5例に係る検査装置1Dにおける1つの被検査物W0を対象とした動作が行われる期間が、6秒間の投入期間Pinと、4秒間の搬送期間Ptrと、1秒間のセンサ部調整期間Pasと、1秒間を要する被検査物W0の1箇所に対する検査用の処理としての撮像を20回行う20秒間の撮像期間Pcaと、4秒間の搬送期間Ptrと、6秒間の排出期間Pdiと、で構成されるものとする。この場合には、1つの被検査物W0を対象とした動作が行われる期間は、41秒間となる。換言すれば、41秒間に1つのペースで被検査物W0の検査を行うことが可能となる。 Here, for example, the period during which the operation for one object W0 to be inspected in the inspection device 1D according to the fifth example shown in FIG. 12B is performed is a 6-second input period Pin and 4 A transport period of Ptr per second, a sensor unit adjustment period of 1 second, Pas, an imaging period of 20 seconds, Pca, in which imaging is performed 20 times for one location of the object W0 to be inspected, which requires 1 second, and 4 seconds. It is assumed that it is composed of a transport period Ptr and a discharge period Pdi for 6 seconds. In this case, the period during which the operation for one object W0 to be inspected is performed is 41 seconds. In other words, it is possible to inspect the object to be inspected W0 at one pace every 41 seconds.
 ところで、ここで、例えば、第1実施形態の第1例に係る検査装置1を用いて、複数の被検査物W0を連続的に検査する場合を想定する。図14は、第1実施形態の第1例に係る検査装置1における複数の被検査物W0を対象とした動作に関するタイミングチャートである。ここでは、例えば、統括制御部C0によって、投入モジュール11および投入モジュール11と排出モジュール14との間に位置している複数のモジュールのそれぞれに位置している被検査物W0を、搬送経路Rt1における下流側のモジュールに同時期に搬送するように制御するものとする。また、ここでは、連続的な検査の対象となる複数の被検査物W0が、1つ目の被検査物W0(第1被検査物W01ともいう)、2つ目の被検査物W0(第2被検査物W02ともいう)、3つ目の被検査物W0(第3被検査物W03ともいう)、4つ目の被検査物W0(第4被検査物W04ともいう)および5つ目の被検査物W0(第5被検査物W05ともいう)を含むものとする。図14では、第1被検査物W01に係る動作のタイミングが第1の斜線のハッチングが付された長方形で示され、第2被検査物W02に係る動作のタイミングが第2の斜線のハッチングが付された長方形で示され、第3被検査物W03に係る動作のタイミングが砂地のハッチングが付された長方形で示され、第4被検査物W04に係る動作のタイミングが黒塗りの長方形で示され、第5被検査物W05に係る動作のタイミングが白抜きの長方形で示されている。検査装置1における各被検査物W0を対象とした動作が行われる期間は、図13で示されたように、1つの投入期間Pin(6秒間)と、6つの搬送期間Ptr(各4秒間)と、4つのセンサ部調整期間Pas(各1秒間)と、1つの保持部調整期間Pah(1秒間)と、4つの撮像期間Pca(各5秒間)と、1つの反転期間Pre(5秒間)と、1つの排出期間Pdi(6秒間)と、で構成される。 By the way, here, for example, it is assumed that a plurality of objects to be inspected W0 are continuously inspected by using the inspection device 1 according to the first example of the first embodiment. FIG. 14 is a timing chart relating to the operation of a plurality of objects to be inspected W0 in the inspection device 1 according to the first example of the first embodiment. Here, for example, the integrated control unit C0 sets the input module 11 and the inspected object W0 located in each of the plurality of modules located between the input module 11 and the discharge module 14 in the transport path Rt1. It shall be controlled so that it is transported to the module on the downstream side at the same time. Further, here, a plurality of inspected objects W0 to be continuously inspected are the first inspected object W0 (also referred to as the first inspected object W01) and the second inspected object W0 (the first inspected object W0). 2 Inspected object W02), 3rd inspected object W0 (also referred to as 3rd inspected object W03), 4th inspected object W0 (also referred to as 4th inspected object W04) and 5th Inspected object W0 (also referred to as fifth inspected object W05). In FIG. 14, the timing of the operation related to the first object to be inspected W01 is indicated by a rectangle with the hatching of the first diagonal line, and the timing of the operation related to the second object to be inspected W02 is the hatching of the second diagonal line. The timing of the operation related to the third object W03 is indicated by the rectangle with the hatching of the sand, and the timing of the operation related to the fourth object W04 is indicated by the black rectangle. The timing of the operation related to the fifth object W05 to be inspected is indicated by a white rectangle. As shown in FIG. 13, the period during which the operation for each object W0 to be inspected in the inspection device 1 is performed is one charging period Pin (6 seconds) and six transport periods Ptr (4 seconds each). , 4 sensor unit adjustment period Pas (1 second each), 1 holding unit adjustment period Pah (1 second), 4 imaging period Pca (5 seconds each), and 1 inversion period Pre (5 seconds). And one discharge period Pdi (6 seconds).
 この場合には、図14で示されるように、10秒間に1つのペースで、検査装置1から検査用の処理としての撮像が行われた被検査物W0が排出される。換言すれば、10秒間に1つのペースで、被検査物W0に対する検査用の処理として撮像が完了し得る。ここでは、被検査物W0に対する検査用の処理としての撮像を複数の検査用モジュール12で分担して行うことで、1つのモジュールに被検査物W0がとどまっている時間が短縮される。その結果、被検査物W0に対する検査用の処理としての撮像が完了するペースが短縮し得る。そして、例えば、複数の被検査物W0について検査を行う場合を想定すると、検査装置を構成する検査用モジュール12の数が増加するにつれて、被検査物W0に対する検査用の処理としての撮像が完了するペースが短縮し得る。 In this case, as shown in FIG. 14, the inspected object W0 imaged as an inspection process is discharged from the inspection device 1 at a pace of once every 10 seconds. In other words, imaging can be completed as an inspection process for the object W0 to be inspected at a pace of 1 in 10 seconds. Here, by sharing the imaging of the inspected object W0 as an inspection process among the plurality of inspection modules 12, the time during which the inspected object W0 stays in one module is shortened. As a result, the pace at which imaging as an inspection process for the object W0 to be inspected can be completed can be shortened. Then, for example, assuming that a plurality of objects to be inspected W0 are inspected, as the number of inspection modules 12 constituting the inspection device increases, imaging as an inspection process for the inspected object W0 is completed. The pace can be shortened.
 このため、例えば、検査装置を設置するスペースおよび予算が十分にある場合には、検査装置を構成する検査用モジュール12の数を増加させることで、被検査物W0に対する検査用の処理としての撮像が完了するペースを短縮することが可能となる。換言すれば、例えば、連続して検査を行う複数の被検査物W0の数の増加に伴い、2つ以上の検査用モジュール12において被検査物W0における複数箇所についての検査用の処理を分担して実施することで、単位時間あたりに検査装置から排出される検査用の処理が完了した被検査物W0の数を増加させることができる。すなわち、検査装置におけるタクトが向上し得る。一方、検査装置を設置するスペースまたは予算が十分でない場合には、検査装置を構成する検査用モジュール12の数を許容可能な範囲で増加させることが考えられる。これにより、例えば、被検査物W0の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置1を容易に製造することが可能となる。そして、ここでは、例えば、全てのモジュール間において被検査物W0を下流側の隣のモジュールに一斉に搬送することで、単位時間あたりに検査装置1から搬出される検査用の処理が完了した被検査物W0の数を増加させることができる。 Therefore, for example, when the space and budget for installing the inspection device are sufficient, the number of inspection modules 12 constituting the inspection device is increased to perform imaging as an inspection process for the object W0 to be inspected. It is possible to shorten the pace of completion. In other words, for example, as the number of a plurality of objects to be inspected W0 to be continuously inspected increases, the processing for inspection of a plurality of locations in the inspected object W0 is shared among the two or more inspection modules 12. By carrying out this procedure, it is possible to increase the number of objects W0 to be inspected that have been processed for inspection and are discharged from the inspection device per unit time. That is, the tact in the inspection device can be improved. On the other hand, if the space or budget for installing the inspection device is insufficient, it is conceivable to increase the number of inspection modules 12 constituting the inspection device within an acceptable range. This makes it possible to easily manufacture the inspection device 1 that flexibly meets the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget. Then, here, for example, by simultaneously transporting the object to be inspected W0 between all the modules to the adjacent module on the downstream side, the inspection process carried out from the inspection device 1 per unit time is completed. The number of inspection objects W0 can be increased.
 <1-5.第1実施形態のまとめ>
 以上のように、第1実施形態に係る検査用モジュール12によれば、例えば、被検査物W0に対してセンサ部12sを相対的に移動させることができるため、1つのセンサ部12sとしての撮像部で被検査物の1箇所または2箇所以上について検査用の処理としての撮像を行うことができる。これにより、例えば、1つまたは2つ以上の検査用モジュール12を含む2つ以上のモジュールを適宜組み合わせて検査装置1,1A,1B,1C,1Dを製造することができる。このため、例えば、被検査物W0の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に応えて、被検査物W0に対して処理を行う全ての構成が組み込まれた一体の装置の仕様を一から設計し直さなくてもよい。また、例えば、他のモジュールから検査用モジュール12に被検査物W0が搬入される際に被検査物W0の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物W0に対するセンサ部12sとしての撮像部の相対的な位置を調整することができる。したがって、例えば、被検査物W0の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置1,1A,1B,1C,1Dを容易に製造することができる。
<1-5. Summary of the first embodiment>
As described above, according to the inspection module 12 according to the first embodiment, for example, since the sensor unit 12s can be moved relative to the object to be inspected W0, imaging as one sensor unit 12s It is possible to perform imaging as a process for inspection on one place or two or more places of the object to be inspected. Thereby, for example, the inspection devices 1, 1A, 1B, 1C, and 1D can be manufactured by appropriately combining two or more modules including one or two or more inspection modules 12. Therefore, for example, in response to the user's request such as the shape and size of the inspected object W0, the space for installing the device, and the budget, all the configurations for processing the inspected object W0 are incorporated. It is not necessary to redesign the specifications of the device from scratch. Further, for example, even if at least one of the posture and the position of the object to be inspected W0 deviates when the object to be inspected W0 is carried into the inspection module 12 from another module, the sensor for the object to be inspected W0 corresponds to the deviation. The relative position of the imaging unit as the unit 12s can be adjusted. Therefore, for example, it is possible to easily manufacture the inspection devices 1, 1A, 1B, 1C, and 1D that flexibly meet the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget. it can.
 また、第1実施形態に係る反転モジュール13によれば、例えば、被検査物W0を対象とした検査用の処理を行うための検査用モジュール12と、被検査物W0を反転させる反転モジュール13と、を含む2つ以上のモジュールを適宜組み合わせて検査装置1,1A,1Bを製造することができる。このため、例えば、被検査物W0の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に応えて、被検査物W0に対して処理を行う全ての構成が組み込まれた一体の装置の仕様を一から設計し直さなくてもよい。また、例えば、他のモジュールから反転モジュール13に被検査物W0が搬入される際に被検査物W0の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物W0に対する保持部13hの相対的な位置を調整することができる。これにより、例えば、被検査物W0の姿勢および位置の少なくとも一方がずれていても、保持部13hで被検査物W0を保持して反転させることができる。したがって、例えば、被検査物の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置1,1A,1Bを容易に製造することができる。 Further, according to the reversing module 13 according to the first embodiment, for example, an inspection module 12 for performing an inspection process for the inspected object W0 and an inversion module 13 for reversing the inspected object W0. Inspection devices 1, 1A and 1B can be manufactured by appropriately combining two or more modules including. Therefore, for example, in response to the user's request such as the shape and size of the inspected object W0, the space for installing the device, and the budget, all the configurations for processing the inspected object W0 are incorporated. It is not necessary to redesign the specifications of the device from scratch. Further, for example, even if at least one of the posture and the position of the inspected object W0 deviates when the inspected object W0 is carried into the reversing module 13 from another module, the holding portion for the inspected object W0 according to the deviation. The relative position of 13h can be adjusted. Thereby, for example, even if at least one of the posture and the position of the object to be inspected W0 is deviated, the object to be inspected W0 can be held and inverted by the holding portion 13h. Therefore, for example, the inspection devices 1, 1A, and 1B that flexibly meet the user's request such as the shape and size of the object to be inspected, the space for installing the device, and the budget can be easily manufactured.
 また、第1実施形態に係る検査装置1,1A,1Bによれば、例えば、被検査物W0を対象とした検査用の処理を行うための第1モジュールとしての検査用モジュール12と、被検査物W0を反転させる第2モジュールとしての反転モジュール13と、を含む2つ以上のモジュールを適宜組み合わせて検査装置1,1A,1Bを製造することができる。また、例えば、他のモジュールから第1モジュールとしての検査用モジュール12に被検査物が搬入される際に被検査物W0の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物W0に対するセンサ部12sの相対的な位置を調整することができる。また、例えば、他のモジュールから第2モジュールとしての反転モジュール13に被検査物W0が搬入される際に被検査物W0の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物W0に対する保持部13hの相対的な位置を調整することができる。したがって、例えば、被検査物の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置1、1A,1Bを容易に製造することができる。 Further, according to the inspection devices 1, 1A, 1B according to the first embodiment, for example, an inspection module 12 as a first module for performing an inspection process for the object W0 to be inspected, and an inspection module 12 to be inspected. Inspection devices 1, 1A, and 1B can be manufactured by appropriately combining two or more modules including an inversion module 13 as a second module for inversion of the object W0. Further, for example, even if at least one of the posture and the position of the object to be inspected W0 deviates when the object to be inspected is carried into the inspection module 12 as the first module from another module, the object to be inspected is inspected according to the deviation. The relative position of the sensor unit 12s with respect to the object W0 can be adjusted. Further, for example, even if at least one of the posture and the position of the object to be inspected W0 is displaced when the object to be inspected W0 is carried into the reversing module 13 as the second module from another module, the object to be inspected is inspected according to the deviation. The relative position of the holding portion 13h with respect to the object W0 can be adjusted. Therefore, for example, the inspection devices 1, 1A, and 1B that flexibly meet the user's request such as the shape and size of the object to be inspected, the space for installing the device, and the budget can be easily manufactured.
 また、第1実施形態に係る検査装置1,1A,1Cによれば、例えば、被検査物W0を対象とした検査用の処理をそれぞれ行うための第1モジュールおよび第2モジュールを含む2つ以上のモジュールを適宜組み合わせて検査装置1,1A,1Cを製造することができる。また、例えば、他のモジュールから第1モジュールとしての第1検査用モジュール121または第2モジュールとしての第2検査用モジュール122に被検査物W0が搬入される際に被検査物W0の姿勢および位置の少なくとも一方がずれても、そのずれに応じて被検査物W0に対するセンサ部12sの相対的な位置を調整することができる。したがって、例えば、被検査物W0の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置1を容易に製造することができる。また、例えば、連続して検査を行う複数の被検査物W0の数の増加に伴い、2つ以上の検査用モジュール12において被検査物W0における複数箇所についての検査用の処理を分担して実施することで、単位時間あたりに検査装置1,1A,1Cから排出される検査用の処理が完了した被検査物W0の数を増加させることができる。 Further, according to the inspection devices 1, 1A, 1C according to the first embodiment, for example, two or more including a first module and a second module for performing inspection processing for the object to be inspected W0, respectively. The inspection devices 1, 1A and 1C can be manufactured by appropriately combining the above modules. Further, for example, the posture and position of the inspected object W0 when the inspected object W0 is carried into the first inspection module 121 as the first module or the second inspection module 122 as the second module from another module. Even if at least one of the two is displaced, the relative position of the sensor unit 12s with respect to the object to be inspected W0 can be adjusted according to the deviation. Therefore, for example, it is possible to easily manufacture the inspection device 1 that flexibly meets the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget. Further, for example, as the number of a plurality of objects to be inspected W0 to be continuously inspected increases, the processing for inspection of a plurality of locations in the inspected object W0 is shared and carried out in two or more inspection modules 12. By doing so, it is possible to increase the number of objects W0 to be inspected that have been processed for inspection and are discharged from the inspection devices 1, 1A and 1C per unit time.
 <2.変形例>
 なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
<2. Modification example>
The present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the gist of the present invention.
 上記第1実施形態において、センサ部12sは、例えば、被検査物W0を対象とした撮像および測定のうちの少なくとも一方の検査用の処理を行ってもよい。被検査物W0を対象とした測定には、例えば、被検査物W0の孔部における気体の流量もしくは圧力の測定等が考えられる。この場合には、センサ部12sは、例えば、気体の供給量を調整するバルブ、孔部を流れる気体を計測する流量計、および孔部を流れる気体の圧力を計測する圧力計等を適宜組み合わせることで実現され得る。 In the first embodiment, the sensor unit 12s may, for example, perform processing for inspection of at least one of imaging and measurement of the object to be inspected W0. As the measurement for the object to be inspected W0, for example, the measurement of the flow rate or the pressure of the gas in the hole of the object to be inspected W0 can be considered. In this case, the sensor unit 12s is appropriately combined with, for example, a valve for adjusting the amount of gas supplied, a flow meter for measuring the gas flowing through the hole, a pressure gauge for measuring the pressure of the gas flowing through the hole, and the like. Can be realized with.
 上記第1実施形態において、搬送部Cv1,Cv2,Cv3,Cv4には、例えば、ベルトコンベアの代わりに被検査物W0を搬送可能なロボット等の異なる構成が適用されてもよい。 In the first embodiment, different configurations such as a robot capable of transporting the inspected object W0 instead of the belt conveyor may be applied to the transport units Cv1, Cv2, Cv3, and Cv4.
 上記第1実施形態において、例えば、相互に連結される複数のモジュールに被検査物W0の搬送方向を変更する搬送用のモジュール(搬送モジュールともいう)15が含まれていてもよい。搬送モジュール15には、例えば、被検査物W0の搬送方向を曲げるベルトコンベア(カーブベルトコンベアともいう)および被検査物W0の搬送方向を適宜変更可能な搬送用のロボット等が適用され得る。 In the first embodiment, for example, a plurality of modules connected to each other may include a transport module (also referred to as a transport module) 15 for changing the transport direction of the object to be inspected W0. For example, a belt conveyor (also referred to as a curved belt conveyor) that bends the transport direction of the object to be inspected W0, a transport robot that can appropriately change the transport direction of the object to be inspected W0, and the like can be applied to the transport module 15.
 図15は、カーブベルトコンベアを有する搬送モジュール15を含む複数のモジュールの組み合わせで構成される検査装置1Fの一例の概略的な構成を示す図である。図16は、カーブベルトコンベアを有する搬送モジュール15を含む複数のモジュールの組み合わせで構成される検査装置1Gの一例の概略的な構成を示す図である。検査装置1Fおよび検査装置1Gのそれぞれは、上述した第1例に係る検査装置1に対して、第2検査用モジュール122と反転モジュール13との間に配された第1の搬送モジュール151と、反転モジュール13と第3検査用モジュール123との間に配された第2の搬送モジュール152と、が追加された構成を有する。このような構成が採用されれば、例えば、第2検査用モジュール122から第1の搬送モジュール151のカーブベルトコンベアを介して反転モジュール13に被検査物W0が搬送される際に、被検査物W0の姿勢および位置の少なくとも一方が大きくずれやすい。これに対して、例えば、反転モジュール13は、被検査物W0の姿勢および位置の少なくとも一方のずれに応じて被検査物W0に対する保持部13hの相対的な位置を調整することができる。また、例えば、反転モジュール13から第2の搬送モジュール152のカーブベルトコンベアを介して第3検査用モジュール123に被検査物W0が搬送される際に、被検査物W0の姿勢および位置の少なくとも一方が大きくずれやすい。これに対して、例えば、検査用モジュール12は、被検査物W0の姿勢および位置の少なくとも一方のずれに応じて被検査物W0に対するセンサ部12sの相対的な位置を調整することができる。したがって、例えば、被検査物W0の形状およびサイズ、装置を設置するためのスペースならびに予算などのユーザーの要望に柔軟に応えた検査装置1F,1Gを容易に製造することが可能となる。 FIG. 15 is a diagram showing a schematic configuration of an example of an inspection device 1F composed of a combination of a plurality of modules including a transport module 15 having a curved belt conveyor. FIG. 16 is a diagram showing a schematic configuration of an example of an inspection device 1G composed of a combination of a plurality of modules including a transport module 15 having a curved belt conveyor. Each of the inspection device 1F and the inspection device 1G has a first transfer module 151 arranged between the second inspection module 122 and the reversing module 13 with respect to the inspection device 1 according to the first example described above. A second transport module 152 arranged between the reversing module 13 and the third inspection module 123 has an additional configuration. If such a configuration is adopted, for example, when the object to be inspected W0 is conveyed from the second inspection module 122 to the reversing module 13 via the curved belt conveyor of the first transfer module 151, the object to be inspected is to be inspected. At least one of the posture and position of W0 is likely to deviate significantly. On the other hand, for example, the reversing module 13 can adjust the relative position of the holding portion 13h with respect to the inspected object W0 according to the deviation of at least one of the posture and the position of the inspected object W0. Further, for example, when the inspected object W0 is conveyed from the reversing module 13 to the third inspection module 123 via the curved belt conveyor of the second conveying module 152, at least one of the posture and the position of the inspected object W0. Is easy to shift greatly. On the other hand, for example, the inspection module 12 can adjust the relative position of the sensor unit 12s with respect to the inspected object W0 according to the deviation of at least one of the posture and the position of the inspected object W0. Therefore, for example, it is possible to easily manufacture the inspection devices 1F and 1G that flexibly meet the user's request such as the shape and size of the object to be inspected W0, the space for installing the device, and the budget.
 図17(a)は、搬送ロボットを有する搬送モジュール15を含む複数のモジュールの組み合わせで構成される検査装置1Hの一例の概略的な構成を示す図である。図17(a)の例では、検査装置1Hは、投入モジュール11と、第1検査用モジュール121と、第2検査用モジュール122と、第3検査用モジュール123と、の間に、搬送ロボットを有する搬送モジュール15が位置している。この場合には、例えば、投入モジュール11に投入される被検査物W0の形状およびサイズ等に応じて、搬送モジュール15によって、第1検査用モジュール121、第2検査用モジュール122および第3検査用モジュール123のうちの何れか1つの検査用モジュール12に、被検査物W0を搬送することができる。 FIG. 17A is a diagram showing a schematic configuration of an example of an inspection device 1H composed of a combination of a plurality of modules including a transfer module 15 having a transfer robot. In the example of FIG. 17A, the inspection device 1H places a transfer robot between the input module 11, the first inspection module 121, the second inspection module 122, and the third inspection module 123. The transport module 15 to have is located. In this case, for example, depending on the shape and size of the object to be inspected W0 to be charged into the charging module 11, the transport module 15 may be used for the first inspection module 121, the second inspection module 122, and the third inspection. The object to be inspected W0 can be conveyed to the inspection module 12 of any one of the modules 123.
 図17(b)は、搬送ロボットを有する搬送モジュール15を含む複数のモジュールの組み合わせで構成される検査装置1Iの一例の概略的な構成を示す図である。図17(b)の例では、検査装置1Iは、第1の投入モジュール11(第1投入モジュール111ともいう)と、第2の投入モジュール11(第2投入モジュール112)と、第1検査用モジュール121と、第2検査用モジュール122と、の間に、搬送ロボットを有する搬送モジュール15が位置している。この場合には、例えば、2つの投入モジュール11から適宜搬入される被検査物W0を、該被検査物W0の形状およびサイズ等に応じて、搬送モジュール15によって、第1検査用モジュール121および第2検査用モジュール122のうちの何れか1つの検査用モジュール12に、被検査物W0を搬送することができる。 FIG. 17B is a diagram showing a schematic configuration of an example of an inspection device 1I composed of a combination of a plurality of modules including a transfer module 15 having a transfer robot. In the example of FIG. 17B, the inspection device 1I has a first input module 11 (also referred to as a first input module 111), a second input module 11 (second input module 112), and a first input module for inspection. A transfer module 15 having a transfer robot is located between the module 121 and the second inspection module 122. In this case, for example, the inspected object W0 appropriately carried in from the two input modules 11 is subjected to the first inspection module 121 and the first inspected module W0 by the transport module 15 according to the shape and size of the inspected object W0. The object to be inspected W0 can be conveyed to the inspection module 12 of any one of the two inspection modules 122.
 上記第1実施形態において、例えば、検知部12dによって被検査物W0の姿勢および位置に係る情報を取得する方法には、例えば、3次元の表面形状を測定する方法、または変位センサを用いた対象物までの距離を測定する方法等が適用されてもよい。3次元形状を測定する方法には、例えば、パターン光投影法、光切断法および白色光干渉等が適用され得る。変位センサには、例えば、三角測距を検出原理とした光学式変位センサ等が適用され得る。 In the first embodiment, for example, the method of acquiring information on the posture and position of the object to be inspected W0 by the detection unit 12d includes, for example, a method of measuring a three-dimensional surface shape or an object using a displacement sensor. A method of measuring the distance to an object or the like may be applied. For example, a pattern light projection method, a light cutting method, white light interference, and the like can be applied to the method for measuring the three-dimensional shape. For example, an optical displacement sensor based on the detection principle of triangular ranging can be applied to the displacement sensor.
 上記第1実施形態において、例えば、大型の被検査物W0の搬送に対応するためにベルトコンベアのベルトの幅を拡げると、ベルトを支持するプーリーおよびローラーの径を大きくする必要があり、隣り合うモジュール間において、ベルトコンベア間に大きな三角柱状の溝部が生じ易くなる。この場合に、例えば、三角柱状の溝部を埋めるように、表面が滑りやすい部材を配置してもよい。また、例えば、端部を先鋭化するための部材が設けられたベルトコンベア(ナイフエッジコンベアともいう)を用いて、ベルトコンベア間における三角柱状の溝部を生じにくくしてもよい。 In the first embodiment, for example, when the width of the belt of the belt conveyor is widened to accommodate the transportation of the large object W0 to be inspected, it is necessary to increase the diameters of the pulleys and rollers that support the belts, and they are adjacent to each other. Large triangular columnar grooves are likely to occur between the modules and between the belt conveyors. In this case, for example, a member having a slippery surface may be arranged so as to fill the triangular columnar groove. Further, for example, a belt conveyor (also referred to as a knife edge conveyor) provided with a member for sharpening the end portion may be used to make it difficult to form a triangular columnar groove between the belt conveyors.
 上記第1実施形態において、例えば、各被検査物W0について、第2モジュールとしての検査用モジュール12(例えば、第2検査用モジュール122)において、第2制御部としての移動制御部Ct2が、搬送経路Rt1における相対的に上流側の第1モジュールとしての検査用モジュール12(例えば、第1検査用モジュール121)の第1検知部としての検知部12dを用いて得た情報と、第2モジュールとしての検査用モジュール12(例えば、第2検査用モジュール122)の第2検知部としての検知部12dを用いて得た情報と、に基づいて、第2移動機構としての移動機構12tによって被検査物W0に対する第2センサ部としてのセンサ部12sの相対的な位置を調整してもよい。また、例えば、各被検査物W0について、第1モジュールとしての検査用モジュール12(例えば、第1検査用モジュール121)において、第1制御部としての移動制御部Ct2が、搬送経路Rt1における相対的に上流側の第2モジュールとしての検査用モジュール12(例えば、第2検査用モジュール122)の第2検知部としての検知部12dを用いて得た情報と、第1モジュールとしての検査用モジュール12(例えば、第1検査用モジュール121)の第1検知部としての検知部12dを用いて得た情報と、に基づいて、第1移動機構としての移動機構12tによって被検査物W0に対する第1センサ部としてのセンサ部12sの相対的な位置を調整してもよい。 In the first embodiment, for example, for each object W0 to be inspected, in the inspection module 12 as the second module (for example, the second inspection module 122), the movement control unit Ct2 as the second control unit is conveyed. Information obtained by using the detection unit 12d as the first detection unit of the inspection module 12 (for example, the first inspection module 121) as the first module on the relatively upstream side in the path Rt1, and as the second module. Based on the information obtained by using the detection unit 12d as the second detection unit of the inspection module 12 (for example, the second inspection module 122), the object to be inspected by the movement mechanism 12t as the second movement mechanism. The relative position of the sensor unit 12s as the second sensor unit with respect to W0 may be adjusted. Further, for example, for each object W0 to be inspected, in the inspection module 12 as the first module (for example, the first inspection module 121), the movement control unit Ct2 as the first control unit is relative to the transport path Rt1. Information obtained by using the detection unit 12d as the second detection unit of the inspection module 12 (for example, the second inspection module 122) as the second module on the upstream side, and the inspection module 12 as the first module. Based on the information obtained by using the detection unit 12d as the first detection unit of (for example, the first inspection module 121), the first sensor for the object to be inspected W0 by the movement mechanism 12t as the first movement mechanism. The relative position of the sensor unit 12s as a unit may be adjusted.
 このような構成が採用されれば、被検査物W0が第1モジュールの後に第2モジュールに搬入される場合には、第2モジュールにおいて、第1モジュールにおける第1検知部としての検知部12dを用いて得た情報を利用して、被検査物W0に対する第2センサ部としてのセンサ部12sの相対的な位置を調整し、被検査物W0が第2モジュールの後に第1モジュールに搬入される場合には、第1モジュールにおいて、第2モジュールにおける第2検知部としての検知部12dを用いて得た情報を利用して、被検査物W0に対する第1センサ部としてのセンサ部12sの相対的な位置を調整することができる。これにより、例えば、情報の取得に要する構成および時間が削減され得る。 If such a configuration is adopted, when the object to be inspected W0 is carried into the second module after the first module, in the second module, the detection unit 12d as the first detection unit in the first module is used. Using the information obtained in use, the relative position of the sensor unit 12s as the second sensor unit with respect to the object to be inspected W0 is adjusted, and the object to be inspected W0 is carried into the first module after the second module. In the case, in the first module, the information obtained by using the detection unit 12d as the second detection unit in the second module is used, and the relative of the sensor unit 12s as the first sensor unit to the object W0 to be inspected. Position can be adjusted. This can reduce, for example, the configuration and time required to obtain the information.
 ここで、このような構成の一例について説明する。図18(a)は、上流側の1つのモジュールにおける被検査物W0の姿勢および位置に係る情報の取得態様の一例を示す図である。図18(b)は、下流側の1つのモジュールにおける被検査物W0の姿勢および位置に係る情報の取得態様の一例を示す図である。ここでは、検知部12dが、被検査物W0を真上から撮像することで、被検査物W0の2次元的な姿勢および位置に係る撮像情報を得る場合を例に挙げて説明する。また、ここでは、被検査物W0が第1モジュールの後に第2モジュールに搬入されるものとする。例えば、第1モジュールの検知部12dで得られた被検査物W0に係る撮像情報から、図18(a)で示されるように、被検査物W0における8つの特徴点(第1~8特徴点P1~P8)の位置を検出し、その後、第2モジュールの検知部12dで得られた被検査物W0に係る撮像情報から、図18(b)で示されるように、被検査物W0における4つの特徴点(第1特徴点P1a、第4特徴点P4a、第5特徴点P5a、第8特徴点P8a)の位置を検出するとともに、他の4つの特徴点(第2特徴点P2a、第3特徴点P3a、第6特徴点P6a、第7特徴点P7a)の位置については、第1モジュールについて得られた8つの特徴点(第1~8特徴点P1~P8)の関係から推定するような構成が考えられる。このような構成によっても、例えば、第1モジュールおよび第2モジュールのそれぞれについて、回転移動および並行移動等による被検査物W0の姿勢および位置のずれ量が検出され得る。 Here, an example of such a configuration will be described. FIG. 18A is a diagram showing an example of an acquisition mode of information relating to the posture and position of the object to be inspected W0 in one module on the upstream side. FIG. 18B is a diagram showing an example of an acquisition mode of information relating to the posture and position of the object to be inspected W0 in one module on the downstream side. Here, a case where the detection unit 12d obtains image pickup information relating to the two-dimensional posture and position of the object to be inspected W0 by taking an image of the object to be inspected W0 from directly above will be described as an example. Further, here, it is assumed that the object to be inspected W0 is carried into the second module after the first module. For example, from the imaging information related to the inspected object W0 obtained by the detection unit 12d of the first module, as shown in FIG. 18A, eight feature points (1st to 8th feature points) in the inspected object W0. The positions of P1 to P8) are detected, and then, from the imaging information related to the inspected object W0 obtained by the detection unit 12d of the second module, 4 in the inspected object W0 as shown in FIG. 18B. The positions of one feature point (first feature point P1a, fourth feature point P4a, fifth feature point P5a, eighth feature point P8a) are detected, and the other four feature points (second feature point P2a, third feature point P2a, third) are detected. The positions of the feature points P3a, the sixth feature point P6a, and the seventh feature point P7a) are estimated from the relationship of the eight feature points (1st to 8th feature points P1 to P8) obtained for the first module. The configuration is conceivable. Even with such a configuration, for example, for each of the first module and the second module, the amount of deviation in the posture and position of the object to be inspected W0 due to rotational movement, parallel movement, or the like can be detected.
 ここでは、1つのモジュールにおける検知部12dを用いて得た被検査物W0の2次元的な姿勢および位置に係る情報を他のモジュールで利用する例について説明したが、これに限られず、例えば、1つのモジュールにおける検知部12dを用いて得た被検査物W0の3次元的な姿勢および位置に係る情報を他のモジュールで利用してもよい。 Here, an example in which information relating to the two-dimensional posture and position of the object to be inspected W0 obtained by using the detection unit 12d in one module is used in another module has been described, but the present invention is not limited to this, and for example, Information related to the three-dimensional posture and position of the object to be inspected W0 obtained by using the detection unit 12d in one module may be used in another module.
 また、上記第1実施形態において、例えば、各被検査物W0について、第2モジュールとしての反転モジュール13において、第2制御部としての反転制御部Cr3が、搬送経路Rt1における相対的に上流側の第1モジュールとしての検査用モジュール12(例えば、第1検査用モジュール121)の第1検知部としての検知部12dを用いて得た情報と、第2モジュールとしての反転モジュール13の第2検知部としての検知部13dを用いて得た情報と、に基づいて、第2移動機構としての移動機構13tによって被検査物W0に対する保持部13hの相対的な位置を調整してもよい。また、例えば、各被検査物W0について、第1モジュールとしての検査用モジュール12(例えば、第1検査用モジュール121)において、第1制御部としての移動制御部Ct2が、搬送経路Rt1における相対的に上流側の反転モジュール13の第2検知部としての検知部13dを用いて得た情報と、第1モジュールとしての検査用モジュール12の第1検知部としての検知部12dを用いて得た情報と、に基づいて、第1移動機構としての移動機構12tによって被検査物W0に対するセンサ部12sの相対的な位置を調整してもよい。このような構成が採用されれば、例えば、被検査物W0が第1モジュールとしての検査用モジュール12の後に第2モジュールとしての反転モジュール13に搬入される場合には、第2モジュールとしての反転モジュール13において、第1モジュールとしての検査用モジュール12における検知部12dを用いて得た情報を利用して、被検査物W0に対する保持部13hの相対的な位置を調整し、被検査物W0が第2モジュールとしての反転モジュール13の後に第1モジュールとしての検査用モジュール12に搬入される場合には、第1モジュールとしての検査用モジュール12において、第2モジュールとしての反転モジュール13における検知部13dを用いて得た情報を利用して、被検査物W0に対するセンサ部12sの相対的な位置を調整することができる。これにより、例えば、情報の取得に要する構成および時間が削減され得る。 Further, in the first embodiment, for example, for each object W0 to be inspected, in the reversing module 13 as the second module, the reversing control unit Cr3 as the second control unit is relatively upstream in the transport path Rt1. Information obtained by using the detection unit 12d as the first detection unit of the inspection module 12 as the first module (for example, the first inspection module 121) and the second detection unit of the inversion module 13 as the second module. The relative position of the holding unit 13h with respect to the object to be inspected W0 may be adjusted by the moving mechanism 13t as the second moving mechanism based on the information obtained by using the detecting unit 13d. Further, for example, for each object W0 to be inspected, in the inspection module 12 as the first module (for example, the first inspection module 121), the movement control unit Ct2 as the first control unit is relative to the transport path Rt1. Information obtained by using the detection unit 13d as the second detection unit of the inversion module 13 on the upstream side and information obtained by using the detection unit 12d as the first detection unit of the inspection module 12 as the first module. The relative position of the sensor unit 12s with respect to the object to be inspected W0 may be adjusted by the moving mechanism 12t as the first moving mechanism. If such a configuration is adopted, for example, when the object to be inspected W0 is carried into the reversing module 13 as the second module after the inspection module 12 as the first module, the reversing as the second module is carried out. In the module 13, the relative position of the holding portion 13h with respect to the inspected object W0 is adjusted by using the information obtained by using the detection unit 12d in the inspection module 12 as the first module, and the inspected object W0 becomes When the inversion module 13 as the second module is carried into the inspection module 12 as the first module, the detection unit 13d in the inversion module 13 as the second module in the inspection module 12 as the first module. The relative position of the sensor unit 12s with respect to the object to be inspected W0 can be adjusted by using the information obtained by using. This can reduce, for example, the configuration and time required to obtain the information.
 上記第1実施形態において、例えば、統括制御部C0は、投入モジュール11以外の他のモジュールに存在していてもよい。例えば、統括制御部C0は、投入モジュール11、検査用モジュール12、反転モジュール13および排出モジュール14の何れに存在していてもよい。 In the first embodiment, for example, the integrated control unit C0 may exist in a module other than the input module 11. For example, the integrated control unit C0 may exist in any of the input module 11, the inspection module 12, the reversing module 13, and the discharge module 14.
 なお、上記第1実施形態および各種変形例をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能であることは、言うまでもない。 Needless to say, all or part of the above-mentioned first embodiment and various modified examples can be combined as appropriate and within a consistent range.
 1,1A,1B,1C,1D,1E,1F,1G,1H,1I 検査装置
 11 投入モジュール
 111,112 第1~2投入モジュール
 12 検査用モジュール
 121~124 第1~4検査用モジュール
 12d,13d 検知部
 12s,12s1,12s2 センサ部
 12t,12t1,12t2,13t 移動機構
 13 反転モジュール
 13h 保持部
 14 排出モジュール
 15,151,152 搬送モジュール
 C0 統括制御部
 Cc1,Cc2,Cc3,Cc4 搬送制御部
 Cd2,Cd3 検知制御部
 Cr3 反転制御部
 Cs2 センサ制御部
 Cs21 第1センサ制御部
 Cs22 第2センサ制御部
 Ct2 移動制御部
 Ct21 第1移動制御部
 Ct22 第2移動制御部
 Cv1,Cv2,Cv3,Cv4,Cv21,Cv22,Cv23,Cv24 搬送部
1,1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I Inspection device 11 Input module 111, 112 1st and 2nd input modules 12 Inspection module 121 to 124 1st to 4th inspection modules 12d, 13d Detection unit 12s, 12s1,12s2 Sensor unit 12t, 12t1,12t2,13t Movement mechanism 13 Inversion module 13h Holding unit 14 Discharge module 15,151,152 Transport module C0 Control control unit Cc1, Cc2, Cc3, Cc4 Transport control unit Cd2 Cd3 Detection control unit Cr3 Inversion control unit Cs2 Sensor control unit Cs21 1st sensor control unit Cs22 2nd sensor control unit Ct2 Movement control unit Ct21 1st movement control unit Ct22 2nd movement control unit Cv1, Cv2, Cv3, Cv4, Cv21, Cv22, Cv23, Cv24 transport unit

Claims (11)

  1.  検査用モジュールであって、
     該検査用モジュールと該検査用モジュールの外部との間で被検査物を搬送する搬送部と、
     前記被検査物を対象とした撮像および測定のうちの少なくとも一方の検査用の処理を行うセンサ部と、
     前記被検査物に対する前記センサ部の相対的な位置を移動させる移動機構と、
     前記被検査物の姿勢および位置に係る情報を得るための検知部と、
     前記検知部で得られた情報に基づいて、前記移動機構によって前記被検査物に対する前記センサ部の相対的な位置を調整させる制御部と、
    を備える、検査用モジュール。
    It is an inspection module
    A transport unit that transports the object to be inspected between the inspection module and the outside of the inspection module.
    A sensor unit that performs processing for inspection of at least one of imaging and measurement of the object to be inspected.
    A moving mechanism that moves the relative position of the sensor unit with respect to the object to be inspected,
    A detector for obtaining information on the posture and position of the object to be inspected, and
    A control unit that adjusts the relative position of the sensor unit with respect to the object to be inspected by the moving mechanism based on the information obtained by the detection unit.
    A module for inspection.
  2.  請求項1に記載の検査用モジュールであって、
     前記センサ部は、前記被検査物を被写体とした撮像部を含む、検査用モジュール。
    The inspection module according to claim 1.
    The sensor unit is an inspection module including an imaging unit with the object to be inspected as a subject.
  3.  請求項1または請求項2に記載の検査用モジュールであって、
     前記搬送部は、ベルトコンベアを含む、検査用モジュール。
    The inspection module according to claim 1 or 2.
    The transport unit is an inspection module including a belt conveyor.
  4.  反転モジュールであって、
     該反転モジュールと該反転モジュールの外部との間で被検査物を搬送する搬送部と、
     前記被検査物を反転させるために該被検査物を保持する保持部と、
     前記保持部によって前記被検査物を保持させた状態で該保持部を移動させることで前記被検査物を反転させる移動機構と、
     前記被検査物の姿勢および位置に係る情報を得るための検知部と、
     前記検知部で得られた情報に基づいて、前記移動機構によって前記被検査物に対する前記保持部の相対的な位置を調整させる制御部と、
    を備える、反転モジュール。
    It ’s an inversion module,
    A transport unit that transports the object to be inspected between the reversing module and the outside of the reversing module.
    A holding portion that holds the inspected object in order to invert the inspected object, and
    A moving mechanism that inverts the inspected object by moving the holding portion while the inspected object is held by the holding portion.
    A detector for obtaining information on the posture and position of the object to be inspected, and
    Based on the information obtained by the detection unit, the control unit that adjusts the relative position of the holding unit with respect to the object to be inspected by the moving mechanism, and the control unit.
    Inverted module.
  5.  請求項4に記載の反転モジュールであって、
     前記搬送部は、ベルトコンベアを含む、反転モジュール。
    The reversing module according to claim 4.
    The transport unit is a reversing module including a belt conveyor.
  6.  相互に連結された2つ以上のモジュール、を備え、
     該2つ以上のモジュールは、
     第1モジュールと、第2モジュールと、を含み、
     前記第1モジュールは、
     該第1モジュールと該第1モジュールの外部との間で被検査物を搬送する第1搬送部と、
     前記被検査物を対象とした撮像および測定のうちの少なくとも一方の検査用の処理を行うセンサ部と、
     前記被検査物に対する前記センサ部の相対的な位置を移動させる第1移動機構と、
     前記被検査物の姿勢および位置に係る情報を得るための第1検知部と、
     前記第1検知部で得られた情報に基づいて、前記第1移動機構によって前記被検査物に対する前記センサ部の相対的な位置を調整させる第1制御部と、を有し、
     前記第2モジュールは、
     該第2モジュールと該第2モジュールの外部との間で前記被検査物を搬送する第2搬送部と、
     前記被検査物を反転させるために該被検査物を保持する保持部と、
     前記保持部によって前記被検査物を保持させた状態で該保持部を移動させることで前記被検査物を反転させる第2移動機構と、
     前記被検査物の姿勢および位置に係る情報を得るための第2検知部と、
     前記第2検知部で得られた情報に基づいて、前記第2移動機構によって前記被検査物に対する前記保持部の相対的な位置を調整させる第2制御部と、を有する、検査装置。
    It has two or more modules, which are interconnected,
    The two or more modules
    Including the first module and the second module,
    The first module is
    A first transport unit that transports the object to be inspected between the first module and the outside of the first module, and
    A sensor unit that performs processing for inspection of at least one of imaging and measurement of the object to be inspected.
    A first moving mechanism that moves the relative position of the sensor unit with respect to the object to be inspected,
    The first detection unit for obtaining information on the posture and position of the object to be inspected, and
    Based on the information obtained by the first detection unit, the first control unit has a first control unit that adjusts the relative position of the sensor unit with respect to the object to be inspected by the first movement mechanism.
    The second module is
    A second transport unit that transports the object to be inspected between the second module and the outside of the second module, and
    A holding portion that holds the inspected object in order to invert the inspected object, and
    A second moving mechanism that inverts the inspected object by moving the holding portion while the inspected object is held by the holding portion.
    A second detection unit for obtaining information on the posture and position of the object to be inspected, and
    An inspection device having a second control unit that adjusts the relative position of the holding unit with respect to the object to be inspected by the second moving mechanism based on the information obtained by the second detection unit.
  7.  請求項6に記載の検査装置であって、
     前記第2制御部が、前記第1検知部を用いて得られた情報と、前記第2検知部を用いて得られた情報と、に基づいて、前記第2移動機構によって前記被検査物に対する前記保持部の相対的な位置を調整させるか、または前記第1制御部が、前記第1検知部を用いて得られた情報と、前記第2検知部を用いて得られた情報と、に基づいて、前記第1移動機構によって前記被検査物に対する前記センサ部の相対的な位置を調整させる、検査装置。
    The inspection device according to claim 6.
    The second control unit refers to the object to be inspected by the second moving mechanism based on the information obtained by using the first detection unit and the information obtained by using the second detection unit. The relative position of the holding unit is adjusted, or the information obtained by the first control unit using the first detection unit and the information obtained by using the second detection unit can be obtained. Based on this, an inspection device that adjusts the relative position of the sensor unit with respect to the object to be inspected by the first moving mechanism.
  8.  相互に連結された2つ以上のモジュール、を備え、
     該2つ以上のモジュールは、
     第1モジュールと、第2モジュールと、を含み、
     前記第1モジュールは、
     該第1モジュールと該第1モジュールの外部との間で被検査物を搬送する第1搬送部と、
     前記被検査物を対象とした撮像および測定のうちの少なくとも一方の検査用の処理を行う第1センサ部と、
     前記被検査物に対する前記第1センサ部の相対的な位置を移動させる第1移動機構と、
     前記被検査物の姿勢および位置に係る情報を得るための第1検知部と、
     前記第1検知部で得られた情報に基づいて、前記移動機構によって前記被検査物に対する前記第1センサ部の相対的な位置を調整させる第1制御部と、を有し、
     前記第2モジュールは、
     該第2モジュールと該第2モジュールの外部との間で前記被検査物を搬送する第2搬送部と、
     前記被検査物を対象とした撮像および測定のうちの少なくとも一方の検査用の処理を行う第2センサ部と、
     前記被検査物に対する前記第2センサ部の相対的な位置を移動させる第2移動機構と、
     前記被検査物の姿勢および位置に係る情報を得るための第2検知部と、
     前記第2検知部で得られた情報に基づいて、前記第2移動機構によって前記被検査物に対する前記第2センサ部の相対的な位置を調整させる第2制御部と、を有する、検査装置。
    It has two or more modules, which are interconnected,
    The two or more modules
    Including the first module and the second module,
    The first module is
    A first transport unit that transports the object to be inspected between the first module and the outside of the first module, and
    A first sensor unit that performs processing for inspection of at least one of imaging and measurement of the object to be inspected, and
    A first moving mechanism that moves the relative position of the first sensor unit with respect to the object to be inspected,
    The first detection unit for obtaining information on the posture and position of the object to be inspected, and
    It has a first control unit that adjusts the relative position of the first sensor unit with respect to the object to be inspected by the moving mechanism based on the information obtained by the first detection unit.
    The second module is
    A second transport unit that transports the object to be inspected between the second module and the outside of the second module, and
    A second sensor unit that performs processing for inspection of at least one of imaging and measurement of the object to be inspected, and
    A second moving mechanism that moves the relative position of the second sensor unit with respect to the object to be inspected,
    A second detection unit for obtaining information on the posture and position of the object to be inspected, and
    An inspection device having a second control unit that adjusts the relative position of the second sensor unit with respect to the object to be inspected by the second moving mechanism based on the information obtained by the second detection unit.
  9.  請求項8に記載の検査装置であって、
     前記第2制御部が、前記第1検知部を用いて得られた情報と、前記第2検知部を用いて得られた情報と、に基づいて、前記第2移動機構によって前記被検査物に対する前記第2センサ部の相対的な位置を調整させるか、または前記第1制御部が、前記第1検知部を用いて得られた情報と、前記第2検知部を用いて得られた情報と、に基づいて、前記第1移動機構によって前記被検査物に対する前記第1センサ部の相対的な位置を調整させる、検査装置。
    The inspection device according to claim 8.
    The second control unit refers to the object to be inspected by the second moving mechanism based on the information obtained by using the first detection unit and the information obtained by using the second detection unit. The relative position of the second sensor unit is adjusted, or the information obtained by the first control unit using the first detection unit and the information obtained by the second detection unit. An inspection device that adjusts the relative position of the first sensor unit with respect to the object to be inspected by the first moving mechanism.
  10.  請求項6から請求項9の何れか1つの請求項に記載の検査装置であって、
     前記2つ以上のモジュールのそれぞれに位置している前記被検査物を、搬送経路の下流側のモジュールに同時期に搬送する、検査装置。
    The inspection device according to any one of claims 6 to 9.
    An inspection device that transports an object to be inspected located in each of the two or more modules to a module on the downstream side of a transport path at the same time.
  11.  請求項6から請求項10の何れか1つの請求項に記載の検査装置であって、
     前記第1搬送部および前記第2搬送部は、それぞれベルトコンベアを含む、検査装置。
    The inspection device according to any one of claims 6 to 10.
    The first transport unit and the second transport unit are inspection devices including a belt conveyor, respectively.
PCT/JP2020/031843 2019-09-20 2020-08-24 Inspection module, inversion module, and inspection device WO2021054055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019172256A JP2021050938A (en) 2019-09-20 2019-09-20 Inspecting module, inversion module and inspection device
JP2019-172256 2019-09-20

Publications (1)

Publication Number Publication Date
WO2021054055A1 true WO2021054055A1 (en) 2021-03-25

Family

ID=74883812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031843 WO2021054055A1 (en) 2019-09-20 2020-08-24 Inspection module, inversion module, and inspection device

Country Status (3)

Country Link
JP (1) JP2021050938A (en)
TW (1) TW202115385A (en)
WO (1) WO2021054055A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4302799A1 (en) 2021-03-25 2024-01-10 TERUMO Kabushiki Kaisha Pharmaceutical liquid administration device
KR102417612B1 (en) * 2021-10-28 2022-07-06 주식회사 케이엔케이 Component test system and control method for the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222012A (en) * 1992-12-01 1994-08-12 Hitachi Ltd Image processor, image processing method and outer view inspection system for semiconductor package
JPH09306977A (en) * 1996-05-14 1997-11-28 Komatsu Ltd Positioning wafer in wafer tester, etc.
JP2000162144A (en) * 1998-11-30 2000-06-16 Nikon Corp Appearance inspecting method and appearance inspecting device
JP2001088073A (en) * 1999-09-16 2001-04-03 Denso Corp Appearance inspection device
JP2007152533A (en) * 2005-12-08 2007-06-21 Olympus Medical Systems Corp Device and method for removing chip from work chuck
JP2008024457A (en) * 2006-07-22 2008-02-07 Tekkusu Iijii:Kk Carrying device
US20160084739A1 (en) * 2014-09-22 2016-03-24 Hyundai Motor Company Device and method for inspection of tire
JP2017203871A (en) * 2016-05-11 2017-11-16 キヤノン株式会社 Retainer, measuring device, and article manufacturing method
CN108636820A (en) * 2018-03-30 2018-10-12 中国科学院自动化研究所 The precision component automatic detection of view-based access control model and sorting system and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06222012A (en) * 1992-12-01 1994-08-12 Hitachi Ltd Image processor, image processing method and outer view inspection system for semiconductor package
JPH09306977A (en) * 1996-05-14 1997-11-28 Komatsu Ltd Positioning wafer in wafer tester, etc.
JP2000162144A (en) * 1998-11-30 2000-06-16 Nikon Corp Appearance inspecting method and appearance inspecting device
JP2001088073A (en) * 1999-09-16 2001-04-03 Denso Corp Appearance inspection device
JP2007152533A (en) * 2005-12-08 2007-06-21 Olympus Medical Systems Corp Device and method for removing chip from work chuck
JP2008024457A (en) * 2006-07-22 2008-02-07 Tekkusu Iijii:Kk Carrying device
US20160084739A1 (en) * 2014-09-22 2016-03-24 Hyundai Motor Company Device and method for inspection of tire
JP2017203871A (en) * 2016-05-11 2017-11-16 キヤノン株式会社 Retainer, measuring device, and article manufacturing method
CN108636820A (en) * 2018-03-30 2018-10-12 中国科学院自动化研究所 The precision component automatic detection of view-based access control model and sorting system and method

Also Published As

Publication number Publication date
JP2021050938A (en) 2021-04-01
TW202115385A (en) 2021-04-16

Similar Documents

Publication Publication Date Title
WO2021054055A1 (en) Inspection module, inversion module, and inspection device
EP3100266B1 (en) Positioning device for an optical triangulation sensor
US9529945B2 (en) Robot simulation system which simulates takeout process of workpieces
US20180005365A1 (en) Inspection system
CN106992137A (en) Carrying device and bearing calibration
CN108008278A (en) Robot system
CN108731602A (en) Object thickness measurement system, method, detection device and computer program product
US10334226B2 (en) Vision system with automatic calibration
TW201930826A (en) Appearance inspection device, appearance inspection method, program and workpiece manufacturing method
CN106596555B (en) Optical inspection apparatus employing multi-axis robot arm
TW201916238A (en) Substrate transport device and method for determining positional relationship between substrate transport robot and substrate carrying unit
JP6198312B2 (en) Three-dimensional measuring apparatus, three-dimensional measuring method, and substrate manufacturing method
WO2021054059A1 (en) Imaging device
TWI522634B (en) Method and device for conveying electronic component detection sorting
JP7278186B2 (en) Imaging device
WO2021054052A1 (en) Inversion device
JPH06229741A (en) Method and apparatus for inspecting transparent planar item
US20170080569A1 (en) Apparatus, methods, computer programs, and non-transitory computer readable storage mediums for controlling movement of robotic machinery relative to an object
CN204881536U (en) Size measurement device
JP2021052247A (en) Imaging apparatus
CN108426541A (en) Generate the device and method of the operation program of inspection system
CN205826273U (en) Lens optical detection device
JP2023032090A (en) Image processing device, image processing method and program
EP3403052A1 (en) Feeler device, marker for a feeler device and system for taking photogrammetric measurements of objects
JP2012225750A (en) Three-dimensional measurement instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866039

Country of ref document: EP

Kind code of ref document: A1