WO2021054014A1 - 粉末材料、積層造形物、および粉末材料の製造方法 - Google Patents

粉末材料、積層造形物、および粉末材料の製造方法 Download PDF

Info

Publication number
WO2021054014A1
WO2021054014A1 PCT/JP2020/031017 JP2020031017W WO2021054014A1 WO 2021054014 A1 WO2021054014 A1 WO 2021054014A1 JP 2020031017 W JP2020031017 W JP 2020031017W WO 2021054014 A1 WO2021054014 A1 WO 2021054014A1
Authority
WO
WIPO (PCT)
Prior art keywords
inclusions
powder material
powder
content
carbonitride
Prior art date
Application number
PCT/JP2020/031017
Other languages
English (en)
French (fr)
Inventor
輝貴 臼田
慎之介 山田
元嗣 大▲崎▼
Original Assignee
大同特殊鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同特殊鋼株式会社 filed Critical 大同特殊鋼株式会社
Priority to EP20864699.2A priority Critical patent/EP4015105A4/en
Priority to CA3154987A priority patent/CA3154987A1/en
Priority to CN202080065080.2A priority patent/CN114423540A/zh
Priority to US17/760,686 priority patent/US20220331868A1/en
Publication of WO2021054014A1 publication Critical patent/WO2021054014A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/15Carbonitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a powder material, a laminated model, and a method for producing the powder material. More specifically, the present invention is a powder material made of a Ni-based alloy that can be used as a raw material for the laminated model, and is produced using such a powder material. It relates to a laminated model to be made, and a method for producing such a powder material.
  • additive manufacturing technology has been remarkable as a new technology for manufacturing three-dimensional shaped objects.
  • additional manufacturing technology there is a layered manufacturing method that utilizes solidification of a powder material by irradiation with energy rays.
  • Two typical methods of additive manufacturing using metal powder materials are the powder additive manufacturing method and the powder deposition method.
  • the powder layer melting method include a selective laser melting method (Selective Laser Melting; SLM), an electron beam melting method (Electron Beam Melting; EBM), and the like.
  • SLM Selective Laser Melting
  • EBM Electro Beam Melting
  • a powder material made of metal is supplied onto a base material to form a powder bed, and based on three-dimensional design data, a laser beam and electrons are placed at a predetermined position on the powder bed. Irradiate energy rays such as lines. Then, the powder material of the irradiated portion is solidified by melting and re-solidification, and a modeled object is formed.
  • a three-dimensional model can be obtained by repeating the supply of the powder material to the powder bed and the modeling by irradiation with energy rays, and sequentially laminating the model in layers.
  • a laser metal deposition method Laser Metal Deposition; LMD
  • LMD Laser Metal Deposition
  • a three-dimensional model having a desired shape is formed by injecting a metal powder at a position where a three-dimensional model is desired to be formed and at the same time irradiating a laser beam.
  • SLM can be suitably used for manufacturing a member having a precise and complicated shape due to a high degree of freedom in design and the like, and is expected to be applied to various fields.
  • Additive manufacturing methods such as the SLM method can be carried out using powder materials having various compositions as raw materials.
  • laminated molding made from Ni-based alloy powder which has excellent heat resistance and corrosion resistance, has begun to be used in the manufacture of equipment that operates in harsh environments such as rocket engines and turbine blades.
  • the Ni-based alloy powder for laminated molding is disclosed in, for example, Patent Document 1 below.
  • the problem to be solved by the present invention is a powder material capable of reducing the content of inclusions in the obtained laminated model when laminating modeling is performed using a powder material made of a Ni-based alloy, and a powder material thereof. It is an object of the present invention to provide a laminated model in which the content of inclusions is suppressed to a low level, and a method for producing such a powder material.
  • the powder material according to the present invention is composed of an atomized powder of a Ni-based alloy containing inclusions, and the number of particles of the inclusions contained is one in 10,000 particles of the atomizing powder. It is 100 or less.
  • the Ni-based alloy may contain at least one additive element selected from Al, Ti, and Nb, and the inclusions may contain at least one of an oxide or a carbonitride of the additive element. ..
  • the number of the inclusions containing the carbonitride of the additive element is smaller than that of the inclusions containing the oxide of the additive element.
  • the number of particles of the inclusions containing the carbonitride of the additive element is preferably 10 or less among 10000 particles of the atomized powder.
  • the particle size of the inclusions is preferably 30 ⁇ m or less. Further, the circularity of the particles of the atomized powder is preferably 0.90 or more in terms of the average particle size.
  • the Ni-based alloy is 50% ⁇ Ni ⁇ 60%, 15% ⁇ Cr ⁇ 25%, 0% ⁇ Mo ⁇ 5%, 0.1% ⁇ Ti ⁇ 1.5%, 0.1% in mass%.
  • the laminated model according to the present invention is made of a Ni-based alloy containing inclusions, and the number of the inclusions contained in the cross section is 100 pieces / mm 2 or less.
  • the Ni-based alloy may contain at least one additive element selected from Al, Ti, and Nb, and the inclusions may contain at least one of an oxide or a carbonitride of the additive element. ..
  • the number of the inclusions containing the carbonitride of the additive element is smaller than that of the inclusions containing the oxide of the additive element.
  • the number of inclusions containing the carbonitride of the additive element is preferably 10 pieces / mm 2 or less.
  • the particle size of the inclusions in the cross section is preferably 30 ⁇ m or less.
  • the Ni-based alloy is 50% ⁇ Ni ⁇ 60%, 15% ⁇ Cr ⁇ 25%, 0% ⁇ Mo ⁇ 5%, 0.1% ⁇ Ti ⁇ 1.5%, 0.1% in mass%.
  • the method for producing a powder material according to the present invention is to produce the powder material by a gas atomizing method using an inert gas.
  • the inert gas is preferably a rare gas.
  • the powder material according to the above invention is made of atomized powder of a Ni-based alloy, and can be suitably used as a raw material for laminated modeling such as SLM. Further, since the content of inclusions is suppressed to 100 or less in 10,000 particles of the atomized powder, the content of inclusions can be suppressed to be small in the manufactured laminated model. As a result, it is possible to suppress a decrease in fatigue strength due to the presence of inclusions in the laminated model. According to the research by the inventors, in the step of laminating molding using Ni-based alloy powder as a raw material, the formation and growth of inclusions do not substantially occur, and the lamination obtained by the amount of inclusions contained in the raw material powder is obtained. It became clear that the amount of inclusions in the model was almost determined. Therefore, by suppressing the content of inclusions in the powder material as a raw material to the above level, the content of inclusions can be sufficiently suppressed in the manufactured laminated model.
  • the Ni-based alloy contains at least one additive element selected from Al, Ti, and Nb, and the inclusions contain at least one of the oxide or carbonitride of the additive element
  • the material strength can be increased in the produced laminated model.
  • these additive elements tend to form oxides and carbonitrides, but in the powder material according to the above invention, the content of inclusions is limited, so that the oxides of those additive elements and It is sufficiently suppressed that inclusions containing carbonitride contribute to a decrease in fatigue strength in the laminated modeled product.
  • the number of particles of the inclusions containing the carbonitride of the additive element is 10 or less in 10,000 particles of the atomized powder, the content of the inclusions containing the metal carbonitride in the powder material. However, it is suppressed to a sufficiently small amount, and thus the content of the entire inclusions is suppressed to a small amount.
  • the particle size of the inclusions is 30 ⁇ m or less, the influence of the inclusions can be suppressed particularly effectively in the manufactured laminated model.
  • the powder material can be suitably used as a raw material for the laminated molding, and a high-quality laminated molded product having a dense structure can be produced.
  • the Ni-based alloy has the above-mentioned composition, it is easy to reduce the content of inclusions containing metal oxides and carbonitrides.
  • the powder material can be suitably used as a raw material for the laminated molding, and a high-quality laminated molded product can be obtained.
  • the laminated model according to the above invention is made of a Ni-based alloy, and the content of inclusions is suppressed to 100 pieces / mm 2 or less in the cross section. Therefore, the laminated model has excellent heat resistance and corrosion resistance, and the decrease in fatigue strength due to the presence of inclusions is suppressed.
  • the inventors have clarified, when a laminated model made of a Ni-based alloy is produced, the formation and growth of inclusions hardly occur in the step of the laminated modeling. Therefore, unlike the powder material according to the above invention, by performing a laminated model using Ni-based alloy powder having a low content of inclusions as a raw material, no special treatment or the like is performed in the layered modeling process. In addition, the content of inclusions in the laminated model can be suppressed as low as 100 pieces / mm 2 or less.
  • a powder material made of a Ni-based alloy is produced by an atomizing method using an inert gas. Therefore, it is possible to produce a powder material having excellent cleanliness and circularity and which can be suitably used as a raw material for laminated molding. In particular, the content of inclusions such as metal oxides and carbonitrides can be effectively suppressed, and the cleanliness of the powder material can be improved.
  • the content of inclusions can be suppressed to a particularly low level. Above all, the content of inclusions containing metal carbonitride can be remarkably suppressed as compared with the case where nitrogen gas is used as the inert gas.
  • modeled object A For (a) modeled object A and (b) modeled object B, the number distribution of inclusions is shown by classifying them according to the dimensions based on the SEM-EDX observation results in a wide field of view. For each sample, the contents of Al and Ti detected as inclusions by the extraction residue method are shown. For each sample, SEM images and dimensions are shown for the inclusions detected by the extraction residue method that have the largest dimensions.
  • the powder material, the laminated model, and the method for producing the powder material according to the embodiment of the present invention will be described in detail below.
  • the powder material according to the embodiment of the present invention can be suitably used as a raw material for laminated modeling.
  • the laminated model according to the embodiment of the present invention can be suitably produced by using such a powder material.
  • the powder material according to one embodiment of the present invention is composed of an aggregate of particles made of a Ni-based alloy, and is configured as an atomized powder, that is, a powder material produced by an atomizing method.
  • the powder material according to this embodiment is assumed to be used as a raw material for laminated modeling, particularly SLM.
  • the specific alloy composition of the Ni-based alloy constituting the powder material according to the present embodiment is not particularly limited as long as the content of inclusions can be suppressed to the upper limit or less described below. Absent.
  • An example of the alloy composition will be described in detail later, but it is preferable that the Ni-based alloy contains at least one additive element selected from Al, Ti, and Nb (hereinafter, may be referred to as a specific additive element).
  • These specific additive elements have the effect of increasing the material strength in the obtained laminated model. It is more preferable that the specific additive element contains two or more kinds, more preferably all three kinds.
  • the powder material according to this embodiment inevitably contains inclusions.
  • the inclusions are composed of granules of metal compounds such as metal oxides and metal carbonitrides (including carbides and nitrides; the same applies hereinafter), and are contained inside the particles of the Ni-based alloy. It is contained in the powder material.
  • the content of inclusions is suppressed to 100 or less per 10,000 particles of the atomized powder. More preferably, the content thereof is suppressed to 70 or less and 50 or less.
  • the content of inclusions in the powder material By suppressing the content of inclusions in the powder material to be small, the content of inclusions can be suppressed to be small in the laminated model produced by using the powder material.
  • the powder material when laminating modeling such as SLM is performed using a powder material made of a Ni-based alloy, the powder material is irradiated at high speed by irradiation with energy rays such as a laser beam. In the process of melting and re-solidifying, virtually no inclusions or growth occur. Therefore, the inclusions contained in the powder material as the raw material will be contained in the manufactured laminated model in almost the same amount and form. That is, by keeping the content of inclusions in the powder material low, it is possible to keep the content of inclusions low in the manufactured laminated model.
  • the content of inclusions in the powder material is suppressed to 100 or less per 10,000 particles of the atomized powder, for example, in the laminated model to be manufactured, the content of inclusions in the cross section is 100 pieces / mm. It is possible to suppress it to 2 or less.
  • the particles of each inclusion may have any size.
  • the particle size of inclusions is typically on the order of microns. If the particle size of the inclusions (diameter equivalent to the area circle; the same applies below) is suppressed to 30 ⁇ m or less, the influence of the inclusions is particularly effective in the laminated model manufactured using the powder material. It can be suppressed.
  • the particle size of the inclusions is more preferably 10 ⁇ m or less.
  • the type and content of inclusions are not particularly limited.
  • the specific additive elements easily form oxides and carbonitrides, and as inclusions in the powder material, the oxides of the specific additive elements and / Alternatively, carbonitride is likely to be contained. In that case, it is preferable that the number of inclusions containing the carbonitride of the specific additive element is smaller than the number of inclusions containing the oxide of the specific additive element.
  • the oxide of the specific additive element can be contained in the powder material in a certain amount regardless of the component composition of the powder material, the production method, etc., whereas the content of the carbonitride of the specific additive element is It may vary greatly depending on the composition of the powder material and the manufacturing method. Therefore, by suppressing the content of the carbonitride to be small, the content of the entire inclusions can be effectively reduced, and the fatigue characteristics of the manufactured laminated model can be improved.
  • the inclusions containing the oxide of the specific additive element are composed almost exclusively of the oxide of the specific additive element, and the inclusions containing the carbonitride of the specific additive element are , Consists of carbonitride, which is almost a specific additive element.
  • the comparison of the number of inclusions for each component is preferably performed for a statistically sufficient number of inclusions, such as inclusions contained in 10,000 particles of atomized powder.
  • the number of inclusions containing the carbonitride of the specific additive element is 50% or less, more preferably 20% or less, and 10% or less of the number of inclusions containing the oxide of the specific additive element. Good.
  • the number of inclusions containing carbonitride is preferably 20 or less, more preferably 10 or less, and 5 or less per 10,000 particles of atomized powder. If the content of inclusions containing carbonitride, which is a specific additive element, is kept below these levels, the content of inclusions as a whole, including inclusions made of oxides, can be effectively reduced. be able to.
  • Al and Ti tend to form oxides.
  • Ti and Nb tend to form a carbonitride, particularly a nitride.
  • the breakdown of the compounds constituting the oxides and carbonitrides of the specific additive elements is not particularly limited, but the number of inclusions containing Al oxides such as Al 2 O 3 in the oxides is not particularly limited. However, it is preferable that the number is larger than the number of inclusions containing Ti oxide such as TiO 2. More preferably, the number ratio of the two is 2.0 or more in terms of the ratio of [Al oxide] / [Ti oxide]. When this number ratio is 2.0 or more, Al and Ti are more likely to contribute to precipitation hardening of the ⁇ 'phase than to the formation of inclusions.
  • the number and shape of inclusions contained in the powder material can be evaluated by a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • a cross-section sample may be prepared by embedding a powder material in a resin and cutting, and inclusions in the cross-section sample may be observed.
  • the composition of inclusions can be analyzed by energy dispersive X-ray analysis (SEM-EDX) using SEM on the cross-sectional sample.
  • the inclusions refer to metal compounds such as granular oxides and carbonitrides contained inside the powder material, and the surface of the atomized particles constituting the powder material has a thickness.
  • a compound film such as an oxide film, which is coated in the state of a thin film on the order of 10 nm, is not considered as an inclusion in the evaluation of the number and state of inclusions.
  • inclusions composed of micron-order granules are contained almost as they are in the manufactured laminated molding, whereas on the particle surface. This is because the thin compound film is gasified when the powder material is melted and hardly remains in the produced laminated model, and has almost no effect on the characteristics of the laminated model.
  • the powder material according to the present embodiment is configured as an atomized powder, and as a feature of the atomized powder, as described below, it is easy to improve the cleanliness by using the gas atomizing method using an inert gas or the like. In addition, it is easy to increase the circularity.
  • the circularity of the particles is preferably 0.88 or more, more preferably 0.90 or more, in terms of the average particle size (D50). If the laminated molding is performed using a powder material having a high degree of circularity, the relative density can be increased and a dense structure can be obtained in the manufactured laminated molded product due to the high fluidity and filling property of the powder material.
  • the particle size of the powder material according to the present embodiment is not particularly limited, but from the viewpoint of being preferably used as a raw material for laminated molding, the D90 diameter is preferably 150 ⁇ m or less. More specifically, among the laminated moldings, when used for SLM, the particle size (D90 diameter) is preferably 40 to 80 ⁇ m, and when used for EBM, it is preferably 80 to 100 ⁇ m. When used for LMD, it is preferably 90 to 140 ⁇ m.
  • the powder material according to the above embodiment is configured as an atomized powder, and can be produced by carrying out the atomizing method using a molten alloy having a predetermined component composition as a raw material.
  • a molten alloy having a predetermined component composition as a raw material.
  • the atomizing method any method such as a gas atomizing method, a disc atomizing method, and a water atomizing method can be used.
  • an inert gas is used from the viewpoint of preferably producing a powder material having a particle size on the order of microns, which has a high degree of cleanliness and a high degree of circularity. It is preferable to use the existing gas atomizing method.
  • Examples of the inert gas used in the gas atomizing method include nitrogen gas and rare gas.
  • nitrogen gas When any of the inert gases is used, the formation of inclusions in the powder material, particularly the formation of inclusions containing metal oxides, can be suppressed to a small extent.
  • a rare gas typified by argon gas, the formation of inclusions can be suppressed particularly effectively.
  • nitrogen gas it is easy to suppress the amount of inclusions containing metal carbonitride to be small. As a result, a highly clean powder material having a low content of all inclusions can be suitably produced.
  • the powder material produced by the atomizing method may be appropriately classified and the particle size may be selected. Further, the powder material produced by the atomizing method may be appropriately subjected to chemical treatment.
  • the layered model is made from a powder material as a raw material, and is formed into a predetermined shape by melting and resolidifying the powder material by irradiation with energy rays by a layered modeling method such as SLM, EBM, and LBM.
  • the laminated model according to the present embodiment can be suitably produced by using the powder material according to the embodiment of the present invention described in detail above as a raw material.
  • the laminated model according to this embodiment is made of a Ni-based alloy.
  • the specific alloy composition of the Ni-based alloy is not particularly limited as long as the content of inclusions can be suppressed to the upper limit or less described below.
  • An example of the alloy composition will be described in detail later, but the Ni-based alloy preferably contains at least one selected from specific additive elements, that is, Al, Ti, and Nb. By containing these specific additive elements, the material strength of the laminated model is enhanced. It is more preferable that the specific additive element contains two or more kinds, more preferably all three kinds.
  • the alloy composition of the laminated model is generally the same as the alloy composition of the powder material used as a raw material.
  • the laminated model according to this embodiment inevitably contains inclusions.
  • the inclusions are dispersed in the structure of the Ni-based alloy and are contained in the laminated model.
  • the content (density) of inclusions is suppressed to 100 pieces / mm 2 or less in the cross section of the laminated model. More preferably, the content thereof is suppressed to 70 pieces / mm 2 or less and 50 pieces / mm 2 or less.
  • the cross section for evaluating the number of inclusions may be set at an arbitrary position and in an arbitrary direction.
  • a laminated model made of a Ni-based alloy Since a laminated model made of a Ni-based alloy has high corrosion resistance and heat resistance, it can be suitably used as a member exposed to a harsh environment such as a rocket engine or a turbine blade. However, if the laminated model made of a Ni-based alloy contains inclusions containing metal oxides, metal carbonitrides, etc., the inclusions may become the starting point of fatigue cracks, and the laminated model becomes fatigued. May reduce properties. In particular, low cycle fatigue tends to be a problem in turbine blades and the like. Therefore, in a laminated model made of a Ni-based alloy, a decrease in fatigue strength can be suppressed by suppressing the content of inclusions to be small. As described above, by suppressing the number of inclusions in the cross section of the laminated model to 100 pieces / mm 2 or less, the decrease in fatigue strength of the laminated model can be effectively suppressed.
  • Each inclusion may have any size as long as the content of inclusions contained in the laminated model is suppressed to the above upper limit or less.
  • the particle size of inclusions is typically on the order of microns. If the particle size of the inclusions is suppressed to 30 ⁇ m or less, the influence of the inclusions can be particularly effectively suppressed in the laminated model.
  • the particle size of the inclusions is more preferably 10 ⁇ m or less.
  • the type and content of inclusions are not particularly limited.
  • the specific additive elements easily form oxides and carbonitrides, and the oxides of the specific additive elements and the oxides of the specific additive elements are used as inclusions in the laminated model. / Or carbonitride is likely to be contained. In that case, it is preferable that the number of inclusions containing the carbonitride of the specific additive element is smaller than the number of inclusions containing the oxide of the specific additive element.
  • the formation and growth of inclusions do not substantially occur in the laminating molding step, and the powder material as a raw material
  • the inclusions contained in are carried over to the laminated model in almost the same content and form, but as described above for the powder material according to the embodiment of the present invention, the carbonitride is used in the powder material.
  • the content of inclusions contained low the content of the inclusions as a whole can be effectively reduced.
  • the inclusions containing the oxide of the specific additive element are almost exclusively composed of the oxide of the specific additive element, and the inclusions containing the carbonitride of the specific additive element are almost specific.
  • the comparison of the number of inclusions for each component is made for a statistically sufficient number of inclusions, for example, the number of inclusions contained in 1 mm 2 of the cross section of the laminated model. , Preferably done.
  • the number of inclusions containing the carbonitride of the specific additive element is 50% or less, more preferably 20% or less, and 10% or less of the number of inclusions containing the oxide of the specific additive element. Good.
  • the number of inclusions containing carbonitride is preferably 50 pieces / mm 2 or less, more preferably 20 pieces / mm 2 or less, and 10 pieces / mm 2 or less. If the content of inclusions containing the carbonitride of the specific additive element is suppressed to these levels or less, the content of the inclusions as a whole can be effectively reduced.
  • the number of inclusions contained in 10,000 particles of the atomized powder and the inclusions contained in the region of 1 mm 2 in the cross section of the laminated molding. Can be associated with almost the same number of.
  • the particle size of the powder particles in the powder material is 5 ⁇ m or less for small particles and 90 to 150 ⁇ m for large particles, but the average particle size is about 10 to 20 ⁇ m.
  • the number and shape of inclusions contained in the laminated model can be evaluated by SEM.
  • SEM For example, a cross-sectional sample may be prepared by cutting the laminated model at an arbitrary position and direction, and inclusions in the cross-sectional sample may be observed. Analysis of the composition of inclusions can be performed on the cross-sectional sample by SEM-EDX. The evaluation using SEM-EDX may be performed in an arbitrary observation field of view, or may be continuously performed over a wide area of the cross section by automatic measurement.
  • the laminated model according to this embodiment preferably has a relative density of 98% or more.
  • the content of inclusions is suppressed to a low level, the cleanliness is high, and the relative density is high, so that the mechanical strength is excellent. It can be a high-quality laminated model.
  • the relative density of the laminated model can be effectively increased by using, for example, a powder material having a high degree of circularity as a raw material.
  • the hardness of the laminated model is preferably 250 HV or more.
  • the hardness is more preferably 280 HV or more, more preferably 300 HV or more.
  • the additive manufacturing method produced by the additive manufacturing method can be distinguished from the bulk material produced through casting or the like by the microstructure formed in the cross section of the additive manufacturing method.
  • a laminated model produced by the SLM method is derived from a molten pool formed during laser scanning as a microstructure, and straddles a molten bead formed in a wavy shape along the laser scanning direction and the molten bead. It is characterized by a crystalline structure that has been epitaxially grown in this way.
  • the bulk material of a Ni-based alloy is characterized by an aggregate of highly isotropic microcrystals having a relatively uniform particle size.
  • the content of inclusions can be suppressed to be smaller than that of the bulk material made of the same material.
  • the content of inclusions containing metal carbonitride can be kept low.
  • the content of inclusions in the bulk material is about 250 to 400 pieces / mm 2 in cross section.
  • the powder material and the laminated model according to the embodiment of the present invention are made of a Ni-based alloy, and the specific component composition is particularly limited as long as the content of inclusions is suppressed to the above upper limit or less.
  • the component composition A is shown below as the component composition A.
  • the powder material is instantly melted by irradiation with energy rays and then re-solidified at high speed.
  • the composition of the metal component is substantially unchanged.
  • the content and state of inclusions do not change substantially in the laminated molding step.
  • the content of non-metallic elements such as O, N, and C also does not change substantially. Therefore, the component composition of the Ni-based alloy is substantially the same in the powder material and the laminated model produced by using the powder material.
  • the component composition A illustrated below also has a suitable component composition for both the powder material and the laminated model.
  • the Ni-based alloy according to the component composition A contains Ni, Cr, Mo, Ti, Al, Nb, and N in the following predetermined amounts, and the balance consists of Fe and unavoidable impurities. Further, the contents of C, O and S are limited to the following predetermined upper limit or less.
  • each component element in the component composition A the content of each component element in the component composition A and the reason for its regulation will be described.
  • the unit of the content of each component element is mass%.
  • the content of each component element is defined for the powder material and the laminated model as a whole, including inclusions.
  • Ni 50% ⁇ Ni ⁇ 60% Ni is the main component of this alloy.
  • Ni-based alloys exhibit high heat resistance and corrosion resistance.
  • the Ni content is more preferably 55% or less.
  • the Cr content is set to 15% or more, and more preferably 17% or more.
  • the Cr content is 25% or less, more preferably 21% or less.
  • Mo is an element that contributes to solid solution strengthening of alloys and is effective in increasing the strength of alloys. Since Mo exerts a large addition effect even in a small amount, there is no particular lower limit on the Mo content, but it is preferably 0.1% or more. On the other hand, if a large amount of Mo is contained, the formation of ⁇ phase and ⁇ phase is promoted in the Ni-based alloy, which contributes to embrittlement. Therefore, the Mo content is 5% or less, more preferably 3.5% or less.
  • Ti is an element that forms a ⁇ 'phase in a Ni-based alloy and increases creep rupture strength and oxidation resistance. From the viewpoint of sufficiently obtaining these effects, the Ti content is set to 0.1% or more. On the other hand, if a large amount of Ti is contained, high-temperature cracking is likely to occur, which contributes to cracking during laminated molding. From the viewpoint of avoiding this, the Ti content is set to 1.5% or less. Further, when Ti is contained together with N in the alloy, inclusions such as TiN are formed. Furthermore, when contained together with O, it forms inclusions such as TiO 2. From the viewpoint of suppressing the formation of inclusions such as these, the Ti content is set to 1.5% or less.
  • Al is an element that forms a ⁇ 'phase and increases creep rupture strength and oxidation resistance. From the viewpoint of sufficiently obtaining these effects, the Al content is set to 0.1% or more. On the other hand, if Al is also contained in a large amount, high-temperature cracking is likely to occur, which contributes to cracking during laminated molding. From the viewpoint of avoiding this, the Al content is set to 1.5% or less. Further, when Al is contained together with O in the alloy, inclusions such as Al 2 O 3 are formed. From the viewpoint of suppressing the formation of such inclusions, the Al content is set to 1.5% or less.
  • Nb plays a role in forming a carbonitride and forming a ⁇ 'phase in a Ni-based alloy to improve the strength of the alloy. Since Nb shows a high effect even if it is added in a small amount, there is no particular lower limit on the content of Nb, but it is preferably 4.0% or more. On the other hand, even if a large amount of Nb is contained, a Laves layer is formed, and the strength is rather lowered. Therefore, the content of Nb is 6% or less, and more preferably 5.5% or less.
  • N has the effect of improving the hardness of the laminated model by contributing to the solid solution strengthening of Ni. From the viewpoint of sufficiently obtaining the effect, the content of N is set to 0.005% or more. On the other hand, if an excessive amount of N is contained, the ductility of the Ni-based alloy is lowered and cracking is promoted. It also promotes the formation of inclusions such as metal nitrides. From the viewpoint of suppressing these phenomena, the N content is set to 0.05% or less.
  • the Ni-based alloy according to the component composition A contains the above-mentioned predetermined amounts of Ni, Cr, Mo, Ti, Al, Nb, and N, and the balance is composed of Fe and unavoidable impurities.
  • the following elements and upper limit amounts are assumed as unavoidable impurities.
  • C ⁇ 0.08% C forms inclusions such as metal carbides in the Ni-based alloy. From the viewpoint of sufficiently suppressing the amount of inclusions produced, the C content is suppressed to 0.08% or less.
  • O ⁇ 0.02% O may form an oxide with Fe, Ti, Al and the like, causing a decrease in strength and toughness. From the viewpoint of suppressing the formation of oxides, the O content is 0.02% or less.
  • S ⁇ 0.03% S forms inclusions such as MnS. From the viewpoint of suppressing the formation of these inclusions, the S content is set to 0.03% or less.
  • the Ni-based alloy according to the component composition A may optionally contain at least one element selected from the following elements in addition to the above-mentioned elements.
  • Si and Mn are elements that act as deoxidizers and impart oxidation resistance at high temperatures when dissolved in the production of powdered materials. Even if only a small amount of Si and Mn are added, their effects are highly exerted, so that no lower limit is set for the content. On the other hand, if too much Si or Mn is contained, the oxidation resistance at high temperature is rather lowered, so the respective contents are set to 0.5% or less.
  • Hf 0.5% ⁇ Hf ⁇ 3% Hf has the effect of improving the oxidation resistance of the Ni-based alloy. From the viewpoint of sufficiently obtaining the effect, the content of Hf is set to 0.5% or more. On the other hand, if too much Hf is contained, an embrittled phase is formed and the strength and toughness are lowered. From the viewpoint of avoiding such situations, the Hf content is set to 3% or less.
  • Co has the effect of increasing the solubility of the ⁇ 'phase in a Ni solid solution and increasing the high temperature ductility and high temperature strength. Since Co exerts its effects even if only a small amount is added, there is no particular lower limit on the Co content. On the other hand, if a large amount of Co is contained, embrittlement of the Ni-based alloy occurs, so that the Co content is set to 2% or less.
  • Ta has the effect of strengthening the ⁇ 'phase and improving the strength of the Ni-based alloy. Since Ta exerts its effects even if only a small amount is added, there is no particular lower limit on the content of Ta. On the other hand, if a large amount of Ta is contained, a Laves phase is formed and the strength is rather lowered. Therefore, the Ta content is set to 6% or less.
  • Powder material A and powder material B were prepared by a gas atomization method using a molten Ni-based alloy having substantially the same composition as a raw material.
  • the powder material A was produced by injection of argon gas in an atmosphere induction melting furnace (IGIF).
  • the powder material B was produced by injecting nitrogen (N 2) gas in a radio frequency induction furnace (HFIF). Both powder materials were classified to have a powder particle size of ⁇ 45 ⁇ m as a nominal particle size.
  • a laminated model was produced by the SLM method, and these were designated as models A and B, respectively.
  • a block-shaped object having a height of 12 mm square ⁇ 20 mm was produced.
  • a stake-shaped support was also integrally formed below the block.
  • Example identification The component compositions of the powder materials A and B produced above and the shaped objects A and B produced using them were evaluated by fluorescent X-ray analysis and gas analysis, respectively.
  • the appearance of the powders of the powder materials A and B was evaluated by SEM observation.
  • the particle size distribution and the circularity in the average particle size (D50) were evaluated by a wet particle image measurement method.
  • the true density of each powder material was evaluated by the liquid phase substitution method.
  • the relative densities of the shaped objects A and B were estimated based on the measurement results of the density by the Archimedes method and the true density of the powder material evaluated above. Further, the hardness of the shaped objects A and B was measured by a Vickers hardness test based on JIS Z2244: 2009. Furthermore, the microstructure in the cross section of each model was evaluated by observation with an optical microscope.
  • the particles were embedded in a resin and cut to prepare a cross-sectional sample.
  • SEM-EDX observation was performed on 10,000 particles of the powder material using the cross-sectional sample thus prepared.
  • the central portion in the height direction was cut perpendicularly in the height direction to prepare a cross-sectional sample.
  • SEM-EDX observation was carried out on the obtained cross-sectional sample in a field of view of an arbitrarily selected observation area of 0.15 mm 2.
  • the number, component composition, dimensions, shape, etc. of the inclusions contained in the cross-sectional sample were evaluated by SEM-EDX observation.
  • the particle size of the inclusions was evaluated as the diameter equivalent to the area circle.
  • the amount, composition, and dimensions of the inclusions were analyzed by the extraction residue method. That is, 2.0 g of each sample was collected, and inclusions were eluted using a bromine-methanol solution. In this solution, the metal components dissolve, but the inclusions do not dissolve and remain as a residue. The obtained eluate was filtered through a 0.2 ⁇ m mesh filter. Then, the inclusions captured by the filter were observed by SEM-EDX, and the amount, composition, and dimensions of the inclusions were evaluated.
  • Table 1 shows the analysis results of the component compositions of the powder materials A and B and the shaped objects A and B obtained by fluorescent X-ray analysis and gas analysis.
  • FIG. 1 shows an SEM observation image
  • FIG. 2 shows the particle size distribution measurement result
  • Table 2 summarizes the evaluation results regarding the state of the powder material such as the particle size.
  • FIG. 3 shows the evaluation results regarding physical characteristics such as relative density.
  • the powder material A and the powder material B have almost the same content of each component element except for N, Al, and Ti.
  • the contents of N, Al, and Ti are all higher in the powder material B than in the powder material A.
  • the content of the powder material B is five times that of the powder material A. This is because the powder material B uses nitrogen gas at the time of production and a relatively large amount of N is incorporated into the powder material, whereas the powder material A uses argon gas at the time of production and is a powder. It can be interpreted that the uptake of N into the material was suppressed to a small extent.
  • Ti is an element that easily forms a nitride, and in the powder material B containing a large amount of N, it is considered that Ti is also contained in a large amount in the form of a nitride.
  • molten beads are generated in a wavy shape along the laser scanning direction (horizontal direction in the figure) for both the shaped objects A and B.
  • a microstructure of epitaxially grown crystals can be seen straddling these molten beads and running in a streak in the stacking direction (vertical direction in the figure).
  • the density and the relative density of the model A and the model B are almost the same, but the hardness of the model B is about 30 HV higher. This difference in hardness can be associated with the strengthening of precipitation due to the precipitation of inclusions.
  • FIG. 4 shows the shape, number, maximum dimensions, and component composition of inclusions obtained by SEM-EDX observed in an arbitrary field of view for the powder materials A and B and the shaped objects A and B.
  • the observation results of the shaped objects A and B used here are those observed in a narrow field of view with an observation area of 0.15 mm 2.
  • the SEM image is of an arbitrarily selected inclusion.
  • As the number of inclusions a value converted into the number contained in 10,000 particles of the material powder for the powder material and the number in the area of 1 mm 2 of the cross section is displayed for the modeled object.
  • (Al, Ti) O 2 indicates oxides of Al and Ti
  • (Nb, Ti) (C, N) indicates carbonitrides of Nb and Ti.
  • nitrogen gas is used for the production of the powder material, and as shown in the analysis of the above component composition, the powder material B having a relatively large N content, and such a powder material. It is considered that the model B produced by using B contains N atoms in the state of metal carbonitride.
  • the powder material A in which argon gas is used for producing the powder material and the content of N in the powder material is suppressed to be low and in the modeled product A produced using such the powder material A. Is interpreted as not containing metallic carbonitride as an inclusion in an amount detectable by SEM-EDX, corresponding to the low content of N.
  • the number of inclusions is remarkably suppressed in the powder material A and the model A as compared with the powder material B and the model B, respectively. It is considered that the effect that the content of the carbonitride is remarkably suppressed in the powder material A and the modeled object A is large in reducing the number of inclusions. Further, the maximum particle size of the inclusions as a whole is almost the same in the powder material A and the model A and the powder material B and the model B, but when focusing only on the oxide, the powder material B and the model B Object B is smaller. It is considered that this is related to the fact that Ti, which is an oxide-forming element, contributes to the formation of the carbonitride in the powder material B and the model B.
  • FIG. 5 shows the number of inclusions per 1 mm 2 obtained by continuous observation of the cross sections of the shaped objects A and B and the bulk material for each type of inclusions.
  • the content of oxide in the model B is higher than the content of carbonitride.
  • the Ti oxide is larger, whereas in the model A, the Al oxide is larger.
  • the modeling object B has a higher content of inclusions than the modeling object A, but when the modeling objects A and B are compared with the bulk material, the inclusions are present in both the modeling objects A and B. It can be seen that the content of the substance is significantly reduced.
  • the bulk material contains inclusions made of a large amount of carbonitride, but in the model B, the content of the carbonitride is reduced to about 10%, and further, the model A In, as described above, carbonitrides are no longer produced. From this, in the laminated model using the powder material produced by the atomizing method, whether the atomizing gas used for the powder production is argon gas or nitrogen gas, inclusions are compared with the bulk material. In particular, it can be seen that the content of inclusions made of carbonitride can be significantly reduced. Further, by using argon gas as the atomizing gas, the content of inclusions can be further reduced.
  • Table 4 shows the component composition of the inclusions obtained by the above continuous observation with respect to the cross sections of the shaped objects A and B.
  • the component composition of the inclusions is shown by the element content ratio (unit: mol%) for each type of inclusions.
  • the oxide is composed almost exclusively of Al, Ti and O, and contains only a very small amount of Nb and C. N is not contained.
  • the carbonitride consists only of Ti, Nb, C and N, and does not contain Al and O. From this, it is confirmed that the oxide and the carbonitride contained in the modeled product as inclusions have completely different compositions and are formed as independent phases. The composition of the oxides of the model A and the model B are almost the same.
  • FIG. 6 shows the number of observed inclusions ( per 25 mm 2 ) classified by size for each of the shaped objects A and B.
  • a large number of fine inclusions of 10 ⁇ m or less are formed in both the shaped objects A and B, and in both the oxide and the carbonitride. Comparing the distributions of oxides and carbonitrides in the model B, the carbonitrides are distributed in a region with smaller dimensions, and the inclusions having the largest dimensions are oxides.
  • Both the shaped objects A and B have a larger maximum size of inclusions than those shown in FIG. 4, but this has a wider observation field and allows observation of a large number of inclusions. It depends.
  • the types of inclusions and the maximum particle size are compared between the powder material and the modeled product produced from the powder material.
  • the types of inclusions oxide or carbonitride observed when the powder materials A and B are formed into the shaped objects A and B through the laminated molding process have not changed.
  • the maximum particle size of the inclusions is almost the same in the powder material A and the modeled object A.
  • the particle size of the oxide is larger in the model B, but the carbonitride is almost unchanged between the two. From these, it can be said that no new kind of inclusions are generated from the state of the powder material even after the laminating molding step, and further, at least for the carbonitride, the growth of particles does not occur.
  • FIG. 7 shows the analysis results of the component composition of the extraction residue.
  • FIG. 7 shows the contents of Al and Ti detected as constituting inclusions for each sample.
  • the unit of content is mass% based on the mass of the powder material or the entire model. The content can be directly compared between the powder material and the modeled object.
  • a small amount of Al-based and Ti-based inclusions are detected in the powder material A and the modeled object A. This can be associated with oxides of Al and Ti.
  • a small amount of Al-based inclusions and a large amount of Ti-based inclusions are detected in the powder material B and the modeled object B. This can be associated with the state in which a carbonitride containing Ti is formed in addition to the oxides of Al and Ti.
  • the analysis result of the extraction residue corresponds well with the observation result of the above SEM-EDX.
  • the detected amounts of Al and Ti did not change significantly between the powder material A and the model A, and between the powder material B and the model B. From this, it can be seen that the amount and type of inclusions have hardly changed when the modeled product is manufactured from the powder material through the laminated modeling process.
  • FIG. 8 shows an SEM image of each inclusion in the extraction residue, which has the largest size, for each sample. Comparing the observation results of the powder material A and the model A, the maximum size and particle shape of the oxide are substantially unchanged. Similarly, when the observation results of the powder material B and the model B are compared, the dimensions and particle shapes of the inclusions are almost unchanged in both the oxide and the carbonitride. From this, it is possible that the particles of inclusions do not grow when the molded product is produced from the powder material through the laminated molding step for any of the samples, and for both the oxide and the nitride. I understand.
  • the oxide has a particle shape close to a spherical shape, whereas the carbonitride has a dendrite shape.
  • Example identification The component composition of each of the powder materials prepared above and the modeled product produced using them was evaluated by fluorescent X-ray analysis and gas analysis, respectively.
  • Table 5 shows the component compositions of the powder and the laminated model for each of Samples 1 to 16.
  • Fe constitutes an alloy as the balance of other indicated component elements, but in the table, the content of Fe calculated from the content of other components is indicated in parentheses.
  • Table 5 further shows the number of inclusions detected for each sample. The number of inclusions is shown for each of Al oxide, Ti oxide and Ti carbonitride. In addition, the number ratio of Al oxide and Ti oxide (Al oxide / Ti oxide) is also shown. The number of inclusions is indicated as the number per 10,000 powder particles for the powder material and as the number per 1 mm 2 of the cross section for the modeled object.
  • the N content of the samples 1 to 7 is suppressed to 0.05% or less, whereas the N content of the samples 8 to 16 is 0. It exceeds 05%. From this, as in Samples 1 to 7, by suppressing the content of N to be small, the content of inclusions made of carbonitride can be suppressed to be small, and by extension, the total number of inclusions including oxides. However, it is interpreted that it can be suppressed to a small extent. Further, among the samples 8 to 16, in the samples 11, 12 and 16 in which the Ti content exceeds 1.5%, the number of carbonitrides and the total number of inclusions are particularly large. It can be said that suppressing the content of Ti in addition to N is also effective in reducing inclusions.
  • a powder material made of a Ni-based alloy when laminating molding is performed using a powder material made of a Ni-based alloy, a powder material capable of suppressing the content of inclusions in a small amount in the obtained laminated molding, and such inclusions. It is possible to provide a laminated model having a low content of, and a method for producing such a powder material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Civil Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Laminated Bodies (AREA)

Abstract

介在物を含有するNi基合金のアトマイズ粉末よりなり、含有される介在物の粒子数が、アトマイズ粉末の粒子10000個中に、100個以下である粉末材料。介在物を含有するNi基合金よりなり、断面において含有される介在物の数が、100個/mm以下である積層造形物。不活性ガスを用いたガスアトマイズ法により、上記粉末材料を製造する粉末材料の製造方法。

Description

粉末材料、積層造形物、および粉末材料の製造方法
 本発明は、粉末材料、積層造形物、および粉末材料の製造方法に関し、さらに詳しくは、積層造形の原料として用いることができるNi基合金よりなる粉末材料、およびそのような粉末材料を用いて製造される積層造形物、またそのような粉末材料の製造方法に関する。
 三次元造形物を製造する新しい技術として、付加製造技術(Additive Manufacturing;AM)の発展が近年著しい。付加製造技術の一種として、粉末材料のエネルギー線照射による固化を利用した積層造形法がある。金属粉末材料を用いた積層造形法としては、粉末積層溶融法と、粉末堆積法の2種が代表的である。
 粉末積層溶融法の具体例として、選択的レーザー溶融法(Selective Laser Melting;SLM)、電子線溶融法(Electron Beam Melting;EBM)等の方法を挙げることができる。これらの方法においては、金属よりなる粉末材料を、ベースとなる基材上に供給して粉末床を形成し、三次元設計データをもとに、粉末床の所定の位置に、レーザービーム、電子線等のエネルギー線を照射する。すると、照射を受けた部位の粉末材料が、溶融と再凝固によって固化し、造形物が形成される。粉末床への粉末材料の供給とエネルギー線照射による造形を繰り返し、造形物を層状に順次積層して形成していくことで、三次元造形物が得られる。一方、粉末堆積法の具体例としては、レーザー金属堆積法(Laser Metal Deposition;LMD)を挙げることができる。この方法においては、三次元造形物を形成したい位置に、ノズルを用いて金属粉末を噴射しながら、同時に、レーザービームの照射を行い、所望の形状を有する三次元造形物を形成する。特に、SLMは、設計自由度の高さ等から、精密かつ複雑な形状を有する部材の製造に好適に用いることができ、様々な分野への応用が期待されている。
 SLM法等の積層造形法は、種々の組成を有する粉末材料を原料として用いて、実施することができる。中でも、耐熱性や耐食性に優れたNi基合金の粉末を原料とした積層造形が、ロケットエンジンやタービン翼といった過酷な環境下で稼働する機器の製造に、用いられ始めている。積層造形用のNi基合金粉末は、例えば、下記の特許文献1に開示されている。
日本国特開2017-36485号公報
 Ni基合金より構成される部材においては、金属酸化物や金属炭窒化物等の介在物が含有されると、その介在物が疲労亀裂の起点となり、疲労強度に影響を及ぼす可能性がある。Ni基合金よりなる部材を、積層造形法によって製造する場合にも、疲労強度の低下を抑制する観点から、製造される造形物において、介在物の含有量を低減することが望ましい。しかし、積層造形法においては、金属粉末をごく短時間で溶融させ、さらに凝固させるため、製造される造形物において、どのように介在物が生成し、また成長するのか、詳細が明らかになっていない。よって、積層造形物において、介在物の含有量を抑制する方法も、確立されていない。特許文献1においても、造形物に含有される介在物については、言及されていない。
 本発明が解決しようとする課題は、Ni基合金よりなる粉末材料を用いて積層造形を行う場合に、得られる積層造形物において、介在物の含有量を少なく抑えることができる粉末材料、およびそのように介在物の含有量が少なく抑えられた積層造形物、またそのような粉末材料の製造方法を提供することにある。
 上記課題を解決するため、本発明にかかる粉末材料は、介在物を含有するNi基合金のアトマイズ粉末よりなり、含有される前記介在物の粒子数が、前記アトマイズ粉末の粒子10000個中に、100個以下である。
 ここで、前記Ni基合金は、Al,Ti,Nbより選択される少なくとも1種の添加元素を含有し、前記介在物は、前記添加元素の酸化物または炭窒化物の少なくとも一方を含有するとよい。この場合に、前記添加元素の炭窒化物を含有する前記介在物の方が、前記添加元素の酸化物を含有する前記介在物よりも数が少ないとよい。また、前記添加元素の炭窒化物を含有する前記介在物の粒子数が、前記アトマイズ粉末の粒子10000個中に、10個以下であるとよい。
 前記介在物の粒径が30μm以下であるとよい。また、アトマイズ粉末の粒子の円形度が、平均粒径において、0.90以上であるとよい。
 前記Ni基合金は、質量%で、50%≦Ni≦60%、15%≦Cr≦25%、0%<Mo≦5%、0.1%≦Ti≦1.5%、0.1%≦Al≦1.5%、0%<Nb≦6%、0.005%≦N≦0.05%を含有し、残部がFeおよび不可避的不純物よりなり、C≦0.08%、O≦0.02%、S≦0.03%であるとよい。この場合、さらに、質量%で、0%<Si≦0.5%、0%<Mn≦5%、0.5%≦Hf≦3%、0.5%≦Zr≦3%、0%<Co≦2%、0%<Ta≦6%から選択される少なくとも1種を含有するとよい。
 本発明にかかる積層造形物は、介在物を含有するNi基合金よりなり、断面において含有される前記介在物の数が、100個/mm以下である。
 ここで、前記Ni基合金は、Al,Ti,Nbより選択される少なくとも1種の添加元素を含有し、前記介在物は、前記添加元素の酸化物または炭窒化物の少なくとも一方を含有するとよい。この場合に、前記添加元素の炭窒化物を含有する前記介在物の方が、前記添加元素の酸化物を含有する前記介在物よりも数が少ないとよい。また、前記添加元素の炭窒化物を含有する介在物の数が、10個/mm以下であるとよい。前記断面における前記介在物の粒径は、30μm以下であるとよい。
 前記Ni基合金は、質量%で、50%≦Ni≦60%、15%≦Cr≦25%、0%<Mo≦5%、0.1%≦Ti≦1.5%、0.1%≦Al≦1.5%、0%<Nb≦6%、0.005%≦N≦0.05%を含有し、残部がFeおよび不可避的不純物よりなり、C≦0.08%、O≦0.02%、S≦0.03%であるとよい。この場合、さらに、質量%で、0%<Si≦0.5%、0%<Mn≦5%、0.5%≦Hf≦3%、0.5%≦Zr≦3%、0%<Co≦2%、0%<Ta≦6%から選択される少なくとも1種を含有するとよい。
 本発明にかかる粉末材料の製造方法は、不活性ガスを用いたガスアトマイズ法により、前記粉末材料を製造するものである。
 ここで、前記不活性ガスは、希ガスであるとよい。
 上記発明にかかる粉末材料は、Ni基合金のアトマイズ粉末よりなっており、SLM等の積層造形の原料として、好適に用いることができる。また、介在物の含有量が、アトマイズ粉末の粒子10000個中に100個以下に抑えられていることにより、製造される積層造形物において、介在物の含有量を少なく抑えることができる。その結果、積層造形物において、介在物の存在に起因する疲労強度の低下を、抑制することができる。発明者らの研究により、Ni基合金粉末を原料とする積層造形の工程においては、介在物の生成や成長が実質的に起こらず、原料粉末に含有される介在物の量により、得られる積層造形物中の介在物の量がほぼ決まることが明らかになった。よって、原料となる粉末材料中の介在物の含有量を上記の水準に抑えておくことで、製造される積層造形物において、介在物の含有量を、十分に少なく抑えることができる。
 ここで、Ni基合金が、Al,Ti,Nbより選択される少なくとも1種の添加元素を含有し、介在物が、添加元素の酸化物または炭窒化物の少なくとも一方を含有する場合には、それらの添加元素がNi基合金に含有されることで、製造される積層造形物において、材料強度を高めることができる。一方で、それらの添加元素は、酸化物や炭窒化物を形成しやすいが、上記発明にかかる粉末材料においては、介在物の含有量が制限されることにより、それらの添加元素の酸化物や炭窒化物を含有する介在物が、積層造形物において、疲労強度の低下等に寄与することが、十分に抑制される。
 この場合に、上記添加元素の炭窒化物を含有する介在物の方が、添加元素の酸化物を含有する介在物よりも数が少なければ、介在物全体の含有量を、効果的に低減することができる。金属酸化物を含有する介在物は、アトマイズ法によってNi基合金よりなる粉末材料を製造する際に、ある程度不可避的に生成してしまうが、金属炭窒化物を含有する介在物の含有量は、粉末材料の製造条件や成分組成によって、比較的低減しやすいからである。
 また、上記添加元素の炭窒化物を含有する介在物の粒子数が、アトマイズ粉末の粒子10000個中に、10個以下であれば、粉末材料における金属炭窒化物を含有する介在物の含有量が、十分少量に抑えられ、ひいては介在物全体の含有量が、少なく抑えられる。
 介在物の粒径が30μm以下である場合には、製造される積層造形物において、介在物の影響を、特に効果的に抑制することができる。
 また、アトマイズ粉末の粒子の円形度が、平均粒径において、0.90以上である場合には、円形度が高くなっていることにより、粉末材料において、高い流動性や充填性が得られる。よって、粉末材料を積層造形の原料として好適に用い、緻密な組織を有する高品質の積層造形物を製造することができる。
 Ni基合金が、上記成分組成を有する場合には、金属酸化物や炭窒化物を含有する介在物の含有量を少なく抑えやすい。加えて、材料強度の高さ等により、粉末材料を積層造形の原料として好適に用い、高品質の積層造形物を得ることができる。
 上記発明にかかる積層造形物は、Ni基合金よりなっており、介在物の含有量が、断面において、100個/mm以下に抑えられている。よって、耐熱性や耐食性に優れ、かつ介在物の存在による疲労強度の低下が抑えられた積層造形物となる。発明者らが明らかにしたように、Ni基合金よりなる積層造形物を製造する際には、積層造形の工程において、介在物の生成や成長は、ほぼ起こらない。よって、上記発明にかかる粉末材料のように、介在物の含有量が少なく抑えられたNi基合金粉末を原料として積層造形物を行うことで、積層造形工程において、特殊な処理等を行わなくても、積層造形物における介在物の含有量を、100個/mm以下のように、少なく抑えることができる。
 上記発明にかかる粉末材料の製造方法においては、不活性ガスを用いたアトマイズ法により、Ni基合金よりなる粉末材料を製造する。よって、清浄度や円形度に優れた、積層造形の原料として好適に用いうる粉末材料を、製造することができる。特に、金属酸化物や炭窒化物をはじめとする介在物の含有量を効果的に抑制し、粉末材料の清浄度を高めることができる。
 この場合に、不活性ガスとして希ガスを用いると、介在物の含有量を、特に少なく抑えることができる。中でも、不活性ガスとして窒素ガスを用いる場合と比較して、金属炭窒化物を含有する介在物の含有量を、顕著に少なく抑えることができる。
(a)粉末材料Aおよび(b)粉末材料BのSEM像である。 粉末材料A,Bの粒度分布である。 (a)造形物Aおよび(b)造形物Bの断面の光学顕微鏡像である。 各試料について、狭い視野でのSEM-EDX観察結果に基づいて、介在物のSEM像、個数、最大寸法および種類をまとめたものである。 バルク材および造形物A,Bについて、広い視野でのSEM-EDX観察結果に基づいて、断面積1mmあたりの介在物の個数を示している。 (a)造形物Aおよび(b)造形物Bについて、広い視野でのSEM-EDX観察結果に基づいて、介在物の個数分布を、寸法ごとに分類して示している。 各試料について、抽出残渣法によって介在物として検出された、AlおよびTiの含有量を示している。 各試料について、抽出残渣法によって検出された介在物のうち、最大寸法を有するものについて、SEM像と寸法を示している。
 以下に、本発明の実施形態にかかる粉末材料、積層造形物、および粉末材料の製造方法について、詳細に説明する。本発明の実施形態にかかる粉末材料は、積層造形の原料に好適に用いることができる。また、本発明の実施形態にかかる積層造形物は、そのような粉末材料を用いて、好適に製造することができる。
[粉末材料]
 最初に、本発明の一実施形態にかかる粉末材料について説明する。本実施形態にかかる粉末材料は、Ni基合金よりなる粒子の集合体よりなっており、アトマイズ粉末、つまりアトマイズ法によって製造された粉末材料として構成されている。本実施形態にかかる粉末材料は、積層造形、特にSLMの原料として用いることが想定されている。
 本実施形態にかかる粉末材料を構成するNi基合金の具体的な合金組成は、介在物の含有量を、次に説明する上限以下に抑えることができるものであれば、特に限定されるものではない。合金組成の一例を後に詳しく説明するが、Ni基合金は、Al,Ti,Nbより選択される少なくとも1種の添加元素(以降、特定添加元素と称する場合がある)を含有することが好ましい。これら特定添加元素は、得られる積層造形物において、材料強度を高める効果を有する。特定添加元素は、2種以上、さらには3種全てが含有されると、より好ましい。
 本実施形態にかかる粉末材料は、不可避的に、介在物を含有している。介在物は、金属酸化物や金属炭窒化物(炭化物および窒化物を含む;以下においても同様)等、金属の化合物の粒状体よりなっており、Ni基合金の粒子の内部に包含される形で、粉末材料に含有されている。しかし、本実施形態にかかる粉末材料においては、介在物の含有量が、アトマイズ粉末の粒子10000個あたり、100個以下に抑えられている。さらに好ましくは、その含有量は、70個以下、50個以下に抑えられているとよい。
 粉末材料において、介在物の含有量が少なく抑えられることにより、その粉末材料を用いて製造される積層造形物において、介在物の含有量を、少なく抑えることができる。特に、後の実施例において示すように、Ni基合金よりなる粉末材料を用いて、SLMをはじめとする積層造形を実施する場合には、レーザービーム等のエネルギー線の照射によって粉末材料を高速で溶融させ、再凝固させる工程において、介在物の生成や成長が、実質的に起こらない。よって、原料である粉末材料に含有されていた介在物が、ほぼそのままの量および形態で、製造される積層造形物に含有されることになる。つまり、粉末材料における介在物の含有量を少なく抑えておくことで、製造される積層造形物において、介在物の含有量を少なく抑えることができる。粉末材料における介在物の含有量を、アトマイズ粉末の粒子10000個あたり、100個以下に抑えておけば、例えば、製造される積層造形物において、断面における介在物の含有量を、100個/mm以下に抑えることが可能となる。
 粉末材料に含有される介在物の含有量が、上記の上限以下に抑えられていれば、各介在物の粒子は、どのような大きさであってもよい。しかし、介在物の粒径は、典型的にはミクロンオーダーである。介在物の粒径(面積円相当径;以下においても同じ)が、30μm以下に抑えられていれば、粉末材料を用いて製造される積層造形物において、介在物の影響を、特に効果的に抑制することができる。介在物の粒径は、10μm以下であると、さらに好ましい。
 粉末材料に含有される介在物の総量が、上記の上限以下に抑えられていれば、介在物の種類や含有量の内訳は、特に限定されるものではない。しかし、Ni基合金が上記特定添加元素を含む場合に、それら特定添加元素は、酸化物や炭窒化物を形成しやすく、粉末材料中に、介在物として、それら特定添加元素の酸化物および/または炭窒化物が含有されやすい。その場合に、特定添加元素の炭窒化物を含有する介在物の個数が、特定添加元素の酸化物を含有する介在物の個数よりも、少ないことが好ましい。特定添加元素の酸化物は、粉末材料の成分組成や製造方法等によらず、ある程度の量で粉末材料に含有されうるものであるのに対し、特定添加元素の炭窒化物の含有量は、粉末材料の成分組成や製造方法等によって、大きく変動する可能性がある。そこで、炭窒化物の含有量を少なく抑えることにより、介在物全体の含有量を、効果的に低減し、製造される積層造形物において、疲労特性の向上を図ることができる。なお、後の実施例に示すように、特定添加元素の酸化物を含有する介在物は、ほぼ特定添加元素の酸化物のみよりなっており、特定添加元素の炭窒化物を含有する介在物は、ほぼ特定添加元素の炭窒化物のみよりなっている。成分ごとの介在物の個数の比較は、例えば、アトマイズ粉末の粒子10000個あたりに含有される介在物のように、統計的に十分な個数の介在物を対象として、行うことが好ましい。
 さらに好ましくは、特定添加元素の炭窒化物を含有する介在物の個数が、特定添加元素の酸化物を含有する介在物の個数の50%以下、さらには20%以下、10%以下であるとよい。また、炭窒化物を含有する介在物の個数は、アトマイズ粉末の粒子10000個あたりの個数で、20個以下、さらには10個以下、5個以下であることが好ましい。特定添加元素の炭窒化物を含有する介在物の含有量をこれらの水準以下に抑えておけば、酸化物よりなる介在物も合わせた、介在物全体としての含有量も、効果的に低減することができる。
 特定添加元素のうち、AlおよびTi、特にAlが酸化物を形成しやすい。一方、特定添加元素のうち、TiおよびNbが、炭窒化物、特に窒化物を構成しやすい。特定添加元素の酸化物および炭窒化物において、それぞれを構成する化合物の内訳は、特に限定されるものではないが、酸化物において、Al等、Al酸化物を含有する介在物の個数が、TiO等、Ti酸化物を含有する介在物の個数よりも、多いことが好ましい。さらに好ましくは、両者の個数比が、[Al酸化物]/[Ti酸化物]の比率で、2.0以上であるとよい。この個数比が2.0以上である場合には、AlやTiが、介在物の形成よりも、γ’相の析出硬化に寄与しやすくなる。
 粉末材料に含有される介在物の個数や形状は、走査電子顕微鏡(SEM)によって、評価することができる。例えば、粉末材料を樹脂に包埋して切断することで、断面試料を作成し、その断面試料における介在物を観察すればよい。介在物の組成の解析は、断面試料に対して、SEMを用いたエネルギー分散型X線分析(SEM-EDX)によって行うことができる。
 なお、介在物とは、上記でも説明したように、粉末材料の内部に含有された粒状の酸化物や炭窒化物等の金属化合物を指し、粉末材料を構成するアトマイズ粒子の表面を、厚さ10nmオーダーの薄い膜の状態で被覆する、酸化膜等の化合物膜は、介在物の数や状態の評価において、介在物として考慮されるものとはならない。積層造形工程において、粉末材料の高速での溶融および凝固を経た際に、ミクロンオーダーの粒状体よりなる介在物は、製造される積層造形物に、ほぼそのまま含有されるのに対し、粒子表面の薄い化合物膜は、粉末材料の溶融時に、ガス化して、製造される積層造形物にはほとんど残らず、積層造形物の特性に、ほぼ影響を与えないからである。
 本実施形態にかかる粉末材料は、アトマイズ粉末として構成されているが、アトマイズ粉末の特徴として、次に述べるように、不活性ガスを用いたガスアトマイズ法の利用等により、清浄度を高めやすいことに加え、円形度を高めやすいことを挙げることができる。本実施形態にかかる粉末材料においては、粒子の円形度が、平均粒径(D50)において、0.88以上、さらには0.90以上であることが好ましい。円形度の高い粉末材料を用いて積層造形を行えば、粉末材料の流動性や充填性の高さにより、製造される積層造形物において、相対密度を高め、緻密な組織を得ることができる。
 本実施形態にかかる粉末材料の粒径は、特に限定されるものではないが、積層造形の原料として好適に用いる観点から、D90径で、150μm以下であることが好ましい。さらに詳しくは、積層造形の中でも、SLMに用いる場合には、その粒径(D90径)は、40~80μmであることが好ましく、EBMに用いる場合には、80~100μmであることが好ましく、LMDに用いる場合には、90~140μmであることが好ましい。
[粉末材料の製造方法]
 上記実施形態にかかる粉末材料は、アトマイズ粉末として構成されており、所定の成分組成を有する合金溶湯を原料として、アトマイズ法を実施することで、製造することができる。アトマイズ法としては、ガスアトマイズ法、ディスクアトマイズ法、水アトマイズ法等、任意の方法を用いることができる。しかし、介在物の含有量の少なさに代表されるように、清浄度が高く、さらに円形度が高い、ミクロンオーダーの粒径を有する粉末材料を好適に製造する観点から、不活性ガスを用いたガスアトマイズ法を用いることが好ましい。
 ガスアトマイズ法において用いる不活性ガスとしては、窒素ガス、または希ガスを例示することができる。いずれの不活性ガスを用いる場合にも、粉末材料における介在物の生成、特に金属酸化物を含有する介在物の生成を、少なく抑えることができる。しかし、アルゴンガスに代表される希ガスを用いることで、介在物の生成を、特に効果的に抑制することができる。中でも、窒素ガスを用いる場合と比較して、金属炭窒化物を含有する介在物の生成量を、少なく抑えやすい。その結果として、介在物全体の含有量が少なく抑えられた、清浄度の高い粉末材料を、好適に製造することができる。
 アトマイズ法によって製造した粉末材料に対しては、適宜、分級を行って、粒径を選別してもよい。また、アトマイズ法によって製造した粉末材料に、適宜、化学処理を施してもよい。
[積層造形物]
 次に、本発明の一実施形態にかかる積層造形物について説明する。積層造形物は、粉末材料を原料とし、SLM、EBM、LBM等の積層造形法によって、エネルギー線の照射による粉末材料の溶融と再凝固を経て、所定の形状に成形されたものである。本実施形態にかかる積層造形物は、上記で詳細に説明した本発明の実施形態にかかる粉末材料を原料として、好適に製造することができる。
 本実施形態にかかる積層造形物は、Ni基合金よりなっている。Ni基合金の具体的な合金組成は、介在物の含有量を、次に説明する上限以下に抑えることができるものであれば、特に限定されるものではない。合金組成の一例を後に詳しく説明するが、Ni基合金は、特定添加元素、つまりAl,Ti,Nbより選択される少なくとも1種を含有することが好ましい。これら特定添加元素を含有することで、積層造形物の材料強度が高められる。特定添加元素は、2種以上、さらには3種全てが含有されると、より好ましい。積層造形物における合金組成は、おおむね、原料として用いる粉末材料の合金組成と同じとなる。
 本実施形態にかかる積層造形物は、不可避的に、介在物を含有している。介在物は、Ni基合金の組織中に分散されて、積層造形物に含有されている。しかし、本実施形態にかかる積層造形物においては、介在物の含有量(密度)が、積層造形物の断面において、100個/mm以下に抑えられている。さらに好ましくは、その含有量は、70個/mm以下、50個/mm以下に抑えられているとよい。積層造形物において、介在物の数を評価する断面は、任意の位置、任意の方向に、設定すればよい。
 Ni基合金よりなる積層造形物は、高い耐食性や耐熱性を有するため、ロケットエンジンやタービン翼等、過酷な環境に晒される部材として、好適に用いることができる。しかし、Ni基合金よりなる積層造形物に、金属酸化物や金属炭窒化物等を含む介在物が含有されると、介在物が疲労亀裂の起点となる可能性があり、積層造形物の疲労特性を低下させる可能性がある。特に、タービン翼等において、低サイクル疲労が問題となりやすい。そこで、Ni基合金よりなる積層造形物において、介在物の含有量を少なく抑えることにより、疲労強度の低下を、抑制することができる。上記のように、積層造形物の断面における介在物の数を、100個/mm以下に抑えておくことで、積層造形物の疲労強度の低下を、効果的に抑制することができる。
 積層造形物に含有される介在物の含有量が、上記の上限以下に抑えられていれば、各介在物は、どのような大きさであってもよい。しかし、介在物の粒径は、典型的にはミクロンオーダーである。介在物の粒径が、30μm以下に抑えられていれば、積層造形物において、介在物の影響を、特に効果的に抑制することができる。介在物の粒径は、10μm以下であると、さらに好ましい。
 積層造形物に含有される介在物の総量が、上記の上限以下に抑えられていれば、介在物の種類や含有量の内訳は、特に限定されるものではない。しかし、Ni基合金が上記特定添加元素を含む場合に、それら特定添加元素は、酸化物や炭窒化物を形成しやすく、積層造形物中に、介在物として、それら特定添加元素の酸化物および/または炭窒化物が含有されやすい。その場合に、特定添加元素の炭窒化物を含有する介在物の個数が、特定添加元素の酸化物を含有する介在物の個数よりも、少ないことが好ましい。後の実施例において明確に示されるように、Ni基合金粉末を原料として積層造形を実施する場合には、積層造形工程において、介在物の生成や成長は実質的に起こらず、原料たる粉末材料に含有される介在物が、ほぼそのままの含有量および形態で、積層造形物に引き継がれるが、上記で本発明の実施形態にかかる粉末材料について説明したように、粉末材料において、炭窒化物を含有する介在物の含有量を少なく抑えることにより、介在物全体の含有量を、効果的に低減することができる。なお、積層造形物においても、特定添加元素の酸化物を含有する介在物は、ほぼ特定添加元素の酸化物のみよりなっており、特定添加元素の炭窒化物を含有する介在物は、ほぼ特定添加元素の炭窒化物のみよりなっている。積層造形物において、成分ごとの介在物の個数の比較は、例えば、積層造形物の断面の1mmあたりに含有される介在物の個数ように、統計的に十分な個数の介在物を対象として、行うことが好ましい。
 さらに好ましくは、特定添加元素の炭窒化物を含有する介在物の個数が、特定添加元素の酸化物を含有する介在物の個数の50%以下、さらには20%以下、10%以下であるとよい。また、炭窒化物を含有する介在物の個数は、50個/mm以下、さらには20個/mm以下、10個/mm以下であることが好ましい。特定添加元素の炭窒化物を含有する介在物の含有量をこれらの水準以下に抑えておけば、介在物全体の含有量も、効果的に低減することができる。
 なお、以下に説明するように、積層造形の原料として用いる粉末材料中において、アトマイズ粉末の粒子10000個に含まれる介在物の個数と、積層造形物の断面において1mmの領域に含まれる介在物の個数を、ほぼ同等のものとして対応づけることができる。粉末材料における粉末粒子の粒径は、小さいもので5μm以下、大きいもので90~150μm程度であるが、平均粒径は、10~20μm程度である。この粒子を、縦100個×横100個で合計10000個配列すると、粒子の集合体が占める領域の面積は、1mm×1mm=1mmとなる。つまり、粉末材料の粒子10000個と、積層造形物の断面積1mmを、ほぼ同等の領域を占めるとみなすことができる。よって、上記で説明した本発明の実施形態にかかる、アトマイズ粉末の粒子10000個あたりの介在物の個数が100個以下に抑えられた粉末材料を用いることで、断面における介在物の個数が100個/mm以下となった積層造形物を、好適に製造することができる。
 積層造形物に含有される介在物の個数や形状は、SEMによって、評価することができる。例えば、積層造形物を任意の位置および方向において切断することで、断面試料を作成し、その断面試料における介在物を観察すればよい。介在物の組成の解析は、断面試料に対して、SEM-EDXによって行うことができる。SEM-EDXを用いた評価は、任意の観察視野において行っても、自動測定により、断面の広い領域に対して、連続的に行ってもよい。
 本実施形態にかかる積層造形物は、相対密度が、98%以上となっていることが好ましい。積層造形物の相対密度が高いほど、組織が緻密になり、積層造形物の強度が高くなる。特に、本実施形態においては、積層造形物において、上記のように、介在物の含有量が少なく抑えられ、高い清浄度を有することに加え、高い相対密度を有することで、機械的強度に優れた高品質の積層造形物とすることができる。積層造形物の相対密度は、例えば、原料の粉末材料として、円形度の高いものを用いることにより、効果的に高めることができる。
 さらに、積層造形物の材料強度を高める観点から、積層造形物の硬さは、250HV以上であることが好ましい。硬さは、280HV以上、さらには300HV以上であると、さらに好ましい。
 積層造形法によって製造された積層造形物は、積層造形物の断面に形成された微細組織により、鋳造等を経て製造されたバルク材と、区別することができる。例えば、SLM法によって製造された積層造形物は、微細組織として、レーザースキャン時に形成される溶融プールに由来して、レーザースキャン方向に沿って波状に形成される溶融ビードと、その溶融ビードをまたぐようにエピタキシャル成長した結晶組織によって、特徴づけられる。一方、Ni基合金のバルク材は、比較的粒径が揃った等方性の高い微結晶の集合体によって特徴づけられる。
 そして、Ni基合金よりなる積層造形物においては、同じ材料よりなるバルク材に比べて、介在物の含有量が少なく抑えられる。特に、金属炭窒化物を含む介在物の含有量が、少なく抑えられる。バルク材における介在物の含有量は、断面において、おおむね、250~400個/mm程度である。
[粉末材料および積層造形物の合金組成]
 本発明の実施形態にかかる粉末材料および積層造形物は、Ni基合金よりなっており、それぞれ、介在物の含有量が、上記の上限以下に抑えられる限りにおいて、具体的な成分組成は特に限定されるものではないが、介在物の含有量を効果的に抑制することができ、かつ材料強度等の諸特性に優れるNi基合金の成分組成の一例を、成分組成Aとして、以下に示す。
 積層造形の工程においては、エネルギー線の照射により、粉末材料が瞬時に溶融した後、高速で再凝固する。この工程で、金属成分の組成には、実質的に変化は起こらない。また、後の実施例によって実証されるように、Ni基合金粉末を原料として積層造形を実施する場合には、積層造形工程において、介在物の含有量および状態に実施的な変化が起こらず、OやN、C等、非金属元素の含有量も、実質的に変化しない。よって、Ni基合金の成分組成は、粉末材料と、その粉末材料を用いて製造される積層造形物において、実質的に同じとなる。以下に例示する成分組成Aも、粉末材料と積層造形物の両方について、好適な成分組成となる。
 成分組成AにかかるNi基合金は、Ni,Cr,Mo,Ti,Al,Nb,Nを下記の所定量含有し、残部がFeおよび不可避的不純物よりなる。また、C,O,Sの含有量が、下記所定の上限以下に制限されている。
 以下、成分組成Aにおける各成分元素の含有量とその規定理由を説明する。各成分元素の含有量の単位は、質量%とする。また、各成分元素の含有量は、介在物も含めて、粉末材料および積層造形物全体として規定されるものである。
(1)50%≦Ni≦60%
 Niは、本合金の主成分となるものである。Ni基合金は、高い耐熱性および耐食性を示す。Niの含有量は、55%以下であると、より好ましい。
(2)15%≦Cr≦25%
 Crは、合金の固溶強化と耐酸化性の向上に寄与する元素である。それらの効果を十分に得る観点から、Crの含有量は、15%以上とされ、17%以上であると、より好ましい。一方、Crを多量に添加しすぎると、δ相が生成し、Ni基合金の高温強度および靭性が低下する。そこで、Crの含有量は、25%以下とされ、21%以下であると、より好ましい。
(3)0%<Mo≦5%
 Moは、合金の固溶強化に寄与し、合金の強度を高めるのに有効な元素である。Moは少量でも大きな添加効果を発揮するため、Moの含有量には、特に下限は設けられないが、0.1%以上であると、好ましい。一方、Moを多量に含有させすぎると、Ni基合金において、μ相やσ相の生成を助長し、脆化の一因となる。よって、Moの含有量は、5%以下とされ、3.5%以下であると、より好ましい。
(4)0.1%≦Ti≦1.5%
 Tiは、Ni基合金において、γ’相を形成し、クリープ破断強さと耐酸化性を上げる元素である。それらの効果を十分に得る観点から、Tiの含有量は、0.1%以上とされる。一方、Tiを多量に含有させすぎると、高温割れが発生しやすくなり、積層造形時の割れの一因となる。それを避ける観点から、Tiの含有量は、1.5%以下とされる。また、Tiは、合金中に、Nとともに含有されると、TiN等の介在物を生成する。さらに、Oとともに含有されると、TiO等の介在物を形成する。それらのような介在物の生成を抑える観点からも、Tiの含有量は、1.5%以下とされる。
(5)0.1%≦Al≦1.5%
 Alも、Tiと同様に、γ’相を形成し、クリープ破断強さと耐酸化性を上げる元素である。それらの効果を十分に得る観点から、Alの含有量は、0.1%以上とされる。一方、Alも、多量に含有させすぎると、高温割れが発生しやすくなり、積層造形時の割れの一因となる。それを避ける観点から、Alの含有量は、1.5%以下とされる。また、Alは、合金中に、Oとともに含有されると、Al等の介在物を形成する。そのような介在物の生成を抑える観点からも、Alの含有量は、1.5%以下とされる。
(6)0%<Nb≦6%
 Nbは、Ni基合金において、炭窒化物を形成するとともに、γ’相を形成し、合金の強度を向上させる役割を果たす。Nbは少量添加するだけでも高い効果を示すので、Nbの含有量には、下限は特に設けられないが、4.0%以上であると、好ましい。一方、Nbを多量に含有させすぎても、ラーベス層を生成し、かえって強度を低下させる。よって、Nbの含有量は、6%以下とされ、5.5%以下であると、より好ましい。
(7)0.005%≦N≦0.05%
 Nは、Niの固溶強化に寄与することにより、積層造形物の硬さを向上させる効果を有する。その効果を十分に得る観点から、Nの含有量は0.005%以上とされる。一方、Nを多量に含有させすぎると、Ni基合金の延性が低下して、割れを助長する。また、金属窒化物等、介在物の生成も助長する。それらの現象を抑制する観点から、Nの含有量は、0.05%以下とされる。
 成分組成AにかかるNi基合金は、上記所定量のNi,Cr,Mo,Ti,Al,Nb,Nを含有し、残部は、Feと不可避的不純物よりなる。ここで、不可避的不純物としては、以下のような元素および上限量が想定される。
(8)C≦0.08%
 Cは、Ni基合金において、金属炭化物等の介在物を形成する。介在物の生成量を十分に少なく抑える観点から、Cの含有量は、0.08%以下に抑えられる。
(9)O≦0.02%
 Oは、Fe,Ti,Al等と酸化物を形成し、強度や靱性の低下を引き起こす可能性がある。酸化物の形成を抑制する観点から、Oの含有量は、0.02%以下とされる。
(10)S≦0.03%
 Sは、MnS等の介在物を形成する。それら介在物の生成を抑える観点から、Sの含有量は、0.03%以下とされる。
 成分組成AにかかるNi基合金は、上述した各元素に加えて、さらに、以下の元素から選択される少なくとも1種の元素を任意に含有していても良い。
(11)0%<Si≦0.5%
(12)0%<Mn≦5%
 SiおよびMnは、粉末材料を製造する際の溶解時に、脱酸剤として働くとともに、高温での耐酸化性を付与する元素である。SiおよびMnは少量添加するのみでも、それらの効果を高く発揮するので、含有量に下限は特に設けられない。一方、SiやMnを多量に含有させすぎると、高温での耐酸化性がかえって低下するため、それぞれの含有量は、0.5%以下とされる。
(13)0.5%≦Hf≦3%
 Hfは、Ni基合金の耐酸化性を向上させる効果を有する。その効果を十分に得る観点から、Hfの含有量は、0.5%以上とされる。一方、Hfを多量に含有させすぎると、脆化相を形成し、強度および靱性を低下させる。それらの事態を避ける観点から、Hfの含有量は、3%以下とされる。
(14)0.5%≦Zr≦3%
 Zrは、Ni基合金において、粒界に偏析して、クリープ強度を高めるのに効果を有する。その効果を十分に得る観点から、Zrの含有量は、0.5%以上とされる。一方、Zrを多量に含有させすぎると、靱性が低下するので、Zrの含有量は、3%以下とされる。
(15)0%<Co≦2%
 Coは、γ’相のNi固溶体に対する溶解度を上昇させ、高温延性と高温強度を高める効果を有する。Coは、少量を添加するのみでも、それらの効果を発揮するため、Coの含有量に、下限は特に設けられない。一方、Coを多量に含有させすぎると、Ni基合金の脆化が起こるため、Coの含有量は、2%以下とされる。
(16)0%<Ta≦6%
 Taは、γ’相を強化し、Ni基合金の強度を向上させる効果を有する。Taは、少量を添加するのみでも、それらの効果を発揮するため、Taの含有量に、下限は特に設けられない。一方、Taを多量に含有させすぎると、ラーベス相が生成して強度をかえって低下させるため、Taの含有量は、6%以下とされる。
 以下、実施例を用いて本発明をより具体的に説明する。
[1]粉末材料および積層造形物における介在物の量および状態
 ここでは、Ni基合金よりなる粉末材料と、それを用いて製造される積層造形物において、介在物の含有量について、また、それら介在物の状態、つまり成分組成や形状について、調査した。
[試験方法]
(試料の作製)
 ほぼ同じ成分組成を有するNi基合金の溶湯を原料として用いて、ガスアトマイズ法により、粉末材料Aおよび粉末材料Bを作製した。ここで、粉末材料Aは、雰囲気誘導溶解炉(IGIF)にて、アルゴンガス噴射により、作製した。一方、粉末材料Bは、高周波誘導炉(HFIF)にて、窒素(N)ガス噴射により、作製した。両粉末材料とも、分級処理を行うことにより、粉末粒度を、公称粒度で-45μmとした。
 上記で作製した粉末材料A,Bをそれぞれ用いて、SLM法により、積層造形物を作製し、それぞれ造形物A,Bとした。積層造形物としては、12mm角×20mm高さのブロック状のものを作製した。ブロックの下方には、杭状のサポートも一体に形成した。
(試料の同定)
 上記で作製した粉末材料A,B、およびそれらを用いて製造された造形物A,Bについて、それぞれ、蛍光X線分析、およびガス分析によって、成分組成を評価した。
 さらに、粉末材料A,Bについて、粉末外観を、SEM観察により、評価した。また、湿式粒子画像測定法により、粒度分布、および平均粒径(D50)における円形度を評価した。さらに、液相置換法により、各粉末材料の真密度を評価した。
 造形物A,Bについて、相対密度を、アルキメデス法による密度の測定結果と、上記で評価される粉末材料の真密度に基づいて、見積もった。また、造形物A,Bの硬さを、JIS Z2244:2009に準拠したビッカース硬度試験によって、測定した。さらに、各造形物の断面における微細組織を、光学顕微鏡観察によって評価した。
(介在物の量および状態の評価)
 粉末材料A,Bおよび造形物A,Bのそれぞれについて、介在物の量および状態を、SEM-EDXを用いて評価した。
 粉末材料については、粒子を樹脂に包埋し、切断を行って、断面試料を作製した。粉末材料の粒子10000個に対して、そのように作製した断面試料を用いて、SEM-EDX観察を行った。一方、造形物については、高さ方向中央部を、高さ方向に垂直に切断し、断面試料を作製した。得られた断面試料に対して、任意に選択した観察面積0.15mmの視野で、SEM-EDX観察を行った。粉末材料、造形物とも、断面試料のSEM-EDX観察により、含有される介在物について、個数、成分組成、寸法、形状等を評価した。介在物の粒径は、面積円相当径として評価した。
 さらに、造形物A,Bについては、上記断面試料に対して、全自動測定によるSEM-EDX観察を行った。それにより、上記よりも広い観察面積25mmの領域において、介在物の個数、成分組成、寸法等を評価した。この広い視野での観察は、参照試料として、バルク材の断面に対しても行った。バルク材は、真空誘導炉(VIF)により、粉末材料A,Bと同じ合金溶湯を原料として、鋳造によって製造されたものである。
 最後に、粉末材料A,Bおよび造形物A,Bのそれぞれについて、抽出残渣法によって、介在物の量や組成、寸法に関する分析を行った。つまり、各試料をそれぞれ2.0g採取し、臭素メタノール溶液を用いて、介在物を溶出させた。この溶液に、金属成分は溶解するが、介在物は溶解せずに、残渣として残る。得られた溶出液を、0.2μmメッシュのフィルターで濾過した。そして、フィルターによって捕捉された介在物を、SEM-EDXによって観察し、介在物の量や組成、寸法を評価した。
[試験結果]
(試料の同定)
 下の表1に、蛍光X線分析およびガス分析によって得られた、粉末材料A,Bおよび造形物A,Bの成分組成の分析結果を示す。また、粉末材料A,Bについて、図1に、SEM観察像を、図2に、粒度分布測定結果を示すとともに、表2に、粒径等、粉末材料の状態に関する評価結果をまとめる。さらに、造形物A,Bについて、図3に、光学顕微鏡像を示すとともに、表3に、相対密度等、物理特性に関する評価結果をまとめる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1によると、粉末材料Aと粉末材料Bは、N,Al,Tiを除いて、各成分元素の含有量が、ほぼ同じになっている。しかし、N,Al,Tiの含有量は、いずれも、粉末材料Aよりも粉末材料Bの方が、多くなっている。特に、Nについては、粉末材料Bの含有量が、粉末材料Aの5倍となっている。このことは、粉末材料Bは、製造時に窒素ガスを用いており、粉末材料中に比較的多量のNが取り込まれたのに対し、粉末材料Aは、製造時にアルゴンガスを用いており、粉末材料中へのNの取り込みが、少なく抑えられたことによると解釈できる。Tiは、窒化物を形成しやすい元素であり、Nが多く含有される粉末材料Bにおいては、Tiも、窒化物の形で、多く含有されるものと考えられる。
 さらに、表1によると、粉末材料A,Bとも、積層造形工程を経て、造形物A,Bとなった際に、各成分元素の含有量が、ほぼ変化していない。つまり、積層造形工程における粉末材料の溶解と再凝固を経ても、C、N,Oを含め、材料の成分組成が変化していない。この結果は、次に説明するSEM-EDX等を用いた介在物の分析結果とも、合致するものである。
 図1によると、粉末材料A,Bとも、円形から逸脱した粒子や、サテライト粉末(小径の粒子)が付着した粒子が一部にみられるが、それらを除いては、円形に近い粒子が多数観測されており、表2に示すように、いずれも約0.90の高い円形度が得られている。さらに、図2によると、粒度分布は、粉末材料A,Bで、よく重なっており、表2に示す粒径値も、両者でほぼ同じとなっている。両者の真密度も、ほぼ同じである。このように、粉末材料Aと粉末材料Bで、形状および大きさ、密度は、ほぼ同じになっており、製造時の条件には依存しないことが分かる。
 図3によると、造形物A,Bとも、レーザーのスキャン方向(図の横方向)に沿って、波状に、溶融ビードが生成している。また、それら溶融ビードをまたいで、積層方向(図の上下方向)に筋状に走る、エピタキシャル成長した結晶による微構造が見られる。表3によると、造形物Aと造形物Bで、密度および相対密度は、ほぼ同じになっているが、硬さは、造形物Bの方が、約30HV高くなっている。この硬さの差は、介在物の析出による析出強化に対応づけることができる。
(介在物の量および状態)
(1)粉末材料の製造方法と介在物生成の関係
 まず、粉末材料の製造方法が異なる場合について、介在物の種類や量がどのように異なるか、検討する。
 図4に、粉末材料A,Bおよび造形物A,Bについて、任意の視野で観察したSEM-EDXによって得られた介在物の形状、個数、最大寸法および成分組成を示す。なお、ここで用いた造形物A,Bについての観察結果は、観察面積0.15mmの狭い視野で観察したものである。図4において、SEM像は、任意に選択された介在物のものである。また、介在物の個数としては、粉末材料については材料粉末の粒子10000個中に含有される個数、造形物については断面の面積1mm中の個数に換算した値を表示している。図4および以降において、(Al,Ti)Oとは、AlおよびTiの酸化物を示し、(Nb,Ti)(C,N)は、NbおよびTiの炭窒化物を示している。
 図4によると、粉末材料Aおよび造形物Aにおいては、介在物として、酸化物(Al,Ti)Oのみが観察されており、炭窒化物(Nb,Ti)(C,N)は観察されていない。一方、粉末材料Bおよび造形物Bにおいては、介在物として、酸化物(Al,Ti)Oと、炭窒化物(Nb,Ti)(C,N)の両方が観察されている。
 このことより、粉末材料の作製に窒素ガスを用いており、上記成分組成の分析において示されているように、Nの含有量が比較的多くなっている粉末材料B、およびそのような粉末材料Bを用いて製造される造形物Bにおいては、N原子が、金属炭窒化物の状態で含有されていると考えられる。一方、粉末材料の作製にアルゴンガスを用いていており、粉末材料中のNの含有量が少なく抑えられている粉末材料A、およびそのような粉末材料Aを用いて製造される造形物Aにおいては、そのNの含有量の少なさと対応して、介在物として、金属炭窒化物が、SEM-EDXで検出可能な量では、含有されていないと解釈される。
 また、介在物の個数は、粉末材料Aおよび造形物Aにおいて、それぞれ、粉末材料Bおよび造形物Bよりも、顕著に少なく抑えられている。この介在物の個数の低減には、粉末材料Aおよび造形物Aにおいて炭窒化物の含有が顕著に抑えられていることの効果が大きいと考えられる。さらに、介在物全体としての最大粒径は、粉末材料Aおよび造形物Aと、粉末材料Bおよび造形物Bで、ほぼ同じとなっているが、酸化物のみに着目すると、粉末材料Bおよび造形物Bの方が、小さくなっている。これは、粉末材料Bおよび造形物Bにおいて、酸化物生成元素であるTiが、炭窒化物の形成に寄与していることと関係していると考えられる。
 このように、任意に選択した狭い視野でのSEM-EDX観察の結果から、アルゴンガスを用いたアトマイズ法によって粉末材料を製造し、積層造形に用いることによって、窒素ガスを用いた場合と比較して、炭窒化物の生成が抑えられ、さらに介在物の個数も少なく抑えられることが分かった。さらに、造形物の断面に対して、観察面積25mmの広い視野で全自動SEM-EDXによって連続観察を行った結果から、それらの傾向を、統計的に確認することができる。図5に、造形物A,Bおよびバルク材の断面に対する連続観察によって得られた、1mmあたりの介在物の数を、介在物の種類ごとに示す。
 図5によると、造形物Bにおいては、介在物として、酸化物、つまりAl酸化物およびTi酸化物に加えて、Ti炭窒化物が観察されているのに対し、造形物Aにおいては、Ti炭窒化物が生成しておらず、2種の酸化物のみが観察されている。さらに、造形物Aにおいては、酸化物の含有量も少なくなっている。それらの結果として、介在物全体の個数が、造形物Aにおいて、造形物Bよりも少なくなっている。これらの結果は、上記で説明した任意の狭い視野でのSEM-EDX観察で得られた、図4の結果とも合致している。
 また、造形物Bにおいて、酸化物の含有量の方が、炭窒化物の含有量よりも多くなっている。Al酸化物とTi酸化物の含有量の比較としては、造形物Bでは、Ti酸化物の方が多いのに対し、造形物Aでは、Al酸化物の方が多くなっている。
 造形物Bは、造形物Aと比較すると、介在物の含有量が多くなってしまっているが、造形物A,Bを、バルク材と比較すると、造形物A,Bのいずれにおいても、介在物の含有量が、顕著に低減されていることが分かる。特に、バルク材には、多量の炭窒化物よりなる介在物が含有されているが、造形物Bにおいては、炭窒化物の含有量が10%程度に低減されており、さらに、造形物Aにおいては、上記のように、炭窒化物が生成しなくなっている。このことから、アトマイズ法によって製造した粉末材料を用いた積層造形物においては、粉末製造に用いるアトマイズガスがアルゴンガスである場合でも、窒素ガスである場合でも、バルク材と比較して、介在物、特に炭窒化物よりなる介在物の含有量を、著しく低減できることが分かる。さらにアトマイズガスとしてアルゴンガスを用いることで、介在物の含有量を一層低減できる。
 ここで、表4に、造形物A,Bの断面に対する上記の連続観察によって得られた介在物の成分組成を示す。表4では、介在物の種類ごとに、介在物の成分組成を、元素含有量比(単位:mol%)で示している。
Figure JPOXMLDOC01-appb-T000004
 表4によると、酸化物は、ほぼ、AlおよびTiとOのみからなっており、NbとCをごく少量のみ含んでいる。Nは含有されない。炭窒化物は、TiおよびNbとC,Nのみからなっており、AlおよびOは含有されない。このことから、介在物として造形物に含有される酸化物と炭窒化物は、完全に異なる組成を有しており、独立した相として形成されていることが確認される。造形物Aと造形物Bで、酸化物の組成は、ほぼ同じになっている。
 さらに、図6に、造形物A,Bのそれぞれについて、観察された介在物の個数(25mmあたり)を、寸法ごとに分類して示す。造形物A,Bのいずれについても、また酸化物と炭窒化物のいずれについても、10μm以下の微細な介在物が多数生成している。造形物Bで、酸化物と炭窒化物の分布を比較すると、炭窒化物の方が、寸法が小さい領域に分布しており、最大の寸法を有する介在物は、酸化物となっている。なお、造形物A,Bとも、図4に示したものよりも、介在物の最大寸法が大きくなっているが、これは、観察視野が広くなっており、多数の介在物を観察できていることによる。
 以上のように、広い観察視野のSEM-EDX観察により、狭い観察視野の観察結果と合致する結果が、統計的にさらに高い信頼性で得られた。つまり、アルゴンガスを用いたアトマイズ法によって製造された粉末材料を原料とする造形物Aにおいて、窒素ガスを用いたアトマイズ法によって製造された粉末材料を原料とする造形物Bの場合と比較して、炭窒化物よりなる介在物の生成を著しく抑制できること、さらに、介在物全体の個数としても少なく抑えられることが、確認された。また、アトマイズ粉末を原料とした積層造形を利用することで、いずれのアトマイズガスを用いた場合にも、バルク材に比較して、介在物の含有量が顕著に低減されることが確認された。介在物の成分組成や寸法分布についても、明らかになった。
(2)積層造形工程による介在物の変化
 積層造形工程を経ることで、介在物の種類や量に変化が生じるか否かを検討するために、再度、粉末材料と造形物の両方についてSEM-EDX観察を行った図4の結果を参照する。
 図4において、粉末材料と、その粉末材料より製造された造形物とで、介在物の種類および最大粒径を比較する。粉末材料A,Bとも、積層造形工程を経て、造形物A,Bとなった際に、観察される介在物の種類(酸化物か炭窒化物か)は、変化していない。そして、介在物の最大粒径については、粉末材料Aと造形物Aとではほぼ同じになっている。粉末材料Bと造形物Bとでは、酸化物に関しては、造形物Bの方で粒径が大きくなっているものの、炭窒化物に関しては、両者でほぼ変化していない。これらより、粉末材料の状態から、積層造形工程を経ても、新たな種類の介在物が生成することはなく、さらに、少なくとも炭窒化物については、粒子の成長も起こらないと言える。
 さらに、粉末材料と造形物とで、介在物の含有量を定量的に比較するために、抽出残渣法による介在物の観察の結果について検討する。図7に、抽出残渣の成分組成の解析結果を示す。図7では、各試料について、介在物を構成するものとして検出されたAlおよびTiの含有量を示している。含有量の単位は、粉末材料または造形物全体の質量を基準とした質量%である。含有量は、粉末材料と造形物とで、直接比較することができる。
 図7によると、粉末材料Aおよび造形物Aにおいては、少量のAl系およびTi系の介在物が検出されている。これは、AlおよびTiの酸化物に対応付けることができる。一方、粉末材料Bおよび造形物Bにおいては、少量のAl系介在物と、多量のTi系介在物が検出されている。これは、AlおよびTiの酸化物に加えて、Tiを含む炭窒化物が生成している状態に対応付けることができる。このように、抽出残渣の分析結果は、上記SEM-EDXの観察結果と、よく対応している。
 さらに、図7によると、粉末材料Aと造形物Aとの間で、また、粉末材料Bと造形物Bとの間で、AlおよびTiの検出量が、大きくは変化していない。このことから、積層造形工程を経て、粉末材料から造形物を製造した際に、介在物の量および種類が、ほぼ変化していないことが分かる。
 図8に、各試料について、抽出残渣中の各介在物のうち、寸法が最大のものについて、SEM像を示す。粉末材料Aと造形物Aの観察結果を比較すると、酸化物の最大寸法および粒子形状は、実質的に変化していない。同様に、粉末材料Bと造形物Bの観察結果を比較すると、酸化物、炭窒化物とも、介在物の寸法および粒子形状は、ほぼ変化していない。このことから、いずれの試料についても、また、酸化物および窒化物のいずれについても、積層造形工程を経て、粉末材料から造形物を製造した際に、介在物の粒子は成長を起こさないことが分かる。なお、酸化物は、球状に近い粒子形状をとっているのに対し、炭窒化物は、デンドライト形状をとっている。
 以上のSEM-EDX観察および抽出残渣法による実験結果から、積層造形工程を経て、粉末材料から造形物を製造した際に、介在物の生成および成長は、ほぼ起こらないことが示された。つまり、介在物は、アトマイズ法による粉末材料の製造時に、アトマイズガスの種類等の製造条件、また次に示すような成分組成等に起因して、粉末材料中に生成するが、積層造形工程を経て、粉末材料から造形物を製造する間には、介在物の新たな生成や、粒成長、変性等の変化は、実質的に起こらない。積層造形工程においては、粉末材料が、急速に溶融されたあと、急冷凝固されるが、それらの過程が高速で進行することにより、介在物は、溶融金属中への固溶や溶融、また成長を起こすことなく、粉末材料中に存在した状態を維持するものと考えられる。
[2]Ni基合金の成分組成と介在物
 次に、粉末材料および積層造形物を構成するNi基合金の成分組成と、介在物の含有量の関係について調べた。
[試験方法]
(試料の作製)
 成分組成を変化させながら、粉末材料を製造し、さらに各粉末材料を用いて、積層造形物を作成した。粉末材料の製造は、上記試験[1]の試料Aと同様に、IGIFにて、アルゴンガス噴射によって行った。分級処理も同様に行った。粉末材料からの積層造形物の製造も、上記試験[1]と同様に、SLM法によって行った。
(試料の同定)
 上記で作製した各粉末材料、およびそれらを用いて製造された造形物について、それぞれ、蛍光X線分析、およびガス分析によって、成分組成を評価した。
(介在物の量および種類の評価)
 各粉末材料および造形物に対して、上記試験[1]の観察面積0.15mmの視野でのSEM-EDX観察と同様にして、SEM-EDX観察を行い、介在物の個数を、種類ごとに評価した。
[試験結果]
 下の表5に、試料1~16のそれぞれについて、粉末および積層造形物の成分組成を示す。Feは、その他の表示した成分元素の残部として合金を構成するものであるが、表中では、他の成分の含有量から計算されるFeの含有量を、括弧書きで表示している。表5にはさらに、各試料について検出された介在物の個数を示している。介在物の個数は、Al酸化物およびTi酸化物、Ti炭窒化物のそれぞれについて示している。加えて、Al酸化物とTi酸化物の個数比(Al酸化物/Ti酸化物)についても、示している。介在物の個数は、粉末材料については、粉末粒子10000個あたりの個数として、また、造形物については断面の1mmあたりの個数として、表示している。
Figure JPOXMLDOC01-appb-T000005
 表5によると、いずれの試料においても、成分組成は、粉末材料と造形物でほぼ同じになっている。これは、上記試験[1]で確認された結果と同じである。
 表5で、試料1~7においては、介在物の総数が、粉末材料で100個/10000粒子以下、また造形物で100個/1mm以下に抑えられているのに対し、試料8~16では、介在物の総数が、いずれもそれらの上限を上回っている。また、試料1~16で、Al酸化物の含有量は、ほぼ変わらないのに対し、Ti酸化物およびTi炭窒化物の含有量が、試料1~7で、試料8~16よりも少なくなっている。特に、Ti炭窒化物の含有量の少なさが、顕著である。
 ここで、合金の成分組成に着目すると、試料1~7では、Nの含有量が、0.05%以下に抑えられているのに対し、試料8~16では、Nの含有量が0.05%を上回っている。このことから、試料1~7のように、Nの含有量を少なく抑えることで、炭窒化物よりなる介在物の含有量を少なく抑えることができ、ひいては、酸化物も合わせた介在物の総数も、少なく抑えられると解釈される。さらに、試料8~16の中でも、Tiの含有量が1.5%を超えて多くなっている試料11,12,16では、特に炭窒化物の個数および介在物の総数が多くなっており、Nに加え、Tiの含有量を少なく抑えることも、介在物の低減に有効であると言える。
 以上、本発明の実施形態および実施例について説明した。本発明は、これらの実施形態および実施例に特に限定されることなく、種々の改変を行うことが可能である。
 本発明によれば、Ni基合金よりなる粉末材料を用いて積層造形を行う場合に、得られる積層造形物において、介在物の含有量を少なく抑えることができる粉末材料、およびそのように介在物の含有量が少なく抑えられた積層造形物、またそのような粉末材料の製造方法を提供することができる。
 本出願は、2019年9月19日出願の日本特許出願(特願2019-170114)に基づくものであり、その内容はここに参照として取り込まれる。
 

Claims (17)

  1.  介在物を含有するNi基合金のアトマイズ粉末よりなり、
     含有される前記介在物の粒子数が、前記アトマイズ粉末の粒子10000個中に、100個以下であることを特徴とする粉末材料。
  2.  前記Ni基合金は、Al,Ti,Nbより選択される少なくとも1種の添加元素を含有し、前記介在物は、前記添加元素の酸化物または炭窒化物の少なくとも一方を含有することを特徴とする請求項1に記載の粉末材料。
  3.  前記添加元素の炭窒化物を含有する前記介在物の方が、前記添加元素の酸化物を含有する前記介在物よりも数が少ないことを特徴とする請求項2に記載の粉末材料。
  4.  前記添加元素の炭窒化物を含有する前記介在物の粒子数が、前記アトマイズ粉末の粒子10000個中に、10個以下であることを特徴とする請求項2または3に記載の粉末材料。
  5.  前記介在物の粒径が30μm以下であることを特徴とする請求項1から4のいずれか1項に記載の粉末材料。
  6.  前記アトマイズ粉末の粒子の円形度が、平均粒径において、0.90以上であることを特徴とする請求項1から5のいずれか1項に記載の粉末材料。
  7.  前記Ni基合金は、質量%で、
     50%≦Ni≦60%、
     15%≦Cr≦25%、
     0%<Mo≦5%、
     0.1%≦Ti≦1.5%、
     0.1%≦Al≦1.5%、
     0%<Nb≦6%、
     0.005%≦N≦0.05%を含有し、
     残部がFeおよび不可避的不純物よりなり、
     C≦0.08%、
     O≦0.02%、
     S≦0.03%であることを特徴とする請求項1から6のいずれか1項に記載の粉末材料。
  8.  さらに、質量%で、
     0%<Si≦0.5%、
     0%<Mn≦5%、
     0.5%≦Hf≦3%、
     0.5%≦Zr≦3%、
     0%<Co≦2%、
     0%<Ta≦6%から選択される少なくとも1種を含有することを特徴とする請求項7に記載の粉末材料。
  9.  介在物を含有するNi基合金よりなり、
     断面において含有される前記介在物の数が、100個/mm以下であることを特徴とする積層造形物。
  10.  前記Ni基合金は、Al,Ti,Nbより選択される少なくとも1種の添加元素を含有し、前記介在物は、前記添加元素の酸化物または炭窒化物の少なくとも一方を含有することを特徴とする請求項9に記載の積層造形物。
  11.  前記添加元素の炭窒化物を含有する前記介在物の方が、前記添加元素の酸化物を含有する前記介在物よりも数が少ないことを特徴とする請求項10に記載の積層造形物。
  12.  前記添加元素の炭窒化物を含有する介在物の数が、10個/mm以下であることを特徴とする請求項10または11に記載の積層造形物。
  13.  前記断面における前記介在物の粒径は、30μm以下であることを特徴とする請求項9から12のいずれか1項に記載の積層造形物。
  14.  前記Ni基合金は、質量%で、
     50%≦Ni≦60%、
     15%≦Cr≦25%、
     0%<Mo≦5%、
     0.1%≦Ti≦1.5%、
     0.1%≦Al≦1.5%、
     0%<Nb≦6%、
     0.005%≦N≦0.05%を含有し、
     残部がFeおよび不可避的不純物よりなり、
     C≦0.08%、
     O≦0.02%、
     S≦0.03%であることを特徴とする請求項9から13のいずれか1項に記載の積層造形物。
  15.  さらに、質量%で、
     0%<Si≦0.5%、
     0%<Mn≦5%、
     0.5%≦Hf≦3%、
     0.5%≦Zr≦3%、
     0%<Co≦2%、
     0%<Ta≦6%から選択される少なくとも1種を含有することを特徴とする請求項14に記載の積層造形物。
  16.  不活性ガスを用いたガスアトマイズ法により、請求項1から8のいずれか1項に記載の粉末材料を製造することを特徴とする粉末材料の製造方法。
  17.  前記不活性ガスは、希ガスであることを特徴とする請求項16に記載の粉末材料の製造方法。
     
PCT/JP2020/031017 2019-09-19 2020-08-17 粉末材料、積層造形物、および粉末材料の製造方法 WO2021054014A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20864699.2A EP4015105A4 (en) 2019-09-19 2020-08-17 POWDERED MATERIAL, LAYERED ARTICLE AND METHOD FOR PRODUCING POWDERED MATERIAL
CA3154987A CA3154987A1 (en) 2019-09-19 2020-08-17 Powder material, layered shaped article, and production method for powder material
CN202080065080.2A CN114423540A (zh) 2019-09-19 2020-08-17 粉末材料、层叠成形品、以及粉末材料的制造方法
US17/760,686 US20220331868A1 (en) 2019-09-19 2020-08-17 Powder material, layered shaped article, and production method for powder material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019170114A JP7487458B2 (ja) 2019-09-19 2019-09-19 粉末材料、積層造形物、および粉末材料の製造方法
JP2019-170114 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021054014A1 true WO2021054014A1 (ja) 2021-03-25

Family

ID=74877875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031017 WO2021054014A1 (ja) 2019-09-19 2020-08-17 粉末材料、積層造形物、および粉末材料の製造方法

Country Status (7)

Country Link
US (1) US20220331868A1 (ja)
EP (1) EP4015105A4 (ja)
JP (1) JP7487458B2 (ja)
CN (1) CN114423540A (ja)
CA (1) CA3154987A1 (ja)
TW (1) TWI770592B (ja)
WO (1) WO2021054014A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505415A (ja) * 2012-11-27 2016-02-25 スネクマ 高エネルギービームを用いた緊密性最適化済み粉末床の選択的溶融又は選択的焼結による部品の積層造形方法
JP2017036485A (ja) 2015-08-12 2017-02-16 山陽特殊製鋼株式会社 積層造形用Ni基超合金粉末
CN106735273A (zh) * 2017-02-14 2017-05-31 上海材料研究所 一种选区激光熔化成形用Inconel718镍基合金粉末及其制备方法
WO2017175563A1 (ja) * 2016-04-05 2017-10-12 三菱重工航空エンジン株式会社 ニッケル基合金、タービン翼及びニッケル基合金の射出成型品の製造方法
CN108941589A (zh) * 2018-07-30 2018-12-07 北京矿冶科技集团有限公司 制备可全粒度应用于增材制造的gh4169粉末的方法
WO2019049594A1 (ja) * 2017-09-07 2019-03-14 日立金属株式会社 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品と半導体製造装置用部材の製造方法
CN109986086A (zh) * 2019-03-08 2019-07-09 北京矿冶科技集团有限公司 一种用于增材制造的高球形度多组元合金粉末的制备方法
JP2019170114A (ja) 2018-03-26 2019-10-03 日本電産株式会社 モータの制御装置、ロボットおよびモータの制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2725893C2 (ru) * 2014-07-21 2020-07-07 Нуово Пиньоне СРЛ Способ изготовления машинных компонентов с помощью аддитивного производства
KR102016384B1 (ko) * 2016-10-24 2019-08-30 다이도 토쿠슈코 카부시키가이샤 석출 경화형 고 Ni 내열합금
WO2019025471A1 (en) * 2017-08-02 2019-02-07 Basf Se NOZZLE CONTAINING AT LEAST ONE STATIC MIXER ELEMENT PREPARED BY A LASER SELECTIVE FUSION (SLM) PROCESS
CN109943749B (zh) * 2017-12-20 2020-10-30 东莞市精研粉体科技有限公司 一种应用于饰品3d打印首模的铜合金球形粉末材料
CN110218910A (zh) * 2018-11-24 2019-09-10 西部超导材料科技股份有限公司 一种新型粉末高温合金及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505415A (ja) * 2012-11-27 2016-02-25 スネクマ 高エネルギービームを用いた緊密性最適化済み粉末床の選択的溶融又は選択的焼結による部品の積層造形方法
JP2017036485A (ja) 2015-08-12 2017-02-16 山陽特殊製鋼株式会社 積層造形用Ni基超合金粉末
WO2017175563A1 (ja) * 2016-04-05 2017-10-12 三菱重工航空エンジン株式会社 ニッケル基合金、タービン翼及びニッケル基合金の射出成型品の製造方法
CN106735273A (zh) * 2017-02-14 2017-05-31 上海材料研究所 一种选区激光熔化成形用Inconel718镍基合金粉末及其制备方法
WO2019049594A1 (ja) * 2017-09-07 2019-03-14 日立金属株式会社 積層造形用Ni基耐食合金粉末、この粉末を用いた積層造形品と半導体製造装置用部材の製造方法
JP2019170114A (ja) 2018-03-26 2019-10-03 日本電産株式会社 モータの制御装置、ロボットおよびモータの制御方法
CN108941589A (zh) * 2018-07-30 2018-12-07 北京矿冶科技集团有限公司 制备可全粒度应用于增材制造的gh4169粉末的方法
CN109986086A (zh) * 2019-03-08 2019-07-09 北京矿冶科技集团有限公司 一种用于增材制造的高球形度多组元合金粉末的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4015105A4

Also Published As

Publication number Publication date
EP4015105A1 (en) 2022-06-22
US20220331868A1 (en) 2022-10-20
JP7487458B2 (ja) 2024-05-21
TW202124070A (zh) 2021-07-01
JP2021046584A (ja) 2021-03-25
EP4015105A4 (en) 2023-09-20
TWI770592B (zh) 2022-07-11
CN114423540A (zh) 2022-04-29
CA3154987A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
CN113862543B (zh) 合金部件的制造方法
JP6499546B2 (ja) 積層造形用Ni基超合金粉末
JP6493561B2 (ja) ハイエントロピー合金部材、該合金部材の製造方法、および該合金部材を用いた製造物
EP3611281A1 (en) Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
JP6690789B2 (ja) 合金材、該合金材を用いた製造物、および該製造物を有する流体機械
JP2020114948A (ja) 金属積層造形用混合粉末
CA3061851C (en) Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
JP2019173175A (ja) コバルト基合金積層造形体の製造方法
JP6850223B2 (ja) 積層造形用Ni基超合金粉末
EP3153253A1 (en) Method for treatment of metallic powder for selective laser melting
CN115066510B (zh) 钴铬合金粉末
TW200831686A (en) Co-Fe-Zr based alloy sputtering target material and process for production thereof
EP4048463A1 (en) Printable powder material of fecral for additive manufacturing and an additive manufactured object and the uses thereof
WO2021054014A1 (ja) 粉末材料、積層造形物、および粉末材料の製造方法
JPWO2020179766A1 (ja) 積層造形体からなるNi基合金部材、Ni基合金部材の製造方法、およびNi基合金部材を用いた製造物
Xia et al. Influence of WC particle content of Fe-based powder-cored wire on microstructure and properties of plasma cladding reinforced layers
JP2021123750A (ja) Cr−Ni系合金部材およびその製造方法
US12000022B2 (en) High entropy alloy article, product formed of said high entropy alloy article, and fluid machine having said product
JP7128916B2 (ja) 積層造形体
WO2024075443A1 (ja) 積層造形用Fe-Cr-Al系合金粉末、Fe-Cr-Al系合金部材およびFe-Cr-Al系合金部材の製造方法
JP2022148950A (ja) Fe基合金粉末を用いた造形物の製造方法
WO2023167231A1 (ja) 積層造形用Ni基合金粉末、積層造形品、及び積層造形品の製造方法
WO2023074613A1 (ja) 積層造形に適したNi系合金粉末及び該粉末を用いて得られた積層造形体
JP2022122461A (ja) 積層造形用Fe基合金粉末および積層造形物
CN118119722A (zh) 适于增材制造的Ni系合金粉末以及使用该粉末得到的增材制造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3154987

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020864699

Country of ref document: EP

Effective date: 20220318