WO2021053811A1 - 処理装置、処理方法及びコンピュータ可読媒体 - Google Patents
処理装置、処理方法及びコンピュータ可読媒体 Download PDFInfo
- Publication number
- WO2021053811A1 WO2021053811A1 PCT/JP2019/036988 JP2019036988W WO2021053811A1 WO 2021053811 A1 WO2021053811 A1 WO 2021053811A1 JP 2019036988 W JP2019036988 W JP 2019036988W WO 2021053811 A1 WO2021053811 A1 WO 2021053811A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cluster
- clusters
- reinforcing bars
- point cloud
- reference plane
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/762—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/06—Recognition of objects for industrial automation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/12—Acquisition of 3D measurements of objects
Definitions
- the present invention relates to a processing device, a processing method, and a computer-readable medium.
- Patent Document 1 discloses a technique of acquiring point cloud data of a reinforcing bar using a three-dimensional laser scanner and detecting the shape of the reinforcing bar based on the acquired point cloud data.
- the clustering process is a process of classifying a point cloud considered to be the same structure as a cluster.
- the same reinforcing bar may be classified into a plurality of clusters or different reinforcing bars may be classified into the same cluster in the clustering process. It was. If the accuracy of the clustering process is not good as described above, there is a possibility that the bar arrangement inspection cannot be performed accurately.
- the present invention has been made in view of the above background, and provides a processing device capable of processing point cloud data acquired from a plurality of reinforcing bars so that a bar arrangement inspection can be performed with high accuracy.
- the purpose is.
- the processing apparatus uses the three-dimensional point group data acquired based on the reflected light from the plurality of reinforcing bars irradiated with light in the bar arrangement inspection at each point of the three-dimensional point group data.
- the classification means for classifying into clusters, which are shape units corresponding to the plurality of reinforcing bars
- the smoothing means for smoothing the contours of the classified clusters
- the cluster associating means for determining whether or not the included first cluster and the second cluster correspond to the same reinforcing bar based on the positional relationship between the smoothed clusters is provided.
- the three-dimensional point group data acquired based on the reflected light from the plurality of reinforcing bars irradiated with light in the bar arrangement inspection is obtained at each point of the three-dimensional point group data.
- the non-transitory computer-readable medium uses the three-dimensional point group data acquired based on the reflected light from a plurality of reinforcing bars irradiated with light in the bar arrangement inspection to obtain the three-dimensional point group data.
- the steps of classifying into clusters which are shape units corresponding to the plurality of reinforcing bars, the step of smoothing the contours of the classified clusters, and the classified clusters.
- the present invention it is possible to process the point cloud data acquired from a plurality of reinforcing bars so that the bar arrangement inspection can be performed with high accuracy.
- FIG. It is a block diagram which shows the structure of the processing apparatus which concerns on Embodiment 1.
- FIG. It is a block diagram which shows the structure of the processing apparatus which concerns on Embodiment 2.
- It is a schematic diagram which shows the outer shape of the deformed steel bar.
- It is a flowchart explaining the flow of processing the point cloud data acquired from a plurality of reinforcing bars in the processing apparatus which concerns on Embodiment 2.
- FIG. It is a figure which shows an example which performed the smoothing process on the cluster acquired from a reinforcing bar.
- It is a flowchart which shows the processing flow of the subroutine in step S3 of FIG.
- It is a schematic diagram explaining an example of the method of extracting the contour line by the process of step S102 to step S104.
- FIG. 5 is a schematic diagram illustrating a case where the first cluster and the second cluster are not associated with each other even if it is determined in step S105 of FIG. 6 that the first contour line group and the second contour line group match. It is a schematic diagram explaining an example of the method of complementing a point cloud between a 1st cluster and a 2nd cluster. It is a schematic diagram explaining the problem in the case of determining whether or not the cluster acquired from a reinforcing bar is associated with the same reinforcing bar without leveling processing.
- FIG. 1 It is a block diagram which shows the structure of the cluster associating means 214 which concerns on modification 1.
- FIG. It is a flowchart explaining the subroutine of step S3 of FIG. 4 which concerns on modification 1.
- FIG. It is a schematic diagram which specifically explains the process of steps S201 to S203 shown in FIG.
- FIG. It is a block diagram which shows the structure of the processing apparatus which concerns on modification 2.
- FIG. It is a schematic diagram which specifically explains the process of the point cloud data acquired from a plurality of reinforcing bars which concerns on modification 2.
- FIG. 1 It is a block diagram which shows the structure of the cluster associating means 214 which concerns on modification 1.
- FIG. It is a flowchart explaining the subroutine of step S3 of FIG. 4 which concerns on modification 1.
- FIG. 4 It is a block diagram which shows the structure of the processing apparatus which concerns on modification 3. It is a flowchart which shows the flow which processes the point cloud data acquired from a plurality of reinforcing bars in a processing apparatus, which is different from FIG. 4 and FIG.
- FIG. 1 is a block diagram showing a configuration of a processing device 10 according to the first embodiment.
- the processing apparatus 10 includes a classification means 12, a smoothing means 13, and a cluster associating means 14.
- the classification means 12 obtains a plurality of three-dimensional point cloud data acquired based on the reflected light from the plurality of reinforcing bars irradiated with light in the bar arrangement inspection, based on the position information at each point of the three-dimensional point cloud data. Classify into clusters, which are shape units corresponding to reinforcing bars.
- the smoothing means 13 smoothes the contours of the classified clusters.
- the cluster associating means 14 determines whether or not the first cluster and the second cluster included in the classified clusters correspond to the same reinforcing bar, based on the positional relationship between the smoothed clusters. judge.
- the processing device 10 configured as described above, it is possible to process the point cloud data acquired from a plurality of reinforcing bars so that the bar arrangement inspection can be performed with high accuracy.
- FIG. 2 is a block diagram showing a configuration of the processing device 110 according to the second embodiment.
- the processing device 110 includes a classification means 112, a smoothing means 113, a cluster associating means 114, and a point cloud complementing means 115.
- the classification means 112 obtains point cloud data (three-dimensional point cloud data) acquired based on the reflected light from a plurality of reinforcing bars irradiated with light in the bar arrangement inspection, based on the position information at each point of the point cloud data. , Classify into clusters, which are shape units corresponding to multiple reinforcing bars.
- the three-dimensional sensor 111 can measure the distance at least based on the amplitude information of light, and irradiates a plurality of arranged reinforcing bars with light to acquire point group data.
- the three-dimensional sensor 111 is, for example, a 3D-LiDAR (Light Detection and Ringing) sensor.
- FIG. 3 is a schematic view showing the outer shape of the deformed steel bar.
- the deformed steel bar is provided with uneven protrusions called "ribs" and "knots" on the surface.
- Standard names such as "D10”, “D13", “D16”, and “D19" are defined for the deformed steel bars according to the diameter.
- the numbers shown in the standard name indicate, for example, the diameter of D10 is 9.53 mm and the diameter of D13 is 12.7 mm, which are approximate diameters of the deformed steel bars. That is, the diameter of the deformed steel bar is standardized every 2 to 3 mm.
- the smoothing means 113 smoothes the contours of the clusters classified by the classification means 112.
- a general smoothing processing method can be used as a method of smoothing processing performed on the classified clusters.
- the cluster associating means 114 has been subjected to the smoothing process to determine whether or not the first cluster and the second cluster included in the cluster smoothed by the smoothing means 113 correspond to the same reinforcing bar. Judgment is based on the positional relationship between clusters.
- the cluster associating means 114 includes a direction detecting means 114a, a projection cluster generating means 114b, a contour line extracting means 114c, a contour line matching number calculating means 114d, and a determining means 114e.
- the direction detecting means 114a detects the direction of the cluster. For example, the shortest direction in which the number of points is the smallest and the longest direction in which the number of points is the largest are detected in the cluster. Here, it is assumed that the case where the number of points is the smallest and the number of points is zero does not include the case where the number of points is zero.
- the projection cluster generation means 114b projects the first cluster onto a plane perpendicular to the shortest direction of the first cluster, and the second cluster onto a plane perpendicular to the shortest direction of the second cluster. Generate a second projected cluster.
- the contour line extracting means 114c extracts the contour lines of the first cluster and the second cluster.
- the contour line matching number calculation means 114d calculates the number of contour lines that match in the first cluster and the second cluster.
- the determination means 114e determines whether or not the first cluster and the second cluster are associated with the same reinforcing bar based on the positional relationship between the smoothed clusters.
- the point cloud complementing means 115 complements the point cloud between the first cluster and the second cluster when the cluster mapping means 114 determines that the first cluster and the second cluster are associated with each other. To do.
- FIG. 2 will also be referred to as appropriate.
- FIG. 4 is a flowchart illustrating a flow of processing point cloud data acquired from a plurality of reinforcing bars in the processing device 110.
- the classification means 112 obtains point cloud data based on the reflected light from a plurality of rebars irradiated with light, based on the position information at each point of the point cloud data. It is classified into clusters, which are shape units corresponding to the plurality of reinforcing bars (step S1). Subsequently, the smoothing means 113 smoothes the contours of the classified clusters (step S2).
- the cluster associating means 114 determines whether or not the first cluster and the second cluster included in the smoothed cluster correspond to the same reinforcing bar between the smoothed clusters. The determination is made based on the positional relationship of (step S3). Subsequently, when the point cloud complementing means 115 determines that the cluster associating means 114 associates the first cluster with the second cluster, a point is formed between the first cluster and the second cluster. Complement the group (step S4).
- FIG. 5 is a diagram showing an example in which a smoothing process is performed on a cluster acquired from a reinforcing bar.
- a smoothing process is performed on a cluster acquired from a reinforcing bar.
- the contour line of the cluster can be detected with high accuracy. This makes it possible to accurately estimate the connection relationship between the classified clusters. The method of detecting the contour line of the cluster will be described later.
- FIG. 2 will also be referred to as appropriate.
- FIG. 6 is a flowchart showing the processing flow of the subroutine in step S3 of FIG.
- the direction detecting means 114a detects the shortest direction for each of the first cluster and the second cluster (step S101).
- the projection cluster generation means 114b projects the first cluster onto a plane perpendicular to the shortest direction of the first cluster, and the second cluster perpendicular to the shortest direction of the second cluster.
- a second projection cluster projected on a plane is generated (step S102).
- the contour line extracting means 114c extracts the contour lines of the first projection cluster and the second projection cluster (step S103).
- the contour line matching number calculation means 114d is a second contour line group, which is a plurality of contour lines extracted from the first projection cluster, and a second contour line, which is a plurality of contour lines extracted from the second projection cluster. Collation with the contour line group is performed, and the number of matching contour lines in the first contour line group and the second contour line group is calculated (step S104).
- the determination means 114e determines whether or not the number of contour lines matching between the first projection cluster and the second projection cluster is equal to or greater than the threshold value (step S105).
- the threshold value is 2.
- the determination means 114e associates the first cluster and the second cluster as the same reinforcing bar.
- Step S106 when the number of contour lines matching between the first cluster and the second cluster is less than the threshold value, the determination means 114e does not associate the first cluster and the second cluster as the same reinforcing bar.
- a method of principal component analysis can be applied as a method of detecting the shortest direction from the classified clusters.
- the eigenvalues of the principal components are variances.
- the first principal component, the second principal component, and so on are called in order from the largest eigenvalue. Since the cluster consists of three parameters (x, y, z), a first principal component, a second principal component, a third principal component, and three principal components can be obtained.
- the shortest direction is the direction in which the number of points detected from the cluster is the smallest.
- the shortest direction of the cluster C13 is detected by, for example, a method of principal component analysis.
- the principal component analysis method the eigenvalues of the principal components, which correspond to the variance of the points, are minimized in the shortest direction. That is, the third principal component that minimizes the eigenvalues of the principal component is the shortest direction. Therefore, the shortest direction can be detected by detecting the third principal component by the method of principal component analysis.
- the principal component analysis method can also detect the longest direction, which is the direction in which the number of points is the largest in the cluster. In the longest direction, the eigenvalues of the principal components, which correspond to the variance of the points, are maximized. That is, the first principal component having the maximum eigenvalue of the principal component is the longest direction.
- FIG. 7 is a schematic diagram illustrating an example of a method of extracting a contour line by the processing of steps S102 to S104.
- the shortest direction of the cluster C13 having a curved portion in the contour is detected.
- the cluster C13 is projected onto the plane P1 perpendicular to the shortest direction.
- contour lines (L13a, L13b, L13c, L13d) are extracted from the projection cluster SC13c obtained by projecting the cluster C13 onto the plane P1.
- FIG. 8 is a schematic diagram specifically explaining whether or not the number of matching contour lines in the first contour line group and the second contour line group in step S105 of FIG. 6 is equal to or greater than the threshold value.
- the threshold value of the number of matching contour lines is set to two.
- contour lines L21a, L21b, L21c, and L21d are extracted from the projection cluster SC21 of the cluster C21 after the smoothing process.
- Contour lines L22a, L22b, L22c, and L22d are extracted from the projection cluster SC22 of the cluster C22 after the smoothing process.
- Contour lines L23a, L23b, L23c, and L23d are extracted from the projection cluster SC23 of the cluster C23 after the smoothing process.
- the first contour line group is contour lines L21a, L21b, L21c, and L21d extracted from the projection cluster 21 of the cluster C21.
- the second contour line group is the contour lines L22a, L22b, L22c, and L22d extracted from the projection cluster SC22 of the cluster C22.
- the contour line L21a and the contour line L22a, and the contour line L21b and the contour line L22b coincide with each other. That is, the number of contour lines that match between the first contour line group and the second contour line group is two, which is equal to or more than the threshold value. Therefore, the cluster C21 and the cluster C22 are associated with each other as the same reinforcing bar.
- the first contour line group is contour lines L21a, L21b, L21c, and L21d extracted from the projection cluster C21 of the cluster C21.
- the second contour line group is the contour lines L23a, L23b, L23c, and L23d extracted from the projection cluster SC23 of the cluster C23.
- step S105 of FIG. 6 even if it is determined that the first contour line group and the second contour line group match, the case where the first cluster and the second cluster are not associated with each other will be described.
- FIG. 9 is a diagram illustrating a case where the first cluster and the second cluster are not associated with each other even if it is determined in step S105 of FIG. 6 that the first contour line group and the second contour line group match. It is a figure. Here, it is assumed that the projection cluster of cluster C1 and the projection cluster of cluster C2 match. Further, it is assumed that the projection cluster of cluster C2 and the projection cluster of cluster C3 match.
- cluster C1 and cluster C2 are both point groups acquired from reinforcing bar B1
- cluster C3 is a point group acquired from reinforcing bar B2
- cluster C4 is a point group acquired from reinforcing bar B3. Since cluster C1 and cluster C2 are obtained from the same reinforcing bar, they need to be associated with each other as the same reinforcing bar. On the other hand, since the cluster C2 and the cluster C3 are obtained from different reinforcing bars, it is necessary not to associate them as the same reinforcing bar.
- Reinforcing bar B3 exists at a position on the front side of the three-dimensional sensor 111 in the reinforcing bar B1. Therefore, the point cloud is not acquired from the region T1 of the reinforcing bar B1 because the light from the three-dimensional sensor 111 does not shine in the shadow of the reinforcing bar B3. Since the reinforcing bar B3 exists at a position on the front side with respect to the three-dimensional sensor 111 in the region T1, a point cloud is acquired from that position.
- the reinforcing bar B1 and the reinforcing bar B2 are separate reinforcing bars. Therefore, the point cloud is not acquired from the region T2 between the reinforcing bars B1 and the reinforcing bar B2. Since there is no reinforcing bar at the position on the front side with respect to the three-dimensional sensor 111 in the region T2, the point cloud is not acquired from that position as well.
- the cluster associating means 114 has a third cluster including a predetermined number or more points at a position on the front side of the three-dimensional sensor between the first cluster and the second cluster. Judge whether or not. Then, when the third cluster exists, the first cluster and the second cluster are associated with each other, and when the third cluster does not exist, the first cluster and the second cluster are associated with each other. Avoid associating clusters.
- the cluster C4 including a predetermined number or more points exists at the position on the front side with respect to the three-dimensional sensor 111 between the cluster C1 and the cluster C2, the cluster C1 and the cluster C2 are associated with each other.
- the cluster C2 and the cluster C3 are not associated with each other.
- the point cloud complementing means 115 complements the point cloud in the region T1 between the associated clusters C1 and C2.
- the cluster C5 corresponding to the reinforcing bar B1 is obtained.
- FIG. 10 is a schematic diagram illustrating an example of a method of complementing a point cloud between a first cluster and a second cluster.
- the cluster C9 and the cluster C10 have two contour lines in the contour of the cluster that match (the contour lines q2 and the contour lines q3 match).
- cluster C9 and cluster C10 between the two contour lines facing each other among the matching contour lines.
- the point cloud is interpolated (here, between the contour lines q2 and the contour line q3).
- the cluster C11 in which the cluster C9 and the cluster C10 are associated with each other as the same reinforcing bar is generated.
- FIG. 11 is a schematic diagram illustrating a problem in the case where it is determined whether or not the clusters acquired from the reinforcing bars are associated with the same reinforcing bar without leveling processing. It is assumed that the cluster C31 and the cluster C32 shown in FIG. 11 are obtained from the same reinforcing bar.
- the projection cluster SC31 is a projection of the cluster C31 on a plane perpendicular to the shortest direction
- the projection cluster SC32 is a projection of the cluster C32 on a plane perpendicular to the shortest direction.
- Contour lines L31a, L31b, L31c, and L31d are extracted from the projection cluster SC31.
- contour lines L32a, L32b, L32c, and L32d are extracted from the projection cluster SC32.
- the surface of the reinforcing bar has irregularities such as knots and ribs (see Fig. 3). Since the knots are smaller in size than the main body of the reinforcing bar, the number of points is small in the part corresponding to the knots in the cluster, and a shape error is likely to occur. As shown in FIG. 11, the contour line L31a of the projection cluster SC31 and the contour line L32a of the projection cluster SC32, and the contour line L31b of the projection cluster SC31 and the contour line L32b of the projection cluster SC32, which should match, are all It is possible that they do not match. Since the number of matching contour lines of the cluster C31 and the cluster C32 shown in FIG.
- the smoothing means 13 smoothes the contours of the classified clusters.
- the cluster associating means 14 determines whether or not the first cluster and the second cluster included in the smoothed cluster correspond to the same reinforcing bar between the smoothed clusters. Judgment is based on the positional relationship. By doing so, it is possible to reduce the risk that the same reinforcing bar will be classified into a plurality of clusters or different reinforcing bars will be classified into the same cluster. As a result, it is possible to process the point cloud data acquired from a plurality of reinforcing bars so that the bar arrangement inspection can be performed with high accuracy.
- FIG. 12 is a block diagram showing a configuration of the cluster associating means 214 according to the first modification.
- the cluster association means 214 according to the first modification further includes the reference cluster extraction means 114f and the comparison target cluster extraction means 114g with respect to the cluster association means 114 shown in FIG. ing.
- the reference cluster extraction means 114f extracts a cluster whose longest direction is a predetermined length or longer from among the smoothed clusters as a reference cluster. Any cluster among the reference clusters is used as the first cluster.
- the comparison target cluster extraction means 114g extracts a cluster whose longest direction coincides with the longest direction of the first cluster among the smoothed clusters as a comparison target cluster. Any cluster among the clusters to be compared is set as the second cluster.
- FIG. 13 is a flowchart illustrating the subroutine in step S3 of FIG. 4 according to the first modification.
- the direction detecting means 114a detects the longest direction of the classified cluster after the smoothing process is performed (step S201).
- the detection method in the longest direction is, for example, the method of principal component analysis described above.
- the reference cluster extraction means 114f extracts the clusters whose longest direction is a predetermined length or more from the clusters after the smoothing process as the reference clusters, and selects any cluster among the reference clusters as the first reference cluster. (Step S202).
- the comparison target cluster extraction means 114g extracts the cluster whose longest direction is the same as the longest direction of the first cluster among the clusters after the smoothing process as the comparison target cluster, and arbitrarily among the comparison target clusters. Is the second cluster (step S203). Then, following step S203, the processing of the subroutine shown in FIG. 6 is executed.
- FIG. 14 is a schematic diagram for specifically explaining the processing of steps S201 to S203 shown in FIG.
- clusters acquired from a plurality of reinforcing bars are referred to as cluster C41, cluster C42, and cluster C43.
- the cluster C41 is a reference cluster.
- the longest direction T42 of the cluster C42 is the same as the longest direction T41 of the cluster 41. Therefore, with the cluster C42 as the second cluster, it is determined whether or not the cluster C41 and the cluster C42 are associated with each other.
- the reference cluster C41 is the first cluster
- the longest direction T43 of the cluster C43 is different from the longest direction T41 of the cluster C41. Therefore, it is not examined whether or not the cluster C41 and the cluster C42 are associated with each other.
- the arranged reinforcing bars have a rod-shaped elongated shape. Therefore, if there is a connection relationship between the clusters acquired from the reinforcing bars, it is in the longest direction. Therefore, it is only necessary to consider whether or not to associate with the first cluster only for the cluster whose longest direction coincides with the longest direction of the first cluster. By doing so, the calculation load can be significantly reduced.
- the reason why a cluster whose length in the longest direction is longer than a predetermined length is used as a reference cluster is that if the length in the longest direction of the cluster is shorter than the predetermined length, the reinforcing bar corresponding to the longest direction of the cluster due to an error. This is because there is a possibility that it deviates from the longitudinal direction of.
- FIG. 15 is a block diagram showing the configuration of the processing device 310 according to the second modification.
- the processing device 310 according to the second modification further includes a cluster extraction means 116 and a reference plane determining means 117 with respect to the processing device 110 shown in FIG.
- the cluster extraction means 116 sets the clusters corresponding to the reinforcing bars having the same longest direction as the plane determination clusters, which exist at a position where there is no obstruction to the three-dimensional sensor that irradiates a plurality of reinforcing bars with light. Extract.
- the reference plane determining means 117 includes a first reference plane which is a plane including the plane determining cluster, a second reference plane which is perpendicular to the first reference plane and horizontal to the longest direction of the plane determining cluster, the first reference plane, and the reference plane. A third reference plane perpendicular to the second reference plane is determined.
- FIG. 16 is a flowchart showing an example of a flow of processing point cloud data acquired from a plurality of reinforcing bars in the processing device 110, which is different from that of FIG.
- the classification means 112 obtains point cloud data based on reflected light from a plurality of reinforcing bars irradiated with light by the three-dimensional sensor 111, and positions the point cloud data at each point of the point cloud data. Based on the information, the clusters are classified into clusters, which are shape units corresponding to the plurality of reinforcing bars (step S301).
- the cluster extraction means 116 extracts the cluster corresponding to the reinforcing bar that exists at a position where there is no obstruction to the three-dimensional sensor 111 among the classified clusters (step S302). Subsequently, the direction detecting means 114a detects the longest direction for each of the clusters extracted in step S302 (step S303). Subsequently, the cluster extraction means 116 extracts the clusters extracted in step S303 having the same longest direction as plane determination clusters (step S304).
- the reference plane determining means 117 determines the first reference plane, the second reference plane, and the third reference plane (step S305).
- the first reference plane is a plane including the plane determination cluster
- the second reference plane is a plane perpendicular to the first reference plane and horizontal in the longest direction of the plane determination cluster
- the third reference plane Is a plane perpendicular to the first reference plane and the second reference plane.
- the smoothing means 113 performs contour smoothing processing on a cluster whose longest direction is horizontal to any of the first reference plane, the second reference plane, and the third reference plane (step S306).
- the cluster associating means 114 determines whether or not the first cluster and the second cluster included in the contour-smoothed cluster correspond to the same reinforcing bar. The determination is made based on the positional relationship between the two (step S307).
- the processing of the subroutine shown in FIG. 6 is applied to the processing of step S307.
- the point cloud complementing means 115 determines that the cluster associating means 114 associates the first cluster with the second cluster, a point is formed between the first cluster and the second cluster. Complement the group (step S308).
- FIG. 17 is a schematic diagram for specifically explaining the processing of point cloud data acquired from a plurality of reinforcing bars according to the second modification.
- the cluster C51, the cluster C52, the cluster C53, and the cluster C54 are clusters corresponding to the reinforcing bars existing at positions where there is no obstruction to the three-dimensional sensor 111.
- the longest direction of the cluster C51 is the longest direction T51
- the longest direction of the cluster C52 is the longest direction T52
- the longest direction of the cluster C53 is the longest direction T53
- the longest direction of the cluster C54 is the longest direction T54.
- the cluster C51, the cluster C52, the cluster C53, and the cluster C54 are plane determination clusters. Therefore, the plane including the plane determination clusters, cluster C51, cluster C52, cluster C53, and cluster C54, is the first reference plane P11.
- the plane perpendicular to the first reference plane P11 and horizontal to the longest direction of the plane determination cluster is the second reference plane P12.
- the plane perpendicular to the first reference plane P11 and the second reference plane P12 is the third reference plane P13.
- auxiliary reinforcing bars such as reinforcing bars for width fastening. Reinforcing bars do not contribute to the design and do not need to be detected by bar arrangement inspection.
- the longest direction of the main reinforcing bar is horizontal to any of the first reference plane, the second reference plane, and the third reference plane, while the longest direction of the reinforcing bar is the first reference plane, the second reference plane, and the third reference plane. Often not horizontal to any of the planes.
- the reinforcing bars are estimated for the connection relationship of the clusters. Can be excluded from. As a result, the calculation load can be reduced and the estimation accuracy of the cluster connection relationship can be improved.
- FIG. 18 is a block diagram showing the configuration of the processing device 410 according to the third modification.
- the processing device 410 according to the third modification further includes the reference direction determining means 118 with respect to the processing device 110 shown in FIG.
- the reference direction determining means 118 determines the first reference direction, the second reference direction, and the third reference direction.
- the first reference direction is the direction in which the frequency of the longest direction is high for each of the classified clusters.
- the second reference direction is the direction in which the frequency is the second highest after the first reference direction.
- most of the reinforcing bars are bundled vertically and horizontally, so that the first reference direction and the second reference direction are orthogonal to each other.
- the third reference direction is the direction of the outer product of the first reference direction and the second reference direction.
- FIG. 19 is a flowchart showing an example of a flow of processing point cloud data acquired from a plurality of reinforcing bars in the processing device 110, which is different from FIGS. 4 and 16.
- the classification means 112 obtains point cloud data based on reflected light from a plurality of reinforcing bars irradiated with light by the three-dimensional sensor 111, and positions the point cloud data at each point of the point cloud data. Based on the information, the clusters are classified into clusters, which are shape units corresponding to the plurality of reinforcing bars (step S401).
- the direction detecting means 114a detects the longest direction for each of the classified clusters (step S402). Subsequently, the reference direction determining means 118 determines the first reference direction having the highest frequency in the longest direction detected in step S402 and the second reference direction having the highest frequency next to the first reference direction (step S403). Subsequently, the reference direction determining means 118 determines the third reference direction, which is the direction of the outer product of the first reference direction and the second reference direction (step S404).
- the smoothing means 113 performs contour smoothing processing on a cluster whose shortest direction is parallel to any one of the first reference direction, the second reference direction, and the third reference direction. (Step S405). Subsequently, the cluster associating means 114 determines whether or not the first cluster and the second cluster included in the contour-smoothed cluster correspond to the same reinforcing bar. Judgment is made based on the positional relationship between the two (step S406). The processing of the subroutine shown in FIG. 6 is applied to the processing of step S406. Subsequently, when the point cloud complementing means 115 determines that the cluster associating means 114 associates the first cluster with the second cluster, a point is formed between the first cluster and the second cluster. Complement the group (step S407).
- auxiliary reinforcing bars such as reinforcing bars for width fastening. Reinforcing bars do not contribute to the design and do not need to be detected by bar arrangement inspection.
- the longest direction of the main reinforcing bar is horizontal to either the two directions and the outer product direction, but the longest direction of the reinforcing bar is often not parallel to either of the two directions and the outer product direction.
- the reinforcing bars are connected to the clusters. It can be excluded from the estimation of the relationship. As a result, the calculation load can be reduced and the estimation accuracy of the cluster connection relationship can be improved.
- the present invention has been described as a hardware configuration, but the present invention is not limited thereto.
- the present invention can also be realized by causing a CPU (Central Processing Unit) to execute a program for each process.
- a CPU Central Processing Unit
- Non-transitory computer-readable media include various types of tangible storage media (tangible storage media).
- Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), photomagnetic recording media (eg, photomagnetic disks), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory).
- the program includes various types of temporary memory.
- a computer readable medium Transition computer readable medium
- Examples of temporary computer readable media include electrical signals, optical signals, and electromagnetic waves.
- Temporary computer readable media include wires and light.
- the program can be supplied to the computer via a wired communication path such as a fiber or a wireless communication path.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
処理装置(10)は、配筋検査において光照射された複数の鉄筋からの反射光に基づいて取得された三次元点群データを、三次元点群データの各点における位置情報に基づいて、複数の鉄筋に対応する形状単位であるクラスタに分類する分類手段(12)と、分類されたクラスタの輪郭を平滑化処理する平滑化手段(13)と、平滑化処理されたクラスタに含まれる第1のクラスタと第2のクラスタとが、同一の鉄筋に対応するか否かを、平滑化処理されたクラスタ間の位置関係に基づいて判定するクラスタ対応付け手段(14)と、を備える。
Description
本発明は、処理装置、処理方法及びコンピュータ可読媒体に関する。
鉄筋コンクリート構造物を建築する際、どの位置にどの太さの鉄筋を配置したかを検査する配筋検査を行う必要がある。配筋検査に関して、鉄筋の形状を検出する技術の開発が進められている。例えば、特許文献1には、3次元レーザスキャナを用いて鉄筋の点群データを取得し、取得した点群データに基づいて鉄筋の形状を検出する技術が開示されている。
ところで、配置された鉄筋の形状を検出するために、取得された複数の鉄筋の点群データに対し、点群の位置情報に基づいてクラスタリング処理を行う必要がある。クラスタリング処理とは、同一構造物と考えられる点群をクラスタとして分類する処理である。しかしながら、配筋では縦横数多くの鉄筋が組み合わされているため、クラスタリング処理において、同一の鉄筋が複数のクラスタに分類されてしまったり、異なる鉄筋が同一のクラスタに分類されてしまったりすることがあった。このようにクラスタリング処理の精度が良くない場合、配筋検査を精度良く行なうことができないおそれがあった。
本発明は、以上の背景に鑑みなされたものであり、配筋検査を精度良く行なうことが可能になるように複数の鉄筋から取得された点群データを処理することができる処理装置を提供することを目的とする。
本発明の第1の態様に係る処理装置は、配筋検査において光照射された複数の鉄筋からの反射光に基づいて取得された三次元点群データを、前記三次元点群データの各点における位置情報に基づいて、前記複数の鉄筋に対応する形状単位であるクラスタに分類する分類手段と、分類されたクラスタの輪郭を平滑化処理する平滑化手段と、前記平滑化処理されたクラスタに含まれる第1のクラスタと第2のクラスタとが、同一の鉄筋に対応するか否かを、前記平滑化処理されたクラスタ間の位置関係に基づいて判定するクラスタ対応付け手段と、を備える。
本発明の第2の態様に係る処理方法は、配筋検査において光照射された複数の鉄筋からの反射光に基づいて取得された三次元点群データを、前記三次元点群データの各点における位置情報に基づいて、前記複数の鉄筋に対応する形状単位であるクラスタに分類するステップと、分類されたクラスタの輪郭を平滑化処理するステップと、前記分類されたクラスタに含まれる第1のクラスタと第2のクラスタとが、同一の鉄筋に対応するか否かを、平滑化処理されたクラスタ間の位置関係に基づいて判定するステップと、を備える。
本発明の第3の態様に係る非一時的なコンピュータ可読媒体は、配筋検査において光照射された複数の鉄筋からの反射光に基づいて取得された三次元点群データを、前記三次元点群データの各点における位置情報に基づいて、前記複数の鉄筋に対応する形状単位であるクラスタに分類するステップと、分類されたクラスタの輪郭を平滑化処理するステップと、前記分類されたクラスタに含まれる第1のクラスタと第2のクラスタとが、同一の鉄筋に対応するか否かを、平滑化処理されたクラスタ間の位置関係に基づいて判定するステップと、をコンピュータに実行させるプログラムが格納されている。
本発明によれば、配筋検査を精度良く行なうことが可能になるように複数の鉄筋から取得された点群データを処理することができる。
以下、図面を参照して本発明の実施の形態について説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。なお、図に示した右手系XYZ座標は、構成要素の位置関係を説明するための便宜的なものである。
[実施の形態1]
以下、実施の形態1について説明する。
図1は、実施の形態1に係る処理装置10の構成を示すブロック図である。図1に示すように、処理装置10は、分類手段12と、平滑化手段13と、クラスタ対応付け手段14と、を備えている。
以下、実施の形態1について説明する。
図1は、実施の形態1に係る処理装置10の構成を示すブロック図である。図1に示すように、処理装置10は、分類手段12と、平滑化手段13と、クラスタ対応付け手段14と、を備えている。
分類手段12は、配筋検査において光照射された複数の鉄筋からの反射光に基づいて取得された三次元点群データを、三次元点群データの各点における位置情報に基づいて、複数の鉄筋に対応する形状単位であるクラスタに分類する。平滑化手段13は、分類されたクラスタの輪郭を平滑化処理する。クラスタ対応付け手段14は、分類されたクラスタに含まれる第1のクラスタと第2のクラスタとが、同一の鉄筋に対応するか否かを、平滑化処理されたクラスタ間の位置関係に基づいて判定する。
上述のように構成された処理装置10によれば、配筋検査を精度良く行なうことが可能になるように複数の鉄筋から取得された点群データを処理することができる。
[実施の形態2]
以下、実施の形態2について説明する。
まず、実施の形態2にかかるに係る処理装置の構成例について説明する。図2は、実施の形態2に係る処理装置110の構成を示すブロック図である。図2に示すように、処理装置110は、分類手段112と、平滑化手段113と、クラスタ対応付け手段114と、点群補完手段115と、を備えている。
以下、実施の形態2について説明する。
まず、実施の形態2にかかるに係る処理装置の構成例について説明する。図2は、実施の形態2に係る処理装置110の構成を示すブロック図である。図2に示すように、処理装置110は、分類手段112と、平滑化手段113と、クラスタ対応付け手段114と、点群補完手段115と、を備えている。
分類手段112は、配筋検査において光照射された複数の鉄筋からの反射光に基づいて取得された点群データ(三次元点群データ)を、点群データの各点における位置情報に基づいて、複数の鉄筋に対応する形状単位であるクラスタに分類する。
複数の鉄筋への光照射は三次元センサ111により行う。三次元センサ111は、少なくとも光の振幅情報をもとに距離を測ることができるもので、配置された複数の鉄筋に対して光を照射して点群データを取得する。三次元センサ111は、例えば3D-LiDAR(Light Detection and Ranging)センサである。
鉄筋コンクリート構造物の建築の際に配筋される鉄筋は、異形棒鋼(異形鉄筋)と呼ばれる。図3は、異形棒鋼の外形を示す模式図である。図3に示すように、異形棒鋼には表面に「リブ」や「節」と呼ばれる凹凸の突起が設けられている。異形棒鋼は径に応じて“D10”、“D13”、“D16”、“D19”のような規格名が定められている。規格名に示される数字は、例えば、D10の直径が9.53mm、D13の直径が12.7mmと、異形棒鋼のおおよその直径を示している。すなわち、異形棒鋼の直径は2~3mmごとに規格化されている。
再び図2を参照し、平滑化手段113は、分類手段112により分類されたクラスタの輪郭を平滑化処理する。ここで、分類されたクラスタに対して行う平滑化処理の方法として、一般的な平滑化処理の方法を用いることができる。
クラスタ対応付け手段114は、平滑化手段113により平滑化処理されたクラスタに含まれる第1のクラスタと第2のクラスタとが、同一の鉄筋に対応するか否かを、当該平滑化処理されたクラスタ間の位置関係に基づいて判定する。クラスタ対応付け手段114は、方向検出手段114aと、射影クラスタ生成手段114bと、輪郭線抽出手段114cと、輪郭線一致数算出手段114dと、判定手段114eと、を備えている。
方向検出手段114aはクラスタの方向を検出する。例えば、クラスタにおける、点の数が最も少なく並んでいる最短方向や、点の数が最も多く並んでいる最長方向を検出する。ここで、点の数が最も少なく並んでいる、とは点の数がゼロの場合を含まないものとする。射影クラスタ生成手段114bは、第1のクラスタを第1のクラスタの最短方向に垂直な平面に射影した第1の射影クラスタと、第2のクラスタを第2のクラスタの最短方向に垂直な平面に射影した第2の射影クラスタを生成する。
輪郭線抽出手段114cは、第1のクラスタと第2のクラスタの輪郭線を抽出する。輪郭線一致数算出手段114dは、第1のクラスタと第2のクラスタで一致する輪郭線の数を算出する。判定手段114eは、第1のクラスタと第2のクラスタとを、同一の鉄筋として対応付けするか否かを、平滑化処理されたクラスタ間の位置関係に基づいて判定する。
点群補完手段115は、クラスタ対応付け手段114において第1のクラスタと第2のクラスタとを対応付けすると判定された場合に、第1のクラスタと第2のクラスタとの間に点群を補完する。
次に、図2に示す処理装置110における、複数の鉄筋から取得された点群データを処理する流れについて説明する。なお、以下の説明では図2についても適宜参照する。
図4は、処理装置110における、複数の鉄筋から取得された点群データを処理する流れについて説明するフローチャートである。図4に示すように、まず、分類手段112が、光照射された複数の鉄筋からの反射光に基づいて取得された点群データを、当該点群データの各点における位置情報に基づいて、当該複数の鉄筋に対応する形状単位であるクラスタに分類する(ステップS1)。続いて、平滑化手段113が、分類されたクラスタの輪郭を平滑化処理する(ステップS2)。続いて、クラスタ対応付け手段114が、平滑化処理されたクラスタに含まれる第1のクラスタと第2のクラスタとが、同一の鉄筋に対応するか否かを、当該平滑化処理されたクラスタ間の位置関係に基づいて判定する(ステップS3)。続いて、点群補完手段115が、クラスタ対応付け手段114において第1のクラスタと第2のクラスタとを対応付けすると判定された場合に、第1のクラスタと第2のクラスタとの間に点群を補完する(ステップS4)。
図3を参照して説明したように鉄筋の表面には節やリブなどの凹凸が多数存在する。図5は、鉄筋より取得されたクラスタに対して平滑化処理を行った一例について示す図である。図5の左側に示すように、平滑化処理前のクラスタには、輪郭に節に対応する突出部分が多く存在する。これに対し、図5の右側に示すように、平滑化処理後のクラスタでは、突出部分がほぼ無くなっている。このように、鉄筋より取得されたクラスタに対して平滑化処理を行うことで、クラスタの輪郭線の検出を精度良く行うことができる。これにより、分類されたクラスタ間の連結関係の推定を精度良く行うことが可能になる。なお、クラスタの輪郭線の検出方法については後述する。
次に、図4のステップS3における、第1のクラスタと第2のクラスタとを同一の鉄筋として対応付けするか否かを判定する方法について具体的に説明する。なお、以下の説明では図2についても適宜参照する。
図6は、図4のステップS3におけるサブルーチンの処理の流れについて示すフローチャートである。図6に示すように、まず、方向検出手段114aが、第1のクラスタと第2のクラスタについて、それぞれ最短方向を検出する(ステップS101)。続いて、射影クラスタ生成手段114bが、第1のクラスタを第1のクラスタの最短方向に垂直な平面に射影した第1の射影クラスタと、第2のクラスタを第2のクラスタの最短方向に垂直な平面に射影した第2の射影クラスタを生成する(ステップS102)。
ステップS102に続いて、輪郭線抽出手段114cが、第1の射影クラスタと第2の射影クラスタの輪郭線を抽出する(ステップS103)。続いて、輪郭線一致数算出手段114dが、第1の射影クラスタから抽出された複数の輪郭線である第1輪郭線群と第2の射影クラスタから抽出された複数の輪郭線である第2輪郭線群との照合を行ない、第1輪郭線群と第2輪郭線群とで一致する輪郭線の数を算出する(ステップS104)。
ステップS104に続いて、判定手段114eが、第1の射影クラスタと第2の射影クラスタとで一致する輪郭線の数が閾値以上か否かを判定する(ステップS105)。ここで、鉄筋の場合には閾値は2となる。ステップS105において、第1の射影クラスタと第2の射影クラスタとで一致する輪郭線の数が閾値以上の場合、判定手段114eにおいて、第1のクラスタと第2のクラスタを同一の鉄筋として対応付けする(ステップS106)。ステップS105において、第1のクラスタと第2のクラスタとで一致する輪郭線の数が閾値未満の場合、判定手段114eにおいて、第1のクラスタと第2のクラスタを同一の鉄筋としての対応付けしない(ステップS107)。
ステップS101において、分類されたクラスタから最短方向を検出する方法として、主成分分析(PCA:Principle Component Analysis)の手法を適用することができる。主成分分析の手法では、主成分(固有ベクトル)の固有値が分散である。主成分分析の手法では、固有値が大きいから順に第1主成分、第2主成分、・・・と呼ぶ。クラスタは3つのパラメータ(x、y、z)から成るため、第1主成分、第2主成分、第3主成分と、3つの主成分が得られる。
上述したように、最短方向は、クラスタより検出される点の数が最も少なく並んでいる方向である。クラスタC13の最短方向は、例えば、主成分分析の手法により検出する。主成分分析の手法では、最短方向において、点の分散に相当する、主成分の固有値が最小になる。つまり、主成分の固有値が最小となる第3主成分が最短方向である。よって、主成分分析の手法によって第3主成分を検出することで最短方向を検出することができる。
なお、主成分分析の手法では、クラスタにおいて点の数が最も多く並んでいる方向である最長方向も検出することができる。最長方向において、点の分散に相当する、主成分の固有値が最大になる。つまり、主成分の固有値が最大となる第1主成分が最長方向である。
次に、ステップS102からステップS104の処理により輪郭線を抽出する方法の一例について説明する。鉄筋より取得されたクラスタは輪郭に曲線部分を有するので、クラスタを最短方向に垂直な平面に射影した射影クラスタを生成して、当該射影クラスタから輪郭線を抽出するようにする。
図7は、ステップS102からステップS104の処理により輪郭線を抽出する方法の一例について説明する模式図である。図7に示すように、まず、輪郭に曲線部分を有するクラスタC13の最短方向を検出する。続いて、クラスタC13を最短方向に垂直な平面P1に射影する。続いて、クラスタC13を平面P1に射影することにより得られた射影クラスタSC13cから輪郭線(L13a、L13b、L13c、L13d)を抽出する。
図8は、図6のステップS105における、第1輪郭線群と第2輪郭線群とで一致する輪郭線の数が閾値以上か否かの判定について、具体的に説明する模式図である。ここで、一致する輪郭線の数の閾値を2本とする。
図8に示すように、平滑化処理後のクラスタC21の射影クラスタSC21からは輪郭線L21a、L21b、L21c、L21dが抽出されている。平滑化処理後のクラスタC22の射影クラスタSC22からは輪郭線L22a、L22b、L22c、L22dが抽出されている。平滑化処理後のクラスタC23の射影クラスタSC23からは輪郭線L23a、L23b、L23c、L23dが抽出されている。
まず、第1のクラスタがクラスタC21、第2のクラスタがクラスタC22であるとして検討する。第1輪郭線群は、クラスタC21の射影クラスタ21から抽出された輪郭線L21a、L21b、L21c、L21dである。第2輪郭線群は、クラスタC22の射影クラスタSC22から抽出された輪郭線L22a、L22b、L22c、L22dである。第1輪郭線群と第2輪郭線群とでは、輪郭線L21aと輪郭線L22a、輪郭線L21bと輪郭線L22b、が一致している。つまり、第1輪郭線群と第2輪郭線群とで一致する輪郭線の数は2本で、閾値以上である。よって、クラスタC21とクラスタC22は同一の鉄筋として対応付けする。
次に、第1のクラスタがクラスタC21、第2のクラスタがクラスタC23であるとして検討する。第1輪郭線群は、クラスタC21の射影クラスタC21から抽出された輪郭線L21a、L21b、L21c、L21dである。第2輪郭線群は、クラスタC23の射影クラスタSC23から抽出された輪郭線L23a、L23b、L23c、L23dである。第1輪郭線群と第2輪郭線群とでは、一致する輪郭線がない。つまり、第1輪郭線群と第2輪郭線群とで一致する輪郭線の数は閾値未満である。よって、クラスタC21とクラスタC23は同一の鉄筋としての対応付けはしない。
次に、図6のステップS105において、第1輪郭線群と第2輪郭線群とで一致すると判定されても、第1のクラスタと第2のクラスタとを対応付けしない場合について説明する。
図9は、図6のステップS105において、第1輪郭線群と第2輪郭線群とで一致すると判定されても、第1のクラスタと第2のクラスタとを対応付けしない場合について説明する模式図である。ここで、クラスタC1の射影クラスタと、クラスタC2の射影クラスタと、が一致しているとする。また、クラスタC2の射影クラスタと、クラスタC3の射影クラスタと、が一致しているとする。
図9に示すように、クラスタC1とクラスタC2はいずれも鉄筋B1から取得された点群、クラスタC3は鉄筋B2から取得された点群、クラスタC4は鉄筋B3から取得された点群である。クラスタC1とクラスタC2は同一の鉄筋から取得されたものなので、同一の鉄筋として対応付けする必要がある。一方、クラスタC2とクラスタC3は別々の鉄筋から取得されたものなので、同一の鉄筋としての対応付けはしないようにする必要がある。
鉄筋B1における、三次元センサ111に対して手前側の位置には鉄筋B3が存在している。このため、鉄筋B1の領域T1からは、鉄筋B3の影になって三次元センサ111からの光が当たらないので、点群が取得されない。領域T1の三次元センサ111に対して手前側の位置には鉄筋B3が存在しているので、当該位置からは点群が取得される。
一方、鉄筋B1と鉄筋B2とは別々の鉄筋である。このため、鉄筋B1と鉄筋B2の間の領域T2からは点群が取得されない。領域T2の三次元センサ111に対して手前側の位置には鉄筋が存在していないので、当該位置からも点群が取得されない。
クラスタC2とクラスタC3のように、別々の鉄筋から取得された2つのクラスタから生成された射影クラスタが、偶然、一致してしまう場合もあり得る。そこで、クラスタ対応付け手段114は、第1のクラスタと第2のクラスタとの間の三次元センサに対して手前側の位置に、所定数以上の点が含まれる第3のクラスタが存在しているか否かを判定する。そして、第3のクラスタが存在している場合には、第1のクラスタと第2のクラスタを対応付けし、第3のクラスタが存在していない場合には、第1のクラスタと第2のクラスタを対応付けしないようにする。
つまり、クラスタC1とクラスタC2との間の三次元センサ111に対して手前側の位置には、所定数以上の点が含まれるクラスタC4が存在するので、クラスタC1とクラスタC2を対応付けする。一方、クラスタC2とクラスタC3との間の三次元センサ111に対して手前側の位置には、所定数以上の点が含まれるクラスタが存在しないので、クラスタC2とクラスタC3は対応付けしない。そして、点群補完手段115(図2参照)により、対応付けされたクラスタC1とクラスタC2との間の領域T1に点群を補完する。これにより、鉄筋B1に対応するクラスタC5が得られる。
次に、図4のステップS4において、第1のクラスタと第2のクラスタとの間に点群を補完する方法について説明する。
図10は、第1のクラスタと第2のクラスタとの間に点群を補完する方法の一例について説明する模式図である。図10に示すように、クラスタC9とクラスタC10は、クラスタの輪郭における輪郭線が2本一致しているとする(輪郭線q2、輪郭線q3が一致)。クラスタの輪郭における輪郭線が2本一致している場合、対応付けする2つのクラスタである、クラスタC9とクラスタC10の間において、一致している輪郭線うちで互いに対向する2つの輪郭線の間(ここでは輪郭線q2と輪郭線q3の間)に点群を補間する。これにより、クラスタC9とクラスタC10とを同一の鉄筋として対応付けしたクラスタC11が生成される。
図10は、第1のクラスタと第2のクラスタとの間に点群を補完する方法の一例について説明する模式図である。図10に示すように、クラスタC9とクラスタC10は、クラスタの輪郭における輪郭線が2本一致しているとする(輪郭線q2、輪郭線q3が一致)。クラスタの輪郭における輪郭線が2本一致している場合、対応付けする2つのクラスタである、クラスタC9とクラスタC10の間において、一致している輪郭線うちで互いに対向する2つの輪郭線の間(ここでは輪郭線q2と輪郭線q3の間)に点群を補間する。これにより、クラスタC9とクラスタC10とを同一の鉄筋として対応付けしたクラスタC11が生成される。
次に、鉄筋から取得されたクラスタに対して平準化処理をせずに、同一の鉄筋として対応付けするか否かの判定をした場合の問題点について説明する。
図11は、鉄筋から取得されたクラスタに対して平準化処理をせずに、同一の鉄筋として対応付けするか否かの判定をした場合の問題点について説明する模式図である。図11に示されている、クラスタC31とクラスタC32とは同一の鉄筋から取得されたものであるとする。
図11は、鉄筋から取得されたクラスタに対して平準化処理をせずに、同一の鉄筋として対応付けするか否かの判定をした場合の問題点について説明する模式図である。図11に示されている、クラスタC31とクラスタC32とは同一の鉄筋から取得されたものであるとする。
射影クラスタSC31はクラスタC31を最短方向に垂直な平面に射影したものであり、射影クラスタSC32はクラスタC32を最短方向に垂直な平面に射影したものである。射影クラスタSC31からは輪郭線L31a、L31b、L31c、L31dが抽出される。また、射影クラスタSC32からは輪郭線L32a、L32b、L32c、L32dが抽出される。
鉄筋の表面には節やリブなどの凹凸がある(図3参照)。節は、鉄筋の本体部分に対して大きさが小さいため、クラスタにおける節に対応する部分では点の数が少なく、形状の誤差が生じやすい。図11に示すように、一致するはずである、射影クラスタSC31の輪郭線L31aと射影クラスタSC32の輪郭線L32a、及び、射影クラスタSC31の輪郭線L31bと射影クラスタSC32の輪郭線L32b、がいずれも一致しないことが起こりうる。図11に示す、クラスタC31とクラスタC32は、輪郭線が一致する本数が閾値である2未満なので、同一の鉄筋ではないと判定される。このように、鉄筋から取得されたクラスタに対して平準化処理をせずに、同一の鉄筋としての対応付けするか否かの判定をした場合、同一の鉄筋が複数のクラスタに分類されてしまったり、異なる鉄筋が同一のクラスタに分類されてしまったりするおそれが高い。
本実施の形態に係る処理装置110では、平滑化手段13が、分類されたクラスタの輪郭を平滑化処理する。そして、クラスタ対応付け手段14が、平滑化処理されたクラスタに含まれる第1のクラスタと第2のクラスタとが、同一の鉄筋に対応するか否かを、当該平滑化処理されたクラスタ間の位置関係に基づいて判定する。このようにすることで、同一の鉄筋が複数のクラスタに分類されてしまったり、異なる鉄筋が同一のクラスタに分類されてしまったりするおそれを低減することができる。これにより、配筋検査を精度良く行なうことが可能になるように複数の鉄筋から取得された点群データを処理することができる。
[変形例1]
次に、図4のステップS3のサブルーチンの図6に示すサブルーチンとは別の一例について説明する。なお、以下の説明では図2についても適宜参照する。
次に、図4のステップS3のサブルーチンの図6に示すサブルーチンとは別の一例について説明する。なお、以下の説明では図2についても適宜参照する。
変形例1に係るサブルーチンでは、図6に示すサブルーチンの処理に先立ち、以下に説明する前処理を行う点のみが図6に示すサブルーチンとの相違点である。図12は、変形例1に係るクラスタ対応付け手段214の構成を示すブロック図である。図12に示すように、変形例1に係るクラスタ対応付け手段214は、図2に示すクラスタ対応付け手段114に対して、基準クラスタ抽出手段114fと、比較対象クラスタ抽出手段114gと、をさらに備えている。
基準クラスタ抽出手段114fは、平滑化処理されたクラスタのうちで最長方向が所定の長さ以上のクラスタを基準クラスタとして抽出する。なお、基準クラスタのうち任意のクラスタを第1のクラスタとする。比較対象クラスタ抽出手段114gは、平滑化処理されたクラスタのうちで最長方向が第1のクラスタの最長方向と一致するクラスタを比較対象クラスタとして抽出する。なお、比較対象クラスタのうち任意のクラスタを第2のクラスタとする。
図13は、変形例1に係る、図4のステップS3のサブルーチンについて説明するフローチャートである。図13に示すように、まず、方向検出手段114aが、分類されたクラスタに対して平滑化処理を行った後のクラスタについて最長方向を検出する(ステップS201)。なお、最長方向の検出方法は、例えば、上述した主成分分析の手法により行う。続いて、基準クラスタ抽出手段114fが、平滑化処理を行った後のクラスタのうちで、最長方向が所定の長さ以上のクラスタを基準クラスタとして抽出し、基準クラスタのうち任意のクラスタを第1のクラスタとする(ステップS202)。続いて、比較対象クラスタ抽出手段114gが、平滑化処理を行った後のクラスタのうちで最長方向が第1のクラスタの最長方向と同じクラスタを比較対象クラスタとして抽出し、比較対象クラスタのうち任意のクラスタを第2のクラスタとする(ステップS203)。そして、ステップS203に続いて、図6に示すサブルーチンの処理を実行する。
図14は、図13に示す、ステップS201からステップS203の処理について具体的に説明する模式図である。図14に示すように、複数の鉄筋から取得されたクラスタをクラスタC41、クラスタC42、クラスタC43とする。ここで、クラスタC41の最長方向の長さL1が所定の長さLset以上であるとすると、クラスタC41は基準クラスタである。基準クラスタであるクラスタC41を第1のクラスタとすると、クラスタC42の最長方向T42はクラスタ41の最長方向T41と同じである。よって、クラスタC42を第2のクラスタとして、クラスタC41とクラスタC42とを対応付けするか否かの判定を行う。これに対し、基準クラスタであるクラスタC41を第1のクラスタとすると、クラスタC43の最長方向T43はクラスタC41の最長方向T41と異なる。よって、クラスタC41とクラスタC42については、対応付けするか否かの検討を行わない。
配置された鉄筋は、棒状の細長い形状である。このため、鉄筋より取得されたクラスタに連結関係があるとすれば最長方向においてである。よって、第1のクラスタと対応付けするか否かの検討は、最長方向が第1のクラスタの最長方向と一致するクラスタについてのみ行えば良い。このようにすることで、計算負荷を大幅に低減することができる。なお、最長方向の長さが所定の長さ以上のクラスタを基準クラスタとしているのは、クラスタの最長方向の長さが所定の長さより短い場合では、誤差により当該クラスタの最長方向が対応する鉄筋の長手方向からずれているおそれがあるからである。
[変形例2]
処理装置110における、複数の鉄筋から取得された点群データを処理する流れの、図4とは別の一例について説明する。なお、以下の説明では図2についても適宜参照する。
処理装置110における、複数の鉄筋から取得された点群データを処理する流れの、図4とは別の一例について説明する。なお、以下の説明では図2についても適宜参照する。
図15は、変形例2に係る処理装置310の構成を示すブロック図である。図15に示すように、変形例2に係る処理装置310は、図2に示す処理装置110に対して、クラスタ抽出手段116と、基準平面決定手段117と、をさらに備えている。クラスタ抽出手段116は、複数の鉄筋に対して光照射する三次元センサに対して遮るものが手前に存在しない位置に存在する鉄筋に対応するクラスタのうちで最長方向が同じものを平面決定クラスタとして抽出する。基準平面決定手段117は、平面決定クラスタが含まれる平面である第1基準平面と、第1基準平面に垂直でかつ平面決定クラスタの最長方向に水平な第2基準平面と、第1基準平面及び第2基準平面に垂直な第3基準平面と、を決定する。
図16は、処理装置110における、複数の鉄筋から取得された点群データを処理する流れの、図4とは別の例について示すフローチャートである。図16に示すように、まず、分類手段112が、三次元センサ111により光照射された複数の鉄筋からの反射光に基づいて取得された点群データを、当該点群データの各点における位置情報に基づいて、当該複数の鉄筋に対応する形状単位であるクラスタに分類する(ステップS301)。
ステップS301に続いて、クラスタ抽出手段116が、分類したクラスタのうち、三次元センサ111に対して遮るものが手前に存在しない位置に存在する鉄筋に対応するクラスタを抽出する(ステップS302)。続いて、方向検出手段114aが、ステップS302において抽出されたクラスタのそれぞれについて最長方向を検出する(ステップS303)。続いて、クラスタ抽出手段116が、ステップS303で抽出されたクラスタのうち最長方向が同じものを平面決定クラスタとして抽出する(ステップS304)。
ステップS304に続いて、基準平面決定手段117が、第1基準平面と第2基準平面と第3基準平面を決定する(ステップS305)。ここで、第1基準平面は、平面決定クラスタが含まれる平面であり、第2基準平面は、第1基準平面に垂直でかつ平面決定クラスタの最長方向に水平な平面であり、第3基準平面は、第1基準平面及び第2基準平面に垂直な平面である。
ステップS305に続いて、平滑化手段113が、最長方向が第1基準平面、第2基準平面、第3基準平面のいずれかに水平なクラスタについて、輪郭の平滑化処理をする(ステップS306)。続いて、クラスタ対応付け手段114が、輪郭の平滑化処理をされたクラスタに含まれる第1のクラスタと第2のクラスタとが、同一の鉄筋に対応するか否かを、平滑化されたクラスタ間の位置関係に基づいて判定する(ステップS307)。なお、ステップS307の処理には、図6に示したサブルーチンの処理を適用する。続いて、点群補完手段115が、クラスタ対応付け手段114において第1のクラスタと第2のクラスタとを対応付けすると判定された場合に、第1のクラスタと第2のクラスタとの間に点群を補完する(ステップS308)。
図17は、変形例2に係る、複数の鉄筋から取得された点群データの処理について具体的に説明する模式図である。図17の上段に示すように、クラスタC51、クラスタC52、クラスタC53、クラスタC54が、三次元センサ111に対して遮るものが手前に存在しない位置に存在する鉄筋に対応するクラスタである。クラスタC51の最長方向を最長方向T51、クラスタC52の最長方向を最長方向T52、クラスタC53の最長方向を最長方向T53、クラスタC54の最長方向を最長方向T54とする。ここで、最長方向T51、最長方向T52、最長方向T53、最長方向T54が全て同じ方向であるとすると、クラスタC51、クラスタC52、クラスタC53、クラスタC54が平面決定クラスタとなる。よって、平面決定クラスタである、クラスタC51、クラスタC52、クラスタC53及びクラスタC54が含まれる平面が第1基準平面P11である。
図17の下段に示すように、第1基準平面P11に垂直でかつ平面決定クラスタの最長方向に水平な平面が第2基準平面P12である。また、第1基準平面P11及び第2基準平面P12に垂直な平面が第3基準平面P13である。
配筋には、設計に寄与する主鉄筋に加えて、幅留め用の配筋などの補助鉄筋(補強筋)が多数存在する場合がある。補強筋は設計に対して寄与しないので配筋検査で検出する必要はない。主鉄筋は、最長方向が第1基準平面、第2基準平面、第3基準平面のいずれかに水平であるが、補強筋は、最長方向が第1基準平面、第2基準平面、第3基準平面のいずれにも水平でない場合が多い。上述のように、平滑化処理をするクラスタを、最長方向が第1基準平面、第2基準平面、第3基準平面のいずれかに水平なものに限定すると、補強筋をクラスタの連結関係の推定から除外することができる。これにより、計算負荷を軽減し、かつ、クラスタの連結関係の推定精度を向上させることができる。
[変形例3]
処理装置110における、複数の鉄筋から取得された点群データを処理する流れの、図4及び図16とは別の一例について説明する。なお、以下の説明では図2についても適宜参照する。
処理装置110における、複数の鉄筋から取得された点群データを処理する流れの、図4及び図16とは別の一例について説明する。なお、以下の説明では図2についても適宜参照する。
図18は、変形例3に係る処理装置410の構成を示すブロック図である。図18に示すように、変形例3に係る処理装置410は、図2に示す処理装置110に対して、基準方向決定手段118をさらに備えている。基準方向決定手段118は、第1基準方向、第2基準方向及び第3基準方向を決定する。ここで、第1基準方向は、分類したクラスタのそれぞれについて最長方向の頻度が高い方向である。第2基準方向は、当該頻度が第1基準方向に次いで高い方向である。配置された鉄筋の場合、大半の鉄筋は縦横に結束されているので、第1基準方向と第2基準方向は直交する。第3基準方向は、第1基準方向と第2基準方向の外積の方向である。
図19は、処理装置110における、複数の鉄筋から取得された点群データを処理する流れの、図4及び図16とは別の例について示すフローチャートである。図19に示すように、まず、分類手段112が、三次元センサ111により光照射された複数の鉄筋からの反射光に基づいて取得された点群データを、当該点群データの各点における位置情報に基づいて、当該複数の鉄筋に対応する形状単位であるクラスタに分類する(ステップS401)。
ステップS401に続いて、方向検出手段114aが、分類したクラスタのそれぞれについて最長方向を検出する(ステップS402)。続いて、基準方向決定手段118が、ステップS402で検出された最長方向の頻度が最も高い第1基準方向と当該頻度が第1基準方向に次いで高い第2基準方向を決定する(ステップS403)。続いて、基準方向決定手段118が、第1基準方向と第2基準方向の外積の方向である第3基準方向を決定する(ステップS404)。
ステップS404に続いて、平滑化手段113が、最短方向が、第1基準方向、第2基準方向、第3基準方向のうちのいずれかの方向に平行なクラスタについて、輪郭の平滑化処理をする(ステップS405)。続いて、クラスタ対応付け手段114が、輪郭の平滑化処理をされたクラスタに含まれる第1のクラスタと第2のクラスタとが、同一の鉄筋に対応するか否かを、平滑化されたクラスタ間の位置関係に基づいて判定する(ステップS406)。なお、ステップS406の処理には、図6に示したサブルーチンの処理を適用する。続いて、点群補完手段115が、クラスタ対応付け手段114において第1のクラスタと第2のクラスタとを対応付けすると判定された場合に、第1のクラスタと第2のクラスタとの間に点群を補完する(ステップS407)。
配筋には、設計に寄与する主鉄筋に加えて、幅留め用の配筋などの補助鉄筋(補強筋)が多数存在する場合がある。補強筋は設計に対して寄与しないので配筋検査で検出する必要はない。主鉄筋は、最長方向が2方向と外積方向のうちのいずれかに水平であるが、補強筋は、最長方向が、2方向と外積方向のうちのいずれの方向にも平行でない場合が多い。上述のように、平滑化処理をするクラスタを、最長方向が、2方向と外積方向のうちのいずれかの方向に平行なクラスタのいずれかに水平なものに限定すると、補強筋をクラスタの連結関係の推定から除外することができる。これにより、計算負荷を軽減し、かつ、クラスタの連結関係の推定精度を向上させることができる。
上述の実施の形態では、本発明をハードウェアの構成として説明したが、本発明は、これに限定されるものではない。本発明は、各処理を、CPU(Central Processing Unit)にプログラムを実行させることにより実現することも可能である。
上述の処理を実現するためのプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory)を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、以上で説明した複数の例は、適宜組み合わせて実施されることもできる。
10、110、310、410 処理装置
12、112 分類手段
13、113 平滑化手段
14、114、214 クラスタ対応付け手段
21 射影クラスタ
111 三次元センサ
114a 方向検出手段
114b 射影クラスタ生成手段
114c 輪郭線抽出手段
114d 輪郭線一致数算出手段
114e 判定手段
114f 基準クラスタ抽出手段
114g 比較対象クラスタ抽出手段
115 点群補完手段
116 クラスタ抽出手段
117 基準平面決定手段
118 基準方向決定手段
12、112 分類手段
13、113 平滑化手段
14、114、214 クラスタ対応付け手段
21 射影クラスタ
111 三次元センサ
114a 方向検出手段
114b 射影クラスタ生成手段
114c 輪郭線抽出手段
114d 輪郭線一致数算出手段
114e 判定手段
114f 基準クラスタ抽出手段
114g 比較対象クラスタ抽出手段
115 点群補完手段
116 クラスタ抽出手段
117 基準平面決定手段
118 基準方向決定手段
Claims (6)
- 配筋検査において光照射された複数の鉄筋からの反射光に基づいて取得された三次元点群データを、前記三次元点群データの各点における位置情報に基づいて、前記複数の鉄筋に対応する形状単位であるクラスタに分類する分類手段と、
分類されたクラスタの輪郭を平滑化処理する平滑化手段と、
前記平滑化処理されたクラスタに含まれる第1のクラスタと第2のクラスタとが、同一の鉄筋に対応するか否かを、前記平滑化処理されたクラスタ間の位置関係に基づいて判定するクラスタ対応付け手段と、を備える、処理装置。 - 前記クラスタ対応付け手段は、前記平滑化処理されたクラスタについてそれぞれ点の数が最も多く並んでいる最長方向を検出し、前記平滑化処理されたクラスタのうちで最長方向が所定の長さ以上のクラスタを基準クラスタとして抽出し、前記基準クラスタのうち任意のクラスタを前記第1のクラスタとし、前記平滑化処理されたクラスタのうちで最長方向が前記第1のクラスタの最長方向と一致するクラスタのうち任意のクラスタを前記第2のクラスタとする、請求項1に記載の処理装置。
- 前記複数の鉄筋に対して光照射する三次元センサに対して遮るものが手前に存在しない位置に存在する鉄筋に対応するクラスタのうちで最長方向が同じものを平面決定クラスタとして抽出するクラスタ抽出手段と、
前記平面決定クラスタが含まれる平面である第1基準平面と、前記第1基準平面に垂直でかつ前記平面決定クラスタの最長方向に水平な第2基準平面と、第1基準平面及び第2基準平面に垂直な第3基準平面と、を決定する基準平面決定手段と、をさらに備え、
前記平滑化手段は、最長方向が前記第1基準平面、前記第2基準平面、前記第3基準平面のいずれかに水平なクラスタについて平滑化処理を行うようにする、請求項1または2に記載の処理装置。 - 分類したクラスタのそれぞれについて最長方向の頻度が最も高い第1基準方向と、当該頻度が第1基準方向に次いで高い第2基準方向と、第1基準方向と第2基準方向の外積の方向である第3基準方向と、を決定する基準方向決定手段をさらに備え、
前記平滑化手段は、最長方向が前記第1基準方向、前記第2基準方向、前記第3基準方向のいずれかに平行なクラスタについて平滑化処理を行うようにする、請求項1または2に記載の処理装置。 - 配筋検査において光照射された複数の鉄筋からの反射光に基づいて取得された三次元点群データを、前記三次元点群データの各点における位置情報に基づいて、前記複数の鉄筋に対応する形状単位であるクラスタに分類するステップと、
分類されたクラスタの輪郭を平滑化処理するステップと、
前記分類されたクラスタに含まれる第1のクラスタと第2のクラスタとが、同一の鉄筋に対応するか否かを、平滑化処理されたクラスタ間の位置関係に基づいて判定するステップと、を備える、処理方法。 - 配筋検査において光照射された複数の鉄筋からの反射光に基づいて取得された三次元点群データを、前記三次元点群データの各点における位置情報に基づいて、前記複数の鉄筋に対応する形状単位であるクラスタに分類するステップと、
分類されたクラスタの輪郭を平滑化処理するステップと、
前記分類されたクラスタに含まれる第1のクラスタと第2のクラスタとが、同一の鉄筋に対応するか否かを、平滑化処理されたクラスタ間の位置関係に基づいて判定するステップと、をコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/036988 WO2021053811A1 (ja) | 2019-09-20 | 2019-09-20 | 処理装置、処理方法及びコンピュータ可読媒体 |
JP2021546152A JP7201095B2 (ja) | 2019-09-20 | 2019-09-20 | 処理装置、処理方法及びプログラム |
US17/641,175 US20220343629A1 (en) | 2019-09-20 | 2019-09-20 | Processing device, processing method, and computerreadable medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/036988 WO2021053811A1 (ja) | 2019-09-20 | 2019-09-20 | 処理装置、処理方法及びコンピュータ可読媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021053811A1 true WO2021053811A1 (ja) | 2021-03-25 |
Family
ID=74884415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/036988 WO2021053811A1 (ja) | 2019-09-20 | 2019-09-20 | 処理装置、処理方法及びコンピュータ可読媒体 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220343629A1 (ja) |
JP (1) | JP7201095B2 (ja) |
WO (1) | WO2021053811A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114442101B (zh) * | 2022-01-28 | 2023-11-14 | 南京慧尔视智能科技有限公司 | 基于成像毫米波雷达的车辆导航方法、装置、设备及介质 |
CN115854883B (zh) * | 2022-11-09 | 2023-11-03 | 浙江大学 | 一种适用于长钢筋笼的自动化检测方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010151577A (ja) * | 2008-12-25 | 2010-07-08 | Shimizu Corp | 配筋検査装置および配筋検査方法 |
JP2017009546A (ja) * | 2015-06-26 | 2017-01-12 | Mogコンサルタント株式会社 | 移動式3次元レーザスキャナを用いた配筋検査方法 |
JP2018180571A (ja) * | 2017-04-03 | 2018-11-15 | 株式会社ア−キテック | 配筋検査支援システム及び配筋検査支援プログラム |
JP2019024151A (ja) * | 2017-07-21 | 2019-02-14 | 株式会社タダノ | ガイド情報表示装置およびこれを備えたクレーンおよびガイド情報表示方法 |
JP2019096119A (ja) * | 2017-11-24 | 2019-06-20 | 富士通株式会社 | 手認識方法、手認識プログラムおよび手認識装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9110163B2 (en) * | 2013-06-14 | 2015-08-18 | Microsoft Technology Licensing, Llc | Lidar-based classification of object movement |
CA2921990C (en) * | 2013-09-04 | 2018-08-28 | United Parcel Service Of America, Inc. | X-ray scanning system and method |
CA2970509A1 (en) * | 2016-09-01 | 2018-03-01 | Maurice Bernard Dusseault | System and method for detecting irregularities in rebar in reinforced concrete |
US10854011B2 (en) * | 2018-04-09 | 2020-12-01 | Direct Current Capital LLC | Method for rendering 2D and 3D data within a 3D virtual environment |
EP4024044A4 (en) * | 2019-08-28 | 2022-09-21 | Konica Minolta, Inc. | INFORMATION PROCESSING SYSTEM FOR NON DESTRUCTIVE INSPECTION AND NON DESTRUCTIVE INSPECTION EQUIPMENT |
-
2019
- 2019-09-20 JP JP2021546152A patent/JP7201095B2/ja active Active
- 2019-09-20 US US17/641,175 patent/US20220343629A1/en active Pending
- 2019-09-20 WO PCT/JP2019/036988 patent/WO2021053811A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010151577A (ja) * | 2008-12-25 | 2010-07-08 | Shimizu Corp | 配筋検査装置および配筋検査方法 |
JP2017009546A (ja) * | 2015-06-26 | 2017-01-12 | Mogコンサルタント株式会社 | 移動式3次元レーザスキャナを用いた配筋検査方法 |
JP2018180571A (ja) * | 2017-04-03 | 2018-11-15 | 株式会社ア−キテック | 配筋検査支援システム及び配筋検査支援プログラム |
JP2019024151A (ja) * | 2017-07-21 | 2019-02-14 | 株式会社タダノ | ガイド情報表示装置およびこれを備えたクレーンおよびガイド情報表示方法 |
JP2019096119A (ja) * | 2017-11-24 | 2019-06-20 | 富士通株式会社 | 手認識方法、手認識プログラムおよび手認識装置 |
Also Published As
Publication number | Publication date |
---|---|
US20220343629A1 (en) | 2022-10-27 |
JP7201095B2 (ja) | 2023-01-10 |
JPWO2021053811A1 (ja) | 2021-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11043000B2 (en) | Measuring method and apparatus for damaged part of vehicle | |
WO2021053811A1 (ja) | 処理装置、処理方法及びコンピュータ可読媒体 | |
JP2002359266A (ja) | 半導体集積回路の不良検出方法及び不良検出装置 | |
KR101364404B1 (ko) | 자동 에디 전류 비파괴 테스트 분석을 위한 방법 | |
US20190295297A1 (en) | Computer Handling of Polygons | |
JP2003114713A (ja) | 品質不良の原因解析方法 | |
KR20100056066A (ko) | 계층적 클러스터링에서 최적의 군집 분할 방법 및 시스템 | |
CN105261061B (zh) | 一种识别冗余数据的方法及装置 | |
KR101991307B1 (ko) | 다중 객체 추적을 위한 트랙렛의 특징 벡터 할당이 가능한 전자 장치 및 그 동작 방법 | |
Žilinskas | Parallel branch and bound for multidimensional scaling with city-block distances | |
WO2021038767A1 (ja) | 処理装置、処理方法及びコンピュータ可読媒体 | |
JP2013140468A (ja) | パターンマッチング装置、検査システム、及びコンピュータプログラム | |
KR101692611B1 (ko) | 데이터 연관성 기반 이상치 평가 장치 및 방법 | |
US20110162068A1 (en) | Authentication apparatus | |
JP4670994B2 (ja) | カラー画像の処理方法および画像処理装置 | |
US20190121237A1 (en) | Predictive modeling of metrology in semiconductor processes | |
JP2019091311A (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
US12050188B2 (en) | Strength evaluation device and strength evaluation method | |
JP7156522B2 (ja) | 部材判別装置、部材判別方法及びプログラム | |
US20230375709A1 (en) | Detection device, determination method, and non-transitory computer-readable medium | |
WO2021019616A1 (ja) | 検査装置、測定方法及びコンピュータ可読媒体 | |
JP2005309914A (ja) | カラー画像の処理方法および画像処理装置 | |
JP4670993B2 (ja) | カラー画像の処理方法および画像処理装置 | |
KR101196298B1 (ko) | 고속 트랙병합 방법 | |
CN110737922A (zh) | 一种基于独立成分分析的硬件木马检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19946068 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021546152 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19946068 Country of ref document: EP Kind code of ref document: A1 |