WO2021052353A1 - 一种异羟肟酸类衍生物及其制备方法和应用 - Google Patents

一种异羟肟酸类衍生物及其制备方法和应用 Download PDF

Info

Publication number
WO2021052353A1
WO2021052353A1 PCT/CN2020/115509 CN2020115509W WO2021052353A1 WO 2021052353 A1 WO2021052353 A1 WO 2021052353A1 CN 2020115509 W CN2020115509 W CN 2020115509W WO 2021052353 A1 WO2021052353 A1 WO 2021052353A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
reaction
preparation
structure represented
Prior art date
Application number
PCT/CN2020/115509
Other languages
English (en)
French (fr)
Inventor
王玉成
游雪甫
王菊仙
杜潇楠
王明华
朱梅
张国宁
Original Assignee
中国医学科学院医药生物技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国医学科学院医药生物技术研究所 filed Critical 中国医学科学院医药生物技术研究所
Priority to JP2021539384A priority Critical patent/JP2022516195A/ja
Priority to US17/421,755 priority patent/US11827612B2/en
Priority to EP20866018.3A priority patent/EP4071134A4/en
Publication of WO2021052353A1 publication Critical patent/WO2021052353A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/14Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D295/155Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C259/00Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups
    • C07C259/04Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids
    • C07C259/06Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids having carbon atoms of hydroxamic groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/195Radicals derived from nitrogen analogues of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/20Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carbonic acid, or sulfur or nitrogen analogues thereof
    • C07D295/215Radicals derived from nitrogen analogues of carbonic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated

Definitions

  • the invention relates to the technical field of enzyme inhibitors, in particular to a hydroxamic acid derivative and a preparation method and application thereof.
  • UDP-3-O(R-hydroxytetradecanoyl)-N-acetamidoglucose deacetylase is a key enzyme that catalyzes the synthesis of lipid A, the main component of lipopolysaccharide in the outer membrane of gram-negative bacteria.
  • Gram-negative bacteria have high homology, and there is no common sequence with various enzymes of mammals (including humans). The deletion or overexpression of LpxC will cause the death of some gram-negative bacteria, which makes it Develop promising new targets for anti-gram-negative bacteria drugs.
  • LpxC inhibitors In the past 20 years, scientists have designed and synthesized many types of LpxC inhibitors. Although many reported compounds have good preclinical data, there is still a need for new LpxC inhibitors, which are not only effective against Gram-negative bacteria. It has bactericidal activity and has acceptable toxicity or tolerance.
  • the purpose of the present invention is to provide a hydroxamic acid derivative and a preparation method and application thereof.
  • the hydroxamic acid derivative has better bactericidal activity and lower toxicity to LpxC.
  • the X is
  • the Y is
  • the Z is
  • the present invention also provides a preparation method of the hydroxamic acid derivatives described in the above technical scheme, which includes the following steps:
  • the molar ratio of the compound with the structure represented by formula II and the Dess-Martin oxidant is 1: (1.0-1.2).
  • the temperature of the oxidation reaction is room temperature, and the time of the oxidation reaction is 2-8 hours.
  • the molar ratio of the compound having the structure represented by formula III, triphenylphosphine and carbon tetrabromide is 1:(3.8-4.2):(1.8-2.2).
  • the temperature of the Corey-Fuchs reaction is -20 to -78°C.
  • the molar ratio of the compound having the structure represented by formula IV, Pd 2 (dba) 3 , the compound having the structure represented by formula a, and triethylamine is 1: (0.02 ⁇ 0.04): (1.8 ⁇ 2.2) : (2.8 ⁇ 3.2).
  • the temperature of the Sonogashira coupling reaction is 75-85° C.
  • the time of the Sonogashira coupling reaction is 6-10 h.
  • the molar ratio of the compound having the structure represented by formula V and the sodium hydroxide in the sodium hydroxide solution is 1: (8-12).
  • the temperature of the hydrolysis reaction is room temperature, and the time of the hydrolysis reaction is 6-10 hours.
  • the compound having the structure represented by formula VI (S)-2-amino-3-(tert-butoxycarbonylamino)-3-methylbutyric acid methyl ester, diisopropylethylamine and 2
  • the molar ratio of -(7-oxybenzotriazole)-N,N,N',N'-tetramethylurea hexafluorophosphate is 1:(1.1 ⁇ 1.3):(3.8 ⁇ 4.2):(1.1 ⁇ 1.3).
  • the temperature of the condensation reaction is room temperature, and the time of the condensation reaction is 3-8 hours.
  • the molar ratio of the compound with the structure represented by formula VIII to the hydroxylamine in the hydroxylamine aqueous solution is 1: (18-22).
  • the present invention also provides the hydroxamic acid derivatives described in the above technical solution or the hydroxamic acid derivatives prepared by the preparation method described in the above technical solution in inhibiting UDP-3-O-(R-hydroxyl Myristyl)-N-acetylglucosamine deacetylase application.
  • the hydroxamic acid group in the hydroxamic acid derivatives with the structure represented by formula I provided by the present invention chelates with the active zinc ion in the active region of the LpxC enzyme, and contains The hydrophobic side chain of the hydrophobic channel in the enzyme, the above two aspects ensure that the hydroxamic acid derivatives have better bactericidal activity and lower toxicity to LpxC;
  • the invention also provides a preparation method of the hydroxamic acid derivatives, which has short reaction time and high yield.
  • the present invention provides a hydroxamic acid derivative having the structure shown in formula I:
  • said X is preferably The Y is preferably The Z is preferably
  • the hydroxamic acid derivatives are more preferably N-((S)-3-amino-1-(hydroxyamino)-3-methyl-1-oxobut-2-yl) -4-(((1R,2S)-2-methoxycyclopentyl)but-1,3-diyn-1-yl)benzamide, (S)-N-(3-amino-1- (Hydroxyamino)-3-methyl-1-oxobut-2-yl)-4-((4-nitrophenyl)butan-1,3-diyn-1-yl)piperazine-1- Formamide or (S)-N-(3-amino-1-(hydroxyamino)-3-methyl-1-oxobut-2-yl)-2-hydroxy-4-((4-(piperidine -1-ylmethyl)phenyl)butan-1,3-diyn-1-yl)benzamide.
  • the present invention also provides a preparation method of the hydroxamic acid derivatives described in the above technical scheme, which includes the following steps:
  • the compound having the structure shown in formula II, Dess-Martin oxidant and dichloromethane are mixed, and the oxidation reaction is performed to obtain the compound having the structure shown in formula III.
  • the compound having the structure represented by formula II has a structure other than the above three cases, its source is preferably a commercially available product or can be prepared according to the preparation method disclosed in the prior art.
  • the molar ratio of the compound having the structure represented by formula II and the Dess-Martin oxidant is preferably 1: (1.0 to 1.5), more preferably 1: (1.2 to 1.3);
  • the dosage ratio of the compound of the structure shown to the dichloromethane is preferably 1 g: (15-30) mL, more preferably 1 g: (18-28) mL, and most preferably 1 g: (21-25) mL.
  • the mixing is preferably: first mixing the compound with the structure represented by formula II and dichloromethane at -10°C to obtain the second compound of the compound with the structure represented by formula II.
  • the Dess-Martin oxidant is added in batches (during the addition, due to the phenomenon of temperature rise, the temperature of the reaction system can be maintained between -7 and -10°C by controlling the addition rate).
  • the oxidation reaction is preferably carried out under stirring conditions.
  • the present invention does not have any special restrictions on the stirring, and the stirring can be carried out by a process well known to those skilled in the art;
  • the temperature of the oxidation reaction is preferably At room temperature, the oxidation reaction time is preferably 2-8h, more preferably 4-6h.
  • the present invention preferably performs post-treatment on the product system after the reaction.
  • the process of the post-treatment is preferably: after the product system is moved to an ice bath, an aqueous solution of saturated sodium thiosulfate and saturated carbonic acid are sequentially added.
  • the present invention mixes the compound having the structure shown in formula III, triphenylphosphine, carbon tetrabromide and dichloromethane to carry out the Corey-Fuchs reaction to obtain the formula IV
  • the compound with the structure shown in the present invention the molar ratio of the compound with the structure shown in formula III, triphenylphosphine and carbon tetrabromide is preferably 1:(3.8 ⁇ 4.2):(1.8 ⁇ 2.2), More preferably, it is 1:(3.9 ⁇ 4.1):(1.9 ⁇ 2.1);
  • the amount ratio of the compound with the structure represented by formula III to the first organic solvent is preferably 1g:(25 ⁇ 45)mL, more preferably It is 1g: (30-40) mL, most preferably 1g: (34-36) mL.
  • the mixing of the compound having the structure represented by formula III, triphenylphosphine, carbon tetrabromide and dichloromethane preferably includes the following steps:
  • triphenylphosphine Mixing triphenylphosphine and the second part of the first organic solvent to obtain a solution of triphenylphosphine;
  • the proportions of the first part of the first organic solvent, the second part of the first organic solvent, and the third part of the first organic solvent of the present invention are not particularly limited, as long as the respective corresponding solvents can be fully dissolved.
  • the sum of the amount of the first part of the first organic solvent, the second part of the first organic solvent and the third part of the first organic solvent is the amount of the first organic solvent.
  • the specific process of mixing the solution of carbon tetrabromide, the solution of triphenylphosphine, and the solution of the compound having the structure represented by formula III is preferably: at -20°C under argon protection, After the solution of triphenylphosphine was added dropwise to the carbon tetrabromide solution, the reaction was stirred for 30 minutes, cooled to -78°C, and after the solution of the compound having the structure represented by formula III was added dropwise, the reaction was stirred for 30 minutes.
  • the present invention does not have any special restrictions on the dripping, as long as the dripping process is well known to those skilled in the art; the present invention does not have any special restrictions on the stirring, and the process is well known to those skilled in the art for stirring. can.
  • the role of the triphenylphosphine is to attack the carbon tetrabromide to capture a bromide ion during the reaction process to generate a phosphonium ion and a bromide anion; the generated phosphonium ion is affected by the bromide anion generated at the same time.
  • Nucleophilic substitution to form dibromomethylene phosphonium ylides, and then the nucleophilic addition of dibromomethylene carbon and aldehyde carbonyl, the resulting amphoteric intermediate is cyclized to oxaphosphetane, which further eliminates triphenyloxy Phosphine and dibromoalkenes.
  • the Corey-Fuchs reaction is preferably carried out under stirring conditions.
  • the present invention does not have any special restrictions on the stirring, and the stirring can be carried out by a process well known to those skilled in the art;
  • the Corey-Fuchs reaction The temperature is preferably -20 to -78°C, more preferably -60 to -70°C; in the present invention, the Corey-Fuchs reaction time is preferably 20 to 40 minutes, more preferably 25 to 35 minutes. In the present invention, the time of the Corey-Fuchs reaction is calculated from the completion of the dropwise addition of the solution of the compound having the structure represented by formula III.
  • the present invention preferably performs post-treatment on the obtained product system.
  • the post-treatment preferably includes the following steps: the product system is raised to room temperature, and the solvent is distilled off under reduced pressure to dissolve in volume concentration. As a 40% ethanol solution, add n-hexane and vigorously stir for 10 min, stand still and separate into layers, take the n-hexane layer and concentrate under reduced pressure, and use it directly in the next reaction without purification.
  • the present invention combines the compound having the structure shown in formula IV, Pd 2 (dba) 3 , the compound having the structure shown in formula a, triethylamine and N,N-di Methylformamide (DMF) is mixed, and Sonogashira coupling reaction is performed to obtain a compound having the structure represented by formula V;
  • the molar ratio of the compound having the structure represented by formula IV, Pd 2 (dba) 3 , the compound having the structure represented by formula a, and triethylamine is preferably 1:(0.02 ⁇ 0.04):(1.8 ⁇ 2.2): (2.8 ⁇ 3.2), more preferably 1: (0.025 ⁇ 0.035): (1.9 ⁇ 2.1): (2.96 ⁇ 3.1);
  • the dosage ratio of the compound with the structure represented by formula IV to DMF is preferably 1g: (10-18) mL, more preferably 1g: (12-16) mL, most preferably 1g: (13-15) mL.
  • the mixing is preferably carried out under an argon atmosphere.
  • the present invention does not have any special restrictions on the mixing, and it can be carried out using a mixing process well known to those skilled in the art.
  • the Sonogashira coupling reaction is preferably carried out under stirring conditions.
  • the present invention does not have any special restrictions on the stirring, and the stirring can be carried out by a process well known to those skilled in the art.
  • the temperature of the Sonogashira coupling reaction is preferably 75-85°C, more preferably 78-82°C; the time of the Sonogashira coupling reaction is preferably 6-10h, more preferably 8-19h.
  • the Pd 2 (dba) 3 functions as a catalyst
  • the triethylamine functions as an acid binding agent
  • the DMF functions as a solvent
  • the present invention preferably performs post-treatment on the obtained product system.
  • the post-treatment preferably includes: adding ethyl acetate to the reaction system, washing with water three times, and drying the organic phase with anhydrous sodium sulfate, It is filtered, concentrated under reduced pressure and separated and purified by silica gel column chromatography (the eluent is petroleum ether: ethyl acetate with a volume ratio of 80:1).
  • the present invention mixes the compound having the structure represented by formula V, tetrahydrofuran and sodium hydroxide solution, and conducts the hydrolysis reaction to obtain the compound having the structure represented by formula VI; in the present invention,
  • the sodium hydroxide solution is preferably an aqueous sodium hydroxide solution; the amount ratio of sodium hydroxide to water in the sodium hydroxide aqueous solution is preferably (0.15 ⁇ 0.25) g:1mL, more preferably (0.18 ⁇ 0.22)g:1mL .
  • the mixing of the compound having the structure represented by formula V, tetrahydrofuran and sodium hydroxide solution preferably includes the following steps:
  • the compound having the structure represented by formula V is mixed with tetrahydrofuran to obtain the tetrahydrofuran solution of the compound having the structure represented by formula V, and then mixed with sodium hydroxide solution.
  • the present invention does not have any special restrictions on the mixing, and the mixing can be carried out using a process well known to those skilled in the art.
  • the molar ratio of the compound having the structure represented by formula V and the sodium hydroxide in the sodium hydroxide solution is preferably 1:(8-12), more preferably 1:(9-11);
  • the dosage ratio of the compound having the structure represented by formula V to tetrahydrofuran is preferably 1 g: (15-40) mL, more preferably 1 g: (20-30) mL, and most preferably 1 g: (35-37) mL.
  • the hydrolysis reaction is preferably carried out under stirring conditions.
  • the present invention does not have any special restrictions on the stirring, and the stirring can be carried out by a process well known to those skilled in the art.
  • the temperature of the hydrolysis reaction is preferably room temperature, and the time of the hydrolysis reaction is preferably 6-10 hours, more preferably 8-9 hours.
  • the present invention preferably subject the obtained product system to post-treatment.
  • the post-treatment is preferably: the product system is subjected to reduced pressure evaporation to remove the solvent, water is added, and the pH is adjusted to 1 mol/L hydrochloric acid. 2.0, extract with ethyl acetate, combine the organic phases, dry with anhydrous sodium sulfate, filter, concentrate under reduced pressure, and directly use in the next reaction without purification.
  • the present invention will use the compound with the structure shown in formula VI, (S)-2-amino-3-(tert-butoxycarbonylamino)-3-methylbutyric acid methyl ester , Diisopropylethylamine, 2-(7-benzotriazole oxide)-N,N,N',N'-tetramethylurea hexafluorophosphate and N,N-dimethylformamide mixed, The condensation reaction is carried out to obtain a compound having the structure represented by formula VII.
  • the mixing of 2-(7-benzotriazole oxide)-N,N,N',N'-tetramethylurea hexafluorophosphate and N,N-dimethylformamide preferably includes the following steps:
  • the molar ratio of the compound having the structure represented by formula VI, Boc-S, diisopropylethylamine and HATU is preferably 1:(1.1 ⁇ 1.3):(3.8 ⁇ 4.2):(1.1 ⁇ 1.3), more preferably 1: (1.15 to 1.25): (3.9 to 4.1): (1.15 to 1.25).
  • the dosage ratio of the compound with the structure represented by formula VI and DMF is preferably 1g: (15-30) mL, more preferably 1g: (17-28) mL, most preferably 1g: (20 ⁇ 25) mL.
  • the condensation reaction is preferably carried out under stirring conditions.
  • the present invention does not have any special restrictions on the stirring, and the stirring can be carried out by a process well known to those skilled in the art;
  • the temperature of the condensation reaction is preferably At room temperature, the condensation reaction time is preferably 3-8h, more preferably 4-6h.
  • the function of the HATU is to activate the carboxyl group
  • the function of the diisopropylethylamine is to activate the amino group
  • the present invention preferably performs post-treatment on the obtained product system.
  • the post-treatment preferably includes the following steps: adding ethyl acetate to the reaction system, washing with 1.2 mol/L lithium chloride aqueous solution three times, The organic phase was dried with anhydrous sodium sulfate, filtered, concentrated under reduced pressure, and separated and purified by silica gel column chromatography (the eluent was petroleum ether and ethyl acetate in a volume ratio of 2:1).
  • the present invention mixes the compound with the structure represented by formula VII, methanol and hydrogen chloride gas to carry out the de-Boc protection reaction to obtain the compound with the structure represented by formula VIII.
  • the mixing of the compound having the structure represented by formula VII, methanol and hydrogen chloride gas is preferably after mixing the compound having the structure represented by formula VII with methanol, and then passing the hydrogen chloride gas.
  • the present invention does not have any special restrictions on the mixing of the compound with the structure represented by formula VII and methanol, and the mixing can be carried out by a process well known to those skilled in the art.
  • the feed rate of the hydrogen chloride gas is preferably 0.5 mL/s, more preferably 1 mL/s; the feed time of the hydrogen chloride gas is preferably 15-25 min, more preferably 18-22 min, most preferably For 20min.
  • the introduction time of the hydrogen chloride is the time of the de-Boc protection reaction, and the temperature of the de-Boc protection reaction is preferably room temperature.
  • the present invention preferably performs post-treatment on the obtained product system, and the post-treatment is preferably to distill off the solvent under reduced pressure to obtain a crude compound having a structure represented by formula VIII.
  • the crude compound with the structure represented by formula VIII does not require further purification and is directly used in the next reaction.
  • the present invention mixes the compound with the structure represented by formula VIII, the aqueous hydroxylamine solution and isopropanol to undergo substitution reaction to obtain the compound with the structure represented by formula I.
  • the concentration of the hydroxylamine aqueous solution is preferably 16-17 mmol/mL, more preferably 16.5-16.8 mmol/mL.
  • the mixing of the compound having the structure represented by formula VIII, the aqueous hydroxylamine solution and isopropanol is preferably mixed with the compound having the structure represented by formula VIII and isopropanol and then mixed with the aqueous hydroxylamine solution.
  • the present invention does not have any special restrictions on the mixing, and the mixing can be carried out using a process well known to those skilled in the art.
  • the molar ratio of the compound having the structure represented by formula VIII to the hydroxylamine in the aqueous hydroxylamine solution is preferably 1: (18-22), more preferably 1: (19-21), and most preferably 1: 20;
  • the dosage ratio of the compound with the structure represented by formula VIII and isopropanol is preferably 1g: (20-30) mL, more preferably 1g: (22-28) mL, most preferably 1g: (24 ⁇ 26) mL.
  • the substitution reaction is preferably carried out under stirring conditions.
  • the present invention does not have any special restrictions on the stirring, and the stirring can be carried out by a process well known to those skilled in the art.
  • the temperature of the substitution reaction is preferably room temperature, and the present invention preferably monitors the progress of the substitution reaction through LCMS to determine whether the reaction is complete.
  • the present invention preferably performs post-treatment on the obtained product system.
  • the post-treatment step is preferably to use reverse-phase HPLC (condition: chromatographic column XDB-C18 column (21.2mm ⁇ 250mm) on the product system. , 7 ⁇ m; mobile phase A: acetonitrile (containing 0.1% TFA), B: water (containing 0.1% TFA), gradient elution (0-40min: A 5%-30%); column temperature 25°C; flow rate 10mL/min (Detection wavelength 280nm) was separated and purified, and then the resulting product was freeze-dried.
  • reverse-phase HPLC condition: chromatographic column XDB-C18 column (21.2mm ⁇ 250mm
  • mobile phase A acetonitrile (containing 0.1% TFA)
  • B water (containing 0.1% TFA)
  • gradient elution (0-40min: A 5%-30%)
  • column temperature 25°C flow rate 10mL/min (Detection wavelength 280nm) was separated and purified, and then the resulting
  • the present invention also provides the hydroxamic acid derivatives described in the above technical solution or the hydroxamic acid derivatives prepared by the preparation method described in the above technical solution in inhibiting UDP-3-O-(R-hydroxyl Myristyl)-N-acetylglucosamine deacetylase application.
  • hydroxamic acid derivatives provided by the present invention and their preparation methods and applications will be described in detail below in conjunction with examples, but they should not be understood as limiting the scope of protection of the present invention.
  • IV-1 (6.00g, 21mmol), methyl 4-ethynylbenzoate (a-1) (6.89g, 43mmol), Pd 2 (dba) 3 (0.58g, 0.63mmol) , (4-MeOPh) 3 P (0.44g, 1.26mmol) and triethylamine (6.37g, 63mmol) were added to DMF (100mL), and the reaction was stirred at 80°C for 8h.
  • VII-1 (6.70 g, 13.5 mmol) was dissolved in methanol (30 mL) and dried hydrogen chloride gas was passed through for 20 min. The solvent was evaporated under reduced pressure to obtain VIII-1 (4.96 g, 93.0%), which was directly used in the next step without purification.
  • VIII-1 (4.15g, 10.5mmol) was dissolved in isopropanol (12mL) and 16.85mol/L hydroxylamine aqueous solution (12.5mL, 210mmol), and the reaction was stirred at room temperature until the completion of the reaction was detected by LCMS.
  • IV-2 (7.0g, 23mmol), 4-ethynylpiperazine-1-carboxylic acid methyl ester (a-2) (7.7g, 46mmol), Pd 2 (dba) 3 (0.6 g, 0.7 mmol), (4-MeOPh) 3 P (0.5 g, 1.4 mmol) and triethylamine (7.0 g, 70 mmol) were added to DMF (120 mL), and the reaction was stirred at 80° C. for 8 h. Ethyl acetate (320L) was added, washed with water (200mL ⁇ 3), the organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain a crude product.
  • VII-2 (7.9 g, 15 mmol) was dissolved in methanol (40 mL) and dried hydrogen chloride gas was passed through for 30 min. The solvent was evaporated under reduced pressure to obtain VIII-2 (6.0 g, 92.3%), which was directly used in the next step without purification.
  • the MH broth micro-dilution method is used to carry out the drug sensitivity test.
  • the test bacteria are enriched with MH broth or brain heart infusion, and the drug solution is double-diluted with MH broth or brain heart infusion to various required concentrations.
  • the final concentration of the medicinal solution in each well is: 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.06, 0.03 ⁇ g/mL.
  • hydroxamic acid derivatives provided by the present invention have better bactericidal activity and lower toxicity.

Abstract

本发明涉及酶抑制剂技术领域,尤其涉及一种异羟肟酸类衍生物及其制备方法和应用。本发明提供的异羟肟酸类衍生物中的异羟肟酸基团与LpxC酶活性区域中的活性锌离子螯合,且含有与LpxC酶中的疏水通道结合的疏水侧链,上述两个方面内容保证了异羟肟酸类衍生物对LpxC具有较好的杀菌活性和较低的毒性;本发明还提供了所述异羟肟酸类衍生物的制备方法,所述制备方法反应时间短,收率高。

Description

一种异羟肟酸类衍生物及其制备方法和应用
本申请要求于2019年09月19日提交中国专利局、申请号为201910885618.3、发明名称为“一种异羟肟酸类衍生物及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及酶抑制剂技术领域,尤其涉及一种异羟肟酸类衍生物及其制备方法和应用。
背景技术
超级细菌和人类之间相互博弈,不断斗争。从弗莱明发现青霉素的30年代开始,第一批抗生素诞生,但细菌同样开始演变和斗争。如今,细菌耐药日益严重,而新型抗生素开发相对滞后。全球每年大约有70万人死于耐药菌感染,23万新生儿因此夭折,如果不能开发出新型抗生素,来控制超级细菌的蔓延,预计在2050年,全球因细菌感染的死亡人数大约达到1000万左右,将是所有疾病的最高点。
UDP-3-O(R-羟基十四酰)-N-乙酰胺基葡糖脱乙酰基酶(LpxC)是催化合成革兰阴性菌外膜脂多糖的主要成分类脂A的关键酶,在革兰阴性菌中具有较高的同源性,与哺乳动物(包括人)的各种酶均没有共同序列,LpxC的缺失或过表达都会使某些革兰阴性菌死亡,这使其成为具有开发前景的抗革兰阴性菌药物的全新靶标。
在过去的20多年里,科学家们设计合成了多种类型的LpxC抑制剂,尽管许多报道的化合物具有很好的临床前数据,但仍然需要新的LpxC抑制剂,其不仅对革兰氏阴性菌具有杀菌活性,并且具有可接受的毒性或耐受性。
发明内容
本发明的目的在于提供一种异羟肟酸类衍生物及其制备方法和应用,所述异羟肟酸类衍生物对LpxC具有较好的杀菌活性和较低的毒性。
为了解决上述技术问题,本发明采用的技术方案是:
一种异羟肟酸类衍生物,具有式Ⅰ所示结构:
Figure PCTCN2020115509-appb-000001
式Ⅰ中,X为
Figure PCTCN2020115509-appb-000002
Figure PCTCN2020115509-appb-000003
Y为
Figure PCTCN2020115509-appb-000004
Figure PCTCN2020115509-appb-000005
Z为
Figure PCTCN2020115509-appb-000006
Figure PCTCN2020115509-appb-000007
其中,当Y和Z同时为
Figure PCTCN2020115509-appb-000008
时,X不包括
Figure PCTCN2020115509-appb-000009
优选的,所述X为
Figure PCTCN2020115509-appb-000010
所述Y为
Figure PCTCN2020115509-appb-000011
所述Z为
Figure PCTCN2020115509-appb-000012
本发明还提供了上述技术方案所述的异羟肟酸类衍生物的制备方法,包括以下步骤:
将具有式Ⅱ所示结构的化合物、戴斯-马丁氧化剂和二氯甲烷混合,进行氧化反应,得到具有式Ⅲ所示结构的化合物;
将所述具有式Ⅲ所示结构的化合物、三苯基膦、四溴化碳和二氯甲烷混合,进行Corey-Fuchs反应,得到具有式Ⅳ所示结构的化合物;
将所述具有式Ⅳ所示结构的化合物、Pd 2(dba) 3、具有式a所示结构的化合物、三乙胺和N,N-二甲基甲酰胺混合,进行Sonogashira偶联反应,得到具有式Ⅴ所示结构的化合物;
将具有式Ⅴ所示结构的化合物、四氢呋喃和氢氧化钠溶液混合,进行水解反应,得到具有式Ⅵ所示结构的化合物;
将具有式Ⅵ所示结构的化合物、(S)-2-氨基-3-(叔丁氧羰基胺基)-3-甲基丁酸甲酯、二异丙基乙胺、2-(7-氧化苯并三唑)-N,N,N',N'-四甲基脲六氟磷酸盐和N,N-二甲基甲酰胺混合,进行缩合反应,得到具有式Ⅶ所示结构的化合物;
将所述具有式Ⅶ所示结构的化合物、甲醇和氯化氢气体混合,进行脱Boc保护反应,得到具有式Ⅷ所示结构的化合物;
将所述具有式Ⅷ所示结构的化合物、羟胺水溶液和异丙醇混合,进行取代反应,得到具有式Ⅰ所示结构的化合物;
Figure PCTCN2020115509-appb-000013
优选的,所述具有式Ⅱ所示结构的化合物和戴斯-马丁氧化剂的摩尔比为1:(1.0~1.2)。
优选的,所述氧化反应的温度为室温,所述氧化反应的时间为2~8h。
优选的,所述具有式Ⅲ所示结构的化合物、三苯基膦和四溴化碳的摩尔比为1:(3.8~4.2):(1.8~2.2)。
优选的,所述Corey-Fuchs反应的温度为-20~-78℃。
优选的,所述具有式Ⅳ所示结构的化合物、Pd 2(dba) 3、具有式a所示结构的化合物和三乙胺的摩尔比为1:(0.02~0.04):(1.8~2.2):(2.8~3.2)。
优选的,所述Sonogashira偶联反应的温度为75~85℃,所述Sonogashira偶联反应的时间为6~10h。
优选的,所述具有式Ⅴ所示结构的化合物和氢氧化钠溶液中的氢氧化钠的摩尔比为1:(8~12)。
优选的,所述水解反应的温度为室温,所述水解反应的时间为6~10h。
优选的,所述具有式Ⅵ所示结构的化合物、(S)-2-氨基-3-(叔丁氧羰基胺基)-3-甲基丁酸甲酯、二异丙基乙胺和2-(7-氧化苯并三唑)-N,N,N',N'-四甲基脲六氟磷酸盐的摩尔比为1:(1.1~1.3):(3.8~4.2):(1.1~1.3)。
优选的,所述缩合反应的温度为室温,所述缩合反应的时间为3~8h。
优选的,所述具有式Ⅷ所示结构的化合物和羟胺水溶液中的羟胺的摩尔比为1:(18~22)。
本发明还提供了上述技术方案所述的异羟肟酸类衍生物或由上述技术方案所述的制备方法制备得到的异羟肟酸类衍生物在抑制UDP-3-O-(R-羟基十四酰)-N-乙酰氨基葡糖脱乙酰基酶中的应用。
与现有技术相比,本发明提供的具有式Ⅰ所示结构的异羟肟酸类衍生物中的异羟肟酸基团与LpxC酶活性区域中的活性锌离子螯合,且含有与LpxC酶中的疏水通道结合的疏水侧链,上述两个方面内容保证了异羟肟酸类衍生物对LpxC具有较好的杀菌活性和较低的毒性;
本发明还提供了所述异羟肟酸类衍生物的制备方法,所述制备方法反应时间短,收率高。
具体实施方式
下面结合实施例对本发明进一步说明。
本发明提供了一种异羟肟酸类衍生物,具有式Ⅰ所示结构:
Figure PCTCN2020115509-appb-000014
式Ⅰ中,X为
Figure PCTCN2020115509-appb-000015
Figure PCTCN2020115509-appb-000016
Y为
Figure PCTCN2020115509-appb-000017
Figure PCTCN2020115509-appb-000018
Z为
Figure PCTCN2020115509-appb-000019
Figure PCTCN2020115509-appb-000020
其中,当Y和Z同时为
Figure PCTCN2020115509-appb-000021
时,X不包括
Figure PCTCN2020115509-appb-000022
在本发明中,所述X优选为
Figure PCTCN2020115509-appb-000023
所述Y优选为
Figure PCTCN2020115509-appb-000024
所述Z优选为
Figure PCTCN2020115509-appb-000025
在本发明中,所述异羟肟酸类衍生物更优选为N-((S)-3-氨基-1- (羟基氨基)-3-甲基-1-氧代丁-2-基)-4-(((1R,2S)-2-甲氧基环戊基)丁-1,3-二炔-1-基)苯甲酰胺、(S)-N-(3-氨基-1-(羟基氨基)-3-甲基-1-氧代丁-2-基)-4-((4-硝基苯基)丁-1,3-二炔-1-基)哌嗪-1-甲酰胺或(S)-N-(3-氨基-1-(羟基氨基)-3-甲基-1-氧代丁-2-基)-2-羟基-4-((4-(哌啶-1-基甲基)苯基)丁-1,3-二炔-1-基)苯甲酰胺。
本发明还提供了上述技术方案所述的异羟肟酸类衍生物的制备方法,包括以下步骤:
将具有式Ⅱ所示结构的化合物、戴斯-马丁氧化剂和二氯甲烷混合,进行氧化反应,得到具有式Ⅲ所示结构的化合物;
将所述具有式Ⅲ所示结构的化合物、三苯基膦、四溴化碳和二氯甲烷混合,进行Corey-Fuchs反应,得到具有式Ⅳ所示结构的化合物;
将所述具有式Ⅳ所示结构的化合物、Pd 2(dba) 3、具有式a所示结构的化合物、三乙胺和N,N-二甲基甲酰胺混合,进行Sonogashira偶联反应,得到具有式Ⅴ所示结构的化合物;
将具有式Ⅴ所示结构的化合物、四氢呋喃和氢氧化钠溶液混合,进行水解反应,得到具有式Ⅵ所示结构的化合物;
将具有式Ⅵ所示结构的化合物、(S)-2-氨基-3-(叔丁氧羰基胺基)-3-甲基丁酸甲酯、二异丙基乙胺、2-(7-氧化苯并三唑)-N,N,N',N'-四甲基脲六氟磷酸盐和N,N-二甲基甲酰胺混合,进行缩合反应,得到具有式Ⅶ所示结构的化合物;
将所述具有式Ⅶ所示结构的化合物、甲醇和氯化氢气体混合,进行脱Boc保护反应,得到具有式Ⅷ所示结构的化合物;
将所述具有式Ⅷ所示结构的化合物、羟胺水溶液和异丙醇混合,进行取代反应,得到具有式Ⅰ所示结构的化合物;
Figure PCTCN2020115509-appb-000026
Figure PCTCN2020115509-appb-000027
在本发明中,若无特殊的说明,所有原料组分均为本领域技术人员熟知的市售产品。
本发明将具有式Ⅱ所示结构的化合物、戴斯-马丁氧化剂和二氯甲烷混合,进行氧化反应,得到具有式Ⅲ所示结构的化合物。
在本发明中,当X为
Figure PCTCN2020115509-appb-000028
Y为
Figure PCTCN2020115509-appb-000029
时,本发明优选通过
Figure PCTCN2020115509-appb-000030
制备得到所述具有式Ⅱ所示结构的化合物。
当X为
Figure PCTCN2020115509-appb-000031
Y为
Figure PCTCN2020115509-appb-000032
时,所述具有式Ⅱ所示结构的化合物的具体制备流程优选如式1所示:
Figure PCTCN2020115509-appb-000033
在本发明中,所述具有式Ⅱ所示结构的化合物的具体制备过程优选为:在氩气气氛中,室温条件下,将AgOTf(12.8g,50mmol)、氟试剂Selectfluor(8.9g,25mmol)和氟化钾(3.9g,66mmol)的乙酸乙酯溶液(30mL)混合后,加入
Figure PCTCN2020115509-appb-000034
(6.5g,50mmol)和三氟甲基三甲基硅烷(7.1g,50mmol),反应8h,过滤,浓缩得到粗品,使用硅胶柱色谱 (PE:EA=20:1~10:1),得到
Figure PCTCN2020115509-appb-000035
(4.3g,43%)。
当X为
Figure PCTCN2020115509-appb-000036
Y为
Figure PCTCN2020115509-appb-000037
时,本发明优选通过
Figure PCTCN2020115509-appb-000038
制备得到所述具有式Ⅱ所示结构的化合物。
在本发明中,所述具有式Ⅱ所示结构的化合物的具体制备流程优选如式2所示:
Figure PCTCN2020115509-appb-000039
在本发明中,所述具有式Ⅱ所示结构的化合物的具体制备过程优选为:
将乙酰胺(1.0g,17mmol),
Figure PCTCN2020115509-appb-000040
(7.3g,51mmol)和二氯(五甲基环戊二烯基)合铱(III)二聚体(0.3g,0.4mmol)混合并加入微波反应管中,在130℃下微波反应3h。冷却至室温,加入水(10mL)。用乙酸乙酯(所述乙酸乙酯与所述水的用量比优选为1:(1.0~1.5))萃取(次数优选为3次),合并有机相,无水硫酸钠干燥,过滤浓缩得粗品。使用硅胶柱色谱(DCM:MeOH=20:1)纯化得化合物3(0.9g,30%)。
当X为
Figure PCTCN2020115509-appb-000041
Y为
Figure PCTCN2020115509-appb-000042
时,本发明优选通过
Figure PCTCN2020115509-appb-000043
制备得到具有式Ⅱ所示结构的化合物。
在本发明中,所述具有式Ⅱ所示结构的化合物的具体制备流程优选如式3所示:
Figure PCTCN2020115509-appb-000044
在本发明中,所述具有式Ⅱ所示结构的化合物的具体制备过程优选为:
将吡咯烷(0.7g,10mmol)的甲苯(10mL)溶液中加入D-(+)-樟脑磺酸(0.9g,4mol),室温搅拌1分钟,加入
Figure PCTCN2020115509-appb-000045
(4.3g,25mmol)和钌-NHC配合物(0.1mmol)并在120℃下搅拌10h,冷却至室温,加入水(所述水与所述甲苯的用量比优选为1:(1.0~1.5)),用乙酸乙酯(所述乙酸乙酯的所述水的用量比优选为1:(1.0~1.5))萃取(次数优选为3次),合并有机相,无水硫酸钠干燥,过滤、浓缩得粗品,使用硅胶柱色谱(PE:EA=20:1~10:1)纯化得化合物3(0.8g,37%)。
当所述具有式Ⅱ所示结构的化合物为上述三种情况以外的结构时,其来源优选为市售产品或按照现有技术公开的制备方法制备得到即可。
在本发明中,所述具有式Ⅱ所示结构的化合物和戴斯-马丁氧化剂的摩尔比优选为1:(1.0~1.5),更优选为1:(1.2~1.3);所述具有式Ⅱ所示结构的化合物与所述二氯甲烷的用量比优选为1g:(15~30)mL,更优选为1g:(18~28)mL,最优选为1g:(21~25)mL。
在本发明中,所述混合优选为:在-10℃的条件下,先将所述具有式Ⅱ所示结构的化合物和二氯甲烷混合,得到所述具有式Ⅱ所示结构的化合物的二氯甲烷溶液后,分批加入戴斯-马丁氧化剂(在加入过程中,由于会出现升温的现象,可通过控制加入速度保持反应体系的温度在-7~-10℃之间即可)。
在本发明中,所述氧化反应优选在搅拌的条件下进行,本发明对所述搅拌没有任何特殊的限定,采用本领域技术人员熟知的过程进行搅拌即可;所述氧化反应的温度优选为室温,所述氧化反应的时间优选为2~8h, 更优选为4~6h。
所述氧化反应完成后,本发明优选对反应后的产物体系进行后处理,所述后处理的过程优选为:将产物体系移至冰浴后,依次加入饱和硫代硫酸钠的水溶液和饱和碳酸氢钠水溶液进行淬灭反应,过滤(除去固体),静置分层,所得水相用二氯甲烷萃取三次,合并有机相,将所得有机相用无水硫酸钠干燥,过滤和减压浓缩后,用硅胶柱色谱(洗脱剂为石油醚:乙酸乙酯=20:1)分离纯化。
得到具有式Ⅲ所示结构的化合物后,本发明将所述具有式Ⅲ所示结构的化合物、三苯基膦、四溴化碳和二氯甲烷混合,进行Corey-Fuchs反应,得到具有式Ⅳ所示结构的化合物;在本发明中,所述具有式Ⅲ所示结构的化合物、三苯基膦和四溴化碳的摩尔比优选为1:(3.8~4.2):(1.8~2.2),更优选为1:(3.9~4.1):(1.9~2.1);所述具有式Ⅲ所示结构的化合物与所述第一有机溶剂的用量比优选为1g:(25~45)mL,更优选为1g:(30~40)mL,最优选为1g:(34~36)mL。
在本发明中,所述具有式Ⅲ所示结构的化合物、三苯基膦、四溴化碳和二氯甲烷的混合,优选包括以下步骤:
将所述具有式Ⅲ所示结构的化合物和第一部分第一有机溶剂混合,得到具有式Ⅲ所示结构的化合物的溶液;
将三苯基膦和第二部分第一有机溶剂混合,得到三苯基膦的溶液;
将所述四溴化碳和第三部分第一有机溶剂混合,得到四溴化碳的溶液;
将所述四溴化碳的溶液、所述三苯基膦的溶液和具有式Ⅲ所示结构的化合物的溶液混合。
本发明所述第一部分第一有机溶剂、第二部分第一有机溶剂和第三部分第一有机溶剂的配比没有任何特殊的限定,能够保证将各自对应的溶剂充分溶解即可。所述第一部分第一有机溶剂、第二部分第一有机溶剂和第三部分第一有机溶剂的用量之和为第一有机溶剂的用量。
在本发明中,所述四溴化碳的溶液、所述三苯基膦的溶液和具有式Ⅲ所示结构的化合物的溶液混合的具体过程优选为:在-20℃、氩气保护下,在所述四溴化碳的溶液中滴加三苯基膦的溶液后,搅拌反应30min,冷却 至-78℃,继续滴加具有式Ⅲ所示结构的化合物的溶液完成后,搅拌反应30min。本发明对所述滴加没有任何特殊的限定,采用本领域技术人员熟知的滴加过程进行即可;本发明对所述搅拌没有任何特殊的限定,采用本领域技术人员熟知的过程进行搅拌即可。
在本发明中,所述三苯基膦的作用是在反应过程中进攻四溴化碳夺取一个溴离子,生成磷鎓离子和溴仿负离子;生成的磷鎓离子受到同时生成的溴仿负离子的亲核取代,形成二溴亚甲基磷叶立德,之后二溴亚甲基碳与醛羰基进行亲核加成,形成的两性中间体环化为氧磷杂环丁烷,进一步消除三苯基氧膦和二溴烯烃。
在本发明中,所述Corey-Fuchs反应优选在搅拌的条件下进行,本发明对所述搅拌没有任何特殊的限定,采用本领域技术人员熟知的过程进行搅拌即可;所述Corey-Fuchs反应的温度优选为-20~-78℃,更优选为-60~-70℃;在本发明中,Corey-Fuchs反应的时间优选为20~40min,更优选为25~35min。在本发明中,所述Corey-Fuchs反应的时间为以完成具有式Ⅲ所示结构的化合物的溶液的滴加开始计。
所述Corey-Fuchs反应完成后,本发明优选对得到的产物体系进行后处理,所述后处理优选包括以下步骤:将所述产物体系升至室温,减压蒸馏去除溶剂后,溶于体积浓度为40%的乙醇溶液,加入正己烷并剧烈搅拌10min,静置分层,取正己烷层减压浓缩,无需纯化直接用于下一步反应。
得到具有式Ⅳ所示结构的化合物后,本发明将所述具有式Ⅳ所示结构的化合物、Pd 2(dba) 3、具有式a所示结构的化合物、三乙胺和N,N-二甲基甲酰胺(DMF)混合,进行Sonogashira偶联反应,得到具有式Ⅴ所示结构的化合物;
在本发明中,所述具有式Ⅳ所示结构的化合物、Pd 2(dba) 3、具有式a所示结构的化合物和三乙胺的摩尔比优选为1:(0.02~0.04):(1.8~2.2):(2.8~3.2),更优选为1:(0.025~0.035):(1.9~2.1):(2.96~3.1);所述具有式Ⅳ所示结构的化合物与DMF的用量比优选为1g:(10~18)mL,更优选为1g:(12~16)mL,最优选为1g:(13~15)mL。
在本发明中,所述混合优选在氩气气氛下进行,本发明对所述混合没 有任何特殊的限定,采用本领域技术人员熟知的混合过程进行即可。
在本发明中,所述Sonogashira偶联反应优选在搅拌的条件下进行,本发明对所述搅拌没有任何特殊的限定,采用本领域技术人员熟知的过程进行搅拌即可。在本发明中,所述Sonogashira偶联反应的温度优选为75~85℃,更优选为78~82℃;所述Sonogashira偶联反应的时间优选为6~10h,更优选为8~19h。
在本发明中,所述Pd 2(dba) 3的作用是催化剂,所述三乙胺的作用是缚酸剂,所述DMF的作用是溶剂。
所述Sonogashira偶联反应完成后,本发明优选对得到的产物体系进行后处理,所述后处理优选包括:在反应体系中加入乙酸乙酯,用水洗涤三次,有机相用无水硫酸钠干燥,过滤,减压浓缩和用硅胶柱色谱分离纯化(洗脱剂为石油醚:乙酸乙酯的体积比为80:1)。
得到具有式Ⅴ所示结构的化合物后,本发明将具有式Ⅴ所示结构的化合物、四氢呋喃和氢氧化钠溶液混合,进行水解反应,得到具有式Ⅵ所示结构的化合物;在本发明中,所述氢氧化钠溶液优选为氢氧化钠水溶液;所述氢氧化钠水溶液中氢氧化钠与水的用量比优选为(0.15~0.25)g:1mL,更优选为(0.18~0.22)g:1mL。
在本发明中,所述具有式Ⅴ所示结构的化合物、四氢呋喃和氢氧化钠溶液的混合,优选包括以下步骤:
将具有式Ⅴ所示结构的化合物与四氢呋喃混合,得到具有式Ⅴ所示结构的化合物的四氢呋喃溶液后,与氢氧化钠溶液混合。本发明对所述混合没有任何特殊的限定,采用本领域技术人员熟知的过程进行混合即可。
在本发明中,所述具有式Ⅴ所示结构的化合物和氢氧化钠溶液中的氢氧化钠的摩尔比优选为1:(8~12),更优选为1:(9~11);所述具有式Ⅴ所示结构的化合物与四氢呋喃的用量比优选为1g:(15~40)mL,更优选为1g:(20~30)mL,最优选为1g:(35~37)mL。
在本发明中,所述水解反应优选在搅拌的条件下进行,本发明对所述搅拌没有任何特殊的限定,采用本领域技术人员熟知的过程进行搅拌即可。在本发明中,所述水解反应的温度优选为室温,所述水解反应的时间优选为6~10h,更优选为8~9h。
所述水解反应完成后,本发明优选将得到的产物体系进行后处理,所述后处理优选为:将所述产物体系进行减压蒸除溶剂,加水,并用1mol/L的盐酸调至pH为2.0,用乙酸乙酯萃取,合并有机相,用无水硫酸钠进行干燥,过滤,减压浓缩,无需纯化直接用于下一步反应。
得到具有式Ⅵ所示结构的化合物后,本发明将具有式Ⅵ所示结构的化合物、(S)-2-氨基-3-(叔丁氧羰基胺基)-3-甲基丁酸甲酯、二异丙基乙胺、2-(7-氧化苯并三唑)-N,N,N',N'-四甲基脲六氟磷酸盐和N,N-二甲基甲酰胺混合,进行缩合反应,得到具有式Ⅶ所示结构的化合物。
在本发明中,所述具有式Ⅵ所示结构的化合物、(S)-2-氨基-3-(叔丁氧羰基胺基)-3-甲基丁酸甲酯、二异丙基乙胺、2-(7-氧化苯并三唑)-N,N,N',N'-四甲基脲六氟磷酸盐和N,N-二甲基甲酰胺的混合优选为包括以下步骤:
将具有式Ⅵ所示结构的化合物、2-(7-氧化苯并三唑)-N,N,N',N'-四甲基脲六氟磷酸盐(HATU)与DMF混合,得到混合溶液;本发明对所述混合没有任何特殊的限定,采用本领域技术人员熟知的过程进行混合即可;
将(S)-2-氨基-3-(叔丁氧羰基胺基)-3-甲基丁酸甲酯(Boc-S)和二异丙基乙胺加入至所述混合溶液中进行混合;本发明对所述加入的方式没有任何特殊的限定,采用本领域技术人员熟知的加入方式即可。
在本发明中,所述具有式Ⅵ所示结构的化合物、Boc-S、二异丙基乙胺和HATU的摩尔比优选为1:(1.1~1.3):(3.8~4.2):(1.1~1.3),更优选为1:(1.15~1.25):(3.9~4.1):(1.15~1.25)。在本发明中,所述具有式Ⅵ所示结构的化合物和DMF的用量比优选为1g:(15~30)mL,更优选为1g:(17~28)mL,最优选为1g:(20~25)mL。
在本发明中,所述缩合反应优选在搅拌的条件下进行,本发明对所述搅拌没有任何特殊的限定,采用本领域技术人员熟知的过程进行搅拌即可;所述缩合反应的温度优选为室温,所述缩合反应的时间优选为3~8h,更优选为4~6h。
在本发明中,所述HATU的作用是活化羧基,所述二异丙基乙胺的作用是活化氨基。
所述缩合反应完成后,本发明优选对得到的产物体系进行后处理,所 述后处理优选包括以下步骤:在反应体系中加入乙酸乙酯,用1.2mol/L的氯化锂水溶液洗涤三次,有机相用无水硫酸钠干燥,过滤,减压浓缩和用硅胶柱色谱(洗脱剂为石油醚与乙酸乙酯的体积比为2:1)分离纯化。
得到具有式Ⅶ所示结构的化合物后,本发明将所述具有式Ⅶ所示结构的化合物、甲醇和氯化氢气体混合,进行脱Boc保护反应,得到具有式Ⅷ所示结构的化合物。
在本发明中所述具有式Ⅶ所示结构的化合物、甲醇和氯化氢气体的混合优选为将具有式Ⅶ所示结构的化合物与甲醇混合后,通入氯化氢气体。本发明对所述具有式Ⅶ所示结构的化合物与甲醇的混合没有任何特殊的限定,采用本领域技术人员熟知的过程进行混合即可。在本发明中,所述氯化氢气体的通入速率优选为0.5mL/s,更优选为1mL/s;所述氯化氢气体的通入时间优选为15~25min,更优选为18~22min,最优选为20min。在本发明中,所述氯化氢的通入时间即为脱Boc保护反应的时间,所述脱Boc保护反应的温度优选为室温。
所述脱Boc保护反应完成后,本发明优选对得到的产物体系进行后处理,所述后处理优选为减压蒸除溶剂得到具有式Ⅷ所示结构的化合物粗品。所述具有式Ⅷ所示结构的化合物粗品不需要再进一步纯化直接用于下一步反应。
得到具有式Ⅷ所示结构的化合物后,本发明将所述具有式Ⅷ所示结构的化合物、羟胺水溶液和异丙醇混合,发生取代反应,得到具有式Ⅰ所示结构的化合物。在本发明中,所述羟胺水溶液的浓度优选为16~17mmol/mL,更优选为16.5~16.8mmol/mL。
在本发明中,所述具有式Ⅷ所示结构的化合物、羟胺水溶液和异丙醇的混合优选为将具有式Ⅷ所示结构的化合物和异丙醇混合后再与羟胺水溶液混合。本发明对所述混合没有任何特殊的限定,采用本领域技术人员熟知的过程进行混合即可。
在本发明中,所述具有式Ⅷ所示结构的化合物和羟胺水溶液中的羟胺的摩尔比优选为1:(18~22),更优选为1:(19~21),最优选为1:20;所述具有式Ⅷ所示结构的化合物和异丙醇的用量比优选为1g:(20~30)mL,更优选为1g:(22~28)mL,最优选为1g:(24~26)mL。
在本发明中,所述取代反应优选在搅拌的条件下进行,本发明对所述搅拌没有任何特殊的限定,采用本领域技术人员熟知的过程进行搅拌即可。所述取代反应的温度优选为室温,本发明优选通过LCMS监测所述取代反应的进程,以判断反应是否完成。
所述取代反应完成后,本发明优选对得到的产物体系进行后处理,所述后处理的步骤优选为将所述产物体系用反相HPLC(条件:色谱柱XDB-C18柱(21.2mm×250mm,7μm;流动相A:乙腈(含0.1%TFA),B:水(含0.1%TFA),梯度洗脱(0-40min:A 5%-30%);柱温25℃;流速10mL/min;检测波长280nm)分离纯化,然后将所得产物冷冻干燥。
本发明还提供了上述技术方案所述的异羟肟酸类衍生物或由上述技术方案所述的制备方法制备得到的异羟肟酸类衍生物在抑制UDP-3-O-(R-羟基十四酰)-N-乙酰氨基葡糖脱乙酰基酶中的应用。
下面结合实施例对本发明提供的异羟肟酸类衍生物及其制备方法和应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
N-((S)-3-氨基-1-(羟基氨基)-3-甲基-1-氧代丁-2-基)-4-(((1R,2S)-2-甲氧基环戊基)丁-1,3-二炔-1-基)苯甲酰胺的制备:(制备过程如式4所示)
Figure PCTCN2020115509-appb-000046
(1S,2S)-2-甲氧基环戊烷-1-甲醛(Ⅲ-1)的制备:
在-10℃下,在Ⅱ-1(8.85g,68mmol)的二氯甲烷(250mL)溶液中,分批加入戴斯马丁氧化剂(DMP)(30.96g,73mmol),控制加入 速度,使反应体系的温度保持在-7℃到-10℃之间,加毕,在室温条件下搅拌4h。反应结束后,移至冰浴,依次加入饱和硫代硫酸钠的水溶液(100mL)和饱和碳酸氢钠水溶液(250mL)进行淬灭反应,过滤除去固体,静置分层,水层用二氯甲烷萃取三次(100mL×3),合并有机相,用无水硫酸钠干燥,过滤,减压浓缩,用硅胶柱色谱分离纯化[洗脱剂:石油醚与乙酸乙酯的体积比为20∶1],得到Ⅲ-1(6.02g,69.13%)。MS-APCI(m/z):129.1[M+H] +
(1R,2S)-1-(2,2-二溴乙烯基)-2-甲氧基环戊烷(Ⅳ-1)的制备:
在-20℃的氩气气氛中,将三苯基膦(39.09g,149mmol)的DCM(75mL)溶液滴加至四溴化碳(24.71g,75mmol)的DCM(60mL)溶液中,滴毕,在搅拌的条件下反应30min。冷却至-78、℃,滴加Ⅲ-1(4.75g,37mmol)的DCM(60mL)溶液,滴毕,在搅拌条件下反应30min,升至室温,减压蒸除溶剂,溶于40%乙醇溶液中得黄色液体,加入正己烷剧烈搅拌10min,静置分层,正己烷层减压浓缩,得Ⅳ-1粗品(9.2g,88.2%),无需纯化直接用于下一步反应,取少量Ⅳ-1粗品,硅胶柱色谱分离纯化[洗脱剂:石油醚与乙酸乙酯的体积比为150∶1]得黄色油状物以确定结构。MS-ESI(m/z):304.9[M+Na] +
4-(((1R,2S)-2-甲氧基环戊基)丁-1,3-二炔-1-基)苯甲酸甲酯(Ⅴ-1)的制备:
在氩气气氛中,将Ⅳ-1(6.00g,21mmol)、4-乙炔基苯甲酸甲酯(a-1)(6.89g,43mmol)、Pd 2(dba) 3(0.58g,0.63mmol)、(4-MeOPh) 3P(0.44g,1.26mmol)和三乙胺(6.37g,63mmol)加至DMF(100mL)中,80℃搅拌反应8h。加入乙酸乙酯(300L),用水(150mL×3)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩得粗品,用硅胶柱色谱分离纯化[洗脱剂:石油醚与乙酸乙酯的体积比为80∶1],得到Ⅴ-1(2.38g,40.16%)。MS-ESI(m/z):283.1[M+H] +
4-(((1R,2S)-2-甲氧基环戊基)丁-1,3-二炔-1-基)苯甲酸(Ⅵ-1)的制备:
将氢氧化钠(2.40g,60mmol)的水溶液(10mL)加至6(1.70g,6mmol)的THF(60mL)溶液中,室温搅拌反应8h,减压蒸除溶剂,向浓缩物中加 入水(50mL),用1mol/L盐酸调至约pH=2.0,用乙酸乙酯(50mL×4)萃取,合并有机相,用无水硫酸钠干燥,过滤,减压浓缩,得到Ⅵ-1粗品(1.39g,86.1%),不需纯化直接用于下步反应,取少量Ⅵ-1粗品分离纯化得淡黄色固体以确定结构。MS-ESI(m/z):267.1[M-H] -
(S)-3-((叔丁氧基羰基)氨基)-2-(4-(((1R,2S)-2-甲氧基环戊基)丁-1,3-二炔-1-基)苯甲酰氨基)-3-基丁酸酯(Ⅶ-1)的制备:
将(S)-2-氨基-3-(叔丁氧羰基胺基)-3-甲基丁酸甲酯(Boc-S)(5.81g,23.6mmol)和二异丙基乙胺(DIPEA,10.18g,78.8mmol)加至7(5.30g,19.7mmol)和2-(7-氧化苯并三唑)-N,N,N',N'-四甲基脲六氟磷酸盐(HATU,9.21g,23.6mmol)的DMF(150mL)溶液中,室温搅拌反应5h。加入乙酸乙酯(300mL),用1.2mol/L的氯化锂水溶液(100mL×3)洗涤。有机相用无水硫酸钠干燥,过滤,减压浓缩得粗品。用硅胶柱色谱[洗脱剂:石油醚与乙酸乙酯的体积比为2∶1]分离纯化,得到Ⅶ-1(6.87g,70.3%)。MS-ESI(m/z):497.3[M+H] +
(S)-3-氨基-2-(4-(((1R,2S)-2-甲氧基环戊基)丁-1,3-二炔-1-基)苯甲酰氨基)-3-甲基丁酸甲酯(Ⅷ-1)的制备:
将Ⅶ-1(6.70g,13.5mmol)溶解于甲醇(30mL)中并通干燥的氯化氢气体20min。减压蒸除溶剂,得到Ⅷ-1(4.96g,93.0%),不需纯化直接用于下步反应。MS-ESI(m/z):396.5[M+H] +
N-((S)-3-氨基-1-(羟基氨基)-3-甲基-1-氧代丁-2-基)-4-(((1R,2S)-2-甲氧基环戊基)丁-1,3-diyn-1-基)苯甲酰胺(I-1)的制备:
将Ⅷ-1(4.15g,10.5mmol)溶于异丙醇(12mL)和16.85mol/L羟胺水溶液(12.5mL,210mmol)中,室温搅拌反应直到通过LCMS检测反应完成。用反相HPLC[HPLC条件:色谱柱XDB-C18柱(21.2mm×250mm,7μm;流动相A:乙腈(含0.1%TFA),B:水(含0.1%TFA),梯度洗脱(0-40min:A 5%-30%);柱温25℃;流速10mL/min;检测波长280nm]分离纯化后,冷冻干燥,得到1-1(2.19g,52.5%)。MS-ESI(m/z):398.2[M+H] +1H NMR(500MHz,CDCl 3)δ9.10(d,J=4.0Hz,1H),8.83(d,J=4.0Hz,1H),8.45(d,J=10.6Hz,1H),7.78–7.72(m,2H),7.57–7.54(m,2H),4.34(d,J=10.6Hz,1H),3.80–3.73(m,1H),3.28 (d,J=1.4Hz,3H),2.95–2.88(m,1H),2.43(s,1H),1.87–1.79(m,1H),1.79–1.64(m,3H),1.23(s,2H),1.17(s,2H)。
实施例2
(S)-N-(3-氨基-1-(羟基氨基)-3-甲基-1-氧代丁-2-基)-4-((4-硝基苯基)丁-1,3-二炔-1-基)哌嗪-1-甲酰胺(I-2)的制备:(制备过程如式5所示)
Figure PCTCN2020115509-appb-000047
4-硝基苯甲醛(Ⅲ-2)
在-10℃下,在Ⅱ-2(11.50g,75mmol)的二氯甲烷(250mL)溶液中,分批加入戴斯马丁氧化剂(DMP)(34.10g,80mmol),控制加入速度,使反应体系的温度保持在-7℃到-10℃之间,加毕,在室温条件下搅拌4h。反应结束后,移至冰浴,依次加入饱和硫代硫酸钠的水溶液(120mL)和饱和碳酸氢钠水溶液(250mL)进行淬灭反应。过滤除去固体,静置分层,水层用二氯甲烷萃取三次(120mL×3),合并有机相,用无水硫酸钠干燥,过滤,减压浓缩,用硅胶柱色谱分离纯化(洗脱剂:石油醚∶乙酸乙酯(30∶1)],得到Ⅲ-2(7.4g,65.2%)。MS-APCI(m/z):152.0[M+H] +
1-(2,2-二溴乙烯基)-4-硝基苯(Ⅳ-2)
在-20℃的氩气气氛中,将三苯基膦(43.0g,165mmol)的DCM(80mL)溶液滴加至四溴化碳(27.2g,83mmol)的DCM(70mL)溶液中,滴毕,在搅拌的条件下反应30min。冷却至-78℃,滴加Ⅲ-2(6.20g,41mmol)的DCM(60mL)溶液,滴毕,在搅拌条件下反应30min,升至室温,减压蒸除溶剂,溶于40%乙醇溶液中得黄色液体,加入正己烷剧烈搅拌10min, 静置分层,正己烷层减压浓缩,得Ⅳ-2粗品(10.9g,86.9%)。无需纯化直接用于下一步反应。取少量Ⅳ-2粗品,硅胶柱色谱分离纯化[洗脱剂:石油醚∶乙酸乙酯(150∶1)]得黄色油状物以确定结构。MS-ESI(m/z):327.9[M+Na] +
4-((4-硝基苯基)丁-1,3-二炔-1-基)哌嗪-1-羧酸甲酯(Ⅴ-2)
在氩气气氛中,将Ⅳ-2(7.0g,23mmol)、4-乙炔基哌嗪-1-羧酸甲酯(a-2)(7.7g,46mmol)、Pd 2(dba) 3(0.6g,0.7mmol)、(4-MeOPh) 3P(0.5g,1.4mmol)和三乙胺(7.0g,70mmol)加至DMF(120mL)中,80℃搅拌反应8h。加入乙酸乙酯(320L),用水(200mL×3)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩得粗品。用硅胶柱色谱分离纯化[洗脱剂:石油醚与乙酸乙酯体积比为80∶1],得到Ⅴ-2(3.1g,42.7%)。MS-ESI(m/z):314.1[M+H] +
4-((4-硝基苯基)丁-1,3-二炔-1-基)哌嗪-1-羧酸(Ⅵ-2)
将氢氧化钠(2.40g,70mmol)的水溶液(10mL)加至Ⅴ-2(2.2g,7mmol)的THF(80mL)溶液中,室温搅拌反应8h。减压蒸除溶剂,向浓缩物中加入水(60mL),用1mol/L盐酸调至约pH=2.0,用乙酸乙酯(60mL×4)萃取,合并有机相,用无水硫酸钠干燥,过滤,减压浓缩,得到Ⅵ-2粗品(1.8g,85.8%),不需纯化直接用于下步反应。取少量Ⅵ-2粗品分离纯化以确定结构。MS-ESI(m/z):298.1[M-H] -
(S)-3-((叔丁氧基羰基)氨基)-3-甲基-2-(4-((4-硝基苯基)丁-1,3-二炔-1-基)哌嗪-1-甲酰胺基)丁酸甲酯(Ⅶ-2)
将(S)-2-氨基-3-(叔丁氧羰基胺基)-3-甲基丁酸甲酯(Boc-S)(6.4g,26mmol)和二异丙基乙胺(DIPEA,11.2g,86mmol)加至Ⅵ-2(6.6g,22mmol)和2-(7-氧化苯并三唑)-N,N,N',N'-四甲基脲六氟磷酸盐(HATU,10.1g,26mmol)的DMF(180mL)溶液中,室温搅拌反应5h。加入乙酸乙酯(350mL),用1.2mol/L的氯化锂水溶液(120mL×3)洗涤。有机相用无水硫酸钠干燥,过滤,减压浓缩得粗品。用硅胶柱色谱[洗脱剂:石油醚与乙酸乙酯的体积比为2∶1)]分离纯化,得到Ⅶ-2(8.0g,69.4%)。MS-ESI(m/z):528.3[M+H] +
(S)-3-氨基-3-甲基-2-(4-((4-硝基苯基)丁-1,3-二炔-1-基)哌嗪 -1-甲酰胺基)丁酸甲酯(Ⅷ-2)
将Ⅶ-2(7.9g,15mmol)溶解于甲醇(40mL)中并通干燥的氯化氢气体30min。减压蒸除溶剂,得到Ⅷ-2(6.0g,92.3%),不需纯化直接用于下步反应。MS-ESI(m/z):428.2[M+H] +
(S)-N-(3-氨基-1-(羟基氨基)-3-甲基-1-氧代丁-2-基)-4-((4-硝基苯基)丁-1,3-二炔-1-基)哌嗪-1-甲酰胺(I-2)
将Ⅷ-2(5.6g,12mmol)溶于异丙醇(15mL)和16.85mol/L羟胺水溶液(13.8mL,230mmol)中,室温搅拌反应直到通过LCMS检测反应完成。用反相HPLC[HPLC条件:色谱柱XDB-C18柱(21.2mm×250mm,7μm;流动相A:乙腈(含0.1%TFA),B:水(含0.1%TFA),梯度洗脱(0—40min:A 5%—30%);柱温25℃;流速10mL/min;检测波长280nm]分离纯化后,冷冻干燥,得到1-2(2.19g,53.2%)。MS-ESI(m/z):429.2[M+H] +1H NMR(500MHz,CDCl 3)δ9.23(d,J=4.0Hz,1H),8.72(d,J=4.2Hz,1H),8.20–8.13(m,2H),7.68(d,J=10.4Hz,1H),7.75–7.72(m,2H),4.18(d,J=10.6Hz,1H),3.50–3.42(m,4H),3.15–3.06(m,4H),2.47(s,1H),1.24(s,2H),1.18(s,2H)。
实施例3
(S)-N-(3-氨基-1-(羟基氨基)-3-甲基-1-氧代丁-2-基)-2-羟基-4-((4-(哌啶-1-基甲基)苯基)丁-1,3-二炔-1-基)苯甲酰胺(I-3)的制备:(制备过程如式6所示)
Figure PCTCN2020115509-appb-000048
4-(哌啶-1-基甲基)苯甲醛(Ⅲ-3)
在-10℃下,在Ⅱ-3(19.5g,95mmol)的二氯甲烷(300mL)溶液中,分批加入戴斯马丁氧化剂(DMP)(44.5g,105mmol),控制加入速度,使反应体系的温度保持在-7℃到-10℃之间,加毕,在室温条件下搅拌4h。反应结束后,移至冰浴,依次加入饱和硫代硫酸钠的水溶液(100mL)和饱和碳酸氢钠水溶液(250mL)进行淬灭反应。过滤除去固体,静置分层,水层用二氯甲烷萃取三次(150mL×3),合并有机相,用无水硫酸钠干燥,过滤,减压浓缩,用硅胶柱色谱分离纯化(洗脱剂:石油醚与乙酸乙酯的体积比为20∶1],得到Ⅲ-3(13.6g,70.6%)。MS-APCI(m/z):204.1[M+H] +
1-(4-(2,2-二溴乙烯基)苄基)哌啶(Ⅳ-3)
在-20℃的氩气气氛中,将三苯基膦(45.1g,172mmol)的DCM(90mL)溶液滴加至四溴化碳(28.5g,86mmol)的DCM(80mL)溶液中,滴毕,在搅拌的条件下反应30min。冷却至-78℃,滴加Ⅲ-3(8.7g,43mmol)的DCM(60mL)溶液,滴毕,在搅拌条件下反应30min,升至室温,减压蒸除溶剂,溶于40%乙醇溶液中得黄色液体,加入正己烷剧烈搅拌10min,静置分层,正己烷层减压浓缩,得Ⅳ-3粗品(13.0g,84.7%)。无需纯化直接用于下一步反应。取少量Ⅳ-3粗品,硅胶柱色谱分离纯化[洗脱剂:石油醚与乙酸乙酯的体积比为150∶1]得黄色油状物以确定结构。MS-ESI(m/z):380.1[M+Na] +
2-羟基-4-((4-(哌啶-1-基甲基)苯基)丁-1,3-二炔-1-基)苯甲酸甲酯(Ⅴ-3)
在氩气气氛中,将Ⅳ-3(10.7g,30mmol)、4-乙炔基-2-羟基苯甲酸甲酯(a-3)(10.6g,60mmol)、Pd 2(dba) 3(0.81g,0.9mmol)、(4-MeOPh) 3P(0.62g,1.8mmol)和三乙胺(8.92g,88mmol)加至DMF(120mL)中,80℃搅拌反应8h。加入乙酸乙酯(300L),用水(150mL×3)洗涤,有机相用无水硫酸钠干燥,过滤,减压浓缩得粗品。用硅胶柱色谱分离纯化[洗脱剂:石油醚与乙酸乙酯的体积比为80∶1],得到Ⅴ-3(4.23g,37.8%)。MS-ESI(m/z):374.2[M+H] +
2-羟基-4-((4-(哌啶-1-基甲基)苯基)丁-1,3-二炔-1-基)苯甲酸(Ⅵ-3)
将氢氧化钠(3.6g,90mmol)的水溶液(20mL)加至Ⅴ-3(3.4g,9mmol) 的THF(60mL)溶液中,室温搅拌反应8h。减压蒸除溶剂,向浓缩物中加入水(50mL),用1mol/L盐酸调至约pH=2.0,用乙酸乙酯(50mL×4)萃取,合并有机相,用无水硫酸钠干燥,过滤,减压浓缩,得到Ⅵ-3粗品(2.8g,86.6%),不需纯化直接用于下步反应。取少量Ⅵ-3粗品分离纯化以确定结构。MS-ESI(m/z):358.2[M-H] -
(S)-3-((叔丁氧基羰基)氨基)-2-(2-羟基-4-((4-(哌啶-1-基甲基)苯基)丁-1,3-二炔-1-基)苯甲酰氨基)-3-甲基丁酸甲酯(Ⅶ-3)
将(S)-2-氨基-3-(叔丁氧羰基胺基)-3-甲基丁酸甲酯(Boc-S)(8.15g,33mmol)和二异丙基乙胺(DIPEA,14.25g,110mmol)加至Ⅵ-3(9.7g,27mmol)和2-(7-氧化苯并三唑)-N,N,N',N'-四甲基脲六氟磷酸盐(HATU,12.90g,33mmol)的DMF(170mL)溶液中,室温搅拌反应5h。加入乙酸乙酯(320mL),用1.2mol/L的氯化锂水溶液(120mL×3)洗涤。有机相用无水硫酸钠干燥,过滤,减压浓缩得粗品。用硅胶柱色谱[洗脱剂:石油醚与乙酸乙酯的体积比为2∶1)]分离纯化,得到Ⅶ-3(11.2g,70.8%)。MS-ESI(m/z):588.3[M+H] +
(S)-3-氨基-2-(2-羟基-4-((4-(哌啶-1-基甲基)苯基)丁-1,3-二炔-1-基)苯甲酰氨基)-3-甲基丁酸甲酯(Ⅷ-2)
将Ⅶ-2(11.2g,19mmol)溶解于甲醇(40mL)中并通干燥的氯化氢气体35min。减压蒸除溶剂,得到Ⅷ-3(8.6g,92.6%),不需纯化直接用于下步反应。MS-ESI(m/z):488.5[M+H] +
(S)-N-(3-氨基-1-(羟基氨基)-3-甲基-1-氧代丁-2-基)-2-羟基-4-((4-(哌啶-1-基甲基)苯基)丁-1,3-二炔-1-基)苯甲酰胺(I-3);
将Ⅷ-3(7.3g,15mmol)溶于异丙醇(15mL)和16.85mol/L羟胺水溶液(17.5mL,295mmol)中,室温搅拌反应直到通过LCMS检测反应完成。用反相HPLC[HPLC条件:色谱柱XDB-C18柱(21.2mm×250mm,7μm;流动相A:乙腈(含0.1%TFA),B:水(含0.1%TFA),梯度洗脱(0—40min:A 5%—30%);柱温25℃;流速10mL/min;检测波长280nm]分离纯化后,冷冻干燥,得到1-3(3.7g,50.8%)。MS-ESI(m/z):489.2[M+H] +1H NMR(500MHz,CDCl 3)δ9.18(d,J=4.0Hz,1H),8.74(d,J=4.0Hz,1H),8.53(d,J=10.8Hz,1H),7.82–7.75(m, 1H),7.50–7.43(m,2H),7.30–7.26(m,2H),7.20–7.15(m,2H),4.28(d,J=10.8Hz,1H),3.55–3.48(m,2H),2.47–2.38(m,6H),1.60–1.46(m,4H),1.46–1.34(m,2H),1.18(s,2H),1.11(s,2H)。
测试例
参照CLSI标准,采用MH肉汤微稀释法进行药敏实验,试验菌用MH肉汤或脑心浸液增菌,药液用MH肉汤或脑心浸液二倍稀释成各种所需浓度于96孔板中,每孔100μL。各孔中药液的终浓度分别为:128、64、32、16、8、4、2、1、0.5、0.25、0.125、0.06、0.03μg/mL。依次接种试验菌(接种量为5×10 5CFU/mL)后,在35℃下恒温培养18h,观察结果如表1所示,
表1左氧氟沙星、I-1、I-2和I-3的最低抑菌浓度(MICs/ug·mL -1)
Figure PCTCN2020115509-appb-000049
由表1可知:化合物I-1,I-2和I-3除对多种革兰阴性菌具有抗菌活性外,对肺炎克雷伯菌2146(产NDM-1)和铜绿假单胞菌ATCC 27853的抑菌活性优于临床上一线药物左氧氟沙星。
取18~22g健康的ICR小鼠,随机分组,每组3只,雌雄不要求。一次性尾静脉注射分别给予化合物D73-ACHN975、I-1、I-2和I-3,给表2所示体积的药物后立即观察动物反应情况,记录死亡数及死亡时间,得出死亡率。未死亡动物及正常动物(未给药)取尾部,经多聚甲醛固定,进行HE染色后观察尾部血管有无病变情况发生。结果如表2所示:
表2化合物D73-ACHN975、I-1、I-2和I-3对小白鼠的毒性试验结果
Figure PCTCN2020115509-appb-000050
由表2可知:静脉注射给予对照化合物D73-ACHN975,其MTD≈75mg/kg;静脉注射给予化合物I-1,I-2和I-3,其MTD>100mg/kg。预估小鼠静脉给药,D73-ACHN975化合物LD 50值应低于化合物I-1,I-2和I-3的LD 50值,具体数值需进一步测定。初步判定小鼠静脉给药,化合物I-1,I-2和I-3急性毒性反应强度低于化合物D73-ACHN975。
由以上实施例可知,本发明提供的异羟肟酸类衍生物具有较好的杀菌活性和较低的毒性。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种异羟肟酸类衍生物,其特征在于,具有式Ⅰ所示结构:
    Figure PCTCN2020115509-appb-100001
    式Ⅰ中,X为
    Figure PCTCN2020115509-appb-100002
    Figure PCTCN2020115509-appb-100003
    Y为
    Figure PCTCN2020115509-appb-100004
    Figure PCTCN2020115509-appb-100005
    Z为
    Figure PCTCN2020115509-appb-100006
    Figure PCTCN2020115509-appb-100007
    其中,当Y和Z同时为
    Figure PCTCN2020115509-appb-100008
    时,X不包括
    Figure PCTCN2020115509-appb-100009
  2. 如权利要求1所述的异羟肟酸类衍生物,其特征在于,
    所述X为
    Figure PCTCN2020115509-appb-100010
    所述Y为
    Figure PCTCN2020115509-appb-100011
    所述Z为
    Figure PCTCN2020115509-appb-100012
  3. 权利要求1或2所述的异羟肟酸类衍生物的制备方法,其特征在于,包括以下步骤:
    将具有式Ⅱ所示结构的化合物、戴斯-马丁氧化剂和二氯甲烷混合,进行氧化反应,得到具有式Ⅲ所示结构的化合物;
    将所述具有式Ⅲ所示结构的化合物、三苯基膦、四溴化碳和二氯甲烷混合,进行Corey-Fuchs反应,得到具有式Ⅳ所示结构的化合物;
    将所述具有式Ⅳ所示结构的化合物、Pd 2(dba) 3、具有式a所示结构的化合物、三乙胺和N,N-二甲基甲酰胺混合,进行Sonogashira偶联反应,得到具有式Ⅴ所示结构的化合物;
    将具有式Ⅴ所示结构的化合物、四氢呋喃和氢氧化钠溶液混合,进行水解反应,得到具有式Ⅵ所示结构的化合物;
    将具有式Ⅵ所示结构的化合物、(S)-2-氨基-3-(叔丁氧羰基胺基)-3-甲基丁酸甲酯、二异丙基乙胺、2-(7-氧化苯并三唑)-N,N,N',N'-四甲基脲六氟磷酸盐和N,N-二甲基甲酰胺混合,进行缩合反应,得到具有式Ⅶ所示结构的化合物;
    将所述具有式Ⅶ所示结构的化合物、甲醇和氯化氢气体混合,进行脱Boc保护反应,得到具有式Ⅷ所示结构的化合物;
    将所述具有式Ⅷ所示结构的化合物、羟胺水溶液和异丙醇混合,进行取代反应,得到具有式Ⅰ所示结构的化合物;
    Figure PCTCN2020115509-appb-100013
    Figure PCTCN2020115509-appb-100014
  4. 如权利要求3所述的制备方法,其特征在于,所述具有式Ⅱ所示结构的化合物和戴斯-马丁氧化剂的摩尔比为1:(1.0~1.2)。
  5. 如权利要求3或4的制备方法,其特征在于,所述氧化反应的温度为室温,所述氧化反应的时间为2~8h。
  6. 如权利要求3所述的制备方法,其特征在于,所述具有式Ⅲ所示结构的化合物、三苯基膦和四溴化碳的摩尔比为1:(3.8~4.2):(1.8~2.2)。
  7. 如权利要求3或6所述的制备方法,其特征在于,所述Corey-Fuchs反应的温度为-20~-78℃。
  8. 如权利要求3所述的制备方法,其特征在于,所述具有式Ⅳ所示结构的化合物、Pd 2(dba) 3、具有式a所示结构的化合物和三乙胺的摩尔比为1:(0.02~0.04):(1.8~2.2):(2.8~3.2)。
  9. 如权利要求3或8所述的制备方法,其特征在于,所述Sonogashira偶联反应的温度为75~85℃,所述Sonogashira偶联反应的时间为6~10h。
  10. 如权利要求3所述的制备方法,其特征在于,所述具有式Ⅴ所示结构的化合物和氢氧化钠溶液中的氢氧化钠的摩尔比为1:(8~12)。
  11. 如权利要求3或10所述的制备方法,其特征在于,所述水解反应的温度为室温,所述水解反应的时间为6~10h。
  12. 如权利要求3所述的制备方法,其特征在于,所述具有式Ⅵ所示结构的化合物、(S)-2-氨基-3-(叔丁氧羰基胺基)-3-甲基丁酸甲酯、二异丙基乙胺和2-(7-氧化苯并三唑)-N,N,N',N'-四甲基脲六氟磷酸盐的摩尔比为1:(1.1~1.3):(3.8~4.2):(1.1~1.3)。
  13. 如权利要求3或12所述的制备方法,其特征在于,所述缩合反应的温度为室温,所述缩合反应的时间为3~8h。
  14. 如权利要求3所述的制备方法,其特征在于,所述具有式Ⅷ所 示结构的化合物和羟胺水溶液中的羟胺的摩尔比为1:(18~22)。
  15. 权利要求1或2所述的异羟肟酸类衍生物或由权利要求3~14任一项所述的制备方法制备得到的异羟肟酸类衍生物在抑制UDP-3-O-(R-羟基十四酰)-N-乙酰氨基葡糖脱乙酰基酶中的应用。
PCT/CN2020/115509 2019-09-19 2020-09-16 一种异羟肟酸类衍生物及其制备方法和应用 WO2021052353A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021539384A JP2022516195A (ja) 2019-09-19 2020-09-16 ヒドロキサム酸誘導体並びその調製方法及び使用
US17/421,755 US11827612B2 (en) 2019-09-19 2020-09-16 Hydroxamic acid derivative, method for producing same and use thereof
EP20866018.3A EP4071134A4 (en) 2019-09-19 2020-09-16 HYDROXAMIC ACID DERIVATIVE, METHOD OF PRODUCTION THEREOF AND USE THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910885618.3 2019-09-19
CN201910885618.3A CN110563611B (zh) 2019-09-19 2019-09-19 一种异羟肟酸类衍生物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021052353A1 true WO2021052353A1 (zh) 2021-03-25

Family

ID=68781115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115509 WO2021052353A1 (zh) 2019-09-19 2020-09-16 一种异羟肟酸类衍生物及其制备方法和应用

Country Status (5)

Country Link
US (1) US11827612B2 (zh)
EP (1) EP4071134A4 (zh)
JP (1) JP2022516195A (zh)
CN (1) CN110563611B (zh)
WO (1) WO2021052353A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110563611B (zh) * 2019-09-19 2021-02-02 中国医学科学院医药生物技术研究所 一种异羟肟酸类衍生物及其制备方法和应用
CN111233730A (zh) * 2020-03-25 2020-06-05 中国医学科学院医药生物技术研究所 异羟肟酸类衍生物、制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1777577A (zh) * 2003-01-08 2006-05-24 希龙公司 抗菌剂
CN101765585A (zh) * 2007-06-12 2010-06-30 尔察祯有限公司 抗菌剂
WO2012031298A2 (en) * 2010-09-03 2012-03-08 Duke University Ethynylbenzene derivatives
WO2013039947A1 (en) * 2011-09-12 2013-03-21 Achaogen, Inc. Polymorphs of n-((s)-3-amino-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl)-4-(((1r,2r)-2-(hydroxymethyl)cyclopropyl)buta-1,3-diynyl)benzamide
WO2017189586A1 (en) * 2016-04-25 2017-11-02 Duke University Benzoylglycine derivatives and methods of making and using same
WO2017223349A1 (en) * 2016-06-23 2017-12-28 Achaogen, Inc. Antibacterial agents
WO2018115432A2 (en) * 2016-12-23 2018-06-28 Intervet International B.V. Compounds for the treatment of bovine or swine respiratory disease
CN110563611A (zh) * 2019-09-19 2019-12-13 中国医学科学院医药生物技术研究所 一种异羟肟酸类衍生物及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1290717C (zh) * 2003-05-25 2006-12-20 朱鹏飞 汽车轮胎、机器、急减速故障预警系统
GB0817424D0 (en) * 2008-09-24 2008-10-29 Medivir Ab Protease inhibitors
WO2011005355A1 (en) * 2009-05-07 2011-01-13 Achaogen, Inc. Combinations comprising a lpxc inhibitor and an antibiotic for use in the treatment of infections caused by gram-negative bacteria
BR112013011693A2 (pt) * 2010-11-10 2016-08-09 Achaogen Inc derivados de ácido hidroxâmico e seu uso no tratamento de infecções por bactérias
EP2847162A1 (en) * 2012-05-09 2015-03-18 Achaogen, Inc. Antibacterial agents
WO2014165075A1 (en) * 2013-03-12 2014-10-09 Achaogen, Inc. Antibacterial agents
AU2014273471B2 (en) * 2013-05-28 2019-10-03 Morphochem Aktiengesellschaft Fur Kombinatorische Chemie Combination therapy comprising oxazolidinone-quinolones for use in treating bacterial infections

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1777577A (zh) * 2003-01-08 2006-05-24 希龙公司 抗菌剂
CN101765585A (zh) * 2007-06-12 2010-06-30 尔察祯有限公司 抗菌剂
WO2012031298A2 (en) * 2010-09-03 2012-03-08 Duke University Ethynylbenzene derivatives
WO2013039947A1 (en) * 2011-09-12 2013-03-21 Achaogen, Inc. Polymorphs of n-((s)-3-amino-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl)-4-(((1r,2r)-2-(hydroxymethyl)cyclopropyl)buta-1,3-diynyl)benzamide
WO2017189586A1 (en) * 2016-04-25 2017-11-02 Duke University Benzoylglycine derivatives and methods of making and using same
WO2017223349A1 (en) * 2016-06-23 2017-12-28 Achaogen, Inc. Antibacterial agents
WO2018115432A2 (en) * 2016-12-23 2018-06-28 Intervet International B.V. Compounds for the treatment of bovine or swine respiratory disease
CN110563611A (zh) * 2019-09-19 2019-12-13 中国医学科学院医药生物技术研究所 一种异羟肟酸类衍生物及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DU XIAONAN, ZHANG GUONING; ZHU MEI; WANG MINGHUA; WANG YUCHENG; WANG JUXIAN: "Improved Synthesis of LpxC Inhibitor ACHN-975", CHINESE JOURNAL OF PHARMACEUTICALS, HANGHAI YIYAO GONGYE YANJIUYUAN,SHANGHAI INSTITUTE OF PHARMACEUTICAL INDUSTRY, CN, vol. 50, no. 5, 1 January 2019 (2019-01-01), CN, pages 514 - 519, XP055792377, ISSN: 1001-8255 *
See also references of EP4071134A4

Also Published As

Publication number Publication date
US20220033369A1 (en) 2022-02-03
US11827612B2 (en) 2023-11-28
CN110563611A (zh) 2019-12-13
EP4071134A4 (en) 2022-12-21
EP4071134A1 (en) 2022-10-12
CN110563611B (zh) 2021-02-02
JP2022516195A (ja) 2022-02-24

Similar Documents

Publication Publication Date Title
JP3231042B2 (ja) 2−(2,6−ジ−ハロ−フェニルアミノ)フェニル酢酸の誘導体の硝酸エステルおよびその製造法
JP3233451B2 (ja) イミンから誘導される芳香族化合物、その製造法及びそれを含有する化粧料組成物
WO2021052353A1 (zh) 一种异羟肟酸类衍生物及其制备方法和应用
JPH06509820A (ja) 選択的ホスホジエステラーゼ■阻害剤としての三置換フェニル誘導体
FR2679903A1 (fr) Derives de la n-sulfonyl indoline portant une fonction amidique, leur preparation, les compositions pharmaceutiques en contenant.
JPH11503746A (ja) サクシンアミド誘導体と金属タンパク質分解酵素阻害剤としてのその使用
JPH06508135A (ja) 抗変性活性剤としての置換n−カルボキシアルキルペプチジル誘導体
JPS63264442A (ja) リポキシゲナーゼ阻害性化合物
JPS61200975A (ja) プロスタグランジン拮抗性化合物
JPH11501288A (ja) 金属タンパク質分解酵素阻害剤
EP1641758A2 (fr) Derives de diphenylpyridine, leur preparation et leur application en therapeutique
JPH0576939B2 (zh)
JPS60146891A (ja) 〔2,3−d〕チエノピリミジン誘導体およびその塩
EP0187052B1 (fr) Nouveaux dérivés de l'adamantanamine, leurs procédés de préparation et médicaments les contenant
BRPI0611484A2 (pt) processo de preparo de composto de tetrafluorobenzilanilina substituìdo e seus sais farmaceuticamente aprovados
KR20200075867A (ko) 단백 분해 효소의 쌍두형 저해제
PT90254B (pt) Processo para a preparacao de amidas de acidos ciclometileno -1,2-dicarboxilicos com actividade terapeutica e de composicoes farmaceuticas que as contem
CH630606A5 (en) Phenylamidine derivatives useful especially in therapeutics
FR2550785A1 (fr) Nouvelles compositions a activite antimicrobienne contenant des derives de l'acide benzoique, leur procede de preparation, leur utilisation en tant que medicaments desinfectants ou conservateurs
KR101902857B1 (ko) 피라지노〔2,3-d〕이소옥사졸 유도체
DE3126606A1 (de) Bestatin-verwandte verbindungen als immunverstaerker
US4285935A (en) Dehydropeptide compounds, their production and their medical use
EP0136195B1 (fr) Dérivés de la benzamidine à activité antimicrobienne, procédé d'obtention et application à titre de médicaments désinfectants ou conservateurs
CA1088099A (fr) Procede de preparation de nouveaux alcoxy anilides et composes ainsi obtenus
CN111233730A (zh) 异羟肟酸类衍生物、制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539384

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020866018

Country of ref document: EP

Effective date: 20210623