WO2021052105A1 - 基于飞秒激光的高催化活性金纳米棒的制备方法及其系统 - Google Patents

基于飞秒激光的高催化活性金纳米棒的制备方法及其系统 Download PDF

Info

Publication number
WO2021052105A1
WO2021052105A1 PCT/CN2020/110434 CN2020110434W WO2021052105A1 WO 2021052105 A1 WO2021052105 A1 WO 2021052105A1 CN 2020110434 W CN2020110434 W CN 2020110434W WO 2021052105 A1 WO2021052105 A1 WO 2021052105A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
femtosecond laser
molar concentration
gold
mol
Prior art date
Application number
PCT/CN2020/110434
Other languages
English (en)
French (fr)
Inventor
闫剑锋
朱德志
赵玥
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021052105A1 publication Critical patent/WO2021052105A1/zh
Priority to US17/318,036 priority Critical patent/US11110448B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/122Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in a liquid, e.g. underwater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to a method and a system for preparing high catalytic activity gold nanorods based on a femtosecond laser, and belongs to the technical field of femtosecond laser application.
  • gold nanorods Compared with spherical gold nanoparticles, gold nanorods have tunable plasmon properties, and have won widespread attention among numerous anisotropic gold nanoparticles.
  • gold nanorods have good application prospects in nanoelectronics, optics, biomedicine, catalysis and other research fields.
  • the crystal surface structure of gold nanorods directly determines the level of its catalytic performance. How to efficiently control the crystal surface structure of gold nanorods is an urgent problem to be solved.
  • the surface of gold nanorods is mainly modified by chemical etching methods to obtain some high-index crystal faces.
  • the morphology of gold nanorods is affected by various physical and chemical factors, the preparation conditions are complicated, and the etching process is controllable. Poor sex.
  • the purpose of the present invention is a method and system for preparing highly catalytically active gold nanorods based on femtosecond lasers.
  • the gold nanorod solution is synthesized by the seed liquid growth method, and then centrifuged and dropped on the silicon substrate, and the gold nanorods are adjusted and controlled by changing the parameters of the laser pulse.
  • the electric field distribution on the surface of the nanorods realizes the preparation of highly catalytically active gold nanorods.
  • the method for preparing high catalytic activity gold nanorods based on femtosecond laser includes the following steps:
  • hexadecyltrimethylammonium bromide solution with a molar concentration of 0.1 mol/L a tetrachloroauric acid (HAucl 4 ) solution with a molar concentration of 0.01 mol/L and silver nitrate with a molar concentration of 0.01 mol/L ( AgNO 3 ) solution is mixed and stirred, and then ascorbic acid (C 6 H 8 O 6 ) solution with a molar concentration of 0.1 mol/L is added to obtain a mixed solution.
  • cetyltrimethylammonium bromide and gold tetrachloride are added.
  • the molar concentrations of acid, silver nitrate and ascorbic acid are 0.07 ⁇ 0.09mol/L, 0.4 ⁇ 0.6mmol/L, 0.06 ⁇ 0.07mmol/L and 0.6 ⁇ 0.9mmol/L respectively, and the gold of step (1) is added to the mixed solution.
  • the seed liquid is allowed to stand for 3 hours to obtain a gold nanorod solution.
  • the volume ratio of the gold seed liquid and the mixed liquid in the gold nanorod solution is 1: (143-250);
  • step (3) Perform centrifugal separation on the gold nanorod solution of step (2), the centrifugal separation speed is 5000-8000 rpm/min, the centrifugal separation time is 10-15 min, and the gold nanorods obtained by centrifugation are dropped on the silicon substrate;
  • step (3) Make the femtosecond laser pulse incident on the silicon substrate of step (3), the femtosecond laser flux is 0.2 ⁇ 2.1mJ/cm 2 , the femtosecond laser irradiation time is 5 ⁇ 15min, adjust the femtosecond laser wavelength to make The surface electric field distribution of the gold nanorods on the silicon substrate is changed to realize partial exfoliation of atoms on the surface of the gold nanorods to obtain highly catalytically active gold nanorods.
  • the laser wavelength may be 400-800 nm.
  • the high catalytic activity gold nanorod preparation system based on femtosecond laser proposed by the present invention includes femtosecond laser, attenuator plate, half-wave plate, first reflector, second reflector, electronically controlled shutter, dichroic mirror, multiplier Frequency crystal, stage, beam splitter, lighting and camera; among them, femtosecond laser, attenuator, half-wave plate and first mirror form a common optical axis, and the femtosecond laser pulse generated by the femtosecond laser passes through the attenuator After the energy is adjusted, the polarization direction is adjusted through the half-wave plate, and then the propagation direction is changed through the first and second mirrors, and the propagation direction is changed by the dichroic mirror through the electronically controlled shutter, and the side of the dichroic mirror is set to multiply The frequency crystal and the stage, the wavelength is changed by the frequency doubling crystal, and finally irradiated on the stage.
  • the silicon substrate with gold nanorods is placed on the stage, and the other side of the dichroic mirror is set by the beam splitter
  • An observation system composed of a mirror, an illuminating lamp and a camera.
  • the illuminating lamp emits the illuminating light, which reaches the surface of the silicon substrate through the beam splitter and is reflected back to the camera to observe the preparation process of the highly catalytically active gold nanorods.
  • the method for preparing highly catalytically active gold nanorods based on femtosecond laser of the present invention compared with the existing chemical method, etc., the existing chemical etching method has complicated reaction conditions and poor controllability of the reaction process.
  • the gold nanorods are irradiated with a second laser pulse, and the laser polarization and wavelength are reasonably designed to prepare highly catalytically active gold nanorods.
  • the preparation process is relatively simple.
  • the femtosecond laser-based high catalytic activity gold nanorod preparation system of the present invention can arbitrarily adjust the polarization direction and wavelength of the femtosecond laser, and is easy to operate.
  • Fig. 1 is a schematic diagram of the structure of a femtosecond laser-based high catalytic activity gold nanorod preparation system proposed by the present invention.
  • Fig. 2 is a transmission electron microscope image of gold nanorods irradiated by laser with a wavelength of 800 nm in Example 1 of the present invention.
  • Fig. 3 is a transmission electron micrograph of gold nanorods irradiated with 400nm wavelength laser in Example 2 of the present invention.
  • 1 is a femtosecond laser
  • 2 is an attenuator
  • 3 is a half-wave plate
  • 4 is a first mirror
  • 5 is a second mirror
  • 6 is an electrically controlled shutter
  • 7 is a dichroic mirror
  • 8 is BBO crystal
  • 9 is a silicon substrate
  • 10 is a stage
  • 11 is a beam splitter
  • 12 is a illuminator
  • 13 is a camera.
  • the method for preparing high catalytic activity gold nanorods based on femtosecond laser includes the following steps:
  • tetrachloroauric acid Hucl 4
  • CAB cetyltrimethylammonium bromide
  • the mol/L sodium borohydride (NaBH 4 ) solution was added at once and stirred quickly for 2 to 4 minutes to obtain the gold seed liquid.
  • the gold seed liquid contains tetrachloroauric acid, cetyltrimethylammonium bromide and boron
  • the molar concentrations of sodium hydride are (0.3 ⁇ 0.5)mmol/L, (0.07 ⁇ 0.09)mol/L and (0.7 ⁇ 0.9)mmol/L respectively;
  • CTAB hexadecyltrimethylammonium bromide
  • HAucl 4 tetrachloroauric acid
  • AgNO 3 silver nitrate
  • step (3) Perform centrifugal separation on the gold nanorod solution of step (2), the centrifugal separation speed is 5000-8000 rpm/min, the centrifugal separation time is 10-15 min, and the gold nanorods obtained by centrifugation are dropped on the silicon substrate;
  • step (3) Make the femtosecond laser pulse incident on the silicon substrate of step (3), the femtosecond laser flux is 0.2 ⁇ 2.1mJ/cm 2 , the femtosecond laser irradiation time is 5 ⁇ 15min, adjust the femtosecond laser wavelength to make The surface electric field distribution of the gold nanorods on the silicon substrate is changed to realize partial exfoliation of atoms on the surface of the gold nanorods to obtain highly catalytically active gold nanorods.
  • the laser wavelength may be 400-800 nm.
  • a high catalytic activity gold nanorod preparation system based on femtosecond laser which is characterized in that it includes femtosecond laser, attenuator, half-wave plate, first mirror, second mirror, electronically controlled shutter, dichroic Mirror, frequency double crystal, stage, beam splitter, illuminating lamp and camera; among them,
  • the femtosecond laser, attenuator plate, half-wave plate and the first reflector form a common optical axis.
  • the femtosecond laser pulse generated by the femtosecond laser passes through the attenuator plate to adjust the energy, passes through the half-wave plate to adjust the polarization direction, and then passes through the first reflector.
  • an observation system consisting of a beam splitter, an illuminating lamp and a camera.
  • the illuminating lamp emits illuminating light. After the beam splitter reaches the surface of the silicon substrate, it is reflected back to the camera to observe the preparation process of the highly catalytically active gold nanorods.
  • the gold seed liquid contains tetrachloroauric acid and hexadecyl
  • the molar concentrations of trimethylammonium bromide and sodium borohydride are 0.3mmol/L, 0.09mol/L and 0.7mmol/L, respectively;
  • step (3) Centrifuge the 1mL gold nanorod solution of step (2) at a speed of 8000rpm/min and a centrifugal time of 10min, and then drop it on the silicon substrate;
  • step (3) a silicon substrate, the laser flux 2mJ / cm 2, irradiation time of 8min, selecting a laser wavelength of 800 nm, to achieve selective ablation of the gold nanorod.
  • Example 2 The TEM image of the highly catalytically active gold nanorods obtained in Example 1 is shown in FIG. 2.
  • the gold seed liquid contains tetrachloroauric acid and hexadecyl
  • the molar concentrations of trimethylammonium bromide and sodium borohydride are 0.3mmol/L, 0.09mol/L and 0.7mmol/L, respectively;
  • step (3) Centrifuge the 1mL gold nanorod solution of step (2) at a speed of 8000rpm/min and a centrifugal time of 10min, and then drop it on the silicon substrate;
  • step (3) a silicon substrate, the laser flux 2mJ / cm 2, irradiation time of 8min, selecting a laser wavelength of 400 nm, to achieve selective ablation of the gold nanorod.
  • the gold seed liquid contains tetrachloroauric acid and hexadecyl
  • the molar concentrations of trimethylammonium bromide and sodium borohydride are 0.4mmol/L, 0.08mol/L and 0.8mmol/L, respectively;
  • step (3) Centrifuge the 1mL gold nanorod solution of step (2) at a speed of 8000rpm/min and a centrifugal time of 10min, and then drop it on the silicon substrate;
  • the laser flux is 1.5mJ/cm 2
  • the irradiation time is 10min
  • the laser wavelength is 800nm, so as to realize the selective ablation of gold nanorods .
  • the gold seed liquid contains tetrachloroauric acid and hexadecyl
  • the molar concentrations of trimethylammonium bromide and sodium borohydride are 0.5mmol/L, 0.09mol/L and 0.9mmol/L, respectively;
  • step (3) Centrifuge the 1mL gold nanorod solution of step (2) at a speed of 8000rpm/min and a centrifugal time of 10min, and then drop it on the silicon substrate;
  • the laser flux is 1.5mJ/cm 2
  • the irradiation time is 15min
  • the laser wavelength is selected to be 400nm, so as to realize the selective ablation of gold nanorods .
  • the system for preparing gold nanorods with high catalytic activity based on femtosecond laser proposed by the present invention has a structure as shown in Fig. 1, including femtosecond laser 1, attenuator plate 2, half-wave plate 3, first mirror 4, and second mirror 5.
  • the femtosecond laser 1, the attenuator plate 2, the half-wave plate 3, and the first reflector 4 form a common optical axis.
  • the laser pulses pass through the second reflector 5 and the dichroic mirror 7 in sequence, and the electronically controlled shutter 6 is set at the second reflector.
  • a BBO crystal 8 Between the mirror 5 and the dichroic mirror 7, a BBO crystal 8, a silicon substrate 9 and a stage 10 are arranged on one side of the dichroic mirror 7, and a beam splitter 11 and a lighting lamp 12 are arranged on the other side of the dichroic mirror 7
  • An observation system composed of a camera 13 the femtosecond laser pulse generated by the femtosecond laser 1 passes through the attenuator plate 2 to adjust the energy, passes through the half-wave plate 3 to adjust the polarization direction, and changes the propagation through the first reflector 4 and the second reflector 5 respectively.
  • the propagation direction is changed by the dichroic mirror 7, the wavelength is changed by the BBO crystal 8, and finally irradiated to the silicon substrate 9 with gold nanorods, and the highly catalytically active gold nanorods are observed through the observation system The preparation process.
  • the femtosecond laser used is a titanium sapphire laser produced by Coherent, model Astrella, with a center wavelength of 800 nm and a pulse width of 35 fs.
  • the repetition frequency is up to 1000Hz
  • the maximum single pulse energy is 7mJ
  • the light intensity distribution is Gaussian.
  • the main parameters of the femtosecond laser 1 in an embodiment of the system of the present invention are: the laser center wavelength is 800 nm, the repetition frequency is 1 KHz, and the pulse width is 35 fs.
  • the operation process of the femtosecond laser-based high catalytic activity gold nanorod preparation system of the present invention is as follows:
  • the femtosecond laser 1 to generate laser pulses, and adjust the laser energy through the attenuator 2 to meet the power requirement for ablating the gold nanorods, which is between 0.2 and 2.1 mJ/cm 2 .
  • the half-wave plate 3 vertically polarized laser light is obtained.
  • Adjust the BBO crystal 8 and change the laser wavelength to 800nm or 400nm.
  • the femtosecond laser is introduced into the silicon substrate 9, the silicon substrate 9 is placed on the stage 10, and the relative position of the beam and the stage 10 is adjusted so that the laser passes through the center of the silicon substrate 9.
  • the laser flux is adjusted to 2mJ/cm 2 by adjusting the attenuator sheet 2; the wavelength of 800nm is obtained by adjusting the BBO crystal 8; and the radiation of the pulse incident on the gold nanorod is controlled by the electronically controlled shutter 7.
  • the irradiation time was 8min, and the gold nanorods as shown in Figure 2 were prepared.
  • the laser flux is adjusted to 2mJ/cm 2 by adjusting the attenuator sheet 2; the wavelength of 400nm is obtained by adjusting the BBO crystal 8; and the pulse incident on the gold nanorod is controlled by the electronically controlled shutter 7.
  • the irradiation time was 8min, and the gold nanorods as shown in Figure 3 were prepared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种基于飞秒激光的高催化活性金纳米棒的制备方法及其系统,属于飞秒激光应用技术领域。本方法首先通过种子液生长法合成金纳米棒溶液;然后将金纳米棒溶液离心,滴在硅基底上;然后将飞秒激光引入到硅基底,通过控制入射到硅基底的脉冲波长和辐照时间,从而实现金纳米棒的选择性烧蚀,制备出具有高指数晶面的金纳米棒,从而提高金纳米棒的催化活性。本发明方法,相比于已有的化学法等,利用飞秒激光脉冲辐照金纳米棒,合理设计激光偏振和波长,即可制备出高催化活性金纳米棒,制备过程相对简单。本发明的基于飞秒激光的高催化活性金纳米棒制备系统,可以任意调整飞秒激光偏振方向和波长,而且操作方便。

Description

基于飞秒激光的高催化活性金纳米棒的制备方法及其系统
相关申请的引用
本申请要求申请号为201910881199.6、申请日为2019年9月18日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本发明涉及一种基于飞秒激光的高催化活性金纳米棒制备方法及其系统,属于飞秒激光应用技术领域。
背景技术
相比于球形金纳米粒子,金纳米棒具有可调的等离激元特性,在众多的各向异性金纳米颗粒中赢得了广泛的关注。目前,金纳米棒在纳米电子学、光学、生物医药、催化等研究领域均具有良好的应用前景。在催化应用中,金纳米棒的晶面结构直接决定了其催化性能的高低,如何高效的调控金纳米棒的晶面结构是一项亟需解决的难题。目前主要通过化学刻蚀的方法修饰金纳米棒的表面,从而得到一些高指数晶面,但是,金纳米棒的形貌受到各种物理、化学因素的影响,制备条件复杂,刻蚀过程可控性差。
激光可以有效地用于金纳米粒子的整形,由于飞秒激光具有极短脉宽、极高强度的特点,近年来受到越来越多的关注。飞秒激光整形金纳米粒子,往往是在溶液体系里面进行,然而,由于水分子布朗运动的影响,纳米粒子相对于光场的位置不确定,从而无法实现选择性烧蚀,更多的是整体粒子的形变,无法得到高指数晶面。因此,目前亟需一种可以高效地、简单地制备高催化活性金纳米棒的方法。
发明内容
本发明的目的是基于飞秒激光的高催化活性金纳米棒制备方法及其系统,通过种子液生长法合成金纳米棒溶液,然后离心滴在硅基底上,通过改变激光脉冲的参数,调控金纳米棒表面的电场分布,从而实现高催化活性金纳米棒的制备。
本发明提出的基于飞秒激光的高催化活性金纳米棒的制备方法,包括以下步骤:
(1)合成金种子溶液:
将摩尔浓度为0.01mol/L的四氯金酸溶液注入到摩尔浓度为0.1mol/L的十六烷基三 甲基溴化铵溶液中,再将摩尔浓度为0.01mol/L的冰硼氢化钠溶液一次性加入,快速搅拌2~4分钟,得到金种子液,金种子液中四氯金酸、十六烷基三甲基溴化铵和硼氢化钠的摩尔浓度分别为(0.3~0.5)mmol/L、(0.07~0.09)mol/L和(0.7~0.9)mmol/L;
(2)通过种子液生长法合成金纳米棒溶液:
将摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵溶液、摩尔浓度为0.01mol/L的四氯金酸(HAucl 4)溶液和摩尔浓度为0.01mol/L的硝酸银(AgNO 3)溶液混合并搅拌,再加入摩尔浓度为0.1mol/L的抗坏血酸(C 6H 8O 6)溶液,得到混合液,混合液中十六烷基三甲基溴化铵、四氯金酸、硝酸银和抗坏血酸的摩尔浓度各为0.07~0.09mol/L、0.4~0.6mmol/L、0.06~0.07mmol/L和0.6~0.9mmol/L,在混合液中加入步骤(1)的金种子液,静置3小时,得到金纳米棒溶液,金纳米棒溶液中金种子液和混合液的体积比为1:(143~250);
(3)对步骤(2)的金纳米棒溶液进行离心分离,离心分离转速为5000~8000rpm/min,离心分离时间为10~15min,将离心分离得到的金纳米棒滴在硅基底上;
(4)使飞秒激光脉冲入射到步骤(3)的硅基底上,飞秒激光通量为0.2~2.1mJ/cm 2,飞秒激光照射时间为5~15min,调节飞秒激光波长,使硅基底上金纳米棒表面电场分布发生变化,实现金纳米棒表面原子的部分剥离,得到高催化活性金纳米棒。
上述高催化活性金纳米棒制备方法的步骤(4)中,激光波长可以为400~800nm。
本发明提出的基于飞秒激光的高催化活性金纳米棒制备系统,包括飞秒激光器、衰减片、半波片、第一反射镜、第二反射镜、电控快门、二向色镜、倍频晶体、载物台、分束镜、照明灯和相机;其中,飞秒激光器、衰减片、半波片和第一反射镜构成共光轴,飞秒激光器产生的飞秒激光脉冲经过衰减片调节能量后,经过半波片调整偏振方向,再通过第一反射镜和第二反射镜改变传播方向,经过电控快门,由二向色镜改变传播方向,二向色镜的一侧设置倍频晶体和载物台,通过倍频晶体改变波长,最后辐照到载物台上,装有金纳米棒的硅基底置于载物台上,二向色镜的另一侧设置由分束镜、照明灯和相机组成的观测系统,照明灯发射出照明光,经过分束镜到达硅基底表面,反射回相机,以观察高催化活性金纳米棒的制备过程。
本发明提出的基于飞秒激光的高催化活性金纳米棒制备方法及其系统,其优点是:
1、本发明的基于飞秒激光的高催化活性金纳米棒制备方法,相比于已有的化学法等,已有的化学刻蚀法反应条件复杂、反应过程可控性差,本发明利用飞秒激光脉冲辐照金纳米棒,合理设计激光偏振和波长,即可制备出高催化活性金纳米棒,制备过程相对简单。
2、本发明的基于飞秒激光的高催化活性金纳米棒制备系统,可以任意调整飞秒激光偏振方向和波长,而且操作方便。
附图说明
图1是本发明提出的基于飞秒激光的高催化活性金纳米棒制备系统的结构示意图。
图2是本发明实施例1中,采用800nm波长激光辐照的金纳米棒透射电镜图。
图3是本发明实施例2中,采用400nm波长激光辐照的金纳米棒透射电镜图。
图1中,1是飞秒激光器,2是衰减片,3是半波片,4是第一反射镜,5是第二反射镜,6是电控快门,7是二向色镜,8是BBO晶体,9是硅基底,10是载物台,11是分束镜,12是照明灯,13是相机。
具体实施方式
本发明提出的基于飞秒激光的高催化活性金纳米棒的制备方法,包括以下步骤:
(1)合成金种子溶液:
将摩尔浓度为0.01mol/L的四氯金酸(HAucl 4)溶液注入到摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液中,再将摩尔浓度为0.01mol/L的冰硼氢化钠(NaBH 4)溶液一次性加入,快速搅拌2~4分钟,得到金种子液,金种子液中四氯金酸、十六烷基三甲基溴化铵和硼氢化钠的摩尔浓度分别为(0.3~0.5)mmol/L、(0.07~0.09)mol/L和(0.7~0.9)mmol/L;
(2)通过种子液生长法合成金纳米棒溶液:
将摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液、摩尔浓度为0.01mol/L的四氯金酸(HAucl 4)溶液和摩尔浓度为0.01mol/L的硝酸银(AgNO 3)溶液混合并搅拌,再加入摩尔浓度为0.1mol/L的抗坏血酸(C 6H 8O 6)溶液,得到混合液,混合液中十六烷基三甲基溴化铵、四氯金酸、硝酸银和抗坏血酸的摩尔浓度各为0.07~0.09mol/L、0.4~0.6mmol/L、0.06~0.07mmol/L和0.6~0.9mmol/L,在混合液中加入步骤(1)的金种子液,静置3小时,得到金纳米棒溶液,金纳米棒溶液中金种子液和混合液的体积比为1:(143~250);
(3)对步骤(2)的金纳米棒溶液进行离心分离,离心分离转速为5000~8000rpm/min,离心分离时间为10~15min,将离心分离得到的金纳米棒滴在硅基底上;
(4)使飞秒激光脉冲入射到步骤(3)的硅基底上,飞秒激光通量为0.2~2.1mJ/cm 2,飞秒激光照射时间为5~15min,调节飞秒激光波长,使硅基底上金纳米棒表面电场分布发生变化,实现金纳米棒表面原子的部分剥离,得到高催化活性金纳米棒。
上述高催化活性金纳米棒制备方法的步骤(4)中,激光波长可以为400~800nm。
3、一种基于飞秒激光的高催化活性金纳米棒制备系统,其特征在于包括飞秒激光器、衰减片、半波片、第一反射镜、第二反射镜、电控快门、二向色镜、倍频晶体、载物台、分束镜、照明灯和相机;其中,
飞秒激光器、衰减片、半波片和第一反射镜构成共光轴,飞秒激光器产生的飞秒激光脉冲经过衰减片调节能量后,经过半波片调整偏振方向,再通过第一反射镜和第二反射镜改变传播方向,经过电控快门,由二向色镜改变传播方向,二向色镜的一侧设置倍频晶体和载物台,通过倍频晶体改变波长,最后辐照到载物台上,装有金纳米棒的硅基底置于载物台上,二向色镜的另一侧设置由分束镜、照明灯和相机组成的观测系统,照明灯发射出照明光,经过分束镜到达硅基底表面,反射回相机,以观察高催化活性金纳米棒的制备过程。
以下介绍本发明方法的实施例:
实施例1
(1)合成金种子溶液:将摩尔浓度为0.01mol/L的四氯金酸(HAucl 4)溶液注入到摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液中,再将摩尔浓度为0.01mol/L的冰硼氢化钠(NaBH 4)溶液一次性加入,快速搅拌2~4分钟,得到金种子液,金种子液中四氯金酸、十六烷基三甲基溴化铵和硼氢化钠的摩尔浓度分别为0.3mmol/L、0.09mol/L和0.7mmol/L;
(2)通过种子液生长法合成金纳米棒溶液:将摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液、摩尔浓度为0.01mol/L的四氯金酸(HAucl 4)溶液和摩尔浓度为0.01mol/L的硝酸银(AgNO 3)溶液混合并搅拌,再加入摩尔浓度为0.1mol/L的抗坏血酸(C 6H 8O 6)溶液,得到混合液,混合液中十六烷基三甲基溴化铵、四氯金酸、硝酸银和抗坏血酸的摩尔浓度各为0.09mol/L、0.4mmol/L、0.06mmol/L和0.6mmol/L,在混合液中加入步骤(1)的金种子液,静置3小时,得到金纳米棒溶液,金纳米棒溶液中金种子液和混合液的体积比为1:250;
(3)将步骤(2)的1mL金纳米棒溶液离心,离心转速为8000rpm/min,离心时间为10min,然后滴在硅基底上;
(4)将飞秒激光脉冲引入到步骤(3)的硅基底,激光通量为2mJ/cm 2,辐照时间为8min,选择激光波长为800nm,从而实现金纳米棒的选择性烧蚀。
实施例1得到的高催化活性金纳米棒的透射电镜图如图2所示。
实施例2
(1)合成金种子溶液:将摩尔浓度为0.01mol/L的四氯金酸(HAucl 4)溶液注入到摩 尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液中,再将摩尔浓度为0.01mol/L的冰硼氢化钠(NaBH 4)溶液一次性加入,快速搅拌2~4分钟,得到金种子液,金种子液中四氯金酸、十六烷基三甲基溴化铵和硼氢化钠的摩尔浓度分别为0.3mmol/L、0.09mol/L和0.7mmol/L;
(2)通过种子液生长法合成金纳米棒溶液:将摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液、摩尔浓度为0.01mol/L的四氯金酸(HAucl 4)溶液和摩尔浓度为0.01mol/L的硝酸银(AgNO 3)溶液混合并搅拌,再加入摩尔浓度为0.1mol/L的抗坏血酸(C 6H 8O 6)溶液,得到混合液,混合液中十六烷基三甲基溴化铵、四氯金酸、硝酸银和抗坏血酸的摩尔浓度各为0.09mol/L、0.4mmol/L、0.06mmol/L和0.6mmol/L,在混合液中加入步骤(1)的金种子液,静置3小时,得到金纳米棒溶液,金纳米棒溶液中金种子液和混合液的体积比为1:250;
(3)将步骤(2)的1mL金纳米棒溶液离心,离心转速为8000rpm/min,离心时间为10min,然后滴在硅基底上;
(4)将飞秒激光脉冲引入到步骤(3)的硅基底,激光通量为2mJ/cm 2,辐照时间为8min,选择激光波长为400nm,从而实现金纳米棒的选择性烧蚀。
本实施例2得到的高催化活性金纳米棒的透射电镜图如图3所示,从图3与图2的对比可以看出,当激光通量相同时,改变激光波长,可调节金纳米棒表面的电场分布,从而使得加工所得的金纳米棒表面晶面结构发生改变。
实施例3
(1)合成金种子溶液:将摩尔浓度为0.01mol/L的四氯金酸(HAucl 4)溶液注入到摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液中,再将摩尔浓度为0.01mol/L的冰硼氢化钠(NaBH 4)溶液一次性加入,快速搅拌2~4分钟,得到金种子液,金种子液中四氯金酸、十六烷基三甲基溴化铵和硼氢化钠的摩尔浓度分别为0.4mmol/L、0.08mol/L和0.8mmol/L;
(2)通过种子液生长法合成金纳米棒溶液:将摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液、摩尔浓度为0.01mol/L的四氯金酸(HAucl 4)溶液和摩尔浓度为0.01mol/L的硝酸银(AgNO 3)溶液混合并搅拌,再加入摩尔浓度为0.1mol/L的抗坏血酸(C 6H 8O 6)溶液,得到混合液,混合液中十六烷基三甲基溴化铵、四氯金酸、硝酸银和抗坏血酸的摩尔浓度各为0.07mol/L、0.4mmol/L、0.06mmol/L和0.65mmol/L,在混合液中加入步骤(1)的金种子液,静置3小时,得到金纳米棒溶液,金纳米棒溶液中金种子液和混合液的体积比为1:200;
(3)将步骤(2)的1mL金纳米棒溶液离心,离心转速为8000rpm/min,离心时间为10min,然后滴在硅基底上;
(4)将飞秒激光脉冲引入到步骤(3)的硅基底,激光通量为1.5mJ/cm 2,辐照时间为10min,选择激光波长为800nm,从而实现金纳米棒的选择性烧蚀。
实施例4
(1)合成金种子溶液:将摩尔浓度为0.01mol/L的四氯金酸(HAucl 4)溶液注入到摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液中,再将摩尔浓度为0.01mol/L的冰硼氢化钠(NaBH 4)溶液一次性加入,快速搅拌2~4分钟,得到金种子液,金种子液中四氯金酸、十六烷基三甲基溴化铵和硼氢化钠的摩尔浓度分别为0.5mmol/L、0.09mol/L和0.9mmol/L;
(2)通过种子液生长法合成金纳米棒溶液:将摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液、摩尔浓度为0.01mol/L的四氯金酸(HAucl 4)溶液和摩尔浓度为0.01mol/L的硝酸银(AgNO 3)溶液混合并搅拌,再加入摩尔浓度为0.1mol/L的抗坏血酸(C 6H 8O 6)溶液,得到混合液,混合液中十六烷基三甲基溴化铵、四氯金酸、硝酸银和抗坏血酸的摩尔浓度各为0.08mol/L、0.5mmol/L、0.07mmol/L和0.9mmol/L,在混合液中加入步骤(1)的金种子液,静置3小时,得到金纳米棒溶液,金纳米棒溶液中金种子液和混合液的体积比为1:180;
(3)将步骤(2)的1mL金纳米棒溶液离心,离心转速为8000rpm/min,离心时间为10min,然后滴在硅基底上;
(4)将飞秒激光脉冲引入到步骤(3)的硅基底,激光通量为1.5mJ/cm 2,辐照时间为15min,选择激光波长为400nm,从而实现金纳米棒的选择性烧蚀。
本发明提出的基于飞秒激光高催化活性金纳米棒制备系统,其结构如图1所示,包括飞秒激光器1、衰减片2、半波片3、第一反射镜4、第二反射镜5、电控快门6、二向色镜7、倍频晶体8、载物台10、分束镜11、照明灯12和相机13;其中,
飞秒激光器1、衰减片2、半波片3、和第一反射镜4构成共光轴,激光脉冲依次经过第二反射镜5和二向色镜7,电控快门6设置在第二反射镜5和二向色镜7之间,二向色镜7一侧设置BBO晶体8、硅基底9和载物台10,二向色镜7另一侧设置由分束镜11、照明灯12和相机13组成的观测系统,飞秒激光器1产生的飞秒激光脉冲经过衰减片2调节能量后,经过半波片3调整偏振方向,分别通过第一反射镜4和第二反射镜5改变传播方向,经过电控快门6,再由二向色镜7改变传播方向,通过BBO晶体8改变波长,最后辐照到装有金纳米棒的硅基底9,通过观测系统观测高催化活性金纳米棒的制备过程。
本发明的基于飞秒激光的高催化活性金纳米棒制备系统的一个实施例中,所用的飞秒激光器为相干公司(Coherent)生产的钛蓝宝石激光器,型号Astrella,中心波长800nm,脉冲宽度35fs,重复频率最高1000Hz,最大单脉冲能量为7mJ,光强分布为高斯分布。
本发明系统的一个实施例飞秒激光器1的主要参数为:激光中心波长800nm,重复频率1KHz,脉冲宽度为35fs。
本发明的基于飞秒激光的高催化活性金纳米棒制备系统的操作过程如下:
打开飞秒激光器1,产生激光脉冲,通过衰减片2调节激光能量,使其满足烧蚀金纳米棒所需功率要求,在0.2~2.1mJ/cm 2之间。通过半波片3获得垂直偏振激光。调节BBO晶体8,改变激光波长为800nm或400nm。将飞秒激光引入到硅基底9,硅基底9放置在载物台10上,并调节光束与载物台10的相对位置,使激光通过硅基底9的中心。通过调节电控快门6的打开时间,控制入射到金纳米棒脉冲的辐照时间,实现高催化活性金纳米棒制备。
操作过程的一个实施例中,通过调节衰减片2,将激光通量调节为2mJ/cm 2;通过调节BBO晶体8,得到800nm波长;通过电控快门7,控制入射到金纳米棒脉冲的辐照时间为8min,即制备得到了如图2所示的金纳米棒。
操作过程的另一个实施例中,通过调节衰减片2,将激光通量调节为2mJ/cm 2;通过调节BBO晶体8,得到400nm波长;通过电控快门7,控制入射到金纳米棒脉冲的辐照时间为8min,即制备得到了如图3所示的金纳米棒。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于飞秒激光的高催化活性金纳米棒的制备方法,其特征在于:该方法包括以下步骤:
    (1)合成金种子溶液:
    将四氯金酸溶液注入到十六烷基三甲基溴化铵溶液中,再加入冰硼氢化钠溶液,搅拌得到金种子液;
    (2)通过种子液生长法合成金纳米棒溶液:
    将十六烷基三甲基溴化铵溶液、四氯金酸溶液和硝酸银溶液混合并搅拌,再加入抗坏血酸溶液,得到混合液,在混合液中加入所述步骤(1)的金种子液,静置,得到金纳米棒溶液;
    (3)对所述步骤(2)的金纳米棒溶液进行离心分离,将离心分离得到的金纳米棒滴在硅基底上;
    (4)使飞秒激光脉冲入射到所述步骤(3)的硅基底上,得到高催化活性金纳米棒。
  2. 如权利要求1所述的高催化活性金纳米棒制备方法,其特征在于,所述步骤(1)中,所述四氯金酸溶液的摩尔浓度为0.01mol/L;和/或,所述十六烷基三甲基溴化铵溶液的摩尔浓度为0.1mol/L;和/或,所述冰硼氢化钠溶液的摩尔浓度为0.01mol/L。
  3. 如权利要求1或2所述的高催化活性金纳米棒制备方法,其特征在于,所述步骤(1)得到的金种子液中,四氯金酸摩尔浓度为0.3~0.5mmol/L,和/或,十六烷基三甲基溴化铵摩尔浓度为0.07~0.09mol/L,和/或,硼氢化钠的摩尔浓度为0.7~0.9mmol/L。
  4. 如权利要求1所述的高催化活性金纳米棒制备方法,其特征在于,所述步骤(2)中,所述十六烷基三甲基溴化铵溶液的摩尔浓度为0.1mol/L;和/或,所述四氯金酸溶液的摩尔浓度为0.01mol/L;和/或,所述硝酸银溶液摩尔浓度为0.01mol/L;和/或,所述抗坏血酸溶液摩尔浓度为0.1mol/L。
  5. 如权利要求1或4所述的高催化活性金纳米棒制备方法,其特征在于,所述步骤(2)得到的混合液中,十六烷基三甲基溴化铵摩尔浓度为0.07~0.09mol/L,和/或,四氯金酸摩尔浓度为0.4~0.6mmol/L,和/或,硝酸银摩尔浓度为0.06~0.07mmol/L,和/或,抗坏血酸摩尔浓度为0.6~0.9mmol/L。
  6. 如权利要求1、4或5任一项所述的高催化活性金纳米棒制备方法,其特征在于,所述步骤(2)中,所述金纳米棒溶液中金种子液和混合液的体积比为1:143~250。
  7. 如权利要求1所述的高催化活性金纳米棒制备方法,其特征在于,所述步骤(3)中,所述离心分离的转速为5000~8000rpm/min,和/或,离心分离时间为10~15min。
  8. 如权利要求1所述的高催化活性金纳米棒制备方法,其特征在于,所述步骤(4)中,所述飞秒激光通量为0.2~2.1mJ/cm 2,和/或,所述飞秒激光照射时间为5~15min。
  9. 如权利要求1所述的高催化活性金纳米棒制备方法,其特征在于,所述步骤(4)中,所述激光波长为400~800nm。
  10. 一种基于飞秒激光的高催化活性金纳米棒制备系统,其特征在于包括飞秒激光器、衰减片、半波片、第一反射镜、第二反射镜、电控快门、二向色镜、倍频晶体、载物台、分束镜、照明灯和相机;其中,
    飞秒激光器、衰减片、半波片和第一反射镜构成共光轴,飞秒激光器产生的飞秒激光脉冲经过衰减片调节能量后,经过半波片调整偏振方向,再通过第一反射镜和第二反射镜改变传播方向,经过电控快门,由二向色镜改变传播方向,二向色镜的一侧设置倍频晶体和载物台,通过倍频晶体改变波长,最后辐照到载物台上,装有金纳米棒的硅基底置于载物台上,二向色镜的另一侧设置由分束镜、照明灯和相机组成的观测系统,照明灯发射出照明光,经过分束镜到达硅基底表面,反射回相机,以观察高催化活性金纳米棒的制备过程。
PCT/CN2020/110434 2019-09-18 2020-08-21 基于飞秒激光的高催化活性金纳米棒的制备方法及其系统 WO2021052105A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/318,036 US11110448B1 (en) 2019-09-18 2021-05-12 Method for preparing gold nanorods having high catalytic activity by using femtosecond laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910881199.6A CN110560703B (zh) 2019-09-18 2019-09-18 基于飞秒激光的高催化活性金纳米棒制备方法及其系统
CN201910881199.6 2019-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/318,036 Continuation US11110448B1 (en) 2019-09-18 2021-05-12 Method for preparing gold nanorods having high catalytic activity by using femtosecond laser

Publications (1)

Publication Number Publication Date
WO2021052105A1 true WO2021052105A1 (zh) 2021-03-25

Family

ID=68780824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110434 WO2021052105A1 (zh) 2019-09-18 2020-08-21 基于飞秒激光的高催化活性金纳米棒的制备方法及其系统

Country Status (3)

Country Link
US (1) US11110448B1 (zh)
CN (1) CN110560703B (zh)
WO (1) WO2021052105A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560703B (zh) 2019-09-18 2020-09-18 清华大学 基于飞秒激光的高催化活性金纳米棒制备方法及其系统
CN111926174B (zh) * 2020-07-28 2021-10-08 清华大学 采用超快脉冲激光对金属材料非晶化处理的方法及系统
CN112171064B (zh) * 2020-09-24 2021-09-17 北京理工大学 基于飞秒激光制备的光控驱动微流传输系统
CN113305296B (zh) * 2021-05-27 2022-09-27 杭州苏铂科技有限公司 一种激光辅助功能化金纳米棒的快速制造方法
CN113305297A (zh) * 2021-05-28 2021-08-27 杭州苏铂科技有限公司 一种激光辅助无种子的金纳米棒合成方法
CN113547130A (zh) * 2021-07-12 2021-10-26 杭州苏铂科技有限公司 一种激光辅助功能化金纳米星制备方法
CN113649586A (zh) * 2021-07-12 2021-11-16 杭州苏铂科技有限公司 一种激光辅助无种子的金纳米星合成方法
CN114136958B (zh) * 2021-11-22 2023-08-18 杭州师范大学 一种基于肿瘤标志物与金纳米球相互作用调控金纳米棒刻蚀的高灵敏可视化方法
CN115198226B (zh) * 2022-08-16 2023-08-22 中国人民解放军空军工程大学 基于飞秒激光诱导表面氧化层提升金属抗腐蚀性能的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237221A (ja) * 2006-03-07 2007-09-20 Hokkaido Univ レーザ加工装置及びレーザ加工方法
CN101343778A (zh) * 2008-08-29 2009-01-14 北京航空航天大学 短长径比金纳米棒的制备方法
CN102962469A (zh) * 2012-03-01 2013-03-13 纳米籽有限公司 高产率大长径比金纳米棒及其制备方法
CN103658993A (zh) * 2013-12-11 2014-03-26 北京理工大学 基于电子动态调控的晶硅表面飞秒激光选择性烧蚀方法
CN104907578A (zh) * 2015-04-29 2015-09-16 福州大学 一种金纳米棒的制备方法
CN108213718A (zh) * 2018-01-05 2018-06-29 北京工业大学 一种飞秒激光调控GemSbnTek晶态纳米结构几何形态方法
CN108568594A (zh) * 2018-03-22 2018-09-25 北京工业大学 基于类等离子体透镜效应调控晶硅表面波纹结构的方法
CN109868462A (zh) * 2019-03-28 2019-06-11 北京理工大学 一种实现在纳米尺度下激光辅助金离子化学还原的方法
CN110560703A (zh) * 2019-09-18 2019-12-13 清华大学 基于飞秒激光的高催化活性金纳米棒的制备方法及其系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259220B2 (ja) * 2003-08-25 2009-04-30 三菱マテリアル株式会社 金属ナノロッド製造方法
US20100055448A1 (en) * 2006-11-08 2010-03-04 Tatsuya Tomura Multiphoton absorption functional material, composite layer having multiphoton absorption function and mixture, and optical recording medium, photoelectric conversion element, optical control element, and optical modeling system using the same
EP2331727B1 (en) * 2008-09-02 2013-11-27 Ramot at Tel-Aviv University Ltd Metal nanowire thin-films
US8309389B1 (en) * 2009-09-10 2012-11-13 Sionyx, Inc. Photovoltaic semiconductor devices and associated methods
WO2013043133A1 (en) * 2011-09-23 2013-03-28 Nanyang Technological University Methods for forming gold nanowires on a substrate and gold nanowires formed thereof
US20130216779A1 (en) * 2012-02-16 2013-08-22 University Of Tennessee Research Foundation Nanostructures from Laser-Ablated Nanohole Templates
US9373515B2 (en) * 2012-03-01 2016-06-21 Ramot At Tel-Aviv University Ltd Conductive nanowire films
CN102921961B (zh) * 2012-11-30 2016-01-20 南京大学 一种飞秒激光制备金属纳米材料的方法
SG10201707205YA (en) * 2013-03-06 2017-10-30 Univ Nanyang Tech Monolayer of nanorods on a substrate and method of forming the same
CN104028777B (zh) * 2014-06-23 2016-02-10 北京理工大学 基于飞秒激光电子动态调控制备表面增强拉曼基底的方法
CN105842181B (zh) * 2016-06-03 2018-09-18 盐城工学院 一种基于金纳米棒检测氰根离子的方法
CN106216833B (zh) * 2016-08-10 2018-02-09 北京理工大学 基于电子动态调控激光加工半导体双级表面结构的方法
CN106905966B (zh) * 2017-01-12 2019-08-13 北京理工大学 一种基于电子动态调控制备单层二硫化钼量子点的方法
CN108788472A (zh) * 2018-05-24 2018-11-13 清华大学 基于电子动态调控的二氧化钛表面周期结构加工方法
CN109576640A (zh) * 2018-11-28 2019-04-05 江苏大学 一种在钛基底上制备TiO2多尺度微纳复合结构的方法
CN110280776B (zh) * 2019-04-15 2020-10-16 清华大学 基于飞秒双脉冲激光的金纳米棒增强整形方法及其系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237221A (ja) * 2006-03-07 2007-09-20 Hokkaido Univ レーザ加工装置及びレーザ加工方法
CN101343778A (zh) * 2008-08-29 2009-01-14 北京航空航天大学 短长径比金纳米棒的制备方法
CN102962469A (zh) * 2012-03-01 2013-03-13 纳米籽有限公司 高产率大长径比金纳米棒及其制备方法
CN103658993A (zh) * 2013-12-11 2014-03-26 北京理工大学 基于电子动态调控的晶硅表面飞秒激光选择性烧蚀方法
CN104907578A (zh) * 2015-04-29 2015-09-16 福州大学 一种金纳米棒的制备方法
CN108213718A (zh) * 2018-01-05 2018-06-29 北京工业大学 一种飞秒激光调控GemSbnTek晶态纳米结构几何形态方法
CN108568594A (zh) * 2018-03-22 2018-09-25 北京工业大学 基于类等离子体透镜效应调控晶硅表面波纹结构的方法
CN109868462A (zh) * 2019-03-28 2019-06-11 北京理工大学 一种实现在纳米尺度下激光辅助金离子化学还原的方法
CN110560703A (zh) * 2019-09-18 2019-12-13 清华大学 基于飞秒激光的高催化活性金纳米棒的制备方法及其系统

Also Published As

Publication number Publication date
US11110448B1 (en) 2021-09-07
US20210268488A1 (en) 2021-09-02
CN110560703B (zh) 2020-09-18
CN110560703A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
WO2021052105A1 (zh) 基于飞秒激光的高催化活性金纳米棒的制备方法及其系统
Kuppe et al. “Hot” in plasmonics: temperature‐related concepts and applications of metal nanostructures
CN110280776B (zh) 基于飞秒双脉冲激光的金纳米棒增强整形方法及其系统
Pérez‐Juste et al. Optical control and patterning of gold‐nanorod–poly (vinyl alcohol) nanocomposite films
Tan et al. Preparation of functional nanomaterials with femtosecond laser ablation in solution
JP5538432B2 (ja) 液体中における高繰返率の超短パルスレーザアブレーションによるナノ粒子の生成
Abderrafi et al. Silicon nanocrystals produced by nanosecond laser ablation in an organic liquid
Murshid et al. Optimized synthetic protocols for preparation of versatile plasmonic platform based on silver nanoparticles with pentagonal symmetries
CN108568594A (zh) 基于类等离子体透镜效应调控晶硅表面波纹结构的方法
Nakamura et al. Fabrication of gold nanoparticles in intense optical field by femtosecond laser irradiation of aqueous solution
JP5589168B2 (ja) 金ナノ粒子およびその分散液、金ナノ粒子の製造方法、ナノ粒子製造システム
CN101327946A (zh) 一种具有特殊形貌的微-纳颗粒及其制备方法与应用
CN102974836B (zh) 激光制备银/碳复合纳米环结构的方法
Jiménez et al. A novel method of nanocrystal fabrication based on laser ablation in liquid environment
CN111366991A (zh) 一种光学超构表面、制备方法及加工装置
Chen et al. Functional nonlinear optical nanoparticles synthesized by laser ablation
JP4293586B2 (ja) ナノ粒子の製造方法及び製造装置
CN110773748B (zh) 基于飞秒激光的金银核壳纳米球的银壳剥离方法及系统
Peng et al. Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF 4: Yb/Tm hexagonal nanocrystals
Jiang et al. A Au nanoflower@ SiO 2@ CdTe/CdS/ZnS quantum dot multi-functional nanoprobe for photothermal treatment and cellular imaging
Ryabchikov et al. Structural properties of gold-silicon nanohybrids formed by femtosecond laser ablation in water at different fluences
CN106495219A (zh) 激光诱导制备KNb3O8纳米线的方法
Shimotsuma et al. Functional Nanomaterials Synthesized by Femtosecond Laser Pulses
Kucherik et al. Laser ablative nanostructuring of Au in liquid ambience in continuous wave illumination regime
Khanadeev et al. Nanosecond laser-induced photomodification of gold nanostars of various sizes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866871

Country of ref document: EP

Kind code of ref document: A1