WO2021051288A1 - Nr小区测量方法、终端设备及系统 - Google Patents

Nr小区测量方法、终端设备及系统 Download PDF

Info

Publication number
WO2021051288A1
WO2021051288A1 PCT/CN2019/106286 CN2019106286W WO2021051288A1 WO 2021051288 A1 WO2021051288 A1 WO 2021051288A1 CN 2019106286 W CN2019106286 W CN 2019106286W WO 2021051288 A1 WO2021051288 A1 WO 2021051288A1
Authority
WO
WIPO (PCT)
Prior art keywords
window
smtc
ssb
cell
terminal device
Prior art date
Application number
PCT/CN2019/106286
Other languages
English (en)
French (fr)
Inventor
东宁
耿晓馥
李艳良
王俊伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980017050.1A priority Critical patent/CN113039847B/zh
Priority to PCT/CN2019/106286 priority patent/WO2021051288A1/zh
Publication of WO2021051288A1 publication Critical patent/WO2021051288A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communications, and in particular to a new radio (NR) cell measurement method, terminal equipment and system.
  • NR new radio
  • the terminal device measures the NR cell to be accessed based on the measurement gap (GAP) issued by the base station to which the cell belongs (hereinafter referred to as the first base station).
  • the base station to which the NR cell belongs (hereinafter referred to as the second base station) will report to the first base station the location, period, and length of its synchronization signal block (SSB) transmission.
  • SSB synchronization signal block
  • the first base station receives the above information, Configure the corresponding GAP for the terminal device.
  • SSB is a signal that is sent periodically. In each sending cycle, the SSB is limited to a finite time window.
  • GAP is a periodic and finite time period.
  • the terminal device detects whether it contains the SSB sent by the second base station in each finite time period of the GAP (called GAP window), and after detecting the SSB, it is based on the SSB Measure the NR cell, and then judge whether the NR cell is suitable for access based on the measurement result.
  • GAP window the time period of the GAP
  • the periodically transmitted SSB is included in the corresponding GAP window, as shown in Figure 2(a).
  • the first base station does not configure GAP.
  • the NR cell cannot be measured.
  • the first base station configures the corresponding GAP for the terminal device: on the one hand, although the second base station reports to the first base station the location, period and time length of its own SSB transmission, the difference between the first base station and the second base station The time may not be synchronized, which may cause the GAP window configured by the first base station for the terminal device to fail to include the SSB sent by the second base station, as shown in Figure 2(b).
  • the second base station communicates with the terminal device based on the unlicensed spectrum, in order to avoid channel access conflicts (to achieve spectrum sharing), the second base station needs to listen before talk before sending the SSB.
  • the LBT mechanism determines that the channel is available before sending the SSB at a predetermined location based on the unlicensed spectrum; otherwise, the second base station will postpone the sending of the SSB, which may cause the SSB to appear outside the GAP window, as shown in Figure 2(b) ) Shown. However, if the SSB is not included in the GAP window, the terminal device cannot detect the SSB sent by the second base station in the GAP window, and thus cannot measure the NR cell.
  • the NR cell measurement method, terminal equipment, and system provided in the embodiments of the present application can improve the success rate of NR cell measurement.
  • a method for measuring an NR cell includes: a terminal device determines that the NR cell to be tested is not detected in a radio resource management (RRM) measurement window; the terminal device uses the RRM measurement window as a reference to determine Extended RRM measurement window; among them, the measurement window length of the extended RRM measurement window is greater than the measurement window length of the RRM measurement window, and the extended RRM measurement window completely or partially includes the RRM measurement window; the terminal device searches for the NR cell to be tested in the extended RRM measurement window
  • the SSB of the access network device to which it belongs is measured based on the SSB of the NR cell to be tested.
  • the measurement window length of the extended RRM measurement window is greater than the measurement window length of the RRM measurement window, and the extended RRM measurement window completely or partially includes the RRM measurement window. Therefore, the extended RRM measurement window can measure the terminal equipment in two adjacent RRMs.
  • the signal received between the measurement windows increases the probability of searching for the SSB sent by the access network device to which the NR cell to be tested belongs, thereby increasing the measurement success rate of the NR cell. This avoids the problem that the NR cell cannot be measured due to the fact that no GAP is configured or the configured GAP window does not include the SSB in the prior art.
  • the method further includes: the terminal device determines that it has free radio frequency resources; the terminal device is expanding At the beginning of the RRM measurement window, the NR cell to be tested is established as a secondary cell, and radio frequency resources are allocated to the NR cell to be tested. Among them, the radio frequency resource is used to receive the SSB from the access network device to which the NR cell to be tested belongs. Based on this solution, the terminal device can allocate idle radio frequency resources separately to the NR cell to be tested, thereby using the radio frequency resources to receive the SSB and perform measurement on the NR cell to be tested.
  • the method further includes: the terminal device determines that it does not have free radio frequency resources; the terminal device is expanding At the beginning of the RRM window, the established secondary cell is deactivated to release radio frequency resources, and the NR cell to be tested is established as a secondary cell, and the released radio frequency resources are allocated to the NR cell to be tested.
  • the radio frequency resources are used to receive The SSB of the access network device to which the NR cell to be tested belongs.
  • the access network equipment of the cell where the terminal device is currently located is configured with multiple carriers so that there are no free radio frequency resources that can be allocated to the NR cell to be tested for measurement, based on this solution, the NR cell to be tested can be allocated Radio frequency resources, so that the terminal equipment can use the radio frequency resources to receive the SSB and measure the NR cell to be tested.
  • the method further includes: the terminal device deactivates at the end position of the extended RRM window NR cell to be tested, and restore the established secondary cell. Based on this solution, the NR cell to be tested is immediately deactivated after the NR cell to be tested is measured, and the secondary cell that was previously deactivated for measuring the NR cell to be tested is restored at the same time, which can reduce the impact on the services of the established secondary cell.
  • the start position of the extended RRM measurement window is the same as the start position of the RRM measurement window; or, the start position of the extended RRM measurement window is before the end position of the RRM measurement window.
  • the extended RRM measurement window can fully or partially include the RRM measurement window, thereby increasing the probability of searching for the SSB sent by the access network device to which the NR cell to be tested belongs, and improving the measurement success rate of the NR cell.
  • the RRM measurement window is a measurement interval GAP window or an SSB measurement timing configuration (SSB measurement timing configuration, SMTC) window.
  • SSB measurement timing configuration SSB measurement timing configuration, SMTC
  • the RRM measurement window is the SMTC window.
  • the method further includes: the terminal device determines that it has not received a connection from the cell to which it is located.
  • the configuration information of the GAP window of the networked device the terminal device receives SMTC information from the access network device to which the cell belongs. Based on this solution, in a scenario where GAP is not configured, the NR cell to be tested can be measured through the SMTC window.
  • another NR cell measurement method includes: the terminal device receives SMTC information; the terminal device searches the SMTC window for the SSB from the access network device to which the NR cell to be tested belongs based on the SMTC information. SSB measures the NR cell to be tested.
  • the SMTC information includes the measurement window length, measurement period, and offset of the SMTC window; the measurement window length of the SMTC window is equal to the period of the synchronization signal block SSB sent by the access network device of the NR cell to be tested, or the SMTC window The measurement window is longer than 5ms; wherein, the offset is the offset of the start position of the SMTC window relative to the start position of the measurement period where the SMTC window is located.
  • the terminal equipment is configured with an SMTC window whose measurement window length is equal to the period at which the access network equipment of the NR cell to be tested sends the SSB.
  • the SMTC window must include the SSB, and the terminal equipment will inevitably search in the SMTC window To the SSB sent by the access network device to which the NR cell under test belongs, so that the terminal device can measure the NR cell under test based on the searched SSB; or, because the terminal device is configured with an SMTC window with a measurement window longer than 5 ms (larger than the existing The maximum measurement window length of the SMTC window). Therefore, compared with the prior art, the terminal device has a higher probability of searching for an SSB in the SMTC window, and thus a higher probability of measuring an NR cell.
  • this solution can increase the probability that the terminal device detects the SSB, thereby increasing the success rate of the NR cell measurement, and avoids the inability to perform the NR cell measurement caused by the GAP not configured or the configured GAP window does not contain the SSB in the prior art.
  • the problem of measurement can increase the probability that the terminal device detects the SSB, thereby increasing the success rate of the NR cell measurement, and avoids the inability to perform the NR cell measurement caused by the GAP not configured or the configured GAP window does not contain the SSB in the prior art.
  • the method further includes: if the terminal device searches for the SSB from the access network device to which the NR cell to be tested belongs in the SMTC window, the terminal device sends the location of the SSB to the access network device to which the cell belongs Information, the location information of the SSB is used to reconfigure the SMTC information; the terminal device receives the reconfigured SMTC information, and the measurement window length in the reconfigured SMTC information is less than the measurement window length in the SMTC information; the terminal device according to the reconfigured SMTC information, Search the SSB in the corresponding SMTC window, and measure the NR cell to be tested based on the SSB.
  • the subsequent terminal equipment will use the newly configured SMTC window to test the NR Cell measurement can reduce the resource consumption of terminal equipment, thereby improving resource utilization.
  • another NR cell measurement method includes: a terminal device receives SMTC information, and the terminal device searches for synchronization signals sent by the NR cell to be tested in the first SMTC window and the second SMTC window according to the SMTC information. Block SSB, and measure the NR cell to be tested based on SSB.
  • the SMTC information includes the measurement window length, measurement period, and offset of the first SMTC window and the second SMTC window, and the offset of the first SMTC window and the second SMTC window are different, and the offset of the first SMTC window Is the offset of the start position of the first SMTC window relative to the start position of the measurement period of the first SMTC window, and the offset of the second SMTC window is the start position of the second SMTC window relative to the measurement period of the second SMTC window The offset of the start position.
  • two SMTC windows with different offsets are configured for the terminal device.
  • the measurement period of the first SMTC window is shorter than the measurement period of the second SMTC window; correspondingly, the terminal device searches for the SSB in the first SMTC window and the second SMTC window according to the SMTC information, including: terminal The device preferentially searches for SSB in the first SMTC window; if the terminal device searches for SSB in the first SMTC window, the terminal device does not search for SSB in the second SMTC window; if the terminal device does not search for SSB in the first SMTC window, Then the terminal device searches for the SSB in the second SMTC window. Based on this solution, the resource consumption of the terminal equipment can be saved, and the resource utilization rate of the terminal equipment can be improved.
  • the method further includes: if the terminal device searches for the SSB from the access network device to which the NR cell to be tested belongs in the first SMTC window or the second SMTC, the terminal device accesses the cell to which it belongs
  • the network device sends the location information of the SSB, and the location information of the SSB is used to reconfigure the SMTC information;
  • the terminal device receives the reconfigured SMTC information, and the reconfigured SMTC information includes the measurement window length and measurement period of the third SMTC window and the fourth SMTC window And the offset;
  • the measurement window length of the third SMTC window is smaller than the measurement window length of the first SMTC window, or the measurement window length of the fourth SMTC window is smaller than the measurement window length of the second SMTC window;
  • the terminal device is based on the reconfigured SMTC Information, search the SSB in the third SMTC window and the fourth SMTC window, and measure the NR cell to be tested based on the SSB.
  • the subsequent terminal equipment will use the reconfigured SMTC window to measure the NR Cell measurement can reduce the resource consumption of terminal equipment, thereby improving resource utilization.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device may be the terminal device in the foregoing first aspect, second aspect, or third aspect, or an apparatus including the foregoing terminal device.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware execution of corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method described in any of the above aspects.
  • the communication device may be the terminal device in the foregoing first aspect, second aspect, or third aspect, or an apparatus including the foregoing terminal device.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any of the foregoing aspects according to the instruction.
  • the communication device may be the terminal device in the foregoing first aspect, second aspect, or third aspect, or an apparatus including the foregoing terminal device.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the method described in any of the above aspects.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the method described in any of the above aspects.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes a processor for implementing the functions involved in any of the foregoing aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be composed of chips, or may include chips and other discrete devices.
  • a communication system in a tenth aspect, includes a terminal device and a first access network device.
  • the terminal device is used to determine that the NR cell to be tested is not detected in the RRM measurement window, and then determine the extended RRM measurement window based on the RRM measurement window. Wherein, the measurement window length of the extended RRM measurement window is greater than the measurement window length of the RRM measurement window, and the extended RRM measurement window completely or partially includes the RRM measurement window.
  • the first access network device is used to send the SSB to the terminal device.
  • the terminal device is also used to search for the SSB from the first access network device in the extended RRM measurement window, and measure the NR cell to be tested based on the SSB.
  • Fig. 1 is a schematic diagram of transmission of an SSB provided by the prior art
  • Figure 2 (a) is a schematic diagram of the positional relationship between a GAP window and an SSB provided in the prior art
  • Figure 2(b) is another schematic diagram of the positional relationship between the GAP window and the SSB provided in the prior art
  • FIG. 3 is an architecture diagram of a communication system provided by an embodiment of this application.
  • FIG. 4 is an architecture diagram of another communication system provided by an embodiment of this application.
  • Figure 5 shows the existing 5G network architecture of NSA
  • Figure 6 shows the 5G network architecture where the existing deployment method is SA
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 8 is a schematic flowchart of an NR cell measurement method provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of a positional relationship between an extended GAP window and a GAP window according to an embodiment of the application.
  • FIG. 10(a) is a schematic diagram of the positional relationship of another extended GAP window relative to the GAP window provided by an embodiment of this application;
  • FIG. 10(b) is a schematic diagram of still another extended GAP window relative to the positional relationship of the GAP window according to an embodiment of this application;
  • FIG. 10(c) is a schematic diagram of another positional relationship between an extended GAP window and a GAP window provided by an embodiment of this application;
  • FIG. 11 is a schematic flowchart of another NR cell measurement method provided by an embodiment of this application.
  • FIG. 12 is a schematic flowchart of another NR cell measurement method provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of an SMTC window provided by an embodiment of the application.
  • FIG. 14 is a schematic flowchart of another NR cell measurement method provided by an embodiment of this application.
  • 15 is a schematic diagram of another SMTC window provided by an embodiment of the application.
  • FIG. 16 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of another terminal device provided by an embodiment of the application.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same items or similar items that have substantially the same function and effect.
  • words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • a communication system 30 provided by this embodiment of the application includes a terminal device 301 and a first access network device 302.
  • the first access network device 302 is a cell to which the NR cell to be tested belongs Access network equipment.
  • the terminal device 301 and the first access network device 302 may directly communicate with each other, or may communicate through the forwarding of other devices, which is not specifically limited in the embodiment of the present application.
  • the terminal device 301 is used to determine that the NR cell to be tested is not detected in the RRM measurement window, and then determine the extended RRM measurement window based on the RRM measurement window. Wherein, the measurement window length of the extended RRM measurement window is greater than the measurement window length of the RRM measurement window, and the extended RRM measurement window completely or partially includes the RRM measurement window.
  • the first access network device 302 is configured to send an SSB to the terminal device 301.
  • the terminal device 301 is also used to search for the SSB from the first access network device 302 in the extended RRM measurement window, and measure the NR cell to be tested based on the SSB.
  • the communication system 30 provided in the embodiment of the present application may further include a second access network device 303.
  • the second access network device 303 is configured to send configuration information of the RRM measurement window to the terminal device 301.
  • the second access network device 303 is an access network device to which the cell where the terminal device 301 belongs.
  • the terminal device 301 uses the RRM measurement window as a reference to determine that the measurement window is longer.
  • the extended RRM measurement window is long and can fully or partially include the original RRM measurement window, and the terminal device 301 searches for the SSB from the first access network device 302 in the extended RRM measurement window.
  • the extended RRM measurement window completely or partially includes the RRM measurement window. Therefore, the extended RRM measurement window can measure the terminal equipment in two adjacent RRMs.
  • the signal received between the measurement windows increases the probability of searching for the SSB sent by the first access network device, thereby improving the measurement success rate of the NR cell. This avoids the problem that the NR cell cannot be measured due to the fact that no GAP is configured or the configured GAP window does not include the SSB in the prior art.
  • the communication system 40 includes a terminal device 401, a first access network device 402, and a second access network device 403.
  • the first access network device 402 is an access network device to which the NR cell to be tested belongs
  • the second access network device 403 is an access network device to which the cell where the terminal device 301 is located.
  • the terminal device 401 and the first access network device 402 or the second access network device 403 may directly communicate with each other, or may communicate through the forwarding of other devices, which is not specifically limited in the embodiment of the present application.
  • the first access network device 402 is configured to send an SSB to the terminal device 401.
  • the second access network device 403 is configured to send SMTC information to the terminal device 401.
  • the SMTC information includes the measurement window length, measurement period, and offset of the SMTC window.
  • the measurement window length of the SMTC window is equal to the period of the first access network device 402 sending the SSB, or the measurement window length of the SMTC window is greater than 5 ms.
  • the terminal device 401 is configured to receive SMTC information from the second access network device 403, search for the SSB from the first access network device 402 in the SMTC window according to the SMTC information, and measure the NR cell to be tested based on the SSB.
  • the SMTC window must include the second access window.
  • the terminal device 401 will inevitably search for the SSB sent by the second access network device 403 in the SMTC window, so that the terminal device 401 can measure the NR cell to be tested based on the searched SSB.
  • the terminal device 401 is installed in this The probability of searching for the SSB in the SMTC window is higher, and the probability of measuring the NR cell is also higher. That is, the embodiment of the present application can increase the probability that the terminal device 401 detects the SSB, thereby increasing the success rate of NR cell measurement, and avoiding the inability to match caused by no GAP configured or the configured GAP window does not contain SSB in the prior art.
  • NR cell measurement problem because the first access network device 402 configures the terminal device 401 with an SMTC window with a measurement window length greater than 5 ms (larger than the maximum measurement window length of the existing SMTC window), therefore, compared with the prior art, the terminal device 401 is installed in this The probability of searching for the SSB in the SMTC window is higher, and the probability of measuring the NR cell is also higher. That is, the embodiment of the present application can increase the probability that the terminal device 401 detects the SSB, thereby increasing the success rate of NR cell measurement, and
  • the first access network device 402 is configured to send an SSB to the terminal device 401.
  • the second access network device 403 is configured to send SMTC information to the terminal device 401.
  • the SMTC information includes the measurement window length, measurement period, and offset of the first SMTC window and the second SMTC window, and the offset of the first SMTC window and the second SMTC window are different, and the offset of the first SMTC window Is the offset of the start position of the first SMTC window relative to the start position of the measurement period of the first SMTC window, and the offset of the second SMTC window is the start position of the second SMTC window relative to the measurement period of the second SMTC window The offset of the start position.
  • the terminal device 401 is configured to receive SMTC information from the second access network device 403, and according to the SMTC information, search for the SSB from the first access network device 402 in the first SMTC window and the second SMTC window, and based on the SSB Measure the NR cell to be tested.
  • SMTC information from the second access network device 403
  • search for the SSB from the first access network device 402 in the first SMTC window and the second SMTC window and based on the SSB Measure the NR cell to be tested.
  • the first access network device 402 configures the terminal device 401 with two SMTC windows with different offsets, compared with the prior art, only one SMTC window with a fixed offset is configured.
  • the probability of searching for the SSB in the two SMTC windows with different offsets is higher, and therefore the probability of the terminal device 401 measuring the NR cell is also higher. That is, the embodiment of the present application can increase the probability that the terminal device 401 detects the SSB, thereby increasing the success rate of NR cell measurement, and avoiding the inability to match caused by no GAP configured or the configured GAP window does not contain SSB in the prior art.
  • NR cell measurement problem since the first access network device 402 configures the terminal device 401 with two SMTC windows with different offsets, compared with the prior art, only one SMTC window with a fixed offset is configured.
  • the probability of searching for the SSB in the two SMTC windows with different offsets is higher, and therefore the probability of the terminal device 401 measuring the NR cell is
  • the communication system 30 shown in FIG. 3 and the communication system 40 shown in FIG. 4 can be applied to the fifth generation (5th generation, 5G) whose current deployment mode is non-stand alone (NSA) architecture. ) In the network; or, the communication system 30 shown in FIG. 3, and the communication system 40 shown in FIG. 4 can also be applied to a 5G network that is currently deployed in a standalone (standalone, SA) architecture, or other networks in the future Etc., the embodiment of the present application does not specifically limit this.
  • 5G fifth generation
  • SA standalone
  • the communication system 30 shown in FIG. 3 or the communication system 40 shown in FIG. 4 is applied to a 5G network of an NSA architecture with a deployment mode of option 3, then as shown in FIG. 5, the aforementioned terminal device 301 or The network element or entity corresponding to the terminal device 401 may be the terminal device 501 in the 5G network of the NSA architecture, and the network element or entity corresponding to the above-mentioned first access network device 302 or the first access network device 402 may be a deployment mode It is the NR node 502 in the 5G network of the NSA architecture.
  • the network element or entity corresponding to the above-mentioned second access network device 303 or the second access network device 403 may be an evolution in the 5G network of the NSA architecture.
  • the NR node 502 is the access network device to which the NR cell to be tested belongs, and the eNB 503 is the access network device to which the terminal device 501 is currently located.
  • the NR node 502 may be, for example, a next generation node B (gNB), which is not specifically limited in the embodiment of the present application.
  • gNB next generation node B
  • the 5G network deployed in the NSA architecture may also include an evolved packet core (EPC) 504, etc., which is not specifically limited in the embodiment of the present application.
  • EPC evolved packet core
  • the terminal device 501 can send EPC non-access stratum (NAS) signaling to the core network device in the EPC 504; the terminal device 501 can pass long term evolution (LTE)
  • the Uu interface communicates with the eNB 503, and the eNB 503 can access the EPC 504 through the S1-mobility management entity (MME) interface.
  • the terminal device 501 can communicate with the NR node 502, and the NR node 502 can communicate with the eNB 503.
  • the EPC here is the fourth generation (4th generation, 4G) core network
  • the S1-U interface here is the user plane interface
  • the S1-MME interface is the control plane interface.
  • the aforementioned terminal device 301 or terminal The network element or entity corresponding to the device 401 may be the terminal device 601 in the 5G network deployed in the SA architecture, and the network element or entity corresponding to the above-mentioned first access network device 302 or the first access network device 402 may be
  • the deployment mode is the NR node 1 602 in the 5G network of the SA architecture.
  • the network element or entity corresponding to the second access network device 303 or the second access network device 403 mentioned above may be in the 5G network of the SA architecture.
  • the NR node 1 602 is the NR node to which the NR cell to be tested belongs
  • the NR node 2 603 is the NR node to which the NR cell where the terminal device 601 is currently located.
  • the NR node 1 602 and the NR node 2 603 may be gNB, for example, which is not specifically limited in the embodiment of the present application.
  • the 5G network deployed in the SA architecture may also include a next-generation core network (NG core, NGC) 604, which is not specifically limited in the embodiment of the present application.
  • NG core next-generation core network
  • the terminal device 601 can communicate with the core network device in NGC 604 through the NG1 interface; the terminal device 301 can communicate with NR node 1 602 and NR node 2 603; NR node 1 602 and NR node 2 603 It can be connected to NGC 604 through the NG2 interface and the NG3 interface; among them, the NGC here is the 5G core network, the NG2 interface here is the control plane interface, and the NG3 interface is the user plane interface.
  • the related functions of the terminal device 301 or the terminal device 401 in the embodiment of the present application can be implemented by one device, or by multiple devices, or by one or more functional modules in one device.
  • the embodiments of this application do not specifically limit this. It is understandable that the above functions can be network elements in hardware devices, software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (for example, a cloud platform) Virtualization function.
  • FIG. 7 is a schematic structural diagram of a communication device 70 provided by an embodiment of the application.
  • the communication device 70 includes one or more processors 701, a communication line 702, and at least one communication interface (in FIG. 7 it is only an example that includes a communication interface 704 and a processor 701 as an example), optional
  • the memory 703 may also be included.
  • the processor 701 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 702 may include a path for connecting different components.
  • the communication interface 704 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and so on.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 704 may also be a transceiver circuit located in the processor 701 to implement signal input and signal output of the processor.
  • the memory 703 may be a device having a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory may exist independently, and is connected to the processor through the communication line 702. The memory can also be integrated with the processor.
  • the memory 703 is used to store computer-executable instructions for executing the solution of the present application, and the processor 701 controls the execution.
  • the processor 701 is configured to execute computer-executable instructions stored in the memory 703, so as to implement the NR cell measurement method provided in the embodiment of the present application.
  • the processor 701 may also perform processing-related functions in the NR cell measurement method provided in the following embodiments of the present application, and the communication interface 704 is responsible for communicating with other devices or communication networks. There is no specific restriction on this.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor may include one or more CPUs, such as CPU0 and CPU1 in FIG. 7.
  • the communication device 70 may include multiple processors, such as the processor 701 and the processor 707 in FIG. 7. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication apparatus 70 may further include an output device 705 and an input device 706.
  • the output device 705 communicates with the processor 701 and can display information in a variety of ways.
  • the aforementioned communication device 70 may be a general-purpose device or a dedicated device.
  • the communication device 70 may be a desktop computer, a portable computer, a network server, a PDA, a mobile phone, a tablet computer, a wireless terminal device 301, an embedded device, or a device with a similar structure in FIG. 7.
  • the embodiment of the present application does not limit the type of the communication device 70.
  • the communication device 70 in the embodiment of the present application may be a device for implementing wireless communication functions, such as a terminal or a chip that can be used in a terminal.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and wireless communication in a 5G network or a future evolved PLMN.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminal in control), wireless terminal in self-driving (self-driving), wireless terminal in remote medical (remote medical), wireless terminal in smart grid (smart grid), wireless terminal in transportation safety (transportation safety) Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal can be mobile or fixed.
  • the communication system shown in Figure 3 is applied to the 5G network with the NSA architecture as the deployment mode shown in Figure 5.
  • the first access network device is an NR node
  • the second access network device is an eNB
  • the RRM measurement window is a GAP window.
  • an NR cell measurement method provided in an embodiment of this application includes the following steps:
  • the eNB sends configuration information of the GAP window to the terminal device.
  • the terminal device receives the configuration information of the GAP window from the eNB.
  • the NR node sends the SSB to the terminal device.
  • the terminal device receives the SSB from the NR node.
  • the terminal device searches for the SSB from the NR node in the GAP window, and measures the NR cell to be tested based on the SSB.
  • S804 The terminal device determines that the SSB from the NR node is not found in the GAP window, and then determines that the NR cell to be tested is not detected in the GAP window.
  • steps S801-S804 can refer to the prior art, which will not be repeated here.
  • the terminal device determines the extended GAP window based on the GAP window.
  • the extended GAP window can also be referred to as an extended RRM measurement window or a data acquisition window.
  • the measurement window length of the extended GAP window is greater than the measurement window length of the GAP window, and the extended GAP window completely or partially includes the GAP window.
  • the embodiment of the application determines the extended GAP window based on the GAP window. Since the extended GAP window completely or partially includes the GAP window, and the measurement window length of the extended GAP window is greater than the measurement window length of the GAP window, the terminal device can be measured through the extended GAP window Signals received between two adjacent GAP windows (this part of the GAP window is not covered). Therefore, based on the extended GAP window, the probability that the terminal device can search for the SSB from the NR node can be improved, and the NR cell to be tested can be successfully measured The probability is higher.
  • the start position of the extended GAP window is the same as the start position of the GAP window. It should be noted that since the measurement window length of the extended GAP window is greater than the measurement window length of the GAP window, in this implementation mode, the extended GAP window must completely include the GAP window.
  • the start position of the extended GAP window is before the end position of the GAP window.
  • the extended GAP window and the GAP window can have the following three positional relationships: (1) The start position of the extended GAP window is in the GAP window Between the start position and the end position of the GAP window, as shown in Figure 10(a), at this time the extended GAP window part includes the GAP window; (2) The start position of the extended GAP window is before the start position of the GAP window, and the extended GAP window The end position is after the end position of the GAP window, as shown in Figure 10(b), at this time the extended GAP window completely includes the GAP window; (3) The start position of the extended GAP window is before the start position of the GAP window, and the extended GAP window The end position of is between the start position and the end position of the GAP window, as shown in Figure 10(c), at this time the extended GAP window part includes the GAP window.
  • the NR cell measurement method provided in the embodiment of the present application further includes the following steps S806a-S809a:
  • the terminal device determines that it has free radio frequency resources.
  • the terminal device establishes the NR cell to be tested as a secondary cell at the start position of the extended GAP window, and allocates radio frequency resources for the NR cell to be tested.
  • the radio frequency resource is used to receive the SSB from the access network device (the NR node in this embodiment) to which the NR cell to be tested belongs.
  • establishing the NR cell to be tested as a secondary cell in this embodiment refers to virtualizing the NR cell to be tested as a secondary cell, and then receiving data in the manner of the secondary cell.
  • the terminal device searches for the SSB from the NR node in the extended GAP window.
  • S809a The terminal device measures the NR cell to be tested based on the searched SSB.
  • the NR cell measurement method provided in the embodiment of the present application further includes the following steps S806b-S810b:
  • the terminal device determines that it has no free radio frequency resources.
  • the terminal device deactivates the established secondary cell to release radio frequency resources, establishes the NR cell to be tested as a secondary cell, and allocates the released radio frequency resources to the NR cell to be tested.
  • the radio frequency resource is used to receive the SSB from the access network device (the NR node in this embodiment) to which the NR cell to be tested belongs.
  • the terminal device may deactivate multiple established secondary cells.
  • the terminal device searches for the SSB from the NR node in the extended GAP window.
  • the terminal device deactivates the NR cell to be tested at the end position of the extended GAP window, and restores the secondary cell deactivated in step S807b.
  • step S809b restores all the secondary cells deactivated in step S807b.
  • the terminal equipment when in the LTE multi-carrier scenario, the terminal equipment has no idle radio frequency resources available. At this time, first deactivate an LTE secondary cell, release a set of equipment resources to the NR cell to be tested, and the terminal equipment to be tested After the data collection of the NR cell is completed, the resources are released immediately and the LTE secondary cell service is resumed.
  • the cell to be tested and the LTE primary cell time-division multiplex the same set of radio frequency resources, and the measurement of the cell is limited to the GAP window.
  • the eNB does not send service data to the terminal equipment. Accordingly, the terminal equipment may not receive the service data. Therefore, this period of time can be used for other cells except the LTE primary cell with the same frequency and the secondary cell with the same frequency.
  • the measurement does not affect the business of the terminal equipment.
  • the eNB since the extended GAP window completely or partially includes the GAP window, the eNB does not send service data to the terminal device during the period when the extended GAP window includes the GAP window. Therefore, it can reduce the impact of cell measurement on the terminal device to a certain extent. Business impact.
  • the terminal device measures the NR cell to be tested based on the searched SSB.
  • the terminal device when the terminal device determines that the SSB from the NR node is not found in the GAP window configured by the eNB, the terminal device uses the GAP window as a benchmark to determine that the measurement window is longer and can fully or partially include the original GAP The extended GAP window of the window, and the terminal device searches for the SSB from the NR node in the extended GAP window.
  • the extended GAP window completely or partially contains the GAP window, so the terminal device can be measured between two adjacent GAP windows through the extended GAP window (this part of the GAP window is not Covering) the received signal, thereby increasing the probability of the terminal device searching for the SSB sent by the NR node, thereby increasing the measurement success rate of the NR cell.
  • the actions of the terminal device in the foregoing steps S801 to S809a or the foregoing steps S801 to S810b may be executed by the processor 701 in the communication device 70 shown in FIG. 7 calling the application program code stored in the memory 703. This does not make any restrictions.
  • the communication system shown in Figure 3 is applied to the 5G network with the deployment mode shown in Figure 5 as the NSA architecture.
  • the first access network device is the NR node
  • the second access network device is the eNB
  • the RRM measurement window is the SMTC window.
  • another NR cell measurement method provided in an embodiment of this application includes the following steps:
  • the terminal device determines that it has not received the configuration information of the GAP window from the eNB.
  • the eNB sends SMTC information to the terminal device.
  • the terminal equipment receives the SMTC information from the eNB.
  • the SMTC information is the configuration information of the SMTC window.
  • the NR node sends the SSB to the terminal device.
  • the terminal device receives the SSB from the NR node.
  • the terminal device searches for the SSB sent by the NR node in the SMTC window, and measures the NR cell to be tested based on the SSB.
  • the terminal device determines that the SSB sent by the NR node is not found in the SMTC window, and then determines that the NR cell to be tested is not detected in the SMTC window.
  • steps S1101-S1105 can refer to the prior art, which will not be repeated here.
  • the terminal device determines an extended SMTC window based on the SMTC window.
  • the extended SMTC window can also be referred to as an extended RRM measurement window or a data acquisition window.
  • the measurement window length of the extended SMTC window is greater than the measurement window length of the SMTC window, and the extended SMTC window completely or partially includes the SMTC window.
  • the embodiment of the application determines the extended SMTC window based on the SMTC window. Since the extended SMTC window completely or partially includes the SMTC window, and the measurement window length of the extended SMTC window is greater than the measurement window length of the SMTC window, the terminal device can be measured by the extended SMTC window Signals received between two adjacent SMTC windows (this part of the SMTC window is not covered). Therefore, based on the extended SMTC window, the probability that the terminal device can search for the SSB sent by the NR node can be improved, and the NR cell to be tested can be successfully measured The probability is higher.
  • the start position of the extended SMTC window is the same as the start position of the SMTC window. It should be noted that since the measurement window length of the extended SMTC window is greater than the measurement window length of the SMTC window, in this implementation mode, the extended SMTC window must completely include the SMTC window.
  • the start position of the extended SMTC window is before the end position of the SMTC window.
  • the extended SMTC window completely or partially includes the SMTC window.
  • the positional relationship between the extended SMTC window and the SMTC window is similar to the positional relationship between the extended GAP window and the GAP window in the previous embodiment, and reference may be made to the related description in the previous embodiment, which will not be repeated here.
  • the NR cell measurement method provided in the embodiment of the present application further includes the following steps S1107a-S1110a:
  • the terminal device determines that it has free radio frequency resources.
  • S1108a The terminal device establishes the NR cell to be tested as a secondary cell at the start position of the extended SMTC window, and allocates radio frequency resources for the NR cell to be tested.
  • the radio frequency resource is used to receive the SSB from the access network device (the NR node in this embodiment) to which the NR cell to be tested belongs.
  • establishing the NR cell to be tested as a secondary cell in this embodiment refers to virtualizing the NR cell to be tested as a secondary cell, and then receiving data in the manner of the secondary cell.
  • the terminal device searches for the SSB from the NR node in the extended SMTC window.
  • S1110a The terminal device measures the NR cell to be tested based on the searched SSB.
  • the NR cell measurement method provided in the embodiment of the present application further includes the following steps S1107b-S1111b:
  • the terminal device determines that it has no free radio frequency resources.
  • the terminal device deactivates the established secondary cell to release radio frequency resources, establishes the NR cell to be tested as a secondary cell, and allocates the released radio frequency resources to the NR cell to be tested.
  • the radio frequency resource is used to receive the SSB from the access network device (the NR node in this embodiment) to which the NR cell to be tested belongs.
  • the terminal device may deactivate multiple established secondary cells.
  • the terminal device searches for the SSB from the NR node in the extended SMTC window.
  • the terminal device deactivates the NR cell to be tested at the end position of the extended SMTC window, and restores the secondary cell deactivated in step S1108b.
  • step S1110b restores all the secondary cells deactivated in step S1108b.
  • the terminal device measures the NR cell to be tested based on the searched SSB.
  • the terminal device after determining that the eNB is not configured with a GAP window, receives the SMTC information configured by the eNB, and searches for the SSB from the NR node in the SMTC window based on the SMTC information.
  • the terminal device determines that the SSB from the NR node is not searched in the SMTC window, it is determined that the measurement window is longer and can fully or partially include the extended SMTC window of the original SMTC window based on the SMTC window, and the terminal device is expanding Search the SSB from the NR node in the SMTC window.
  • the extended SMTC window can measure the terminal equipment between two adjacent SMTC windows (this part of the SMTC window is not Covering) the received signal, thereby increasing the probability of the terminal device searching for the SSB sent by the NR node, thereby increasing the measurement success rate of the NR cell. This avoids the problem that the NR cell cannot be measured due to the GAP window is not configured in the prior art.
  • the actions of the terminal device in the above steps S1101 to S1110a or the above steps S1101 to S1111b can be executed by the processor 701 in the communication device 70 shown in FIG. This does not make any restrictions.
  • the first access network device is an NR node
  • the second access network device is an eNB as an example, as shown in FIG. 12
  • another NR cell measurement method provided in this embodiment of the application includes the following steps:
  • the eNB sends SMTC information to a terminal device.
  • the terminal equipment receives the SMTC information from the eNB.
  • the SMTC information is the configuration information of the SMTC window, including the measurement window length, measurement period, and offset of the SMTC window.
  • the offset is the offset of the start position of the SMTC window relative to the start position of the measurement period where the SMTC window is located.
  • the start position of the measurement period where the SMTC window is located in the figure is the start position of radio frame 0
  • the start position of the SMTC window is the start position of radio frame 1, that is, the subframe of radio frame 1.
  • the measurement window length of the SMTC window is equal to the period for the NR node to send the SSB.
  • the period at which the NR node sends the SSB may be, for example, 5 ms, 10 ms, 20 ms, 40 ms, 80 ms, or 160 ms, which is not specifically limited in the embodiment of the present invention.
  • each transmission period of SSB must include the SSB sent by the NR node, after the measurement window length of the SMTC window is configured as the transmission period of the SSB, each SMTC window must include the SSB sent by the NR node. The SSB sent by the NR node will inevitably be searched in the SMTC window.
  • the eNB can configure the terminal equipment with a measurement window length of 10ms and a measurement period of 40ms.
  • SMTC window with an offset of 10ms.
  • each SMTC window must include the SSB, The terminal equipment can search for the SSB sent by the NR node in the SMTC window.
  • the measurement window length of the SMTC window is greater than 5 ms.
  • the measurement window length of the SMTC window may be configured to, for example, 10 ms, 20 ms, or 40 ms, which is not specifically limited in the embodiment of the present invention.
  • the measurement window length of the SMTC window in the existing SMTC information is 1 ms to 5 ms, that is, the longest is 5 ms, after the measurement window length of the SMTC window is configured to be greater than 5 ms, compared with the prior art, the present application In the embodiment, the probability of finding the SSB in the SMTC window is higher.
  • the NR node sends the SSB to the terminal device.
  • the terminal device receives the SSB from the NR node.
  • the terminal device searches for the SSB from the NR node in the SMTC window according to the SMTC information, and measures the NR cell to be tested based on the SSB.
  • the terminal device searches for the SSB from the NR node in the SMTC window, the terminal device sends the location information of the SSB to the NR node.
  • the NR node receives the location information of the SSB from the terminal device.
  • the location information of the SSB is used to reconfigure the SMTC information.
  • the NR node sends the reconfigured SMTC information to the terminal device.
  • the terminal device receives the reconfigured SMTC information from the NR node.
  • the terminal device can determine the newly configured SMTC window for the NR node according to the reconfigured SMTC information.
  • the measurement window length in the reconfigured SMTC information is smaller than the measurement window length in the SMTC information.
  • the newly configured SMTC window contains the SSB sent by the NR node, and the measurement window length of the newly configured SMTC window is equal to the sending time length of the SSB sent by the NR node. That is, the newly configured SMTC window just includes the SSB sent by the NR node. In this way, it can ensure that the SSB is searched in the SMTC window, and resource occupation can be minimized.
  • the terminal device searches for the SSB in the corresponding SMTC window according to the reconfigured SMTC information, and measures the NR cell to be tested based on the SSB.
  • the NR node configures a new SMTC window for the terminal device according to the location information of the SSB. Since the newly configured SMTC window contains the SSB sent by the NR node and the measurement window length is smaller than the measurement window length of the original SMTC window, the subsequent The terminal device measures the NR cell to be tested according to the newly configured SMTC window, which can reduce the resource consumption of the terminal device, thereby improving resource utilization.
  • the eNB since the eNB configures an SMTC window for the terminal device with a measurement window length equal to the period at which the NR node sends the SSB, the SMTC window must include the SSB sent by the NR node, and the terminal device can search for NR in the SMTC window.
  • the SSB sent by the node can be measured on the NR cell to be tested based on the searched SSB.
  • the eNB configures an SMTC window with a measurement window length greater than 5ms for the terminal device (larger than the maximum measurement window length of the existing SMTC window), compared with the prior art, the terminal device is in the SMTC window.
  • the probability of searching for the SSB in the window is higher, and the probability of measuring the NR cell is also higher. That is, the embodiments of the present application can increase the probability that the terminal device detects the SSB, thereby improving the success rate of NR cell measurement, and avoiding the inability to detect the NR caused by the GAP is not configured or the configured GAP window does not contain the SSB in the prior art.
  • the problem of cell measurement is higher, and the probability of measuring the NR cell is also higher. That is, the embodiments of the present application can increase the probability that the terminal device detects the SSB, thereby improving the success rate of NR cell measurement, and avoiding the inability to detect the NR caused by the GAP is not configured or the configured GAP window does not contain the SSB in the prior art.
  • the actions of the terminal device in the above steps S1201 to S1206 can be executed by the processor 701 in the communication device 70 shown in FIG. 7 calling the application program code stored in the memory 703, which is not limited in this embodiment.
  • the first access network device is an NR node
  • the second access network device is an eNB as an example, as shown in FIG. 14.
  • another NR cell measurement method provided in this embodiment of the application includes the following steps:
  • the eNB sends SMTC information to a terminal device.
  • the terminal equipment receives the SMTC information from the eNB.
  • the SMTC information is the configuration information of the SMTC window, including the measurement window length, measurement period, and offset of the first SMTC window and the second SMTC window, and the offsets of the first SMTC window and the second SMTC window are different.
  • the offset of the first SMTC window is the offset of the start position of the first SMTC window relative to the beginning of the measurement period where the first SMTC window is located
  • the offset of the second SMTC window is the start of the second SMTC window The offset of the position relative to the start position of the measurement period where the second SMTC window is located.
  • the eNB can configure the terminal equipment with a measurement window length of 5ms and a measurement period of 40ms.
  • the offsets are two SMTC windows of 10ms and 15ms, respectively. Assuming that the sending position of the SSB is sent from subframe 1 to subframe 5, an SMTC window is within 10ms of radio frame 1, the measurement window length is 5ms, and the offset is 10ms, then the terminal device searches in the SMTC window, The SSB information on subframe 1 to subframe 4 can be obtained.
  • Another SMTC window is in the 10ms of radio frame 5, the measurement window length is 5ms, and the offset is 15ms. Then the terminal device searches in this SMTC window and can obtain the SSB information on subframe 5. In this way, the terminal device can obtain complete SSB information according to the two SMTC windows with different offsets, and then measure the NR cell to be tested based on the SSB information.
  • the embodiment of the present application configures two SMTC windows with different offsets. Therefore, compared with the prior art, In the embodiment of the present application, the probability of finding the SSB in two SMTC windows with different offsets is higher.
  • the NR node sends the SSB to the terminal device.
  • the terminal device receives the SSB from the NR node.
  • the terminal device searches for the SSB from the NR node in the first SMTC window and the second SMTC according to the SMTC information, and measures the NR cell to be tested based on the SSB.
  • the measurement period of the first SMTC window is smaller than the measurement period of the second SMTC window.
  • step S1403 may specifically include the following step S1403' (not shown in FIG. 14):
  • the terminal device preferentially searches for the SSB in the first SMTC window: if the terminal device searches for the SSB in the first SMTC window, the terminal device does not search for the SSB in the second SMTC window; if the terminal device does not search for the SSB in the first SMTC window If the SSB is found, the terminal device searches for the SSB in the second SMTC window.
  • the measurement period of the first SMTC window can be configured as 20 ms
  • the measurement period of the second SMTC window can be configured as 80 ms
  • the terminal device will preferentially be in the first SMTC window with a shorter measurement period.
  • Search for SSB If the SSB sent by the NR node is found, it will no longer search for the SSB in the second SMTC window; on the contrary, if the terminal device does not search for the SSB sent by the NR node in the first SMTC window, it will go to the second SMTC window Continue to search for SSB within.
  • this preferred implementation manner can save the resource consumption of the terminal device, thereby improving the resource utilization rate.
  • the terminal device searches for the SSB from the NR node in the first SMTC window or the second SMTC, the terminal device sends the location information of the SSB to the NR node.
  • the NR node receives the location information of the SSB from the terminal device.
  • the location information of the SSB is used to reconfigure the SMTC information.
  • the NR node sends the reconfigured SMTC information to the terminal device.
  • the terminal device receives the reconfigured SMTC information from the NR node.
  • the terminal device can determine the newly configured SMTC window for the NR node according to the reconfigured SMTC information.
  • the reconfigured SMTC information includes the measurement window length, measurement period, and offset of the third SMTC window and the fourth SMTC window.
  • the measurement window length of the third SMTC window is smaller than the measurement window length of the first SMTC window, or the measurement window length of the fourth SMTC window is smaller than the measurement window length of the second SMTC window.
  • the reconfigured SMTC information only includes the measurement window length, measurement period, and offset of one SMTC window
  • the SMTC window includes the SSB sent by the NR node
  • the measurement window of the SMTC window The length is equal to the length of time the NR node sends the SSB.
  • the terminal device searches for the SSB in the third SMTC window and the fourth SMTC window according to the reconfigured SMTC information, and measures the NR cell to be tested based on the SSB.
  • the terminal device searches for the SSB in a corresponding single SMTC window (including the SSB sent by the NR node) according to the reconfigured SMTC information, and measures the NR cell to be tested based on the SSB.
  • the NR node reconfigures the SMTC window for the terminal device according to the location information of the SSB. Since the reconfigured SMTC window contains the SSB sent by the NR node and the measurement window length is smaller than the measurement window length of the original SMTC window, the subsequent terminal The device measures the NR cell to be tested according to the reconfigured SMTC window, which can reduce the resource consumption of the terminal device, thereby improving resource utilization.
  • the eNB since the eNB configures two SMTC windows with different offsets for the terminal equipment, compared with the prior art, only one SMTC window with a fixed offset is configured.
  • the probability of searching for the SSB in the SMTC windows with different shift amounts is higher, so the probability of the terminal equipment measuring the NR cell is also higher. That is, the embodiments of the present application can increase the probability that the terminal device detects the SSB, thereby improving the success rate of NR cell measurement, and avoiding the inability to detect the NR caused by the GAP is not configured or the configured GAP window does not contain the SSB in the prior art.
  • the problem of cell measurement since the eNB configures two SMTC windows with different offsets for the terminal equipment, compared with the prior art, only one SMTC window with a fixed offset is configured.
  • the probability of searching for the SSB in the SMTC windows with different shift amounts is higher, so the probability of the terminal equipment measuring the NR cell is also higher. That is, the embodiment
  • the actions of the terminal device in the above steps S1401 to S1406 can be executed by the processor 701 in the communication device 70 shown in FIG. 7 calling the application program code stored in the memory 703, which is not limited in this embodiment.
  • FIG. 8, FIG. 11, FIG. 12, and FIG. 14 are all applied to the communication system 30 shown in FIG. 3 or the communication system 40 shown in FIG. 4 as shown in FIG.
  • the deployment method shown is a 5G network of the NSA architecture as an example. If the communication system 30 shown in FIG. 3 or the communication system 40 shown in FIG. 4 is applied to a 5G network of the SA architecture as shown in 5, the deployment method is As an example, the corresponding NR cell measurement method is similar to the method in the foregoing embodiment, and only the relevant network elements and the names of messages exchanged between the network elements need to be adaptively replaced, which will not be repeated here.
  • the methods and/or steps implemented by the terminal device may also be implemented by components that can be used for the terminal device.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the terminal device in the foregoing method embodiment, or a device including the foregoing terminal device, or a component that can be used for the terminal device.
  • the communication device includes hardware structures and/or software modules corresponding to various functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 16 shows a schematic structural diagram of a terminal device 160.
  • the terminal device 160 includes a processing module 1601.
  • the processing module 1601 is used to: determine that the NR cell to be tested is not detected in the RRM measurement window; determine the extended RRM measurement window based on the RRM measurement window; search for the access network from the NR cell to be tested in the extended RRM measurement window
  • the SSB of the device is measured based on the SSB of the NR cell to be tested.
  • the measurement window length of the extended RRM measurement window is greater than the measurement window length of the RRM measurement window, and the extended RRM measurement window completely or partially includes the RRM measurement window.
  • the processing module 1601 is also used to: before searching for the SSB from the access network device to which the NR cell to be tested belongs in the extended RRM measurement window, determine that the terminal device 160 has idle radio frequency resources; At the beginning of the window, the NR cell to be tested is established as a secondary cell, and radio frequency resources are allocated for the NR cell to be tested. Among them, the radio frequency resource is used to receive the SSB from the access network device to which the NR cell to be tested belongs.
  • the processing module 1601 is further configured to: before searching for the SSB from the access network device to which the NR cell to be tested belongs in the extended RRM measurement window, determine that the terminal device 160 has no idle radio frequency resources; At the beginning of the window, the established secondary cell is deactivated to release radio frequency resources, the NR cell to be tested is established as a secondary cell, and the released radio frequency resources are allocated to the NR cell to be tested. Among them, the radio frequency resource is used to receive the SSB from the access network device to which the NR cell to be tested belongs.
  • the processing module 1601 is further configured to: after searching for the SSB from the access network device to which the NR cell under test belongs in the extended RRM measurement window, deactivate the NR cell under test at the end position of the extended RRM window, and Restore the established secondary cell.
  • the RRM measurement window may specifically be an SMTC window.
  • the terminal device 160 may further include: a transceiver module 1602.
  • the transceiver module 1602 may also be referred to as a transceiver unit to implement a transceiver function, for example, it may be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module 1601 is further configured to determine that the GAP window configuration information from the access network device to which the terminal device 160 is located is not received before determining that the NR cell to be tested is not detected in the RRM measurement window.
  • the transceiver module 1602 is used to receive SMTC information from the access network device to which the terminal device 160 belongs.
  • the terminal device 160 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the terminal device 160 may take the form of the terminal device 70 shown in FIG. 7.
  • the processor 701 in the communication device 70 shown in FIG. 7 may invoke the computer execution instruction stored in the memory 703 to make the communication device 70 execute the NR cell measurement method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 1601 and the transceiver module 1602 in FIG. 16 may be implemented by the processor 701 in the communication device 70 shown in FIG. 7 calling the computer execution instructions stored in the memory 703.
  • the function/implementation process of the processing module 1601 in FIG. 16 can be implemented by the processor 701 in the communication device 70 shown in FIG. 7 calling a computer execution instruction stored in the memory 703, and the function of the transceiver module 1602 in FIG. /The realization process can be realized through the communication interface 704 in the communication device 70 shown in FIG. 7.
  • the terminal device 160 provided in this embodiment can perform the above-mentioned NR cell measurement method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • FIG. 17 shows a schematic structural diagram of another terminal device 170.
  • the terminal device 170 includes a transceiver module 1701 and a processing module 1702.
  • the transceiver module 1701 is used to receive SMTC information; the processing module 1702 is used to search for the SSB from the access network equipment of the NR cell to be tested in the SMTC window according to the SMTC information, and Measure the NR cell to be tested based on SSB.
  • the SMTC information includes the measurement window length, measurement period, and offset of the SMTC window.
  • the measurement window length of the SMTC window is equal to the period of the synchronization signal block SSB sent by the access network equipment of the new air interface NR cell to be tested; or, the SMTC window
  • the measurement window is longer than 5ms.
  • the transceiver module 1701 is further configured to, if the processing module 1702 finds the SSB from the access network device of the NR cell to be tested in the SMTC window, send the location information of the SSB to the access network device of the cell where the terminal device is located,
  • the location information of the SSB is used to reconfigure the SMTC information;
  • the transceiver module 1701 is also used to receive the reconfigured SMTC information, and the measurement window length in the reconfigured SMTC information is smaller than the measurement window length in the SMTC information;
  • the processing module 1702 also uses According to the reconfigured SMTC information, the SSB is searched in the corresponding SMTC window, and the NR cell to be tested is measured based on the SSB.
  • the transceiver module 1701 is used to receive SMTC information; the processing module 1702 is used to search for the new air interface NR cell to be tested in the first SMTC window and the second SMTC window according to the SMTC information
  • the sent synchronization signal block SSB, and the NR cell to be tested is measured based on the SSB.
  • the SMTC information includes the measurement window length, measurement period, and offset of the first SMTC window and the second SMTC window, and the offsets of the first SMTC window and the second SMTC window are different.
  • the measurement period of the first SMTC window is smaller than the measurement period of the second SMTC window.
  • the processing module 1702 is specifically configured to: preferentially search for the SSB in the first SMTC window; if the SSB is searched in the first SMTC window, not search for the SSB in the second SMTC window; if there is no search in the first SMTC window To SSB, search for SSB in the second SMTC window.
  • the transceiver module 1701 is further configured to: if the processing module 1702 finds an SSB from the access network device to which the NR cell to be tested belongs in the first SMTC window or the second SMTC, to the access network device to which the terminal device is located Send the location information of the SSB, the location information of the SSB is used to reconfigure the SMTC information; receive the reconfigured SMTC information, the reconfigured SMTC information includes the measurement window length, measurement period, and offset of the third SMTC window and the fourth SMTC window
  • the processing module 1702 is also used to search for the SSB in the third SMTC window and the fourth SMTC window according to the reconfigured SMTC information, and measure the NR cell to be tested based on the SSB.
  • the terminal device 170 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the terminal device 170 may take the form of the terminal device 70 shown in FIG. 7.
  • the processor 701 in the communication device 70 shown in FIG. 7 may invoke the computer execution instruction stored in the memory 703 to make the communication device 70 execute the NR cell measurement method in the foregoing method embodiment.
  • the functions/implementation processes of the transceiver module 1701 and the processing module 1702 in FIG. 17 may be implemented by the processor 701 in the communication device 70 shown in FIG. 7 calling a computer execution instruction stored in the memory 703.
  • the function/implementation process of the processing module 1702 in FIG. 17 can be implemented by the processor 701 in the communication device 70 shown in FIG. 7 calling a computer execution instruction stored in the memory 703, and the function of the transceiver module 1701 in FIG. /The realization process can be realized through the communication interface 704 in the communication device 70 shown in FIG. 7.
  • the terminal device 170 provided in this embodiment can perform the above-mentioned NR cell measurement method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • one or more of the above modules or units can be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built in SoC (system on chip) or ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • ASIC application specific integrated circuit
  • the processor's internal processing is used to execute software instructions for calculations or processing, and may further include necessary hardware accelerators, such as field programmable gate array (FPGA), PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the hardware can be a CPU, a microprocessor, a digital signal processing (digital signal processing, DSP) chip, a microcontroller unit (MCU), an artificial intelligence processor, an ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to perform the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • an artificial intelligence processor an ASIC
  • Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to perform the above method flow.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the communication device.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供NR小区测量方法、终端设备及系统,涉及通信领域,能够提高NR小区测量的成功率。具体包括:终端设备确定在RRM测量窗内未检测到待测NR小区;终端设备以RRM测量窗为基准确定扩展RRM测量窗;终端设备在扩展RRM测量窗内搜索来自待测NR小区所属接入网设备的SSB,并基于SSB对待测NR小区进行测量。其中,扩展RRM测量窗的测量窗长大于RRM测量窗的测量窗长,扩展RRM测量窗完全或部分包含RRM测量窗。本申请用于NR小区的测量。

Description

NR小区测量方法、终端设备及系统 技术领域
本申请涉及通信领域,尤其涉及新空口(new radio,NR)小区测量方法、终端设备及系统。
背景技术
在移动通信技术领域中,当终端设备需要接入到NR小区时,需要先对该NR小区进行测量。
目前,终端设备基于其所在小区所属的基站(以下简称为第一基站)下发的测量间隔(measurement gap,GAP)对待接入的NR小区进行测量。具体来说,NR小区所属的基站(以下简称第二基站)会向第一基站上报自身发送同步信号块(synchronization signal block,SSB)的位置、周期及时长,第一基站接收到上述信息后,为终端设备配置对应的GAP。如图1所示,SSB是周期性发送的信号,在每个发送周期内,SSB被限定在一个有限长的时间窗内。GAP是一段周期性、有限长的时间段,终端设备在GAP的每个有限长时间段(称为GAP窗)内检测其中是否包含第二基站发送的SSB,并在检测到SSB后,基于SSB对NR小区进行测量,进而根据测量结果判断NR小区是否适合接入。通常,周期性发送的SSB包含在对应的GAP窗内,如图2(a)所示。
然而,现有技术中,存在第一基站不配置GAP的场景。此种场景下,即无法对NR小区进行测量。
此外,在第一基站为终端设备配置了对应的GAP的场景下:一方面,虽然第二基站向第一基站上报了自身发送SSB的位置、周期及时长,但第一基站和第二基站的时间可能不同步,这可能导致第一基站为终端设备配置的GAP窗未能包含第二基站发送的SSB,如图2(b)所示。另一方面,若第二基站基于非授权频谱和终端设备进行通信,则为了避免信道访问的冲突(实现频谱共享),第二基站在发送SSB之前需要先通过先听后说(listen before talk,LBT)机制确定信道可用后,才能基于非授权频谱在预定位置处发送SSB;否则,第二基站将会推迟SSB的发送,而这可能会使SSB出现在GAP窗之外,如图2(b)所示。然而,若GAP窗内不包含SSB,则终端设备即无法在GAP窗内检测到第二基站发送的SSB,进而也就无法对NR小区进行测量。
发明内容
本申请实施例提供的NR小区测量方法、终端设备及系统,能够提高NR小区测量的成功率。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种NR小区测量方法,该方法包括:终端设备确定在无线资源管理(radio resource management,RRM)测量窗内未检测到待测NR小区;终端设备以RRM测量窗为基准确定扩展RRM测量窗;其中,扩展RRM测量窗的测量窗长大于RRM测量窗的测量窗长,扩展RRM测量窗完全或部分包含RRM测量窗;终端设 备在扩展RRM测量窗内搜索来自待测NR小区所属接入网设备的SSB,并基于SSB对待测NR小区进行测量。由于该方案中,扩展RRM测量窗的测量窗长大于RRM测量窗的测量窗长,扩展RRM测量窗完全或部分包含RRM测量窗,因此通过扩展RRM测量窗能够测量终端设备在相邻两个RRM测量窗之间(该部分RRM测量窗未覆盖到)接收到的信号,提升搜索到待测NR小区所属接入网设备发送的SSB的概率,从而提高NR小区的测量成功率。避免了现有技术中,未配置GAP或者配置的GAP窗内不包含SSB所导致的无法对NR小区进行测量的问题。
在一种可能的设计中,在终端设备在扩展RRM测量窗内搜索来自待测NR小区所属接入网设备的SSB之前,该方法还包括:终端设备确定自身有空闲射频资源;终端设备在扩展RRM测量窗的开始位置处,将待测NR小区建立为辅小区,并为待测NR小区分配射频资源。其中,射频资源用于接收来自待测NR小区所属接入网设备的SSB。基于该方案,终端设备可将空闲的射频资源单独分配给待测NR小区,从而利用该射频资源接收SSB,对待测NR小区进行测量。
在一种可能的设计中,在终端设备在扩展RRM测量窗内搜索来自待测NR小区所属接入网设备的SSB之前,该方法还包括:终端设备确定自身无空闲射频资源;终端设备在扩展RRM窗的开始位置处,去激活已建立的辅小区以释放射频资源,并将待测NR小区建立为辅小区,将释放的射频资源分配给待测NR小区,其中,射频资源用于接收来自待测NR小区所属接入网设备的SSB。即,当终端设备当前所在小区所属接入网设备配置了多个载波以至于没有空闲的射频资源可分配给待测NR小区用于测量的场景下,基于该方案,能够为待测NR小区分配射频资源,进而使得终端设备利用该射频资源接收SSB,对待测NR小区进行测量。
在一种可能的设计中,在终端设备在扩展RRM测量窗内搜索来自待测NR小区所属接入网设备的SSB之后,该方法还包括:终端设备在扩展RRM窗的结束位置处,去激活待测NR小区,并恢复已建立的辅小区。基于该方案,在测量完待测NR小区后就立即去激活待测NR小区,并同时恢复之前为测量待测NR小区去激活的辅小区,能够减少对已建立辅小区业务的影响。
在一种可能的设计中,待测NR小区为多个,已建立的辅小区为多个。基于该方案,能够对多个待测NR小区同时进行测量,提升测量效率。
在一种可能的设计中,扩展RRM测量窗的开始位置与RRM测量窗的开始位置相同;或者,扩展RRM测量窗的开始位置在RRM测量窗的结束位置之前。基于该方案,扩展RRM测量窗能够完全或部分包含RRM测量窗,从而提升搜索到待测NR小区所属接入网设备发送的SSB的概率,提高NR小区的测量成功率。
在一种可能的设计中,RRM测量窗为测量间隔GAP窗或SSB测量定时配置(SSB measurement timing configuration,SMTC)窗。
在一种可能的设计中,RRM测量窗为SMTC窗,在终端设备确定在RRM测量窗内未检测到待测NR小区之前,该方法还包括:终端设备确定未接收到来自其所在小区所属接入网设备的GAP窗的配置信息;终端设备接收来自其所在小区所属接入网设备的SMTC信息。基于该方案,在未配置GAP的场景下,可通过SMTC窗对待测NR小区进行测量。
第二方面,提供了另一种NR小区测量方法,该方法包括:终端设备接收SMTC信息;终端设备根据SMTC信息,在SMTC窗内搜索来自待测NR小区所属接入网设备的SSB,并基于SSB对待测NR小区进行测量。其中,所述SMTC信息包括SMTC窗的测量窗长、测量周期以及偏移量;SMTC窗的测量窗长等于待测NR小区所属接入网设备发送同步信号块SSB的周期,或,SMTC窗的测量窗长大于5ms;其中,偏移量为SMTC窗的开始位置相对于SMTC窗所在测量周期的开始位置的偏移量。在该方案中,由于为终端设备配置了测量窗长等于待测NR小区所属接入网设备发送SSB的周期的SMTC窗,因此,SMTC窗内必然包含SSB,终端设备在SMTC窗内必然会搜索到待测NR小区所属接入网设备发送的SSB,从而终端设备可基于搜索到的SSB对待测NR小区进行测量;或者,由于为终端设备配置了测量窗长大于5ms的SMTC窗(大于现有SMTC窗的最大测量窗长),因此,相比现有技术,终端设备在该SMTC窗内搜索到SSB的概率更高,进而测量到NR小区的概率也就更高。即,该方案能够提升终端设备检测到SSB的概率,进而提高NR小区测量的成功率,避免了现有技术中,未配置GAP或者配置的GAP窗内不包含SSB所导致的无法对NR小区进行测量的问题。
在一种可能的设计中,该方法还包括:若终端设备在SMTC窗内搜索到来自待测NR小区所属接入网设备的SSB,终端设备向其所在小区所属接入网设备发送SSB的位置信息,SSB的位置信息用于重新配置SMTC信息;终端设备接收重新配置的SMTC信息,重新配置的SMTC信息中的测量窗长小于SMTC信息中的测量窗长;终端设备根据重新配置的SMTC信息,在对应SMTC窗内搜索SSB,并基于SSB对待测NR小区进行测量。基于该方案,由于新配置的SMTC窗包含待测NR小区所属接入网设备发送的SSB并且测量窗长小于原SMTC窗的测量窗长,因此后续终端设备根据该新配置的SMTC窗对待测NR小区测量,能够减小终端设备的资源消耗,进而提高资源利用率。
第三方面,提供了又一种NR小区测量方法,该方法包括:终端设备接收SMTC信息,终端设备根据SMTC信息,在第一SMTC窗和第二SMTC窗内搜索待测NR小区发送的同步信号块SSB,并基于SSB对待测NR小区进行测量。其中,SMTC信息包括第一SMTC窗和第二SMTC窗的测量窗长、测量周期以及偏移量,且第一SMTC窗和第二SMTC窗的偏移量不同,第一SMTC窗的偏移量为第一SMTC窗的开始位置相对于第一SMTC窗所在测量周期的开始位置的偏移量,第二SMTC窗的偏移量为第二SMTC窗的开始位置相对于第二SMTC窗所在测量周期的开始位置的偏移量。该方案中,为终端设备配置了两个偏移量不同的SMTC窗,相比现有技术仅配置一个偏移量固定的SMTC窗,在两个偏移量不同的SMTC窗内搜索到SSB的概率更高,因而终端设备测量到NR小区的概率也就更高。即,该方案能够提升终端设备检测到SSB的概率,进而提高NR小区测量的成功率,避免了现有技术中,未配置GAP或者配置的GAP窗内不包含SSB所导致的无法对NR小区进行测量的问题。
在一种可能的设计中,第一SMTC窗的测量周期小于第二SMTC窗的测量周期;相应的,终端设备根据SMTC信息,在第一SMTC窗和第二SMTC窗内搜索SSB,包括:终端设备优先在第一SMTC窗内搜索SSB;若终端设备在第一SMTC窗内搜索到 SSB,则终端设备不在第二SMTC窗内搜索SSB;若终端设备在第一SMTC窗内未搜索到SSB,则终端设备在第二SMTC窗内搜索SSB。基于该方案,能够节省终端设备的资源消耗,提高终端设备的资源利用率。
在一种可能的设计中,该方法还包括:若终端设备在第一SMTC窗或第二SMTC内搜索到来自待测NR小区所属接入网设备的SSB,终端设备向其所在小区所属接入网设备发送SSB的位置信息,SSB的位置信息用于重新配置SMTC信息;终端设备接收重新配置的SMTC信息,重新配置的SMTC信息包括第三SMTC窗和第四SMTC窗的测量窗长、测量周期以及偏移量;第三SMTC窗的测量窗长小于第一SMTC窗的测量窗长,或,第四SMTC窗的测量窗长小于第二SMTC窗的测量窗长;终端设备根据重新配置的SMTC信息,在第三SMTC窗和第四SMTC窗内搜索SSB,并基于SSB对待测NR小区进行测量。基于该方案,由于重新配置的SMTC窗包含待测NR小区所属接入网设备发送的SSB并且测量窗长小于原SMTC窗的测量窗长,因此后续终端设备根据该重新配置的SMTC窗对待测NR小区测量,能够减小终端设备的资源消耗,进而提高资源利用率。
第四方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面、第二方面或第三方面中的终端设备,或者包含上述终端设备的装置。该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第五方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面、第二方面或第三方面中的终端设备,或者包含上述终端设备的装置。
第六方面,提供了一种通信装置,包括:处理器;该处理器用于与存储器耦合,并读取存储器中的指令之后,根据该指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面、第二方面或第三方面中的终端设备,或者包含上述终端设备的装置。
第七方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第九方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,提供了一种通信系统,该通信系统包括终端设备和第一接入网设备。终端设备,用于确定在RRM测量窗内未检测到待测NR小区,进而以RRM测量窗为基准确定扩展RRM测量窗。其中,扩展RRM测量窗的测量窗长大于RRM测量窗的测量窗长,扩展RRM测量窗完全或部分包含RRM测量窗。第一接入网设备,用于向 终端设备发送SSB。终端设备,还用于在扩展RRM测量窗内搜索来自第一接入网设备的SSB,并基于SSB对待测NR小区进行测量。
其中,第四方面至第十方面中任一种设计方式所带来的技术效果可参见上述第一方面至第三方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为现有技术提供的一种SSB的传输示意图;
图2(a)为现有技术提供的一种GAP窗与SSB的位置关系示意图;
图2(b)为现有技术提供的另一种GAP窗与SSB的位置关系示意图;
图3为本申请实施例提供的一种通信系统的架构图;
图4为本申请实施例提供的另一种通信系统的架构图;
图5为现有的部署方式为NSA的5G网络架构;
图6为现有的部署方式为SA的5G网络架构;
图7为本申请实施例提供的一种终端设备的结构示意图;
图8为本申请实施例提供的一种NR小区测量方法的流程示意图;
图9为本申请实施例提供的一种扩展GAP窗相对GAP窗的位置关系示意图;
图10(a)为本申请实施例提供的另一种扩展GAP窗相对GAP窗的位置关系示意图;
图10(b)为本申请实施例提供的再一种扩展GAP窗相对GAP窗的位置关系示意图;
图10(c)为本申请实施例提供的又一种扩展GAP窗相对GAP窗的位置关系示意图;
图11为本申请实施例提供的另一种NR小区测量方法的流程示意图;
图12为本申请实施例提供的又一种NR小区测量方法的流程示意图;
图13为本申请实施例提供的一种SMTC窗的示意图;
图14为本申请实施例提供的再一种NR小区测量方法的流程示意图;
图15为本申请实施例提供的另一种SMTC窗的示意图;
图16为本申请实施例提供的一种终端设备的结构示意图;
图17为本申请实施例提供的另一种终端设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项 或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图3所示,为本申请实施例提供的一种通信系统30,该通信系统30包括终端设备301和第一接入网设备302,第一接入网设备302为待测NR小区所属的接入网设备。终端设备301和第一接入网设备302之间可以直接通信,也可以通过其他设备的转发进行通信,本申请实施例对此不作具体限定。
其中,终端设备301,用于确定在RRM测量窗内未检测到待测NR小区,进而以RRM测量窗为基准确定扩展RRM测量窗。其中,扩展RRM测量窗的测量窗长大于RRM测量窗的测量窗长,扩展RRM测量窗完全或部分包含RRM测量窗。第一接入网设备302,用于向终端设备301发送SSB。终端设备301,还用于在扩展RRM测量窗内搜索来自第一接入网设备302的SSB,并基于SSB对待测NR小区进行测量。其中,上述方案的具体实现将在后续方法实施例中详细阐述,在此不予赘述。
可选的,如图3所示,本申请实施例提供的通信系统30还可以包括第二接入网设备303。其中,第二接入网设备303,用于向终端设备301发送RRM测量窗的配置信息。其中,第二接入网设备303为终端设备301所在小区所属的接入网设备。
在本申请实施例中,当终端设备301确定在原来配置的RRM测量窗内未搜索到来自第一接入网设备的SSB后,终端设备301以RRM测量窗为基准,确定了测量窗长更长且能够完全或部分包含原来RRM测量窗的扩展RRM测量窗,进而终端设备301在扩展RRM测量窗内搜索来自第一接入网设备302的SSB。基于该方案,由于扩展RRM测量窗的测量窗长大于RRM测量窗的测量窗长,扩展RRM测量窗完全或部分包含RRM测量窗,因此通过扩展RRM测量窗能够测量终端设备在相邻两个RRM测量窗之间(该部分RRM测量窗未覆盖到)接收到的信号,提升搜索到第一接入网设备发送的SSB的概率,从而提高NR小区的测量成功率。避免了现有技术中,未配置GAP或者配置的GAP窗内不包含SSB所导致的无法对NR小区进行测量的问题。
或者,如图4所示,为本申请实施例提供的另一种通信系统40,该通信系统40包括终端设备401、第一接入网设备402和第二接入网设备403。其中,第一接入网设备402为待测NR小区所属的接入网设备,第二接入网设备403为终端设备301所在小区所属的接入网设备。终端设备401和第一接入网设备402或第二接入网设备403之间可以直接通信,也可以通过其他设备的转发进行通信,本申请实施例对此不作具体限定。
一种可能的实现方式中,第一接入网设备402,用于向终端设备401发送SSB。 第二接入网设备403,用于向终端设备401发送SMTC信息。其中,SMTC信息包括SMTC窗的测量窗长、测量周期以及偏移量,SMTC窗的测量窗长等于第一接入网设备402发送SSB的周期,或,SMTC窗的测量窗长大于5ms。终端设备401,用于接收来自第二接入网设备403的SMTC信息,并根据SMTC信息,在SMTC窗内搜索来自第一接入网设备402的SSB,并基于SSB对待测NR小区进行测量。其中,上述方案的具体实现将在后续方法实施例中详细阐述,在此不予赘述。
在本申请实施例中,由于第一接入网设备402为终端设备401配置了测量窗长等于第二接入网设备403发送SSB的周期的SMTC窗,因此,SMTC窗内必然包含第二接入网设备403发送的SSB,终端设备401在SMTC窗内必然会搜索到第二接入网设备403发送的SSB,从而终端设备401可基于搜索到的SSB对待测NR小区进行测量。或者,由于第一接入网设备402为终端设备401配置了测量窗长大于5ms的SMTC窗(大于现有SMTC窗的最大测量窗长),因此,相比现有技术,终端设备401在该SMTC窗内搜索到SSB的概率更高,进而测量到NR小区的概率也就更高。即,本申请实施例能够提升终端设备401检测到SSB的概率,进而提高NR小区测量的成功率,避免了现有技术中,未配置GAP或者配置的GAP窗内不包含SSB所导致的无法对NR小区进行测量的问题。
另一种可能的实现方式中,第一接入网设备402,用于向终端设备401发送SSB。第二接入网设备403,用于向终端设备401发送SMTC信息。其中,SMTC信息包括第一SMTC窗和第二SMTC窗的测量窗长、测量周期以及偏移量,且第一SMTC窗和第二SMTC窗的偏移量不同,第一SMTC窗的偏移量为第一SMTC窗的开始位置相对于第一SMTC窗所在测量周期的开始位置的偏移量,第二SMTC窗的偏移量为第二SMTC窗的开始位置相对于第二SMTC窗所在测量周期的开始位置的偏移量。终端设备401,用于接收来自第二接入网设备403的SMTC信息,并根据SMTC信息,在第一SMTC窗和第二SMTC窗内搜索来自第一接入网设备402的SSB,并基于SSB对待测NR小区进行测量。其中,上述方案的具体实现将在后续方法实施例中详细阐述,在此不予赘述。
在本申请实施例中,由于第一接入网设备402为终端设备401配置了两个偏移量不同的SMTC窗,因此,相比现有技术仅配置一个偏移量固定的SMTC窗,本申请实施例在两个偏移量不同的SMTC窗内搜索到SSB的概率更高,因而终端设备401测量到NR小区的概率也就更高。即,本申请实施例能够提升终端设备401检测到SSB的概率,进而提高NR小区测量的成功率,避免了现有技术中,未配置GAP或者配置的GAP窗内不包含SSB所导致的无法对NR小区进行测量的问题。
可选的,图3所示的通信系统30和图4所示的通信系统40可以应用于目前部署方式为非独立组网(non-stand alone,NSA)架构的第五代(5th generation,5G)网络中;或者,图3所示的通信系统30图4所示的通信系统40也可以应用于目前部署方式为独立组网(stand alone,SA)架构的5G网络中,或者未来的其他网络等,本申请实施例对此不作具体限定。
示例性的,假设图3所示的通信系统30或者图4所示的通信系统40应用于部署方式为option 3的NSA架构的5G网络中,则如图5所示,上述的终端设备301或者 终端设备401对应的网元或者实体可以为NSA架构的5G网络中的终端设备501,上述的第一接入网设备302或者第一接入网设备402所对应的网元或者实体可以是部署方式为NSA架构的5G网络中的NR节点502,上述的第二接入网设备303或者第二接入网设备403所对应的网元或者实体可以为是部署方式为NSA架构的5G网络中的演进型基站(evolved NodeB,eNodeB或eNB)503。其中,NR节点502为待测NR小区所属的接入网设备,eNB 503为终端设备501当前所在小区所属的接入网设备。示例性的,NR节点502例如可以是下一代节点B(next generation node B,gNB),本申请实施例对此不作具体限定。
此外,如图5所示,该部署方式为NSA架构的5G网络中还可以包括演进的分组核心网(evolved packet core,EPC)504等,本申请实施例对此不作具体限定。
其中,如图5所示,终端设备501可以向EPC 504中的核心网设备发送EPC非接入层(non-access stratum,NAS)信令;终端设备501可以通过长期演进(long term evolution,LTE)-Uu接口与eNB 503通信,eNB 503可以通过S1-移动性管理实体(mobility management entity,MME)接口接入EPC 504。终端设备501可以与NR节点502通信,NR节点502可以与eNB 503通信。其中,这里的EPC为第四代(4th generation,4G)核心网,这里的S1-U接口为用户面接口,S1-MME接口为控制面接口。
或者,示例性的,假设图3所示的通信系统30或者图4所示的通信系统40应用于部署方式为SA架构的5G网络中,则如图6所示,上述的终端设备301或者终端设备401对应的网元或者实体可以是部署方式为SA架构的5G网络中的终端设备601,上述的第一接入网设备302或者第一接入网设备402所对应的网元或者实体可以是部署方式为SA架构的5G网络中的NR节点1 602,上述的第二接入网设备303或者第二接入网设备403所对应的网元或者实体可以是部署方式为SA架构的5G网络中的NR节点2 603。其中,NR节点1 602为待测NR小区所属的NR节点,NR节点2 603为终端设备601当前所在NR小区所属的NR节点。示例性的,NR节点1 602和NR节点2 603例如可以是gNB,本申请实施例对此不作具体限定。
此外,如图6所示,该部署方式为SA架构的5G网络中还可以包括下一代核心网(NG core,NGC)604等,本申请实施例对此不作具体限定。
其中,如图6所示,终端设备601可以通过NG1接口与NGC 604中的核心网设备通信;终端设备301可以与NR节点1 602和NR节点2 603通信;NR节点1 602和NR节点2 603可以通过NG2接口和NG3接口接入NGC 604;其中,这里的NGC为5G核心网,这里的NG2接口为控制面接口,NG3接口为用户面接口。
可选的,本申请实施例中的终端设备301或者终端设备401的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的终端设备301或者终端设备401的相关功能可以通过图7中的通信装置70来实现。图7所示为本申请实施例提供的通信装置70的结构示意 图。该通信装置70包括一个或多个处理器701,通信线路702,以及至少一个通信接口(图7中仅是示例性的以包括通信接口704,以及一个处理器701为例进行说明),可选的还可以包括存储器703。
处理器701可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路702可包括一通路,用于连接不同组件之间。
通信接口704,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口704也可以是位于处理器701内的收发电路,用以实现处理器的信号输入和信号输出。
存储器703可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路702与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器703用于存储执行本申请方案的计算机执行指令,并由处理器701来控制执行。处理器701用于执行存储器703中存储的计算机执行指令,从而实现本申请实施例中提供的NR小区测量方法。
或者,本申请实施例中,也可以是处理器701执行本申请下述实施例提供的NR小区测量方法中的处理相关的功能,通信接口704负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器可以包括一个或多个CPU,例如图7中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置70可以包括多个处理器,例如图7中的处理器701和处理器707。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置70还可以包括输出设备705和输入设备706。输出设备705和处理器701通信,可以以多种方式来显示信息。
上述的通信装置70可以是一个通用装置或者是一个专用装置。例如通信装置70可以是台式机、便携式电脑、网络服务器、PDA、移动手机、平板电脑、无线终端设备301、嵌入式设备或具有图7中类似结构的设备。本申请实施例不限定通信装置70 的类型。
可选的,本申请实施例中的通信装置70,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。
下面将结合图3至图7对本申请实施例提供的NR小区测量方法进行具体阐述。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
以图3所示的通信系统应用于图5所示的部署方式为NSA架构的5G网络中,第一接入网设备为NR节点,第二接入网设备为eNB,RRM测量窗为GAP窗为例,如图8所示,为本申请实施例提供的一种NR小区测量方法,包括如下步骤:
S801、eNB向终端设备发送GAP窗的配置信息。终端设备接收来自eNB的GAP窗的配置信息。
S802、NR节点向终端设备发送SSB。终端设备接收来自NR节点的SSB。
S803、终端设备在GAP窗内搜索来自NR节点的SSB,并基于SSB对待测NR小区进行测量。
S804、终端设备确定在GAP窗内未搜索到来自NR节点的SSB,进而确定在GAP窗内未检测到待测NR小区。
其中,步骤S801-S804的相关实现可参考现有技术,在此不予赘述。
S805、终端设备以GAP窗为基准确定扩展GAP窗。
其中,扩展GAP窗也可以称之为扩展RRM测量窗或采数窗。扩展GAP窗的测量窗长大于GAP窗的测量窗长,扩展GAP窗完全或部分包含GAP窗。
本申请实施例以GAP窗为基准确定扩展GAP窗,由于扩展GAP窗完全或部分包含GAP窗,且扩展GAP窗的测量窗长大于GAP窗的测量窗长,因此通过扩展GAP窗能够测量终端设备在相邻两个GAP窗之间(该部分GAP窗未覆盖到)接收到的信号,因此基于扩展GAP窗,能够提升终端设备搜索到来自NR节点的SSB的概率,对待测NR小区进行成功测量的概率较高。
一种可能的实现方式中,如图9所示,扩展GAP窗的开始位置与GAP窗的开始位置相同。需要说明的是,由于扩展GAP窗的测量窗长大于GAP窗的测量窗长,因 此该种实现方式下,扩展GAP窗必然完全包含GAP窗。
或者,另一种可能的实现方式中,扩展GAP窗的开始位置在GAP窗的结束位置之前。示例性的,参见图10(a)至图10(c),在该种实现方式下,扩展GAP窗和GAP窗可以有以下三种位置关系:(1)扩展GAP窗的开始位置在GAP窗的开始位置和结束位置之间,如图10(a)所示,此时扩展GAP窗部分包含GAP窗;(2)扩展GAP窗的开始位置在GAP窗的开始位置之前,且扩展GAP窗的结束位置在GAP窗的结束位置之后,如图10(b)所示,此时扩展GAP窗完全包含GAP窗;(3)扩展GAP窗的开始位置在GAP窗的开始位置之前,且扩展GAP窗的结束位置在GAP窗的开始位置和结束位置之间,如图10(c)所示,此时扩展GAP窗部分包含GAP窗。
可选的,一种可能的实现方式中,本申请实施例提供的NR小区测量方法还包括如下步骤S806a-S809a:
S806a、终端设备确定自身有空闲射频资源。
S807a、终端设备在扩展GAP窗的开始位置处,将待测NR小区建立为辅小区,并为待测NR小区分配射频资源。
其中,射频资源用于接收来自待测NR小区所属接入网设备(在本实施例中即NR节点)的SSB。
需要说明的是,本实施例中将待测NR小区建立为辅小区是指:将待测NR小区虚拟为辅小区,进而按照辅小区的方式接收数据。
S808a、终端设备在扩展GAP窗内搜索来自NR节点的SSB。
S809a、终端设备基于搜索到的SSB对待测NR小区进行测量。
或者,可选的,另一种可能的实现方式中,本申请实施例提供的NR小区测量方法还包括如下步骤S806b-S810b:
S806b、终端设备确定自身无空闲射频资源。
S807b、终端设备在扩展GAP窗的开始位置处,去激活已建立的辅小区以释放射频资源,并将待测NR小区建立为辅小区,将释放的射频资源分配给待测NR小区。
其中,射频资源用于接收来自待测NR小区所属接入网设备(在本实施例中即NR节点)的SSB。
一种可能的实现方式中,当待测NR小区为多个时,终端设备可以去激活多个已建立的辅小区。
S808b、终端设备在扩展GAP窗内搜索来自NR节点的SSB。
S809b、终端设备在扩展GAP窗的结束位置处,去激活待测NR小区,并恢复步骤S807b中去激活的辅小区。
一种可能的实现方式中,若步骤S807b中去激活的辅小区为多个,此处步骤S809b中终端设备恢复步骤S807b中去激活的全部辅小区。
基于上述步骤S806b-步骤S809b,当处于LTE多载波场景时,终端设备无空闲射频资源可用,此时先去激活一个LTE辅小区,释放一套设备资源给待测NR小区,至终端设备对待测NR小区的采数完成后,立即释放资源,并恢复LTE辅小区业务。
值得说明的是,现有技术中,待测小区和LTE主小区时分时复用同一套射频资源,小区的测量被限定在GAP窗内进行。在GAP窗内,eNB不向终端设备发送业务数据, 相应的,终端设备可以不接收业务数据,因此该段时间可用于除LTE主小区同频和辅小区副载波同频之外的其他小区的测量,同时不影响终端设备的业务。本申请实施例中,由于扩展GAP窗完全或部分包含GAP窗,在扩展GAP窗包含GAP窗的时段内eNB未向终端设备发送业务数据,因此能在一定程度上减小由于小区测量对终端设备业务的影响。
S810b、终端设备基于搜索到的SSB对待测NR小区进行测量。
本申请实施例中,当终端设备确定在eNB配置的GAP窗内未搜索到来自NR节点的SSB后,终端设备以GAP窗为基准,确定了测量窗长更长且能够完全或部分包含原来GAP窗的扩展GAP窗,进而终端设备在扩展GAP窗内搜索来自NR节点的SSB。由于扩展GAP窗的测量窗长大于GAP窗的测量窗长,扩展GAP窗完全或部分包含GAP窗,因此通过扩展GAP窗能够测量终端设备在相邻两个GAP窗之间(该部分GAP窗未覆盖到)接收到的信号,从而提升终端设备搜索到NR节点发送的SSB的概率,进而提高NR小区的测量成功率。避免了现有技术中,配置的GAP窗内不包含SSB所导致的无法对NR小区进行测量的问题。
其中,上述步骤S801至S809a或者上述步骤S801至S810b中的终端设备的动作可以由图7所示的通信装置70中的处理器701调用存储器703中存储的应用程序代码来执行,本实施例对此不作任何限制。
以图3所示的通信系统应用于图5所示的部署方式为NSA架构的5G网络中,第一接入网设备为NR节点,第二接入网设备为eNB,RRM测量窗为SMTC窗为例,如图11所示,为本申请实施例提供的另一种NR小区测量方法,包括如下步骤:
S1101、终端设备确定未接收到来自eNB的GAP窗的配置信息。
S1102、eNB向终端设备发送SMTC信息。终端设备接收来自eNB的SMTC信息。
其中,SMTC信息为SMTC窗的配置信息。
S1103、NR节点向终端设备发送SSB。终端设备接收来自NR节点的SSB。
S1104、终端设备在SMTC窗内搜索NR节点发送的SSB,并基于SSB对待测NR小区进行测量。
S1105、终端设备确定在SMTC窗内未搜索到NR节点发送的SSB,进而确定在SMTC窗内未检测到待测NR小区。
其中,步骤S1101-S1105的相关实现可参考现有技术,在此不予赘述。
S1106、终端设备以SMTC窗为基准确定扩展SMTC窗。
其中,扩展SMTC窗也可以称之为扩展RRM测量窗或采数窗。扩展SMTC窗的测量窗长大于SMTC窗的测量窗长,扩展SMTC窗完全或部分包含SMTC窗。
本申请实施例以SMTC窗为基准确定扩展SMTC窗,由于扩展SMTC窗完全或部分包含SMTC窗,且扩展SMTC窗的测量窗长大于SMTC窗的测量窗长,因此通过扩展SMTC窗能够测量终端设备在相邻两个SMTC窗之间(该部分SMTC窗未覆盖到)接收到的信号,因此基于扩展SMTC窗,能够提升终端设备搜索到NR节点发送的SSB的概率,对待测NR小区进行成功测量的概率较高。
一种可能的实现方式中,扩展SMTC窗的开始位置与SMTC窗的开始位置相同。需要说明的是,由于扩展SMTC窗的测量窗长大于SMTC窗的测量窗长,因此该种实 现方式下,扩展SMTC窗必然完全包含SMTC窗。
或者,另一种可能的实现方式中,扩展SMTC窗的开始位置在SMTC窗的结束位置之前。该种实现方式下,扩展SMTC窗完全或部分包含SMTC窗。其中,扩展SMTC窗和SMTC窗的位置关系与上一实施例中扩展GAP窗和GAP窗的位置关系类似,可参考上一实施例中的相关描述,此处不再赘述。
可选的,一种可能的实现方式中,本申请实施例提供的NR小区测量方法还包括如下步骤S1107a-S1110a:
S1107a、终端设备确定自身有空闲射频资源。
S1108a、终端设备在扩展SMTC窗的开始位置处,将待测NR小区建立为辅小区,并为待测NR小区分配射频资源。
其中,射频资源用于接收来自待测NR小区所属接入网设备(在本实施例中即NR节点)的SSB。
需要说明的是,本实施例中将待测NR小区建立为辅小区指的是:将待测NR小区虚拟为辅小区,进而按照辅小区的方式接收数据。
S1109a、终端设备在扩展SMTC窗内搜索来自NR节点的SSB。
S1110a、终端设备基于搜索到的SSB对待测NR小区进行测量。
或者,可选的,另一种可能的实现方式中,本申请实施例提供的NR小区测量方法还包括如下步骤S1107b-S1111b:
S1107b、终端设备确定自身无空闲射频资源。
S1108b、终端设备在扩展SMTC窗的开始位置处,去激活已建立的辅小区以释放射频资源,并将待测NR小区建立为辅小区,将释放的射频资源分配给待测NR小区。
其中,射频资源用于接收来自待测NR小区所属接入网设备(在本实施例中即NR节点)的SSB。
一种可能的实现方式中,当待测NR小区为多个时,终端设备可以去激活多个已建立的辅小区。
S1109b、终端设备在扩展SMTC窗内搜索来自NR节点的SSB。
S1110b、终端设备在扩展SMTC窗的结束位置处,去激活待测NR小区,并恢复步骤S1108b中去激活的辅小区。
一种可能的实现方式中,若步骤S1108b中去激活的辅小区为多个,此处步骤S1110b中终端设备恢复步骤S1108b中全部去激活的辅小区。
S1111b、终端设备基于搜索到的SSB对待测NR小区进行测量。
本申请实施例中,终端设备确定eNB未配置GAP窗后,接收eNB配置的SMTC信息,并基于SMTC信息在SMTC窗内搜索来自NR节点的SSB。当终端设备确定在SMTC窗内未搜索到来自NR节点的SSB后,以SMTC窗为基准,确定了测量窗长更长且能够完全或部分包含原来SMTC窗的扩展SMTC窗,进而终端设备在扩展SMTC窗内搜索来自NR节点的SSB。由于扩展SMTC窗的测量窗长大于SMTC窗的测量窗长,扩展SMTC窗完全或部分包含SMTC窗,因此通过扩展SMTC窗能够测量终端设备在相邻两个SMTC窗之间(该部分SMTC窗未覆盖到)接收到的信号,从而提升终端设备搜索到NR节点发送的SSB的概率,进而提高NR小区的测量成功率。避免了 现有技术中,未配置GAP窗所导致的无法对NR小区进行测量的问题。
其中,上述步骤S1101至S1110a或者上述步骤S1101至S1111b中的终端设备的动作可以由图7所示的通信装置70中的处理器701调用存储器703中存储的应用程序代码来执行,本实施例对此不作任何限制。
以图4所示的通信系统应用于图5所示的部署方式为NSA架构的5G网络中,第一接入网设备为NR节点,第二接入网设备为eNB为例,如图12所示,为本申请实施例提供的又一种NR小区测量方法,包括如下步骤:
S1201、eNB向终端设备发送SMTC信息。终端设备接收来自eNB的SMTC信息。
其中,SMTC信息即SMTC窗的配置信息,包括SMTC窗的测量窗长、测量周期以及偏移量。偏移量为SMTC窗的开始位置相对于SMTC窗所在测量周期的开始位置的偏移量。示例性的,如图13所示,图中SMTC窗所在测量周期的开始位置为无线帧0的起始位置,SMTC窗的开始位置为无线帧1的起始位置,即无线帧1的子帧0的开始位置,无线帧0的起始位置到无线帧1的起始位置之间有10个子帧,对应的时长为10ms,因此SMTC窗的偏移量为10ms。
一种可能的实现方式中,SMTC窗的测量窗长等于NR节点发送SSB的周期。其中,NR节点发送SSB的周期,也即SSB的传输周期,例如可能是5ms、10ms、20ms、40ms、80ms或者160ms等,本发明实施例对此不作具体限定。
可以理解,由于SSB每个发送周期内必然包含NR节点发送的SSB,因此将SMTC窗的测量窗长配置为SSB的传输周期后,每个SMTC窗内必然包含NR节点发送的SSB,终端设备在SMTC窗内必然会搜索到NR节点发送的SSB。
示例性的,假设eNB已知NR节点发送的SSB的发送周期为10ms,SSB的发送时长为5ms,则如图13所示,eNB可以为终端设备配置测量窗长为10ms、测量周期为40ms、偏移量为10ms的SMTC窗。这样一来,无论NR节点发送SSB的实际位置位于SSB发送周期10ms中的哪5个子帧(图13中以SSB位于子帧1-5为例进行示意),每个SMTC窗内必然包含SSB,终端设备在SMTC窗内可以搜索到NR节点发送的SSB。
或者,另一种可能的实现方式中,SMTC窗的测量窗长大于5ms。示例性的,SMTC窗的测量窗长例如可以配置为10ms、20ms或者40ms,本发明实施例对此不作具体限定。
可以理解,由于现有的SMTC信息中,SMTC窗的测量窗长为1ms~5ms,即最长为5ms,因此将SMTC窗的测量窗长配置为大于5ms后,相比现有技术,本申请实施例在SMTC窗内搜索到SSB的概率更高。
S1202、NR节点向终端设备发送SSB。终端设备接收来自NR节点的SSB。
S1203、终端设备根据SMTC信息,在SMTC窗内搜索来自NR节点的SSB,并基于SSB对待测NR小区进行测量。
S1204、可选的,若终端设备在SMTC窗内搜索到来自NR节点的SSB,终端设备向NR节点发送SSB的位置信息。NR节点接收来自终端设备的SSB的位置信息。
其中,SSB的位置信息用于重新配置SMTC信息。
S1205、可选的,NR节点向终端设备发送重新配置的SMTC信息。终端设备接收来自NR节点的重新配置的SMTC信息。
其中,终端设备根据重新配置的SMTC信息可以确定NR节点为其新配置的SMTC窗。重新配置的SMTC信息中的测量窗长小于SMTC信息中的测量窗长。
一种优选的实现方式中,新配置的SMTC窗内包含NR节点发送的SSB,并且新配置的SMTC窗的测量窗长等于NR节点发送SSB的发送时长。即,使新配置的SMTC窗恰好包含NR节点发送的SSB,这样一来,既可确保在SMTC窗内搜索到SSB,又可最大程度的减少资源占用。
S1206、可选的,终端设备根据重新配置的SMTC信息,在对应SMTC窗内搜索SSB,并基于SSB对待测NR小区进行测量。
基于上述步骤S1204至S1206,NR节点根据SSB的位置信息为终端设备配置新的SMTC窗,由于新配置的SMTC窗包含NR节点发送的SSB并且测量窗长小于原SMTC窗的测量窗长,因此后续终端设备根据该新配置的SMTC窗对待测NR小区测量,能够减小终端设备的资源消耗,进而提高资源利用率。
在本申请实施例中,由于eNB为终端设备配置了测量窗长等于NR节点发送SSB的周期的SMTC窗,因此SMTC窗内必然包含NR节点发送的SSB,终端设备在SMTC窗内能够搜索到NR节点发送的SSB,基于搜索到的SSB即可对待测NR小区进行测量。或者,在本申请实施例中,由于eNB为终端设备配置了测量窗长大于5ms的SMTC窗(大于现有SMTC窗的最大测量窗长),因此,相比现有技术,终端设备在该SMTC窗内搜索到SSB的概率更高,进而测量到NR小区的概率也就更高。即,本申请实施例能够提升终端设备检测到SSB的概率,进而提高NR小区测量的成功率,避免了现有技术中,未配置GAP或者配置的GAP窗内不包含SSB所导致的无法对NR小区进行测量的问题。
其中,上述步骤S1201至S1206中的终端设备的动作可以由图7所示的通信装置70中的处理器701调用存储器703中存储的应用程序代码来执行,本实施例对此不作任何限制。
以图4所示的通信系统应用于图5所示的部署方式为NSA架构的5G网络中,第一接入网设备为NR节点,第二接入网设备为eNB为例,如图14所示,为本申请实施例提供的又一种NR小区测量方法,包括如下步骤:
S1401、eNB向终端设备发送SMTC信息。终端设备接收来自eNB的SMTC信息。
其中,SMTC信息即SMTC窗的配置信息,包括第一SMTC窗和第二SMTC窗的测量窗长、测量周期以及偏移量,且第一SMTC窗和第二SMTC窗的偏移量不同。其中,第一SMTC窗的偏移量为第一SMTC窗的开始位置相对于第一SMTC窗所在测量周期的开始位置的偏移量,第二SMTC窗的偏移量为第二SMTC窗的开始位置相对于第二SMTC窗所在测量周期的开始位置的偏移量。
示例性的,假设eNB已知NR节点发送的SSB的发送周期为10ms,SSB的发送时长为5ms,则如图15所示,eNB可以为终端设备配置测量窗长为5ms,测量周期为40ms,偏移量分别为10ms和15ms的两个SMTC窗。假设SSB的发送位置是在子帧1至子帧5上发送,一个SMTC窗在无线帧1的10ms中,测量窗长为5ms,偏移量为10ms,则终端设备在该SMTC窗内搜索,可以获取到子帧1至子帧4上的SSB信息。另一SMTC窗在无线帧5的10ms中,测量窗长为5ms,偏移量为15ms,则终端设备 在该SMTC窗内搜索,可以获取到子帧5上的SSB信息。这样一来,终端设备就可以根据这两个不同偏移的SMTC窗,获取到完整的SSB信息,进而基于该SSB信息对待测NR小区进行测量。
可以理解,由于现有的SMTC窗的配置信息中,仅配置了一个偏移量固定的SMTC窗,而本申请实施例中配置了两个偏移量不同SMTC窗,因此相比现有技术,本申请实施例在两个偏移量不同的SMTC窗内搜索到SSB的概率更高。
S1402、NR节点向终端设备发送SSB。终端设备接收来自NR节点的SSB。
S1403、终端设备根据SMTC信息,在第一SMTC窗和第二SMTC内搜索来自NR节点的SSB,并基于SSB对待测NR小区进行测量。
一种优选的实现方式中,第一SMTC窗的测量周期小于第二SMTC窗的测量周期。
相应的,步骤S1403具体可以包括如下所示的步骤S1403′(图14中未示出):
S1403′、终端设备优先在第一SMTC窗内搜索SSB:若终端设备在第一SMTC窗内搜索到SSB,则终端设备不在第二SMTC窗内搜索SSB;若终端设备在第一SMTC窗内未搜索到SSB,则终端设备在第二SMTC窗内搜索SSB。
示例性的,接上一示例,例如,可以将第一SMTC窗的测量周期配置为20ms,第二SMTC窗的测量周期配置为80ms,则终端设备优先在测量周期较短的第一SMTC窗内搜索SSB,如果搜索到NR节点发送的SSB,则不再在第二SMTC窗内搜索SSB;反之,如果终端设备在第一SMTC窗内未搜索到NR节点发送的SSB,则再第二SMTC窗内继续搜索SSB。
可以理解,该优选实现方式能够节省终端设备的资源消耗,进而提高资源利用率。
S1404、可选的,若终端设备在第一SMTC窗或第二SMTC内搜索到来自NR节点的SSB,终端设备向NR节点发送SSB的位置信息。NR节点接收来自终端设备的SSB的位置信息。
其中,SSB的位置信息用于重新配置SMTC信息。
S1405、可选的,NR节点向终端设备发送重新配置的SMTC信息。终端设备接收来自NR节点的重新配置的SMTC信息。
其中,终端设备根据重新配置的SMTC信息可以确定NR节点为其新配置的SMTC窗。
其中,一种可能的实现方式中,重新配置的SMTC信息包括第三SMTC窗和第四SMTC窗的测量窗长、测量周期以及偏移量。第三SMTC窗的测量窗长小于第一SMTC窗的测量窗长,或者,第四SMTC窗的测量窗长小于第二SMTC窗的测量窗长。
或者,一种优选的实现方式中,重新配置的SMTC信息仅包含一个SMTC窗的测量窗长、测量周期以及偏移量,该SMTC窗内包含NR节点发送的SSB,并且该SMTC窗的测量窗长等于NR节点发送SSB的发送时长。
S1406、可选的,终端设备根据重新配置的SMTC信息,在第三SMTC窗和第四SMTC窗内搜索SSB,并基于SSB对待测NR小区进行测量。
或者,一种优选的实现方式中,终端设备根据重新配置的SMTC信息,在对应的单个SMTC窗(包含NR节点发送的SSB)内搜索SSB,并基于SSB对待测NR小区进行测量。
基于上述步骤S1404-S1406,NR节点根据SSB的位置信息重新为终端设备配置SMTC窗,由于重新配置的SMTC窗包含NR节点发送的SSB并且测量窗长小于原SMTC窗的测量窗长,因此后续终端设备根据该重新配置的SMTC窗对待测NR小区测量,能够减小终端设备的资源消耗,进而提高资源利用率。
在本申请实施例中,由于eNB为终端设备配置了两个偏移量不同的SMTC窗,因此,相比现有技术仅配置一个偏移量固定的SMTC窗,本申请实施例在两个偏移量不同的SMTC窗内搜索到SSB的概率更高,因而终端设备测量到NR小区的概率也就更高。即,本申请实施例能够提升终端设备检测到SSB的概率,进而提高NR小区测量的成功率,避免了现有技术中,未配置GAP或者配置的GAP窗内不包含SSB所导致的无法对NR小区进行测量的问题。
其中,上述步骤S1401至S1406中的终端设备的动作可以由图7所示的通信装置70中的处理器701调用存储器703中存储的应用程序代码来执行,本实施例对此不作任何限制。
此外,需要说明的是,上述图8、图11、图12以及图14所示的实施例均是以图3所示的通信系统30或图4所示的通信系统40应用于如图5所示的部署方式为NSA架构的5G网络为例进行说明,若以图3所示的通信系统30或图4所示的通信系统40应用于如5所示的部署方式为SA架构的5G网络为例进行说明,则对应的NR小区测量方法与上述实施例中的方法类似,仅需将相关网元以及网元之间交互的消息名称进行适应性替换即可,在此不予赘述。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的终端设备为例,图16示出了一种终端设备160的结构示意图。该终端设备160包括处理模块1601。
其中,处理模块1601用于:确定在RRM测量窗内未检测到待测NR小区;以RRM测量窗为基准确定扩展RRM测量窗;在扩展RRM测量窗内搜索来自待测NR小区所 属接入网设备的SSB,并基于SSB对待测NR小区进行测量。其中,扩展RRM测量窗的测量窗长大于RRM测量窗的测量窗长,扩展RRM测量窗完全或部分包含RRM测量窗。
一种可能的实现方式中,处理模块1601还用于:在在扩展RRM测量窗内搜索来自待测NR小区所属接入网设备的SSB之前,确定终端设备160有空闲射频资源;在扩展RRM测量窗的开始位置处,将待测NR小区建立为辅小区,并为待测NR小区分配射频资源。其中,射频资源用于接收来自待测NR小区所属接入网设备的SSB。
另一种可能的实现方式中,处理模块1601还用于:在在扩展RRM测量窗内搜索来自待测NR小区所属接入网设备的SSB之前,确定终端设备160无空闲射频资源;在扩展RRM窗的开始位置处,去激活已建立的辅小区以释放射频资源,并将待测NR小区建立为辅小区,将释放的射频资源分配给待测NR小区。其中,射频资源用于接收来自待测NR小区所属接入网设备的SSB。
可选的,处理模块1601还用于:在在扩展RRM测量窗内搜索来自待测NR小区所属接入网设备的SSB之后,在扩展RRM窗的结束位置处,去激活待测NR小区,并恢复已建立的辅小区。
可选的,所述RRM测量窗具体可以为SMTC窗。如图16所示,终端设备160还可以包括:收发模块1602。所述收发模块1602,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,处理模块1601,还用于在确定在RRM测量窗内未检测到待测NR小区之前,确定未接收到来自终端设备160所在小区所属接入网设备的GAP窗的配置信息。收发模块1602,用于接收来自终端设备160所在小区所属接入网设备的SMTC信息。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该终端设备160以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该终端设备160可以采用图7所示的终端设备70的形式。
比如,图7所示的通信装置70中的处理器701可以通过调用存储器703中存储的计算机执行指令,使得通信装置70执行上述方法实施例中的NR小区测量方法。
具体的,图16中的处理模块1601和收发模块1602的功能/实现过程可以通过图7所示的通信装置70中的处理器701调用存储器703中存储的计算机执行指令来实现。或者,图16中的处理模块1601的功能/实现过程可以通过图7所示的通信装置70中的处理器701调用存储器703中存储的计算机执行指令来实现,图16中的收发模块1602的功能/实现过程可以通过图7中所示的通信装置70中的通信接口704来实现。
由于本实施例提供的终端设备160可执行上述的NR小区测量方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的终端设备为例,图17示出了另一种终端设备170的结构示意图。该终端设备170包括收发模块1701和处理模块1702。
其中,一种可选的实现方式中,收发模块1701,用于接收SMTC信息;处理模块1702,用于根据SMTC信息,在SMTC窗内搜索来自待测NR小区所属接入网设备的SSB,并基于SSB对待测NR小区进行测量。其中,SMTC信息包括SMTC窗的测量窗长、测量周期以及偏移量,SMTC窗的测量窗长等于待测新空口NR小区所属接入网设备发送同步信号块SSB的周期;或,SMTC窗的测量窗长大于5ms。
可选的,收发模块1701,还用于若处理模块1702在SMTC窗内搜索到来自待测NR小区所属接入网设备的SSB,向终端设备所在小区所属接入网设备发送SSB的位置信息,SSB的位置信息用于重新配置SMTC信息;收发模块1701,还用于接收重新配置的SMTC信息,重新配置的SMTC信息中的测量窗长小于SMTC信息中的测量窗长;处理模块1702,还用于根据重新配置的SMTC信息,在对应SMTC窗内搜索SSB,并基于SSB对待测NR小区进行测量。
或者,另一种可选的实现方式中,收发模块1701,用于接收SMTC信息;处理模块1702,用于根据SMTC信息,在第一SMTC窗和第二SMTC窗内搜索待测新空口NR小区发送的同步信号块SSB,并基于SSB对待测NR小区进行测量。其中,SMTC信息包括第一SMTC窗和第二SMTC窗的测量窗长、测量周期以及偏移量,且第一SMTC窗和第二SMTC窗的偏移量不同。
可选的,第一SMTC窗的测量周期小于第二SMTC窗的测量周期。
相应的,处理模块1702具体用于:优先在第一SMTC窗内搜索SSB;若在第一SMTC窗内搜索到SSB,则不在第二SMTC窗内搜索SSB;若在第一SMTC窗内未搜索到SSB,则在第二SMTC窗内搜索SSB。
可选的,收发模块1701还用于:若处理模块1702在第一SMTC窗或第二SMTC内搜索到来自待测NR小区所属接入网设备的SSB,向终端设备所在小区所属接入网设备发送SSB的位置信息,SSB的位置信息用于重新配置SMTC信息;接收重新配置的SMTC信息,重新配置的SMTC信息包括第三SMTC窗和第四SMTC窗的测量窗长、测量周期以及偏移量;处理模块1702还用于:根据重新配置的SMTC信息,在第三SMTC窗和第四SMTC窗内搜索SSB,并基于SSB对待测NR小区进行测量。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该终端设备170以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该终端设备170可以采用图7所示的终端设备70的形式。
比如,图7所示的通信装置70中的处理器701可以通过调用存储器703中存储的计算机执行指令,使得通信装置70执行上述方法实施例中的NR小区测量方法。
具体的,图17中的收发模块1701和处理模块1702的功能/实现过程可以通过图7所示的通信装置70中的处理器701调用存储器703中存储的计算机执行指令来实现。或者,图17中的处理模块1702的功能/实现过程可以通过图7所示的通信装置70中的处理器701调用存储器703中存储的计算机执行指令来实现,图17中的收发模块 1701的功能/实现过程可以通过图7中所示的通信装置70中的通信接口704来实现。
由于本实施例提供的终端设备170可执行上述的NR小区测量方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施, 但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种新空口NR小区测量方法,其特征在于,所述方法包括:
    终端设备确定在无线资源管理RRM测量窗内未检测到待测NR小区;
    所述终端设备以所述RRM测量窗为基准确定扩展RRM测量窗;其中,所述扩展RRM测量窗的测量窗长大于所述RRM测量窗的测量窗长,所述扩展RRM测量窗完全或部分包含所述RRM测量窗;
    所述终端设备在所述扩展RRM测量窗内搜索来自所述待测NR小区所属接入网设备的同步信号块SSB,并基于所述SSB对所述待测NR小区进行测量。
  2. 根据权利要求1所述的方法,其特征在于,在所述终端设备在所述扩展RRM测量窗内搜索来自所述待测NR小区所属接入网设备的SSB之前,所述方法还包括:
    所述终端设备确定自身有空闲射频资源;
    所述终端设备在所述扩展RRM测量窗的开始位置处,将所述待测NR小区建立为辅小区,并为所述待测NR小区分配射频资源;其中,所述射频资源用于接收来自所述待测NR小区所属接入网设备的SSB。
  3. 根据权利要求1所述的方法,其特征在于,在所述终端设备在所述扩展RRM测量窗内搜索来自所述待测NR小区所属接入网设备的SSB之前,所述方法还包括:
    所述终端设备确定自身无空闲射频资源;
    所述终端设备在所述扩展RRM窗的开始位置处,去激活已建立的辅小区以释放射频资源,并将所述待测NR小区建立为辅小区,将释放的射频资源分配给所述待测NR小区,其中,所述射频资源用于接收来自所述待测NR小区所属接入网设备的SSB。
  4. 根据权利要求3所述的方法,其特征在于,在所述终端设备在所述扩展RRM测量窗内搜索来自所述待测NR小区所属接入网设备的SSB之后,所述方法还包括:
    所述终端设备在所述扩展RRM窗的结束位置处,去激活所述待测NR小区,并恢复所述已建立的辅小区。
  5. 根据权利要求3或4所述的方法,其特征在于,所述待测NR小区为多个,所述已建立的辅小区为多个。
  6. 根据权利要求1所述的方法,其特征在于,所述扩展RRM测量窗的开始位置与所述RRM测量窗的开始位置相同;或者,所述扩展RRM测量窗的开始位置在所述RRM测量窗的结束位置之前。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述RRM测量窗为测量间隔GAP窗或SSB测量定时配置SMTC窗。
  8. 根据权利要求7所述的方法,其特征在于,所述RRM测量窗为SMTC窗;
    在所述终端设备确定在所述RRM测量窗内未检测到待测NR小区之前,所述方法还包括:
    所述终端设备确定未接收到来自其所在小区所属接入网设备的GAP窗的配置信息;
    所述终端设备接收来自其所在小区所属接入网设备的SMTC信息。
  9. 一种新空口NR小区测量方法,其特征在于,所述方法包括:
    终端设备接收同步信号块测量定时配置SMTC信息,所述SMTC信息包括SMTC 窗的测量窗长、测量周期以及偏移量;所述SMTC窗的测量窗长等于待测NR小区所属接入网设备发送同步信号块SSB的周期,或,所述SMTC窗的测量窗长大于5ms;其中,所述偏移量为所述SMTC窗的开始位置相对于所述SMTC窗所在测量周期的开始位置的偏移量;
    所述终端设备根据所述SMTC信息,在所述SMTC窗内搜索来自所述待测NR小区所属接入网设备的所述SSB,并基于所述SSB对所述待测NR小区进行测量。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    若所述终端设备在所述SMTC窗内搜索到来自所述待测NR小区所属接入网设备的SSB,所述终端设备向其所在小区所属接入网设备发送所述SSB的位置信息,所述SSB的位置信息用于重新配置SMTC信息;
    所述终端设备接收重新配置的SMTC信息,所述重新配置的SMTC信息中的测量窗长小于所述SMTC信息中的测量窗长;
    所述终端设备根据所述重新配置的SMTC信息,在对应SMTC窗内搜索所述SSB,并基于所述SSB对所述待测NR小区进行测量。
  11. 一种新空口NR小区测量方法,其特征在于,所述方法包括:
    终端设备接收同步信号块测量定时配置SMTC信息,所述SMTC信息包括第一SMTC窗和第二SMTC窗的测量窗长、测量周期以及偏移量,且所述第一SMTC窗和所述第二SMTC窗的偏移量不同;其中,所述第一SMTC窗的偏移量为所述第一SMTC窗的开始位置相对于所述第一SMTC窗所在测量周期的开始位置的偏移量,所述第二SMTC窗的偏移量为所述第二SMTC窗的开始位置相对于所述第二SMTC窗所在测量周期的开始位置的偏移量;
    所述终端设备根据所述SMTC信息,在所述第一SMTC窗和所述第二SMTC窗内搜索待测NR小区发送的同步信号块SSB,并基于所述SSB对所述待测NR小区进行测量。
  12. 根据权利要求11所述的方法,其特征在于,所述第一SMTC窗的测量周期小于所述第二SMTC窗的测量周期;
    相应的,所述终端设备根据所述SMTC信息,在所述第一SMTC窗和所述第二SMTC窗内搜索所述SSB,包括:
    所述终端设备优先在所述第一SMTC窗内搜索所述SSB;
    若所述终端设备在所述第一SMTC窗内搜索到所述SSB,则所述终端设备不在所述第二SMTC窗内搜索所述SSB;
    若所述终端设备在所述第一SMTC窗内未搜索到所述SSB,则所述终端设备在所述第二SMTC窗内搜索所述SSB。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    若所述终端设备在所述第一SMTC窗或所述第二SMTC内搜索到来自所述待测NR小区所属接入网设备的SSB,所述终端设备向其所在小区所属接入网设备发送所述SSB的位置信息,所述SSB的位置信息用于重新配置SMTC信息;
    所述终端设备接收重新配置的SMTC信息,所述重新配置的SMTC信息包括第三SMTC窗和第四SMTC窗的测量窗长、测量周期以及偏移量;所述第三SMTC窗的测 量窗长小于所述第一SMTC窗的测量窗长,或,所述第四SMTC窗的测量窗长小于所述第二SMTC窗的测量窗长;
    所述终端设备根据所述重新配置的SMTC信息,在所述第三SMTC窗和所述第四SMTC窗内搜索所述SSB,并基于所述SSB对所述待测NR小区进行测量。
  14. 一种终端设备,其特征在于,所述终端设备包括:处理模块;
    所述处理模块,用于确定在无线资源管理RRM测量窗内未检测到待测新空口NR小区;
    所述处理模块,还用于以所述RRM测量窗为基准确定扩展RRM测量窗;其中,所述扩展RRM测量窗的测量窗长大于所述RRM测量窗的测量窗长,所述扩展RRM测量窗完全或部分包含所述RRM测量窗;
    所述处理模块,还用于在所述扩展RRM测量窗内搜索来自所述待测NR小区所属接入网设备的同步信号块SSB,并基于所述SSB对所述待测NR小区进行测量。
  15. 根据权利要求14所述的终端设备,其特征在于,所述处理模块,还用于在在所述扩展RRM测量窗内搜索来自所述待测NR小区所属接入网设备的SSB之前,确定所述终端设备有空闲射频资源;
    所述处理模块,还用于在所述扩展RRM测量窗的开始位置处,将所述待测NR小区建立为辅小区,并为所述待测NR小区分配射频资源;其中,所述射频资源用于接收来自所述待测NR小区所属接入网设备的SSB。
  16. 根据权利要求14所述的终端设备,其特征在于,所述处理模块,还用于在在所述扩展RRM测量窗内搜索来自所述待测NR小区所属接入网设备的SSB之前,确定所述终端设备无空闲射频资源;
    所述处理模块,还用于在所述扩展RRM窗的开始位置处,去激活已建立的辅小区以释放射频资源,并将所述待测NR小区建立为辅小区,将释放的射频资源分配给所述待测NR小区,其中,所述射频资源用于接收来自所述待测NR小区所属接入网设备的SSB。
  17. 根据权利要求16所述的终端设备,其特征在于,所述处理模块,还用于在在所述扩展RRM测量窗内搜索来自所述待测NR小区所属接入网设备的SSB之后,在所述扩展RRM窗的结束位置处,去激活所述待测NR小区,并恢复所述已建立的辅小区。
  18. 根据权利要求14所述的终端设备,其特征在于,所述RRM测量窗为SMTC窗;所述终端设备还包括:收发模块;
    所述处理模块,还用于在确定在所述RRM测量窗内未检测到待测NR小区之前,确定未接收到来自终端设备所在小区所属接入网设备的GAP窗的配置信息;
    所述收发模块,用于接收来自终端设备所在小区所属接入网设备的SMTC信息。
  19. 一种终端设备,其特征在于,所述终端设备包括:收发模块和处理模块;
    所述收发模块,用于接收同步信号块测量定时配置SMTC信息,所述SMTC信息包括SMTC窗的测量窗长、测量周期以及偏移量;所述SMTC窗的测量窗长等于待测新空口NR小区所属接入网设备发送同步信号块SSB的周期,或,所述SMTC窗的测量窗长大于5ms;其中,所述偏移量为所述SMTC窗的开始位置相对于所述SMTC窗 所在测量周期的开始位置的偏移量;
    所述处理模块,用于根据所述SMTC信息,在所述SMTC窗内搜索来自所述待测NR小区所属接入网设备的所述SSB,并基于所述SSB对所述待测NR小区进行测量。
  20. 根据权利要求19所述的终端设备,其特征在于,
    所述收发模块,还用于若所述处理模块在所述SMTC窗内搜索到来自所述待测NR小区所属接入网设备的SSB,向所述终端设备所在小区所属接入网设备发送所述SSB的位置信息,所述SSB的位置信息用于重新配置SMTC信息;
    所述收发模块,还用于接收重新配置的SMTC信息,所述重新配置的SMTC信息中的测量窗长小于所述SMTC信息中的测量窗长;
    所述处理模块,还用于根据所述重新配置的SMTC信息,在对应SMTC窗内搜索所述SSB,并基于所述SSB对所述待测NR小区进行测量。
  21. 一种终端设备,其特征在于,所述终端设备包括:处理模块和收发模块;
    所述收发模块,用于接收同步信号块测量定时配置SMTC信息,所述SMTC信息包括第一SMTC窗和第二SMTC窗的测量窗长、测量周期以及偏移量,且所述第一SMTC窗和所述第二SMTC窗的偏移量不同;其中,所述第一SMTC窗的偏移量为所述第一SMTC窗的开始位置相对于所述第一SMTC窗所在测量周期的开始位置的偏移量,所述第二SMTC窗的偏移量为所述第二SMTC窗的开始位置相对于所述第二SMTC窗所在测量周期的开始位置的偏移量;
    所述处理模块,用于根据所述SMTC信息,在所述第一SMTC窗和所述第二SMTC窗内搜索待测新空口NR小区发送的同步信号块SSB,并基于所述SSB对所述待测NR小区进行测量。
  22. 根据权利要求21所述的终端设备,其特征在于,所述第一SMTC窗的测量周期小于所述第二SMTC窗的测量周期;
    相应的,所述处理模块具体用于:
    优先在所述第一SMTC窗内搜索所述SSB;若在所述第一SMTC窗内搜索到所述SSB,则不在所述第二SMTC窗内搜索所述SSB;若在所述第一SMTC窗内未搜索到所述SSB,则在所述第二SMTC窗内搜索所述SSB。
  23. 根据权利要求21或22所述的终端设备,其特征在于,所述收发模块,还用于若所述处理模块在所述第一SMTC窗或所述第二SMTC内搜索到来自所述待测NR小区所属接入网设备的SSB,向终端设备所在小区所属接入网设备发送所述SSB的位置信息,所述SSB的位置信息用于重新配置SMTC信息;
    所述收发模块,还用于接收重新配置的SMTC信息,所述重新配置的SMTC信息包括第三SMTC窗和第四SMTC窗的测量窗长、测量周期以及偏移量;所述第三SMTC窗的测量窗长小于所述第一SMTC窗的测量窗长,或,所述第四SMTC窗的测量窗长小于所述第二SMTC窗的测量窗长;
    所述处理模块,还用于根据所述重新配置的SMTC信息,在所述第三SMTC窗和所述第四SMTC窗内搜索所述SSB,并基于所述SSB对所述待测NR小区进行测量。
PCT/CN2019/106286 2019-09-17 2019-09-17 Nr小区测量方法、终端设备及系统 WO2021051288A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980017050.1A CN113039847B (zh) 2019-09-17 2019-09-17 Nr小区测量方法、终端设备及系统
PCT/CN2019/106286 WO2021051288A1 (zh) 2019-09-17 2019-09-17 Nr小区测量方法、终端设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/106286 WO2021051288A1 (zh) 2019-09-17 2019-09-17 Nr小区测量方法、终端设备及系统

Publications (1)

Publication Number Publication Date
WO2021051288A1 true WO2021051288A1 (zh) 2021-03-25

Family

ID=74883438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106286 WO2021051288A1 (zh) 2019-09-17 2019-09-17 Nr小区测量方法、终端设备及系统

Country Status (2)

Country Link
CN (1) CN113039847B (zh)
WO (1) WO2021051288A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114339917A (zh) * 2021-12-31 2022-04-12 展讯通信(上海)有限公司 异系统邻区搜索方法及装置、存储介质、终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109257957A (zh) * 2017-05-15 2019-01-22 联发科技(新加坡)私人有限公司 波束成形的系统中的rrm测量和报告机制
EP3471296A1 (en) * 2017-06-16 2019-04-17 LG Electronics Inc. -1- Method for measuring synchronization signal block and apparatus therefor
CN109788496A (zh) * 2017-11-15 2019-05-21 富士通株式会社 用于5g的测量间隙配置
CN110100492A (zh) * 2017-11-28 2019-08-06 联发科技股份有限公司 信道状态信息参考信号无线资源管理测量

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018027924A1 (en) * 2016-08-12 2018-02-15 Mediatek Singapore Pte. Ltd. Mechanism to support rrm measurement in new radio access system with beamforming
US11166183B2 (en) * 2018-04-06 2021-11-02 Intel Corporation Measurement gap and synchronization signal block—based measurement timing configuration scheduling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109257957A (zh) * 2017-05-15 2019-01-22 联发科技(新加坡)私人有限公司 波束成形的系统中的rrm测量和报告机制
EP3471296A1 (en) * 2017-06-16 2019-04-17 LG Electronics Inc. -1- Method for measuring synchronization signal block and apparatus therefor
CN109788496A (zh) * 2017-11-15 2019-05-21 富士通株式会社 用于5g的测量间隙配置
CN110100492A (zh) * 2017-11-28 2019-08-06 联发科技股份有限公司 信道状态信息参考信号无线资源管理测量

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Summary of remaining Issues on NR RRM", 3GPP DRAFT; R1-1721631 SUMMARY OF THE ISSUESFOR NR RRM AFTER WEDNESDAY ONLINE, vol. RAN WG1, 1 December 2017 (2017-12-01), Reno, USA, pages 1 - 35, XP051370658 *

Also Published As

Publication number Publication date
CN113039847A (zh) 2021-06-25
CN113039847B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN110278563B (zh) 确定频谱资源的方法及装置
TWI556678B (zh) D2d發現信號的發送方法和發送裝置
CN108632981A (zh) 一种下行同步信号发送方法和接收方法及设备
WO2021196099A1 (zh) 终端定位方法及装置
JP7485850B2 (ja) 通信方法、装置、およびシステム
US20220346166A1 (en) Multi-link communication method, apparatus, and system
KR20230002537A (ko) 포지셔닝 신호 처리 방법 및 장치
WO2021051364A1 (zh) 一种通信方法、装置及设备
CN105307139B (zh) 一种传输应用心跳信号的方法、移动终端和系统
WO2022061940A1 (zh) 一种模型数据传输方法及通信装置
CN114788403B (zh) 通信方法、设备及系统
US20220385428A1 (en) Signal quality information obtaining method, device, and system
JP2024500171A (ja) ポジショニング測定方法、装置、機器及び可読記憶媒体
WO2019061115A1 (zh) 一种非授权频谱上的载波切换方法、基站及终端设备
CN116671196A (zh) 定位测量的方法、终端设备及网络设备
JP2023535181A (ja) 初期アクセス方法及び装置、端末及びネットワーク側機器
CN109428767A (zh) 测量配置信息的处理方法、终端设备和网络设备
WO2019062151A1 (zh) 一种资源指示方法、通信装置及网络设备
WO2022022491A1 (zh) 通信方法及装置
WO2021051288A1 (zh) Nr小区测量方法、终端设备及系统
CN110506433A (zh) 非授权信道的信道检测方法、装置及存储介质
WO2021027864A1 (zh) 用于小区测量的方法和装置
WO2023241247A1 (zh) Bwp切换方法、装置、终端、存储介质及产品
WO2019028903A1 (zh) 一种上行信号的传输方法及设备
US20230074305A1 (en) Resource determining method, apparatus, and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945943

Country of ref document: EP

Kind code of ref document: A1