WO2021049575A1 - 内燃機関の制御装置及び制御方法 - Google Patents

内燃機関の制御装置及び制御方法 Download PDF

Info

Publication number
WO2021049575A1
WO2021049575A1 PCT/JP2020/034319 JP2020034319W WO2021049575A1 WO 2021049575 A1 WO2021049575 A1 WO 2021049575A1 JP 2020034319 W JP2020034319 W JP 2020034319W WO 2021049575 A1 WO2021049575 A1 WO 2021049575A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
control device
canister
amount
Prior art date
Application number
PCT/JP2020/034319
Other languages
English (en)
French (fr)
Inventor
水島 賢治
裕士 宮本
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2021049575A1 publication Critical patent/WO2021049575A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir

Definitions

  • the present invention relates to a control device and a control method for an internal combustion engine, and more particularly to a technique for estimating an adsorption amount of evaporated fuel in a canister.
  • the evaporative fuel processing apparatus disclosed in Patent Document 1 includes a canister that collects evaporative fuel generated in a fuel tank that stores fuel supplied to an internal combustion engine, and a purge that connects the canister and the intake system of the engine.
  • the ventilation resistance of the canister causes an error in the estimation of the evaporated fuel concentration, and the control of the internal combustion engine based on the estimated concentration value may deteriorate the operability and the exhaust property of the internal combustion engine.
  • the present invention has been made in view of the conventional circumstances, and an object of the present invention is to provide a control device and a control method for an internal combustion engine capable of improving the estimation accuracy of the adsorption amount of evaporated fuel in a canister.
  • the internal combustion engine includes a state detection sensor that detects a predetermined state amount that changes depending on the ventilation resistance of the canister, and an operating state sensor that detects the operating state of the internal combustion engine.
  • the control device obtains a reference state amount, which is the state amount when the adsorption amount of the evaporated fuel in the canister is a predetermined amount, based on the operating state of the internal combustion engine detected by the operating state sensor, and obtains the reference.
  • An estimated value of the adsorption amount of the evaporated fuel in the canister is obtained based on the comparison between the state amount and the state amount detected by the state detection sensor, and the internal combustion engine is controlled based on the estimated value.
  • control method includes a step of obtaining a reference state amount, which is the state amount when the adsorption amount of evaporated fuel in the canister is a predetermined amount, based on the operating state of the internal combustion engine detected by the operating state sensor.
  • the accuracy of estimating the adsorption amount of evaporated fuel in the canister can be improved.
  • FIG. 1 is a diagram showing an aspect of an internal combustion engine including an evaporative fuel processing device.
  • the internal combustion engine 1 shown in FIG. 1 is a V-type internal combustion engine provided with a turbocharger 2 as a supercharger and an evaporative fuel processing device 3, and is mounted as a power source in a vehicle (not shown).
  • the intake pipe 4 of the internal combustion engine 1 is provided with the compressor 2a of the turbocharger 2, the intercooler 5, and the throttle valve 6 in this order from the upstream.
  • the turbocharger 2 is composed of a compressor 2a and a turbine 2b. By rotating the turbine 2b by the exhaust gas flowing through the exhaust pipe 21, the compressor 2a provided coaxially with the turbine 2b is rotated, and the compressor 2a is the intake pipe 4 The intake air flowing through the turbine is compressed (supercharged) and supplied to the internal combustion engine 1.
  • the intercooler 5 cools the supercharged air which is the intake air compressed (supercharged) by the compressor 2a.
  • the throttle valve 6 adjusts the amount of intake air sucked into the internal combustion engine 1 by adjusting the opening area of the intake pipe 4.
  • the evaporative fuel processing device 3 is a device that collects the evaporative fuel generated in the fuel tank 7 in the canister 8 and then purges the evaporative fuel from the canister 8 to the intake pipe 4 of the internal combustion engine 1.
  • the canister 8 is a device in which the case is filled with an adsorbent such as activated carbon capable of adsorbing and desorbing evaporative fuel.
  • the canister 8 and the fuel tank 7 are communicated with each other via the evaporative fuel pipe 9, and the evaporative fuel generated in the fuel tank 7 reaches the canister 8 through the evaporative fuel pipe 9 and is adsorbed by the adsorbent of the canister 8. .. Further, the canister 8 is open to the atmosphere through the atmosphere opening pipe 10.
  • a filter 10a for filtering and introducing air is arranged at the atmospheric opening end of the atmospheric opening pipe 10, and an orifice 10b for adjusting the flow rate is provided in the atmospheric opening pipe 10 downstream of the filter 10a.
  • the canister 8 is connected to the intake pipe 4 downstream of the throttle valve 6 via the first purge pipe 11.
  • the purge control valve 12 and the first check valve 13 are provided in the first purge pipe 11 in this order from the canister 8.
  • the purge control valve 12 is a solenoid valve whose opening degree is controlled by an electric signal output from the control device 14, and the flow rate of purge gas from the canister 8 is controlled according to the opening degree of the purge control valve 12.
  • the first check valve 13 is a mechanical valve that opens and closes according to the front-rear differential pressure, and the intake pipe pressure IP, which is the pressure in the intake pipe 4 downstream of the throttle valve 6, becomes a negative pressure and the suction force is applied to the valve body. Opens when the action is applied.
  • the reflux pipe 15 communicates the intake pipe 4 downstream of the compressor 2a with the intake pipe 4 upstream of the compressor 2a.
  • a nozzle portion 15a is provided in the middle of the recirculation pipe 15, and the recirculation pipe 15 downstream of the nozzle portion 15a and the first purge pipe 11 between the purge control valve 12 and the first check valve 13 are second. It is communicated via the purge pipe 16.
  • the inner diameter of the nozzle portion 15a gradually narrows toward the upstream of the compressor 2a, and accelerates the supercharged air flowing from the intake pipe 4 downstream of the compressor 2a to the intake pipe 4 upstream of the compressor 2a. Then, a negative pressure is generated in the second purge pipe 16 by the high-speed air flow injected from the nozzle portion 15a, and the air in the second purge pipe 16 is drawn into the supercharged air flow by the negative pressure to supercharge. The air and the air in the second purge pipe 16 are discharged to the intake pipe 4 upstream of the compressor 2a.
  • the ejector 17 is configured by the nozzle portion 15a and the second purge pipe 16 communicating with the downstream of the nozzle portion 15a, and the evaporated fuel is purged from the canister 8 by the negative pressure generated by the ejector 17.
  • a second check valve 18 is provided in the middle of the second purge pipe 16.
  • the second check valve 18 is a mechanical valve that opens and closes according to the front-rear differential pressure. The pressure generated by the ejector 17 becomes a negative pressure, and a suction force is applied to the valve body. When it acts, it opens.
  • the evaporated fuel adsorbed on the adsorbent of the canister 8 is desorbed from the adsorbent together with the air introduced into the canister 8 via the open air pipe 10 by the negative pressure of the intake pipe or the negative pressure generated by the ejector 17. Then, it is purged to the intake pipe 4 via the first purge pipe 11 or the second purge pipe 16. That is, when the first check valve 13 is opened, the evaporated fuel adsorbed on the adsorbent of the canister 8 is purged into the intake pipe 4 downstream of the throttle valve 6 via the first purge pipe 11. On the other hand, when the second check valve 18 is opened, the evaporated fuel adsorbed on the adsorbent of the canister 8 is purged into the intake pipe 4 upstream of the compressor 2a via the second purge pipe 16.
  • the intake pipe pressure IP which is the pressure in the intake pipe 4 downstream of the throttle valve 6, rises according to the increase in the load of the internal combustion engine 1 and switches from the negative pressure to the positive pressure. Further, the ejector 17 generates a larger negative pressure as the load of the internal combustion engine 1 (in other words, the boost pressure) increases.
  • the intake pipe pressure IP is the generated pressure of the ejector 17. When it is lower than, the first check valve 13 opens and the second check valve 18 closes.
  • the suction force acting on the second check valve 18 is larger than the suction force acting on the first check valve 13, in other words, when the generated pressure of the ejector 17 is lower than the intake pipe pressure IP.
  • the first check valve 13 closes and the second check valve 18 opens. Therefore, in the evaporative fuel processing device 3, the evaporated fuel is purged through the first purge pipe 11 in response to an increase in the load of the internal combustion engine 1 (in other words, the intake pipe pressure IP) to the second purge.
  • the state is switched to a state in which the evaporated fuel is purged through the pipe 16.
  • the fuel injection device 19 is a device that injects fuel into the intake port of each cylinder of the internal combustion engine 1, and injects fuel in response to a fuel injection pulse signal (in other words, an air-fuel ratio control signal) output by the control device 14. The amount and fuel injection timing are controlled.
  • the internal combustion engine 1 may include, as a fuel injection device 19, a device that directly injects fuel into the combustion chamber of the internal combustion engine 1.
  • the control device 14 is an electronic control device mainly composed of a microcomputer equipped with a CPU, ROM, RAM, etc., performs calculations based on input information, and obtains the results of the calculations in the purge control valve 12 and the fuel injection device 19. Output to.
  • the control device 14 acquires a signal output by the operation state sensor that detects the operating condition of the internal combustion engine 1, and controls a signal for controlling the opening degree of the purge control valve 12 and a fuel injection amount by the fuel injection device 19. Output a signal.
  • the internal combustion engine 1 uses the intake pipe pressure sensor 22 for detecting the intake pipe pressure IP, which is the pressure in the intake pipe 4 downstream of the throttle valve 6, and the intake air of the internal combustion engine 1 in the intake pipe 4 upstream of the compressor 2a, as operating state sensors. It is arranged in the air flow sensor 23 that detects the amount QA, the intake air temperature sensor 24 that detects the intake air temperature IAT of the internal combustion engine 1, and the exhaust pipe 21 between the turbine 2b and the catalytic converter 25, and is internal combustion based on the oxygen concentration in the exhaust. It includes an air-fuel ratio sensor 26 that detects the air-fuel ratio AFR of the engine 1, a rotation speed sensor 29 that detects the rotation speed NE of the internal combustion engine 1, and the like. Further, a pressure sensor 27 for detecting the pressure PAR in the atmosphere opening pipe 10 is arranged between the orifice 10b and the canister 8.
  • control device 14 obtains an estimated value of the adsorption amount of the evaporated fuel in the canister 8, and based on the obtained estimated value, determines the opening degree of the purge control valve 12 and / or the fuel injection amount by the fuel injection device 19. Control to control the operation of the internal combustion engine 1.
  • the control device 14 opens the purge control valve 12 to purge the evaporated fuel from the canister 8, and the pressure PAR in the atmosphere opening pipe 10 detected by the pressure sensor 27 (in other words, upstream of the canister 8). Based on the comparison between the pressure in the pipe) and the basic value PARB of the pressure PAR, the adsorption amount CAA of the evaporated fuel in the canister 8 is estimated.
  • the pressure PAR detected by the pressure sensor 27 is the pressure of the inflow air of the canister 8, and is a state quantity that correlates with the flow rate of the air introduced into the canister 8, and changes depending on the ventilation resistance of the canister 8.
  • the pressure sensor 27 corresponds to a state detection sensor that detects a predetermined state amount that changes depending on the ventilation resistance of the canister 8.
  • the air flow rate introduced into the canister 8 is replaced with the pressure for measurement, but instead of the pressure sensor 27, the flow meter 28 is arranged in the atmospheric opening pipe 10 between the orifice 10b and the canister 8. Can be done.
  • the basic value PARB is a value obtained in advance as a pressure PAR when the adsorption amount CAA of the evaporated fuel in the canister 8 is a predetermined amount (for example, the minimum amount or the maximum amount) and stored in the memory of the control device 14. It corresponds to the reference state quantity.
  • FIG. 2 is a time chart showing how the adsorption amount CAA and the pressure PAR of the evaporated fuel in the canister 8 change after the start of purging the evaporated fuel. Note that FIG. 2 shows changes in the suction amount CAA and the pressure PAR when the operating state (engine rotation speed and engine load) of the internal combustion engine 1 is constant and the purge control valve 12 is opened to a constant opening degree. ..
  • the purge control valve 12 When the purge control valve 12 is switched from the closed state to the open state and the purge is started, if the adsorption amount CAA of the evaporated fuel in the canister 8 is large, the pressure sensor 27 detects it because the ventilation resistance of the canister 8 is large. The pressure PAR to be applied becomes a value close to the atmospheric pressure. After that, as the suction amount CAA gradually decreases due to the continuation of purging, the ventilation resistance of the canister 8 decreases, and the pressure PAR detected by the pressure sensor 27 gradually decreases.
  • the pressure PAR detected by the pressure sensor 27 corresponds to the ventilation resistance when the adsorption amount CAA is the minimum amount. Will be held at the value. That is, the difference ⁇ P between the pressure PAR actually detected by the pressure sensor 27 and the pressure PAR when the adsorption amount CAA is the minimum amount correlates with the adsorption amount CAA of the evaporated fuel in the canister 8, and the larger the difference ⁇ P, the more. , The amount of adsorbed fuel adsorbed by the canister 8 CAA is large.
  • the control device 14 stores the pressure PAR when the suction amount CAA is the minimum amount in the memory as the basic value PARB, and obtains the difference ⁇ P between the basic value PARB on the memory and the pressure PAR detected by the pressure sensor 27. , The adsorption amount CAA is estimated based on the difference ⁇ P.
  • the basic value PARB is not limited to the pressure PAR when the adsorption amount CAA of the vaporized fuel in the canister 8 is the minimum amount, and for example, the adsorption amount CAA of the vaporized fuel in the canister 8 is the maximum amount (saturation amount).
  • the pressure can be PAR.
  • the basic value PARB is the pressure PAR when the adsorption amount CAA of the evaporated fuel in the canister 8 is the maximum amount, the larger the difference ⁇ P between the pressure PAR detected by the pressure sensor 27 and the basic value PARB, the more evaporation in the canister 8.
  • the amount of fuel adsorbed CAA is small.
  • the basic value PARB can be set to the pressure PAR when the adsorption amount CAA of the evaporated fuel in the canister 8 is a predetermined ratio (for example, 10%) of the maximum amount.
  • FIG. 3 is a flowchart showing a procedure of the adsorption amount CAA estimation process performed by the control device 14.
  • the control device 14 executes the routine shown in FIG. 3 by interrupt processing at predetermined time intervals.
  • step S1001 the control device 14 obtains the basic value PARB based on the operating state of the internal combustion engine 1 detected by the operating state sensors such as the airflow sensor 23 and the rotation speed sensor 29.
  • the basic value PARB is a pressure PAR when the adsorption amount CAA of the evaporated fuel in the canister 8 is the minimum amount and the opening degree of the purge control valve 12 is a predetermined opening degree, and is an internal combustion engine by an experiment or a simulation. It is a value obtained in advance for each operating condition of 1.
  • FIG. 4 shows a map that stores the basic value PARB according to the operating conditions of the internal combustion engine 1.
  • the control device 14 is a map in which the data of the basic value PARB is input in advance for each lattice divided into a plurality of data by the combination of the data of the rotation speed NE of the internal combustion engine 1 and the data of the intake air amount QA representing the engine load. It has a basic value map.
  • the basic value map is based on the engine speed NE and the engine load.
  • the basic value PARB is set to a higher value when the engine rotation speed NE is low and the intake air amount QA is large.
  • step S1001 the control device 14 searches the basic value map for the basic value PARB stored corresponding to the current engine rotation speed NE and the intake air amount QA.
  • the control device 14 can calculate the basic value PARB based on a function having the engine rotation speed NE and the intake air amount QA (engine load) as variables.
  • FIG. 5 shows the correlation between the purge flow rate, the pressure PAR, and the adsorption amount CAA.
  • FIG. 5 shows that the purge flow rate decreases as the adsorption amount CAA increases, and increases as the adsorption amount CAA decreases, and the pressure PAR increases as the purge flow rate decreases.
  • the control device 14 sets the pressure PAR at the purge flow rate when the adsorption amount CAA of the evaporated fuel in the canister 8 is a predetermined amount as the basic value PARB, and as shown in FIG. 4, according to the operating conditions of the internal combustion engine 1. To obtain the basic value PARB.
  • the control device 14 uses the intake air amount QA data as the engine operating condition used for calculating the basic value PARB, but the intake pipe pressure IP data can be used instead of the intake air amount QA data.
  • the control device 14 acquires the information on the opening degree of the purge control valve 12 in step S1002, and acquires the information on the atmospheric pressure in step S1003.
  • the control device 14 can acquire the output of the pressure sensor 27 in the closed state of the purge control valve 12 as a value equivalent to atmospheric pressure.
  • step S1004 the control device 14 obtains the pressure PAR in the atmospheric release pipe 10 based on the output of the pressure sensor 27. Further, in the next step S1005, the control device 14 normalizes the pressure PAR data obtained in step S1004 to the pressure based on the atmospheric pressure obtained in step S1003.
  • step S1007 the control device 14 obtains a first correction coefficient PC1 which is a correction value for correcting the difference ⁇ P according to the operating state of the internal combustion engine 1.
  • FIG. 6 shows a map that stores the first correction coefficient PC1 according to the engine rotation speed NE and the intake air amount QA.
  • the first correction coefficient PC1 is set to a higher value when the engine rotation speed NE is low and the intake air amount QA is large, and the difference ⁇ P is set to a low engine rotation speed NE due to the first correction coefficient PC1.
  • the intake air amount QA is large, the engine speed NE is corrected to a larger value than when the intake air amount QA is small.
  • the adsorption amount CAA can be accurately estimated from the difference ⁇ P even if the operating state (engine rotation speed and engine load) of the internal combustion engine 1 is different.
  • the control device 14 obtains a second correction coefficient PC2 which is a correction value for correcting the difference ⁇ P according to the opening degree of the purge control valve 12.
  • FIG. 7 shows the correlation between the opening degree of the purge control valve 12 and the second correction coefficient PC2.
  • the control device 14 sets the second correction coefficient PC2 to 1.0 when the opening degree of the purge control valve 12 is fully open (specifically, the maximum opening degree in control), and the opening degree of the purge control valve 12 is set to 1.0.
  • the second correction coefficient PC2 is gradually changed to a higher value. That is, since the difference ⁇ P with respect to the suction amount CAA changes depending on the opening degree of the purge control valve 12, the difference ⁇ P is corrected by the second correction coefficient PC2, and even if the opening degree of the purge control valve 12 is different, the difference ⁇ P is used.
  • the adsorption amount CAA can be estimated accurately.
  • step S1010 the control device 14 calculates the adsorption amount CAA from the corrected difference ⁇ PA. In other words, the control device 14 converts the data of the difference ⁇ PA into the data of the adsorption amount CAA in step S1010.
  • FIG. 8 is a diagram showing the correlation between the difference ⁇ PA and the adsorption amount CAA, that is, the conversion characteristics of the table for converting the data of the difference ⁇ PA into the adsorption amount CAA. Since the control device 14 uses the pressure PAR when the adsorption amount CAA of the evaporated fuel in the canister 8 is the minimum amount as the basic value PARB, the larger the difference ⁇ PA, the larger the adsorption amount CAA is calculated.
  • the control device 14 can suppress the occurrence of an estimation error of the adsorption amount CAA due to the ventilation resistance of the canister 8 and can estimate the adsorption amount CAA with high accuracy. Then, the control device 14 improves the operability and exhaust properties of the internal combustion engine 1 by controlling the opening degree of the purge control valve 12 and / or the fuel injection amount by the fuel injection device 19 based on the estimated adsorption amount CAA. it can.
  • the control device 14 limits the update process of the adsorption amount CAA used for controlling the opening degree of the purge control valve 12 and / or the fuel injection amount by the fuel injection device 19.
  • FIG. 9 is a flowchart showing a procedure for updating the adsorption amount CAA.
  • the control device 14 executes the routine shown in FIG. 9 by interrupt processing at predetermined time intervals.
  • step S1201 the control device 14 estimates the adsorption amount CAA (in other words, the evaporative fuel concentration in the canister 8) according to the procedure shown in the flowchart of FIG.
  • step S1202 determines whether or not the deviation between the previous value and the latest value (current value) of the estimation result of the adsorption amount CAA is equal to or less than a predetermined value. In other words, in step S1202, the control device 14 determines whether or not the amount of change in the estimation result of the adsorption amount CAA per predetermined time is equal to or less than the predetermined value.
  • the control device 14 is used for controlling the internal combustion engine 1.
  • the update of the adsorption amount CAA used for controlling the internal combustion engine 1 is stopped and held at the previous value. That is, the predetermined value to be compared with the change amount of the estimation result of the adsorption amount CAA per predetermined time is a value that does not exceed in the decrease change of the adsorption amount CAA in the normal purge state.
  • the control device 14 proceeds to step S1203, and whether or not the intake pipe pressure IP is not more than the first predetermined value IP1.
  • the first predetermined value IP1 is for determining whether or not the estimation accuracy of the adsorption amount CAA is such that the latest estimation result cannot be reflected in the adsorption amount CAA used for controlling the internal combustion engine 1. Is the threshold of.
  • the control device 14 stops updating the adsorption amount CAA used for controlling the internal combustion engine 1 by terminating this routine as it is without updating the adsorption amount CAA used for controlling the internal combustion engine 1.
  • the control device 14 proceeds to step S1204 and determines whether or not the intake pipe pressure IP is equal to or less than the second predetermined value IP2.
  • the second predetermined value IP2 is a pressure lower than the first predetermined value IP1
  • the control device 14 estimates the adsorption amount CAA based on the difference ⁇ PA. It shows that the pressure condition can be performed with sufficient accuracy.
  • step S1205 when the intake pipe pressure IP is equal to or less than the second predetermined value IP2, the control device 14 proceeds to step S1205, and normally updates the adsorption amount CAA used for controlling the internal combustion engine 1 based on the result estimated in step S1201 this time. To do.
  • the control device 14 Goes to step S1206.
  • the state where the intake pipe pressure IP is equal to or less than the first predetermined value IP1 and the intake pipe pressure IP is higher than the second predetermined value IP2 is a condition in which the estimation result of the adsorption amount CAA can be obtained with sufficient accuracy, but it is used for control. It is a condition that is expected to obtain an estimation accuracy that can be reflected to some extent. Therefore, in step S1206, the control device 14 performs a process of updating the adsorption amount CAA used for controlling the internal combustion engine 1 based on the result estimated in step S1201 of this time, but the estimated value associated with the update is compared with step S1205.
  • the amount of change (in other words, the amount of update) is limited to a small amount.
  • control device 14 limits the updated value to be closer to the previous value in step S1206 than in the case of updating in step S1205. As a result, it is suppressed that the adsorption amount CAA used for controlling the internal combustion engine 1 is normally updated based on the estimation result having an error when the intake pipe pressure IP exceeds a predetermined pressure, and the internal combustion engine 1 is prevented from being normally updated due to the estimation error. It is possible to prevent deterioration of the drivability and exhaust properties of the engine.
  • the control device 14 can perform the update process in step S1206 by using a low-pass filter process, a weighted average calculation, or the like. Further, the control device 14 can select either stop of update or normal update without limiting the update amount, and further, a plurality of limits of the update amount are set according to the intake pipe pressure IP. You can switch to stages.
  • FIG. 10 is a time chart showing the correlation between the adsorption amount CAA and the intake pipe pressure IP when the update process shown in the flowchart of FIG. 9 is performed.
  • the intake pipe pressure IP changes upward from time t0 to time t1 in FIG. 10, it is equal to or less than the second predetermined value IP2. Therefore, the control device 14 is used for controlling the internal combustion engine 1 based on the latest estimation result.
  • the adsorption amount CAA is updated normally.
  • the intake pipe pressure IP becomes higher than the second predetermined value IP2 and equal to or less than the first predetermined value IP1, and the control device 14 of the internal combustion engine 1 is based on the latest estimation result.
  • the suction amount CAA used for control is updated, but the amount of change in the estimated value (in other words, the update amount) due to the update is limited smaller than when the intake pipe pressure IP is the second predetermined value IP2 or less.
  • the control device 14 stops updating the adsorption amount CAA used for controlling the internal combustion engine 1. Then, the suction amount CAA used for controlling the internal combustion engine 1 is maintained at the previous value.
  • FIG. 11 is a flowchart showing a procedure for determining clogging of the atmosphere opening pipe 10 by the control device 14.
  • the control device 14 executes the routine shown in FIG. 11 by interrupt processing at predetermined time intervals.
  • step S1401 the control device 14 acquires the data of the difference ⁇ PA obtained according to the procedure shown in the flowchart of FIG.
  • step S1402 the control device 14 determines whether or not the difference ⁇ PA is equal to or greater than the predetermined value ⁇ PA1.
  • the difference ⁇ PA is a predetermined value ⁇ PA1 or more
  • the flow rate of the air introduced into the canister 8 is small, the adsorption amount CAA of the evaporated fuel in the canister 8 is large, or the atmosphere open pipe 10 is used. It is assumed that clogging (specifically, clogging of the filter 10a) has occurred.
  • the control device 14 proceeds to step S1403, and when the difference ⁇ PA is less than the predetermined value ⁇ PA1, the control device 14 terminates this routine as it is and determines that the air opening pipe 10 is clogged. do not do.
  • step S1403 the control device 14 determines whether or not the intake pipe pressure IP is equal to or lower than the predetermined pressure THP.
  • the state where the intake pipe pressure IP is equal to or lower than the predetermined pressure THP indicates that the force for sucking the purge air into the intake pipe 4 is sufficiently high and the purging of the evaporated fuel from the canister 8 proceeds.
  • the control device 14 proceeds to step S1404 when the intake pipe pressure IP is equal to or lower than the predetermined pressure THP and the condition for the purging to proceed is satisfied. On the other hand, when the intake pipe pressure IP is higher than the predetermined pressure THP and the purging does not proceed, the control device 14 terminates this routine as it is and does not determine the occurrence of clogging of the atmospheric opening pipe 10.
  • step S1404 the control device 14 determines whether or not the opening POD of the purge control valve 12 is equal to or greater than the predetermined opening THO.
  • the state in which the opening POD of the purge control valve 12 is equal to or greater than the predetermined opening THO indicates that the purging flow rate is large and the purging of the evaporated fuel from the canister 8 is proceeding.
  • the control device 14 proceeds to step S1405 when the opening POD of the purge control valve 12 is equal to or larger than the predetermined opening THO and the condition for the purging to proceed is satisfied. On the other hand, when the opening POD of the purge control valve 12 is smaller than the predetermined opening THO and the purging does not proceed, the control device 14 terminates this routine as it is and does not determine the occurrence of clogging of the atmospheric opening pipe 10.
  • step S1405 the control device 14 opens the purge control valve 12 after switching the purge control valve 12 from the closed state to the open state, that is, the elapsed time T from starting the purging of the evaporated fuel from the canister 8. It is determined whether or not the time held in the is equal to or longer than the predetermined time THT.
  • the elapsed time T is THT or more for a predetermined time
  • the canister 8 evaporates under the condition that the intake pipe pressure IP is the predetermined pressure THP or less and the opening POD of the purge control valve 12 is the predetermined opening THO or more.
  • the fuel adsorption amount CAA is less than the predetermined amount, in other words, the difference ⁇ PA is estimated to be less than the predetermined value ⁇ PA1.
  • the control device 14 determines in step S1402 that the difference ⁇ PA is equal to or greater than the predetermined value ⁇ PA1, and then proceeds to step S1405 through steps S1403 and S1404. Therefore, when the control device 14 determines in step S1405 that the elapsed time T is equal to or greater than the predetermined time THT, the difference ⁇ PA is less than the predetermined value ⁇ PA1 (in other words, the adsorption amount CAA is less than the predetermined amount). Even though the presumed condition is satisfied, the difference ⁇ PA is actually maintained in a state of a predetermined value ⁇ PA1 or more (in other words, a state in which the adsorption amount CAA is a predetermined amount or more).
  • the purging progress is slower than the normal state (in other words, the decrease change of the adsorption amount CAA is slower than the reference). Abnormal state). Then, the abnormality of the purging process occurs when the air flow rate introduced into the canister 8 becomes smaller than that in the normal state due to the clogging of the air opening pipe 10 (specifically, the clogging of the filter 10a).
  • step S1405 determines the elapsed time T is equal to or longer than the predetermined time THT
  • step S1406 determines the occurrence of clogging of the atmospheric opening pipe 10, and performs an abnormal time process based on the determination result.
  • the control device 14 performs a process of storing the result of the clogging determination in the memory as a diagnosis history as an abnormality processing when the occurrence of the clogging of the air opening pipe 10 is determined, and an abnormality occurrence in the driver of the vehicle (in detail). Performs a process of warning (occurrence of clogging of the air release pipe 10 or an abnormal occurrence of the evaporated fuel treatment device 3), a process of correcting the opening degree of the purge control valve 12, and the like.
  • control device 14 determines in step S1405 that the elapsed time T is less than the predetermined time THT, the control device 14 terminates this routine as it is, and does not determine the occurrence of clogging of the atmosphere opening pipe 10. In this way, the control device 14 determines whether or not the air opening tube 10 is clogged based on the data of the difference ⁇ PA calculated for estimating the adsorption amount CAA. Then, the control device 14 can promote the elimination of the abnormal state or suppress the influence of the occurrence of the abnormal state by performing the abnormal state processing when it is determined that the air opening pipe 10 is clogged.
  • FIG. 12 is a time chart showing a change in the pressure PAR in the atmosphere opening pipe 10 when the atmosphere opening pipe 10 is clogged (specifically, the filter 10a is clogged).
  • the change in the pressure PAR shown by the dotted line shows the characteristic in the normal state where the filter 10a is not clogged
  • the change in the pressure PAR shown by the solid line is an abnormality in which the filter 10a is clogged. Shows the characteristics of time.
  • the change in the pressure PAR shown in FIG. 12 is a characteristic under the condition that the intake pipe pressure IP is the predetermined pressure THP or less and the opening POD of the purge control valve 12 is the predetermined opening THO or more.
  • the difference ⁇ PA is less than the predetermined value ⁇ PA1 when the elapsed time T reaches the predetermined time THT (time t1 in FIG. 12).
  • the filter 10a is clogged and abnormal, the flow rate of the air introduced into the canister 8 is reduced, so that the pressure PAR is maintained at a high value and the elapsed time T reaches the predetermined time THT ( Even at the time t1) in FIG. 12, the difference ⁇ PA is equal to or greater than the predetermined value ⁇ PA1. Therefore, the control device 14 can determine whether or not the filter 10a is clogged based on whether or not the difference ⁇ PA is maintained at the predetermined value ⁇ PA1 or more when the elapsed time T is the predetermined time THT or more.
  • the control device 14 can correct the data of the difference ⁇ P according to the fuel temperature, the remaining amount of fuel in the fuel tank 7, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

本発明に係る内燃機関の制御装置及び制御方法は、キャニスタの通気抵抗によって変化する所定の状態量を検出する状態検出センサと、前記内燃機関の運転状態を検出する運転状態センサと、を備えた前記内燃機関において、前記キャニスタにおける蒸発燃料の吸着量が所定量であるときの前記状態量である基準状態量を、前記運転状態センサが検出した前記内燃機関の運転状態に基づき求め、前記基準状態量と前記状態検出センサが検出した状態量との比較に基づき、前記キャニスタにおける蒸発燃料の吸着量の推定値を求め、前記推定値に基づき前記内燃機関を制御する。

Description

内燃機関の制御装置及び制御方法
 本発明は、内燃機関の制御装置及び制御方法に関し、詳しくは、キャニスタにおける蒸発燃料の吸着量を推定する技術に関する。
 特許文献1に開示される蒸発燃料処理装置は、内燃機関に供給する燃料を貯蔵する燃料タンク内で発生する蒸発燃料を捕集するキャニスタと、該キャニスタと前記機関の吸気系とを接続するパージ通路と、該パージ通路に設けられ、該パージ通路を流れるパージガスの流量を制御するパージ制御弁と、該パージ制御弁の開度を制御するパージガス流量制御手段と、前記パージガス中の蒸発燃料濃度を推定する蒸発燃料濃度推定手段と、推定された蒸発燃料濃度が高くなるほど、前記機関に供給する燃料量を減少させるように補正する燃料量補正手段とを備える。
特開2018-066351号公報
 ところで、キャニスタにおける蒸発燃料の吸着量が多いほど、換言すれば、キャニスタ内の吸着ガス濃度が高いほど、キャニスタの通気抵抗(換言すれば、圧損)が大きくなり、この通気抵抗の違いによって同じ吸気管圧力の条件でもパージ流量が異なるようになる。
 このため、キャニスタの通気抵抗によって、蒸発燃料濃度の推定に誤差を生じ、濃度推定値に基づき内燃機関の制御を実施することで、内燃機関の運転性や排気性状を低下させるおそれがあった。
 本発明は、従来の実情に鑑みてなされたものであり、その目的は、キャニスタにおける蒸発燃料の吸着量の推定精度を改善できる、内燃機関の制御装置及び制御方法を提供することにある。
 本発明によれば、その1つの態様において、内燃機関は、キャニスタの通気抵抗によって変化する所定の状態量を検出する状態検出センサと、前記内燃機関の運転状態を検出する運転状態センサと、を備え、制御装置は、前記キャニスタにおける蒸発燃料の吸着量が所定量であるときの前記状態量である基準状態量を、前記運転状態センサが検出した前記内燃機関の運転状態に基づき求め、前記基準状態量と前記状態検出センサが検出した状態量との比較に基づき前記キャニスタにおける蒸発燃料の吸着量の推定値を求め、前記推定値に基づき前記内燃機関を制御する。
 また、制御方法は、前記キャニスタにおける蒸発燃料の吸着量が所定量であるときの前記状態量である基準状態量を、前記運転状態センサが検出した前記内燃機関の運転状態に基づき求める工程と、前記基準状態量と前記状態検出センサが検出した状態量との比較に基づき、前記キャニスタにおける蒸発燃料の吸着量の推定値を求める工程と、前記推定値に基づき前記内燃機関を制御する工程と、を含む。
 上記発明によると、キャニスタにおける蒸発燃料の吸着量の推定精度を改善できる。
内燃機関のシステム構成図である。 キャニスタにおける蒸発燃料の吸着量CAAと、キャニスタの大気開放管内の圧力PARとの相関を示すタイムチャートである。 吸着量CAAの推定処理の手順を示すフローチャートである。 圧力PARの基本値PARBを求めるためのマップを示す線図である。 圧力PAR、パージ流量、及び吸着量CAAの相関を示す線図である。 差分ΔPを補正するための第1補正係数PC1、機関回転速度、及び吸入空気量の相関を示す線図である。 差分ΔPを補正するための第2補正係数PC2とパージ制御弁の開度との相関を示す線図である。 差分ΔPAと吸着量CAAとの相関を示す線図である。 吸着量CAAの更新処理の手順を示すフローチャートである。 吸気管圧力と吸着量CAAの更新処理との相関を示すタイムチャートである。 フィルタの詰まり発生を判定する手順を示すフローチャートである。 フィルタの詰まり発生の有無に因る圧力推移の違いを示すタイムチャートである。
 以下、本発明に係る内燃機関の制御装置及び制御方法の実施形態を図面に基づいて説明する。
 図1は、蒸発燃料処理装置を備える内燃機関の一態様を示す図である。
 図1に示す内燃機関1は、過給機としてのターボチャージャ2、及び、蒸発燃料処理装置3を備えたV型内燃機関であり、図示省略した車両に動力源として搭載される。
 内燃機関1の吸気管4には、上流から、ターボチャージャ2のコンプレッサ2a、インタークーラ5、スロットルバルブ6がこの順に設けられている。
 ターボチャージャ2は、コンプレッサ2aとタービン2bとで構成され、排気管21を流れる排気ガスによってタービン2bを回転させることで、タービン2bと同軸に設けたコンプレッサ2aが回転し、コンプレッサ2aが吸気管4を流れる吸気を圧縮(過給)して内燃機関1に供給する。
 インタークーラ5は、コンプレッサ2aによって圧縮(過給)された吸気である過給気を冷却する。
 スロットルバルブ6は、吸気管4の開口面積を調整することで、内燃機関1に吸入される吸気量を調節する。
 蒸発燃料処理装置3は、燃料タンク7内で発生した蒸発燃料をキャニスタ8に捕集し、その後、キャニスタ8から内燃機関1の吸気管4に蒸発燃料をパージする装置である。
 キャニスタ8は、蒸発燃料を吸着及び脱離可能な活性炭などの吸着材をケース内に充填した装置である。
 キャニスタ8と燃料タンク7とは蒸発燃料配管9を介して連通され、燃料タンク7内で発生した蒸発燃料は、蒸発燃料配管9を通ってキャニスタ8に達し、キャニスタ8の吸着材に吸着される。
 また、キャニスタ8は、大気開放管10を介して大気に開放されている。
 大気開放管10の大気開口端には、空気をろ過して導入するためのフィルタ10aが配置され、更に、フィルタ10aの下流の大気開放管10には流量調節を行うオリフィス10bを設けてある。
 また、キャニスタ8は、第1パージ配管11を介してスロットルバルブ6下流の吸気管4に接続されている。
 第1パージ配管11には、キャニスタ8から順に、パージ制御弁12、第1逆止弁13がこの順に設けられている。
 パージ制御弁12は、制御装置14が出力する電気信号によって開度が制御される電磁弁であり、このパージ制御弁12の開度に応じてキャニスタ8からのパージガス流量が制御される。
 第1逆止弁13は、前後差圧に応じて開閉する機械式弁であり、スロットルバルブ6下流の吸気管4内の圧力である吸気管圧力IPが負圧になって弁体に吸引力が作用すると開弁する。
 また、還流配管15は、コンプレッサ2aの下流の吸気管4とコンプレッサ2aの上流の吸気管4とを連通させる。
 還流配管15の途中にはノズル部15aが設けられ、ノズル部15aの下流の還流配管15と、パージ制御弁12と第1逆止弁13との間の第1パージ配管11とが、第2パージ配管16を介して連通される。
 ノズル部15aは、コンプレッサ2aの上流に向けて徐々に内径が狭まり、コンプレッサ2aの下流の吸気管4からコンプレッサ2aの上流の吸気管4に流れる過給気を加速させる。
 そして、ノズル部15aから噴射される高速の空気の流れによって第2パージ配管16に負圧が生じ、係る負圧によって過給気の流れに第2パージ配管16内の空気が引き込まれ、過給気及び第2パージ配管16内の空気は、コンプレッサ2a上流の吸気管4に排出される。
 つまり、ノズル部15aと、ノズル部15aの下流に連通される第2パージ配管16とによってエジェクタ17が構成され、エジェクタ17が発生する負圧によってキャニスタ8から蒸発燃料がパージされる。
 第2パージ配管16の途中には、第2逆止弁18が設けられている。
 第2逆止弁18は、第1逆止弁13と同様に、前後差圧に応じて開閉する機械式弁であり、エジェクタ17が発生する圧力が負圧になって弁体に吸引力が作用すると開弁する。
 そして、キャニスタ8の吸着材に吸着された蒸発燃料は、吸気管負圧又はエジェクタ17で発生する負圧によって、大気開放管10を介してキャニスタ8内に導入された空気とともに吸着材から脱離され、その後、第1パージ配管11又は第2パージ配管16を介して吸気管4にパージされる。
 つまり、第1逆止弁13が開弁する場合、キャニスタ8の吸着材に吸着された蒸発燃料は、第1パージ配管11を介してスロットルバルブ6下流の吸気管4内にパージされる。
 一方、第2逆止弁18が開弁する場合、キャニスタ8の吸着材に吸着された蒸発燃料は、第2パージ配管16を介してコンプレッサ2a上流の吸気管4内にパージされる。
 ここで、スロットルバルブ6下流の吸気管4内の圧力である吸気管圧力IPは、内燃機関1の負荷の増大に応じて上昇して負圧から正圧に切替わる。また、エジェクタ17は、内燃機関1の負荷(換言すれば、過給圧)の増大に応じてより大きな負圧を発生する。
 蒸発燃料処理装置3においては、第1逆止弁13に作用する吸引力が第2逆止弁18に作用する吸引力よりも大きいとき、換言すれば、吸気管圧力IPがエジェクタ17の発生圧力よりも低いときに、第1逆止弁13が開弁し第2逆止弁18が閉弁する。
 一方、第2逆止弁18に作用する吸引力が第1逆止弁13に作用する吸引力よりも大きいとき、換言すれば、エジェクタ17の発生圧力が吸気管圧力IPよりも低いときに、第1逆止弁13が閉弁し第2逆止弁18が開弁する。
 このため、蒸発燃料処理装置3では、内燃機関1の負荷(換言すれば、吸気管圧力IP)の増加に応じて、第1パージ配管11を介して蒸発燃料がパージされる状態から第2パージ配管16を介して蒸発燃料がパージされる状態に切替わる。
 燃料噴射装置19は、内燃機関1の各気筒の吸気ポート内に燃料を噴射する装置で、制御装置14が出力する燃料噴射パルス信号(換言すれば、空燃比制御信号)に応じて、燃料噴射量及び燃料噴射タイミングが制御される。
 なお、内燃機関1は、燃料噴射装置19として、内燃機関1の燃焼室内に燃料を直接噴射する装置を備えることができる。
 制御装置14は、CPU、ROM、RAMなどを備えたマイクロコンピュータを主体とする電子制御装置であり、入力された情報に基づいて演算を行い、演算した結果をパージ制御弁12及び燃料噴射装置19に出力する。
 制御装置14は、内燃機関1の運転条件を検出する運転状態センサが出力する信号を取得し、パージ制御弁12の開度を制御する信号、及び、燃料噴射装置19による燃料噴射量を制御する信号を出力する。
 内燃機関1は、運転状態センサとして、スロットルバルブ6下流の吸気管4内の圧力である吸気管圧力IPを検出する吸気管圧力センサ22、コンプレッサ2a上流の吸気管4において内燃機関1の吸入空気量QAを検出するエアフローセンサ23、内燃機関1の吸気の温度IATを検出する吸気温センサ24、タービン2bと触媒コンバータ25との間の排気管21に配置され、排気中の酸素濃度に基づき内燃機関1の空燃比AFRを検出する空燃比センサ26、内燃機関1の回転速度NEを検出する回転速度センサ29などを備える。
 また、オリフィス10bとキャニスタ8との間に、大気開放管10内の圧力PARを検出する圧力センサ27が配置されている。
 ここで、制御装置14は、キャニスタ8における蒸発燃料の吸着量の推定値を求め、求めた推定値に基づき、パージ制御弁12の開度、及び/又は、燃料噴射装置19による燃料噴射量を制御して、内燃機関1の運転を制御する。
 以下では、制御装置14による吸着量の推定処理を説明する。
 制御装置14は、パージ制御弁12を開弁してキャニスタ8から蒸発燃料をパージさせている状態において、圧力センサ27が検出した大気開放管10内の圧力PAR(換言すれば、キャニスタ8上流の配管内の圧力)と、圧力PARの基本値PARBとの比較に基づき、キャニスタ8における蒸発燃料の吸着量CAAを推定する。
 なお、圧力センサ27が検出する圧力PARは、キャニスタ8の流入空気の圧力であって、キャニスタ8に導入される空気の流量に相関する状態量であり、キャニスタ8の通気抵抗によって変化する。
 そして、圧力センサ27は、キャニスタ8の通気抵抗によって変化する所定の状態量を検出する状態検出センサに相当する。
 本実施形態では、キャニスタ8に導入される空気流量を圧力に置き換えて計測するが、圧力センサ27に代えて、流量計28をオリフィス10bとキャニスタ8との間の大気開放管10に配置することができる。
 また、基本値PARBは、キャニスタ8における蒸発燃料の吸着量CAAが所定量(例えば、最小量若しくは最大量)であるときの圧力PARとして予め求められ、制御装置14のメモリに保存されている値であり、基準状態量に相当する。
 図2は、キャニスタ8における蒸発燃料の吸着量CAA及び圧力PARが、蒸発燃料のパージ開始後に変化する様子を示すタイムチャートである。
 なお、図2は、内燃機関1の運転状態(機関回転速度及び機関負荷)が一定で、かつ、パージ制御弁12を一定の開度に開いたときの吸着量CAAと圧力PARの変化を示す。
 パージ制御弁12が閉状態から開状態に切り替えられてパージが開始された当初において、キャニスタ8における蒸発燃料の吸着量CAAが多いと、キャニスタ8の通気抵抗が大きいために、圧力センサ27が検出する圧力PARは大気圧に近い値となる。
 その後、パージの継続によって吸着量CAAが徐々に減るにしたがってキャニスタ8の通気抵抗が減り、圧力センサ27が検出する圧力PARは徐々に低下する。
 そして、キャニスタ8における蒸発燃料の吸着量CAAが最小量(換言すれば、空状態)に達すると、圧力センサ27が検出する圧力PARは、吸着量CAAが最小量であるときの通気抵抗に見合った値に保持されることになる。
 つまり、実際に圧力センサ27が検出した圧力PARと、吸着量CAAが最小量であるときの圧力PARとの差分ΔPは、キャニスタ8における蒸発燃料の吸着量CAAに相関し、差分ΔPが大きいほど、キャニスタ8における蒸発燃料の吸着量CAAが多いことになる。
 そこで、制御装置14は、吸着量CAAが最小量であるときの圧力PARを基本値PARBとしてメモリに記憶し、メモリ上の基本値PARBと圧力センサ27が検出した圧力PARとの差分ΔPを求め、差分ΔPに基づき吸着量CAAを推定する。
 なお、基本値PARBは、キャニスタ8における蒸発燃料の吸着量CAAが最小量であるときの圧力PARに限定されず、例えば、キャニスタ8における蒸発燃料の吸着量CAAが最大量(飽和量)であるときの圧力PARとすることができる。
 基本値PARBを、キャニスタ8における蒸発燃料の吸着量CAAが最大量であるときの圧力PARとした場合、圧力センサ27が検出した圧力PARと基本値PARBとの差分ΔPが大きいほどキャニスタ8における蒸発燃料の吸着量CAAが少ないことになる。
 また、基本値PARBを、キャニスタ8における蒸発燃料の吸着量CAAが、最大量の所定割合(例えば、10%)であるときの圧力PARとすることもできる。
 図3は、制御装置14が実施する吸着量CAAの推定処理の手順を示すフローチャートである。
 なお、制御装置14は、図3に示すルーチンを所定時間毎に割り込み処理によって実行する。
 制御装置14は、ステップS1001で、基本値PARBを、エアフローセンサ23や回転速度センサ29などの運転状態センサが検出した内燃機関1の運転状態に基づき求める。
 ここで、基本値PARBは、キャニスタ8における蒸発燃料の吸着量CAAが最小量であってパージ制御弁12の開度が所定開度であるときの圧力PARであって、実験又はシミュレーションによって内燃機関1の運転条件毎に予め求められた値である。
 図4は、内燃機関1の運転条件に応じて基本値PARBを記憶するマップを示す。
 制御装置14は、内燃機関1の回転速度NEのデータと機関負荷を代表する吸入空気量QAのデータとの組み合わせによって複数に区分される格子毎に基本値PARBのデータを予め入力したマップである基本値マップを備える。
 キャニスタ8における蒸発燃料の吸着量CAAが最小量であるときの圧力PARは、機関回転速度NE及び機関負荷に応じて変化するため、基本値マップは、機関回転速度NEと機関負荷とに応じて基本値PARBを記憶する。
 ここで、基本値PARBは、機関回転速度NEが低く吸入空気量QAが多いときほど高い値に設定される。
 そして、制御装置14は、ステップS1001で、基本値マップから現時点の機関回転速度NE及び吸入空気量QAに対応して記憶されている基本値PARBを検索する。
 なお、制御装置14は、基本値PARBを、機関回転速度NE及び吸入空気量QA(機関負荷)を変数とする関数に基づき算出することができる。
 図5は、パージ流量、圧力PAR、及び吸着量CAAの相関を示す。
 図5は、パージ流量が、吸着量CAAが多いときほど少なくなり、吸着量CAAが少なくなるほど多くなることを示し、また、パージ流量が少ないときほど圧力PARは高くなることを示す。
 そこで、制御装置14は、キャニスタ8における蒸発燃料の吸着量CAAが所定量のときのパージ流量での圧力PARを基本値PARBとし、図4に示したように、内燃機関1の運転条件に応じて基本値PARBを求める。
 なお、制御装置14は、基本値PARBの算出に用いる機関運転条件として、吸入空気量QAのデータを用いるが、吸入空気量QAのデータに代えて吸気管圧力IPのデータを用いることができる。
 制御装置14は、ステップS1002でパージ制御弁12の開度の情報を取得し、また、ステップS1003で大気圧の情報を取得する。
 なお、制御装置14は、パージ制御弁12の閉弁状態での圧力センサ27の出力を大気圧相当値として取得することができる。
 制御装置14は、ステップS1004で、圧力センサ27の出力に基づき大気開放管10内の圧力PARを求める。
 更に、制御装置14は、次のステップS1005で、ステップS1004で求めた圧力PARのデータを、ステップS1003で求めた大気圧を基準とする圧力に正規化する。
 そして、制御装置14は、ステップS1006で、ステップS1001で求めた基本値PARBと、ステップS1005で正規化した圧力PARとの差分ΔP(ΔP=|PARB-PAR|)を求める。
 次いで、制御装置14は、ステップS1007で、内燃機関1の運転状態に応じて差分ΔPを補正するための補正値である第1補正係数PC1を求める。
 図6は、機関回転速度NEと吸入空気量QAとに応じて第1補正係数PC1を記憶するマップを示す。
 図6のマップにおいて、第1補正係数PC1は、機関回転速度NEが低く吸入空気量QAが多いときほど高い値に設定され、差分ΔPは、第1補正係数PC1によって、機関回転速度NEが低く吸入空気量QAが多いときは、機関回転速度NEが高く吸入空気量QAが少ないときに比べて、より大きな値に補正される。
 この第1補正係数PC1による差分ΔPの補正によって、内燃機関1の運転状態(機関回転速度及び機関負荷)が異なっても、差分ΔPから吸着量CAAを精度良く推定できるようにする。
 制御装置14は、次のステップS1008で、パージ制御弁12の開度に応じて差分ΔPを補正するための補正値である第2補正係数PC2を求める。
 図7は、パージ制御弁12の開度と第2補正係数PC2との相関を示す。
 制御装置14は、例えば、パージ制御弁12の開度が全開(詳細には、制御上の最大開度)であるときに第2補正係数PC2を1.0に設定し、パージ制御弁12の開度が全開から小さくなるほど、第2補正係数PC2を徐々により高い値に変更する。
 つまり、パージ制御弁12の開度によって、吸着量CAAに対する差分ΔPが変化するので、第2補正係数PC2によって差分ΔPを補正して、パージ制御弁12の開度が異なっても、差分ΔPから吸着量CAAを精度良く推定できるようにする。
 そして、制御装置14は、ステップS1009に進み、ステップS1006で求めた差分ΔPを、ステップS1007で機関運転条件に基づき求めた第1補正係数PC1、及び、ステップS1008でパージ制御弁12の開度に基づき求めた第2補正係数PC2で補正し、補正結果を、最終的に吸着量CAAを求めるための差分ΔPA(ΔPA=ΔP×PC1×PC2)に設定する。
 次に、制御装置14は、ステップS1010で、補正後の差分ΔPAから吸着量CAAを算出する。換言すれば、制御装置14は、ステップS1010で、差分ΔPAのデータを吸着量CAAのデータに変換する。
 図8は、差分ΔPAと吸着量CAAとの相関、つまり、差分ΔPAのデータを吸着量CAAに変換するテーブルの変換特性を示す線図である。
 制御装置14は、キャニスタ8における蒸発燃料の吸着量CAAが最小量であるときの圧力PARを基本値PARBとするから、差分ΔPAが大きいときほど吸着量CAAをより大きな値に算出する。
 制御装置14は、図3のフローチャートにしたがって吸着量CAAを推定することで、キャニスタ8の通気抵抗によって吸着量CAAの推定誤差が生じることを抑止して、吸着量CAAを高い精度で推定できる。
 そして、制御装置14は、推定した吸着量CAAに基づき、パージ制御弁12の開度及び/又は燃料噴射装置19による燃料噴射量を制御することで、内燃機関1の運転性、排気性状を改善できる。
 ところで、差分ΔPAに応じた吸着量CAAの推定処理では、吸気管圧力IP(又はエジェクタ17の発生圧)が高く吸気管4にパージエアを吸い込む力が弱くなると、パージ流量が減って差分ΔPも小さくなり、吸着量CAAの推定精度が低下する。
 係る推定精度の低下の影響を抑えるため、制御装置14は、パージ制御弁12の開度及び/又は燃料噴射装置19による燃料噴射量の制御に用いる吸着量CAAの更新処理に制限を加える。
 図9は、吸着量CAAの更新処理の手順を示すフローチャートである。
 なお、制御装置14は、図9に示すルーチンを所定時間毎に割り込み処理によって実行する。
 制御装置14は、まず、ステップS1201で、図3のフローチャートに示した手順にしたがって吸着量CAA(換言すれば、キャニスタ8における蒸発燃料濃度)を推定する。
 次いで、制御装置14は、ステップS1202に進み、吸着量CAAの推定結果の前回値と最新値(今回値)との偏差が、所定値以下であるか否かを判断する。
 換言すれば、制御装置14は、ステップS1202で、吸着量CAAの推定結果の所定時間当たりの変化量が所定値以下であるか否かを判断する。
 吸着量CAAの推定結果の前回値と最新値との偏差が所定値を超える場合、最新値に推定誤差が発生している可能性があるため、制御装置14は、内燃機関1の制御に用いる吸着量CAAを更新することなく、そのまま本ルーチンを終了させることで、内燃機関1の制御に用いる吸着量CAAの更新を停止させ、前回値に保持する。
 つまり、吸着量CAAの推定結果の所定時間当たりの変化量と比較される所定値は、通常のパージ状態における吸着量CAAの減少変化において超えることがない値である。
 一方、吸着量CAAの推定結果の前回値と最新値との偏差が所定値以下である場合、制御装置14は、ステップS1203に進み、吸気管圧力IPが第1所定値IP1以下であるか否かを判断する。
 第1所定値IP1は、吸着量CAAの推定精度が、最新の推定結果を内燃機関1の制御に用いる吸着量CAAに反映させることができない程度に低くなる条件であるか否かを判定するための閾値である。
 吸気管圧力IPが第1所定値IP1よりも高い場合、吸気管4にパージエアを吸い込む力が弱く、差分ΔPAに基づく吸着量CAAの推定精度が大きく低下する可能性がある。
 このため、制御装置14は、内燃機関1の制御に用いる吸着量CAAを更新することなく、そのまま本ルーチンを終了させることで、内燃機関1の制御に用いる吸着量CAAの更新を停止させる。
 一方、吸気管圧力IPが第1所定値IP1以下である場合、制御装置14は、ステップS1204に進み、吸気管圧力IPが第2所定値IP2以下であるか否かを判断する。
 ここで、第2所定値IP2は、第1所定値IP1より低い圧力であり、吸気管圧力IPが第2所定値IP2以下の状態は、制御装置14が差分ΔPAに基づく吸着量CAAの推定を十分な精度で行える圧力条件であることを示す。
 したがって、制御装置14は、吸気管圧力IPが第2所定値IP2以下の場合、ステップS1205に進み、今回ステップS1201で推定した結果に基づき、内燃機関1の制御に用いる吸着量CAAを通常に更新する。
 一方、吸気管圧力IPが第2所定値IP2より高い場合、つまり、吸気管圧力IPが第1所定値IP1以下で、かつ、吸気管圧力IPが第2所定値IP2より高い場合、制御装置14は、ステップS1206に進む。
 吸気管圧力IPが第1所定値IP1以下で、かつ、吸気管圧力IPが第2所定値IP2より高い状態は、吸着量CAAの推定結果が十分な精度で得られる条件ではないものの、制御にある程度反映させることができる推定精度が得られると見込まれる条件である。
 そこで、制御装置14は、ステップS1206で、内燃機関1の制御に用いる吸着量CAAを今回のステップS1201で推定した結果に基づき更新する処理を実施するが、ステップS1205に比べて更新に伴う推定値の変化量(換言すれば、更新量)を小さく制限する。
 つまり、制御装置14は、ステップS1206で、ステップS1205で更新する場合よりも、更新後の値がより前回値に近くなるように制限する。
 これにより、吸気管圧力IPが所定圧を上回るときに誤差を有する推定結果に基づき、内燃機関1の制御に用いられる吸着量CAAが通常に更新されることが抑止され、推定誤差によって内燃機関1の運転性や排気性状が悪化することを抑止できる。
 なお、制御装置14は、ステップS1206での更新処理を、ローパスフィルタ処理や加重平均演算などを用いて行うことができる。
 また、制御装置14は、更新量の制限を行わずに、更新の停止と通常更新とをいずれか一方を選択することができ、更に、更新量の制限度合いを吸気管圧力IPに応じて複数段階に切り替えることができる。
 図10は、図9のフローチャートに示した更新処理を実施した場合での吸着量CAAと吸気管圧力IPとの相関を示すタイムチャートである。
 図10の時刻t0から時刻t1までの間で、吸気管圧力IPは上昇変化するものの第2所定値IP2以下であるため、制御装置14は、最新の推定結果に基づき内燃機関1の制御に用いる吸着量CAAを通常に更新する。
 一方、時刻t1から時刻t2の間で、吸気管圧力IPは、第2所定値IP2より高く第1所定値IP1以下の状態になり、制御装置14は、最新の推定結果に基づき内燃機関1の制御に用いる吸着量CAAを更新するが、吸気管圧力IPが第2所定値IP2以下である場合に比べて更新に伴う推定値の変化量(換言すれば、更新量)を小さく制限する。
 更に吸気管圧力IPが増加し、時刻t2から時刻t3の間で吸気管圧力IPが第1所定値IP1を超えると、制御装置14は、内燃機関1の制御に用いる吸着量CAAの更新を停止し、内燃機関1の制御に用いる吸着量CAAを前回値に保持する。
 ところで、制御装置14は、吸着量CAAの推定のために算出した差分ΔPAのデータに基づき、キャニスタ8の大気導入経路における異常である大気開放管10の詰まり(詳細には、フィルタ10aの目詰まりなど)の有無を判定することができる。
 図11は、制御装置14による大気開放管10の詰まり判定の手順を示すフローチャートである。
 なお、制御装置14は、図11に示すルーチンを所定時間毎に割り込み処理によって実行する。
 制御装置14は、ステップS1401で、図3のフローチャートに示した手順にしたがって求めた差分ΔPAのデータを取得する。
 次いで、制御装置14は、ステップS1402で、差分ΔPAが所定値ΔPA1以上であるか否かを判断する。
 ここで、差分ΔPAが所定値ΔPA1以上である状態は、キャニスタ8に導入される空気の流量が少ない状態であり、キャニスタ8における蒸発燃料の吸着量CAAが多い状態、若しくは、大気開放管10の詰まり(詳細には、フィルタ10aの目詰まり)が発生している状態が想定される。
 制御装置14は、差分ΔPAが所定値ΔPA1以上である場合はステップS1403に進み、差分ΔPAが所定値ΔPA1を下回っている場合は、そのまま本ルーチンを終了させ、大気開放管10の詰まり発生を判定しない。
 制御装置14は、ステップS1403で、吸気管圧力IPが所定圧THP以下であるか否かを判断する。
 吸気管圧力IPが所定圧THP以下である状態は、吸気管4にパージエアを吸い込む力が十分に高く、キャニスタ8からの蒸発燃料のパージが進行する状態であることを示す。
 制御装置14は、吸気管圧力IPが所定圧THP以下であってパージが進行する条件が成立している場合、ステップS1404に進む。
 一方、制御装置14は、吸気管圧力IPが所定圧THPよりも高くパージが進まない条件である場合、そのまま本ルーチンを終了させ、大気開放管10の詰まり発生を判定しない。
 制御装置14は、ステップS1404で、パージ制御弁12の開度PODが所定開度THO以上であるか否かを判断する。
 パージ制御弁12の開度PODが所定開度THO以上である状態は、パージ流量が多く、キャニスタ8からの蒸発燃料のパージが進行する状態であることを示す。
 制御装置14は、パージ制御弁12の開度PODが所定開度THO以上であってパージが進行する条件が成立している場合、ステップS1405に進む。
 一方、制御装置14は、パージ制御弁12の開度PODが所定開度THOよりも小さくパージが進まない条件である場合、そのまま本ルーチンを終了させ、大気開放管10の詰まり発生を判定しない。
 制御装置14は、ステップS1405で、キャニスタ8からの蒸発燃料のパージを開始させてからの経過時間T、つまり、パージ制御弁12を閉状態から開状態に切り替えてからパージ制御弁12を開状態に保持している時間が、所定時間THT以上であるか否かを判断する。
 経過時間Tが所定時間THT以上である状態は、吸気管圧力IPが所定圧THP以下で、かつ、パージ制御弁12の開度PODが所定開度THO以上である条件下で、キャニスタ8の蒸発燃料の吸着量CAAが所定量を下回る、換言すれば、差分ΔPAが所定値ΔPA1を下回ると推定される状態である。
 ここで、制御装置14は、ステップS1402で差分ΔPAが所定値ΔPA1以上であると判断した後、ステップS1403及びステップS1404を経てステップS1405に進んでいる。
 このため、制御装置14が、ステップS1405で経過時間Tが所定時間THT以上であると判断した場合は、差分ΔPAが所定値ΔPA1を下回る(換言すれば、吸着量CAAが所定量を下回る)と推定される条件が成立しているのに、実際には、差分ΔPAが所定値ΔPA1以上の状態(換言すれば、吸着量CAAが所定量以上の状態)を維持していることになる。
 つまり、ステップS1405で経過時間Tが所定時間THT以上であると判断される状態は、パージの進行が通常状態に比べて遅い異常状態(換言すれば、吸着量CAAの減少変化が基準よりも遅い異常状態)である。
 そして、係るパージ処理の異常は、大気開放管10の詰まり(詳細には、フィルタ10aの目詰まり)によってキャニスタ8に導入される空気流量が正常時よりも減ったときに発生する。
 そこで、制御装置14は、ステップS1405で経過時間Tが所定時間THT以上であると判断すると、ステップS1406に進み、大気開放管10の詰まりの発生を判定し、判定結果に基づく異常時処理を実施する。
 ここで、制御装置14は、大気開放管10の詰まりの発生を判定したときの異常時処理として、詰まり判定した結果を診断履歴としてメモリに保存する処理、車両の運転者に異常発生(詳細には、大気開放管10の詰まり発生或いは蒸発燃料処理装置3の異常発生)を警告する処理、パージ制御弁12の開度を補正する処理などを実施する。
 一方、制御装置14は、ステップS1405で経過時間Tが所定時間THTを下回ると判断すると、そのまま本ルーチンを終了させ、大気開放管10の詰まり発生を判定しない。
 このように、制御装置14は、吸着量CAAの推定のために算出した差分ΔPAのデータに基づき、大気開放管10の詰まりの有無を判断する。そして、制御装置14は、大気開放管10の詰まりを判定したときに異常時処理を実施することで、異常状態の解消を促したり、異常発生の影響を抑止したりすることができる。
 図12は、大気開放管10の詰まり(詳細には、フィルタ10aの目詰まり)が発生したときの大気開放管10内の圧力PARの変化を示すタイムチャートである。
 図12において、点線で示す圧力PARの変化は、フィルタ10aの目詰まりが発生していない正常時の特性を示し、実線で示す圧力PARの変化は、フィルタ10aの目詰まりが発生している異常時の特性を示す。
 なお、図12に示す圧力PARの変化は、吸気管圧力IPが所定圧THP以下で、かつ、パージ制御弁12の開度PODが所定開度THO以上である条件での特性である。
 ここで、フィルタ10aの目詰まりが発生していない正常時には、経過時間Tが所定時間THTに達した時点(図12の時刻t1)で、差分ΔPAは所定値ΔPA1を下回っている。
 一方、フィルタ10aの目詰まりが発生している異常時には、キャニスタ8に導入される空気の流量が減ることで、圧力PARが高い値を保持し、経過時間Tが所定時間THTに達した時点(図12の時刻t1)でも、差分ΔPAは所定値ΔPA1以上になる。
 したがって、制御装置14は、経過時間Tが所定時間THT以上のときに差分ΔPAが所定値ΔPA1以上に維持されているか否かに基づき、フィルタ10aの詰まりの有無を判断することができる。
 上記実施形態で説明した各技術的思想は、矛盾が生じない限りにおいて、適宜組み合わせて使用することができる。
 また、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様を採り得ることは自明である。
 例えば、内燃機関1が過給機を備えない自然吸気機関である場合も、前述のようにして吸着量CAAの推定を行えることは明らかである。
 また、制御装置14は、差分ΔPのデータを、燃料温度や燃料タンク7内の燃料残量などに応じて補正することができる。
 1…内燃機関、3…蒸発燃料処理装置、4…吸気管、6…スロットルバルブ、7…燃料タンク、8…キャニスタ、10…大気開放管、10a…フィルタ、10b…オリフィス、11…第1パージ配管、12…パージ制御弁、14…制御装置、16…第2パージ配管、17…エジェクタ、19…燃料噴射装置、23…エアフローセンサ(運転状態センサ)、27…圧力センサ(状態検出センサ)、29…回転速度センサ(運転状態センサ)

Claims (9)

  1.  内燃機関の制御装置であって、
     前記内燃機関は、
     燃料タンクにて発生した蒸発燃料を吸着するキャニスタと、
     前記キャニスタと内燃機関の吸気管とを接続し、前記キャニスタからのパージガスを前記吸気管に導入するパージ配管と、
     前記パージ配管に備えられ、前記キャニスタからのパージガス流量を制御するパージ制御弁と、
     前記キャニスタの通気抵抗によって変化する所定の状態量を検出する状態検出センサと、
     前記内燃機関の運転状態を検出する運転状態センサと、
     を備え、
     前記制御装置は、
     前記キャニスタにおける蒸発燃料の吸着量が所定量であるときの前記状態量である基準状態量を、前記運転状態センサが検出した前記内燃機関の運転状態に基づき求め、
     前記基準状態量と前記状態検出センサが検出した状態量との比較に基づき、前記キャニスタにおける蒸発燃料の吸着量の推定値を求め、
     前記推定値に基づき前記内燃機関を制御する、
     内燃機関の制御装置。
  2.  請求項1記載の内燃機関の制御装置であって、
     前記状態検出センサは、前記所定の状態量として、前記キャニスタへの流入空気の圧力を検出する、
     内燃機関の制御装置。
  3.  請求項1記載の内燃機関の制御装置であって、
     前記状態検出センサは、前記所定の状態量として、前記キャニスタへの流入空気の流量を検出する、
     内燃機関の制御装置。
  4.  請求項1記載の内燃機関の制御装置であって、
     前記制御装置は、
     前記パージ配管が接続される前記吸気管の圧力が所定圧を上回るときに、前記推定値の更新量を、前記パージ配管が接続される前記吸気管の圧力が前記所定圧を下回るときよりも小さく制限する、
     内燃機関の制御装置。
  5.  請求項1記載の内燃機関の制御装置であって、
     前記制御装置は、
     前記所定量を、前記キャニスタにおける蒸発燃料の吸着量の最小量とする、
     内燃機関の制御装置。
  6.  請求項1記載の内燃機関の制御装置であって、
     前記制御装置は、
     前記所定量を、前記キャニスタにおける蒸発燃料の吸着量の最大量とする、
     内燃機関の制御装置。
  7.  請求項1記載の内燃機関の制御装置であって、
     前記制御装置は、
     前記基準状態量と前記状態検出センサが検出した状態量との差分を求め、
     前記差分を、前記内燃機関の運転状態及び前記パージ制御弁の開度に基づき補正し、
     補正後の前記差分に基づき前記推定値を求める、
     内燃機関の制御装置。
  8.  請求項1記載の内燃機関の制御装置であって、
     前記制御装置は、
     前記推定値の減少変化が基準よりも遅いときに前記キャニスタの大気導入経路における異常の発生を判定する、
     内燃機関の制御装置。
  9.  内燃機関の制御方法であって、
     前記内燃機関は、
     燃料タンクにて発生した蒸発燃料を吸着するキャニスタと、
     前記キャニスタと内燃機関の吸気管とを接続し、前記キャニスタからのパージガスを前記吸気管に導入するパージ配管と、
     前記パージ配管に備えられ、前記キャニスタからのパージガス流量を制御するパージ制御弁と、
     前記キャニスタの通気抵抗によって変化する所定の状態量を検出する状態検出センサと、
     前記内燃機関の運転状態を検出する運転状態センサと、
     を備え、
     前記制御方法は、
     前記キャニスタにおける蒸発燃料の吸着量が所定量であるときの前記状態量である基準状態量を、前記運転状態センサが検出した前記内燃機関の運転状態に基づき求める工程と、
     前記基準状態量と前記状態検出センサが検出した状態量との比較に基づき、前記キャニスタにおける蒸発燃料の吸着量の推定値を求める工程と、
     前記推定値に基づき前記内燃機関を制御する工程と、
     を含む、内燃機関の制御方法。
PCT/JP2020/034319 2019-09-13 2020-09-10 内燃機関の制御装置及び制御方法 WO2021049575A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019166866A JP2021042741A (ja) 2019-09-13 2019-09-13 内燃機関の制御装置
JP2019-166866 2019-09-13

Publications (1)

Publication Number Publication Date
WO2021049575A1 true WO2021049575A1 (ja) 2021-03-18

Family

ID=74863025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034319 WO2021049575A1 (ja) 2019-09-13 2020-09-10 内燃機関の制御装置及び制御方法

Country Status (2)

Country Link
JP (1) JP2021042741A (ja)
WO (1) WO2021049575A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047688A (en) * 1999-01-15 2000-04-11 Daimlerchrysler Corporation Method of determining the purge canister mass
JP2002213268A (ja) * 2001-01-19 2002-07-31 Honda Motor Co Ltd 車両のエンジン自動停止・始動制御装置
JP2004060442A (ja) * 2002-07-24 2004-02-26 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP2004060483A (ja) * 2002-07-26 2004-02-26 Nissan Motor Co Ltd エンジンの空燃比制御装置
JP2005139955A (ja) * 2003-11-05 2005-06-02 Hitachi Ltd 車載用エンジンの燃料制御装置
JP2010270619A (ja) * 2009-05-19 2010-12-02 Toyota Motor Corp 蒸発燃料処理装置
JP2017166462A (ja) * 2016-03-18 2017-09-21 株式会社Subaru 蒸発燃料処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6047688A (en) * 1999-01-15 2000-04-11 Daimlerchrysler Corporation Method of determining the purge canister mass
JP2002213268A (ja) * 2001-01-19 2002-07-31 Honda Motor Co Ltd 車両のエンジン自動停止・始動制御装置
JP2004060442A (ja) * 2002-07-24 2004-02-26 Toyota Motor Corp 内燃機関の蒸発燃料処理装置
JP2004060483A (ja) * 2002-07-26 2004-02-26 Nissan Motor Co Ltd エンジンの空燃比制御装置
JP2005139955A (ja) * 2003-11-05 2005-06-02 Hitachi Ltd 車載用エンジンの燃料制御装置
JP2010270619A (ja) * 2009-05-19 2010-12-02 Toyota Motor Corp 蒸発燃料処理装置
JP2017166462A (ja) * 2016-03-18 2017-09-21 株式会社Subaru 蒸発燃料処理装置

Also Published As

Publication number Publication date
JP2021042741A (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
US7383826B2 (en) Fuel vapor treatment apparatus, system having the same, method for operating the same
JP6869150B2 (ja) 過給機付内燃機関の蒸発燃料処理装置
JP3106816B2 (ja) エバポシステムの故障診断装置
JP5257511B2 (ja) 可変動弁機構を有する内燃機関の制御装置
JPH09158775A (ja) 内燃機関の吸気圧センサ異常検出装置
US6550318B2 (en) Abnormality diagnosis apparatus for evaporative fuel processing system
KR20190042254A (ko) 캐니스터의 아이들 퍼지 시의 엔진 제어 방법 및 제어 장치
JP2006348901A (ja) 蒸発燃料処理装置及び過給機付エンジンの蒸発燃料処理装置
US11840990B2 (en) Fuel vapor treatment apparatus
JP2019173674A (ja) 蒸発燃料処理装置
WO2021049575A1 (ja) 内燃機関の制御装置及び制御方法
US20200271065A1 (en) Method for Removing Residual Purge Gas
JPH06146948A (ja) 蒸発燃料処理装置を備える内燃機関の空燃比制御装置
JPH0730354U (ja) 内燃エンジンの蒸発燃料制御装置
JP3669306B2 (ja) 燃料蒸発ガス処理装置
US6862516B2 (en) Fuel gas purge system having failure diagnostic function in internal combustion engine
JP2006104986A (ja) 過給機付きエンジンの蒸発燃料パージシステム
JP2004251223A (ja) エバポシステム診断装置
JP2018123767A (ja) パージ装置
JPH04252854A (ja) エンジンの蒸発燃料制御装置
JP2005002808A (ja) 蒸発燃料処理装置のリーク診断装置
JP2005207345A (ja) エンジンの燃料処理装置
JP2745984B2 (ja) エバポパージシステムの故障診断装置
JP3074840B2 (ja) 蒸発燃料処理装置
JP5440402B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862446

Country of ref document: EP

Kind code of ref document: A1