WO2021049105A1 - コリオリ流量計、流量測定方法、及び、コリオリ流量計用プログラム - Google Patents

コリオリ流量計、流量測定方法、及び、コリオリ流量計用プログラム Download PDF

Info

Publication number
WO2021049105A1
WO2021049105A1 PCT/JP2020/021771 JP2020021771W WO2021049105A1 WO 2021049105 A1 WO2021049105 A1 WO 2021049105A1 JP 2020021771 W JP2020021771 W JP 2020021771W WO 2021049105 A1 WO2021049105 A1 WO 2021049105A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
detection mechanism
reference signal
flow rate
amplitude
Prior art date
Application number
PCT/JP2020/021771
Other languages
English (en)
French (fr)
Inventor
友城 糸賀
正訓 寺阪
Original Assignee
株式会社堀場エステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場エステック filed Critical 株式会社堀場エステック
Priority to JP2021545117A priority Critical patent/JP7429703B2/ja
Publication of WO2021049105A1 publication Critical patent/WO2021049105A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters

Definitions

  • the present invention relates to a Coriolis flow meter.
  • Koriori flowmeters calculate the flow rate of fluid flowing through a pipeline based on a principle called, for example, an amplitude ratio measurement method.
  • the amplitude R f of the forced vibration induced by the external excitation force in the conduit through which the fluid flows and the amplitude R c of the Coriolis vibration induced by the Coriolis force generated in the fluid by the forced vibration are respectively. It is detected by the detection mechanism, and the flow rate is calculated based on the ratio of R f and R c.
  • offset adjustment as shown in FIG. 8 is performed in order to improve the sensitivity to a change in flow rate. That is, when the amount of change in the amplitude R c detected by the detection mechanism is small, the amount of change is increased by the offset to detect it, and the signal sensitivity is improved.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a Coriolis flow meter capable of measuring a flow rate with higher sensitivity than before without performing offset adjustment or phase adjustment. ..
  • the Koriori flow meter calculates the flow rate based on the ratio of the amplitude R f of the forced vibration and the amplitude R c of the Koriori vibration as in the conventional amplitude ratio measurement method, but X f and Y
  • the flow rate is calculated based on the ratio of c, the ratio of Y f and X c , or the difference between ⁇ f and ⁇ c , the sensitivity to flow rate changes without performing offset adjustment or phase adjustment as in the past. This is the first time that the inventors of the present application have found that the above can be improved as a result of diligent studies.
  • the Koriori flow meter detects a vibrator that vibrates the conduit through which the fluid flows at a reference frequency and a forced vibration of the conduit induced by the vibrating force of the vibrator.
  • the first detection mechanism, the second detection mechanism that detects the coroliori vibration induced by the coroliori force generated in the fluid by the forced vibration, and the reference period signal having the reference frequency are input as reference signals, and the first detection mechanism is used.
  • the output signal of the detection mechanism is input as a measurement signal, and the in-phase component X f with respect to the reference signal of the amplitude of the output signal of the first detection mechanism, the orthogonal component Y f with respect to the reference signal of the amplitude, or the above.
  • the first lock-in amplifier that outputs at least one of the phase shift ⁇ f of the output signal of the first detection mechanism from the reference signal and the reference period signal are input as reference signals of the second detection mechanism.
  • the output signal is input as a measurement signal, and the in-phase component X c of the amplitude of the output signal of the second detection mechanism with respect to the reference signal, the orthogonal component Y c with respect to the reference signal of the amplitude, or the second detection mechanism.
  • a second lock-in amplifier that outputs at least one of the phase shifts of the output signal from the reference signal of, and the ratio of X f to Y c , the ratio of Y f to X c , or ⁇ f to ⁇ c. It is characterized by including a flow rate calculation unit for calculating the flow rate of the fluid flowing through the pipeline based on at least one of the differences between the two.
  • the flow rate measuring method detects a vibrating device that vibrates the pipeline through which the fluid flows at a reference frequency and forced vibration of the conduit induced by the vibrating force of the vibrating device.
  • the first detection mechanism, the second detection mechanism that detects the coroliori vibration induced by the coroliori force generated in the fluid by the forced vibration, and the reference period signal having the reference frequency are input as reference signals, and the first detection mechanism is used.
  • the output signal of the detection mechanism is input as a measurement signal, and the in-phase component X f with respect to the reference signal of the amplitude of the output signal of the first detection mechanism, the orthogonal component Y f with respect to the reference signal of the amplitude, or the first 1
  • a first lock-in amplifier that outputs at least one of the phase shift ⁇ f of the output signal of the detection mechanism from the reference signal, and the reference period signal are input as reference signals, and the output of the second detection mechanism.
  • the signal is input as a measurement signal, and the in-phase component X c with respect to the reference signal of the amplitude of the output signal of the second detection mechanism, the orthogonal component Y c with respect to the reference signal of the amplitude, or the second detection mechanism.
  • the flow rate calculation unit is based on at least one of the ratio of X f and Y c , the ratio of Y f and X c , or the difference between ⁇ f and ⁇ c.
  • each lock-in amplifier can selectively extract only the forced vibration or Coriolis vibration having the reference frequency included in the output signal of each detection mechanism in a form in which noise is significantly reduced. Then, based on the extracted forced vibration and corioli vibration, it is possible to output the orthogonal component of the amplitude output from each lock-in amplifier, the in-phase component, and the phase shift from the reference signal in a form in which noise is reduced.
  • the flow rate calculation unit uses the absolute value of the ratio of X f to Y c or the ratio of Y f to X c, or , The flow rate may be calculated based on the code-inverted value.
  • the first lock-in amplifier and the second lock-in amplifier are two-phase locked. It may be an in-amplifier.
  • an exciter that vibrates the pipeline through which the fluid flows at the reference frequency and a vibrating device are used.
  • a first detection mechanism that detects the forced vibration of the pipeline induced by the excitation force of the vibrator, and a second detection mechanism that detects the colioli vibration induced by the coroliori force generated in the fluid by the forced vibration.
  • the reference period signal having the reference frequency is input as a reference signal
  • the output signal of the first detection mechanism is input as a measurement signal
  • the reference signal of the amplitude of the output signal of the first detection mechanism is used.
  • the first lock-in that outputs at least one of the in-phase component X f with respect to the above, the orthogonal component Y f with respect to the reference signal of the amplitude , or the phase shift ⁇ f from the reference signal of the output signal of the first detection mechanism.
  • the amplifier and the reference period signal are input as reference signals, and the output signal of the second detection mechanism is input as a measurement signal, and the in-phase component X with respect to the reference signal of the amplitude of the output signal of the second detection mechanism.
  • a second lock-in amplifier that outputs at least one of the orthogonal component Y c with respect to the reference signal of the amplitude , or the phase shift ⁇ c from the reference signal of the output signal of the second detection mechanism.
  • a program used in the provided Koriori flowmeter based on at least one of the ratio of X f to Y c , the ratio of Y f to X c , or the difference between ⁇ f and ⁇ c.
  • a program for a Koriori flow meter which is characterized in that the computer exerts a function as a flow rate calculation unit for calculating the flow rate of the fluid flowing through the circuit, may be used.
  • the program for the Koriori flow meter may be electronically distributed, or may be recorded on a program recording medium such as a CD, DVD, HDD, or flash memory.
  • the flow rate calculation unit is based on at least one of the ratio of X f and Y c , the ratio of Y f and X c , or the difference between ⁇ f and ⁇ c. Since it is configured to calculate the flow rate, it is possible to improve the sensitivity to a change in the flow rate without performing offset adjustment or phase adjustment as in the conventional case.
  • the schematic perspective view which shows the appearance of the Coriolis flow meter which concerns on 1st Embodiment of this invention.
  • the schematic diagram which shows the whole structure of the Coriolis flow meter which concerns on 1st Embodiment.
  • the schematic diagram which shows the vibration state of the pipeline of the Coriolis flow meter which concerns on 1st Embodiment.
  • the schematic diagram which shows the difference by the presence or absence of the Coriolis vibration of the Coriolis flow meter which concerns on 1st Embodiment.
  • the schematic diagram which shows the structure of the lock-in amplifier of the Coriolis flow meter which concerns on 1st Embodiment.
  • the graph which shows the calculation result of the flow rate by the flow rate calculation part which concerns on 1st Embodiment.
  • the graph which shows the calculation result of the flow rate by the flow rate calculation part in the modification of 1st Embodiment.
  • the Coriolis flow meter 100 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 6.
  • the Coriolis flow meter 100 of this embodiment is of a speed type in which forced vibration and Coriolis vibration are detected by using a solenoid.
  • the Koriori flow meter 100 of the present embodiment includes a U-shaped pipeline 1 through which a liquid flows as a fluid, a vibrator 2 for vibrating the conduit 1, and a vibrator 2.
  • a function generator 3 that inputs a sinusoidal voltage signal to the vibration device 2, a first detection mechanism 4 that detects the forced vibration of the pipeline 1 by the exciter 2, and a colili that is generated in the fluid flowing through the pipeline 1 due to the forced vibration.
  • the second detection mechanism 5 that detects the coroliori vibration induced by the force, the first lock-in amplifier 6 to which the output signal of the first detection mechanism 4 is input, and the second detection mechanism 5 to which the output signal of the second detection mechanism 5 is input. It includes two lock-in amplifiers 7, and a flow rate calculation unit 8 that calculates a flow rate based on the outputs of the first lock-in amplifier 6 and the second lock-in amplifier 7.
  • the pipeline 1 is a capillary composed of two column portions 11 that stand upright in the vertical direction and a horizontal portion 12 that extends so as to bridge the column portions 11. As shown in FIGS. 3 and 4, the pipeline 1 is configured to vibrate in the rotation direction about the horizontal portion 12 as the central axis by the exciter 2.
  • the exciter 2 vibrates the side surface of the support column portion 11 of the pipeline 1 by applying a force in a direction orthogonal to the horizontal portion 12 of the pipeline 1.
  • the exciter 2 includes magnets M1 and M2 provided on each support column portion 11 of the pipeline 1, and a pair of solenoid coils C1 provided so as to face the magnets M1 and M2, respectively. It consists of C2.
  • a function generator 3 is connected to each of the solenoid coils C1 and C2, and a voltage signal of a sine wave of opposite phase is applied to each. Therefore, as shown in FIG. 4, each column portion 11 of the pipeline 1 is displaced in the opposite direction, and the torsional vibration is repeated.
  • the function generator 3 outputs a sine wave voltage signal having a reference frequency that matches the natural frequency of this measurement system.
  • the first detection mechanism 4 includes a pair of solenoid coils C3 and C4 provided at both ends of the horizontal portion 12 of the pipeline 1, and magnets M3 and M4, respectively.
  • the induced current induced by the displacement of the horizontal portion 12 of the pipeline 1 due to the forced vibration and the change in the positions of the magnets M3 and M4 with respect to the solenoid coils C3 and C4 indicates the displacement at both ends of the horizontal portion 12. It is output as an output signal.
  • both ends of the horizontal portion 12 are displaced alternately as shown in FIG. 4, so that the difference between the output signals of the solenoid coils C3 and C4 is the first so that the amplitude of the forced vibration can be obtained. It is input to the first lock-in amplifier 6 as an output signal of the detection mechanism 4.
  • the second detection mechanism 5 includes a solenoid coil C5 and a magnet M5 provided at the center point of the horizontal portion 12 of the pipeline 1 as shown in FIGS. 1 and 2.
  • the induced current induced by the displacement of the center point of the horizontal portion 12 of the pipeline 1 due to the Corioli vibration and the change of the position of the magnet M5 with respect to the solenoid coil C5 is the Cororiori vibration. It is output as an output signal indicating the amplitude.
  • the output signal of the second detection mechanism 5 is input to the second lock-in amplifier 7.
  • the first lock-in amplifier 6 receives an output signal of the first detection mechanism 4 that detects forced vibration as a measurement signal, and a voltage signal output from the function generator 3 as a reference signal has a reference period. It is input as a signal.
  • the first lock-in amplifier 6 is a two-phase digital lock-in amplifier, and has an in-phase component X f for the reference signal of the amplitude of the output signal of the first detection mechanism 4 and an orthogonal component Y for the reference signal of the amplitude. f , the phase shift ⁇ f of the output signal of the first detection mechanism 4 from the reference signal, and the amplitude R f of the output signal of the first detection mechanism 4 are calculated.
  • the first lock-in amplifier 6 receives a phase shift circuit, a first multiplier and a second multiplier, a first low-pass filter into which the output of the first multiplier is input, and an output of the second multiplier. It includes a second low-pass filter, a first arithmetic circuit for calculating the amplitude R, and a second arithmetic circuit for calculating the phase shift ⁇ f.
  • the phase shift circuit receives a reference signal, outputs a signal obtained by phase-shifting the reference signal by 90 degrees to the first multiplier, and outputs the reference signal to the second multiplier as it is.
  • the first multiplier performs a multiplication operation between the measurement signal and the reference signal whose phase is shifted by 90 degrees.
  • the calculation result of the first multiplier is input to the first low-pass filter. Further, the output of the first low-pass filter is X f , which is an in-phase component.
  • the second multiplier performs a multiplication operation between the measurement signal and the reference signal.
  • the calculation result of the second multiplier is input to the second low-pass filter. Further, the output of the second low-pass filter is Y f , which is an orthogonal component.
  • the first arithmetic circuit calculates the square root of the sum of the squares of the calculated X f and Y f, and calculates the amplitude R. Further, the second arithmetic circuit calculates the phase shift ⁇ f from the calculated arc tangent of the ratio of X f and Y f.
  • the second lock-in amplifier 7 receives an output signal of the second detection mechanism 5 that detects coriolation vibration as a measurement signal, and a voltage signal output from the function generator 3 as a reference signal has a reference period. It is input as a signal.
  • the second lock-in amplifier 7 is a two-phase digital lock-in amplifier, and has an in-phase component X c for the amplitude reference signal of the output signal of the second detection mechanism 5 and an orthogonal component Y for the amplitude reference signal. c , the phase shift ⁇ c of the output signal of the second detection mechanism 5 from the reference signal, and the amplitude R c of the output signal of the second detection mechanism 5 are output.
  • the second lock-in amplifier 7 has the same configuration as the first lock-in amplifier 6, and only the input measurement signal is different. Therefore, a detailed description of the second lock-in amplifier 7 will be omitted.
  • the flow rate calculation unit 8 is a so-called computer equipped with a CPU, a memory, an A / D converter, a D / A converter, various input / output devices, etc. The function is realized by the cooperation of the devices. More specifically, in the flow rate calculation unit 8, the in-phase component X f and the orthogonal component Y f of the amplitude of the forced vibration are input from the first lock-in amplifier 6, and the in-phase component of the amplitude of the corioli vibration is input from the second lock-in amplifier 7. X c and the orthogonal component Y c are input.
  • the flow rate calculation unit 8 uses X f and Y c instead of the portion corresponding to the ratio of the amplitude R f of the forced vibration and the amplitude R c of the corrioli vibration in the flow rate calculation formula of the following amplitude ratio measurement method.
  • the flow rate of the liquid flowing through the pipeline 1 is calculated using either the ratio of Y f and the ratio of X c.
  • the flow rate calculation formula of the conventional amplitude ratio measurement method is derived as follows.
  • Q m mass flow rate
  • I ⁇ inertial moment in the vibration direction of the colioli
  • d width of the line 1
  • natural frequency ratio
  • ⁇ ⁇ natural frequency in the forced vibration direction
  • ⁇ ⁇ Natural frequency in the Koriori vibration direction
  • ⁇ 0 Amplitude in the torsional vibration direction ⁇
  • ⁇ 0 Amplitude in the forced vibration direction ⁇ .
  • is described as a symbol indicating the roll angle of the pipeline 1 in the torsional vibration direction according to the convention, but it is a physical quantity different from the phase difference ⁇ c and ⁇ f between the detection signal and the reference signal. ..
  • Q m ⁇ I ⁇ / 2d 2 ⁇ ⁇ ⁇ (1- ⁇ 2 ) / ⁇ 2 K ⁇ ⁇ ⁇ dV ⁇ 0 / (LV ⁇ 0 ⁇ ⁇ ) ⁇
  • dV ⁇ 0 corresponds to the Coriolis vibration amplitude R c
  • LV ⁇ 0 ⁇ ⁇ corresponds to the forced vibration amplitude R f , so that it is as follows.
  • Q m (I ⁇ / 2d 2 ) ⁇ ⁇ (1- ⁇ 2 ) / ⁇ 2 ⁇ ⁇ (R c / R f )
  • FIG. 6 shows the measurement results when R c / R f is used as in the conventional case and when each of X c / Y f and Y c / X f is used.
  • the measured values are normalized based on the initial values.
  • noise is generated larger than the step width of the flow rate change because the sensitivity to the flow rate change is small, and the desired sensitivity can be realized. Not.
  • the Coriolis flow meter 100 of the present embodiment can be made highly sensitive to a change in flow rate without performing offset adjustment or phase adjustment as in the case of using R c / R f.
  • the sensitivity can be improved by taking the ratio while leaving the trigonometric function including the phase difference with respect to the R c / R f reference signal, and making a comparison. Because I try to do it.
  • Y c / X f the numerator sin ⁇ c changes from ⁇ 0.93 to ⁇ 0.86, and the denominator cos ⁇ f is fixed at +0.50. Therefore, Y c / X f can output a value amplified in the negative direction when a change in the flow rate occurs as compared with R c / R f.
  • the sensitivity to the flow rate change can be increased without performing offset adjustment or phase adjustment as compared with the conventional case.
  • each lock-in amplifier can selectively extract only forced vibration or Coriolis vibration having a reference frequency included in the output signal of each detection mechanism in a form with significantly reduced noise. Then, based on the extracted forced vibration and corioli vibration, it is possible to output the orthogonal component of the amplitude output from each lock-in amplifier, the in-phase component, and the phase shift from the reference signal in a form in which noise is reduced.
  • the flow rate calculation unit 8 is configured to calculate the flow rate from the difference between ⁇ f and ⁇ c , not from X c / Y f and Y c / X f.
  • ⁇ f is the phase difference of the forced vibration with respect to the reference signal
  • ⁇ c is the phase difference of the Coriolis vibration with respect to the same reference signal. Therefore, ⁇ f ⁇ ⁇ c can be said to be the phase difference of Coriolis vibration with respect to forced vibration.
  • the flow rate calculation unit 8 may be configured to calculate the flow rate based only on the phase difference ⁇ c of the Coriolis vibration with respect to the reference signal.
  • the exciter, the first detection mechanism, and the second detection mechanism are not limited to those described in the above-described embodiment.
  • the exciter and detection mechanism used in known Coriolis flow meters can also be used.
  • the second detection mechanism may be composed of a pair of solenoid coils constituting the first detection mechanism of the embodiment.
  • the sum of the output signals of each solenoid coil may be configured to be an output signal indicating the amplitude of Coriolis vibration. If this is the case, the number of solenoid coils and magnets installed can be reduced.
  • the first lock-in amplifier and the second lock-in amplifier are not limited to those capable of outputting a plurality of components at the same time as in the above embodiment.
  • the first lock-in amplifier only one of the in-phase component X f , the orthogonal component Y f , and the phase shift ⁇ f may be calculated and input to the flow rate calculation unit.
  • the second lock-in amplifier only one of the in-phase component X c , the orthogonal component Y f , and the phase shift ⁇ c may be calculated and input to the flow rate calculation unit.
  • the first lock-in amplifier may be configured to calculate only Y f
  • the second lock-in amplifier may be configured to calculate only X c.
  • first lock-in amplifier and the second lock-in amplifier are not limited to physical devices, and are configured to perform the same signal processing based on the output signals of the first detection mechanism and the second detection mechanism, for example. It may be an electronic circuit. Specifically, the FPGA may be configured to realize the signal processing functions of the first lock-in amplifier and the second lock-in amplifier as described in each embodiment. In other words, the first lock-in amplifier and the second lock-in amplifier in the claims are concepts including a mode as a physical device, a physical signal processing circuit, or a mode as a program.
  • each lock-in amplifier is not limited to the voltage signal input to the exciter.
  • it may be a periodic signal such as a rectangular wave having a reference frequency at which the pipeline is vibrated.
  • X c / Y f used in the flow rate calculation unit, Y c / X f, for theta c - [theta] f, not limited to using the absolute value, and configured to sign inversion to match the flow direction You may.
  • the Coriolis flowmeter of the present invention is not limited to the speed type, and may be configured as a displacement type using a displacement sensor instead of the solenoid. Further, the Coriolis flow meter of the present invention may be configured as an acceleration method in which each vibration is detected by an acceleration sensor.
  • the flow rate calculation unit is not limited to one that calculates the flow rate based on any one of the ratio of X f and Y c , the ratio of Y f and X c , or the difference between ⁇ f and ⁇ c.
  • the flow rate calculation unit calculates the flow rate from the ratio of X f and Y c , the ratio of Y f and X c , or the difference between ⁇ f and ⁇ c , and outputs the average value as the final flow rate. It may be.
  • the flow rate calculation unit may calculate the flow rate by using all or a predetermined combination of the ratio of X f and Y c, the ratio of Y f and X c , and the difference between ⁇ f and ⁇ c.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

オフセット調整や位相調整を行わなくても従来よりも高感度の流量測定が可能となるコリオリ流量計を提供するために、第1検出機構4の出力信号の振幅の参照信号に対する同相成分X、前記振幅の参照信号に対する直交成分Y、又は、前記第1検出機構4の出力信号の参照信号からの位相のずれθの少なくともいずれか1つを出力する第1ロックインアンプ6と、第2検出機構5の出力信号の振幅の参照信号に対する同相成分X、前記振幅の参照信号に対する直交成分Y、又は、前記第2検出機構5の出力信号の参照信号からの位相のずれθの少なくともいずれか1つを出力する第2ロックインアンプ7と、XとYの比、YとXの比、又は、θとθの差の少なくともいずれか1つに基づいて前記管路を流れる流体の流量を算出する流量算出部8と、を備えた。

Description

コリオリ流量計、流量測定方法、及び、コリオリ流量計用プログラム
 本発明は、コリオリ流量計に関するものである。
 管路に流れる流体の流量を非接触で高精度に測定したい場合には、コリオリ流量計が用いられている(特許文献1参照)。
 コリオリ流量計には、例えば振幅比計測方式と呼ばれる原理に基づいて管路を流れる流体の流量を算出するものがある。この方式では、流体が流れる管路が外部からの加振力により誘起される強制振動の振幅Rと、強制振動により流体に発生するコリオリ力に誘起されるコリオリ振動の振幅Rとがそれぞれ検出機構により検出され、RとRの比に基づいて流量が算出される。
 このようなコリオリ流量計では流量変化に対する感度を向上させるために、図8に示すようなオフセット調整が行われる。すなわち、検出機構で検出される振幅Rの変化量が微小な場合には、オフセットによって変化量を増加させて検出し、信号感度を向上させている。
 しかしながら、オフセット調整や位相調整は測定状況等に応じて適切に行われないと、流量に関する情報が失われてしまう可能性もある。
特許4565150号公報
 本発明は上述したような問題に鑑みてなされたものであり、オフセット調整や位相調整を行わなくても従来よりも高感度の流量測定が可能となるコリオリ流量計を提供することを目的とする。
 すなわち、本発明に係るコリオリ流量計は、従来の振幅比計測方式のように強制振動の振幅Rとコリオリ振動の振幅Rとの比に基づいて流量を算出するよりも、XとYの比、YとXの比、又は、θとθの差に基づいて流量を算出した場合には、従来のようにオフセット調整や位相調整を行わなくても流量変化に対する感度を向上させられることを本願発明者らが鋭意検討の結果見出したことにより初めてなされたものである。
 具体的に本発明に係るコリオリ流量計は、流体が流れる管路を基準振動数で加振する加振器と、前記加振器による加振力により誘起される前記管路の強制振動を検出する第1検出機構と、強制振動によって前記流体に発生するコリオリ力により誘起されるコリオリ振動を検出する第2検出機構と、前記基準振動数を有する基準周期信号が参照信号として入力され、前記第1検出機構の出力信号が測定信号として入力されるものであり、前記第1検出機構の出力信号の振幅の参照信号に対する同相成分X、前記振幅の参照信号に対する直交成分Y、又は、前記第1検出機構の出力信号の参照信号からの位相のずれθの少なくともいずれか1つを出力する第1ロックインアンプと、前記基準周期信号が参照信号として入力され、前記第2検出機構の出力信号が測定信号として入力されるものであり、前記第2検出機構の出力信号の振幅の参照信号に対する同相成分X、前記振幅の参照信号に対する直交成分Y、又は、前記第2検出機構の出力信号の参照信号からの位相のずれの少なくともいずれか1つを出力する第2ロックインアンプと、XとYの比、YとXの比、又は、θとθの差の少なくともいずれか1つに基づいて前記管路を流れる流体の流量を算出する流量算出部と、を備えたことを特徴とする。
 また、本発明に係る流量測定方法は、流体が流れる管路を基準振動数で加振する加振器と、前記加振器による加振力により誘起される前記管路の強制振動を検出する第1検出機構と、強制振動によって前記流体に発生するコリオリ力により誘起されるコリオリ振動を検出する第2検出機構と、前記基準振動数を有する基準周期信号が参照信号として入力され、前記第1検出機構の出力信号が測定信号として入力されるものであり、前記第1検出機構の出力信号の振幅の参照信号に対する同相成分X、前記振幅の参照信号に対する直交成分Y、又は、前記第1検出機構の出力信号の参照信号からの位相のずれθの少なくともいずれか1つを出力する第1ロックインアンプと、前記基準周期信号が参照信号として入力され、前記第2検出機構の出力信号が測定信号として入力されるものであり、前記第2検出機構の出力信号の振幅の参照信号に対する同相成分X、前記振幅の参照信号に対する直交成分Y、又は、前記第2検出機構の出力信号の参照信号からの位相のずれθの少なくともいずれか1つを出力する第2ロックインアンプと、を備えたコリオリ流量計を用いた流量測定方法であって、XとYの比、YとXの比、又は、θとθの差の少なくともいずれか1つに基づいて前記管路を流れる流体の流量を算出することを特徴とする。
 このようなものであれば、前記流量算出部が、XとYの比、YとXの比、又は、θとθの差の少なくともいずれか1つに基づいて前記管路を流れる流体の流量を算出することで、従来よりも流量変化に対する感度を高くすることができる。すなわち、コリオリ振動の振幅Rのベクトル成分のように流量変化に対する変化量が微小で検出しにくい場合がある値を用いるのではなく、コリオリ振動の参照信号に対する直交成分、同相成分、参照信号からの位相のずれは、流量変化に対して変化量が大きく、感度を向上させることができる。
 したがって、従来のようにオフセット調整や位相調整を行わなくても十分に流量変化に対して高感度なコリオリ流量計を実現できる。
 加えて、各ロックインアンプによって各検出機構の出力信号に含まれる前記基準振動数を有する強制振動又はコリオリ振動のみをノイズを大幅に低減した形で選択的に抽出することができる。そして、抽出された強制振動及びコリオリ振動に基づいて各ロックインアンプから出力される振幅の直交成分、同相成分、参照信号からの位相のずれについてもノイズが低減された形で出力できる。
 流量の増減方向と前記流量算出部で算出される算出結果が一致するようにするには、前記流量算出部が、XとYの比又はYとXの比の絶対値、あるいは、符号反転させた値に基づいて流量を算出するものであればよい。
 強制振動又はコリオリ振動の振幅の直交成分及び同相成分を同時に出力できるようにしつつ、機器の構成を簡素化するには、前記第1ロックインアンプ、及び、前記第2ロックインアンプが2位相ロックインアンプであればよい。
 既存のコリオリ流量計についてプログラムを更新することにより本発明に係るコリオリ流量計と同様の効果を享受できるようにするには、流体が流れる管路を基準振動数で加振する加振器と、前記加振器による加振力により誘起される前記管路の強制振動を検出する第1検出機構と、強制振動によって前記流体に発生するコリオリ力により誘起されるコリオリ振動を検出する第2検出機構と、前記基準振動数を有する基準周期信号が参照信号として入力され、前記第1検出機構の出力信号が測定信号として入力されるものであり、前記第1検出機構の出力信号の振幅の参照信号に対する同相成分X、前記振幅の参照信号に対する直交成分Y、又は、前記第1検出機構の出力信号の参照信号からの位相のずれθの少なくともいずれか1つを出力する第1ロックインアンプと、前記基準周期信号が参照信号として入力され、前記第2検出機構の出力信号が測定信号として入力されるものであり、前記第2検出機構の出力信号の振幅の参照信号に対する同相成分X、前記振幅の参照信号に対する直交成分Y、又は、前記第2検出機構の出力信号の参照信号からの位相のずれθの少なくともいずれか1つを出力する第2ロックインアンプと、を備えたコリオリ流量計に用いられるプログラムであって、XとYの比、YとXの比、又は、θとθの差の少なくともいずれか1つに基づいて前記管路を流れる流体の流量を算出する流量算出部としての機能をコンピュータに発揮させることを特徴とするコリオリ流量計用プログラムを用いれば良い。
 なお、コリオリ流量計用プログラムは電子的に配信されるものであってもよいし、CD、DVD、HDD、フラッシュメモリ等のプログラム記録媒体に記録されたものであってもよい。
 このように本発明に係るコリオリ流量計は、流量算出部が、XとYの比、YとXの比、又は、θとθの差の少なくともいずれか1つに基づいて流量を算出するように構成されているので、従来のようにオフセット調整や位相調整を行わなくても流量変化に対する感度を向上させることができる。
本発明の第1実施形態に係るコリオリ流量計の外観を示す模式的斜視図。 第1実施形態に係るコリオリ流量計の全体構成を示す模式図。 第1実施形態に係るコリオリ流量計の管路の振動状態を示す模式図。 第1実施形態に係るコリオリ流量計のコリオリ振動の有無による違いを示す模式図。 第1実施形態に係るコリオリ流量計のロックインアンプの構成を示す模式図。 第1実施形態に係る流量算出部による流量の算出結果を示すグラフ。 第1実施形態の変形例における流量算出部による流量の算出結果を示すグラフ。 従来のコリオリ流量計におけるオフセット調整について説明する模式図。
100・・・コリオリ流量計
1  ・・・管路
2  ・・・加振器
4  ・・・第1検出機構
5  ・・・第2検出機構
6  ・・・第1ロックインアンプ
7  ・・・第2ロックインアンプ
8  ・・・流量算出部
 本発明の第1実施形態に係るコリオリ流量計100について図1乃至図6を参照しながら説明する。この実施形態のコリオリ流量計100は、ソレノイドを用いて強制振動及びコリオリ振動が検出される速度方式のものである。
 本実施形態のコリオリ流量計100は、図1及び図2に示すように流体として液体が流れるU字状の管路1と、管路1を加振する加振器2と、加振器2に対して正弦波状の電圧信号を入力するファンクションジェネレータ3と、加振器2による管路1の強制振動を検出する第1検出機構4と、強制振動により管路1を流れる流体に発生するコリオリ力で誘起されるコリオリ振動を検出する第2検出機構5と、第1検出機構4の出力信号が入力される第1ロックインアンプ6と、第2検出機構5の出力信号が入力される第2ロックインアンプ7と、第1ロックインアンプ6及び第2ロックインアンプ7の出力に基づいて流量を算出する流量算出部8と、を備えている。
 各部について詳述する。管路1は、垂直方向に起立する2本の支柱部分11と、支柱部分11を架橋するように延びる水平部分12とからなるキャピラリである。図3及び図4に示すように管路1は加振器2によって水平部分12を中心軸とする回転方向に対して振動するように構成されている。
 加振器2は、管路1の支柱部分11の側面を管路1の水平部分12に対して直交する方向に力を付与して加振するものである。本実施形態では加振器2は、管路1の各支柱部分11に設けられたマグネットM1、M2と、それぞれのマグネットM1、M2に対して対向するように設けられた一対のソレノイドコイルC1、C2とからなる。各ソレノイドコイルC1、C2にはファンクションジェネレータ3が接続されており、それぞれに逆相の正弦波の電圧信号が印加される。したがって、図4に示すように管路1の各支柱部分11はそれぞれ逆方向に変位し、ねじれ振動が繰り返されることになる。また、管路1に液体が流れておらずコリオリ力が発生しない場合には、管路1の水平部分12の中心点は振動の節となるためほとんど変位しない。一方、コリオリ力によるコリオリ振動が誘起されている場合には、管路1の水平部分12の中心部分にもコリオリ力によるねじり振動の変位が発生する。
 ファンクションジェネレータ3は、この測定系の固有振動数と一致する基準振動数を有する正弦波の電圧信号を出力する。
 第1検出機構4は、図1及び図2に示すように管路1の水平部分12の両端部にそれぞれ設けられた一対のソレノイドコイルC3、C4と、マグネットM3、M4からなる。強制振動によって管路1の水平部分12が変位して、ソレノイドコイルC3、C4に対してマグネットM3、M4の位置が変化することにより誘起される誘導電流が水平部分12の両端部における変位を示す出力信号として出力される。本実施形態では水平部分12の両端部が図4に示すようにそれぞれ互い違いに変位することになるので、強制振動の振幅が得られるように各ソレノイドコイルC3、C4の出力信号の差が第1検出機構4の出力信号として第1ロックインアンプ6に入力される。
 第2検出機構5は、図1及び図2に示すように管路1の水平部分12の中心点に設けられたソレノイドコイルC5とマグネットM5からなる。第2検出機構5は、コリオリ振動による管路1の水平部分12の中心点が変位して、ソレノイドコイルC5に対してマグネットM5の位置が変化することにより誘起される誘導電流が、コリオリ振動の振幅を示す出力信号として出力される。この第2検出機構5の出力信号は、第2ロックインアンプ7に入力される。
 第1ロックインアンプ6は、図2に示すように測定信号として強制振動を検出する第1検出機構4の出力信号が入力され、参照信号としてファンクションジェネレータ3から出力されている電圧信号が基準周期信号として入力される。図5に示すように第1ロックインアンプ6は2位相デジタルロックインアンプであって、第1検出機構4の出力信号の振幅の参照信号に対する同相成分X、振幅の参照信号に対する直交成分Y、第1検出機構4の出力信号の参照信号からの位相のずれθ、第1検出機構4の出力信号の振幅Rを算出する。第1ロックインアンプ6は、位相シフト回路と、第1乗算器及び第2乗算器と、第1乗算器の出力が入力される第1ローパスフィルタと、第2乗算器の出力が入力される第2ローパスフィルタと、振幅Rを算出する第1演算回路と、位相のずれθを算出する第2演算回路とを備えている。
 位相シフト回路は、参照信号が入力され、第1乗算器に対して参照信号を90度位相シフトさせた信号を出力し、第2乗算器に対して参照信号をそのまま出力する。
 第1乗算器は、測定信号と90度位相シフトした参照信号との乗算演算を行う。第1乗算器の演算結果は第1ローパスフィルタへと入力される。また、第1ローパスフィルタ出力は、同相成分であるXとなる。
 第2乗算器は、測定信号と参照信号との乗算演算を行う。第2乗算器の演算結果は第2ローパスフィルタへと入力される。また、第2ローパスフィルタの出力は、直交成分であるYとなる。
 第1演算回路は、算出されたX、Yの平方の和の平方根を算出し、振幅Rを算出する。また、第2演算回路は、算出されたX、Yの比のアークタンジェントから位相のずれθを算出する。
 第2ロックインアンプ7は、図2に示すように測定信号としてコリオリ振動を検出する第2検出機構5の出力信号が入力され、参照信号としてファンクションジェネレータ3から出力されている電圧信号が基準周期信号として入力される。図5に示すように第2ロックインアンプ7は2位相デジタルロックインアンプであって、第2検出機構5の出力信号の振幅の参照信号に対する同相成分X、振幅の参照信号に対する直交成分Y、第2検出機構5の出力信号の参照信号からの位相のずれθ、第2検出機構5の出力信号の振幅Rを出力する。第2ロックインアンプ7は、第1ロックインアンプ6と同じ構成を有しており、入力される測定信号のみが異なっている。したがって、第2ロックインアンプ7の詳細な説明については省略する。
 流量算出部8は、CPU、メモリ、A/Dコンバータ、D/Aコンバータ、各種入出力機器等を備えたいわゆるコンピュータであって、メモリに格納されているコリオリ流量計用プログラムが実行され、各機器が協業することによりその機能が実現される。より具体的には流量算出部8は、第1ロックインアンプ6から強制振動の振幅の同相成分X、直交成分Yが入力され、第2ロックインアンプ7からコリオリ振動の振幅の同相成分X、直交成分Yが入力される。本実施形態では、流量算出部8は、以下の振幅比計測方式の流量算出式において強制振動の振幅Rとコリオリ振動の振幅Rの比に相当する部分の代わりに、XとYの比、又は、YとXの比のいずれかを用いて管路1を流れている液体の流量を算出する。
 なお、従来の振幅比計測方式の流量算出式は以下のようにして導出される。以降の説明においては、Q:質量流量、Iθ:コリオリ振動方向の慣性モーメント、d:管路1の幅、α:固有振動数比、ωφ:強制振動方向の固有振動数、ωθ:コリオリ振動方向の固有振動数、Vθ0コリオリ振動方向の角速度振幅、Θ:ねじれ振動方向θの振幅、Φ:強制振動方向φの振幅とする。注意としてねじれ振動方向のうち管路1のロール角を示す記号として慣例に従いθと記載しているが、検出信号と基準信号との位相の差θ、θとは異なる種類の物理量である。
 まず、速度方式のコリオリ流量計に用いられる流量算出式は以下のようなものである。
 Q=Kθ{(1―ωφ /ωθ )/2d}・{dΘ/(LωφΦ)}
 また、コリオリ振動による管路1のθ方向のねじれ振動がθ=Θcos(ωφt)であるときには、速度VはV=ωφΘ・sin(ωφt)である。したがって、検出機構1で検出されるコリオリ振動の角速度振幅はVθ0は、Vθ0=ωφΘとなる。
 さらに上記のQの式において分母分子にωφをかけることで以下のように変形できる。
 Q=Kθ{(1―ωφ /ωθ )/2d}・{dωφΘ/(LωφΦωφ)}
  =Kθ{(1―ωφ /ωθ )/2d}・{dVθ0/(LVφ0ωφ)}
 ここで、ωφ=α(Kθ/Iθ)^(1/2)とすると、Qは以下のように整理できる。
 Q={Iθ/2d}・{(1-α)/αθ}{dVθ0/(LVφ0ωφ)}
 さらに、dVθ0はコリオリ振動の振幅R、LVφ0ωφは強制振動の振幅Rに相当するので以下のようになる。
 Q=(Iθ/2d)・{(1-α)/α}・(Rc/R
 一方、本実施形態において流量算出部8が用いている算出式は以下のようなものである。
 Q=(Iθ/2d)・{(1-α)/α}・B・absA
 ここで、AにはX/Y、Y/Xのいずれかが代入される。また、BにはAに代入される値に応じた定数が代入される。
 このように構成された本実施形態のコリオリ流量計100を用いて流量を10ステップ変化させた場合の測定結果について図6を参照しながら説明する。図6には、従来と同じくR/Rを用いている場合と、X/Y、Y/Xのそれぞれを用いた場合の測定結果を示している。また、測定された値については初期値に基づいて正規化してある。図6からわかるように従来のようにR/Rを用いた場合には、流量変化に対する感度が小さいためノイズが流量変化のステップ幅よりも大きく発生してしまい、所望の感度を実現できていない。これに対して、X/Y、Y/Xのいずれの場合でも流量変化に対する感度を従来よりも向上させることができ、ステップ変化のほうがノイズよりも大きくすることができる。このため、R/Rを用いる場合のようにオフセット調整や位相調整を行わなくても本実施形態のコリオリ流量計100は流量変化に対する感度を高くできる。
 このようにX/Y、Y/Xを用いた場合に感度を向上させられるのは、R/R参照信号に対する位相差を含む三角関数を残して比を取り、比較を行うようにしているからである。
 例えば図8に示した例のようにコリオリ振動が110°から120°に変化しており、強制振動の位相が-60°で固定されている場合を考える。この場合、R/Rでは変化量が微小であるのでオフセット調整や位相調整を行わないと感度を高くすることができない。
 これに対して、X/Y=R・cosθ/R・sinθであり、Y/X=R・sinθ/R・cosθであることから、位相差を含む三角関数の影響を受ける。X/Yは、分子のcosθが-0.34から-0.50に変化するに対して分母のsinθは-0.86で固定されている。したがって、X/YはR/Rと比較して、流量変化が生じた場合にはプラス方向に増幅させた値を出力することができる。
 同様にY/Xは分子のsinθは-0.93から-0.86に変化するとともに、分母のcosθは+0.50で固定されている。このため、Y/XはR/Rと比較して、流量変化が生じた場合にはマイナス方向に増幅させた値を出力することができる。
 このように本実施形態のコリオリ流量計100によれば、従来と比較してオフセット調整や位相調整を行わなくても流量変化に対する感度を大きくすることができる。
 加えて、各ロックインアンプによって各検出機構の出力信号に含まれる基準振動数を有する強制振動又はコリオリ振動のみをノイズを大幅に低減した形で選択的に抽出することができる。そして、抽出された強制振動及びコリオリ振動に基づいて各ロックインアンプから出力される振幅の直交成分、同相成分、参照信号からの位相のずれについてもノイズが低減された形で出力できる。
 次に第1実施形態の変形例について説明する。この変形例では流量算出部8は、X/Y、Y/Xではなく、θとθとの差から流量を算出するように構成されている。ここで、図8のグラフに示すようにθは参照信号に対する強制振動の位相差であり、θは同じ参照信号に対するコリオリ振動の位相差である。したがって、θ-θは強制振動に対するコリオリ振動の位相差とも言える。図7のグラフに示すように強制振動に対するコリオリ振動の位相差θ-θと流量との間には少なくとも相関があり、R/Rを用いて流量を算出する場合と比較して流量変化に対する感度を高くすることができる。
 なお、この変形例では参照信号に対する強制振動の位相差が一定となるように制御が行われておらず、位相差が変動する場合を想定しているが、強制振動の位相差が一定に保たれるように制御されている場合には、参照信号に対するコリオリ振動の位相差θのみに基づいて流量算出部8が流量を算出するように構成してもよい。
 その他の実施形態について説明する。
 加振器、第1検出機構、第2検出機構については前記実施形態に記載したものに限られない。既知のコリオリ流量計に用いられている加振器及び検出機構を用いることもできる。また、第2検出機構は、前記実施形態の第1検出機構を構成する一対のソレノイドコイルで構成されるものであってもよい。この場合には各ソレノイドコイルの出力信号の和をコリオリ振動の振幅を示す出力信号とするように構成すればよい。このようなものであれば、ソレノイドコイルとマグネットの設置数を減らすことができる。
 第1ロックインアンプ、第2ロックインアンプについては前記実施形態のように複数の成分を同時に出力できるものに限られない。第1ロックインアンプについては同相成分X、直交成分Y、位相のずれθのいずれかのみを算出し、流量算出部に入力するものであってもよい。同様に第2ロックインアンプについても同相成分X、直交成分Y、位相のずれθのいずれかのみを算出し、流量算出部に入力するものであってもよい。例えばX/Yに基づいて流量が算出される場合には、第1ロックインアンプはYのみを演算し、第2ロックインアンプはXのみを演算するように構成すればよい。このような構成であれば、各ロックインアンプについては2位相ロックインアンプでなくてもよい。
 さらに第1ロックインアンプ、第2ロックインアンプについては物理的な機器に限られるものではなく、例えば第1検出機構及び第2検出機構の出力信号に基づいて同様の信号処理を行うように構成された電子回路であっても構わない。具体的には、FPGAによって各実施形態において説明したような第1ロックインアンプ、及び、第2ロックインアンプの信号処理機能を実現するように構成してもよい。言い換えると、請求項における第1ロックインアンプ、第2ロックインアンプは物理的な機器としての態様、物理的な信号処理回路、又は、プログラムとしての態様を含む概念である。
 各ロックインアンプに入力される参照信号は、加振器に入力される電圧信号に限られるものではない。例えば管路が加振される基準振動数を有する矩形波等の周期信号であっても構わない。流量算出部において用いられるX/Y、Y/X、θ-θについては、絶対値を用いたものに限られず、流れ方向と一致するように符号反転させるように構成してもよい。
 本発明のコリオリ流量計は速度方式のものに限られず、ソレノイドの代わりに変位センサを用いた変位方式として構成してもよい。また、本発明のコリオリ流量計は、加速度センサにより各振動が検出される加速度方式として構成してもよい。
 流量算出部は、XとYの比、YとXの比、又は、θとθの差のいずれか1つに基づいて流量を算出するものに限られない。例えば流量算出部が、XとYの比、YとXの比、又は、θとθの差からそれぞれ流量を算出し、その平均値を最終的な流量として出力するようにしてもよい。すなわち、XとYの比、YとXの比、θとθの差を全て又は所定の組み合わせで用いて流量算出部が流量を算出するようにしてもよい。
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の変形や、各実施形態の一部同士の組み合わせを行っても構わない。
 本発明であれば、オフセット調整や位相調整を行わなくても従来よりも高感度の流量測定が可能となるコリオリ流量計を提供できる。

 

Claims (5)

  1.  流体が流れる管路を基準振動数で加振する加振器と、
     前記加振器による加振力により誘起される前記管路の強制振動を検出する第1検出機構と、
     強制振動によって前記流体に発生するコリオリ力により誘起されるコリオリ振動を検出する第2検出機構と、
     前記基準振動数を有する基準周期信号が参照信号として入力され、前記第1検出機構の出力信号が測定信号として入力されるものであり、前記第1検出機構の出力信号の振幅の参照信号に対する同相成分X、前記振幅の参照信号に対する直交成分Y、又は、前記第1検出機構の出力信号の参照信号からの位相のずれθの少なくともいずれか1つを出力する第1ロックインアンプと、
     前記基準周期信号が参照信号として入力され、前記第2検出機構の出力信号が測定信号として入力されるものであり、前記第2検出機構の出力信号の振幅の参照信号に対する同相成分X、前記振幅の参照信号に対する直交成分Y、又は、前記第2検出機構の出力信号の参照信号からの位相のずれθの少なくともいずれか1つを出力する第2ロックインアンプと、
     XとYの比、YとXの比、又は、θとθの差の少なくともいずれか1つに基づいて前記管路を流れる流体の流量を算出する流量算出部と、を備えたことを特徴とするコリオリ流量計。
  2.  前記流量算出部が、XとYの比又はYとXの比の絶対値、あるいは、符号反転させた値に基づいて流量を算出する請求項1記載のコリオリ流量計。
  3.  前記第1ロックインアンプ、及び、前記第2ロックインアンプが2位相ロックインアンプである請求項1又は2記載のコリオリ流量計。
  4.  流体が流れる管路を基準振動数で加振する加振器と、前記加振器による加振力により誘起される前記管路の強制振動を検出する第1検出機構と、強制振動によって前記流体に発生するコリオリ力により誘起されるコリオリ振動を検出する第2検出機構と、前記基準振動数を有する基準周期信号が参照信号として入力され、前記第1検出機構の出力信号が測定信号として入力されるものであり、前記第1検出機構の出力信号の振幅の参照信号に対する同相成分X、前記振幅の参照信号に対する直交成分Y、又は、前記第1検出機構の出力信号の参照信号からの位相のずれθの少なくともいずれか1つを出力する第1ロックインアンプと、前記基準周期信号が参照信号として入力され、前記第2検出機構の出力信号が測定信号として入力されるものであり、前記第2検出機構の出力信号の振幅の参照信号に対する同相成分X、前記振幅の参照信号に対する直交成分Y、又は、前記第2検出機構の出力信号の参照信号からの位相のずれθの少なくともいずれか1つを出力する第2ロックインアンプと、を備えたコリオリ流量計を用いた流量測定方法であって、
     XとYの比、YとXの比、又は、θとθの差の少なくともいずれか1つに基づいて前記管路を流れる流体の流量を算出することを特徴とする流量測定方法。
  5.  流体が流れる管路を基準振動数で加振する加振器と、前記加振器による加振力により誘起される前記管路の強制振動を検出する第1検出機構と、強制振動によって前記流体に発生するコリオリ力により誘起されるコリオリ振動を検出する第2検出機構と、前記基準振動数を有する基準周期信号が参照信号として入力され、前記第1検出機構の出力信号が測定信号として入力されるものであり、前記第1検出機構の出力信号の振幅の参照信号に対する同相成分X、前記振幅の参照信号に対する直交成分Y、又は、前記第1検出機構の出力信号の参照信号からの位相のずれθの少なくともいずれか1つを出力する第1ロックインアンプと、前記基準周期信号が参照信号として入力され、前記第2検出機構の出力信号が測定信号として入力されるものであり、前記第2検出機構の出力信号の振幅の参照信号に対する同相成分X、前記振幅の参照信号に対する直交成分Y、又は、前記第2検出機構の出力信号の参照信号からの位相のずれθの少なくともいずれか1つを出力する第2ロックインアンプと、を備えたコリオリ流量計に用いられるプログラムであって、
     XとYの比、YとXの比、又は、θとθの差の少なくともいずれか1つに基づいて前記管路を流れる流体の流量を算出する流量算出部としての機能をコンピュータに発揮させることを特徴とするコリオリ流量計用プログラム。
PCT/JP2020/021771 2019-09-12 2020-06-02 コリオリ流量計、流量測定方法、及び、コリオリ流量計用プログラム WO2021049105A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021545117A JP7429703B2 (ja) 2019-09-12 2020-06-02 コリオリ流量計、流量測定方法、及び、コリオリ流量計用プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-166042 2019-09-12
JP2019166042 2019-09-12

Publications (1)

Publication Number Publication Date
WO2021049105A1 true WO2021049105A1 (ja) 2021-03-18

Family

ID=74867064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021771 WO2021049105A1 (ja) 2019-09-12 2020-06-02 コリオリ流量計、流量測定方法、及び、コリオリ流量計用プログラム

Country Status (3)

Country Link
JP (1) JP7429703B2 (ja)
TW (1) TW202111288A (ja)
WO (1) WO2021049105A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0882543A (ja) * 1994-09-13 1996-03-26 Yokogawa Electric Corp コリオリ質量流量計
US5602344A (en) * 1994-09-01 1997-02-11 Lew; Hyok S. Inertia force flowmeter
JP2002531859A (ja) * 1998-12-08 2002-09-24 エマーソン・エレクトリック・カンパニー コリオリ質量流量コントローラ
JP2004509330A (ja) * 2000-09-13 2004-03-25 エンドレス ウント ハウザー フローテック アクチエンゲゼルシャフト コリオリ式質量流量計のための測定−作動回路
JP2005274254A (ja) * 2004-03-24 2005-10-06 Oval Corp 三次モード振動式コリオリ流量計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602344A (en) * 1994-09-01 1997-02-11 Lew; Hyok S. Inertia force flowmeter
JPH0882543A (ja) * 1994-09-13 1996-03-26 Yokogawa Electric Corp コリオリ質量流量計
JP2002531859A (ja) * 1998-12-08 2002-09-24 エマーソン・エレクトリック・カンパニー コリオリ質量流量コントローラ
JP2004509330A (ja) * 2000-09-13 2004-03-25 エンドレス ウント ハウザー フローテック アクチエンゲゼルシャフト コリオリ式質量流量計のための測定−作動回路
JP2005274254A (ja) * 2004-03-24 2005-10-06 Oval Corp 三次モード振動式コリオリ流量計

Also Published As

Publication number Publication date
TW202111288A (zh) 2021-03-16
JP7429703B2 (ja) 2024-02-08
JPWO2021049105A1 (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
JP3132628B2 (ja) コリオリ式質量流量計
JP5042226B2 (ja) 振動流量計のための駆動信号を生成する計器電子機器及び方法
JP4960967B2 (ja) 流量計の第1のセンサ信号と第2のセンサ信号との間の位相差を決定するための計器電子装置及び方法
US8676518B2 (en) Signal processing method, signal processing apparatus, and Coriolis flowmeter
JP2009025283A (ja) 一体型加速度計・角速度計システム
CN102639973B (zh) 信号处理方法、信号处理装置以及科里奥利流量计
JP2010505102A (ja) 振動センサを用いてヨーレートを測定するための装置
CN102007381B (zh) 信号处理方法、信号处理装置及哥氏流量计
US10209112B2 (en) Apparatus and method for detecting asymmetric flow in vibrating flowmeters
WO2010024729A2 (en) Micromechanical gyroscope and method for tuning thereof based on using of amplitude modulated quadrature
US8700343B2 (en) Signal processing method, signal processing apparatus, and Coriolis flowmeter
WO2021049105A1 (ja) コリオリ流量計、流量測定方法、及び、コリオリ流量計用プログラム
EP2597434A2 (en) Signal processing method, signal processing apparatus, and Coriolis flowmeter
CN110730901B (zh) 用于防止互调失真信号干扰的频率间隔
JP3252641B2 (ja) 位相差測定装置
CN110709678B (zh) 最小化振动仪表中的多音调驱动信号中的波峰
JPS58153121A (ja) 質量流量計
Hu et al. Theoretical and experimental research on the in-plane comb-shaped capacitor for MEMS coriolis mass flow sensor
JP3161664B2 (ja) コリオリ質量流量計
JP3227691B2 (ja) コリオリ質量流量計
JP3555632B2 (ja) コリオリ質量流量計
JP3137211B2 (ja) コリオリ質量流量計
RU2369840C2 (ru) Определение левого и правого собственных векторов в кориолисовом расходомере в режиме с расходом
JP2000111380A (ja) コリオリ式質量流量計
JPH0882541A (ja) コリオリ質量流量計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545117

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863872

Country of ref document: EP

Kind code of ref document: A1