WO2021049102A1 - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
WO2021049102A1
WO2021049102A1 PCT/JP2020/021520 JP2020021520W WO2021049102A1 WO 2021049102 A1 WO2021049102 A1 WO 2021049102A1 JP 2020021520 W JP2020021520 W JP 2020021520W WO 2021049102 A1 WO2021049102 A1 WO 2021049102A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
antenna
antenna elements
fed
feeding
Prior art date
Application number
PCT/JP2020/021520
Other languages
English (en)
French (fr)
Inventor
崇宏 武田
研一 川崎
憲人 三保田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2021545116A priority Critical patent/JPWO2021049102A1/ja
Priority to EP20863289.3A priority patent/EP4030555A4/en
Publication of WO2021049102A1 publication Critical patent/WO2021049102A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3283Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle side-mounted antennas, e.g. bumper-mounted, door-mounted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Definitions

  • This technology relates to antenna devices. More specifically, the present invention relates to an antenna device having a plurality of antenna elements.
  • an antenna device in which a plurality of antenna elements are arranged is known.
  • An antenna device having such a structure is suitable for high-frequency communication such as millimeter waves, and is adopted as, for example, an in-vehicle antenna.
  • series-fed antennas such as comb-line antennas, which are often used in millimeter-wave radar
  • directional tilt occurs depending on the frequency.
  • directional tilt is unlikely to occur with parallel-fed antennas, but it is difficult to prepare a power divider with a large power ratio for tapered power feeding, so it is difficult to reduce the sidelobe level. is there.
  • an antenna device for combining series feeding and parallel feeding to obtain a desired power distribution has been proposed (see, for example, Patent Document 1).
  • This technology was created in view of this situation, and aims to suppress the tilt of directivity due to frequency and reduce the sidelobe level.
  • the present technology has been made to solve the above-mentioned problems, and the first aspect thereof is a plurality of first antenna elements fed in parallel from a feeding point, and the plurality of first antennas.
  • the feeding power from the feeding point is set according to the ratio of the feeding power to be fed to the plurality of first and second antenna elements to the plurality of second antenna elements fed in series from any of the elements.
  • It is an antenna device including a distributor that distributes in parallel to a plurality of first antenna elements.
  • the plurality of first antenna elements and the plurality of second antenna elements may be fed in different phases from each other.
  • power may be supplied in phases that are 180 degrees different from each other.
  • the plurality of first antenna elements and the plurality of second antenna elements may be fed in the same phase.
  • the plurality of second antenna elements further feed in series with respect to the antenna element fed in series from any of the plurality of first antenna elements. It may be included. This has the effect of adjusting the ratio of the desired feeding power.
  • the plurality of second antenna elements may be arranged outside the distributor with respect to the feeding point, and inside the distributor with respect to the feeding point. May be placed in. This has the effect of adjusting the ratio of the desired feeding power.
  • the plurality of first antenna elements may supply power to the plurality of second antenna elements via the side fed from the distributor, and the distribution may be performed.
  • the power may be supplied to the plurality of second antenna elements via the side opposite to the side fed from the device or the side orthogonal to the side.
  • the plurality of first antenna elements may supply power to the plurality of second antenna elements via electromagnetic field coupling.
  • it may be an array antenna in which a plurality of linear antennas including the plurality of first and second antenna elements and the distributor are arranged.
  • a plurality of the linear antennas may be arranged at a pitch of half or less of the wavelength of the corresponding frequency. Further, power may be supplied by different power supply power ratios between the linear antennas.
  • the distributor distributes the feeding power from the feeding point by the feeding line width according to the ratio of the feeding power to be fed to the plurality of first and second antenna elements. It may be an uneven power divider.
  • the distributor supplies power from the feeding point by current control or voltage control according to the ratio of feeding power to be fed to the plurality of first and second antenna elements. It may be a variable power divider to be distributed. Further, the distributor should supply at least one of the power divider that distributes the feed power from the feed point and the feed power distributed by the power divider to the plurality of first and second antenna elements. A variable attenuator that attenuates by current control or voltage control according to the ratio of feed power may be provided.
  • FIG. 1 is a diagram showing an example of mounting the antenna device 20 on the vehicle 10 according to the embodiment of the present technology.
  • the radar antenna device 20 is attached to the back of the front grill of the vehicle 10 .
  • the traveling direction is represented by the Z axis
  • the horizontal direction is represented by the X axis
  • the vertical direction is represented by the Y axis.
  • Millimeter-wave radar is required to cover a wide band frequency band such as 76 GHz to 81 GHz. This is to improve the distance resolution by the millimeter wave radar. That is, this makes it possible to accurately separate the objects by sweeping the wideband pulse and accurately measuring the distance of the object to be detected.
  • FIG. 2 is a diagram showing a configuration example of the antenna device 20 according to the embodiment of the present technology.
  • This antenna device 20 includes six patch elements 110, 120, 130, 140, 150 and 160.
  • Four of the patch elements 110, 120, 130 and 140 are connected so as to be fed in parallel from the feeding point 200 by the uneven power dividers 210 and 220 to form a parallel feeding microstrip antenna array. These are shown as parallel feeding units in the figure.
  • the patch elements 110, 120, 130 and 140 are examples of the first antenna element described in the claims.
  • the non-uniform power dividers 210 and 220 are examples of the distributors described in the claims.
  • the patch element 150 is connected to the patch element 130 outside the parallel feeding microstrip antenna array so as to be fed in series via the feeding line 330.
  • the patch element 140 is connected to the patch element 140 so that the patch element 160 is fed in series via the power feeding line 340.
  • These are shown as series feeds in the figure. That is, the patch elements 150 and 160 are arranged outside the non-uniform power dividers 210 and 220 with respect to the feeding point 200.
  • the patch elements 150 and 160 are examples of the second antenna element described in the claims.
  • the feeding power from the feeding point 200 can be fed in parallel by the non-uniform power dividers 210 and 220, and further can be fed in series by the feeding lines 330 and 340.
  • the power supply power can be distributed so as to reduce the side lobes while suppressing the distribution ratio of the power supply power in the non-uniform power dividers 210 and 220.
  • the length of the series feeding unit can be suppressed to be short, and the directivity tilt due to the frequency can be suppressed.
  • FIG. 3 is a diagram showing a numerical example of the antenna device 20 according to the embodiment of the present technology.
  • a millimeter wave band of 76 GHz to 81 GHz is assumed as the frequency band used.
  • the patch elements 110 and 120 have a power supply power of 1.0 W
  • the patch elements 130 and 140 have a power supply power of 0.5 W
  • the patch elements 150 and 160 have a power supply power of 0.14 W.
  • the antenna device 20 having a wide band, a low sidelobe level, and a small frequency variation is configured.
  • the sizes of the patch elements 110, 120, 130 and 140 are 1.3 mm in width and 0.9 mm in length, respectively.
  • the sizes of the patch elements 150 and 160 are 0.35 mm in width and 1.0 mm in length, respectively.
  • the vertical lengths of these patch elements 110, 120, 130, 140, 150 and 160 are set based on half the length of the wavelength ⁇ of the operating frequency. Further, the power ratios of the patch elements 150 and 160 fed in series are changed by adjusting the width length. In other words, by adjusting the width lengths of the patch elements 150 and 160, it is possible to design an antenna device 20 having a power distribution that reduces side lobes.
  • the power ratio of the non-uniform power dividers 210 and 220 is 64: 100, respectively, from the ratio of the power feeding powers of the six patch elements 110, 120, 130, 140, 150 and 160 described above.
  • the line width of the feed line from the feed point 200 to the non-uniform power dividers 210 and 220 is 0.075 mm.
  • Each of the non-uniform power dividers 210 and 220 distributes the feeding power received at the input of 0.6 mm in length and 0.18 mm in width to 0.2 mm in width and 0.075 mm in width, respectively. By adjusting the impedance with this line width ratio, a power ratio of 64: 100 can be obtained.
  • the feeding phases of the feeding lines 330 and 340 for serial feeding can be adjusted according to the length.
  • the power is supplied by the phase shift of 180 degrees by setting based on the length of half of the wavelength ⁇ of the operating frequency. That is, the patch elements 130 and 140 are fed from above, and the patch elements 150 and 160 are fed from below, and are fed from opposite directions. Therefore, by adjusting the feeding phase to 180 degrees, the patch elements 150 and 160 are fed in the same phase. Be encouraged and strengthen each other.
  • the vertical lengths of the patch elements 110, 120, 130, 140, 150 and 160 and the lengths of the power feeding lines 330 and 340 are set based on half the length of the wavelength ⁇ of the operating frequency.
  • the length of is affected by various factors. For example, it may be affected by the permittivity of the substrate material of the antenna device, the effective permittivity as a line, the frequency used, and the like. Specifically, if the line is thin, the effective permittivity is lowered, so that the length is set longer than the original length, and if the line is thick, the length is set shorter than the original length.
  • FIG. 4 is a diagram showing the directivity characteristics of the numerical embodiment of the antenna device 20 in the embodiment of the present technology.
  • This directivity characteristic shows the result of simulation under the conditions of the above numerical examples. From this directivity characteristic, it can be seen that when the frequency is changed from 76 GHz to 81 GHz, the directivity tilt due to the frequency does not occur, and the side lobe level is also appropriately suppressed.
  • the patch elements 150 and 160 are further connected to the outside of the patch elements 110, 120, 130 and 140 to be fed in parallel to feed in series. As a result, it is possible to suppress the directivity tilt due to the frequency and reduce the sidelobe level at the same time. That is, it is possible to realize a compact antenna with high gain, low tilt, and low side lobe in a wide band.
  • FIG. 5 is a diagram showing a configuration example of the antenna device 20 in the first modification of the embodiment of the present technology.
  • the direction of power supply is reversed from that of the above-described embodiment. ing. That is, in the above-described embodiment, power is supplied from the lower side of the patch elements 150 and 160, but in this first modification, power is supplied from the upper side of the patch elements 150 and 160.
  • the feeding phase of both needs to be 360 degrees. Therefore, the lengths of the power supply lines 330 and 340 are longer than those of the above-described embodiment. In addition, directional tilt is likely to occur.
  • the length in the X-axis direction can be further shortened. Therefore, it is possible to shorten the pitch when a plurality of antennas in the figure are arranged in an array.
  • FIG. 6 is a diagram showing a configuration example of the antenna device 20 in the second modification of the embodiment of the present technology.
  • a plurality of patch elements 150, 151 and 152 are further connected to the outside of the patch element 130 fed in parallel, and a plurality of patch elements 160, 161 are further connected to the outside of the patch element 140.
  • And 162 are connected to supply power in series, respectively.
  • the gain of the antenna device 20 can be increased.
  • Increasing the gain of the antenna device 20 is effective in that radio waves can be radiated to a long distance, particularly in the case of an in-vehicle antenna.
  • the patch elements 151, 152, 161 and 162 are examples of the second antenna element described in the claims.
  • the directional tilt due to the serial power supply is likely to occur.
  • the outer feed power becomes larger than that in the above-described embodiment.
  • FIG. 7 is a diagram showing a configuration example of the antenna device 20 in the third modification of the embodiment of the present technology.
  • the patch element 111 is further connected to the inside of the patch element 110 to be fed in parallel via the feeding line 310, and the feeding line 320 is further connected to the inside of the patch element 120 to be fed in parallel.
  • the patch elements 121 are connected to each other via the above, and power is supplied in series. That is, in this third modification, the patch elements 150 and 160 are arranged inside the non-uniform power dividers 210 and 220 with respect to the feeding point 200. As a result, the gain of the antenna device 20 can be increased.
  • the patch elements 111 and 121 are examples of the first antenna element described in the claims.
  • the directional tilt due to the serial power supply is likely to occur.
  • the inner feed power becomes larger than that in the above-described embodiment.
  • FIG. 8 is a diagram showing a configuration example of the antenna device 20 in the fourth modification of the embodiment of the present technology.
  • the side fed in parallel to the patch elements 130 and 140 and the side connected to the feeding lines 330 and 340 fed in series to the patch elements 150 and 160 are opposed to each other. is there.
  • the side fed in parallel to the patch elements 130 and 140 and the side to which the feeding lines 330 and 340 are connected are the same, and the patch is patched through the side fed in parallel to the patch elements 130 and 140.
  • the elements 150 and 160 were fed in series.
  • the patch elements 150 and 160 in the patch elements 150 and 160, the patch elements 150 and 160 can be fed in series via the sides facing the sides fed in parallel.
  • FIG. 9 is a diagram showing a configuration example of the antenna device 20 in the fifth modification of the embodiment of the present technology.
  • the side fed in parallel to the patch elements 130 and 140 and the side to which the feeding lines 330 and 340 fed in series to the patch elements 150 and 160 are connected are orthogonal to each other. is there.
  • the side fed in parallel to the patch elements 130 and 140 and the side to which the feeding lines 330 and 340 are connected are the same, and the patch is patched through the side fed in parallel to the patch elements 130 and 140.
  • the elements 150 and 160 were fed in series.
  • the patch elements 150 and 160 in the patch elements 150 and 160, the patch elements 150 and 160 can be fed in series via the sides orthogonal to the sides fed in parallel.
  • FIG. 10 is a diagram showing a configuration example of the antenna device 20 in the sixth modification of the embodiment of the present technology.
  • the antenna device 20 in this sixth modification utilizes electromagnetic field coupling when power is supplied in series from the patch elements 130 and 140 fed in parallel to the patch elements 150 and 160. That is, the patch element 130 and the power supply line 330 can be connected, and the patch element 140 and the power supply line 340 can be connected via the electromagnetic field couplings 331 and 341, respectively.
  • the restrictions on the antenna arrangement can be improved by changing the feeding direction and feeding position of the series feeding element and enabling feeding by electromagnetic field coupling.
  • FIG. 11 is a diagram showing a configuration example of the antenna device 20 in the seventh modification of the embodiment of the present technology.
  • the antenna device 20 in the seventh modification is the arrangement of two antenna devices 20 in the first modification of the above-described embodiment.
  • the feeding point 200 is shared, and the feeding power is distributed by the power dividers 230 and 240.
  • the power dividers 230 and 240 in this case are uniform power dividers having a power supply power ratio of 1: 1.
  • the length in the X-axis direction can be shortened. Therefore, when a plurality of the antenna devices are arranged in the X-axis direction, the arrangement pitch can be shortened. Assuming that the radiation angle of the antenna is ⁇ 90 degrees, in order to suppress the occurrence of grating lobes, it is necessary to arrange the antenna at a pitch of half or less of the wavelength ⁇ of the frequency used in the X-axis direction. According to the antenna device 20 in the modified example, the condition can be satisfied.
  • FIG. 12 is a diagram showing a configuration example of the antenna device 20 in the eighth modification of the embodiment of the present technology.
  • the antenna device 20 in the eighth modification is the arrangement of four antenna devices 20 in the first modification of the above-described embodiment.
  • the feeding point 200 is shared, and the feeding power is distributed by the power dividers 201, 202, 230, 231, 240 and 241.
  • These power dividers 201, 202, 230, 231, 240 and 241 are uniform power dividers with a feed power ratio of 1: 1.
  • FIG. 13 is a diagram showing a configuration example of the antenna device 20 in the ninth modification of the embodiment of the present technology.
  • the antenna device 20 in the ninth modification is a non-uniform power divider of the power dividers 230, 231, 240 and 241 in the eighth modification of the above-described embodiment. This is intended to adjust the feed power ratio in order to avoid affecting the side lobes in the frequency characteristics by arranging a plurality of them in the X-axis direction.
  • FIG. 14 is a diagram showing a configuration example of the antenna device 20 in the tenth modification of the embodiment of the present technology.
  • the antenna device 20 in the tenth modification is provided with variable power dividers 250 and 260 as active circuits in place of the uneven power dividers 210 and 220 in the above-described embodiment.
  • the variable power dividers 250 and 260 distribute the feeding power from the feeding point 200 by current control or voltage control according to the ratio of the feeding power to be fed. By using the variable power dividers 250 and 260, the feed power ratio can be adjusted so that the side lobe level and the like have optimum directivity at each frequency.
  • the variable power dividers 250 and 260 are examples of the distributors described in the claims.
  • FIG. 15 is a diagram showing a configuration example of the antenna device 20 in the eleventh modification of the embodiment of the present technology.
  • the antenna device 20 in the eleventh modification is provided with power dividers 270 and 280 and variable attenuators 271 and 281 as active circuits instead of the uneven power dividers 210 and 220 in the above-described embodiment. is there.
  • the variable attenuators 271 and 281 attenuate the feeding power distributed by the power dividers 270 and 280 by current control or voltage control according to the ratio of the feeding power to be fed.
  • the feed power ratio can be adjusted so that the side lobe level and the like have optimum directivity at each frequency, as in the tenth modification described above.
  • the power dividers 270 and 280 and the variable attenuators 271 and 281 are examples of the distributors described in the claims.
  • the present technology can have the following configurations. (1) A plurality of first antenna elements fed in parallel from the feeding point, and A plurality of second antenna elements fed in series from any of the plurality of first antenna elements, and a plurality of second antenna elements. An antenna including a distributor that distributes the feeding power from the feeding point in parallel to the plurality of first antenna elements according to the ratio of the feeding power to be fed to the plurality of first and second antenna elements. apparatus. (2) The antenna device according to (1), wherein the plurality of first antenna elements and the plurality of second antenna elements are fed in different phases. (3) The antenna device according to (2), wherein the plurality of first antenna elements and the plurality of second antenna elements are fed in different phases by 180 degrees.
  • the plurality of second antenna elements include an antenna element that is further fed in series with an antenna element that is fed in series from any of the plurality of first antenna elements.
  • the antenna device according to any one of (1) to (10) above, wherein the plurality of first antenna elements supply power to the plurality of second antenna elements via electromagnetic field coupling.
  • the antenna device according to any one of (1) to (11) above, which is an array antenna in which a plurality of linear antennas including the plurality of first and second antenna elements and the distributor are arranged.
  • the antenna device wherein a plurality of the linear antennas are arranged at a pitch of half or less of the wavelength of the corresponding frequency.
  • the antenna device wherein power is supplied between the linear antennas with different power feeding power ratios.
  • the distributor is an unequal power divider that distributes the feeding power from the feeding point according to the feeding line width according to the ratio of the feeding power to be fed to the plurality of first and second antenna elements.
  • the antenna device according to any one of (1) to (14).
  • the distributor is a variable power divider that distributes the feeding power from the feeding point by current control or voltage control according to the ratio of the feeding power to be fed to the plurality of first and second antenna elements.
  • the distributor supplies at least one of a power divider that distributes the feed power from the feed point and the feed power distributed by the power divider to the plurality of first and second antenna elements.
  • the antenna device according to any one of (1) to (14) above comprising a variable attenuator that attenuates by current control or voltage control according to the ratio of power feeding power to be supplied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

複数のアンテナ素子を有するアンテナ装置において、周波数による指向性のチルトを抑制するとともに、サイドローブレベルを低減する。 複数の第1のアンテナ素子は、給電点から並列に給電される。複数の第2のアンテナ素子は、複数の第1のアンテナ素子の何れかから直列に給電される。分配器は、複数の第1および第2のアンテナ素子に給電すべき給電パワーの比に応じて、給電点からの給電パワーを複数の第1のアンテナ素子に並列に分配する。

Description

アンテナ装置
 本技術は、アンテナ装置に関する。詳しくは、複数のアンテナ素子を有するアンテナ装置に関する。
 従来、複数のアンテナ素子を配置したアンテナ装置が知られている。このような構造のアンテナ装置は、ミリ波などの高周波通信に適しており、例えば車載アンテナとして採用されている。ミリ波レーダに多く使用されているコムライン(comb-line)アンテナなどの直列給電のアンテナでは、周波数による指向性のチルトが発生するという問題がある。一方、並列給電のアンテナでは指向性のチルトは発生し難いが、テーパー電力給電のためにパワー比の大きいパワーデバイダを用意することが困難なため、サイドローブレベルを低減することが難しいという問題がある。これに対し、例えば、直列給電および並列給電を組み合わせて所望のパワー分布を得るためのアンテナ装置が提案されている(例えば、特許文献1参照。)。
特開平08-181537号公報
 上述の従来技術では、長方形状のパッチ素子をアレイ状に配置して、一対の主給電線により直列給電を行い、その直角方向に接続される支線により並列給電を行っている。しかしながら、この従来技術では、直列給電を行う主給電線が長く、周波数による指向性のチルトを抑えることができない。
 本技術はこのような状況に鑑みて生み出されたものであり、周波数による指向性のチルトを抑制するとともに、サイドローブレベルを低減することを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、給電点から並列に給電される複数の第1のアンテナ素子と、上記複数の第1のアンテナ素子の何れかから直列に給電される複数の第2のアンテナ素子と、上記複数の第1および第2のアンテナ素子に給電すべき給電パワーの比に応じて上記給電点からの給電パワーを上記複数の第1のアンテナ素子に並列に分配する分配器とを具備するアンテナ装置である。これにより、並列給電と直列給電を組み合わせることにより所望の給電パワーの比となるよう調整して、指向性のチルトの抑制とサイドローブレベルの低減とを両立するという作用をもたらす。
 また、この第1の側面において、上記複数の第1のアンテナ素子と上記複数の第2のアンテナ素子とは、互いに異なる位相で給電されるようにしてもよい。例えば、互いに180度異なる位相で給電されてもよい。また、上記複数の第1のアンテナ素子と上記複数の第2のアンテナ素子とは、同じ位相で給電されるようにしてもよい。
 また、この第1の側面において、上記複数の第2のアンテナ素子は、上記複数の第1のアンテナ素子の何れかから直列に給電されるアンテナ素子に対してさらに直列に給電されるアンテナ素子を含んでもよい。これにより、所望の給電パワーの比となるよう調整するという作用をもたらす。
 また、この第1の側面において、上記複数の第2のアンテナ素子は、上記給電点に対して上記分配器の外側に配置されてもよく、また、上記給電点に対して上記分配器の内側に配置されてもよい。これにより、所望の給電パワーの比となるよう調整するという作用をもたらす。
 また、この第1の側面において、上記複数の第1のアンテナ素子は、上記分配器から給電された辺を介して上記複数の第2のアンテナ素子に給電を行うようにしてもよく、上記分配器から給電された辺に相対する辺または直交する辺を介して上記複数の第2のアンテナ素子に給電を行ってもよい。
 また、この第1の側面において、上記複数の第1のアンテナ素子は、電磁界結合を介して上記複数の第2のアンテナ素子に給電を行うようにしてもよい。
 また、この第1の側面において、上記複数の第1および第2のアンテナ素子および上記分配器からなる直線状アンテナを複数配置したアレイアンテナであってもよい。この場合において、上記直線状アンテナは、対応周波数の波長の半分以下のピッチにより複数配置されてもよい。また、上記直線状アンテナの間で異なる給電パワー比により給電するようにしてもよい。
 また、この第1の側面において、上記分配器は、上記複数の第1および第2のアンテナ素子に給電すべき給電パワーの比に応じた給電ライン幅により上記給電点からの給電パワーを分配する不均等パワーデバイダであってもよい。
 また、この第1の側面において、上記分配器は、上記複数の第1および第2のアンテナ素子に給電すべき給電パワーの比に応じた電流制御または電圧制御により上記給電点からの給電パワーを分配する可変パワーデバイダであってもよい。また、上記分配器は、上記給電点からの給電パワーを分配するパワーデバイダと、上記パワーデバイダによって分配された給電パワーの少なくとも何れかを上記複数の第1および第2のアンテナ素子に給電すべき給電パワーの比に応じた電流制御または電圧制御により減衰させる可変減衰器とを備えるようにしてもよい。
本技術の実施の形態におけるアンテナ装置20の車両10への取付け例を示す図である。 本技術の実施の形態におけるアンテナ装置20の構成例を示す図である。 本技術の実施の形態におけるアンテナ装置20の数値実施例を示す図である。 本技術の実施の形態におけるアンテナ装置20の数値実施例の指向性特性を示す図である。 本技術の実施の形態の第1の変形例におけるアンテナ装置20の構成例を示す図である。 本技術の実施の形態の第2の変形例におけるアンテナ装置20の構成例を示す図である。 本技術の実施の形態の第3の変形例におけるアンテナ装置20の構成例を示す図である。 本技術の実施の形態の第4の変形例におけるアンテナ装置20の構成例を示す図である。 本技術の実施の形態の第5の変形例におけるアンテナ装置20の構成例を示す図である。 本技術の実施の形態の第6の変形例におけるアンテナ装置20の構成例を示す図である。 本技術の実施の形態の第7の変形例におけるアンテナ装置20の構成例を示す図である。 本技術の実施の形態の第8の変形例におけるアンテナ装置20の構成例を示す図である。 本技術の実施の形態の第9の変形例におけるアンテナ装置20の構成例を示す図である。 本技術の実施の形態の第10の変形例におけるアンテナ装置20の構成例を示す図である。 本技術の実施の形態の第11の変形例におけるアンテナ装置20の構成例を示す図である。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.実施の形態
 2.変形例
 <1.実施の形態>
 [ミリ波レーダ]
 図1は、本技術の実施の形態におけるアンテナ装置20の車両10への取付け例を示す図である。
 ここでは、車載用ミリ波レーダを想定し、車両10のフロントグリルの裏にレーダのアンテナ装置20を取り付けた例を示している。進行方向をZ軸で表し、水平方向をX軸、垂直方向をY軸で表す。
 ミリ波レーダでは、例えば、76GHz乃至81GHzといった広帯域の周波数帯をカバーすることが要求される。これは、ミリ波レーダによる距離解像度を向上させるためである。すなわち、これにより、広帯域のパルスを掃引して、検知したい物体の距離を正確に測ることにより、物体の分離を正確に行うことができる。
 このとき、アンテナ装置において、従来のように垂直方向に直列給電した場合には、周波数の変化に伴い指向性のピーク(メインビーム)が垂直方向に対して上下にチルトしてしまうという事象が生じ得る。これは、周波数の変化により波長も変化するため、給電点から各パッチ素子への給電ラインの長さがずれていくことに起因するものである。
 一方、並列給電であればチルトは発生し難いが、メインビームの脇のサイドローブを低減することが困難になる。これは、並列給電では給電パワーの分配比の調整に限界があるからである。すなわち、分配比を調整するためには、一般に、給電ラインのライン幅により調整することになるが、その場合にはライン幅に大きな差を設けることは困難だからである。
 そこで、この実施の形態では、以下に示すように並列給電と直列給電を組み合わせることにより、周波数による指向性のチルトの抑制とサイドローブレベルの低減との両立を図る。
 [アンテナ装置]
 図2は、本技術の実施の形態におけるアンテナ装置20の構成例を示す図である。
 このアンテナ装置20は、6つのパッチ素子110、120、130、140、150および160を備える。そのうち4つのパッチ素子110、120、130および140は、給電点200から不均等パワーデバイダ210および220によって並列給電されるように接続され、並列給電マイクロストリップアンテナアレーを構成する。これらは、図中では、並列給電部として示される。なお、パッチ素子110、120、130および140は、特許請求の範囲に記載の第1のアンテナ素子の一例である。また、不均等パワーデバイダ210および220は、特許請求の範囲に記載の分配器の一例である。
 また、並列給電マイクロストリップアンテナアレーの外側のパッチ素子130には、給電ライン330を介してパッチ素子150が直列給電されるように接続される。同様に、パッチ素子140には、給電ライン340を介してパッチ素子160が直列給電されるように接続される。これらは、図中では、直列給電部として示される。すなわち、パッチ素子150および160は、給電点200に対して不均等パワーデバイダ210および220の外側に配置される。なお、パッチ素子150および160は、特許請求の範囲に記載の第2のアンテナ素子の一例である。
 このような構造を有することにより、給電点200からの給電パワーを不均等パワーデバイダ210および220によって並列給電し、さらに、給電ライン330および340によって直列給電することができる。これにより、不均等パワーデバイダ210および220における給電パワーの分配比を抑えながら、サイドローブを低減するように給電パワー分配を行うことができる。また、並列給電部と組み合わせることにより直列給電部の長さを短く抑えて、周波数による指向性のチルトを抑制することができる。
 [数値実施例]
 図3は、本技術の実施の形態におけるアンテナ装置20の数値実施例を示す図である。この数値実施例では、使用周波数帯として76GHz乃至81GHzのミリ波帯を想定する。
 この例では、パッチ素子110および120が給電パワー1.0Wのとき、パッチ素子130および140が給電パワー0.5W、パッチ素子150および160が給電パワー0.14Wとなることを想定する。このように、給電するパワー比を、内側で大きく、外側で小さくすることにより、広帯域でサイドローブレベルが低く、周波数ばらつきが小さいアンテナ装置20を構成する。
 パッチ素子110、120、130および140のサイズは、それぞれ横1.3mm、縦0.9mmとなっている。また、パッチ素子150および160のサイズは、それぞれ横0.35mm、縦1.0mmとなっている。これらパッチ素子110、120、130、140、150および160の縦の長さは、使用周波数の波長λの半分の長さに基づいて設定される。また、直列給電されるパッチ素子150および160は、横幅の長さを調整することによりパワー比が変化する。換言すれば、このパッチ素子150および160の横幅の長さを調整することにより、サイドローブを低減するパワー分布を有するアンテナ装置20の設計を行うことができる。
 不均等パワーデバイダ210および220のパワー比は、上述の6つのパッチ素子110、120、130、140、150および160の給電パワーの比から、それぞれ64:100となっている。給電点200から不均等パワーデバイダ210および220への給電ラインのライン幅は、0.075mmである。不均等パワーデバイダ210および220のそれぞれは、長さ0.6mm、幅0.18mmの入力で受けた給電パワーを、幅0.2mmと幅0.075mmに分配する。この線幅の比でインピーダンス調整することにより、64:100のパワー比が得られる。
 また、直列給電の給電ライン330および340は、長さによって給電位相を調整することができる。この例では、使用周波数の波長λの半分の長さに基づいて設定することにより、180度の移相により給電している。すなわち、パッチ素子130および140は上から給電され、パッチ素子150および160は下から給電されており、互いに反対方向から給電されているため、給電位相を180度に調整することにより、同じ位相で励振されて強め合うようになる。
 なお、パッチ素子110、120、130、140、150および160の縦の長さや、給電ライン330および340の長さは、使用周波数の波長λの半分の長さに基づいて設定されるが、これらの長さは様々な要因により影響を受ける。例えば、アンテナ装置の基板材料の誘電率、ラインとしての実効誘電率、使用周波数などにより影響を受ける可能性がある。具体的には、細いラインであれば実効誘電率が下がるため本来の長さより長く設定することになり、太いラインであれば本来の長さより短く設定することになる。
 図4は、本技術の実施の形態におけるアンテナ装置20の数値実施例の指向性特性を示す図である。
 この指向性特性は、上述の数値実施例の条件によりシミュレーションした結果を示している。この指向性特性から、76GHz乃至81GHzに変化させた場合において、周波数による指向性のチルトは生じておらず、また、サイドローブレベルも適正に抑制されていることがわかる。
 このように、本技術の実施の形態では、並列給電されるパッチ素子110、120、130および140の外側に、さらにパッチ素子150および160を接続して直列給電する。これにより、周波数による指向性のチルトの抑制とサイドローブレベルの低減を両立させることができる。すなわち、広帯域で高利得、低チルト、低サイドローブの小型アンテナを実現することができる。
 <2.変形例>
 [第1の変形例]
 図5は、本技術の実施の形態の第1の変形例におけるアンテナ装置20の構成例を示す図である。
 この第1の変形例におけるアンテナ装置20は、パッチ素子130および140から給電ライン330および340を介してパッチ素子150および160に直列給電する際、給電の向きを上述の実施の形態とは逆にしている。すなわち、上述の実施の形態ではパッチ素子150および160の下側の辺から給電していたが、この第1の変形例ではパッチ素子150および160の上側の辺から給電している。
 この給電の向きの相違により、パッチ素子130および140とパッチ素子150および160とを同じ位相で励振するためには、両者の給電位相は360度にする必要がある。したがって、給電ライン330および340の長さは上述の実施の形態より長くなる。また、指向性のチルトも生じ易くなる。
 この第1の変形例によれば、X軸方向の長さをさらに短くすることができる。したがって、同図のアンテナをさらに複数配置してアレイ配置を行う場合のピッチを短くすることができる。
 [第2の変形例]
 図6は、本技術の実施の形態の第2の変形例におけるアンテナ装置20の構成例を示す図である。
 この第2の変形例におけるアンテナ装置20は、並列給電されるパッチ素子130の外側にさらに複数のパッチ素子150、151および152を接続し、パッチ素子140の外側にさらに複数のパッチ素子160、161および162を接続して、それぞれ直列給電を行うものである。これにより、アンテナ装置20のゲイン(利得)を大きくすることができる。アンテナ装置20のゲインを大きくすることは、特に車載用のアンテナの場合、遠くまで電波を放射することができる点において有効である。なお、パッチ素子151、152、161および162は、特許請求の範囲に記載の第2のアンテナ素子の一例である。
 ただし、この場合、直列給電に起因する指向性のチルトは生じ易くなる。また、不均等パワーデバイダ210および220において分配される給電パワー比は、上述の実施の形態に比べて外側の給電パワーが大きくなる。
 [第3の変形例]
 図7は、本技術の実施の形態の第3の変形例におけるアンテナ装置20の構成例を示す図である。
 この第3の変形例におけるアンテナ装置20は、並列給電されるパッチ素子110の内側にさらに給電ライン310を介してパッチ素子111を接続し、並列給電されるパッチ素子120の内側にさらに給電ライン320を介してパッチ素子121を接続して、それぞれ直列給電を行うものである。すなわち、この第3の変形例では、パッチ素子150および160は、給電点200に対して不均等パワーデバイダ210および220の内側に配置される。これにより、アンテナ装置20のゲインを大きくすることができる。なお、パッチ素子111および121は、特許請求の範囲に記載の第1のアンテナ素子の一例である。
 ただし、この場合、直列給電に起因する指向性のチルトは生じ易くなる。また、不均等パワーデバイダ210および220において分配される給電パワー比は、上述の実施の形態に比べて内側の給電パワーが大きくなる。
 [第4の変形例]
 図8は、本技術の実施の形態の第4の変形例におけるアンテナ装置20の構成例を示す図である。
 この第4の変形例におけるアンテナ装置20は、パッチ素子130および140に並列給電される辺と、パッチ素子150および160に直列給電する給電ライン330および340が接続される辺とが相対するものである。上述の実施の形態では、パッチ素子130および140に並列給電される辺と給電ライン330および340が接続される辺とは同じであり、パッチ素子130および140に並列給電される辺を介してパッチ素子150および160に直列給電していた。これに対し、この第4の変形例では、パッチ素子150および160において、並列給電された辺に相対する辺を介してパッチ素子150および160に直列給電を行うことができる。
 [第5の変形例]
 図9は、本技術の実施の形態の第5の変形例におけるアンテナ装置20の構成例を示す図である。
 この第5の変形例におけるアンテナ装置20は、パッチ素子130および140に並列給電される辺と、パッチ素子150および160に直列給電する給電ライン330および340が接続される辺とが直交するものである。上述の実施の形態では、パッチ素子130および140に並列給電される辺と給電ライン330および340が接続される辺とは同じであり、パッチ素子130および140に並列給電される辺を介してパッチ素子150および160に直列給電していた。これに対し、この第5の変形例では、パッチ素子150および160において、並列給電された辺に直交する辺を介してパッチ素子150および160に直列給電を行うことができる。
 [第6の変形例]
 図10は、本技術の実施の形態の第6の変形例におけるアンテナ装置20の構成例を示す図である。
 この第6の変形例におけるアンテナ装置20は、並列給電されたパッチ素子130および140から、パッチ素子150および160に直列給電する際に、電磁界結合を利用するものである。すなわち、パッチ素子130と給電ライン330との接続、および、パッチ素子140と給電ライン340との接続を、それぞれ電磁界結合331および341を介して行うことができる。
 これら第4乃至6の変形例のように、直列給電素子の給電方向や給電位置の変更、電磁界結合による給電を可能にすることにより、アンテナ配置の制約を改善することができる。
 [第7の変形例]
 図11は、本技術の実施の形態の第7の変形例におけるアンテナ装置20の構成例を示す図である。
 この第7の変形例におけるアンテナ装置20は、上述の実施の形態の第1の変形例のアンテナ装置20を2つ配置したものである。ここでは、給電点200は共有されており、パワーデバイダ230および240によって給電パワーが分配されている。この場合のパワーデバイダ230および240は、給電パワー比が1:1の均等パワーデバイダである。
 本技術の実施の形態およびその変形例では、パッチ素子110、120、130、140、150および160をY軸方向に配置しているため、X軸方向の長さを短くすることができる。したがって、このアンテナ装置をX軸方向に複数配置した場合、その配置ピッチを短くすることができる。アンテナの放射角度を±90度と想定した場合、グレーティングローブの発生を抑止するためには、使用周波数の波長λの半分以下のピッチでX軸方向に配置する必要があるが、この第7の変形例におけるアンテナ装置20によれば、その条件を満たすことができる。
 [第8の変形例]
 図12は、本技術の実施の形態の第8の変形例におけるアンテナ装置20の構成例を示す図である。
 この第8の変形例におけるアンテナ装置20は、上述の実施の形態の第1の変形例のアンテナ装置20を4つ配置したものである。ここでは、給電点200は共有されており、パワーデバイダ201、202、230、231、240および241によって給電パワーが分配されている。これらのパワーデバイダ201、202、230、231、240および241は、給電パワー比が1:1の均等パワーデバイダである。
 [第9の変形例]
 図13は、本技術の実施の形態の第9の変形例におけるアンテナ装置20の構成例を示す図である。
 この第9の変形例におけるアンテナ装置20は、上述の実施の形態の第8の変形例におけるパワーデバイダ230、231、240および241を不均等パワーデバイダにしたものである。これは、X軸方向に複数配置することにより周波数特性においてサイドローブに影響が及ぶことを回避するために、給電パワー比の調整を行うことを意図したものである。
 [第10の変形例]
 図14は、本技術の実施の形態の第10の変形例におけるアンテナ装置20の構成例を示す図である。
 この第10の変形例におけるアンテナ装置20は、上述の実施の形態における不均等パワーデバイダ210および220に代えて、アクティブ回路として可変パワーデバイダ250および260を設けたものである。この可変パワーデバイダ250および260は、給電すべき給電パワーの比に応じた電流制御または電圧制御により、給電点200からの給電パワーを分配するものである。この可変パワーデバイダ250および260を用いることにより、各周波数でサイドローブレベルなどが最適な指向性になるように、給電パワー比を調整することができる。なお、可変パワーデバイダ250および260は、特許請求の範囲に記載の分配器の一例である。
 [第11の変形例]
 図15は、本技術の実施の形態の第11の変形例におけるアンテナ装置20の構成例を示す図である。
 この第11の変形例におけるアンテナ装置20は、上述の実施の形態における不均等パワーデバイダ210および220に代えて、パワーデバイダ270および280と可変減衰器271および281とをアクティブ回路として設けたものである。この可変減衰器271および281は、パワーデバイダ270および280によって分配された給電パワーを、給電すべき給電パワーの比に応じた電流制御または電圧制御により減衰させるものである。この可変減衰器271および281を用いることにより、上述の第10の変形例と同様に、各周波数でサイドローブレベルなどが最適な指向性になるように、給電パワー比を調整することができる。なお、パワーデバイダ270および280と可変減衰器271および281は、特許請求の範囲に記載の分配器の一例である。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成もとることができる。
(1)給電点から並列に給電される複数の第1のアンテナ素子と、
 前記複数の第1のアンテナ素子の何れかから直列に給電される複数の第2のアンテナ素子と、
 前記複数の第1および第2のアンテナ素子に給電すべき給電パワーの比に応じて前記給電点からの給電パワーを前記複数の第1のアンテナ素子に並列に分配する分配器と
を具備するアンテナ装置。
(2)前記複数の第1のアンテナ素子と前記複数の第2のアンテナ素子とは、互いに異なる位相で給電される
前記(1)に記載のアンテナ装置。
(3)前記複数の第1のアンテナ素子と前記複数の第2のアンテナ素子とは、互いに180度異なる位相で給電される
前記(2)に記載のアンテナ装置。
(4)前記複数の第1のアンテナ素子と前記複数の第2のアンテナ素子とは、同じ位相で給電される
前記(1)に記載のアンテナ装置。
(5)前記複数の第2のアンテナ素子は、前記複数の第1のアンテナ素子の何れかから直列に給電されるアンテナ素子に対してさらに直列に給電されるアンテナ素子を含む
前記(1)から(4)のいずれかに記載のアンテナ装置。
(6)前記複数の第2のアンテナ素子は、前記給電点に対して前記分配器の外側に配置される
前記(1)から(5)のいずれかに記載のアンテナ装置。
(7)前記複数の第2のアンテナ素子は、前記給電点に対して前記分配器の内側に配置される
前記(1)から(5)のいずれかに記載のアンテナ装置。
(8)前記複数の第1のアンテナ素子は、前記分配器から給電された辺を介して前記複数の第2のアンテナ素子に給電を行う
前記(1)から(7)のいずれかに記載のアンテナ装置。
(9)前記複数の第1のアンテナ素子は、前記分配器から給電された辺に相対する辺を介して前記複数の第2のアンテナ素子に給電を行う
前記(1)から(7)のいずれかに記載のアンテナ装置。
(10)前記複数の第1のアンテナ素子は、前記分配器から給電された辺に直交する辺を介して前記複数の第2のアンテナ素子に給電を行う
前記(1)から(7)のいずれかに記載のアンテナ装置。
(11)前記複数の第1のアンテナ素子は、電磁界結合を介して前記複数の第2のアンテナ素子に給電を行う
前記(1)から(10)のいずれかに記載のアンテナ装置。
(12)前記複数の第1および第2のアンテナ素子および前記分配器からなる直線状アンテナを複数配置したアレイアンテナである前記(1)から(11)のいずれかに記載のアンテナ装置。
(13)前記直線状アンテナは、対応周波数の波長の半分以下のピッチにより複数配置される
前記(12)に記載のアンテナ装置。
(14)前記直線状アンテナの間で異なる給電パワー比により給電する前記(12)に記載のアンテナ装置。
(15)前記分配器は、前記複数の第1および第2のアンテナ素子に給電すべき給電パワーの比に応じた給電ライン幅により前記給電点からの給電パワーを分配する不均等パワーデバイダである
前記(1)から(14)のいずれかに記載のアンテナ装置。
(16)前記分配器は、前記複数の第1および第2のアンテナ素子に給電すべき給電パワーの比に応じた電流制御または電圧制御により前記給電点からの給電パワーを分配する可変パワーデバイダである
前記(1)から(14)のいずれかに記載のアンテナ装置。
(17)前記分配器は、前記給電点からの給電パワーを分配するパワーデバイダと、前記パワーデバイダによって分配された給電パワーの少なくとも何れかを前記複数の第1および第2のアンテナ素子に給電すべき給電パワーの比に応じた電流制御または電圧制御により減衰させる可変減衰器とを備える
前記(1)から(14)のいずれかに記載のアンテナ装置。
 10 車両
 20 アンテナ装置
 110、111、120、121、130、140、150、151、152、160、161、162 パッチ素子
 200 給電点
 201、202、230、231、240、241、270、280 パワーデバイダ
 210、211、212、213、220、221、222、223 不均等パワーデバイダ
 250、260 可変パワーデバイダ
 271、281 可変減衰器
 310、320、330、340、350、351、360、361 給電ライン
 331、341 電磁界結合

Claims (17)

  1.  給電点から並列に給電される複数の第1のアンテナ素子と、
     前記複数の第1のアンテナ素子の何れかから直列に給電される複数の第2のアンテナ素子と、
     前記複数の第1および第2のアンテナ素子に給電すべき給電パワーの比に応じて前記給電点からの給電パワーを前記複数の第1のアンテナ素子に並列に分配する分配器と
    を具備するアンテナ装置。
  2.  前記複数の第1のアンテナ素子と前記複数の第2のアンテナ素子とは、互いに異なる位相で給電される
    請求項1記載のアンテナ装置。
  3.  前記複数の第1のアンテナ素子と前記複数の第2のアンテナ素子とは、互いに180度異なる位相で給電される
    請求項2記載のアンテナ装置。
  4.  前記複数の第1のアンテナ素子と前記複数の第2のアンテナ素子とは、同じ位相で給電される
    請求項1記載のアンテナ装置。
  5.  前記複数の第2のアンテナ素子は、前記複数の第1のアンテナ素子の何れかから直列に給電されるアンテナ素子に対してさらに直列に給電されるアンテナ素子を含む
    請求項1記載のアンテナ装置。
  6.  前記複数の第2のアンテナ素子は、前記給電点に対して前記分配器の外側に配置される
    請求項1記載のアンテナ装置。
  7.  前記複数の第2のアンテナ素子は、前記給電点に対して前記分配器の内側に配置される
    請求項1記載のアンテナ装置。
  8.  前記複数の第1のアンテナ素子は、前記分配器から給電された辺を介して前記複数の第2のアンテナ素子に給電を行う
    請求項1記載のアンテナ装置。
  9.  前記複数の第1のアンテナ素子は、前記分配器から給電された辺に相対する辺を介して前記複数の第2のアンテナ素子に給電を行う
    請求項1記載のアンテナ装置。
  10.  前記複数の第1のアンテナ素子は、前記分配器から給電された辺に直交する辺を介して前記複数の第2のアンテナ素子に給電を行う
    請求項1記載のアンテナ装置。
  11.  前記複数の第1のアンテナ素子は、電磁界結合を介して前記複数の第2のアンテナ素子に給電を行う
    請求項1記載のアンテナ装置。
  12.  前記複数の第1および第2のアンテナ素子および前記分配器からなる直線状アンテナを複数配置したアレイアンテナである請求項1記載のアンテナ装置。
  13.  前記直線状アンテナは、対応周波数の波長の半分以下のピッチにより複数配置される
    請求項12記載のアンテナ装置。
  14.  前記直線状アンテナの間で異なる給電パワー比により給電する請求項12記載のアンテナ装置。
  15.  前記分配器は、前記複数の第1および第2のアンテナ素子に給電すべき給電パワーの比に応じた給電ライン幅により前記給電点からの給電パワーを分配する不均等パワーデバイダである
    請求項1記載のアンテナ装置。
  16.  前記分配器は、前記複数の第1および第2のアンテナ素子に給電すべき給電パワーの比に応じた電流制御または電圧制御により前記給電点からの給電パワーを分配する可変パワーデバイダである
    請求項1記載のアンテナ装置。
  17.  前記分配器は、前記給電点からの給電パワーを分配するパワーデバイダと、前記パワーデバイダによって分配された給電パワーの少なくとも何れかを前記複数の第1および第2のアンテナ素子に給電すべき給電パワーの比に応じた電流制御または電圧制御により減衰させる可変減衰器とを備える
    請求項1記載のアンテナ装置。
PCT/JP2020/021520 2019-09-10 2020-06-01 アンテナ装置 WO2021049102A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021545116A JPWO2021049102A1 (ja) 2019-09-10 2020-06-01
EP20863289.3A EP4030555A4 (en) 2019-09-10 2020-06-01 ANTENNA DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019164135 2019-09-10
JP2019-164135 2019-09-10

Publications (1)

Publication Number Publication Date
WO2021049102A1 true WO2021049102A1 (ja) 2021-03-18

Family

ID=74866944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021520 WO2021049102A1 (ja) 2019-09-10 2020-06-01 アンテナ装置

Country Status (3)

Country Link
EP (1) EP4030555A4 (ja)
JP (1) JPWO2021049102A1 (ja)
WO (1) WO2021049102A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181537A (ja) 1994-06-29 1996-07-12 Ma Com Inc マイクロ波アンテナ
JPH09159751A (ja) * 1995-12-05 1997-06-20 Denso Corp 平面アレーアンテナ及び位相モノパルスレーダ装置
JP2002135015A (ja) * 2000-10-27 2002-05-10 Nec Corp 電力分配器
JP2004349853A (ja) * 2003-05-20 2004-12-09 Hitachi Cable Ltd アンテナ装置
JP2009044509A (ja) * 2007-08-09 2009-02-26 Fujitsu Ten Ltd アンテナ装置およびアンテナ装置構成方法
JP2017085547A (ja) * 2015-08-19 2017-05-18 ハネウェル・インターナショナル・インコーポレーテッド 三ポート可変電力分配器
JP2019022067A (ja) * 2017-07-14 2019-02-07 株式会社フジクラ 板状アレイアンテナ及び無線モジュール

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL231026B (en) * 2014-02-18 2018-07-31 Mti Wireless Edge Ltd A patch-type antenna array with dual polarization and wideband and the methods useful thereby
JP6470930B2 (ja) * 2014-09-16 2019-02-13 日本ピラー工業株式会社 分配器及び平面アンテナ
WO2017176814A1 (en) * 2016-04-04 2017-10-12 Texas Tech University System 24-ghz low-cost continuous beam steering phased array for indoor smart radar and methods relating thereto
US10573959B2 (en) * 2016-04-25 2020-02-25 Uhnder, Inc. Vehicle radar system using shaped antenna patterns

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181537A (ja) 1994-06-29 1996-07-12 Ma Com Inc マイクロ波アンテナ
JPH09159751A (ja) * 1995-12-05 1997-06-20 Denso Corp 平面アレーアンテナ及び位相モノパルスレーダ装置
JP2002135015A (ja) * 2000-10-27 2002-05-10 Nec Corp 電力分配器
JP2004349853A (ja) * 2003-05-20 2004-12-09 Hitachi Cable Ltd アンテナ装置
JP2009044509A (ja) * 2007-08-09 2009-02-26 Fujitsu Ten Ltd アンテナ装置およびアンテナ装置構成方法
JP2017085547A (ja) * 2015-08-19 2017-05-18 ハネウェル・インターナショナル・インコーポレーテッド 三ポート可変電力分配器
JP2019022067A (ja) * 2017-07-14 2019-02-07 株式会社フジクラ 板状アレイアンテナ及び無線モジュール

Also Published As

Publication number Publication date
JPWO2021049102A1 (ja) 2021-03-18
EP4030555A4 (en) 2022-11-30
EP4030555A1 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
US11329379B2 (en) Dual band patch antenna
US5861848A (en) Circularly polarized wave patch antenna with wide shortcircuit portion
US9705199B2 (en) Quasi TEM dielectric travelling wave scanning array
CN111615776B (zh) 天线元件和天线阵列
WO2017104754A1 (ja) アンテナ装置
US7236127B2 (en) Control of radiation pattern in wireless telecommunications system
US20160013563A1 (en) Wideband Twin Beam Antenna Array
US20200191904A1 (en) Radar apparatus
US10886620B2 (en) Antenna
WO2019188471A1 (ja) アンテナモジュールおよびそれを搭載した通信装置
KR101937820B1 (ko) 다중 빔 배열 안테나 장치
US2751589A (en) Folded slot antennae
KR20190036231A (ko) 위상 시프터를 포함하는 안테나 장치
US10461417B2 (en) Power feed circuit and antenna device
JPH11251833A (ja) マイクロストリップアンテナ素子およびマイクロストリップアレーアンテナ
JP2006135672A (ja) パッチアンテナ、アレイアンテナおよびそれを備えた実装基板
WO2021049102A1 (ja) アンテナ装置
JP6087419B2 (ja) アレーアンテナおよびレーダ装置
WO2014174858A1 (ja) アレイアンテナおよび無線通信装置
KR101080893B1 (ko) 엔포트 피딩 시스템 및 이에 포함된 페이즈 쉬프터, 지연 소자
JP2013135345A (ja) マイクロストリップアンテナ、アレーアンテナおよびレーダ装置
US9065184B2 (en) N-port feeding system having a structure in which patterns are divided with in parallel and feeding element included in the same
JP6721354B2 (ja) アンテナ素子、アレーアンテナ及び平面アンテナ
WO2017104761A1 (ja) アンテナ装置
US5877729A (en) Wide-beam high gain base station communications antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020863289

Country of ref document: EP

Effective date: 20220411