WO2021047537A1 - 一次准确定量回收多个溶剂或浓缩多个样品的旋转蒸发仪 - Google Patents

一次准确定量回收多个溶剂或浓缩多个样品的旋转蒸发仪 Download PDF

Info

Publication number
WO2021047537A1
WO2021047537A1 PCT/CN2020/114217 CN2020114217W WO2021047537A1 WO 2021047537 A1 WO2021047537 A1 WO 2021047537A1 CN 2020114217 W CN2020114217 W CN 2020114217W WO 2021047537 A1 WO2021047537 A1 WO 2021047537A1
Authority
WO
WIPO (PCT)
Prior art keywords
distillation
condenser
distillation flask
axis
rotation
Prior art date
Application number
PCT/CN2020/114217
Other languages
English (en)
French (fr)
Inventor
温淑瑶
李闻达
Original Assignee
北京师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910850616.0A external-priority patent/CN110404283B/zh
Priority claimed from CN201910850608.6A external-priority patent/CN110404282B/zh
Priority claimed from CN201910911630.7A external-priority patent/CN110478928B/zh
Priority claimed from CN201910908061.0A external-priority patent/CN110478927B/zh
Application filed by 北京师范大学 filed Critical 北京师范大学
Priority to EP20863417.0A priority Critical patent/EP4008418A4/en
Publication of WO2021047537A1 publication Critical patent/WO2021047537A1/zh
Priority to US17/687,897 priority patent/US20220184521A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/08Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in rotating vessels; Atomisation on rotating discs
    • B01D3/085Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in rotating vessels; Atomisation on rotating discs using a rotary evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0017Use of electrical or wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/02Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in boilers or stills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0012Vertical tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0045Vacuum condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/009Collecting, removing and/or treatment of the condensate

Definitions

  • the invention relates to the technical field of chemical experiment equipment, in particular, to a rotary evaporator, in particular to a rotary evaporator that accurately and quantitatively recovers multiple solvents or concentrates multiple samples at a time.
  • Rotary evaporator is a kind of extraction experiment equipment for vacuum distillation and concentration of materials. It is widely used in experiments such as large-scale concentration, drying, extraction and recovery of samples, especially for rapid distillation of large amounts of solvents.
  • the existing rotary evaporator usually consists of a vacuum device, a heating device, a condensing device, a rotating device and other components.
  • the principle of the rotary evaporator is mainly controlled by electronic equipment to make the flask rotate at a constant speed at the most suitable speed to make the solvent form a thin film. Increase the evaporation area, and use the vacuum pump to make the evaporation flask in a negative pressure state.
  • the evaporation flask is placed in a water bath or oil bath while rotating and heated at a constant temperature (the temperature can be close to the boiling point of the solvent), so that the solution in the bottle is under negative pressure
  • the bottom is heated to diffuse and evaporate, realizing rapid evaporation of the solvent.
  • the existing rotary evaporator can only distill one sample at a time, and the work efficiency is low.
  • the existing parallel evaporator can distill multiple samples at a time. Because each sample is distilled in a vertical tube, although vibration and vacuuming are implemented, due to the small evaporation area, the distillation efficiency of a single sample is far less than that of rotary evaporation. There is an urgent need for a rotary evaporator that can distill multiple samples and recover multiple solvents at a time.
  • the present invention provides: (1) a rotary evaporator (single rotating shaft) for accurately quantitatively concentrating multiple samples at a time;
  • Rotary evaporator single rotating shaft that can accurately and quantitatively recover multiple solvents at one time
  • a multi-rotation evaporator capable of accurately quantifying and concentrating multiple samples at once
  • Multi-rotation evaporator capable of accurately and quantitatively recovering multiple solvents at one time
  • the invention solves the problem of low efficiency in that a rotary evaporator can only distill one sample at a time, and the evaporation area of the parallel evaporator is small, and can also accurately and quantitatively control the recovered solvent or concentrated liquid.
  • the present invention first provides a rotary evaporator for accurately quantitatively concentrating multiple samples at a time, which is characterized by comprising: a bracket on which a motor is fixed; the motor drives the distillation flask group to rotate through a transmission body A detachable distillation flask set is fixed at one end of the transmission body, a detachable condenser is fixed at the other end, and a collection bottle is connected to the bottom of the condenser;
  • the distillation flask group includes at least two distillation flasks, and the distillation flask is connected with the concentrated liquid quantitative component;
  • distillation flasks are connected in series and rotate along the same axis of rotation.
  • the present invention provides a rotary evaporator capable of accurately and quantitatively recovering multiple solvents at a time, which is characterized by comprising: a bracket on which a motor is fixed; the motor drives the distillation flask group to rotate through a transmission body A detachable distillation flask group is fixed at one end of the transmission body, and a detachable condenser group is connected to the other end, and the bottom of each condenser in the condenser group is connected with a collector;
  • the distillation flask group includes at least two distillation flasks, and the distillation flasks are connected in series and rotated along the same axis of rotation;
  • the number of the distillation flask, the condenser, and the collector is the same;
  • a connector is provided between the condenser group and the transmission body
  • the solvent of each liquid to be distilled evaporates, condenses, and is collected with its own independent pipelines and is not connected to each other.
  • the present invention thirdly provides a multi-rotation-axis evaporator that accurately quantifies and concentrates multiple samples at a time.
  • the evaporator is characterized in that it comprises a bracket on which a motor is fixed, and the motor drives at least two The distillation flasks on a rotation axis rotate, and each of the distillation flasks forms a distillation flask group.
  • One end of the transmission body is fixed with a detachable distillation flask group, and the other end is fixed with a detachable condenser or condenser group.
  • a collection bottle is connected to the bottom of the condenser;
  • a distillation flask or at least two distillation flasks connected in series and rotating along the same axis are arranged on each rotation axis, and the distillation flask is connected with the concentrated liquid quantitative assembly;
  • a connector is provided between the condenser and the transmission body.
  • the fourth invention provides a multi-rotation evaporator capable of accurately and quantitatively recovering multiple solvents at a time, which is characterized by comprising: a bracket on which a motor is fixed; and the motor drives at least two solvents through a transmission body.
  • the distillation flask on the axis of rotation rotates.
  • the distillation flasks form a distillation flask group.
  • One end of the transmission body is fixed with a detachable distillation flask group, and the other end is fixed with a detachable condenser group.
  • the bottom of each condenser is connected with a collector.
  • a distillation flask or at least two distillation flasks connected in series and rotating along the same axis of rotation are arranged on each axis of rotation;
  • a connector is provided between the condenser and the transmission body;
  • the number of the distillation flask, the condenser, and the collector is the same, and the solvent evaporation, condensation and collection of each liquid to be distilled have their own independent pipelines and are not connected to each other.
  • the above-mentioned four types of rotary evaporators provided by the present invention are also provided with a control panel and components (not shown in the figure) for controlling the rotation speed of the motor and the heating temperature;
  • the rotation axis has a downward inclination angle with the horizontal plane, which is a certain degree between 2 and 44, preferably a certain degree between 10 and 35;
  • the number of distillation flasks on a rotation axis is a certain number from 1 to 3;
  • the distillation flask can rotate in one direction or alternately in two directions;
  • the distillation flask is the first distillation flask on the first axis, the second distillation flask on the first axis, the first distillation flask on the second axis, the second distillation flask on the second axis, and the distance from the transmission body from near to far.
  • the distillation flask farthest from the transmission body on each axis of rotation is provided with 2 bottle mouths, namely the first bottle mouth and the third bottle mouth, and the rest are equipped with 3 bottle mouths, namely the first bottle mouth and the second bottle mouth. Mouth and third bottle mouth;
  • the first bottle mouth of the distillation bottle is the closest to the transmission body, the second bottle mouth and the center of the first bottle mouth are connected on the same axis of rotation, and the third bottle mouth is formed at the lowest liquid level of the working position of the distillation bottle.
  • the structure of the concentrated liquid quantitative component is similar to the "air lock chamber" of the spacecraft, including the first drain valve located at the third mouth of the distillation flask, the quantitative tube with the quantitative scale line and one end of the quantitative tube away from the distillation flask
  • the second drain valve is used to accurately quantify and discharge concentrated liquid under different air pressures in the vacuum environment of the evaporation system and the external environment, as well as system sealing;
  • the on-off valve is used to discharge concentrated liquid or vent to the atmosphere, adjust the direction of the third bottle mouth, and can also be used for feeding;
  • the concentrated liquid quantitative component and the third mouth of the distillation flask are integrally formed or connected with a ground mouth and fixed with a clamp;
  • the material of the first drain valve and the second drain valve is glass or polytetrafluoroethylene
  • an expansion bottle can be installed in the lower part of the quantitative tube, which is used for one-time expansion and discharge.
  • the second mouth of the first distillation flask and the ground mouth of the bottleneck where the first mouth of the second distillation flask is located are hermetically connected and fastened with a clamp, or connect the first distillation flask and the second distillation flask through a coupling .
  • Bracket support is set between two adjacent distillation flasks on the same rotation axis
  • the neck of the first bottle mouth of the distillation flask is provided with a spherical structure near the bottle body for explosion-proof boiling;
  • a connector is provided between the condenser and the transmission body;
  • the connector is composed of a base plate and a condenser tube and a steam pipe located on both sides of the base plate.
  • the base plate is a circular piece with holes. Each base plate corresponds to a rotation axis. Each base plate passes through a lock nut and The sealing ring is fixed on the end of the transmission body close to the condenser;
  • the material of the connector is polytetrafluoroethylene or a material that does not react with solvents.
  • each distilled liquid has their own independent pipelines and are not connected to each other, at least two condenser tubes are provided on the side of the base plate close to the condenser.
  • the condenser tubes are round tubes but have two centers.
  • the base plate is provided with at least 2 steam tubes on one side of the transmission body, and each steam tube is It is set as a circular tube and the center of the circle coincides, wherein the diameters of the first steam tube and the second steam tube are sequentially reduced, the first steam tube is connected to the first distillation flask, and the second steam tube is connected to the second distillation flask;
  • the boil-off gas in the first distillation flask first passes through the first steam pipe, and then enters the first condenser through the first condenser pipe for condensation.
  • the boil-off gas in the second distillation flask first passes through the second steam pipe and then passes through the first condenser.
  • the second condenser tube enters the second condenser for condensation;
  • the boil-off gas in several distillation flasks first passes through their respective steam pipes, then passes through their respective condenser pipes, and then enters the condenser to be condensed after passing through the condenser pipe header;
  • the first steam tube is fitted and airtightly connected to the glass shaft, the glass shaft is a hollow glass tube on the innermost layer of each rotation axis in the transmission body and does not rotate with the motor, and the second steam tube is connected to the second distillation
  • the first mouth of the bottle or its connecting pipe is adapted and connected tightly;
  • the condensers in the condenser group are preferably placed vertically, arranged side by side to form a group, and fixed with a frame;
  • the condenser is provided with a vacuum tube, which is connected to the vacuum pump through the vacuum tube;
  • each vacuum tube branch tube is connected to the vacuum tube, and is connected to the vacuum pump through the vacuum tube;
  • Each vacuum tube branch or vacuum tube can be equipped with a switch (not shown in the figure) as needed to ventilate the atmosphere;
  • a one-way valve can be set on each of the vacuum tube branches as required to avoid mutual contamination.
  • the lower end opening of the condenser is connected with the collecting bottle or the glass ground mouth of the collector and is fastened with a clamp;
  • the collector includes a first discharge valve at the opening at the lower end of the condenser, a second discharge valve at the lower part of the collector, a measuring tube with a quantitative scale between the two valves, and a collection bottle with an accurate constant volume.
  • the structure is similar to the "air lock chamber", which is used to accurately quantify and discharge condensate under different air pressures in the vacuum environment of the evaporation system and the external environment, as well as system sealing;
  • the distillation flask is heated by a heating assembly, the heating assembly is an electric heating belt arranged on the outer wall of the distillation flask; the outer layer of the electric heating belt is provided with a glass fiber belt to realize the separation of the electric heating belt.
  • a temperature controller sensor probe is also arranged between the electric heating belt and the distillation flask;
  • the material of the first drain valve and the second drain valve is glass or polytetrafluoroethylene.
  • the quality of the distillation flask is the same on both sides of any plane where the rotation axis is located.
  • the lowest liquid level position of the distillation flask is set to the third bottle mouth and connected to the concentrated liquid quantitative component, which is used for the accurate quantitative discharge of the concentrated liquid under the different pressures of the vacuum environment in the evaporation system and the external environment and the sealing of the distillation system;
  • the three-bottle mouth can also be used to vent the atmosphere, adjust the orientation, and can be used for feeding.
  • the collector has a structure similar to a "transition bin", with a first discharge valve on the upper part and a second discharge valve on the lower part.
  • a measuring tube with a graduated line and a collection bottle with an accurate constant volume are arranged between the two valves; two
  • the valve coordination can release accurate and quantitative condensate under the premise of not having a major impact on the system, with an accuracy of 0.01mL.
  • FIG. 1 is a schematic structural diagram of a multi-rotation evaporator for accurately and quantitatively recovering multiple solvents at a time according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a multi-rotation evaporator for accurately quantitatively concentrating multiple samples at a time according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a rotary evaporator (single rotating shaft) for accurately and quantitatively recovering multiple solvents at a time according to an embodiment of the present invention
  • Fig. 4 is a schematic structural diagram of a rotary evaporator (single rotating shaft) for accurately quantitatively concentrating multiple samples at a time according to an embodiment of the present invention
  • FIG. 5 is another structural schematic diagram of a multi-rotation axis evaporator for accurately quantitatively concentrating multiple samples at a time according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of the cross-sectional structure of the connector of the rotary evaporator according to the embodiment of the present invention.
  • Fig. 7 is a left view of the connector of the rotary evaporator according to the embodiment of the present invention.
  • Fig. 8 is a right side view of the connector of the rotary evaporator according to the embodiment of the present invention.
  • Fig. 9 is a schematic diagram of another structure of the distillation flask of the rotary evaporator according to the embodiment of the present invention.
  • the marks in the figure are: 1- support, 2- motor, 3- transmission body, 4- distillation flask group (including 411, 412, 421, 422 or 41, 42, 43), 5- condenser group (including 51, 52 , 53, 54) ( Figure 4, Figure 5 are condensers), 6-collector (including 61, 62, 63, 64, 65) ( Figure 2, Figure 4, Figure 5 are collection bottles), 7-switch valve ( Figure 2, Figure 4, Figure 5 are concentrated liquid quantitative components, including 71, 72, 73, 74), 8-fixture, 9-connector, 10-electric heating belt, 11-glass fiber belt, 12-temperature sensor , 13-carriage, 14-glass axis, 15-vacuum tube, 16-downward angle, 17-rotation axis (including 171, 172), 18-expansion bottle, 19-receiving tray;
  • 61-quantitative scale line 62-quantitative tube, 63-collection bottle, 64-second discharge valve, 65-first discharge valve;
  • the rotary evaporator of the present invention is modified on the basis of the RE-3000A type rotary evaporator produced by Shanghai Yarong Biochemical Instrument Factory.
  • the multi-rotation axis evaporator for accurately and quantitatively recovering multiple solvents at one time in this embodiment includes: a support 1 on which a motor 2 is fixed (the rotary evaporator of the present invention also has a control station The motor speed, heating temperature control panel and its control components are not shown in the figure), the motor 2 drives the distillation flasks on the two rotation axes 171, 172 through the transmission body 3, and one end of the transmission body 3 A detachable distillation flask group 4 is fixed, and a detachable condenser group 5 is fixed at the other end, and the bottom of each condenser in the condenser group 5 is connected with a respective collector 6.
  • the rotation of the distillation flask can be one-way or two-direction alternately;
  • the two rotation axes are parallel to each other and have a downward inclination angle with the horizontal plane, which is 15 degrees;
  • distillation flask group 4 There are two distillation flasks connected in series and rotating along the same axis of rotation on each axis of rotation.
  • the four distillation flasks form the distillation flask group 4.
  • the four condensers form the condenser group 5 and the four collectors 6.
  • the first distillation flask 411 of the first axis, the second distillation flask 412 of the first axis, the first distillation flask 421 of the second axis, The second distillation flask 422 of the second axis respectively contains 1*, 2*, 3*, 4* to be distilled liquid.
  • the 4 distilled liquids can be from the same sample or different sample.
  • the distillation flask 412 on the first axis of rotation 171 farthest from the transmission body 3 is provided with two openings, namely the first opening 4121 and the third opening 4123, and the distillation flask 411 has 3 openings, respectively A bottle mouth 4111, a second bottle mouth 4112, and a third bottle mouth 4113; the second rotation axis 172 is also provided with a bottle mouth;
  • the first rotation axis 171 The first bottle mouth 4111 of the first distillation flask is the closest to the transmission body 3, the second bottle mouth 4112 and the center of the first bottle mouth 4111 are connected on the same axis of rotation, and the third bottle
  • the mouth 4113 is formed at the lowest liquid level of the working position of the distillation flask 411 and the switch valve 7 is arranged; the central line of the cross section of the first bottle neck 4121' of the second distillation flask coincides with the axis of rotation 171, and the third mouth 4123 is formed in the distillation flask
  • An on-off valve 7 is set at the lowest liquid level in the 412 working position.
  • the second bottle mouth 4112 of the first distillation flask on the first axis and the first bottle neck 4121' of the second distillation flask on the first axis are ground-tightly connected and fastened with a clamp 8.
  • the distillation flask 411 and the distillation flask 412 rotate along the same axis, and the two distillation flasks on the second axis 172 are also connected and fixed in this way, and a bracket 131 is supported under it.
  • the first neck of the distillation flask is provided with a spherical structure near the body (as shown in Figure 3) to prevent the distilled liquid from bumping.
  • Two connectors 9 are provided between the condenser group 5 and the transmission body 3 (as shown in Figure 6, Figure 7, and Figure 8). Each connector 9 corresponds to a rotation axis.
  • the plate 91 and the condensing pipe 93 and the steam pipe 94 respectively located on both sides of the base plate 91 are composed of the base plate 91 is a perforated disc.
  • Each base plate 91 passes through a lock nut 92 and a sealing ring (not shown in the figure). ) Is fixed at one end of the transmission body 3 close to the condenser group 5.
  • the base plate 91 is provided with two condenser tubes 93 on the side close to the condenser.
  • the two condenser tubes 93 have the same diameter but do not overlap with each other.
  • a condenser tube 931 communicates with the first condenser 51, and a second condenser tube 932 communicates with the second condenser 52;
  • the base plate 91 is provided with two steam tubes 94 on the side close to the transmission body 3, of which the first steam The center of the circle of the tube 941 and the second steam tube 942 are coincident, and the diameters decrease sequentially.
  • the first steam pipe 941 is in communication with the first distillation flask 411
  • the second steam pipe 942 is in communication with the second distillation flask 412
  • the boil-off gas in the first distillation flask 411 first passes through the first steam pipe 941, and then enter the first condenser 51 through the first condenser tube 931 for condensation.
  • the boil-off gas in the second distillation flask 412 first passes through the second steam tube 942, and then enters the second condenser 52 through the second condenser tube 932 for condensation.
  • the boil-off gas in the first distillation flask 421 on the second axis 172 firstly passes through the first steam pipe 941, and then enters the third condenser 53 through the first condenser pipe 931 for condensation, and the boil-off gas in the second distillation flask 422 first passes through
  • the second steam pipe 942 passes through the second condenser pipe 932 and enters the fourth condenser 54 for condensation.
  • the material of the connector 9 is polytetrafluoroethylene.
  • the first steam tube 941 is fitted and connected to the glass shaft 14 (the glass shaft 14 is a hollow glass tube at the innermost layer of the transmission body 3 on each rotation axis, and It does not rotate with the motor 2)
  • the second steam pipe 942 is fitted and airtightly connected to the first bottle mouth 4121 of the second distillation flask or its connecting pipe. The same is true on the second axis of rotation 172.
  • the 4 solvent evaporation, condensation and collection of the liquid to be distilled have their own independent pipelines and are not connected to each other;
  • the 4 condensers are placed vertically and in parallel in groups and fixed in a rack.
  • the condensers are respectively provided with: a first vacuum tube branch 151, a second vacuum tube branch 152, a third vacuum tube branch 153, and a fourth vacuum tube branch 154.
  • the vacuum tube branch and The vacuum tube 15 is connected and connected to a vacuum pump (not shown in the figure) through the vacuum tube 15; the lower end opening of each condenser and the respective collector 6 are hermetically connected through a glass ball grinding mouth and fixed with a steel clamp 8.
  • One-way valves are arranged on the vacuum tube branch pipes as required to avoid mutual contamination.
  • the collector 6 includes a first discharge valve 65 at the opening at the lower end of the condenser, a second discharge valve 64 at the lower part of the collector, a quantitative tube 62 between the two valves, a collection bottle 63, two valves and a container between them It constitutes a "transition bin", which is used to control the discharge of condensate and seal the distillation system under two pressures in the vacuum environment and the external environment of the distillation system.
  • the volumetric tube 62 is a measurable thin tube whose cavity is a tube-shaped structure.
  • the volume scale 61 on the outer wall is used to read the volume value of the condensate.
  • the measurable volume can be selected as 5mL, and the metering scale can be accurate to 0.05mL. .
  • the collection bottle 63 is spherical and its volume is accurately calibrated.
  • the first drain valve 65 and the second drain valve 64 are made of polytetrafluoroethylene.
  • the distillation flask is heated by an electric heating belt 10 wrapped around its outer wall.
  • the outer layer of the electric heating belt 10 is provided with a glass fiber belt 11 for heat insulation and fixation of the electric heating belt 10.
  • a temperature controller sensor probe 12 is arranged between the belt 10 and the distillation flask for temperature measurement.
  • the condensate is collected in the respective collectors; observe the amount of condensate in the distillation, when it is close to the designed accurate amount, reduce the speed, when the designed accurate amount is reached, immediately close the first drain valve 65, and adjust the speed to 0. Turn off the heating and vacuum pump switches, and open the second drain valve 64. At this time, a certain amount of condensate is released.
  • each rotation axis is equipped with two series-connected distillation flasks, which can evaporate 4 different liquids to be distilled at a time.
  • a connector 9 is provided between the transmission body 3 and the condenser, the original 1 condenser is changed to 4, and the original 1 collection bottle is changed to 4, so that the evaporation from the 4 distillation flasks The gas is transported to their respective condensers for condensation, and collected in their respective collectors to achieve one-time evaporation and recovery of 4 solvents.
  • the upper part of the collector is provided with a first discharge valve 65, and the lower part is provided with a second discharge valve 64.
  • the measuring tube 62 and the collection bottle 63 are set between the two valves. Release accurate and quantitative condensate under the premise of, with an accuracy of 0.05mL.
  • the number of distillation flasks, the number of condensers, and the number of collectors in the present invention can be the same two (that is, one distillation flask is provided for each axis of rotation), or the same can be three.
  • the rotary evaporator (as shown in Fig. 3) for accurately and quantitatively recovering multiple solvents in this embodiment is different from embodiment 1 in that it has only one axis of rotation, and three distillation flasks connected in series and rotating along the same axis are set.
  • Example 1 The rotary evaporator (as shown in Fig. 3) for accurately and quantitatively recovering multiple solvents in this embodiment is different from embodiment 1 in that it has only one axis of rotation, and three distillation flasks connected in series and rotating along the same axis are set.
  • Example 1 Example 1.
  • the multi-rotation axis evaporator for accurately quantitatively concentrating multiple samples at a time in this embodiment includes: a support 1 on which a motor 2 is fixed, and the motor 2 drives two rotations through a transmission body 3
  • the distillation flasks on the axes 171 and 172 rotate (the rotary evaporator of this embodiment is also provided with a control panel and components for controlling the rotation speed and heating temperature of the rotating motor, not shown in the figure), and one end of the transmission body 3 is fixed with a
  • the disassembled distillation flask group 4 has a detachable condenser group 5 fixed at the other end, and respective collection bottles 6 are connected to the bottom of the condenser in the condenser group 5;
  • the rotation can be performed in one direction or two directions alternately;
  • the two rotation axes 171, 172 have a downward inclination angle with the horizontal plane, which is 13 degrees;
  • Example 1 For the setting of the distillation flask and its mouth, please refer to paragraphs 5-7 of Example 1;
  • the first neck of the distillation flask is provided with a spherical structure near the body (as shown in Figure 3) for explosion-proof boiling;
  • the concentrated liquid quantitative assembly 7 includes a first drain valve 71 arranged at the third mouth of the distillation flask, a quantitative tube 73 with a quantitative scale 72, and a second drain valve at the end of the quantitative tube 72 away from the distillation flask 74.
  • the two-valve switch cooperates, used for quantitative discharge control of concentrated liquid under different air pressures in the vacuum environment of the evaporation system and the outside environment and the sealing of the distillation flask;
  • the measurable volume of the quantitative tube 72 is set to 1 mL, and the metering scale can be accurate to 0.01 mL.
  • the concentrated liquid quantitative component 7 and the third mouth of the distilling flask are ground-opening hermetically connected and fixed by a clamp 8;
  • the first drain valve 71 and the second drain valve 74 are made of polytetrafluoroethylene
  • the lower part of the quantitative tube 73 can also be provided with an expansion bottle 18 and a liquid receiving tray 19 (as shown in Figure 4, or as the collection bottle 63 in Example 1), which is used to realize the one-time expansion and release of the concentrated liquid. liquid.
  • the four condensers 5 are placed vertically, arranged side by side in a group, and are fixed on a rack.
  • a connector 9 is provided between the condenser group 5 and the transmission body 3 (as shown in FIG. 6, FIG. 7 and FIG. 8), and the structure and function of the connector 9 are the same as those in the first embodiment (see the first embodiment of the first embodiment). 10-12 natural paragraph).
  • the 4 solvent evaporation, condensation and collection of the liquid to be distilled have their own independent pipelines and are not connected to each other;
  • the condenser is provided with vacuum tube branches: a first vacuum tube branch 151, a second vacuum tube branch 152, a third vacuum tube branch 153, and a fourth vacuum tube branch 154.
  • the vacuum tube branch is connected to the vacuum tube 15, and the vacuum tube 15 is connected to the vacuum pump ( Figure Not shown in) connected;
  • An atmospheric switch (not shown in the figure) is provided on the branch of the vacuum tube as required;
  • the lower end opening of the condenser is connected with the collection bottle 6 through a glass ball grinding mouth and fixed with a steel clamp;
  • Each of the collection bottles includes a first discharge valve 65 at the upper part, a second discharge valve 64 at the lower part, and a collection bottle 63 between the two valves, which is used for condensation in the vacuum environment of the evaporation system and the external environment under different air pressures. Liquid discharge control and system sealing;
  • the heating method of the distillation flask is the same as that of Example 1 (see the 20th paragraph of Example 1).
  • This embodiment is a multi-rotation evaporator (as shown in Figure 5) that accurately and quantitatively concentrates multiple samples at a time.
  • the difference from embodiment 3 is that there are one condenser and one collection bottle. The evaporated gas in the four distillation bottles is finally Condensate into the same condenser and be collected in the same collection bottle. See Example 3 for the rest.
  • the rotary evaporator (as shown in FIG. 4) for accurately quantitatively concentrating multiple samples at a time has a rotation axis, and 3 distillation flasks connected in series and rotating along the same axis are set up. Refer to Example 3 for the rest.
  • the distillation flask is arranged on both sides of any plane where the rotation axis of the distillation flask has the same mass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

一次准确定量回收多个溶剂或浓缩多个样品的旋转蒸发仪,将原一个蒸馏瓶改为至少两个,各蒸馏瓶依序串联并沿同一轴线旋转,蒸馏瓶间下设托架(13)支撑,将原一条旋转轴线改为至少两条,各旋转轴线设一个或至少两个依序串联的蒸馏瓶,冷凝器、收集瓶数随蒸馏瓶数可相应增加,一条旋转轴线上蒸馏瓶数若多于1个,冷凝器与传动体(3)间设连接器(9),蒸馏瓶用电加热带(10)加热,收集瓶可改为具备对馏分准确定量和排放功能的收集器(6),蒸馏瓶可与浓缩液定量组件(7)相连,实现一次准确定量回收多个溶剂或浓缩多个样品。

Description

一次准确定量回收多个溶剂或浓缩多个样品的旋转蒸发仪
本申请要求在2019年9月10日提交中国专利局、申请号为201910850608.6;2019年9月10日提交中国专利局、申请号为201910850616.0;2019年9月25日提交中国专利局、申请号为201910908061.0;2019年9月25日提交中国专利局、申请号为201910911630.7的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及化学实验设备技术领域,特别地,涉及一种旋转蒸发仪,具体涉及一次准确定量回收多个溶剂或浓缩多个样品的旋转蒸发仪。
背景技术
旋转蒸发仪是对物料进行减压蒸馏浓缩的一种提取实验设备,广泛应用于样品的规模浓缩、干燥、提取回收等实验中,尤其用于快速蒸馏大量溶剂。现有旋转蒸发仪通常由抽真空装置、加热装置、冷凝装置、旋转装置等组件组成,旋转蒸发仪的原理主要是通过电子设备控制,使烧瓶在最适合转速下恒速旋转使溶剂形成薄膜,增大蒸发面积,并通过真空泵使蒸发烧瓶处于负压状态,蒸发烧瓶在旋转的同时置于水浴锅或油浴锅中恒温加热(温度可接近该溶剂的沸点),使瓶内溶液在负压下被加热扩散而蒸发,实现溶剂的快速蒸发。
现有的旋转蒸发仪一台一次只能蒸馏一个样品,工作效率低。现有的平行蒸发器一台一次能蒸馏多个样品,由于各样品是在竖放的管中蒸馏,虽然实施了震荡及抽真空,但由于蒸发面积小,单个样品的蒸馏效率远不及旋转蒸发仪,迫切需要一次可蒸馏多个样品、回收多个溶剂的旋转蒸发仪。
发明内容
本发明提供了:(1)一次准确定量浓缩多个样品的旋转蒸发仪(单旋转轴);
(2)一次准确定量回收多个溶剂的旋转蒸发仪(单旋转轴);
(3)一次准确定量浓缩多个样品的多旋转轴蒸发仪;
(4)一次准确定量回收多个溶剂的多旋转轴蒸发仪;
本发明解决了一台旋转蒸发仪一次只能蒸馏一个样品、平行蒸发器蒸发面积小的低效问题,还能对回收的溶剂或浓缩液准确定量控制。
为实现上述目的,本发明第一提供了一次准确定量浓缩多个样品的旋转蒸发仪,其特征在于,包括:支架,所述支架上固定有电机;所述电机通过传动体带动蒸馏瓶组旋转,所述传动体一端固定有可拆卸的蒸馏瓶组,另一端固定有可拆卸的冷凝器,所述冷凝器底部连接有收集瓶;
所述蒸馏瓶组包含至少2个蒸馏瓶,蒸馏瓶与浓缩液定量组件相连;
所述蒸馏瓶依序串联并沿同一旋转轴线旋转。
为实现上述目的,本发明第二提供了一次准确定量回收多个溶剂的旋转蒸发仪,其特征在于,包括:支架,所述支架上固定有电机;所述电机通过传动体带动蒸馏瓶组旋转,所述传动体一端固定有可拆卸的蒸馏瓶组,另一端连接有可拆卸的冷凝器组,所述冷凝器组中的各冷凝器底部连接有收集器;
所述蒸馏瓶组包含至少2个蒸馏瓶,所述蒸馏瓶依序串联并沿同一旋转轴线旋转;
所述蒸馏瓶、所述冷凝器、所述收集器的数量相同;
所述冷凝器组与所述传动体间设连接器;
各待蒸馏液的溶剂蒸发、冷凝、收集有各自独立的管路且互不相通。
为实现上述目的,本发明第三提供了一次准确定量浓缩多个样品的多旋转轴蒸发仪,其特征在于,包括:支架,所述支架上固定有电机,所述电机通过传动体带动至少两条旋转轴线上的蒸馏瓶旋转,各所述蒸馏瓶组成蒸馏瓶组,所述传动体一端固定有可拆卸的蒸馏瓶组,另一端固定有可拆卸的冷凝器或冷凝器组,每个所述冷凝器底部连接有收集瓶;
每条所述旋转轴线上设一个蒸馏瓶或至少两个依序串联并沿同一轴线旋转的蒸馏瓶,所述蒸馏瓶与浓缩液定量组件相连;
对于1条旋转轴线上多于1个蒸馏瓶的情况,所述冷凝器与所述传动体间设连接器。
为实现上述目的,本发明第四提供了一次准确定量回收多个溶剂的多旋转轴蒸发仪,其特征在于,包括:支架,所述支架上固定有电机;所述电机通过传动体带动至少两条旋转轴线上的蒸馏瓶旋转,所述蒸馏瓶组成蒸馏瓶组,所述传动体一端固定有可拆卸的蒸馏瓶组,另一端固定有可拆卸的冷凝器组,各冷凝器底部连接有收集器;
每条所述旋转轴线上设一个蒸馏瓶或至少两个依序串联并沿同一旋转轴线旋转的蒸馏瓶;
1条旋转轴线上蒸馏瓶数若多于1个,所述冷凝器与所述传动体间设连接器;
所述蒸馏瓶、所述冷凝器、所述收集器的数量相同,各待蒸馏液的溶剂蒸发、冷凝和收集有各自独立的管路且互不相通。
本发明提供的上述四种旋转蒸发仪还设有控制电机转速及加热温度的控制面板及组件(图中未示出);
对于多旋转轴的蒸发仪,优选旋转轴线为2~3条;
所述旋转轴线与水平面有下倾夹角,为2~44间的某一度数,优选10~35间的某一度数;
一条旋转轴线上优选蒸馏瓶数为1~3的某一数;
所述蒸馏瓶可单向旋转也可两个方向交替旋转;
所述蒸馏瓶依据所在的轴线及与所述传动体的距离由近及远依次是第一轴线第一蒸馏瓶、第一轴线第二蒸馏瓶,第二轴线第一蒸馏瓶、第二轴线第二蒸馏瓶;
各旋转轴线上距离所述传动体最远的蒸馏瓶设2个瓶口,分别是第一瓶口和第三瓶口,其余均设3个瓶口,分别是第一瓶口、第二瓶口和第三瓶口;
所述蒸馏瓶的第一瓶口与传动体距离最近,第二瓶口与第一瓶口的中心连线在同一旋转轴线上,第三瓶口成型于蒸馏瓶工作位置的最低液面处并设开关阀或与浓缩液定量组件相连;
所述浓缩液定量组件的结构类似航天器的“气闸仓”,包括设于蒸馏瓶第三瓶口处的第一排液阀,带有定量刻度线的定量管及定量管远离蒸馏瓶一端的第二排液阀,两阀配合用于蒸发系统内真空环境和外界环境不同气压下浓缩液的准确定量和排放,还有系统密封;
所设开关阀用于排浓缩液或通大气,调整第三瓶口的朝向,也可用于进料;
所述浓缩液定量组件与蒸馏瓶第三瓶口为一体成型或为磨口连接并用夹具固定;
所述第一排液阀和第二排液阀的材质为玻璃或聚四氟乙烯;
根据浓缩液容量需要定量管下部可设扩容瓶,用于一次性增容放液。
同一旋转轴线上第一蒸馏瓶的第二瓶口与第二蒸馏瓶的第一瓶口所在 的瓶颈磨口密闭连接并用夹具紧固,或通过连轴器连接第一蒸馏瓶与第二蒸馏瓶。
同一旋转轴线上相邻两蒸馏瓶间下设托架支撑;
各旋转轴线上距离所述传动体最远的蒸馏瓶的第一瓶颈横截面的中心连线与所在的旋转轴线重合;
优选所述蒸馏瓶第一瓶口所在的瓶颈靠近瓶身处设球形结构,用于防爆沸;
对于1条旋转轴线上蒸馏瓶多于1个的情况,所述冷凝器与所述传动体间设连接器;
所述连接器由基础板及分别位于基础板两侧的冷凝管和蒸汽管组成,所述基础板为一带孔圆片,每一基础板对应一条旋转轴线,每个基础板通过锁紧螺母及密封圈固定在所述传动体靠近冷凝器的一端;
所述连接器的材质为聚四氟乙烯或不与溶剂反应的材料。
对于各待蒸馏液的溶剂蒸发、冷凝和收集有各自独立的管路且互不相通的情况,所述基础板靠近冷凝器一侧设有至少2只冷凝管,冷凝管为圆管但圆心两两不重合,其中第一冷凝管与第一冷凝器连通,第二冷凝管与第二冷凝器连通;所述基础板在所述传动体一侧设有至少2只蒸汽管,各蒸汽管均设为圆管且圆心重合,其中第一蒸汽管、第二蒸汽管的直径依次减小,所述第一蒸汽管与第一蒸馏瓶连通,所述第二蒸汽管与第二蒸馏瓶连通;所述第一蒸馏瓶中的蒸发气体先经过第一蒸汽管,再经过第一冷凝管进入第一冷凝器冷凝,所述第二蒸馏瓶中的蒸发气体先经过第二蒸汽管,再经过第二冷凝管进入第二冷凝器冷凝;
对于只有1个冷凝器的情况,几个蒸馏瓶中的蒸发气体先经过各自的蒸汽管,然后经过各自的冷凝管、再经过冷凝管总管后进入所述冷凝器冷凝;
所述第一蒸汽管与玻璃轴适配并密闭连接,所述玻璃轴为传动体中各旋转轴线上最内层的一空心玻璃管并不随电机旋转,所述第二蒸汽管与第二蒸馏瓶的第一瓶口或其连接管适配并密闭连接;
所述冷凝器组中的冷凝器优选竖直放置、并列成组,并设架固定;
所述冷凝器上设真空管,通过真空管与真空泵相连;
所述冷凝器组中的冷凝器上设有各自的真空管支管,各真空管支管与真空管相连,通过真空管与真空泵相连;
各真空管支管或真空管上根据需要可设开关(图中未示出),用于通大 气;
所述各真空管支管上根据需要可设单向阀,避免相互污染。
所述冷凝器下端开口与收集瓶或收集器玻璃磨口相连并用夹具紧固;
所述收集器包括设于冷凝器下端开口处的第一放液阀、收集器下部的第二放液阀,及两阀间带定量刻度线的定量管及准确定容的收集瓶,这种结构类似“气闸仓”,用于蒸发系统内真空环境和外界环境不同气压下冷凝液的准确定量和排放,还有系统密封;
所述蒸馏瓶通过加热组件进行加热,所述加热组件为设置于所述蒸馏瓶外壁处的电加热带;所述电加热带的外层设置有玻璃纤维带,实现所述电加热带的隔热和固定,所述电加热带与所述蒸馏瓶之间还设置有温控仪传感器探头;
所述第一放液阀和第二放液阀的材质为玻璃或聚四氟乙烯。
为避免蒸馏瓶旋转中不平稳,所述蒸馏瓶设在其旋转轴线所在的任意平面两侧的质量相同。
本发明:
(1)将原1条旋转轴线改为至少2条,将原1个蒸馏瓶改为至少2个,并增设瓶口,同一旋转轴线上相邻的两蒸馏瓶依序串联并下设托架支撑,实现一次旋转蒸发多个待蒸馏样品。
(2)在原有传动体与冷凝器间增设连接器,冷凝器和收集器根据需要数量增设,使来自各个蒸馏瓶的蒸发气体可以在1个冷凝器冷凝并在1个收集器被收集,也可分别输运至各自的冷凝器冷凝,并在各自的收集器被收集,各管路互不相通,从而实现一次旋转蒸发浓缩多个样品或回收多个溶剂。
(3)将蒸馏瓶工作状态的最低液面位置设第三瓶口并连浓缩液定量组件,用于蒸发系统内真空环境和外界环境不同气压下浓缩液的准确定量排放和蒸馏系统密封;第三瓶口还可用于通大气,调整朝向,可用于进料。
(4)所述收集器具有类似“过渡仓”结构,上部设第一放液阀,下部设第二放液阀,两阀间设带刻度线的定量管和准确定容的收集瓶;两阀配合在对系统不产生较大影响的前提下可放出准确定量的冷凝液,精度达0.01mL。
(5)用电加热带加热蒸馏瓶,益处:①消除了空间位阻,便于设置多条旋转轴线和多个蒸馏瓶,便于安装浓缩液定量组件;②减少了加热用水耗和油耗;③由于所述蒸馏瓶可以直接放出浓缩液,无需使用升降系统,减少了组件,节约了成本。
附图说明
图1是本发明实施例所述一次准确定量回收多个溶剂的多旋转轴蒸发仪的一种结构示意图;
图2是本发明实施例所述一次准确定量浓缩多个样品的多旋转轴蒸发仪的一种结构示意图;
图3是本发明实施例所述一次准确定量回收多个溶剂的旋转蒸发仪(单旋转轴)的一种结构示意图;
图4是本发明实施例所述一次准确定量浓缩多个样品的旋转蒸发仪(单旋转轴)的一种结构示意图
图5是本发明实施例所述一次准确定量浓缩多个样品的多旋转轴蒸发仪的另一种结构示意图;
图6是本发明实施例所述旋转蒸发仪的连接器剖面结构示意图;
图7是本发明实施例所述旋转蒸发仪的连接器左视图;
图8是本发明实施例所述旋转蒸发仪的连接器右视图;
图9是本发明实施例所述旋转蒸发仪的蒸馏瓶的另一种结构示意图。
图中标记为:1-支架,2-电机,3-传动体,4-蒸馏瓶组(包括411、412、421、422或41、42、43),5-冷凝器组(包括51、52、53、54)(图4、图5为冷凝器),6-收集器(包括61、62、63、64、65)(图2、图4、图5为收集瓶),7-开关阀(图2、图4、图5为浓缩液定量组件,包括71、72、73、74),8-夹具,9-连接器,10-电加热带,11-玻璃纤维带,12-温度传感器,13-托架,14-玻璃轴,15-真空管,16-下倾夹角,17-旋转轴线(包括171、172),18-扩容瓶,19-承液盘;
411-第一轴线第一蒸馏瓶,412-第一轴线第二蒸馏瓶;
421-第二轴线第一蒸馏瓶,422-第二轴线第二蒸馏瓶;
41-第一蒸馏瓶,42-第二蒸馏瓶,43-第三蒸馏瓶;
4111-第一轴线第一蒸馏瓶的第一瓶口,4112-第一轴线第一蒸馏瓶的第二瓶口,4113-第一轴线第一蒸馏瓶的第三瓶口;
4121-第一轴线第二蒸馏瓶的第一瓶口,4123-第一轴线第二蒸馏瓶的第三瓶口;
4111′-第一轴线第一蒸馏瓶的第一瓶颈,4121′-第一轴线第二蒸馏瓶的第一瓶颈;
51-第一冷凝器,52-第二冷凝器,53-第三冷凝器,54-第四冷凝器;
61-定量刻度线,62-定量管,63-收集瓶,64-第二放液阀,65-第一放液阀;
71-第一排液阀,72-定量刻度线,73-定量管,74-第二排液阀;
91-基础板,92-锁紧螺母,93-冷凝管,94-蒸汽管;
931-第一冷凝管,932-第二冷凝管;
941-第一蒸汽管,942-第二蒸汽管;
151-第一真空管支管,152-第二真空管支管,153-第三真空管支管,154-第四真空管支管;
171-第一旋转轴线,172-第二旋转轴线。
具体实施例
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施例对本发明作进一步详细的说明。
本发明所述旋转蒸发仪是以上海亚荣生化仪器厂生产的RE-3000A型旋转蒸发仪为基础进行改造的。
实施例1
如图1所示,本实施例所述一次准确定量回收多个溶剂的多旋转轴蒸发仪,包括:支架1,所述支架1上固定有电机2(本发明旋转蒸发仪还设有控制所述电机转速、加热温度的控制面板及其控制组件等,图中未示出),所述电机2通过传动体3带动两条旋转轴线171、172上的蒸馏瓶旋转,所述传动体3一端固定有可拆卸的蒸馏瓶组4,另一端固定有可拆卸的冷凝器组5,所述冷凝器组5中的各冷凝器底部连接有各自的收集器6。
所述蒸馏瓶的旋转可单向也可两个方向交替进行;
所述2条旋转轴线相互平行并与水平面有下倾夹角,为15度;
每条所述旋转轴线上设2个串联并沿同一旋转轴线旋转的蒸馏瓶,4个蒸馏瓶组成蒸馏瓶组4,相应的,4个冷凝器组成冷凝器组5,4个收集器6组成收集器组;
所述蒸馏瓶依据所在的轴线及与所述传动体3的距离由近及远依次是第一轴线第一蒸馏瓶411、第一轴线第二蒸馏瓶412、第二轴线第一蒸馏瓶421、第二轴线第二蒸馏瓶422,分别盛装待蒸馏液1*、待蒸馏液2*、待蒸馏液3*、待蒸馏液4*,4个待蒸馏液可以来自同一样品,也可来自不同的样 品。
第一旋转轴线171上距离所述传动体3最远的蒸馏瓶412设2个瓶口,分别是第一瓶口4121和第三瓶口4123,蒸馏瓶411设3个瓶口,分别是第一瓶口4111、第二瓶口4112和第三瓶口4113;第二旋转轴线172上亦如此设瓶口;
第一旋转轴线171第一蒸馏瓶的第一瓶口4111与所述传动体3距离最近,第二瓶口4112与所述第一瓶口4111的中心连线在同一旋转轴线上,第三瓶口4113成型于蒸馏瓶411工作位置的最低液面处并设开关阀7;第二蒸馏瓶第一瓶颈4121′横截面的中心连线与旋转轴线171重合,第三瓶口4123成型于蒸馏瓶412工作位置的最低液面处并设开关阀7。
所述第一轴线第一蒸馏瓶的第二瓶口4112与所述第一轴线第二蒸馏瓶的第一瓶颈4121′磨口密闭连接并用夹具8紧固,下设托架132支撑,确保所述蒸馏瓶411和所述蒸馏瓶412沿同一轴线旋转,所述第二轴线172上的2个蒸馏瓶亦如此连接并固定,下设托架131支撑。
优选蒸馏瓶第一瓶颈靠近瓶身处设球形结构(如图3),防待蒸馏液爆沸。
所述冷凝器组5与所述传动体3间设2个连接器9(如图6、图7、图8所示),每一连接器9对应一条旋转轴线,所述连接器9由基础板91及分别位于基础板91两侧的冷凝管93和蒸汽管94组成,所述基础板91为一带孔圆片,每个基础板91通过锁紧螺母92及密封圈(图中未示出)固定在所述传动体3靠近冷凝器组5一端,所述基础板91靠近冷凝器一侧设有2个冷凝管93,所述的2个冷凝管93直径相同但圆心不重合,其中第一冷凝管931与第一冷凝器51连通,第二冷凝管932与第二冷凝器52连通;所述基础板91靠近所述传动体3一侧设有2个蒸汽管94,其中第一蒸汽管941、第二蒸汽管942的圆心重合,直径依次减小。所述第一轴线171上第一蒸汽管941与第一蒸馏瓶411连通,第二蒸汽管942与第二蒸馏瓶412连通;所述第一蒸馏瓶411中的蒸发气体先经过第一蒸汽管941,再经过第一冷凝管931进入第一冷凝器51冷凝,所述第二蒸馏瓶412中的蒸发气体先经过第二蒸汽管942,再经过第二冷凝管932进入第二冷凝器52冷凝。所述第二轴线172上第一蒸馏瓶中421的蒸发气体先经过第一蒸汽管941,再经过第一冷凝管931进入第三冷凝器53冷凝,第二蒸馏瓶422中的蒸发气体先经过第二蒸汽管942,再经过第二冷凝管932进入第四冷凝器54冷凝。
所述连接器9的材质选聚四氟乙烯。
在第一旋转轴线171上,所述第一蒸汽管941与玻璃轴14适配并密闭连接(所述玻璃轴14为传动体3在每条旋转轴线上最内层的一空心玻璃管,并不随电机2旋转),所述第二蒸汽管942与第二蒸馏瓶的第一瓶口4121或其连接管适配并密闭连接。第二旋转轴线172上亦如此。
4个待蒸馏液的溶剂蒸发、冷凝和收集有各自独立的管路且互不相通;
4个冷凝器竖直放置、平行成组并设架固定,冷凝器上分别设有:第一真空管支管151、第二真空管支管152、第三真空管支管153、第四真空管支管154,真空管支管与真空管15相连并通过真空管15与真空泵(图中未示出)相连;各个冷凝器下端开口与各自的收集器6通过玻璃球磨口密闭连接并用钢夹具8固定。
所述真空管支管上根据需要设单向阀,避免相互污染。
所述收集器6包括设于冷凝器下端开口的第一放液阀65、收集器下部的第二放液阀64,以及两阀间的定量管62、收集瓶63,两阀及其间的容器组成“过渡仓”,用于蒸馏系统内真空环境和外界环境两种气压下冷凝液排放控制和蒸馏系统密封。
所述定量管62为腔体是管型结构的可计量细管,外壁设定量刻度线61,用于冷凝液的量值读取,其可计量容量选5mL,计量刻度可以精确到0.05mL。
所述收集瓶63选球形并且容积被准确标定。
所述第一放液阀65和第二放液阀64选聚四氟乙烯材质。
所述蒸馏瓶通过缠裹于其外壁处的电加热带10加热,所述电加热带10的外层设置有玻璃纤维带11,用于电加热带10的隔热和固定,所述电加热带10与所述蒸馏瓶之间设有温控仪传感器探头12,用于测温。
本实施例所述旋转蒸发仪使用时,先关闭第二放液阀64,打开第一放液阀65,在每个蒸馏瓶中分别定量加入各自的待蒸馏溶液,安装好蒸馏瓶,打开加热开关、真空泵开关,调节转速旋钮至设定值,四个蒸馏瓶同时旋转,四个待蒸馏液同时被加热,在真空泵的抽吸作用下加热蒸发的气体进入各自的冷凝器被冷凝成液体,冷凝液在各自的收集器被收集;蒸馏中观察冷凝液量,当接近设计的准确量时,调慢转速,当达到设计的准确量时立即关闭所述第一放液阀65,调整转速至0、关闭加热及真空泵开关,打开所述第二放液阀64,此时确定量的冷凝液被放出。
本实施例的优点:
(1)将原有的1条旋转轴线改为2条,每条旋转轴线上设2个串联的蒸馏瓶,可以一次蒸发4个不同的待蒸馏液。将原只有一个瓶口的蒸馏瓶改为有3个瓶口(距传动体最远的第二蒸馏瓶设2个瓶口)。
(2)在传动体3与冷凝器间设连接器9,将原有的1个冷凝器改为4个,将原有的1个收集瓶改为4个,使来自4个蒸馏瓶的蒸发气体分别输运至各自的冷凝器冷凝,并在各自的收集器被收集,实现一次蒸发回收4个溶剂。
(3)收集器上部设第一放液阀65,下部设第二放液阀64,两阀间设定量管62和收集瓶63,两阀配合,可在对蒸馏系统不产生较大影响的前提下放出准确定量的冷凝液,精度达0.05mL。
(4)用电加热带10加热蒸馏瓶,益处:①消除了空间位阻,便于设置第2条旋转轴线、安装4个蒸馏瓶及开关阀7;②减少了加热用水耗和油耗;③由于所述蒸馏瓶可以直接放出浓缩液,无需使用升降系统,减少了旋转蒸发仪的组件,节约了成本。
作为可以变换的结构,本发明蒸馏瓶数、冷凝器数、收集器数可以同为2个(即每条旋转轴线设1个蒸馏瓶),也可同为3个。
实施例2
本实施例一次准确定量回收多个溶剂的旋转蒸发仪(如图3所示)与实施例1不同的是只有一条旋转轴线,设3个依序串联并沿同一轴线旋转的蒸馏瓶,其余参见实施例1。
实施例3
如图2所示,本实施例一次准确定量浓缩多个样品的多旋转轴蒸发仪,包括:支架1,所述支架1上固定有电机2,所述电机2通过传动体3带动两条旋转轴线171、172上的蒸馏瓶旋转(本实施例旋转蒸发仪还设有控制所述旋转电机转速及加热温度的控制面板及组件,图中未示出),所述传动体3一端固定有可拆卸的蒸馏瓶组4,另一端固定有可拆卸的冷凝器组5,所述冷凝器组5中的冷凝器底部连接有各自的收集瓶6;
所述旋转可单向也可两个方向交替进行;
所述两条旋转轴线171、172与水平面有下倾夹角,为13度;
每条所述旋转轴线上设两个依序串联并沿同一轴线旋转的蒸馏瓶;
所述蒸馏瓶及其瓶口设置参见实施例1第5-7自然段;
与实施例1不同的是蒸馏瓶第三瓶口均与浓缩液定量组件7相连;
同一轴线上相邻两蒸馏瓶的连接及支撑设置参见实施例1第8自然段;
优选蒸馏瓶的第一瓶颈靠近瓶身处设有球形结构(如图3所示),用于防爆沸;
所述浓缩液定量组件7包括设在蒸馏瓶第三瓶口处的第一排液阀71,带有定量刻度线72的定量管73及在定量管72远离蒸馏瓶一端的第二排液阀74,两阀开关配合,用于蒸发系统内真空环境和外界环境不同气压下浓缩液的定量排放控制和蒸馏瓶密封;
所述定量管72的可计量容量设为1mL,其计量刻度可以精确到0.01mL。
所述浓缩液定量组件7与所述蒸馏瓶第三瓶口为磨口密闭连接并通过夹具8固定;
所述第一排液阀71和第二排液阀74为聚四氟乙烯材质;
根据浓缩液容量需要定量管73下部还可设扩容瓶18及承液盘19(如图4所示,也可如实施例1中收集瓶63),用于实现浓缩液的一次性增容放液。
4个冷凝器5竖直放置、并列成组,并设架固定。
所述冷凝器组5与所述传动体3间设连接器9(如图6、图7和图8所示),所述连接器9的结构及功能同实施例1(参见实施例1第10-12自然段)。
4个待蒸馏液的溶剂蒸发、冷凝和收集有各自独立的管路且互不相通;
所述冷凝器上设有真空管支管:第一真空管支管151、第二真空管支管152、第三真空管支管153、第四真空管支管154,真空管支管与真空管15相连,通过所述真空管15与真空泵(图中未示出)相连;
所述真空管支管上根据需要设通大气开关(图中未示出);
所述冷凝器下端开口与收集瓶6通过玻璃球磨口相连接并用钢夹具固定;
所述各收集瓶包括设置于其上部的第一放液阀65、下部的第二放液阀64,及两阀间的收集瓶63,用于蒸发系统内真空环境和外界环境不同气压下冷凝液的排放控制和系统密封;
所述蒸馏瓶加热方式同实施例1(见实施例1第20自然段)。
本实施例所述旋转蒸发仪使用时,先关闭所述第二排液阀74,打开所 述第一排液阀71,在每个蒸馏瓶中分别定量加入待蒸馏溶液,安装好蒸馏瓶,打开加热开关、真空泵开关,调节转速旋钮至设定值,4个蒸馏瓶同时旋转,4个待蒸馏液同时被加热,在真空泵的抽吸作用下加热蒸发的气体进入冷凝器被冷凝成液体,冷凝液在所述收集瓶6被收集;蒸馏过程中观察浓缩液量,当接近设计的准确量时,调慢转速逐渐至0,当达到设计的准确量时立即关闭所述第一排液阀71,后关闭加热及真空泵开关,打开所述第二排液阀74,此时准确定量的浓缩液被放出。
本实施例的优点:
(1)将原有的1条旋转轴线改为2条,将原有的1个蒸馏瓶改为4个蒸馏瓶并增设瓶口;在传动体3与冷凝器5间设连接器9,冷凝器和收集瓶6均增设为4个,使来自4个蒸馏瓶的蒸发气体分别输运至各自的冷凝器冷凝,并在各自的收集器被收集,各管路互不相通,从而实现一次旋转蒸发浓缩4个样品。
(2)将各蒸馏瓶工作状态的最低液面位置设第三瓶口并连浓缩液定量组件7,用于蒸发系统内外不同气压下浓缩液的准确定量和排放(精度可达0.01mL)、以及蒸馏瓶密封,第三瓶口还可通大气,调整朝向,如口朝上,可用于进料。
(3)用电加热带对所述蒸馏瓶加热,益处:①消除了空间位阻,便于增设旋转轴线、安装浓缩液定量组件7及4个蒸馏瓶;②减少了加热用水耗和油耗;③无需使用升降系统,减少了组件,节约了成本。
实施例4
本实施例一次准确定量浓缩多个样品的多旋转轴蒸发仪(如图5所示),与实施例3不同的是冷凝器、收集瓶均设1个,4个蒸馏瓶中的蒸发气体最终冷凝入同一冷凝器,在同一收集瓶被收集,其余参见实施例3。
实施例5
本实施例一次准确定量浓缩多个样品的旋转蒸发仪(如图4所示)设一条旋转轴线,设3个依序串联并沿同一轴线旋转的蒸馏瓶,其余参见实施例3。
如图9所示,为避免蒸馏瓶旋转中不平稳,优选所述蒸馏瓶设在其旋转 轴线所在的任意平面两侧的质量相同。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (13)

  1. 一次准确定量回收多个溶剂的多旋转轴蒸发仪,其特征在于,包括:支架(1),所述支架(1)上固定有电机(2);所述电机(2)通过传动体(3)带动至少两条旋转轴线(17)上的蒸馏瓶旋转,所述蒸馏瓶组成蒸馏瓶组(4),所述传动体(3)一端固定有可拆卸的蒸馏瓶组(4),另一端连接有可拆卸的冷凝器组(5),所述冷凝器组(5)中的冷凝器底部连接有收集器(6);
    每条所述旋转轴线上设一个蒸馏瓶或至少两个依序串联并沿同一旋转轴线旋转的蒸馏瓶;
    当任意一条旋转轴线上的蒸馏瓶数量多于1个时,所述冷凝器与所述传动体(3)间设连接器(9);
    所述蒸馏瓶、所述冷凝器、所述收集器(6)的数量相同,各待蒸馏液的溶剂蒸发、冷凝和收集有各自独立的管路且互不相通。
  2. 一次准确定量回收多个溶剂的旋转蒸发仪,其特征在于,包括:支架(1),所述支架(1)上固定有电机(2);所述电机(2)通过传动体(3)带动蒸馏瓶组(4)旋转,所述传动体(3)一端固定有可拆卸的蒸馏瓶组(4),另一端连接有可拆卸的冷凝器组(5),所述冷凝器组(5)中的各冷凝器底部连接有收集器(6);
    所述蒸馏瓶组(4)包含至少2个蒸馏瓶,所述蒸馏瓶依序串联并沿同一旋转轴线旋转;
    所述蒸馏瓶、所述冷凝器、所述收集器(6)的数量相同;
    所述冷凝器组(5)与所述传动体(3)间设连接器(9);
    各待蒸馏液的溶剂蒸发、冷凝、收集有各自独立的管路且互不相通。
  3. 一次准确定量浓缩多个样品的多旋转轴蒸发仪,其特征在于,包括:支架(1),所述支架(1)上固定有电机(2),所述电机(2)通过传动体(3)带动至少两条旋转轴线(17)上的蒸馏瓶旋转,所述蒸馏瓶组成蒸馏瓶组(4),所述传动体(3)一端固定有可拆卸的蒸馏瓶组(4),另一端固定有可拆卸的冷凝器或冷凝器组(5),每个所述冷凝器底部连接有收集瓶;
    每条所述旋转轴线(17)上设一个蒸馏瓶或至少两个依序串联的并沿同一轴线旋转的蒸馏瓶,蒸馏瓶与浓缩液定量组件(7)相连;
    当任意一条旋转轴线上的蒸馏瓶数量多于1个时,所述冷凝器(5)与所述传动体(3)间设连接器(9)。
  4. 一次准确定量浓缩多个样品的旋转蒸发仪,其特征在于,包括:支架(1),所述支架(1)上固定有电机(2);所述电机(2)通过传动体(3)带动蒸馏瓶组(4)旋转,所述传动体(3)一端固定有可拆卸的蒸馏瓶组(4),另一端固定有可拆卸的冷凝器,所述冷凝器底部连接有收集瓶;
    所述蒸馏瓶组(4)包含至少2个蒸馏瓶,所述蒸馏瓶依序串联并沿同一旋转轴线旋转,所述蒸馏瓶与浓缩液定量组件相连。
  5. 根据权利要求1-4中任一项所述的旋转蒸发仪,其特征在于,所述冷凝器顶部通过真空管(15)与真空泵相连;
    当冷凝器的数量多于1个时,每个冷凝器连接真空管支管,真空管支管连接真空管(15),真空管(15)与真空泵相连,或者真空管支管与真空泵相连。
  6. 根据权利要求5所述的旋转蒸发仪,其特征在于,
    所述真空管支管上设置有单向阀。
  7. 根据权利要求1-4中任一项所述的旋转蒸发仪,其特征在于,同一旋转轴线(17)上相邻两蒸馏瓶间下设托架(13)支撑;
    所述蒸馏瓶依据所在轴线及与所述传动体(3)的距离由近及远依次是第一轴线第一蒸馏瓶(411)、第一轴线第二蒸馏瓶(412),第二轴线第一蒸馏瓶(421)、第二轴线第二蒸馏瓶(422);
    每条所述旋转轴线(17)上距离所述传动体(3)最远的蒸馏瓶设2个瓶口,其余均设3个瓶口;
    所述蒸馏瓶的第一瓶口与所述传动体(3)距离最近,第二瓶口与第一瓶口的中心连线在同一旋转轴线上,第三瓶口成型于蒸馏瓶工作状态的最低液面处并设开关阀(7)或与浓缩液定量组件相连;
    所述浓缩液定量组件包括蒸馏瓶第三瓶口处的第一排液阀(71),带有定量刻度线(72)的定量管(73),及在定量管(73)远离蒸馏瓶一端的第二排液阀(74);两阀配合控制浓缩液的准确定量排放和蒸馏瓶密封。
  8. 根据权利要求7所述的旋转蒸发仪,其特征在于,
    所述浓缩液定量组件中的定量管(73)下部设置有扩容瓶。
  9. 根据权利要求1-4中任一项所述的旋转蒸发仪,其特征在于,所述旋转轴线(17)上第一蒸馏瓶的第二瓶口与第二蒸馏瓶的第一瓶颈密闭连接并用夹具(8)紧固,或者通过连轴器连接所述的第一蒸馏瓶与第二蒸馏瓶。
  10. 根据权利要求1-4中任一项所述的旋转蒸发仪,其特征在于,所述连接器(9)由基础板(91)及分别位于基础板(91)两侧的冷凝管(93)和蒸汽管(94)组成,每一所述基础板(91)对应一条所述旋转轴线(17),每个基础板通过锁紧螺母(92)及密封圈固定在所述传动体(3)靠近冷凝器(5)的一端;
    所述基础板(91)靠近冷凝器一侧设有至少2只的冷凝管(93),第一冷凝管(931)与第一冷凝器(51)连通,第二冷凝管(932)与第二冷凝器(52)连通;所述基础板(91)在所述传动体(3)一测设有至少2只蒸汽管(94),所述的蒸汽管(94)均为圆管且圆心重合,其中第一蒸汽管(941)、第二蒸汽管(942)的直径依次减小,所述第一蒸汽管(941)与所述第一蒸馏瓶(41)连通,所述第二蒸汽管(942)与所述第二蒸馏瓶(42)连通;所述第一蒸馏瓶(411)中的蒸发气体先经过第一蒸汽管(941),再经过第一冷凝管(931)进入第一冷凝器(51)冷凝,所述第二蒸馏瓶(412)中的蒸发气体先经过第二蒸汽管(942),再经过第二冷凝管(932)进入所述第二冷凝器(52)冷凝;
    所述第一蒸汽管(941)与玻璃轴(19)适配并密闭连接,所述玻璃轴(14)为所述传动体最内层的一空心玻璃管并不随电机旋转,所述第二蒸汽管(942)与所述第二蒸馏瓶的第一瓶口适配并密闭连接;
    所述连接器(9)的材质为不与溶剂反应的材料。
  11. 根据权利要求10所述的旋转蒸发仪,其特征在于,所述连接器(9)的材质为聚四氟乙烯或玻璃。
  12. 根据权利要求1-4中任一项所述的旋转蒸发仪,其特征在于,所述蒸馏瓶的第一瓶口所在的瓶颈上靠近瓶身处设有球形结构;
    所述蒸馏瓶通过加热组件进行加热,所述加热组件为电加热带(10)。
  13. 根据权利要求1或2所述的旋转蒸发仪,其特征在于,所述收集器(6)包括设置于上部的第一放液阀(65)、下部的第二放液阀(64)及两阀间带定量刻度线(61)的定量管(62)及准确定容的收集瓶(63),用于冷凝液的准确定量排放控制和系统密封。
PCT/CN2020/114217 2019-09-10 2020-09-09 一次准确定量回收多个溶剂或浓缩多个样品的旋转蒸发仪 WO2021047537A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20863417.0A EP4008418A4 (en) 2019-09-10 2020-09-09 ROTARY EVAPORATOR FOR ACCURATE AND QUANTITATIVE RECOVERY OF MULTIPLE SOLVENTS OR FOR CONCENTRATION OF MULTIPLE SAMPLES AT ONE TIME
US17/687,897 US20220184521A1 (en) 2019-09-10 2022-03-07 Rotary evaporator for accurately and quantitatively recovering multiple solvents or concentrating multiple samples at one time

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201910850616.0A CN110404283B (zh) 2019-09-10 2019-09-10 一种可一次准确定量浓缩多个样品的旋转蒸发仪
CN201910850608.6 2019-09-10
CN201910850608.6A CN110404282B (zh) 2019-09-10 2019-09-10 一种可一次准确定量回收多个溶剂的旋转蒸发仪
CN201910850616.0 2019-09-10
CN201910908061.0 2019-09-25
CN201910911630.7 2019-09-25
CN201910911630.7A CN110478928B (zh) 2019-09-25 2019-09-25 一种一次可准确定量浓缩多个样品的多旋转轴蒸发仪
CN201910908061.0A CN110478927B (zh) 2019-09-25 2019-09-25 一次可准确定量回收多个溶剂的多旋转轴蒸发仪

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/687,897 Continuation US20220184521A1 (en) 2019-09-10 2022-03-07 Rotary evaporator for accurately and quantitatively recovering multiple solvents or concentrating multiple samples at one time

Publications (1)

Publication Number Publication Date
WO2021047537A1 true WO2021047537A1 (zh) 2021-03-18

Family

ID=74866124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114217 WO2021047537A1 (zh) 2019-09-10 2020-09-09 一次准确定量回收多个溶剂或浓缩多个样品的旋转蒸发仪

Country Status (3)

Country Link
US (1) US20220184521A1 (zh)
EP (1) EP4008418A4 (zh)
WO (1) WO2021047537A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114712879A (zh) * 2022-04-25 2022-07-08 赣南师范大学 一种方便排出气体的化学实验蒸发装置
CN116271909A (zh) * 2023-04-13 2023-06-23 扬州嘉明环保科技有限公司 一种工业稀硫酸蒸馏浓缩塔

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115487520B (zh) * 2022-08-31 2024-02-13 扬州中惠制药有限公司 一种多种类中药用分时定投提取设备
CN117180773B (zh) * 2023-09-08 2024-02-13 海能未来技术集团股份有限公司 自动连接与分离静止状态消化管的凯氏蒸馏系统及方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865445A (en) * 1954-10-14 1958-12-23 Buchler Joseph Evaporator
US5879516A (en) * 1996-02-29 1999-03-09 Kasman; David H. Kugelrohr or distillation apparatus
CN2608092Y (zh) * 2003-03-24 2004-03-31 上海申生科技有限公司 串联式连续收集旋转蒸发器
CN205007600U (zh) * 2015-09-18 2016-02-03 重庆工业职业技术学院 用于桂花籽石油醚萃取的旋转蒸发仪
CN206027126U (zh) * 2016-04-14 2017-03-22 徐州浩通新材料科技股份有限公司 贵金属回收旋转蒸发仪
CN206508577U (zh) * 2017-01-19 2017-09-22 广州诺普化工科技有限公司 改进型旋转蒸发仪
CN207286705U (zh) * 2017-09-22 2018-05-01 浙江中鼎检测技术有限公司 一种有机溶剂检测群组式蒸发仪
CN108043058A (zh) * 2018-01-23 2018-05-18 北京师范大学 一种可准确实现馏分定量的旋转蒸发仪
CN108043059A (zh) * 2018-01-23 2018-05-18 北京师范大学 一种可准确实现浓缩液定量的旋转蒸发仪
CN207545853U (zh) * 2017-11-28 2018-06-29 厦门福慈生物科技有限公司 一种旋转蒸发仪
CN208493280U (zh) * 2018-06-12 2019-02-15 西南石油大学 旋转蒸发器和旋转蒸发系统
CN109865308A (zh) * 2019-04-22 2019-06-11 河南中测技术检测服务有限公司 一种双效旋转蒸发仪
CN110404282A (zh) * 2019-09-10 2019-11-05 北京师范大学 一种可一次准确定量回收多个溶剂的旋转蒸发仪
CN110404283A (zh) * 2019-09-10 2019-11-05 北京师范大学 一种可一次准确定量浓缩多个样品的旋转蒸发仪
CN110478928A (zh) * 2019-09-25 2019-11-22 北京师范大学 一种一次可准确定量浓缩多个样品的多旋转轴蒸发仪
CN110478927A (zh) * 2019-09-25 2019-11-22 北京师范大学 一次可准确定量回收多个溶剂的多旋转轴蒸发仪
CN210845328U (zh) * 2019-09-25 2020-06-26 北京师范大学 一种一次可准确定量浓缩多个样品的多旋转轴蒸发仪
CN210845327U (zh) * 2019-09-10 2020-06-26 北京师范大学 一种可一次准确定量浓缩多个样品的旋转蒸发仪
CN211215487U (zh) * 2019-09-10 2020-08-11 北京师范大学 一种可一次准确定量回收多个溶剂的旋转蒸发仪
CN211863896U (zh) * 2019-09-25 2020-11-06 北京师范大学 一次可准确定量回收多个溶剂的多旋转轴蒸发仪

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547141B2 (ja) * 2003-10-29 2010-09-22 株式会社創造化学研究所 液状の媒体の回収装置
TWI257384B (en) * 2004-05-11 2006-07-01 Chung Shan Inst Of Science Purification method of 1,4-bis(bromodifluoromethyl)benzene and apparatus thereof

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2865445A (en) * 1954-10-14 1958-12-23 Buchler Joseph Evaporator
US5879516A (en) * 1996-02-29 1999-03-09 Kasman; David H. Kugelrohr or distillation apparatus
CN2608092Y (zh) * 2003-03-24 2004-03-31 上海申生科技有限公司 串联式连续收集旋转蒸发器
CN205007600U (zh) * 2015-09-18 2016-02-03 重庆工业职业技术学院 用于桂花籽石油醚萃取的旋转蒸发仪
CN206027126U (zh) * 2016-04-14 2017-03-22 徐州浩通新材料科技股份有限公司 贵金属回收旋转蒸发仪
CN206508577U (zh) * 2017-01-19 2017-09-22 广州诺普化工科技有限公司 改进型旋转蒸发仪
CN207286705U (zh) * 2017-09-22 2018-05-01 浙江中鼎检测技术有限公司 一种有机溶剂检测群组式蒸发仪
CN207545853U (zh) * 2017-11-28 2018-06-29 厦门福慈生物科技有限公司 一种旋转蒸发仪
CN108043058A (zh) * 2018-01-23 2018-05-18 北京师范大学 一种可准确实现馏分定量的旋转蒸发仪
CN108043059A (zh) * 2018-01-23 2018-05-18 北京师范大学 一种可准确实现浓缩液定量的旋转蒸发仪
CN208493280U (zh) * 2018-06-12 2019-02-15 西南石油大学 旋转蒸发器和旋转蒸发系统
CN109865308A (zh) * 2019-04-22 2019-06-11 河南中测技术检测服务有限公司 一种双效旋转蒸发仪
CN110404282A (zh) * 2019-09-10 2019-11-05 北京师范大学 一种可一次准确定量回收多个溶剂的旋转蒸发仪
CN110404283A (zh) * 2019-09-10 2019-11-05 北京师范大学 一种可一次准确定量浓缩多个样品的旋转蒸发仪
CN210845327U (zh) * 2019-09-10 2020-06-26 北京师范大学 一种可一次准确定量浓缩多个样品的旋转蒸发仪
CN211215487U (zh) * 2019-09-10 2020-08-11 北京师范大学 一种可一次准确定量回收多个溶剂的旋转蒸发仪
CN110478928A (zh) * 2019-09-25 2019-11-22 北京师范大学 一种一次可准确定量浓缩多个样品的多旋转轴蒸发仪
CN110478927A (zh) * 2019-09-25 2019-11-22 北京师范大学 一次可准确定量回收多个溶剂的多旋转轴蒸发仪
CN210845328U (zh) * 2019-09-25 2020-06-26 北京师范大学 一种一次可准确定量浓缩多个样品的多旋转轴蒸发仪
CN211863896U (zh) * 2019-09-25 2020-11-06 北京师范大学 一次可准确定量回收多个溶剂的多旋转轴蒸发仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4008418A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114712879A (zh) * 2022-04-25 2022-07-08 赣南师范大学 一种方便排出气体的化学实验蒸发装置
CN114712879B (zh) * 2022-04-25 2024-01-26 赣南师范大学 一种方便排出气体的化学实验蒸发装置
CN116271909A (zh) * 2023-04-13 2023-06-23 扬州嘉明环保科技有限公司 一种工业稀硫酸蒸馏浓缩塔
CN116271909B (zh) * 2023-04-13 2024-01-16 扬州嘉明环保科技有限公司 一种工业稀硫酸蒸馏浓缩塔

Also Published As

Publication number Publication date
US20220184521A1 (en) 2022-06-16
EP4008418A1 (en) 2022-06-08
EP4008418A4 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
WO2021047537A1 (zh) 一次准确定量回收多个溶剂或浓缩多个样品的旋转蒸发仪
CN110478927B (zh) 一次可准确定量回收多个溶剂的多旋转轴蒸发仪
CN110404282B (zh) 一种可一次准确定量回收多个溶剂的旋转蒸发仪
CN211863896U (zh) 一次可准确定量回收多个溶剂的多旋转轴蒸发仪
CN211215487U (zh) 一种可一次准确定量回收多个溶剂的旋转蒸发仪
CN210845327U (zh) 一种可一次准确定量浓缩多个样品的旋转蒸发仪
CN210845328U (zh) 一种一次可准确定量浓缩多个样品的多旋转轴蒸发仪
CN110478928B (zh) 一种一次可准确定量浓缩多个样品的多旋转轴蒸发仪
CN110404283A (zh) 一种可一次准确定量浓缩多个样品的旋转蒸发仪
CN101564701B (zh) 负压磁力搅拌浓缩仪
CN206103371U (zh) 一种真空球形浓缩器
CN207822547U (zh) 带有电加热带的旋转蒸发装置
CN102128740B (zh) 一种高效负压磁力搅拌浓缩装置
CN109540621B (zh) 水中氧同位素的提取系统及水中氧同位素分析的方法
CN207980466U (zh) 一种自动进出料的旋转蒸发仪
KR102390934B1 (ko) 로드셀을 이용한 감압식농축기
CN209752913U (zh) 一种硝酸收集装置
CN208823968U (zh) 食品蒸馏仪
CN214019266U (zh) 一种食品接触材料总迁移量测试有机溶剂蒸发回收装置
CN207187135U (zh) 一种平行旋转蒸发联用仪
CN207894858U (zh) 一种农药残留旋转蒸发式装置食品检测装置
CN209296439U (zh) 一种样品浓缩装置
CN212275401U (zh) 一种样品浓缩装置
CN219323878U (zh) 一种带有防溅射结构的旋转蒸发仪
CN205379684U (zh) 一种用于机械压汽蒸馏工艺的带分离室的蒸发冷凝罐

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020863417

Country of ref document: EP

Effective date: 20220302

NENP Non-entry into the national phase

Ref country code: DE