WO2021047221A1 - 一种充放电电路、系统和电动汽车 - Google Patents

一种充放电电路、系统和电动汽车 Download PDF

Info

Publication number
WO2021047221A1
WO2021047221A1 PCT/CN2020/095122 CN2020095122W WO2021047221A1 WO 2021047221 A1 WO2021047221 A1 WO 2021047221A1 CN 2020095122 W CN2020095122 W CN 2020095122W WO 2021047221 A1 WO2021047221 A1 WO 2021047221A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
bridge arm
charging
terminal
pin
Prior art date
Application number
PCT/CN2020/095122
Other languages
English (en)
French (fr)
Inventor
苏逢
刘卫平
梁永涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20862783.6A priority Critical patent/EP3971018A4/en
Publication of WO2021047221A1 publication Critical patent/WO2021047221A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/1552Boost converters exploiting the leakage inductance of a transformer or of an alternator as boost inductor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the embodiments of the present application relate to the field of electric vehicles, and more specifically, to charging and discharging circuits, systems, and electric vehicles.
  • FIG. 1 is a schematic diagram of an existing charging and discharging system 100 for an electric vehicle.
  • the existing charging and discharging system 100 for an electric vehicle includes an on-board charger 101, a motor control unit 102, a motor 103, and a battery 104.
  • the on-board charger 101, the motor control unit 102, the motor 103, and the battery 104 are all independent components. .
  • the charging and discharging system 100 of an electric vehicle has a charging function and a driving function.
  • the charging function is that when the electric vehicle is in a non-operating state, the on-board charger 101 converts the received AC power into DC power, and performs a step-down process on the DC power, and then transmits the step-down DC power to the battery 104 so that the battery 104 is in charging.
  • the driving function is that when the electric vehicle is in a non-charging state, the motor control unit 102 converts the DC power provided by the battery 104 into AC power, and transmits the AC power to the motor 103 to make the motor 103 operate.
  • the existing charging and discharging system of electric vehicles has many components and takes up a large space, which cannot meet the demand for miniaturization. Therefore, how to reduce the components of the charging and discharging system of an electric vehicle to reduce its size has become a technical problem that needs to be solved urgently.
  • the embodiments of the present application provide a charging and discharging circuit, a system, and an electric vehicle to reduce parts and volume.
  • inventions of the present application provide a charging and discharging circuit.
  • the charging and discharging circuit includes a battery, a motor, a first charging interface, a first bridge arm, a second bridge arm, a third bridge arm, a first switch, and a third bridge arm.
  • the positive output terminal of the battery is connected to the positive terminal of the first bridge arm, the positive terminal of the second bridge arm, and the positive terminal of the third bridge arm through the first switch
  • the negative output terminal of the battery is connected to the positive terminal of the first bridge arm.
  • the negative terminal, the negative terminal of the second bridge arm and the negative terminal of the third bridge arm are connected.
  • the motor includes a first inductance, a second inductance and a third inductance.
  • the first end of the first inductance is connected to the middle point of the first bridge arm, the first end of the second inductance is connected to the middle point of the second bridge arm, and the The first end is connected to the middle point of the third bridge arm, and the second end of the first inductor, the second end of the second inductor, and the second end of the third inductor are connected to the first end of the fourth switch.
  • the first output terminal of the first charging interface is connected with the second terminal of the second inductor, and the second output terminal of the first charging interface is connected with the middle point of the third bridge arm.
  • the second switch is located between the midpoint of the second bridge arm and the first end of the second inductor
  • the third switch is located between the midpoint of the third bridge arm and the first end of the third inductor
  • the fifth switch is located between the midpoint of the third bridge arm and the first end of the third inductor.
  • the sixth switch is located between the midpoint of the second bridge arm and the second terminal of the third inductor
  • the seventh switch is located on the first charging port.
  • the eighth switch is arranged between the first terminal of the second inductor and the second terminal of the first inductor.
  • the first switch, the second switch, the third switch, and the fourth switch are all in a closed state
  • the fifth switch, the sixth switch, the seventh switch, and the eighth switch are all in a closed state. All are in a disconnected state
  • the first bridge arm, the second bridge arm, and the third bridge arm constitute a DC-AC converter
  • the first inductor, the second inductor and the third inductor constitute a motor.
  • the battery provides DC power to the DC-AC converter
  • the DC-AC converter converts the DC power provided by the battery into AC power, and sends the AC power to the motor.
  • the motor receives the AC power sent by the DC-AC converter, the motor starts to run.
  • the first switch, the second switch, the third switch and the fourth switch are all in the off state
  • the fifth switch, the sixth switch, the seventh switch and the eighth switch are all in the closed state.
  • the first bridge arm, the third bridge arm, the first inductor and the second inductor form an AC-DC converter
  • the second bridge arm and the third inductor form a step-down circuit.
  • the first charging interface receives the AC power provided by the external device, and sends the AC power to the AC-DC converter.
  • the AC-DC converter converts the AC power provided by the first charging interface into DC power, and sends the high-voltage DC power to the step-down circuit.
  • the step-down circuit performs step-down processing of the high-voltage direct current provided by the AC-DC converter to obtain low-voltage direct current, and sends the low-voltage direct current to the battery, thereby charging the battery. Therefore, by controlling the first switch, the second switch, the third switch, the fourth switch, the fifth switch, the sixth switch, the seventh switch, and the eighth switch, the charging and discharging circuit realizes the driving mode and the charging mode, thereby The unnecessary parts in the charging and discharging circuit are omitted, so the volume of the charging and discharging circuit is reduced.
  • the charging and discharging circuit further includes a first capacitor and a second capacitor.
  • the positive terminal of the first capacitor is connected to the positive output terminal of the battery, and the negative terminal of the first capacitor is connected to the negative output terminal of the battery.
  • the positive terminal of the second capacitor is connected with the first terminal of the first switch, the negative terminal of the second capacitor is connected with the negative output terminal of the battery, and the second terminal of the first switch is connected with the positive output terminal of the battery.
  • the first capacitor and the second capacitor are used to filter the input of the DC-AC converter.
  • the first capacitor is used to filter the output of the buck circuit
  • the second capacitor is used to filter the output of the AC-DC converter.
  • the charging and discharging circuit further includes a filter module.
  • the first input terminal of the filter module is connected with the first output terminal of the first charging interface, and the second input terminal of the filter module is connected with the second output terminal of the first charging interface.
  • the first output end of the filter module is connected to the second end of the second inductor through the seventh switch, and the second output end of the filter module is connected to the middle point of the third bridge arm.
  • the filter module is used to suppress the high frequency interference in the charging and discharging circuit.
  • the charging and discharging circuit further includes a second charging interface and a three-phase rectifier bridge arm.
  • the first input end of the three-phase rectifier bridge arm is connected with the first output end of the second charging interface
  • the second input end of the three-phase rectifier bridge arm is connected with the second output end of the second charging interface
  • the three-phase rectifier bridge The third input end of the arm is connected to the third output end of the second charging interface.
  • the first output end of the three-phase rectifier bridge arm is connected with the first input end of the filter module
  • the second output end of the three-phase rectifier bridge arm is connected with the second input end of the filter module.
  • the second charging interface is used to receive three-phase AC power provided by the external device, and the three-phase rectifier bridge arm is used to convert the three-phase AC power sent by the second charging interface into two-phase AC power.
  • the three-phase rectifier arm includes a first diode, a second diode, a third diode, a fourth diode, a fifth diode, and a sixth diode.
  • the cathode of the first diode, the cathode of the third diode and the cathode of the fifth diode are respectively connected to the first input terminal of the filter module, the anode of the second diode, the anode of the fourth diode and the The anode of the sixth diode is respectively connected to the second input terminal of the filter module.
  • the anode of the first diode and the cathode of the second diode are respectively connected to the first output terminal of the second charging interface, and the anode of the third diode and the cathode of the fourth diode are respectively connected to the second charging interface.
  • the second output terminal is connected, and the anode of the fifth diode and the cathode of the sixth diode are respectively connected to the third output terminal of the second charging interface.
  • the first bridge arm includes a first switching tube and a second switching tube
  • the second bridge arm includes a third switching tube and a fourth switching tube
  • the third bridge arm includes a fifth switching tube and a second switching tube.
  • Six switch tubes The second pin of the first switch tube is connected to the first pin of the second switch tube, the second pin of the third switch tube is connected to the first pin of the fourth switch tube, and the second pin of the fifth switch tube is connected. The pin is connected to the first pin of the sixth switch tube.
  • the first pin of the first switch tube, the first pin of the third switch tube, and the first pin of the fifth switch tube are all connected to the positive output terminal of the battery through the first switch, and the second lead of the second switch tube
  • the pin, the second pin of the fourth switch tube and the second pin of the sixth switch tube are all connected to the negative output terminal of the battery.
  • the second pin of the first switch tube and the first pin of the second switch tube are both connected to the first end of the first inductor, and the second pin of the third switch tube and the first pin of the fourth switch tube are both connected It is connected to the first end of the second inductor, and the second pin of the fifth switch tube and the first pin of the sixth switch tube are both connected to the first end of the third inductor.
  • the embodiments of the present application provide a charging and discharging system, which includes a charging and discharging circuit and a controller.
  • the charging and discharging circuit includes a battery, a motor, a first charging interface, a first bridge arm, and a second bridge arm.
  • the controller is respectively connected with the control terminal of the first switch, the control terminal of the second switch, the control terminal of the third switch, the control terminal of the fourth switch, the control terminal of the fifth switch, the control terminal of the sixth switch, and the control terminal of the seventh switch.
  • the control terminal is connected to the control terminal of the eighth switch.
  • the positive output terminal of the battery is connected to the positive terminal of the first bridge arm, the positive terminal of the second bridge arm, and the positive terminal of the third bridge arm through the first switch, and the negative output terminal of the battery is connected to the positive terminal of the first bridge arm.
  • the negative terminal, the negative terminal of the second bridge arm and the negative terminal of the third bridge arm are connected.
  • the motor includes a first inductance, a second inductance and a third inductance.
  • the first end of the first inductance is connected to the middle point of the first bridge arm
  • the first end of the second inductance is connected to the middle point of the second bridge arm
  • the The first end is connected to the middle point of the third bridge arm
  • the second end of the first inductor, the second end of the second inductor, and the second end of the third inductor are connected to the first end of the fourth switch.
  • the first output terminal of the first charging interface is connected with the second terminal of the second inductor
  • the second output terminal of the first charging interface is connected with the middle point of the third bridge arm.
  • the second switch is located between the midpoint of the second bridge arm and the first end of the second inductor
  • the third switch is located between the midpoint of the third bridge arm and the first end of the third inductor
  • the fifth switch is located between the midpoint of the third bridge arm and the first end of the third inductor.
  • the sixth switch is located between the midpoint of the second bridge arm and the second terminal of the third inductor
  • the seventh switch is located on the first charging port.
  • the eighth switch is arranged between the first terminal of the second inductor and the second terminal of the first inductor.
  • the controller is used to send turn-on signals to the first switch, the second switch, the third switch, and the fourth switch, respectively, to the fifth switch, the sixth switch, and the seventh switch when the control signal of the driving mode is received.
  • the eighth switch sends a disconnection signal.
  • the disconnection signal is sent to the first switch, the second switch, the third switch, and the fourth switch, respectively, and the fifth switch, the sixth switch, the seventh switch, and the eighth switch are sent respectively. Close signal.
  • the controller when the controller receives the control signal of the drive mode, the controller sends a conduction signal to the first switch, the second switch, the third switch, and the fourth switch, respectively, to the fifth switch and the sixth switch.
  • the switch, the seventh switch, and the eighth switch send off signals.
  • the first switch, the second switch, the third switch, and the fourth switch are all in the closed state
  • the fifth switch, the sixth switch, the seventh switch, and the eighth switch are all in the open state.
  • the second bridge arm and the third bridge arm constitute a DC-AC converter
  • the first inductor, the second inductor and the third inductor constitute a motor.
  • the battery provides DC power to the DC-AC converter, and the DC-AC converter converts the DC power provided by the battery into AC power, and sends the AC power to the motor.
  • the motor receives the AC power sent by the DC-AC converter, the motor starts to run.
  • the controller when the controller receives the control signal of the charging mode, the controller sends an off signal to the first switch, the second switch, the third switch, and the fourth switch, respectively, to the fifth switch and the sixth switch, respectively.
  • the switch, the seventh switch, and the eighth switch send a closing signal.
  • the first switch, the second switch, the third switch, and the fourth switch are all in the off state
  • the fifth switch, the sixth switch, the seventh switch, and the eighth switch are all in the closed state.
  • the three bridge arms, the first inductor and the second inductor form an AC-DC converter
  • the second bridge arms and the third inductor form a step-down circuit.
  • the first charging interface receives the AC power provided by the external device, and sends the AC power to the AC-DC converter.
  • the AC-DC converter converts the AC power provided by the first charging interface into high-voltage DC power, and sends the high-voltage DC power to the step-down circuit.
  • the step-down circuit performs step-down processing of the high-voltage direct current provided by the AC-DC converter to obtain low-voltage direct current, and sends the low-voltage direct current to the battery, thereby charging the battery.
  • the charging and discharging circuit further includes a first capacitor and a second capacitor.
  • the positive terminal of the first capacitor is connected to the positive output terminal of the battery, and the negative terminal of the first capacitor is connected to the negative output terminal of the battery.
  • the positive terminal of the second capacitor is connected with the first terminal of the first switch, the negative terminal of the second capacitor is connected with the negative output terminal of the battery, and the second terminal of the first switch is connected with the positive output terminal of the battery.
  • the charging and discharging circuit further includes a filter module.
  • the first input terminal of the filter module is connected with the first output terminal of the first charging interface, and the second input terminal of the filter module is connected with the second output terminal of the first charging interface.
  • the first output end of the filter module is connected to the second end of the second inductor through the seventh switch, and the second output end of the filter module is connected to the middle point of the third bridge arm.
  • the charging and discharging circuit further includes a second charging interface and a three-phase rectifier bridge arm.
  • the first input end of the three-phase rectifier bridge arm is connected with the first output end of the second charging interface
  • the second input end of the three-phase rectifier bridge arm is connected with the second output end of the second charging interface
  • the three-phase rectifier bridge The third input end of the arm is connected to the third output end of the second charging interface.
  • the first output end of the three-phase rectifier bridge arm is connected with the first input end of the filter module
  • the second output end of the three-phase rectifier bridge arm is connected with the second input end of the filter module.
  • the three-phase rectifier arm includes a first diode, a second diode, a third diode, a fourth diode, a fifth diode, and a sixth diode.
  • the cathode of the first diode, the cathode of the third diode and the cathode of the fifth diode are respectively connected to the first input terminal of the filter module, the anode of the second diode, the anode of the fourth diode and the The anode of the sixth diode is respectively connected to the second input terminal of the filter module.
  • the anode of the first diode and the cathode of the second diode are respectively connected to the first output terminal of the second charging interface, and the anode of the third diode and the cathode of the fourth diode are respectively connected to the second charging interface.
  • the second output terminal is connected, and the anode of the fifth diode and the cathode of the sixth diode are respectively connected to the third output terminal of the second charging interface.
  • the first bridge arm includes a first switching tube and a second switching tube
  • the second bridge arm includes a third switching tube and a fourth switching tube
  • the third bridge arm includes a fifth switching tube and a second switching tube.
  • Six switch tubes The second pin of the first switch tube is connected to the first pin of the second switch tube, the second pin of the third switch tube is connected to the first pin of the fourth switch tube, and the second pin of the fifth switch tube is connected. The pin is connected to the first pin of the sixth switch tube.
  • the first pin of the first switch tube, the first pin of the third switch tube, and the first pin of the fifth switch tube are all connected to the positive output terminal of the battery through the first switch, and the second lead of the second switch tube
  • the pin, the second pin of the fourth switch tube and the second pin of the sixth switch tube are all connected to the negative output terminal of the battery.
  • the second pin of the first switch tube and the first pin of the second switch tube are both connected to the first end of the first inductor, and the second pin of the third switch tube and the first pin of the fourth switch tube are both connected It is connected to the first end of the second inductor, and the second pin of the fifth switch tube and the first pin of the sixth switch tube are both connected to the first end of the third inductor.
  • an embodiment of the present application provides an electric vehicle, which includes a charging and discharging system, a transmission system, a DC converter, an air conditioning system, and a low-voltage system.
  • the first output terminal of the charging and discharging system is connected with the transmission system
  • the second output terminal of the charging and discharging system is connected with the input terminal of the DC converter
  • the third output terminal of the charging and discharging system is connected with the air conditioning system.
  • the output end of the DC converter is connected to the low-voltage system.
  • the charging and discharging system of the electric vehicle is the charging and discharging system of the second aspect or any one of the second aspects.
  • FIG. 1 shows a schematic diagram of an existing charging and discharging system 100 for an electric vehicle
  • FIG. 2 shows a circuit diagram of a charging and discharging circuit provided by an embodiment of this application
  • FIG. 3 shows a circuit diagram of another charging and discharging circuit provided by an embodiment of this application
  • FIG. 4 shows a circuit diagram of another charging and discharging circuit provided by an embodiment of this application.
  • FIG. 5 shows a circuit diagram of yet another charging and discharging circuit provided by an embodiment of this application.
  • FIG. 6 shows a circuit diagram of another charging and discharging circuit provided by an embodiment of this application.
  • FIG. 7 shows a circuit diagram of yet another charging and discharging circuit provided by an embodiment of this application.
  • FIG. 8 shows a circuit diagram of another charging and discharging circuit provided by an embodiment of this application.
  • FIG. 9 shows a circuit diagram of another charging and discharging circuit provided by an embodiment of this application.
  • FIG. 10 shows a circuit diagram of another charging and discharging circuit provided by an embodiment of this application.
  • FIG. 11 shows a circuit diagram of a charging and discharging system provided by an embodiment of this application.
  • FIG. 12 shows a circuit diagram of an electric vehicle 200 provided by an embodiment of this application.
  • FIG. 2 shows a circuit diagram of a charging and discharging circuit provided by an embodiment of the present application.
  • the charging and discharging circuit battery 1, the first bridge arm 2, the second bridge arm 3, the third bridge arm 4, the motor 5, the first charging interface 6, the first switch K1, the second Switch K2, third switch K3, fourth switch K4, fifth switch S1, sixth switch S2, seventh switch S3, and eighth switch S4.
  • the positive output terminal of the battery 1 is respectively connected to the positive terminal of the first bridge arm 2, the positive terminal of the second bridge arm 3, and the positive terminal of the third bridge arm 4 through the first switch K1.
  • the negative output terminal of the battery 1 is connected to the negative terminal of the first bridge arm 2, the negative terminal of the second bridge arm 3, and the negative terminal of the third bridge arm 4, respectively.
  • the motor 5 includes a first inductor L1, a second inductor L2, and a third inductor L3.
  • the first end a of the first inductor L1 is connected to the middle point of the first bridge arm 2, and the first end c of the second inductor L2 is connected to the second bridge.
  • the middle point of the arm 3, the first end e of the third inductance L3 is connected to the middle point of the third bridge arm 4, the second end b of the first inductance L1, the second end d of the second inductance L2 and the second end of the third inductance L3
  • the second terminal f is connected to the first terminal of the fourth switch K4.
  • the first output end of the first charging interface 6 is connected to the second end d of the second inductor L2, and the second output end of the first charging interface 6 is connected to the middle point of the third bridge arm 4.
  • the second switch K2 is provided between the midpoint of the second bridge arm 3 and the first end c of the second inductor L2, and the third switch K3 is provided between the midpoint of the third bridge arm 4 and the first end of the third inductor L3.
  • the fifth switch S1 is provided between the positive output terminal of the battery 1 and the first end e of the third inductor L3
  • the sixth switch S2 is provided between the middle point of the second bridge arm 3 and the third inductor L3.
  • the seventh switch S3 is arranged between the first output terminal of the first charging port 6 and the second terminal d of the second inductor L2, and the eighth switch S4 is arranged at the first terminal c of the second inductor L2 And the second end b of the first inductor L1.
  • the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4 are all in the closed state
  • the switch S2, the seventh switch S3, and the eighth switch S4 are all in the off state.
  • the first bridge arm 2, the second bridge arm 3, and the third bridge arm 4 constitute a DC-AC converter.
  • the first inductor L1 and the second inductor L2 and the third inductance L3 constitute the motor 5.
  • the battery 1 provides DC power to the DC-AC converter
  • the DC-AC converter converts the DC power provided by the battery 1 into AC power, and sends the AC power to the motor 5.
  • the motor 5 receives the AC power sent by the DC-AC converter, the motor 5 starts to run.
  • the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4 are all in an off state
  • the sixth switch S2, the seventh switch S3, and the eighth switch S4 are all in a closed state.
  • the first bridge arm 2, the third bridge arm 4, the first inductor L1 and the second inductor L2 form an AC-DC converter
  • the second bridge arm 3 and the third inductor L3 constitute a step-down circuit.
  • the first charging interface 6 receives the AC power provided by the external device, and sends the AC power to the AC-DC converter.
  • the AC-DC converter converts the AC power provided by the first charging interface 6 into DC power, and sends the high-voltage DC power to the step-down circuit.
  • the step-down circuit performs step-down processing of the high-voltage DC power provided by the AC-DC converter to obtain low-voltage DC power, and sends the low-voltage DC power to the battery 1 to charge the battery 1.
  • the first switch K1, the second switch K2, the third switch K3, the fourth switch K4, the fifth switch S1, the sixth switch S2, the seventh switch S3, and the eighth switch The control of S4 enables the charging and discharging circuit to realize the driving mode and the charging mode, thereby eliminating unnecessary components in the charging and discharging circuit, so the volume of the charging and discharging circuit is reduced.
  • FIG. 3 is a circuit diagram of another charging and discharging circuit provided in an embodiment of the present application.
  • the charging and discharging circuit shown in FIG. 2 and the charging and discharging circuit shown in FIG. 3 are equivalent structures.
  • the first bridge arm 2 includes a first switching tube Q1 and a second switching tube Q2, and the second bridge arm 3 includes a third switching tube Q3 and a fourth switching tube Q4.
  • the third bridge arm 4 includes a fifth switching tube Q5 and a sixth switching tube Q6.
  • the second pin of the first switching tube Q1 is connected to the first pin of the second switching tube Q2
  • the second pin of the third switching tube Q3 is connected to the first pin of the fourth switching tube Q4
  • the fifth switching tube is
  • the second pin of Q5 is connected to the first pin of the sixth switch tube Q6.
  • the first pin of the first switch tube Q1, the first pin of the third switch tube Q3, and the first pin of the fifth switch tube Q5 are all connected to the positive output terminal of the battery 1 through the first switch K1, and the second switch
  • the second pin of the tube Q2, the second pin of the fourth switching tube Q4, and the second pin of the sixth switching tube Q6 are all connected to the negative output terminal of the battery 1.
  • the second pin of the first switching tube Q1 and the first pin of the second switching tube Q2 are both connected to the first terminal a of the first inductor L1, the second pin of the third switching tube Q3 and the fourth switching tube Q4
  • the first pin of the second inductor L2 is connected to the first terminal c
  • the second pin of the fifth switch tube Q5 and the first pin of the sixth switch tube Q6 are both connected to the first terminal e of the third inductor L3 connection.
  • the switch tube shown in FIG. 3 may be an insulated gate bipolar transistor, the switch tube shown in FIG. 3 may also be made of silicon carbide, and the switch tube shown in FIG. 3 may also be a metal-oxide semiconductor field effect. Transistor.
  • the specific implementation of the switch tube shown in FIG. 3 is not limited to this, and may also be other switch semiconductor devices.
  • FIG. 4 shows a circuit diagram of another charging and discharging circuit provided in an embodiment of the present application.
  • the charging and discharging circuit further includes a first capacitor C1 and a second capacitor C2.
  • the positive terminal of the first capacitor C1 is connected to the positive output terminal of the battery 1, and the negative terminal of the first capacitor C1 is connected to the negative output terminal of the battery 1.
  • the positive terminal of the second capacitor C2 is connected to the first terminal of the first switch K1, the negative terminal of the second capacitor C2 is connected to the negative output terminal of the battery 1, and the second terminal of the first switch K1 is connected to the positive output terminal of the battery 1. .
  • the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4 are all in the closed state, and the fifth switch S1, the sixth switch K4 are closed.
  • the switch S2, the seventh switch S3, and the eighth switch S4 are all in the off state.
  • the first bridge arm 2, the second bridge arm 3, and the third bridge arm 4 constitute a DC-AC converter.
  • the first inductor L1 and the second inductor L2 and the third inductor L3 constitute the motor 5, and the first capacitor C1 and the second capacitor C2 are used to filter the input of the DC-AC converter.
  • the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4 are all in an off state
  • the sixth switch S2, the seventh switch S3, and the eighth switch S4 are all in a closed state.
  • the first bridge arm 2, the third bridge arm 4, the first inductor L1 and the second inductor L2 form an AC-DC converter
  • the second bridge arm 3 and the third inductor L3 constitute a step-down circuit.
  • the first charging interface 6 receives the AC power provided by the external device, and sends the AC power to the AC-DC converter.
  • the first capacitor C1 is used to filter the output of the buck circuit.
  • the second capacitor C2 is used to filter the output of the AC-DC converter.
  • FIG. 5 is a circuit diagram of another charging and discharging circuit provided in an embodiment of the present application.
  • the charging and discharging circuit shown in FIG. 4 and the charging and discharging circuit shown in FIG. 5 are equivalent structures.
  • FIG. 6 shows a circuit diagram of another charging and discharging circuit provided by an embodiment of the present application.
  • the charging and discharging circuit further includes a filter module 7.
  • the first input end of the filter module 7 is connected to the first output end of the first charging interface 6, and the second input end of the filter module 7 is connected to the second output end of the first charging interface 6.
  • the first output end of the filter module 7 is connected to the second end d of the second inductor L2 through the seventh switch S3, and the second output end of the filter module 7 is connected to the middle point of the third bridge arm 4.
  • the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4 are all in the off state, and the fifth switch S1, the second switch K4
  • the sixth switch S2, the seventh switch S3, and the eighth switch S4 are all in a closed state.
  • the first bridge arm 2, the third bridge arm 4, the first inductor L1 and the second inductor L2 form an AC-DC converter, and the second bridge arm 3 and the third inductor L3 constitute a step-down circuit.
  • the first charging interface 6 receives the AC power provided by the external device, and sends the AC power to the AC-DC converter.
  • the filter module 7 is used to suppress high-frequency interference in the charging and discharging circuit.
  • the filtering module 7 may specifically be an electromagnetic interference filter.
  • FIG. 7 shows a circuit diagram of another charging and discharging circuit provided in an embodiment of the present application.
  • the charging and discharging circuit shown in FIG. 6 and the charging and discharging circuit shown in FIG. 7 are equivalent structures.
  • FIG. 8 shows a circuit diagram of yet another charging and discharging circuit provided by an embodiment of the present application.
  • the charging and discharging circuit further includes a second charging interface 8 and a three-phase rectifying bridge arm 9.
  • the first input end of the three-phase rectifier bridge arm 9 is connected to the first output end of the second charging interface 8, and the second input end of the three-phase rectifier bridge arm 9 is connected to the second output end of the second charging interface 8.
  • the third input end of the three-phase rectifier bridge arm 9 is connected to the third output end of the second charging interface 8.
  • the first output end of the three-phase rectifying bridge arm 9 is connected to the first input end of the filter module 7, and the second output end of the three-phase rectifying bridge arm 9 is connected to the second input end of the filter module 7.
  • the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4 are all in the off state, and the fifth switch S1, the second switch K4
  • the sixth switch S2, the seventh switch S3, and the eighth switch S4 are all in a closed state.
  • the first bridge arm 2, the third bridge arm 4, the first inductor L1 and the second inductor L2 form an AC-DC converter, and the second bridge arm 3 and the third inductor L3 constitute a step-down circuit.
  • the second charging interface 8 receives the three-phase AC power provided by the external device, and sends the three-phase AC power to the three-phase rectifier bridge arm 9.
  • the three-phase rectifier bridge arm 9 converts the three-phase AC power sent by the second charging interface 8 into two-phase AC power, and sends the two-phase AC power to the filter module 7.
  • the second charging interface 8 is used to receive three-phase AC power provided by an external device, and the three-phase rectifier bridge arm 9 is used to convert the three-phase AC power sent by the second charging interface 8 into two-phase AC power. Therefore, the charging and discharging circuit shown in Figure 8 can not only realize two-phase charging, but also three-phase charging.
  • FIG. 9 shows a circuit diagram of another charging and discharging circuit provided in an embodiment of the present application.
  • the three-phase rectifier arm 9 includes a first diode D1, a second diode D2, a third diode D3, a fourth diode D4, and a fifth diode. D5 and the sixth diode D6.
  • the cathode of the first diode D1, the cathode of the third diode D3, and the cathode of the fifth diode D5 are respectively connected to the first input terminal of the filter module 7.
  • the anode of the pole tube D4 and the anode of the sixth diode D6 are respectively connected to the second input terminal of the filter module 7.
  • the anode of the first diode D1 and the cathode of the second diode D2 are respectively connected to the first output terminal of the second charging interface 8
  • the anode of the third diode D3 and the cathode of the fourth diode D4 are respectively connected to
  • the second output terminal of the second charging interface 8 is connected, and the anode of the fifth diode D5 and the cathode of the sixth diode D6 are respectively connected to the third output terminal of the second charging interface 8.
  • the specific structure of the three-phase rectifier bridge arm 9 is shown.
  • the three-phase rectifier bridge arm 9 is not limited to the structure shown in FIG. 9, and may also have other structures.
  • FIG. 10 is a circuit diagram of another charging and discharging circuit provided by an embodiment of the present application.
  • the charging and discharging circuit shown in FIG. 9 and the charging and discharging circuit shown in FIG. 10 are equivalent structures.
  • FIG. 11 shows a circuit diagram of a charging and discharging system provided by an embodiment of this application.
  • the charging and discharging system includes a charging and discharging circuit and a controller 10.
  • the charging and discharging circuit includes a battery 1, a motor 5, a first charging interface 6, a first bridge arm 2, a second bridge arm 3, The third bridge arm 4, the first switch K1, the second switch K2, the third switch K3, the fourth switch K4, the fifth switch S1, the sixth switch S2, the seventh switch S3, and the eighth switch S4.
  • the controller 10 is connected to the control terminal of the first switch K1, the control terminal of the second switch K2, the control terminal of the third switch K3, the control terminal of the fourth switch K4, and the control terminal of the fifth switch respectively.
  • the control terminal of S1, the control terminal of the sixth switch S2, the control terminal of the seventh switch S3, and the control terminal of the eighth switch S4 are connected.
  • the positive output terminal of the battery 1 is connected to the positive terminal of the first bridge arm 2, the positive terminal of the second bridge arm 3, and the positive terminal of the third bridge arm 4 through the first switch K1, and the negative output terminal of the battery 1 is respectively It is connected to the negative terminal of the first bridge arm 2, the negative terminal of the second bridge arm 3 and the negative terminal of the third bridge arm 4.
  • the motor 5 includes a first inductor L1, a second inductor L2, and a third inductor L3.
  • the first end a of the first inductor L1 is connected to the middle point of the first bridge arm 2, and the first end c of the second inductor L2 is connected to the second bridge.
  • the middle point of the arm 3, the first end e of the third inductance L3 is connected to the middle point of the third bridge arm 4, the second end b of the first inductance L1, the second end d of the second inductance L2 and the second end of the third inductance L3
  • the second terminal f is connected to the first terminal of the fourth switch K4.
  • the first output end of the first charging interface 6 is connected to the second end d of the second inductor L2, and the second output end of the first charging interface 6 is connected to the middle point of the third bridge arm 4.
  • the second switch K2 is provided between the midpoint of the second bridge arm 3 and the first end c of the second inductor L2, and the third switch K3 is provided between the midpoint of the third bridge arm 4 and the first end of the third inductor L3.
  • the fifth switch S1 is provided between the positive output terminal of the battery 1 and the first end e of the third inductor L3
  • the sixth switch S2 is provided between the middle point of the second bridge arm 3 and the third inductor L3.
  • the seventh switch S3 is arranged between the first output terminal of the first charging port 6 and the second terminal d of the second inductor L2, and the eighth switch S4 is arranged at the first terminal c of the second inductor L2 And the second end b of the first inductor L1.
  • the controller 10 when the controller 10 receives the control signal of the drive mode, the controller 10 sends the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4 to be turned on, respectively. Signals are sent to the fifth switch S1, the sixth switch S2, the seventh switch S3, and the eighth switch S4, respectively.
  • the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4 are all in the closed state
  • the fifth switch S1, the sixth switch S2, the seventh switch S3, and the eighth switch S4 are all in the open state.
  • the first bridge arm 2, the second bridge arm 3, and the third bridge arm 4 constitute a DC-AC converter
  • the first inductor L1, the second inductor L2, and the third inductor L3 constitute the motor 5.
  • the battery 1 provides DC power to the DC-AC converter, and the DC-AC converter converts the DC power provided by the battery 1 into AC power, and sends the AC power to the motor 5.
  • the motor 5 receives the AC power sent by the DC-AC converter, the motor 5 starts to run.
  • the controller 10 when the controller 10 receives the control signal of the charging mode, the controller 10 sends the disconnection to the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4, respectively. Signals, respectively, to send closing signals to the fifth switch S1, the sixth switch S2, the seventh switch S3, and the eighth switch S4.
  • the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4 are all in the open state, and the fifth switch S1, the sixth switch S2, the seventh switch S3, and the eighth switch S4 are all closed.
  • the first bridge arm 2, the third bridge arm 4, the first inductor L1 and the second inductor L2 constitute an AC-DC converter
  • the second bridge arm 3 and the third inductor L3 constitute a step-down circuit.
  • the first charging interface 6 receives the AC power provided by the external device, and sends the AC power to the AC-DC converter.
  • the AC-DC converter converts the AC power provided by the first charging interface 6 into high-voltage DC power, and sends the high-voltage DC power to the step-down circuit.
  • the step-down circuit performs step-down processing of the high-voltage DC power provided by the AC-DC converter to obtain low-voltage DC power, and sends the low-voltage DC power to the battery 1 to charge the battery 1.
  • the charging and discharging circuit may also be the charging and discharging circuit shown in FIGS. 3-10.
  • FIG. 12 shows a circuit diagram of an electric vehicle 200 according to an embodiment of the present application.
  • the electric vehicle 200 shown in FIG. 12 includes a charging and discharging system 201, a transmission system 202, a DC converter 203, an air conditioning system 204, and a low voltage system 205.
  • the first output terminal of the charging and discharging system 201 is connected to the transmission system 202
  • the second output terminal of the charging and discharging system 201 is connected to the input terminal of the DC converter 203
  • the first output of the charging and discharging system 201 is connected to the input terminal of the DC converter 203.
  • the three output terminals are connected to the air conditioning system 204.
  • the output end of the DC converter 203 is connected to the low-voltage system 205.
  • the charging system 300 may be a charging pile, and the charging system 300 may also be an external charger of an electric vehicle.
  • the charging and discharging system 201 shown in FIG. 12 may be the charging and discharging system shown in FIG. 11.
  • the internal components of the charging and discharging system 201 please refer to FIG. 11, and when referring to the internal system of the electric vehicle 200, please refer to the diagram shown in FIG.
  • the controller 10 when the electric vehicle 200 is in the driving mode, sends a conduction signal to the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4, respectively. , Respectively send off signals to the fifth switch S1, the sixth switch S2, the seventh switch S3, and the eighth switch S4.
  • the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4 are all in the closed state
  • the fifth switch S1, the sixth switch S2, the seventh switch S3, and the eighth switch S4 are all in the open state.
  • the first bridge arm 2, the second bridge arm 3, and the third bridge arm 4 constitute a DC-AC converter
  • the first inductor L1, the second inductor L2, and the third inductor L3 constitute the motor 5.
  • the battery 1 of the charging and discharging system 201 provides DC power to the DC-AC converter, and the DC-AC converter converts the DC power provided by the battery 1 into AC power, and sends the AC power to the motor 5.
  • the motor 5 receives the AC power sent by the DC-AC converter, the motor 5 starts to run.
  • the battery 1 will also provide high-voltage DC power for the transmission system 202, the DC converter 203 and the air conditioning system 204.
  • the transmission system 202 receives the high-voltage DC power provided by the battery 1, it transmits the power provided by the motor 5 to the wheels of the electric vehicle.
  • the air-conditioning system 204 receives the high-voltage direct current power provided by the battery 1, the air-conditioning system 204 starts to operate.
  • the DC converter 203 receives the high voltage DC power provided by the battery 1
  • the DC converter 203 converts the high voltage DC power into low voltage DC power and sends the low voltage DC power to the low voltage system 205.
  • the low-voltage system 205 receives the low-voltage DC power provided by the DC converter 203, all components in the low-voltage system 205 will start to operate.
  • the low-voltage system 205 includes a lighting system, a central control system, an instrument system, a wiper system, a glass lift system, and a water pump system.
  • the controller 10 when the electric vehicle 200 is in the charging mode, sends disconnection signals to the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4, respectively. , Respectively send a closing signal to the fifth switch S1, the sixth switch S2, the seventh switch S3, and the eighth switch S4.
  • the first switch K1, the second switch K2, the third switch K3, and the fourth switch K4 are all in the open state, and the fifth switch S1, the sixth switch S2, the seventh switch S3, and the eighth switch S4 are all closed.
  • the first bridge arm 2, the third bridge arm 4, the first inductor L1 and the second inductor L2 constitute an AC-DC converter
  • the second bridge arm 3 and the third inductor L3 constitute a step-down circuit.
  • the first charging interface 6 of the charging and discharging system 201 receives the AC power provided by the charging system 300 and sends the AC power to the AC-DC converter.
  • the AC-DC converter converts the AC power provided by the first charging interface 6 into high-voltage DC power, and sends the high-voltage DC power to the step-down circuit.
  • the step-down circuit performs step-down processing of the high-voltage DC power provided by the AC-DC converter to obtain low-voltage DC power, and sends the low-voltage DC power to the battery 1 to charge the battery 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充放电电路、系统和电动汽车,该充放电电路包括电池(1)、电机(5)、第一充电接口(6)、第一桥臂(2)、第二桥臂(3)、第三桥臂(4)、第一开关(K1)、第二开关(K2)、第三开关(K3)、第四开关(K4)、第五开关(S1)、第六开关(S2)、第七开关(S3)和第八开关(S4),该结构使得充放电电路可以实现驱动模式和充电模式,从而省去了充放电电路中不必要的部件,缩小了充放电电路的体积。

Description

一种充放电电路、系统和电动汽车 技术领域
本申请实施例涉及电动汽车领域,更具体的说,涉及充放电电路、系统和电动汽车。
背景技术
请参见图1所示,图1所示的为现有的电动汽车的充放电系统100的示意图。现有的电动汽车的充放电系统100包括车载充电机101、电机控制单元102、电机103和电池104,其中,车载充电机101、电机控制单元102、电机103和电池104均是相互独立的部件。
电动汽车的充放电系统100具有充电功能和驱动功能。充电功能是在电动汽车处于非运行状态下,车载充电机101将接收到的交流电转换成直流电,并将直流电进行降压处理,再将降压后的直流电传输给电池104,以使电池104处于充电状态。驱动功能是在电动汽车处于非充电状态下,电机控制单元102将电池104提供的直流电转换成交流电,并将交流电传输给电机103,以使电机103运转。
目前,现有的电动汽车的充放电系统的部件较多且占用空间大,无法满足小型化的需求。因此,如何减少电动汽车的充放电系统的部件,使其体积减小,成为目前亟需解决的技术问题。
发明内容
本申请实施例提供一种充放电电路、系统和电动汽车,以减少部件并缩小体积。
本申请实施例是这样实现的:
第一方面,本申请实施例提供了一种充放电电路,该充放电电路包括电池、电机、第一充电接口、第一桥臂、第二桥臂、第三桥臂、第一开关、第二开关、第三开关、第四开关、第五开关、第六开关、第七开关和第八开关。其中,电池的正极输出端通过第一开关分别与第一桥臂的正极端、第二桥臂的正极端和第三桥臂的正极端连接,电池的负极输出端分别与第一桥臂的负极端、第二桥臂的负极端和第三桥臂的负极端连接。电机包括第一电感、第二电感和第三电感,第一电感的第一端连接第一桥臂的中间点,第二电感的第一端连接第二桥臂的中间点,第三电感的第一端连接第三桥臂的中间点,第一电感的第二端、第二电感的第二端和第三电感的第二端与第四开关的第一端连接。第一充电接口的第一输出端与第二电感的第二端连接,第一充电接口的第二输出端与第三桥臂的中间点连接。第二开关设于第二桥臂的中间点与第二电感的第一端之间,第三开关设于第三桥臂的中间点与第三电感的第一端之间,第五开关设于电池的正极输出端与第三电感的第一端之间,第六开关设于第二桥臂的中间点与第三电感的第二端之间,第七开关设于第一充电接口的第一输出端与第二电感的第二端之间,第八开关设于第二电感的第一端与第一电感的第二端之间。
在第一方面中,在充放电电路处于驱动模式时,第一开关、第二开关、第三开关 和第四开关均处于闭合状态,第五开关、第六开关、第七开关和第八开关均处于断开状态,第一桥臂、第二桥臂、第三桥臂构成直流-交流变换器,第一电感、第二电感和第三电感构成电机。此时,电池向直流-交流变换器提供直流电,直流-交流变换器将电池提供的直流电转换成交流电,并将交流电发送给电机。在电机接收到直流-交流变换器发送的交流电时,电机便开始运转。在充放电电路处于充电模式时,第一开关、第二开关、第三开关和第四开关均处于断开状态,第五开关、第六开关、第七开关和第八开关均处于闭合状态,第一桥臂、第三桥臂、第一电感和第二电感构成交流-直流变换器,第二桥臂和第三电感构成降压电路。此时,第一充电接口接收外部设备提供的交流电,并将交流电发送给交流-直流变换器。交流-直流变换器将第一充电接口提供的交流电转换成直流电,并将高压直流电发送给降压电路。降压电路将交流-直流变换器提供的高压直流电进行降压处理得到低压直流电,并将低压直流电发送给电池,进而为电池充电。因此,通过对第一开关、第二开关、第三开关、第四开关、第五开关、第六开关、第七开关和第八开关的控制,使得充放电电路实现驱动模式和充电模式,从而省去了充放电电路中不必要的部件,所以缩小了充放电电路的体积。
在一种可能的实现方式中,充放电电路还包括第一电容和第二电容。第一电容的正极端与电池的正极输出端连接,第一电容的负极端与电池的负极输出端连接。第二电容的正极端与第一开关的第一端连接,第二电容的负极端与电池的负极输出端连接,第一开关的第二端与电池的正极输出端连接。
其中,在充放电电路处于驱动模式时,第一电容和第二电容用于为直流-交流变换器输入滤波。在充放电电路处于充电模式时,第一电容用于为降压电路输出滤波,第二电容用于为交流-直流变换器输出滤波。
在一种可能的实现方式中,充放电电路还包括滤波模块。滤波模块的第一输入端与第一充电接口的第一输出端连接,滤波模块的第二输入端与第一充电接口的第二输出端连接。滤波模块的第一输出端通过第七开关与第二电感的第二端连接,滤波模块的第二输出端与第三桥臂的中间点连接。
其中,在充放电电路处于充电模式时,滤波模块用于对充放电电路中的高频干扰起到抑制的作用。
在一种可能的实现方式中,充放电电路还包括第二充电接口和三相整流桥臂。其中,三相整流桥臂的第一输入端与第二充电接口的第一输出端连接,三相整流桥臂的第二输入端与第二充电接口的第二输出端连接,三相整流桥臂的第三输入端与第二充电接口的第三输出端连接。三相整流桥臂的第一输出端与滤波模块的第一输入端连接,三相整流桥臂的第二输出端与滤波模块的第二输入端连接。
其中,在充放电电路处于充电模式时,第二充电接口用于接收外部设备提供的三相交流电,三相整流桥臂用于将第二充电接口发送的三相交流电转换成两相交流电。
在一种可能的实现方式中,三相整流桥臂包括第一二极管、第二二极管、第三二极管、第四二极管、第五二极管和第六二极管。第一二极管的负极、第三二极管的负极和第五二极管的负极分别与滤波模块的第一输入端连接,第二二极管的正极、第四二极管的正极和第六二极管的正极分别与滤波模块的第二输入端连接。第一二极管的正极和第二二极管的负极分别与第二充电接口的第一输出端连接,第三二极管的正极 和第四二极管的负极分别与第二充电接口的第二输出端连接,第五二极管的正极和第六二极管的负极分别与第二充电接口的第三输出端连接。
在一种可能的实现方式中,第一桥臂包括第一开关管和第二开关管,第二桥臂包括第三开关管和第四开关管,第三桥臂包括第五开关管和第六开关管。第一开关管的第二引脚与第二开关管的第一引脚连接,第三开关管的第二引脚与第四开关管的第一引脚连接,第五开关管的第二引脚与第六开关管的第一引脚连接。第一开关管的第一引脚、第三开关管的第一引脚和第五开关管的第一引脚均通过第一开关与电池的正极输出端连接,第二开关管的第二引脚、第四开关管的第二引脚和第六开关管的第二引脚均与电池的负极输出端连接。第一开关管的第二引脚和第二开关管的第一引脚均与第一电感的第一端连接,第三开关管的第二引脚和第四开关管的第一引脚均与第二电感的第一端连接,第五开关管的第二引脚与第六开关管的第一引脚均与第三电感的第一端连接。
第二方面,本申请实施例提供了一种充放电系统,该充放电系统包括充放电电路和控制器,充放电电路包括电池、电机、第一充电接口、第一桥臂、第二桥臂、第三桥臂、第一开关、第二开关、第三开关、第四开关、第五开关、第六开关、第七开关和第八开关。控制器分别与第一开关的控制端、第二开关的控制端、第三开关的控制端、第四开关的控制端、第五开关的控制端、第六开关的控制端、第七开关的控制端和第八开关的控制端连接。其中,电池的正极输出端通过第一开关分别与第一桥臂的正极端、第二桥臂的正极端和第三桥臂的正极端连接,电池的负极输出端分别与第一桥臂的负极端、第二桥臂的负极端和第三桥臂的负极端连接。电机包括第一电感、第二电感和第三电感,第一电感的第一端连接第一桥臂的中间点,第二电感的第一端连接第二桥臂的中间点,第三电感的第一端连接第三桥臂的中间点,第一电感的第二端、第二电感的第二端和第三电感的第二端与第四开关的第一端连接。第一充电接口的第一输出端与第二电感的第二端连接,第一充电接口的第二输出端与第三桥臂的中间点连接。第二开关设于第二桥臂的中间点与第二电感的第一端之间,第三开关设于第三桥臂的中间点与第三电感的第一端之间,第五开关设于电池的正极输出端与第三电感的第一端之间,第六开关设于第二桥臂的中间点与第三电感的第二端之间,第七开关设于第一充电接口的第一输出端与第二电感的第二端之间,第八开关设于第二电感的第一端与第一电感的第二端之间。控制器,用于在接收到驱动模式的控制信号时,分别向第一开关、第二开关、第三开关和第四开关发送导通信号,分别向第五开关、第六开关、第七开关和第八开关发送断开信号。在接收到充电模式的控制信号时,分别向第一开关、第二开关、第三开关和第四开关发送断开信号,分别向第五开关、第六开关、第七开关和第八开关发送闭合信号。
在第二方面中,在控制器接收到驱动模式的控制信号时,控制器分别向第一开关、第二开关、第三开关和第四开关发送导通信号,分别向第五开关、第六开关、第七开关和第八开关发送断开信号。此时,第一开关、第二开关、第三开关和第四开关均处于闭合状态,第五开关、第六开关、第七开关和第八开关均处于断开状态,第一桥臂、第二桥臂、第三桥臂构成直流-交流变换器,第一电感、第二电感和第三电感构成电机。此时,其中,电池向直流-交流变换器提供直流电,直流-交流变换器将电池提供的直 流电转换成交流电,并将交流电发送给电机。在电机接收到直流-交流变换器发送的交流电时,电机便开始运转。
在第二方面中,在控制器接收到充电模式的控制信号时,控制器分别向第一开关、第二开关、第三开关和第四开关发送断开信号,分别向第五开关、第六开关、第七开关和第八开关发送闭合信号。此时,第一开关、第二开关、第三开关和第四开关均处于断开状态,第五开关、第六开关、第七开关和第八开关均处于闭合状态,第一桥臂、第三桥臂、第一电感和第二电感构成交流-直流变换器,第二桥臂和第三电感构成降压电路。此时,第一充电接口接收外部设备提供的交流电,并将交流电发送给交流-直流变换器。交流-直流变换器将第一充电接口提供的交流电转换成高压直流电,并将高压直流电发送给降压电路。降压电路将交流-直流变换器提供的高压直流电进行降压处理得到低压直流电,并将低压直流电发送给电池,进而为电池充电。
在一种可能的实现方式中,充放电电路还包括第一电容和第二电容。第一电容的正极端与电池的正极输出端连接,第一电容的负极端与电池的负极输出端连接。第二电容的正极端与第一开关的第一端连接,第二电容的负极端与电池的负极输出端连接,第一开关的第二端与电池的正极输出端连接。
在一种可能的实现方式中,充放电电路还包括滤波模块。滤波模块的第一输入端与第一充电接口的第一输出端连接,滤波模块的第二输入端与第一充电接口的第二输出端连接。滤波模块的第一输出端通过第七开关与第二电感的第二端连接,滤波模块的第二输出端与第三桥臂的中间点连接。
在一种可能的实现方式中,充放电电路还包括第二充电接口和三相整流桥臂。其中,三相整流桥臂的第一输入端与第二充电接口的第一输出端连接,三相整流桥臂的第二输入端与第二充电接口的第二输出端连接,三相整流桥臂的第三输入端与第二充电接口的第三输出端连接。三相整流桥臂的第一输出端与滤波模块的第一输入端连接,三相整流桥臂的第二输出端与滤波模块的第二输入端连接。
在一种可能的实现方式中,三相整流桥臂包括第一二极管、第二二极管、第三二极管、第四二极管、第五二极管和第六二极管。第一二极管的负极、第三二极管的负极和第五二极管的负极分别与滤波模块的第一输入端连接,第二二极管的正极、第四二极管的正极和第六二极管的正极分别与滤波模块的第二输入端连接。第一二极管的正极和第二二极管的负极分别与第二充电接口的第一输出端连接,第三二极管的正极和第四二极管的负极分别与第二充电接口的第二输出端连接,第五二极管的正极和第六二极管的负极分别与第二充电接口的第三输出端连接。
在一种可能的实现方式中,第一桥臂包括第一开关管和第二开关管,第二桥臂包括第三开关管和第四开关管,第三桥臂包括第五开关管和第六开关管。第一开关管的第二引脚与第二开关管的第一引脚连接,第三开关管的第二引脚与第四开关管的第一引脚连接,第五开关管的第二引脚与第六开关管的第一引脚连接。第一开关管的第一引脚、第三开关管的第一引脚和第五开关管的第一引脚均通过第一开关与电池的正极输出端连接,第二开关管的第二引脚、第四开关管的第二引脚和第六开关管的第二引脚均与电池的负极输出端连接。第一开关管的第二引脚和第二开关管的第一引脚均与第一电感的第一端连接,第三开关管的第二引脚和第四开关管的第一引脚均与第二电 感的第一端连接,第五开关管的第二引脚与第六开关管的第一引脚均与第三电感的第一端连接。
第三方面,本申请实施例提供了一种电动汽车,该电动汽车包括充放电系统、传动系统、直流变换器、空调系统和低压系统。充放电系统的第一输出端与传动系统连接,充放电系统的第二输出端与直流变换器的输入端连接,充放电系统的第三输出端与空调系统连接。直流变换器的输出端与低压系统连接。电动汽车的充放电系统为第二方面或第二方面中的任意一种实现方式的充放电系统。
附图说明
图1所示的为现有的电动汽车的充放电系统100的示意图;
图2所示的为本申请实施例提供的一种充放电电路的电路图;
图3所示的为本申请实施例提供的另一种充放电电路的电路图;
图4所示的为本申请实施例提供的又一种充放电电路的电路图;
图5所示的为本申请实施例提供的又一种充放电电路的电路图;
图6所示的为本申请实施例提供的又一种充放电电路的电路图;
图7所示的为本申请实施例提供的又一种充放电电路的电路图;
图8所示的为本申请实施例提供的又一种充放电电路的电路图;
图9所示的为本申请实施例提供的又一种充放电电路的电路图;
图10所示的为本申请实施例提供的又一种充放电电路的电路图;
图11所示的为本申请实施例提供的一种充放电系统的电路图;
图12所示的为本申请实施例提供的一种电动汽车200的电路图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
请参见图2所示,图2所示的为本申请实施例提供的一种充放电电路的电路图。
在图2所示的实施例中,充放电电路电池1、第一桥臂2、第二桥臂3、第三桥臂4、电机5、第一充电接口6、第一开关K1、第二开关K2、第三开关K3、第四开关K4、第五开关S1、第六开关S2、第七开关S3和第八开关S4。
在图2所示的实施例中,电池1的正极输出端通过第一开关K1分别与第一桥臂2的正极端、第二桥臂3的正极端和第三桥臂4的正极端连接,电池1的负极输出端分别与第一桥臂2的负极端、第二桥臂3的负极端和第三桥臂4的负极端连接。电机5包括第一电感L1、第二电感L2和第三电感L3,第一电感L1的第一端a连接第一桥臂2的中间点,第二电感L2的第一端c连接第二桥臂3的中间点,第三电感L3的第一端e连接第三桥臂4的中间点,第一电感L1的第二端b、第二电感L2的第二端d和第三电感L3的第二端f与第四开关K4的第一端连接。第一充电接口6的第一输出端与第二电感L2的第二端d连接,第一充电接口6的第二输出端与第三桥臂4的中间点连接。第二开关K2设于第二桥臂3的中间点与第二电感L2的第一端c之间,第三开关K3设于第三桥臂4的中间点与第三电感L3的第一端e之间,第五开关S1设于电池1的正极输出端与第三电感L3的第一端e之间,第六开关S2设于第二桥臂3的中间点与第三电感L3的第二端f之间,第七开关S3设于第一充电接口6的第一输出端与 第二电感L2的第二端d之间,第八开关S4设于第二电感L2的第一端c与第一电感L1的第二端b之间。
在图2所示的实施例中,在充放电电路处于驱动模式时,第一开关K1、第二开关K2、第三开关K3和第四开关K4均处于闭合状态,第五开关S1、第六开关S2、第七开关S3和第八开关S4均处于断开状态,第一桥臂2、第二桥臂3、第三桥臂4构成直流-交流变换器,第一电感L1、第二电感L2和第三电感L3构成电机5。此时,电池1向直流-交流变换器提供直流电,直流-交流变换器将电池1提供的直流电转换成交流电,并将交流电发送给电机5。在电机5接收到直流-交流变换器发送的交流电时,电机5便开始运转。
在图2所示的实施例中,在充放电电路处于充电模式时,第一开关K1、第二开关K2、第三开关K3和第四开关K4均处于断开状态,第五开关S1、第六开关S2、第七开关S3和第八开关S4均处于闭合状态,第一桥臂2、第三桥臂4、第一电感L1和第二电感L2构成交流-直流变换器,第二桥臂3和第三电感L3构成降压电路。此时,第一充电接口6接收外部设备提供的交流电,并将交流电发送给交流-直流变换器。交流-直流变换器将第一充电接口6提供的交流电转换成直流电,并将高压直流电发送给降压电路。降压电路将交流-直流变换器提供的高压直流电进行降压处理得到低压直流电,并将低压直流电发送给电池1,进而为电池1充电。
在图2所示的实施例中,通过对第一开关K1、第二开关K2、第三开关K3、第四开关K4、第五开关S1、第六开关S2、第七开关S3和第八开关S4的控制,使得充放电电路实现驱动模式和充电模式,从而省去了充放电电路中不必要的部件,所以缩小了充放电电路的体积。
请参见图3所示,图3所示的为本申请实施例提供的另一种充放电电路的电路图,图2所示的充放电电路与图3所示的充放电电路为等效结构。
在图3所示的实施例中,第一桥臂2包括第一开关管Q1和第二开关管Q2,第二桥臂3包括第三开关管Q3和第四开关管Q4,第三桥臂4包括第五开关管Q5和第六开关管Q6。第一开关管Q1的第二引脚与第二开关管Q2的第一引脚连接,第三开关管Q3的第二引脚与第四开关管Q4的第一引脚连接,第五开关管Q5的第二引脚与第六开关管Q6的第一引脚连接。第一开关管Q1的第一引脚、第三开关管Q3的第一引脚和第五开关管Q5的第一引脚均通过第一开关K1与电池1的正极输出端连接,第二开关管Q2的第二引脚、第四开关管Q4的第二引脚和第六开关管Q6的第二引脚均与电池1的负极输出端连接。第一开关管Q1的第二引脚和第二开关管Q2的第一引脚均与第一电感L1的第一端a连接,第三开关管Q3的第二引脚和第四开关管Q4的第一引脚均与第二电感L2的第一端c连接,第五开关管Q5的第二引脚与第六开关管Q6的第一引脚均与第三电感L3的第一端e连接。
在图3所示的实施例中,第一开关管Q1、第二开关管Q2、第三开关管Q3、第四开关管Q4、第五开关管Q5和第六开关管Q6的具体实现有很多种方式。例如,图3所示的开关管可以是绝缘栅双极型晶体管,图3所示的开关管也可以由碳化硅制成,图3所示的开关管还可以为金属-氧化物半导体场效应晶体管。当然,图3所示的开关管的具体实现并不局限于此,还可以为其他开关半导体器件等。
请参见图4所示,图4所示的为本申请实施例提供的又一种充放电电路的电路图。
在图4所示的实施例中,充放电电路还包括第一电容C1和第二电容C2。其中,第一电容C1的正极端与电池1的正极输出端连接,第一电容C1的负极端与电池1的负极输出端连接。第二电容C2的正极端与第一开关K1的第一端连接,第二电容C2的负极端与电池1的负极输出端连接,第一开关K1的第二端与电池1的正极输出端连接。
在图4所示的实施例中,在充放电电路处于驱动模式时,第一开关K1、第二开关K2、第三开关K3和第四开关K4均处于闭合状态,第五开关S1、第六开关S2、第七开关S3和第八开关S4均处于断开状态,第一桥臂2、第二桥臂3、第三桥臂4构成直流-交流变换器,第一电感L1、第二电感L2和第三电感L3构成电机5,第一电容C1和第二电容C2用于为直流-交流变换器输入滤波。
在图4所示的实施例中,在充放电电路处于充电模式时,第一开关K1、第二开关K2、第三开关K3和第四开关K4均处于断开状态,第五开关S1、第六开关S2、第七开关S3和第八开关S4均处于闭合状态,第一桥臂2、第三桥臂4、第一电感L1和第二电感L2构成交流-直流变换器,第二桥臂3和第三电感L3构成降压电路。此时,第一充电接口6接收外部设备提供的交流电,并将交流电发送给交流-直流变换器。第一电容C1用于为降压电路输出滤波。第二电容C2用于为交流-直流变换器输出滤波。
请参见图5所示,图5所示的为本申请实施例提供的又一种充放电电路的电路图,图4所示的充放电电路与图5所示的充放电电路为等效结构。
请参见图6所示,图6所示的为本申请实施例提供的又一种充放电电路的电路图。
在图6所示的实施例中,充放电电路还包括滤波模块7。其中,滤波模块7的第一输入端与第一充电接口6的第一输出端连接,滤波模块7的第二输入端与第一充电接口6的第二输出端连接。滤波模块7的第一输出端通过第七开关S3与第二电感L2的第二端d连接,滤波模块7的第二输出端与第三桥臂4的中间点连接。
在图6所示的实施例中,在充放电电路处于充电模式时,第一开关K1、第二开关K2、第三开关K3和第四开关K4均处于断开状态,第五开关S1、第六开关S2、第七开关S3和第八开关S4均处于闭合状态,第一桥臂2、第三桥臂4、第一电感L1和第二电感L2构成交流-直流变换器,第二桥臂3和第三电感L3构成降压电路。此时,第一充电接口6接收外部设备提供的交流电,并将交流电发送给交流-直流变换器。滤波模块7用于对充放电电路中的高频干扰起到抑制的作用。
在图6所示的实施例中,滤波模块7的具体可以为电磁干扰滤波器。
请参见图7所示,图7所示的为本申请实施例提供的又一种充放电电路的电路图,图6所示的充放电电路与图7所示的充放电电路为等效结构。
请参见图8所示,图8所示的为本申请实施例提供的又一种充放电电路的电路图。
在图8所示的实施例中,充放电电路还包括第二充电接口8和三相整流桥臂9。其中,三相整流桥臂9的第一输入端与第二充电接口8的第一输出端连接,三相整流桥臂9的第二输入端与第二充电接口8的第二输出端连接,三相整流桥臂9的第三输入端与第二充电接口8的第三输出端连接。三相整流桥臂9的第一输出端与滤波模块7的第一输入端连接,三相整流桥臂9的第二输出端与滤波模块7的第二输入端连接。
在图8所示的实施例中,在充放电电路处于充电模式时,第一开关K1、第二开关K2、第三开关K3和第四开关K4均处于断开状态,第五开关S1、第六开关S2、第七开关S3和第八开关S4均处于闭合状态,第一桥臂2、第三桥臂4、第一电感L1和第二电感L2构成交流-直流变换器,第二桥臂3和第三电感L3构成降压电路。此时,第二充电接口8接收外部设备提供的三相交流电,并将三相交流电发送给三相整流桥臂9。三相整流桥臂9将第二充电接口8发送的三相交流电转换成两相交流电,并将两相交流电发送给滤波模块7。
在图8所示的实施例中,第二充电接口8用于接收外部设备提供的三相交流电,三相整流桥臂9用于将第二充电接口8发送的三相交流电转换成两相交流电,所以图8所示的充放电电路不仅可以实现两相充电,还可以实现三相充电。
请参见图9所示,图9所示的为本申请实施例提供的又一种充放电电路的电路图。
在图9所示的实施例中,三相整流桥臂9包括第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4、第五二极管D5和第六二极管D6。第一二极管D1的负极、第三二极管D3的负极和第五二极管D5的负极分别与滤波模块7的第一输入端连接,第二二极管D2的正极、第四二极管D4的正极和第六二极管D6的正极分别与滤波模块7的第二输入端连接。第一二极管D1的正极和第二二极管D2的负极分别与第二充电接口8的第一输出端连接,第三二极管D3的正极和第四二极管D4的负极分别与第二充电接口8的第二输出端连接,第五二极管D5的正极和第六二极管D6的负极分别与第二充电接口8的第三输出端连接。
在图9所示的实施例中,展示了三相整流桥臂9的具体结构,当然,三相整流桥臂9并不局限于图9展示的结构,还可以为其他的结构。
请参见图10所示,图10所示的为本申请实施例提供的又一种充放电电路的电路图,图9所示的充放电电路与图10所示的充放电电路为等效结构。
请参见图11所示,图11所示的为本申请实施例提供的一种充放电系统的电路图。
在图11所示的实施例中,充放电系统包括充放电电路和控制器10,充放电电路包括电池1、电机5、第一充电接口6、第一桥臂2、第二桥臂3、第三桥臂4、第一开关K1、第二开关K2、第三开关K3、第四开关K4、第五开关S1、第六开关S2、第七开关S3和第八开关S4。
在图11所示的实施例中,控制器10分别与第一开关K1的控制端、第二开关K2的控制端、第三开关K3的控制端、第四开关K4的控制端、第五开关S1的控制端、第六开关S2的控制端、第七开关S3的控制端和第八开关S4的控制端连接。
其中,电池1的正极输出端通过第一开关K1分别与第一桥臂2的正极端、第二桥臂3的正极端和第三桥臂4的正极端连接,电池1的负极输出端分别与第一桥臂2的负极端、第二桥臂3的负极端和第三桥臂4的负极端连接。电机5包括第一电感L1、第二电感L2和第三电感L3,第一电感L1的第一端a连接第一桥臂2的中间点,第二电感L2的第一端c连接第二桥臂3的中间点,第三电感L3的第一端e连接第三桥臂4的中间点,第一电感L1的第二端b、第二电感L2的第二端d和第三电感L3的第二端f与第四开关K4的第一端连接。第一充电接口6的第一输出端与第二电感L2的第二端d连接,第一充电接口6的第二输出端与第三桥臂4的中间点连接。第二开关K2 设于第二桥臂3的中间点与第二电感L2的第一端c之间,第三开关K3设于第三桥臂4的中间点与第三电感L3的第一端e之间,第五开关S1设于电池1的正极输出端与第三电感L3的第一端e之间,第六开关S2设于第二桥臂3的中间点与第三电感L3的第二端f之间,第七开关S3设于第一充电接口6的第一输出端与第二电感L2的第二端d之间,第八开关S4设于第二电感L2的第一端c与第一电感L1的第二端b之间。
在图11所示的实施例中,在控制器10接收到驱动模式的控制信号时,控制器10分别向第一开关K1、第二开关K2、第三开关K3和第四开关K4发送导通信号,分别向第五开关S1、第六开关S2、第七开关S3和第八开关S4发送断开信号。此时,第一开关K1、第二开关K2、第三开关K3和第四开关K4均处于闭合状态,第五开关S1、第六开关S2、第七开关S3和第八开关S4均处于断开状态,第一桥臂2、第二桥臂3、第三桥臂4构成直流-交流变换器,第一电感L1、第二电感L2和第三电感L3构成电机5。
其中,电池1向直流-交流变换器提供直流电,直流-交流变换器将电池1提供的直流电转换成交流电,并将交流电发送给电机5。在电机5接收到直流-交流变换器发送的交流电时,电机5便开始运转。
在图11所示的实施例中,在控制器10接收到充电模式的控制信号时,控制器10分别向第一开关K1、第二开关K2、第三开关K3和第四开关K4发送断开信号,分别向第五开关S1、第六开关S2、第七开关S3和第八开关S4发送闭合信号。此时,第一开关K1、第二开关K2、第三开关K3和第四开关K4均处于断开状态,第五开关S1、第六开关S2、第七开关S3和第八开关S4均处于闭合状态,第一桥臂2、第三桥臂4、第一电感L1和第二电感L2构成交流-直流变换器,第二桥臂3和第三电感L3构成降压电路。
其中,第一充电接口6接收外部设备提供的交流电,并将交流电发送给交流-直流变换器。交流-直流变换器将第一充电接口6提供的交流电转换成高压直流电,并将高压直流电发送给降压电路。降压电路将交流-直流变换器提供的高压直流电进行降压处理得到低压直流电,并将低压直流电发送给电池1,进而为电池1充电。
在图11所示的实施例中,充放电电路还可以为图3至图10所示的充放电电路。
请参见图12所示,图12所示的为本申请实施例提供的一种电动汽车200的电路图。图12所示的电动汽车200包括充放电系统201、传动系统202、直流变换器203、空调系统204和低压系统205。
在图12所示的实施例中,充放电系统201的第一输出端与传动系统202连接,充放电系统201的第二输出端与直流变换器203的输入端连接,充放电系统201的第三输出端与空调系统204连接。直流变换器203的输出端与低压系统205连接。
在图12所示的实施例中,充电系统300可以为充电桩,充电系统300还可以为电动汽车的外置充电器。
请结合图11和图12所示,图12所示的充放电系统201可以为图11所示的充放电系统。在提到充放电系统201的内部部件时,请参见图11所示,在提到电动汽车200的内部系统时,请参见图12所示。
在图11和图12所示的实施例中,在电动汽车200处于驱动模式时,控制器10 分别向第一开关K1、第二开关K2、第三开关K3和第四开关K4发送导通信号,分别向第五开关S1、第六开关S2、第七开关S3和第八开关S4发送断开信号。此时,第一开关K1、第二开关K2、第三开关K3和第四开关K4均处于闭合状态,第五开关S1、第六开关S2、第七开关S3和第八开关S4均处于断开状态,第一桥臂2、第二桥臂3、第三桥臂4构成直流-交流变换器,第一电感L1、第二电感L2和第三电感L3构成电机5。
其中,充放电系统201的电池1向直流-交流变换器提供直流电,直流-交流变换器将电池1提供的直流电转换成交流电,并将交流电发送给电机5。在电机5接收到直流-交流变换器发送的交流电时,电机5便开始运转。
同时,电池1还会为传动系统202、直流变换器203和空调系统204提供高压直流电。在传动系统202接收到电池1提供的高压直流电以后,会将电机5提供的动力传给电动汽车的车轮。在空调系统204接收到电池1提供的高压直流电以后,空调系统204便会开始运转。在直流变换器203接收到电池1提供的高压直流电以后,直流变换器203会将高压直流电转换成低压直流电,并将低压直流电发送给低压系统205。在低压系统205接收到直流变换器203提供的低压直流电以后,低压系统205内的各个部件均会开始运行。
其中,低压系统205包括灯光系统、中控系统、仪表系统、雨刮系统、玻璃升降系统和水泵系统等。
在图11和图12所示的实施例中,在电动汽车200处于充电模式时,控制器10分别向第一开关K1、第二开关K2、第三开关K3和第四开关K4发送断开信号,分别向第五开关S1、第六开关S2、第七开关S3和第八开关S4发送闭合信号。此时,第一开关K1、第二开关K2、第三开关K3和第四开关K4均处于断开状态,第五开关S1、第六开关S2、第七开关S3和第八开关S4均处于闭合状态,第一桥臂2、第三桥臂4、第一电感L1和第二电感L2构成交流-直流变换器,第二桥臂3和第三电感L3构成降压电路。
其中,充放电系统201的第一充电接口6接收充电系统300提供的交流电,并将交流电发送给交流-直流变换器。交流-直流变换器将第一充电接口6提供的交流电转换成高压直流电,并将高压直流电发送给降压电路。降压电路将交流-直流变换器提供的高压直流电进行降压处理得到低压直流电,并将低压直流电发送给电池1,进而为电池1充电。

Claims (13)

  1. 一种充放电电路,其特征在于,所述充放电电路包括电池、电机、第一充电接口、第一桥臂、第二桥臂、第三桥臂、第一开关、第二开关、第三开关、第四开关、第五开关、第六开关、第七开关和第八开关;
    其中,所述电池的正极输出端通过所述第一开关分别与所述第一桥臂的正极端、所述第二桥臂的正极端和所述第三桥臂的正极端连接,所述电池的负极输出端分别与所述第一桥臂的负极端、所述第二桥臂的负极端和所述第三桥臂的负极端连接;
    所述电机包括第一电感、第二电感和第三电感,所述第一电感的第一端连接所述第一桥臂的中间点,所述第二电感的第一端连接所述第二桥臂的中间点,所述第三电感的第一端连接所述第三桥臂的中间点,所述第一电感的第二端、所述第二电感的第二端和所述第三电感的第二端与所述第四开关的第一端连接;
    所述第一充电接口的第一输出端与所述第二电感的第二端连接,所述第一充电接口的第二输出端与所述第三桥臂的中间点连接;
    所述第二开关设于所述第二桥臂的中间点与所述第二电感的第一端之间,所述第三开关设于所述第三桥臂的中间点与所述第三电感的第一端之间,所述第五开关设于所述电池的正极输出端与所述第三电感的第一端之间,所述第六开关设于所述第二桥臂的中间点与所述第三电感的第二端之间,所述第七开关设于所述第一充电接口的第一输出端与所述第二电感的第二端之间,所述第八开关设于所述第二电感的第一端与所述第一电感的第二端之间。
  2. 根据权利要求1所述的充放电电路,其特征在于,所述充放电电路还包括第一电容和第二电容;
    所述第一电容的正极端与所述电池的正极输出端连接,所述第一电容的负极端与所述电池的负极输出端连接;
    所述第二电容的正极端与所述第一开关的第一端连接,所述第二电容的负极端与所述电池的负极输出端连接,所述第一开关的第二端与所述电池的正极输出端连接。
  3. 根据权利要求2所述的充放电电路,其特征在于,所述充放电电路还包括滤波模块;
    所述滤波模块的第一输入端与所述第一充电接口的第一输出端连接,所述滤波模块的第二输入端与所述第一充电接口的第二输出端连接;
    所述滤波模块的第一输出端通过所述第七开关与所述第二电感的第二端连接,所述滤波模块的第二输出端与所述第三桥臂的中间点连接。
  4. 根据权利要求3所述的充放电电路,其特征在于,所述充放电电路还包括第二充电接口和三相整流桥臂;
    其中,所述三相整流桥臂的第一输入端与所述第二充电接口的第一输出端连接,所述三相整流桥臂的第二输入端与所述第二充电接口的第二输出端连接,所述三相整流桥臂的第三输入端与所述第二充电接口的第三输出端连接;
    所述三相整流桥臂的第一输出端与所述滤波模块的第一输入端连接,所述三相整流桥臂的第二输出端与所述滤波模块的第二输入端连接。
  5. 根据权利要求4所述的充放电电路,其特征在于,所述三相整流桥臂包括第一二极管、第二二极管、第三二极管、第四二极管、第五二极管和第六二极管;
    所述第一二极管的负极、所述第三二极管的负极和所述第五二极管的负极分别与所述滤波模块的第一输入端连接,所述第二二极管的正极、所述第四二极管的正极和所述第六二极管的正极分别与所述滤波模块的第二输入端连接;
    所述第一二极管的正极和所述第二二极管的负极分别与所述第二充电接口的第一输出端连接,所述第三二极管的正极和所述第四二极管的负极分别与所述第二充电接口的第二输出端连接,所述第五二极管的正极和所述第六二极管的负极分别与所述第二充电接口的第三输出端连接。
  6. 根据权利要求1-5任意一项所述的充放电电路,其特征在于,所述第一桥臂包括第一开关管和第二开关管,所述第二桥臂包括第三开关管和第四开关管,所述第三桥臂包括第五开关管和第六开关管;
    所述第一开关管的第二引脚与所述第二开关管的第一引脚连接,所述第三开关管的第二引脚与所述第四开关管的第一引脚连接,所述第五开关管的第二引脚与所述第六开关管的第一引脚连接;
    所述第一开关管的第一引脚、所述第三开关管的第一引脚和所述第五开关管的第一引脚均通过所述第一开关与所述电池的正极输出端连接,所述第二开关管的第二引脚、所述第四开关管的第二引脚和所述第六开关管的第二引脚均与所述电池的负极输出端连接;
    所述第一开关管的第二引脚和所述第二开关管的第一引脚均与所述第一电感的第一端连接,所述第三开关管的第二引脚和所述第四开关管的第一引脚均与所述第二电感的第一端连接,所述第五开关管的第二引脚与所述第六开关管的第一引脚均与所述第三电感的第一端连接。
  7. 一种充放电系统,其特征在于,所述充放电系统包括充放电电路和控制器,所述充放电电路包括电池、电机、第一充电接口、第一桥臂、第二桥臂、第三桥臂、第一开关、第二开关、第三开关、第四开关、第五开关、第六开关、第七开关和第八开关;
    所述控制器分别与所述第一开关的控制端、所述第二开关的控制端、所述第三开关的控制端、所述第四开关的控制端、所述第五开关的控制端、所述第六开关的控制端、所述第七开关的控制端和所述第八开关的控制端连接;
    其中,所述电池的正极输出端通过所述第一开关分别与所述第一桥臂的正极端、所述第二桥臂的正极端和所述第三桥臂的正极端连接,所述电池的负极输出端分别与所述第一桥臂的负极端、所述第二桥臂的负极端和所述第三桥臂的负极端连接;
    所述电机包括第一电感、第二电感和第三电感,所述第一电感的第一端连接所述 第一桥臂的中间点,所述第二电感的第一端连接所述第二桥臂的中间点,所述第三电感的第一端连接所述第三桥臂的中间点,所述第一电感的第二端、所述第二电感的第二端和所述第三电感的第二端与所述第四开关的第一端连接;
    所述第一充电接口的第一输出端与所述第二电感的第二端连接,所述第一充电接口的第二输出端与所述第三桥臂的中间点连接;
    所述第二开关设于所述第二桥臂的中间点与所述第二电感的第一端之间,所述第三开关设于所述第三桥臂的中间点与所述第三电感的第一端之间,所述第五开关设于所述电池的正极输出端与所述第三电感的第一端之间,所述第六开关设于所述第二桥臂的中间点与所述第三电感的第二端之间,所述第七开关设于所述第一充电接口的第一输出端与所述第二电感的第二端之间,所述第八开关设于所述第二电感的第一端与所述第一电感的第二端之间;
    所述控制器,用于在接收到驱动模式的控制信号时,分别向所述第一开关、所述第二开关、所述第三开关和所述第四开关发送导通信号,分别向所述第五开关、所述第六开关、所述第七开关和所述第八开关发送断开信号;在接收到充电模式的控制信号时,分别向所述第一开关、所述第二开关、所述第三开关和所述第四开关发送断开信号,分别向所述第五开关、所述第六开关、所述第七开关和所述第八开关发送闭合信号。
  8. 根据权利要求7所述的充放电系统,其特征在于,所述充放电电路还包括第一电容和第二电容;
    所述第一电容的正极端与所述电池的正极输出端连接,所述第一电容的负极端与所述电池的负极输出端连接;
    所述第二电容的正极端与所述第一开关的第一端连接,所述第二电容的负极端与所述电池的负极输出端连接,所述第一开关的第二端与所述电池的正极输出端连接。
  9. 根据权利要求8所述的充放电系统,其特征在于,所述充放电电路还包括滤波模块;
    所述滤波模块的第一输入端与所述第一充电接口的第一输出端连接,所述滤波模块的第二输入端与所述第一充电接口的第二输出端连接;
    所述滤波模块的第一输出端通过所述第七开关与所述第二电感的第二端连接,所述滤波模块的第二输出端与所述第三桥臂的中间点连接。
  10. 根据权利要求9所述的充放电系统,其特征在于,所述充放电电路还包括第二充电接口和三相整流桥臂;
    其中,所述三相整流桥臂的第一输入端与所述第二充电接口的第一输出端连接,所述三相整流桥臂的第二输入端与所述第二充电接口的第二输出端连接,所述三相整流桥臂的第三输入端与所述第二充电接口的第三输出端连接;
    所述三相整流桥臂的第一输出端与所述滤波模块的第一输入端连接,所述三相整流桥臂的第二输出端与所述滤波模块的第二输入端连接。
  11. 根据权利要求10所述的充放电系统,其特征在于,所述三相整流桥臂包括第一二极管、第二二极管、第三二极管、第四二极管、第五二极管和第六二极管;
    所述第一二极管的负极、所述第三二极管的负极和所述第五二极管的负极分别与所述滤波模块的第一输入端连接,所述第二二极管的正极、所述第四二极管的正极和所述第六二极管的正极分别与所述滤波模块的第二输入端连接;
    所述第一二极管的正极和所述第二二极管的负极分别与所述第二充电接口的第一输出端连接,所述第三二极管的正极和所述第四二极管的负极分别与所述第二充电接口的第二输出端连接,所述第五二极管的正极和所述第六二极管的负极分别与所述第二充电接口的第三输出端连接。
  12. 根据权利要求7-11任意一项所述的充放电系统,其特征在于,所述第一桥臂包括第一开关管和第二开关管,所述第二桥臂包括第三开关管和第四开关管,所述第三桥臂包括第五开关管和第六开关管;
    所述第一开关管的第二引脚与所述第二开关管的第一引脚连接,所述第三开关管的第二引脚与所述第四开关管的第一引脚连接,所述第五开关管的第二引脚与所述第六开关管的第一引脚连接;
    所述第一开关管的第一引脚、所述第三开关管的第一引脚和所述第五开关管的第一引脚均通过所述第一开关与所述电池的正极输出端连接,所述第二开关管的第二引脚、所述第四开关管的第二引脚和所述第六开关管的第二引脚均与所述电池的负极输出端连接;
    所述第一开关管的第二引脚和所述第二开关管的第一引脚均与所述第一电感的第一端连接,所述第三开关管的第二引脚和所述第四开关管的第一引脚均与所述第二电感的第一端连接,所述第五开关管的第二引脚与所述第六开关管的第一引脚均与所述第三电感的第一端连接。
  13. 一种电动汽车,其特征在于,所述电动汽车包括充放电系统、传动系统、直流变换器、空调系统和低压系统;
    所述充放电系统的第一输出端与所述传动系统连接,所述充放电系统的第二输出端与所述直流变换器的输入端连接,所述充放电系统的第三输出端与所述空调系统连接;
    所述直流变换器的输出端与所述低压系统连接;
    所述充放电系统为权利要求7至权利要求12中任意一项的充放电系统。
PCT/CN2020/095122 2019-09-11 2020-06-09 一种充放电电路、系统和电动汽车 WO2021047221A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20862783.6A EP3971018A4 (en) 2019-09-11 2020-06-09 CHARGE-DISCHARGING CIRCUIT AND SYSTEM AND ELECTRICAL VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910860488.8 2019-09-11
CN201910860488.8A CN110562058B (zh) 2019-09-11 2019-09-11 一种充放电电路、系统和电动汽车

Publications (1)

Publication Number Publication Date
WO2021047221A1 true WO2021047221A1 (zh) 2021-03-18

Family

ID=68779372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095122 WO2021047221A1 (zh) 2019-09-11 2020-06-09 一种充放电电路、系统和电动汽车

Country Status (3)

Country Link
EP (1) EP3971018A4 (zh)
CN (1) CN110562058B (zh)
WO (1) WO2021047221A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110562058B (zh) * 2019-09-11 2022-08-19 华为数字能源技术有限公司 一种充放电电路、系统和电动汽车
CN114290927B (zh) * 2021-03-31 2024-04-12 华为数字能源技术有限公司 一种能量转换装置、动力系统及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120010631A (ko) * 2010-07-22 2012-02-06 재단법인 포항산업과학연구원 전력 변환 장치
JP2015198499A (ja) * 2014-04-01 2015-11-09 富士電機株式会社 電動機駆動装置
CN107627881A (zh) * 2017-09-18 2018-01-26 电子科技大学 一种电动汽车的充放电及电机驱动一体化装置
US20180029473A1 (en) * 2016-07-29 2018-02-01 Toyota Jidosha Kabushiki Kaisha Motor vehicle
CN107846055A (zh) * 2017-10-31 2018-03-27 华为技术有限公司 电动汽车的充放电电路及方法
CN110562058A (zh) * 2019-09-11 2019-12-13 华为技术有限公司 一种充放电电路、系统和电动汽车

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2946473B1 (fr) * 2009-06-09 2011-08-19 Renault Sas Ensemble electromoteur rechargeable a partir d'un reseau electrique, et boitier de connexion dedie.
KR20120116722A (ko) * 2011-04-13 2012-10-23 엘지전자 주식회사 전기 자동차 및 이의 구동 방법
KR101684064B1 (ko) * 2015-02-12 2016-12-07 현대자동차주식회사 전기 자동차의 충전 시스템
EP3347963A4 (en) * 2015-09-11 2019-01-16 Invertedpower Pty Ltd CONTROLLER FOR INDUCTIVE LOAD HAVING ONE OR MORE INDUCTIVE WINDINGS
CN109361255B (zh) * 2018-10-19 2021-02-05 南京航空航天大学 一种基于电机绕组开路的充放电电路拓扑
CN109889077B (zh) * 2019-04-08 2021-01-26 台达电子企业管理(上海)有限公司 单相和三相兼容的ac/dc电路及充放电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120010631A (ko) * 2010-07-22 2012-02-06 재단법인 포항산업과학연구원 전력 변환 장치
JP2015198499A (ja) * 2014-04-01 2015-11-09 富士電機株式会社 電動機駆動装置
US20180029473A1 (en) * 2016-07-29 2018-02-01 Toyota Jidosha Kabushiki Kaisha Motor vehicle
CN107627881A (zh) * 2017-09-18 2018-01-26 电子科技大学 一种电动汽车的充放电及电机驱动一体化装置
CN107846055A (zh) * 2017-10-31 2018-03-27 华为技术有限公司 电动汽车的充放电电路及方法
CN110562058A (zh) * 2019-09-11 2019-12-13 华为技术有限公司 一种充放电电路、系统和电动汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3971018A4 *

Also Published As

Publication number Publication date
CN110562058B (zh) 2022-08-19
EP3971018A1 (en) 2022-03-23
EP3971018A4 (en) 2022-07-27
CN110562058A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
EP3886304B1 (en) On-board charger
WO2021057195A1 (zh) 一种obc电路、obc充电器、新能源汽车及充电桩
CN104811047A (zh) 双向dc/dc变换器及其控制方法
CN110356268A (zh) 一种车载充放电装置和系统
WO2021047221A1 (zh) 一种充放电电路、系统和电动汽车
CN103227610B (zh) 电机控制电路和汽车
US20240149718A1 (en) Multilevel motor drive with integrated battery charger
WO2020211632A1 (zh) 一种变压器绕组切换方法
CN111645544A (zh) 一种具有有源滤波功能的插电式电动汽车集成充电系统
CN112224060B (zh) 一种车辆及其能量转换装置与动力系统
CN111404387A (zh) 车载充电机和车载dc/dc的集成电路、电动汽车
CN112290615A (zh) 一种在轨可更换的自适应蓄电池系统及其控制方法
CN107150607A (zh) 一种智能充电器
CN208401600U (zh) 一种双向充电机及电动汽车
CN112224038B (zh) 一种能量转换装置、动力系统及车辆
WO2021102998A1 (zh) 电压调节模块、充电模组和充电桩
CN111452643A (zh) 车载充电机和车载dc/dc的集成电路、电动汽车
CN111409482A (zh) 车载充电机和电机控制器的集成电路、电动汽车
CN115071459B (zh) 双向车载充电机与电机控制器集成设备的控制方法及设备
WO2022077262A1 (zh) 双向谐振电路和汽车
WO2022165759A1 (zh) 一种充电电路及充电装置
CN110774995B (zh) 一种车载空调的供电装置及车载空调
CN221162254U (zh) 车载电路和车辆
CN207134985U (zh) 一种用于混合动力汽车dc‑dc变换器的电磁干扰抑制模块
US20230268841A1 (en) Converting circuit and charging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020862783

Country of ref document: EP

Effective date: 20211217

NENP Non-entry into the national phase

Ref country code: DE