WO2021047022A1 - 液晶显示面板 - Google Patents

液晶显示面板 Download PDF

Info

Publication number
WO2021047022A1
WO2021047022A1 PCT/CN2019/117929 CN2019117929W WO2021047022A1 WO 2021047022 A1 WO2021047022 A1 WO 2021047022A1 CN 2019117929 W CN2019117929 W CN 2019117929W WO 2021047022 A1 WO2021047022 A1 WO 2021047022A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
sub
liquid crystal
crystal display
display panel
Prior art date
Application number
PCT/CN2019/117929
Other languages
English (en)
French (fr)
Inventor
胡泽虎
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/618,814 priority Critical patent/US20210080780A1/en
Publication of WO2021047022A1 publication Critical patent/WO2021047022A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate

Definitions

  • the present invention relates to the field of display technology, and in particular to a liquid crystal display panel.
  • the color resistance fluidity of different regions will be different during the subsequent preparation of the color color resistance process, so that the color resistance of the adjacent color resistance is crossed.
  • the overlapping area forms a gap in the horns or forms a bowl-shaped color resistance. This in turn leads to differences in the thickness of the color resists, and when the backlight passes through the color filter, uneven display is caused, which in turn affects the display quality.
  • COA Color Filer On Array
  • the color filter layer is integrated on the array substrate
  • COA Color Filer On Array
  • a variety of color resist materials are needed in the production process. Frequent color resist material switching results in color resistance. The low utilization rate, which in turn leads to low production efficiency.
  • the film thickness of each color resist can be adjusted to meet the specifications of different colors and reduce the types of color resists that need to be replaced, due to the limitation of the height difference between the color resists, if the height difference is too large, it will seriously affect The deflection of the liquid crystal affects the display quality.
  • the present invention provides a liquid crystal display panel to solve the technical problem that in the existing liquid crystal display panel, the difference in the color resistance in the color filter layer will affect the deflection of the liquid crystal, cause display unevenness, and further affect the display quality.
  • the present invention provides a liquid crystal display panel, including: a first substrate, a photoresist layer disposed on the first substrate, a second substrate, and sandwiched between the first substrate and the second substrate.
  • the liquid crystal layer between the substrates, the first substrate includes a first area and a second area; wherein the top surface of the first area is lower than the top surface of the second area, and the photoresist layer includes A plurality of photoresists disposed in the first region or the second region, and the surfaces of the plurality of photoresists away from the first substrate are flush with each other;
  • the photoresist layer includes The first color resist, the second color resist, and the third color resist on the first region and the second region, and the first sub color resist is away from the surface of the first substrate, the second color resist The surface of the color resist away from the first substrate and the surface of the third color resist away from the first substrate are flush with each other.
  • the first substrate includes a gate insulating layer
  • the gate insulating layer includes a first sub-surface and a second sub-surface disposed on the same side and close to the photoresist layer ,
  • the first sub-surface corresponds to the first area
  • the second sub-surface corresponds to the second area.
  • the first sub-surface is lower than the second sub-surface.
  • At least one of the first color resist, the second color resist, and the third color resist is disposed on the first sub-surface.
  • the height difference between the first sub-surface and the second sub-surface is equal to the thickness difference between color resists of different thicknesses in the photoresist layer.
  • the present invention also provides a liquid crystal display panel, including: a first substrate, a photoresist layer disposed on the first substrate, the first substrate including a first area and a second area; wherein, the The top surface of the first region is lower than the top surface of the second region, the photoresist layer includes a plurality of photoresists disposed in the first region or the second region, and the plurality of photoresists are away from The surfaces of one side of the first substrate are flush with each other.
  • the photoresist layer includes a first color resist, a second color resist, and a third color resist disposed on the first region and the second region, and The surface of the first sub-color resister away from the first substrate, the surface of the second color resister away from the first substrate, and the surface of the third color resister away from the first substrate are mutually Flush.
  • the first substrate includes a gate insulating layer
  • the gate insulating layer includes a first sub-surface and a second sub-surface disposed on the same side and close to the photoresist layer ,
  • the first sub-surface corresponds to the first area
  • the second sub-surface corresponds to the second area.
  • the first sub-surface is lower than the second sub-surface.
  • At least one of the first color resist, the second color resist, and the third color resist is disposed on the first sub-surface.
  • the height difference between the first sub-surface and the second sub-surface is equal to the thickness difference between color resists of different thicknesses in the photoresist layer.
  • the liquid crystal display panel further includes a pixel electrode and an organic flat layer, the organic flat layer is disposed on the photoresist layer, and the pixel electrode is disposed on the organic flat layer. on.
  • the photoresist layer includes a black matrix disposed in the first area, and a surface of the black matrix facing away from the first substrate and the first area The top surface is flush.
  • the first area of the first substrate is provided with a groove, and the black matrix is embedded in the groove.
  • the depth of the groove is the same as the thickness of the black matrix.
  • the photoresist layer further includes a plurality of color resists arranged adjacently and at intervals, and the black matrix is arranged between any two adjacent color resists.
  • the second area is provided with the plurality of color resists, and the surfaces of the plurality of color resists facing away from the first substrate are flush with each other .
  • the present invention eliminates the influence of the height of the black matrix on the color resistance segment difference by opening a groove on the substrate and embeds the black matrix in the groove, or according to the height difference between the color resistance, the COA type liner
  • the level difference of different areas is designed on the bottom, so that the surface of the color resist prepared later is even, so as to solve the influence of the color resist level difference on the inversion of the liquid crystal, thereby improving the quality of the liquid crystal display.
  • FIG. 1 is a schematic plan view of a liquid crystal display panel according to an embodiment of the present invention.
  • Figure 2 is a schematic structural view of the A-A section in Figure 1;
  • Fig. 3 is a schematic structural diagram of the B-B section in Fig. 1;
  • FIG. 4 is a schematic cross-sectional view of a liquid crystal display panel according to an embodiment of the invention.
  • FIG. 5 is a schematic diagram of a photoresist structure on a first substrate according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the structure of the gate insulating layer after etching according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a first substrate according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the structure of a liquid crystal display panel according to another embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a first substrate according to another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another structure of a liquid crystal display panel according to another embodiment of the present invention.
  • the present invention is directed to the technical problem of the existing liquid crystal display panel, because the difference in the color resist height in the color filter layer will affect the deflection of the liquid crystal, cause uneven display, and further affect the display quality.
  • This embodiment can solve the defect.
  • the present invention provides a liquid crystal display panel including a first substrate and a photoresist layer disposed on the first substrate, the first substrate including a first area and a second area, and the first area
  • the top surface of the second region is lower than the top surface of the second region
  • the photoresist layer includes a plurality of photoresists, the plurality of photoresists are disposed in the first region or the second region, and the plurality The surfaces of the photoresist away from the first substrate are flush with each other.
  • the present invention designs the first substrate as the first area and the second area with different heights, so that the surface of the color resist subsequently formed on the first substrate is flat. Qi.
  • the embodiments of the present invention are described in combination with different types of substrates.
  • this embodiment provides a liquid crystal display panel 100 including a first substrate 10 and a photoresist layer 20, and the photoresist layer 20 is disposed on the first substrate 10.
  • the first substrate 10 includes a first area 101 and a second area 102, and the top surface of the first area 101 is lower than the top surface of the second area 102.
  • the photoresist layer 20 includes a plurality of photoresists, the photoresists are disposed in the first area 101 or the second area 102, and the surfaces of the multiple photoresists away from the first substrate 10 are flush with each other. .
  • the photoresist layer 20 is a color filter layer.
  • the photoresist layer 20 includes a first color resist 21, a second color resist 22, and a third color resist 23.
  • the first color resist 21 is away from the A side surface 211 of the first substrate 10 (the top surface of the first color resist 21), and a side surface 221 of the second color resist 22 facing away from the first substrate 10 (the top surface of the second color resist 22) ), and the side surface 231 of the third color resist 23 away from the first substrate 10 (the top surface of the third color resist 23) is flush with each other.
  • the thickness difference between the color resists should be equal to the first region 101 and the second region of the first substrate 10 The height difference between 102. It can be understood that if there are three different heights of color resists, the first substrate 10 should correspondingly have three different heights of surface.
  • the first substrate 10 includes a glass substrate 11 and a gate insulating layer 13 disposed on the glass substrate.
  • the gate insulating layer 13 includes a first sub-surface 131 and a second sub-surface 132, so The first sub-surface 131 and the second sub-surface 132 are arranged on the same side and far away from the glass substrate 11, and the first sub-surface 131 is lower than the second sub-surface 132 (with the upper surface of the glass substrate 11).
  • the surface or bottom surface is the reference surface).
  • the first sub-surface 131 corresponds to the first area 101
  • the second sub-surface 132 corresponds to the second area 102.
  • etching may be performed after depositing an insulating material to form a groove corresponding to the first region 101, thereby realizing the first sub-layer
  • the surface 131 is lower than the second sub-surface 132.
  • Figures 2 and 3 are only exemplary descriptions. Two color resists with different thicknesses are used for description.
  • the third color resist 23 is provided on the first sub-surface 131, and the third color resist 23 is provided on the second sub-surface 132.
  • the first color resist 21 and the second color resist 22 are provided, the first color resist 21 is a blue color resist, the second color resist 22 is a red color resist, and the third color resist 23 is a green color resist. Color resistance.
  • the first color resist 21, the second color resist 22, and the third color resist are respectively one of red, green, and blue resists.
  • the first substrate 10 further includes a gate 121, a scan line 122, an amorphous silicon layer 141, an N-type doped amorphous silicon layer 142, and a source which are sequentially arranged on the glass substrate 11.
  • the gate 121 is disposed on the glass substrate 11, the gate insulating layer 13 covers the gate 121, and the amorphous silicon layer 141 is disposed on the gate insulating layer 13 and is in contact with the gate.
  • the electrode 121 is arranged correspondingly, the N-type doped amorphous silicon layer 142 is arranged above the two ends of the amorphous silicon layer 141 and the back channel is exposed.
  • the source electrode 151 and the drain electrode 152 are arranged on the The N-type doped amorphous silicon layer 142 is in contact with the N-type doped amorphous silicon layer 142 on both sides of the amorphous silicon layer 141, respectively.
  • the source electrode 151, the drain electrode 152, and the gate insulating layer 13 are provided with a passivation layer 16 for protecting the metal devices thereunder.
  • the first color resist 21, the second color resist 22, and the third color resist 23 are disposed on the passivation layer 16.
  • the plurality of scan lines 122 and the plurality of data lines 153 are arranged to cross each other to define a pixel area.
  • the main part of the plurality of color resists of the photoresist layer 20 is located in the pixel area, and the scan line 122
  • the data line 153 is provided in the same layer as the gate electrode 121 and connected to the gate electrode 121, and the data line 153 is provided in the same layer as the source electrode 151 and the drain electrode 152 and is connected to the source electrode 151.
  • the liquid crystal display panel 100 further includes a pixel electrode 40 and an organic flat layer 30.
  • the organic flat layer 30 is disposed on the photoresist layer 20, and the pixel electrode 40 is disposed on the organic flat layer. On layer 30.
  • the liquid crystal display panel 100 is provided with a via hole 31, the pixel electrode 40 is connected to the drain electrode 152 through the via hole 31, and the via hole 31 sequentially passes through the organic flat layer 30 from top to bottom.
  • the manufacturing method of the liquid crystal display panel 100 according to the embodiment of the present invention is as follows.
  • a metal layer is deposited on the glass substrate 11, and a patterned gate 121 and scan lines 122 are formed through a photolithography process.
  • a chemical vapor deposition method is used to sequentially deposit a gate insulating layer material film 13', an amorphous silicon material film 141', and an N-type doped amorphous silicon material film 142' on the entire surface of the gate 121. Then, a multi-step mask process is used to form films with different thicknesses.
  • a photoresist material is coated on the N-type doped amorphous silicon material film layer 142', and the photoresist material is exposed and developed using a multi-stage transmittance mask to form a multi-stage height Poor photoresist 200, the photoresist 200 includes a second photoresist 202, a third photoresist 203, and a first photoresist 201 with successively decreasing thicknesses.
  • the second photoresist The resist 202 corresponds to the N-type doped amorphous silicon layer 142
  • the third photoresist 203 corresponds to the back channel of the amorphous silicon layer 141
  • the entire part of the photoresist 200 corresponds to
  • the second area 101 of the liquid crystal display panel 100 corresponds to, and the area without photoresist 200 corresponds to the first area 101 of the liquid crystal display panel 100.
  • the N-type doped amorphous silicon material film layer 142', the amorphous silicon material film layer 141', the gate insulating layer material film layer 13' and dry etching are performed to form the patterned N Type doped amorphous silicon layer 142, amorphous silicon layer 141, and gate insulating layer 13.
  • the height of the first sub-surface 131 of the gate insulating layer 13 is lower than the height of the second sub-surface 132, wherein the depth to which the gate insulating layer 13 is etched away (ie, formed after etching The depth of the groove is determined according to the thickness of the color resist film layer that needs to be set here later.
  • a metal layer is deposited on the N-type doped amorphous silicon layer 142 and the gate insulating layer 13, and the patterned source electrode 151 is formed by a photolithography process. , The drain 152 and the data line 153.
  • a passivation layer 16 is formed on the source electrode 151, the drain electrode 152, and the gate insulating layer 13 by using a chemical vapor deposition method, and a via hole is formed on the passivation layer 16 through a photolithography process 31.
  • the first color resist 21, the second color resist 22, and the third color resist 23 can be formed by a yellow light process. Since the gate insulating layer 13 is designed to have surfaces with different height differences in the previous manufacturing process, the color resists in the photoresist layer 20 can be prepared on surfaces with different heights, so that the final formed There is no level difference between the first color resist 21, the second color resist 22, and the third color resist 23, so that the surfaces of the three are flush.
  • an organic flat layer 30 is formed on the photoresist layer 20, and then a pixel electrode 40 is formed on the organic flat layer 30 through a photolithography process.
  • the liquid crystal display panel 100 further includes a liquid crystal layer and a second substrate.
  • the liquid crystal layer is sandwiched between the second substrate and the first substrate 10, and the second substrate faces the first substrate.
  • One side of a substrate 10 is provided with a black matrix and a common electrode provided on the black matrix, and the liquid crystal layer is provided between the common electrode and the pixel electrode 40.
  • the first substrate 10 is a glass substrate 11, and the photoresist layer 20 includes a black matrix 24 and a plurality of color resists 25.
  • the black matrix 24 And the plurality of color resists 25 are arranged on the first substrate 10.
  • the black matrix 24 is disposed in the first area 101, and a surface of the black matrix 24 facing away from the first substrate 10 is flush with the top surface of the second area 102.
  • the main part of the color resist 25 is arranged in the second region 102, and the surfaces of the plurality of color resists 25 facing away from the first substrate 10 are flush with each other.
  • the black matrix 24 on the glass substrate 11 has a certain height, when the color filter layer is prepared on the glass substrate 11, the color resistance fluidity of different regions will be caused. There is a difference.
  • the overlapping area of adjacent color resists forms a horn segment difference, which leads to a difference in the thickness of the color resist.
  • the display is uneven.
  • the present embodiment improves the color resist level difference and eliminates the black matrix. The effect on the thickness of the color resist.
  • the first area 101 and the second area 102 are alternately arranged, that is, the first area 101 is arranged between two adjacent second areas 102.
  • the first area 101 is provided with a groove 111, and the black matrix is embedded in the corresponding groove.
  • the depth of the groove 111 is equal to the thickness of the black matrix 24, so that the black matrix 24 and the first substrate 10 are maintained on the same horizontal plane, and the second region 102 is subsequently prepared
  • the height of the black matrix 24 will not affect the fluidity of the color resist 25, thereby eliminating the step difference of the color resist 25, thereby improving the display quality.
  • a patterned photoresist is formed on the glass substrate 11 corresponding to the second region 102 by a yellow light process, and then the glass substrate 11 is wet etched, and the glass substrate 11 is wet-etched in the second region 102.
  • the groove 111 is formed in a region 101, and the photoresist is finally stripped to form the patterned first substrate 10.
  • a black photoresist is formed in the groove 111 through a yellow light process, and then a plurality of the color resists 25 are formed on the first substrate 10 through a yellow light process, and the color resists 25 are red.
  • the red color resist, the green color resist, and the blue color resist are adjacently distributed on the first substrate 10 and separated by the black resist,
  • the plurality of black photoresistors is the black matrix 24, which is used to block light leakage of pixels, prevent color mixing between adjacent color resistors, and thereby improve the contrast of the liquid crystal display panel 100.
  • the liquid crystal display panel 100 further includes a second substrate 50 and a liquid crystal layer 60, and the liquid crystal layer 60 is sandwiched between the second substrate 50 and the first substrate 10.
  • the second substrate 50 is a thin film transistor array substrate, the black matrix 24 and the color resist 25 are arranged on the side of the first substrate 10 facing the second substrate 50, and the first substrate The side of the substrate 10 facing the second substrate 50 is further provided with a common electrode (not shown in the figure).
  • the structure of the second substrate 50 can refer to the thin film transistor array structure in the prior art. Go into details again.
  • the present invention eliminates the influence of the height of the black matrix on the color resistance segment difference by grooving the substrate and embeds the black matrix in the groove, or designs different designs on the COA substrate according to the height difference between the color resistances.
  • the level difference of the area makes the surface of the subsequently prepared color resists even, so as to solve the influence of the color resist level difference on the inversion of the liquid crystal, thereby improving the quality of the liquid crystal display.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板,包括第一衬底和设置于第一衬底上的光阻层,第一衬底包括第一区域和第二区域,第一区域的顶面低于第二区域的顶面,光阻层包括多个设置于第一区域或第二区域的光阻,且多个光阻的表面相互平齐。通过在衬底上设计不同区域的段差,使得后续制备的色阻的表面平齐,从而解决色阻段差对液晶翻转造成的影响。

Description

液晶显示面板 技术领域
本发明涉及显示技术领域,尤其涉及一种液晶显示面板。
背景技术
液晶显示面板中,在制备彩色滤光片时,由于黑色矩阵具有一定的高度,在后续制备彩色色阻工艺过程中,会造成不同区域的色阻流动性存在差异,从而在相邻色阻交叠区域形成牛角段差或形成碗状色阻。进而导致色阻的厚度存在差异,在背光源透过彩色滤光片时,造成显示不均,进而影响显示品质。
另外,COA(Color Filer On Array,彩色滤光层集成于阵列基板上)型阵列基板在生产时,由于客户需要的产品规格不同,在生产过程中需要用到多种色阻材料,频繁的色阻材料切换,导致色阻的利用率低下,进而导致生产效率低下。目前,虽然通过调整各个色阻的膜厚可以满足不同色彩的规格,以及减少需要更换的色阻种类,但是由于受限于各个色阻之间的高度差异,若高度差过大,会严重影响液晶偏转,进而影响显示品质。
综上,无论是彩色滤光片还是COA型阵列基板,均存在彩色色阻之间的高度差导致的显示不佳的问题。
技术问题
本发明提供一种液晶显示面板,以解决现有的液晶显示面板中,彩色滤光层中的色阻高度差异会影响液晶偏转,造成显示不均,进而影响显示品质的技术问题。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明提供一种液晶显示面板,包括:第一衬底、设置于所述第一衬底上的光阻层、第二衬底、以及夹设于所述第一衬底和所述第二衬底之间的液晶层,所述第一衬底包括第一区域和第二区域;其中,所述第一区域的顶面低于所述第二区域的顶面,所述光阻层包括多个设置于所述第一区域或所述第二区域的光阻,且所述多个光阻背离所述第一衬底的一侧表面相互平齐;所述光阻层包括设置于所述第一区域和所述第二区域上的第一色阻、第二色阻、以及第三色阻,且所述第一子色阻背离所述第一衬底的表面、所述第二色阻背离所述第一衬底的表面均、以及所述第三色阻背离所述第一衬底的表面相互平齐。
在本发明的至少一种实施例中,所述第一衬底包括栅极绝缘层,所述栅极绝缘层包括同侧设置且靠近所述光阻层的第一子表面和第二子表面,所述第一子表面与所述第一区域对应,所述第二子表面与所述第二区域对应。
在本发明的至少一种实施例中,所述第一子表面低于所述第二子表面。
在本发明的至少一种实施例中,所述第一色阻、所述第二色阻、以及所述第三色阻中的至少一种设置于所述第一子表面上。
在本发明的至少一种实施例中,所述第一子表面与所述第二子表面的高度差等于所述光阻层中的不同厚度的色阻之间的厚度差。
本发明还提供一种液晶显示面板,包括:第一衬底、设置于所述第一衬底上的光阻层,所述第一衬底包括第一区域和第二区域;其中,所述第一区域的顶面低于所述第二区域的顶面,所述光阻层包括多个设置于所述第一区域或所述第二区域的光阻,且所述多个光阻背离所述第一衬底的一侧表面相互平齐。
在本发明的至少一种实施例中,所述光阻层包括设置于所述第一区域和所述第二区域上的第一色阻、第二色阻、以及第三色阻,且所述第一子色阻背离所述第一衬底的表面、所述第二色阻背离所述第一衬底的表面均、以及所述第三色阻背离所述第一衬底的表面相互平齐。
在本发明的至少一种实施例中,所述第一衬底包括栅极绝缘层,所述栅极绝缘层包括同侧设置且靠近所述光阻层的第一子表面和第二子表面,所述第一子表面与所述第一区域对应,所述第二子表面与所述第二区域对应。
在本发明的至少一种实施例中,所述第一子表面低于所述第二子表面。
在本发明的至少一种实施例中,所述第一色阻、所述第二色阻、以及所述第三色阻中的至少一种设置于所述第一子表面上。
在本发明的至少一种实施例中,所述第一子表面与所述第二子表面的高度差等于所述光阻层中的不同厚度的色阻之间的厚度差。
在本发明的至少一种实施例中,所述液晶显示面板还包括像素电极和有机平坦层,所述有机平坦层设置于所述光阻层上,所述像素电极设置于所述有机平坦层上。
在本发明的至少一种实施例中,所述光阻层包括设置于所述第一区域的黑矩阵,且所述黑矩阵背离所述第一衬底的一侧表面与所述第一区域的顶面平齐。
在本发明的至少一种实施例中,所述第一衬底的第一区域设置有凹槽,所述黑矩阵嵌设于所述凹槽内。
在本发明的至少一种实施例中,所述凹槽的深度与所述黑矩阵的厚度相同。
在本发明的至少一种实施例中,所述光阻层还包括相邻且间隔设置的多个彩色色阻,所述黑矩阵设置于任意两相邻的所述彩色色阻之间。
在本发明的至少一种实施例中,所述第二区域上设置有所述多个彩色色阻,且所述多个彩色色阻的背离所述第一衬底的一侧表面相互平齐。
有益效果
本发明的有益效果为:本发明通过在衬底上开槽,将黑矩阵嵌设于槽内以消除黑矩阵高度对色阻段差的影响,或者根据色阻之间的高度差在COA型衬底上设计不同区域的段差,使得后续制备的色阻的表面平齐,从而解决色阻段差对液晶翻转造成的影响,进而提高液晶显示的品质。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的液晶显示面板的平面示意图;
图2为图1中A-A剖面的结构示意图;
图3为图1中B-B剖面的结构示意图;
图4为本发明实施例的液晶显示面板的剖面示意图;
图5为本发明实施例的第一衬底上的光刻胶的结构示意图;
图6为本发明实施例的栅极绝缘层刻蚀后的结构示意图;
图7为本发明实施例的第一衬底的结构示意图;
图8为本发明其他实施例的液晶显示面板的结构示意图;
图9为本发明其他实施例的第一衬底的结构示意图;
图10为本发明其他实施例的液晶显示面板的另一结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有的液晶显示面板,由于彩色滤光层中的色阻高度存在差异会影响液晶偏转,造成显示不均,进而影响显示品质的技术问题,本实施例能够解决该缺陷。
本发明提供一种液晶显示面板,包括第一衬底和设置于所述第一衬底上的光阻层,所述第一衬底包括第一区域和第二区域,且所述第一区域的顶面低于所述第二区域的顶面,所述光阻层包括多个光阻,所述多个光阻设置于所述第一区域或所述第二区域,且所述多个光阻背离所述第一衬底的一侧表面相互平齐。
在现有技术中,无论是在玻璃基板上直接制备彩色滤光层还是将彩色滤光层集成于阵列基板上,都会存在色阻高度的差异。为了改进色阻高度的差异,本发明将所述第一衬底设计为具有不同高度的所述第一区域和第二区域,使得后续形成于所述第一衬底上的色阻的表面平齐。本发明实施例结合不同类型的衬底进行说明。
如图1~图3所示,本实施例提供一种液晶显示面板100,包括第一衬底10和光阻层20,所述光阻层20设置于所述第一衬底10上。
所述第一衬底10包括第一区域101和第二区域102,所述第一区域101的顶面低于所述第二区域102的顶面。
所述光阻层20包括多个光阻,所述光阻设置于所述第一区域101或第二区域102,该多个光阻背离所述第一衬底10的一侧表面相互平齐。具体地,所述光阻层20为彩色滤光层,所述光阻层20包括第一色阻21、第二色阻22、第三色阻23,所述第一色阻21背离所述第一衬底10的一侧表面211(第一色阻21的顶面)、所述第二色阻22背离所述第一衬底10的一侧表面221(第二色阻22的顶面)、以及所述第三色阻23背离所述第一衬底10的一侧表面231(第三色阻23的顶面)相互平齐。
由于产品规格不同,不同种类的色阻材料的设计厚度不同,因此不同的色阻若设置在同一水平面的基底上,必然会造成色阻之间存在段差,因此可将厚度较厚的色阻设置在表面较低的第一区域101上,进而保证后续制备的各个色阻的高度相同,色阻之间的厚度差应当等于所述第一衬底10的第一区域101与所述第二区域102之间的高度差。可以理解的是,若存在三种不同高度的色阻,则所述第一衬底10对应地应当具有三种不同高度的表面。
具体地,所述第一衬底10包括玻璃基板11和设置于所述玻璃基板上的栅极绝缘层13,所述栅极绝缘层13包括第一子表面131和第二子表面132,所述第一子表面131和所述第二子表面132同侧设置且远离所述玻璃基板11,所述第一子表面131低于所述第二子表面132(以所述玻璃基板11的上表面或下表面为基准表面)。其中,所述第一子表面131与所述第一区域101对应,所述第二子表面132与所述第二区域102对应。
可以理解的是,在所述栅极绝缘层13的制备过程中,可以在沉积绝缘材料后进行刻蚀,以在与所述第一区域101对应处形成凹槽,进而实现所述第一子表面131低于所述第二子表面132。
图2和图3仅为示例性的说明,以两种不同厚度的色阻进行说明,在所述第一子表面131上设置所述第三色阻23,在所述第二子表面132上设置所述第一色阻21和所述第二色阻22,所述第一色阻21为蓝色色阻,所述第二色阻22为红色色阻,所述第三色阻23为绿色色阻。在其他实施例中,所述第一色阻21、所述第二色阻22、以及所述第三色阻分别为红、绿、蓝色阻中的一种。
如图3所示,所述第一衬底10还包括依次设置于所述玻璃基板11上的栅极121、扫描线122、非晶硅层141、N型掺杂非晶硅层142、源极151、漏极152以及数据线153。
所述栅极121设置于所述玻璃基板11上,所述栅极绝缘层13覆盖所述栅极121,所述非晶硅层141设置于所述栅极绝缘层13上且与所述栅极121对应设置,所述N型掺杂非晶硅层142设置与非晶硅层141的两个端部上方且露出背沟道,所述源极151和所述漏极152设置于所述N型掺杂非晶硅层142上,且分别与所述非晶硅层141两侧的N型掺杂非晶硅层142相接触。
所述源极151、所述漏极152以及所述栅极绝缘层13上设置有钝化层16,所述钝化层16用以保护其下方的金属器件。
所述第一色阻21、所述第二色阻22、以及所述第三色阻23设置于所述钝化层16上。
多条所述扫描线122与多条所述数据线153相互交叉设置,限定出像素区域,所述光阻层20的多个色阻的主体部分位于所述像素区域内,所述扫描线122与所述栅极121同层设置,且与所述栅极121连接,所述数据线153与所述源极151、漏极152同层设置,且与所述源极151连接。
如图4所示,所述液晶显示面板100还包括像素电极40和有机平坦层30,所述有机平坦层30设置于所述光阻层20上,所述像素电极40设置于所述有机平坦层30上。
所述液晶显示面板100上设置有过孔31,所述像素电极40通过所述过孔31与所述漏极152连接,所述过孔31至上而下依次穿过所述有机平坦层30、所述光阻层20对应处的色阻(第三色阻23)、以及钝化层16。
如图5~图7所示,本发明实施例的液晶显示面板100的制备方法如下所示。
首先,利用物理气相溅射沉积法,在所述玻璃基板11上沉积金属层,并通过光刻工艺形成图案化的栅极121与扫描线122。
之后利用化学气相沉积法,在所述栅极121上依次整面沉积栅极绝缘层材料膜层13’、非晶硅材料膜层141’、N型掺杂非晶硅材料膜层142’,再利用多段差掩模工艺形成厚度不同的膜层。
具体地,在所述N型掺杂非晶硅材料膜层142’上涂布光刻胶材料,在利用多段式穿透率掩模板对所述光刻胶材料进行曝光、显影形成具有多段高度差的光刻胶200,所述光刻胶200包括厚度依次减小的第二段光刻胶202、第三段光刻胶203、以及第一段光刻胶201,所述第二段光刻胶202与所述N型掺杂非晶硅层142对应,所述第三段光刻胶203与所述非晶硅层141的背沟道对应,所述光刻胶200的整体部分与所述液晶显示面板100的第二区域101对应,不含光刻胶200的区域与所述液晶显示面板100的第一区域101对应。
之后,对所述N型掺杂非晶硅材料膜层142’、非晶硅材料膜层141’、栅极绝缘层材料膜层13’以及进行干刻蚀,以形成图案化的所述N型掺杂非晶硅层142、非晶硅层141、栅极绝缘层13。经过刻蚀后,所述栅极绝缘层13的第一子表面131高度低于所述第二子表面132高度,其中,所述栅极绝缘层13被刻蚀掉的深度(即刻蚀后形成的凹槽深度)根据后续需要设置在此处的色阻的膜层厚度而定。
如图7所示,利用物理气相沉积溅射法,在所述N型掺杂非晶硅层142和栅极绝缘层13上沉积金属层,通过光刻工艺形成图案化的所述源极151、所述漏极152以及所述数据线153。
最后,利用化学气相沉积法,在所述源极151、所述漏极152以及所述栅极绝缘层13上形成钝化层16,通过光刻工艺在所述钝化层16上形成过孔31。
在形成以上结构的第一衬底10上,可通过黄光工艺形成所述第一色阻21、所述第二色阻22、所述第三色阻23。由于在前续制程中,将所述栅极绝缘层13设计为具有不同高度差的表面,因此所述光阻层20中的色阻可在不同高度的表面制备,从而使得最终形成的所述第一色阻21、所述第二色阻22、以及所述第三色阻23之间没有段位差,使三者表面平齐。
通过黄光工艺,再在所述光阻层20上形成有机平坦层30,之后通过光刻工艺在所述有机平坦层30上形成像素电极40。
所述液晶显示面板100还包括液晶层以及第二衬底,所述液晶层夹设于所述第二衬底与所述第一衬底10之间,所述第二衬底朝向所述第一衬底10的一侧设置有黑矩阵和设置于所述黑矩阵上的公共电极,所述液晶层设置于所述公共电极与所述像素电极40之间。
如图8和图9所示,在其他实施例中,所述第一衬底10为玻璃基板11,所述光阻层20包括黑矩阵24和多个彩色色阻25,所述黑矩阵24和所述多个彩色色阻25设置于所述第一衬底10上。
所述黑矩阵24设置于所述第一区域101内,所述黑矩阵24背离所述第一衬底10的一侧表面与所述第二区域102的顶面平齐。
所述彩色色阻25的主体部分设置于所述第二区域102内,所述多个彩色色阻25的背离所述第一衬底10的一侧表面相互平齐。
现有的彩膜基板制作工艺过程中,由于所述玻璃基板11上的黑矩阵24具有一定的高度,在所述玻璃基板11上制备彩色滤光层时,会造成不同区域的色阻流动性存在差异,在相邻色阻的交叠区域形成牛角段差,进而导致色阻的厚度存在差异,背光透过时造成显示不均,本实施例针对色阻存在段差的问题进行改进,消除黑矩阵24对色阻厚度的影响。
所述第一区域101和所述第二区域102交替排列,即两相邻的所述第二区域102之间设置有一个所述第一区域101。第一区域101设置有凹槽111,所述黑矩阵嵌设于相应的所述凹槽内。
其中,所述凹槽111的深度等于所述黑矩阵24的厚度,进而使得所述黑矩阵24与所述第一衬底10保持在同一水平面,后续在所述第二区域102上制备所述彩色色阻25时,所述黑矩阵24的高度不会对所述彩色色阻25的流动性造成影响,从而消除所述彩色色阻25的段差,进而提高显示品质。
具体地,通过黄光工艺在所述玻璃基板11的与所述第二区域102对应处形成图案化的光刻胶,之后,再对所述玻璃基板11进行湿法刻蚀,在所述第一区域101处形成所述凹槽111,最后剥离该光刻胶,形成图案化的所述第一衬底10。
通过黄光工艺在所述凹槽111内形成黑色光阻,之后再通过黄光工艺在所述第一衬底10上形成多个所述彩色色阻25,所述彩色色阻25为红色色阻、绿色色阻、以及蓝色色阻中的一种,红色色阻、绿色色阻、以及蓝色色阻相邻分布在所述第一衬底10上,且被所述黑色光阻间隔开,所述多个黑色光阻即为黑色矩阵24,用以遮挡像素漏光,防止相邻色阻之间产生混色现象,进而提高所述液晶显示面板100的对比度。
如图10所示,所述液晶显示面板100还包括第二衬底50和液晶层60,所述液晶层60夹设于所述第二衬底50和所述第一衬底10之间,所述第二衬底50为薄膜晶体管阵列基板,所述黑色矩阵24和所述彩色色阻25设置于所述第一衬底10朝向所述第二衬底50的一侧,所述第一衬底10朝向所述第二衬底50的一侧还设置有公共电极(图中未示出),所述第二衬底50的结构可参考现有技术中的薄膜晶体管阵列结构,这里不再赘述。
有益效果:本发明通过在衬底上开槽,将黑矩阵嵌设于槽内以消除黑矩阵高度对色阻段差的影响,或者根据色阻之间的高度差在COA型衬底上设计不同区域的段差,使得后续制备的色阻的表面平齐,从而解决色阻段差对液晶翻转造成的影响,进而提高液晶显示的品质。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (17)

  1. 一种液晶显示面板,其包括:
    第一衬底,所述第一衬底包括第一区域和第二区域;
    光阻层,设置于所述第一衬底上;
    第二衬底;以及
    液晶层,夹设于所述第一衬底和所述第二衬底之间;其中,
    所述第一区域的顶面低于所述第二区域的顶面,所述光阻层包括多个设置于所述第一区域或所述第二区域的光阻,且所述多个光阻背离所述第一衬底的一侧表面相互平齐;
    所述光阻层包括设置于所述第一区域和所述第二区域上的第一色阻、第二色阻、以及第三色阻,且所述第一子色阻背离所述第一衬底的表面、所述第二色阻背离所述第一衬底的表面以及所述第三色阻背离所述第一衬底的表面相互平齐。
  2. 根据权利要求1所述的液晶显示面板,其中,所述第一衬底包括栅极绝缘层,所述栅极绝缘层包括同侧设置且靠近所述光阻层的第一子表面和第二子表面,所述第一子表面与所述第一区域对应,所述第二子表面与所述第二区域对应。
  3. 根据权利要求2所述的液晶显示面板,其中,所述第一子表面低于所述第二子表面。
  4. 根据权利要求3所述的液晶显示面板,其中,所述第一色阻、所述第二色阻、以及所述第三色阻中的至少一种设置于所述第一子表面上。
  5. 根据权利要求3所述的液晶显示面板,其中,所述第一子表面与所述第二子表面的高度差等于所述光阻层中的不同厚度的色阻之间的厚度差。
  6. 一种液晶显示面板,其包括:
    第一衬底,所述第一衬底包括第一区域和第二区域;
    光阻层,设置于所述第一衬底上;其中,
    所述第一区域的顶面低于所述第二区域的顶面,所述光阻层包括多个设置于所述第一区域或所述第二区域的光阻,且所述多个光阻背离所述第一衬底的一侧表面相互平齐。
  7. 根据权利要求6所述的液晶显示面板,其中,所述光阻层包括设置于所述第一区域和所述第二区域上的第一色阻、第二色阻、以及第三色阻,且所述第一子色阻背离所述第一衬底的表面、所述第二色阻背离所述第一衬底的表面以及所述第三色阻背离所述第一衬底的表面相互平齐。
  8. 根据权利要求7所述的液晶显示面板,其中,所述第一衬底包括栅极绝缘层,所述栅极绝缘层包括同侧设置且靠近所述光阻层的第一子表面和第二子表面,所述第一子表面与所述第一区域对应,所述第二子表面与所述第二区域对应。
  9. 根据权利要求8所述的液晶显示面板,其中,所述第一子表面低于所述第二子表面。
  10. 根据权利要求9所述的液晶显示面板,其中,所述第一色阻、所述第二色阻、以及所述第三色阻中的至少一种设置于所述第一子表面上。
  11. 根据权利要求9所述的液晶显示面板,其中,所述第一子表面与所述第二子表面的高度差等于所述光阻层中的不同厚度的色阻之间的厚度差。
  12. 根据权利要求6所述的液晶显示面板,其中,所述液晶显示面板还包括像素电极和有机平坦层,所述有机平坦层设置于所述光阻层上,所述像素电极设置于所述有机平坦层上。
  13. 根据权利要求6所述的液晶显示面板,其中,所述光阻层包括设置于所述第一区域的黑矩阵,且所述黑矩阵背离所述第一衬底的一侧表面与所述第一区域的顶面平齐。
  14. 根据权利要求13所述的液晶显示面板,其中,所述第一衬底的第一区域设置有凹槽,所述黑矩阵嵌设于所述凹槽内。
  15. 根据权利要求14所述的液晶显示面板,其中,所述凹槽的深度与所述黑矩阵的厚度相同。
  16. 根据权利要求13所述的液晶显示面板,其中,所述光阻层还包括相邻且间隔设置的多个彩色色阻,所述黑矩阵设置于任意两相邻的所述彩色色阻之间。
  17. 根据权利要求16所述的液晶显示面板,其中,所述第二区域上设置有所述多个彩色色阻,且所述多个彩色色阻的背离所述第一衬底的一侧表面相互平齐。
PCT/CN2019/117929 2019-09-12 2019-11-13 液晶显示面板 WO2021047022A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/618,814 US20210080780A1 (en) 2019-09-12 2019-11-13 Liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910863793.2 2019-09-12
CN201910863793.2A CN110703476B (zh) 2019-09-12 2019-09-12 液晶显示面板

Publications (1)

Publication Number Publication Date
WO2021047022A1 true WO2021047022A1 (zh) 2021-03-18

Family

ID=69195128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117929 WO2021047022A1 (zh) 2019-09-12 2019-11-13 液晶显示面板

Country Status (3)

Country Link
US (1) US20210080780A1 (zh)
CN (1) CN110703476B (zh)
WO (1) WO2021047022A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596494B (zh) * 2020-05-21 2023-10-03 Tcl华星光电技术有限公司 一种阵列基板及其制备方法
CN111965875B (zh) * 2020-08-07 2022-03-08 武汉华星光电技术有限公司 显示基板及显示面板
CN113299709B (zh) * 2021-05-14 2024-04-12 京东方科技集团股份有限公司 彩膜基板、显示设备
CN113589577B (zh) * 2021-07-21 2023-07-25 Tcl华星光电技术有限公司 显示面板及移动终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344607A (zh) * 2008-08-21 2009-01-14 友达光电股份有限公司 彩色滤光片及其制作方法
CN102722056A (zh) * 2011-03-29 2012-10-10 京东方科技集团股份有限公司 彩色滤光阵列基板及其制造方法和液晶显示面板
JP2015025989A (ja) * 2013-07-29 2015-02-05 セイコーエプソン株式会社 電気光学装置用基板、電気光学装置、電子機器、及び電気光学装置用基板の製造方法
CN106773214A (zh) * 2017-01-03 2017-05-31 京东方科技集团股份有限公司 一种显示基板及其制造方法、显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101398643B1 (ko) * 2006-09-18 2014-05-30 삼성디스플레이 주식회사 박막 트랜지스터 기판과 이의 제조 방법 및 이를 구비한액정표시패널
CN102033345B (zh) * 2009-09-30 2014-01-15 北京京东方光电科技有限公司 液晶显示器及阵列基板的制造方法
CN103278963B (zh) * 2013-05-23 2017-04-19 京东方科技集团股份有限公司 彩色滤光阵列基板及其制造方法、显示装置
US10175543B2 (en) * 2015-06-12 2019-01-08 Samsung Display Co., Ltd. Display substrate and liquid crystal display having the same
CN105607368B (zh) * 2016-01-04 2020-02-07 重庆京东方光电科技有限公司 阵列基板及其制备方法、显示装置
CN208737148U (zh) * 2018-09-30 2019-04-12 惠科股份有限公司 一种彩色滤光片基板、光罩及显示面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344607A (zh) * 2008-08-21 2009-01-14 友达光电股份有限公司 彩色滤光片及其制作方法
CN102722056A (zh) * 2011-03-29 2012-10-10 京东方科技集团股份有限公司 彩色滤光阵列基板及其制造方法和液晶显示面板
JP2015025989A (ja) * 2013-07-29 2015-02-05 セイコーエプソン株式会社 電気光学装置用基板、電気光学装置、電子機器、及び電気光学装置用基板の製造方法
CN106773214A (zh) * 2017-01-03 2017-05-31 京东方科技集团股份有限公司 一种显示基板及其制造方法、显示装置

Also Published As

Publication number Publication date
US20210080780A1 (en) 2021-03-18
CN110703476B (zh) 2021-01-15
CN110703476A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2021047022A1 (zh) 液晶显示面板
US10473991B2 (en) Manufacturing method of liquid crystal display panel
WO2017118050A1 (zh) 阵列基板及其制备方法、显示装置
WO2013152602A1 (zh) 彩膜基板及其制造方法、以及液晶显示器
WO2017008370A1 (zh) 阵列彩膜集成式液晶显示面板的制作方法及其结构
CN105974636A (zh) 液晶显示面板的制作方法
WO2019047369A1 (zh) 阵列基板及其制作方法
WO2017028325A1 (zh) 液晶面板
TWI438536B (zh) 液晶顯示器及其製造方法
WO2014169525A1 (zh) 阵列基板及其制备方法、显示装置
WO2017117835A1 (zh) 液晶显示面板、阵列基板及其制造方法
WO2020052020A1 (zh) 一种显示面板及其制程方法和显示装置
WO2019075900A1 (zh) 液晶显示面板及其制作方法
WO2014131238A1 (zh) 阵列基板及其制作方法、显示面板及其制作方法
WO2020052097A1 (zh) 阵列基板及显示面板
CN110174803A (zh) 阵列基板及其制作方法
US20200081301A1 (en) Array substrate and display panel
WO2020015083A1 (zh) 一种液晶显示面板及其制备方法
WO2021134867A1 (zh) 显示面板及其制作方法
WO2021068316A1 (zh) 一种显示面板及其制作方法
WO2014201714A1 (zh) Cf玻璃基板及其制作方法、液晶显示装置
WO2022052224A1 (zh) 阵列基板及其制造方法
US7102716B2 (en) LCD with TFT on upper substrate and color filter on each substrate
US10527879B1 (en) Liquid crystal display panel and manufacturing method for the same
CN110632801A (zh) 显示面板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945324

Country of ref document: EP

Kind code of ref document: A1