WO2021044736A1 - 照明装置及び表示装置 - Google Patents

照明装置及び表示装置 Download PDF

Info

Publication number
WO2021044736A1
WO2021044736A1 PCT/JP2020/027265 JP2020027265W WO2021044736A1 WO 2021044736 A1 WO2021044736 A1 WO 2021044736A1 JP 2020027265 W JP2020027265 W JP 2020027265W WO 2021044736 A1 WO2021044736 A1 WO 2021044736A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
light source
transparent substrate
control unit
slope
Prior art date
Application number
PCT/JP2020/027265
Other languages
English (en)
French (fr)
Inventor
三井 雅志
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2021044736A1 publication Critical patent/WO2021044736A1/ja
Priority to US17/680,571 priority Critical patent/US20220179271A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1503Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by oxidation-reduction reactions in organic liquid solutions, e.g. viologen solutions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices

Definitions

  • the embodiment of the present invention relates to a lighting device and a display device.
  • an electrochromic display device including a pair of electrodes and an electrolyte layer containing an electrochromic material sandwiched between these electrodes has been proposed.
  • Such a display device is configured to be able to switch between a transparent state, a mirror surface state, and a light-shielded (black) state by controlling the voltage applied to the electrolyte layer.
  • An object of the present embodiment is to provide a lighting device and a display device capable of improving the light utilization efficiency.
  • the lighting device of this embodiment is
  • the electrochromic element includes an electrochromic element and a light source provided on a side edge of the electrochromic element, and the electrochromic element includes a first transparent substrate, a first transparent electrode provided on the first transparent substrate, and the above.
  • a second transparent substrate facing the first transparent substrate, a protrusion provided on the second transparent substrate and protruding toward the first transparent substrate, and a second transparent electrode provided on a part of the protrusion.
  • An electrolyte layer provided between the first transparent substrate and the second transparent substrate and containing an electrochromic material containing an oxidation-reducible reflective material is provided.
  • the display device of this embodiment is A reflective display panel, an electrochromic element superimposed on the display panel, and a light source provided on a side edge of the electrochromic element are provided, and the electrochromic element includes a first transparent substrate and the first transparent substrate.
  • a first transparent electrode provided on the transparent substrate, a second transparent substrate facing the first transparent substrate, a protrusion provided on the second transparent substrate and protruding toward the first transparent substrate, and the protrusion.
  • a second transparent electrode provided in a part of the above, and an electrolyte layer provided between the first transparent substrate and the second transparent substrate and containing an electrochromic material including a redox-reducible reflective material. Be prepared.
  • FIG. 1 is a plan view showing a configuration example of the lighting device IL according to the present embodiment.
  • FIG. 2 is a diagram for explaining a first mode of the lighting device IL shown in FIG.
  • FIG. 3 is a diagram for explaining a second mode in the lighting device IL shown in FIG.
  • FIG. 4 is a diagram for explaining the inclination angle of the first slope 23A.
  • FIG. 5 is a plan view showing a configuration example of the protrusion 23 provided on the electrochromic element EC.
  • FIG. 6 is a cross-sectional view showing another configuration example of the electrochromic element EC.
  • FIG. 7 is a cross-sectional view showing another configuration example of the electrochromic element EC.
  • FIG. 8 is a plan view showing a configuration example of the display panel PNL.
  • FIG. 9 is a diagram for explaining a first display mode of the display device DSP of the present embodiment.
  • FIG. 10 is a diagram for explaining a second display mode of the display device DSP of the present embodiment.
  • FIG. 11 is a cross-sectional view showing another configuration example of the display device DSP of the present embodiment.
  • FIG. 1 is a plan view showing a configuration example of the lighting device IL according to the present embodiment.
  • the first direction X, the second direction Y, and the third direction Z are orthogonal to each other, but may intersect at an angle other than 90 degrees.
  • the first direction X and the second direction Y correspond to the directions parallel to the main surface of the substrate constituting the lighting device IL
  • the third direction Z corresponds to the thickness direction of the lighting device IL.
  • viewing the XY plane defined by the first direction X and the second direction Y is referred to as a plan view.
  • the lighting device IL includes an electrochromic element EC, a light source LS, and a wiring board F1.
  • the electrochromic element EC includes a first substrate SUB1, a second substrate SUB2, an electrolyte layer EL, and a seal SE1.
  • the first substrate SUB1 and the second substrate SUB2 are superimposed in a plan view.
  • the first substrate SUB1 and the second substrate SUB2 are adhered by the seal SE1.
  • the electrolyte layer EL is held between the first substrate SUB1 and the second substrate SUB2 and is sealed by the seal SE1.
  • the area surrounded by the seal SE1 is referred to as the effective area or the active area AA.
  • the wiring board F1 is mounted on the extension portion Ex1 of the second board SUB2.
  • the extending portion Ex1 corresponds to a portion of the second substrate SUB2 that does not overlap with the first substrate SUB1.
  • the wiring board F1 is, for example, a bendable flexible printed circuit board.
  • the light source LS is, for example, a light emitting diode, and emits white illumination light.
  • the light source LS is provided on the side edge EA of the electrochromic element EC, and emits illumination light toward the side edge EA.
  • the electrochromic element EC is formed in a rectangular shape in a plan view, and the side edge EA corresponds to the short side of the electrochromic element EC.
  • the light source LS may be provided on the side edge corresponding to the long side of the electrochromic element EC. Further, the light source LS may be provided on the extension portion Ex1.
  • the plurality of light sources LS are arranged at intervals in the first direction X.
  • FIG. 2 is a diagram for explaining a first mode of the lighting device IL shown in FIG. First, an example of the cross-sectional structure of the electrochromic element EC will be described with reference to FIG.
  • the first substrate SUB 1 includes a first transparent substrate 10, a first transparent electrode 11, and a first transparent layer 12.
  • the first transparent substrate 10 has an inner surface 10A on the side facing the electrolyte layer EL and an outer surface 10B on the opposite side of the inner surface 10A.
  • the first transparent electrode 11 is provided on the inner surface 10A of the first transparent substrate 10.
  • the first transparent layer 12 is provided on the outer surface 10B of the first transparent substrate.
  • the first transparent electrode 11 and the first transparent layer 12 are formed over substantially the entire area of the active area AA shown in FIG.
  • the first transparent layer 12 may be provided between the first transparent substrate 10 and the first transparent electrode 11.
  • the second substrate SUB2 includes a second transparent substrate 20, a second transparent electrode 21, a second transparent layer 22, and a protrusion 23.
  • the second transparent substrate 20 has an inner surface 20A on the side facing the electrolyte layer EL and an outer surface 20B on the opposite side of the inner surface 20A.
  • the second transparent layer 22 is provided on the inner surface 20A of the second transparent substrate 20.
  • the protrusion 23 is provided on the inner surface 20A side of the second transparent substrate and projects toward the first transparent substrate 10. In the example shown in FIG. 2, the protrusion 23 is provided in contact with the second transparent layer 22.
  • the second transparent layer 22 is formed over almost the entire area of the active area AA shown in FIG. 1, and is also provided between the protrusions 23 adjacent to the second direction Y.
  • the second transparent electrode 21 is provided on a part of the protrusion 23.
  • the second transparent electrode 21 faces the first transparent electrode 11 in the third direction Z with the electrolyte layer EL interposed therebetween.
  • the first transparent substrate 10 and the second transparent substrate 20 are insulating substrates such as a glass substrate and a resin substrate.
  • the first transparent electrode 11 and the second transparent electrode 21 are formed of, for example, a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • At least the surface of the second transparent electrode 21 is smoothed to such an extent that a smooth reflective layer (mirror surface) described later can be formed.
  • the protrusion 23 is a transparent insulator, and is formed of, for example, a resin.
  • the protrusion 23 has a substantially triangular cross-sectional shape in the cross-sectional view of the YY plane defined by the second direction Y and the third direction Z.
  • the protrusion 23 has a first slope 23A on the side facing the light source LS and a second slope 23B on the opposite side of the first slope 23A.
  • the second transparent electrode 21 is provided on the first slope 23A and exposes the second slope 23B.
  • the first transparent electrode 11, the second transparent electrode 21, and the second slope 23B are in contact with the electrolyte layer EL.
  • the first transparent layer 12 and the second transparent layer 22 are formed of an inorganic insulating material or an organic insulating material.
  • the refractive index of the first transparent layer 12 is smaller than that of the first transparent substrate 10.
  • the refractive index of the second transparent layer 22 is smaller than the refractive index of the second transparent substrate 20.
  • the refractive index n1 of the first transparent substrate 10 and the second transparent substrate 20 is about 1.5
  • the refractive index n2 of the first transparent layer 12 and the second transparent layer 22 is about 1.4 (n1>). n2).
  • the electrolyte layer EL is provided between the first transparent substrate 10 and the second transparent substrate 20.
  • the electrolyte layer EL is formed of, for example, a liquid electrolyte containing an electrochromic material containing silver.
  • the electrolyte layer EL in the state where no voltage is applied is generally transparent.
  • silver will be described as an example, but the present invention is not limited to this.
  • a liquid electrolyte containing an electrochromic material containing other redox-reducible reflective materials such as platinum, gold, aluminum, manganese, or lead and other metallic materials may be used as the electrolyte layer EL.
  • another functional layer such as an electrochromic layer may be provided between the electrolyte layer EL and the first transparent electrode 11, or between the electrolyte layer EL and the second transparent electrode 21.
  • the lighting device IL further includes an illuminance sensor 100, a sensor control unit 110, a light source control unit 111, and a voltage control unit 112.
  • the illuminance sensor 100 measures the illuminance of the external light incident on the illuminating device IL.
  • the sensor control unit 110 outputs control signals to the light source control unit 111 and the voltage control unit 112, respectively, based on the illuminance measured by the illuminance sensor 100.
  • the sensor control unit 110 outputs a control signal for executing the first mode when the measured illuminance is equal to or higher than a predetermined threshold value (bright place). Further, the sensor control unit 110 outputs a control signal for executing the second mode described later when the measured illuminance is less than a predetermined threshold value (dark place).
  • the light source control unit 111 controls the light source LS based on the control signal from the sensor control unit 110.
  • the voltage control unit 112 controls the voltage applied to the electrolyte layer EL based on the control signal from the sensor control unit 110.
  • the first mode will be described with reference to FIG.
  • the light source control unit 111 turns off the light source LS based on the control signal from the sensor control unit 110.
  • the voltage control unit 112 controls the voltages of the first transparent electrode 11 and the second transparent electrode 21 so as to form a transparent state in the electrolyte layer EL based on the control signal from the sensor control unit 110.
  • the voltage control unit 112 controls so that no voltage is applied to the electrolyte layer EL.
  • a transparent state is formed in the electrolyte layer EL.
  • the external light L0 transmitted through the second substrate SUB2 is hardly reflected by the electrolyte layer EL and is transmitted through the first substrate SUB1.
  • the external light L0 that has reached the second transparent electrode 21 and the protrusion 23 is also hardly reflected and passes through the first substrate SUB1.
  • the light transmitted through the first substrate SUB1 is similarly transmitted through the second substrate SUB2.
  • FIG. 3 is a diagram for explaining a second mode in the lighting device IL shown in FIG.
  • the light source control unit 111 lights the light source LS based on the control signal from the sensor control unit 110.
  • the voltage control unit 112 controls the voltages of the first transparent electrode 11 and the second transparent electrode 21 so as to form the reflection layer 25 on the second transparent electrode 21 based on the control signal from the sensor control unit 110.
  • the voltage control unit 112 controls so that the potential of the second transparent electrode 21 is a negative potential relative to the potential of the first transparent electrode 11.
  • the silver ions eluted in the electrolyte layer EL are reduced, and the fine particles of silver 24 are deposited on the surface of the second transparent electrode 21.
  • the second transparent electrode 21 is covered with the deposited silver 24, and the reflective layer 25 is formed as an aggregate of the aggregated silver 24.
  • the voltage applied to the electrolyte layer EL is released, the precipitated silver is oxidized to silver ions and eluted in the electrolyte layer EL.
  • silver can be deposited on the surface of the first transparent electrode 11.
  • the electrochromic element EC can be in a light-shielded state (or a black state).
  • the illuminating light L1 emitted from the light source LS propagates between the first transparent layer 12 and the second transparent layer 22 along the second direction Y. Then, the illumination light L1 that has reached the reflection layer 25 is reflected toward the first substrate SUB1 and is transmitted through the first substrate SUB1. At this time, since the reflection layer 25 is formed on the first slope 23A, the illumination light L1 propagating along the second direction Y is in a direction close to the normal direction (or the third direction Z) of the illumination device IL. It is reflected and passes through the first substrate SUB1. Further, the illumination light L1 propagating between the first transparent electrode 11 and the reflecting layer 25 further propagates along the second direction Y and is reflected by the other reflecting layer 25.
  • FIG. 4 is a diagram for explaining the inclination angle of the first slope 23A.
  • the angle of incidence of the light L1 on the first substrate SUB1 is ⁇ 1
  • the exit angle of the light L1 from the first substrate SUB1 is ⁇ 2
  • the inclination angle of the first slope 23A is ⁇ 3.
  • Each of ⁇ 1 to ⁇ 3 is an angle formed with respect to a normal line (indicated by a dotted line in the figure) parallel to the third direction Z.
  • the inclination angle ⁇ 3 is expressed by the following equation.
  • n1 is the refractive index of the first transparent substrate 10
  • n2 is the refractive index of the first transparent layer 12.
  • ⁇ 3 90- (sin -1 (n1 / n2) -sin -1 (sin ⁇ 2 * n1 / n2))
  • the inclination angle ⁇ 3 is set to 20 ° to 35 °.
  • FIG. 5 is a plan view showing a configuration example of the protrusion 23 provided on the electrochromic element EC.
  • the plurality of light sources LS are arranged at intervals along the first direction X.
  • the plurality of protrusions 23 extend in the first direction X and are arranged at intervals along the second direction Y.
  • the second transparent electrode 21 is provided on each of the protrusions 23. As described above, the second transparent electrode 21 is formed so as to cover a part of the protrusion 23 (the slope on the side facing the light source LS).
  • the area of the second transparent electrode 21 is preferably 50% or less of the area of the protrusion 23 from the viewpoint of not hindering the transmission of light when the reflective layer 25 is formed on the second transparent electrode 21. ..
  • Each of the second transparent electrodes 21 is electrically connected to the wiring LA.
  • the wiring LA is provided outside the active area AA and is made of a metal material such as aluminum.
  • Each of the wiring LAs is electrically connected to the terminal TA.
  • the terminal TA is electrically connected to the wiring board F1 shown in FIG.
  • the electrochromic element EC has a first region A1 and a second region A2 in the active area AA.
  • the second region A2 is located between the light source LS and the first region A1.
  • the distance P1 of the adjacent protrusions 23 in the first region A1 is smaller than the distance P2 of the adjacent protrusions 23 in the second region A2. That is, the protrusions 23 are arranged closer to the distance from the light source LS, or sparsely to be closer to the light source LS.
  • the second transparent electrodes 21 for forming the reflective layer 25 are arranged densely as they are separated from the light source LS, or are arranged sparsely as they are closer to the light source LS.
  • the illumination light L1 from the light source LS gradually attenuates as it propagates along the second direction Y. Further, as described with reference to FIG. 3, the illumination light L1 is reflected by the reflection layer 25. Therefore, the brightness of the illumination light L1 in the first region A1 separated from the light source LS is extremely lower than the brightness of the illumination light L1 in the second region A2.
  • the second transparent electrode 21 is arranged closer to the distance from the light source LS, when the reflection layer 25 is formed on the second transparent electrode 21, the illumination light L1 in the second region A2 The reflection is suppressed, and the reflection of the illumination light L1 in the first region A1 is promoted. As a result, the difference in brightness between the first region A1 and the second region A2 is alleviated.
  • FIG. 6 is a cross-sectional view showing another configuration example of the electrochromic element EC.
  • the configuration example shown in FIG. 6 is different from the configuration example shown in FIG. 2 and the like in that the protrusion 23 has a substantially trapezoidal cross-sectional shape in cross-sectional view.
  • the protrusions 23 are the first slope 23A on the side facing the light source LS, the second slope 23B on the opposite side of the first slope 23A, the upper bottom surface 23C in contact with the second transparent layer 22, and the lower surface facing the first substrate SUB1. It has a bottom surface 23D. In the second direction Y, the width of the upper bottom surface 23C is larger than the width of the lower bottom surface 23D.
  • the inclination angle ⁇ 3 of the first slope 23A is as described with reference to FIG. However, when the first slope 23A is not a flat surface, the inclination angle ⁇ 3 is, for example, the tangent line and the normal line of the first slope 23A at a position of 1/2 of the height H of the protrusion 23 of the first slope 23A. It can be specified as the angle formed by the angle formed by.
  • the second transparent electrode 21 is provided on the first slope 23A and exposes the second slope 23B and the lower bottom surface 23D.
  • FIG. 7 is a cross-sectional view showing another configuration example of the electrochromic element EC.
  • the configuration example shown in FIG. 7 is different from the configuration example shown in FIG. 2 and the like in that the protrusion 23 has a substantially semicircular cross-sectional shape in cross-sectional view.
  • the protrusion 23 has a first slope 23A on the side facing the light source LS and a second slope 23B on the opposite side of the first slope 23A.
  • the first slope 23A and the second slope 23B are curved surfaces.
  • the second transparent electrode 21 is provided on the first slope 23A and exposes the second slope 23B.
  • the inclination angle ⁇ 3 of the first slope 23A is defined as, for example, the angle formed by the angle between the tangent line and the normal line of the first slope 23A at the position of 1/2 of the height H of the protrusion 23 of the first slope 23A. can do.
  • the inclination angle ⁇ 3 may be defined as the angle formed by the tangent line and the normal line of the first slope 23A at the position where the radius of curvature takes an average value. it can.
  • the case where the radius of curvature of the protrusion 23 is not constant includes, for example, the case where the protrusion 23 has a semi-elliptical shape.
  • FIG. 8 is a plan view showing a configuration example of the display panel PNL.
  • the display panel PNL of the present embodiment is a reflection type display panel in which an image is displayed by selectively reflecting external light.
  • Examples of the reflective display panel include a liquid crystal panel provided with a liquid crystal layer and a display panel provided with an electrophoresis layer.
  • a liquid crystal panel will be described as an example of the display panel PNL.
  • the display panel PNL includes a third substrate SUB3, a fourth substrate SUB4, a liquid crystal layer LC, and a seal SE2.
  • the third substrate SUB3 and the fourth substrate SUB4 are superimposed in a plan view.
  • the third substrate SUB3 and the fourth substrate SUB4 are adhered by the seal SE2.
  • the liquid crystal layer LC is held between the third substrate SUB3 and the fourth substrate SUB4, and is sealed by the seal SE2.
  • the area surrounded by the seal SE2 has a display area DA for displaying an image.
  • the display area DA includes a plurality of pixels PX arranged in a matrix in the first direction X and the second direction Y.
  • each pixel PX includes a switching element SW, a pixel electrode PE, a common electrode CE, a liquid crystal layer LC, and the like.
  • the switching element SW is composed of, for example, a thin film transistor (TFT), and is electrically connected to the scanning line G and the signal line S.
  • the scanning line G is electrically connected to the switching element SW in each of the pixels PX arranged in the first direction X.
  • the signal line S is electrically connected to the switching element SW in each of the pixels PX arranged in the second direction Y.
  • the pixel electrode PE is electrically connected to the switching element SW.
  • the common electrode CE is commonly provided for a plurality of pixel electrode PEs.
  • the liquid crystal layer LC is driven by an electric field generated between the pixel electrode PE and the common electrode CE.
  • the capacitance CS is formed, for example, between an electrode having the same potential as the common electrode CE and an electrode having the same potential as the pixel electrode PE.
  • the scanning line G, the signal line S, the switching element SW, and the pixel electrode PE are provided on the third substrate SUB3, and the common electrode CE is provided on the fourth substrate SUB4.
  • the wiring board F2 is mounted on the extension portion Ex2 of the third board SUB3.
  • the extending portion Ex2 corresponds to a portion of the third substrate SUB3 that does not overlap with the fourth substrate SUB4.
  • the wiring board F2 is, for example, a bendable flexible printed circuit board.
  • FIG. 9 is a diagram for explaining a first display mode of the display device DSP of the present embodiment. First, an example of the cross-sectional structure of the display device DSP will be described with reference to FIG.
  • the display device DSP includes a display panel PNL described with reference to FIG. 8, an optical film OF, and an adhesive AD, in addition to the light source LS and the electrochromic element EC constituting the lighting device IL.
  • a display panel PNL described with reference to FIG. 8, an optical film OF, and an adhesive AD, in addition to the light source LS and the electrochromic element EC constituting the lighting device IL.
  • the display panel PNL the basic configuration of the vertical electric field type liquid crystal panel will be described.
  • the third substrate SUB3 includes a third transparent substrate 30, a transparent insulating film 31, a switching element SW, a pixel electrode PE, and an alignment film AL1.
  • the switching element SW is provided between the third transparent substrate 30 and the insulating film 31.
  • the pixel electrode PE is electrically connected to the switching element SW.
  • the alignment film AL1 covers the pixel electrode PE.
  • the fourth substrate SUB4 includes a fourth transparent substrate 40, a common electrode CE, and an alignment film AL2.
  • the common electrode CE is provided over almost the entire display region DA, and faces the plurality of pixel electrodes PE in the third direction Z.
  • the alignment film AL2 covers the common electrode CE.
  • the liquid crystal layer LC is located between the alignment film AL1 and the alignment film AL2.
  • the third transparent substrate 30 and the fourth transparent substrate 40 are insulating substrates such as a glass substrate or a resin substrate.
  • the pixel electrode PE has a reflective electrode. That is, the pixel electrode PE may be a reflective electrode, or the pixel electrode PE may be a laminate of a transparent electrode and a reflective electrode. In one example, the pixel electrode PE is a reflective electrode formed of, for example, a light-reflecting metal material such as silver or aluminum.
  • the common electrode CE is a transparent electrode formed of, for example, a transparent conductive material such as ITO or IZO.
  • the display panel PNL may include a color filter layer, a light-shielding layer, and the like, but the illustration is omitted here.
  • the optical film OF is adhered to the fourth transparent substrate 40.
  • the optical film OF is a film for selectively transmitting the reflected light from the reflective display panel PNL, and includes, for example, a polarizing plate and a retardation plate.
  • the optical film OF may be adhered to the first transparent substrate 10.
  • the electrochromic element EC For the electrochromic element EC, only the main part is shown.
  • the electrochromic element EC is superimposed on the display panel PNL.
  • the active area AA of the electrochromic element EC is superimposed on the display area DA of the display panel PNL.
  • the display panel PNL and the electrochromic element EC are arranged so that the fourth substrate SUB4 and the first substrate SUB1 face each other in the third direction Z. Further, the display panel PNL and the electrochromic element EC are adhered by a transparent adhesive AD interposed between the optical film OF and the first transparent substrate 10.
  • the refractive index of the adhesive AD shall be the same as that of the first transparent substrate 10 and the optical film OF from the viewpoint of suppressing undesired reflection and scattering at the boundary between the display panel PNL and the electrochromic element EC. Is desirable. Further, the adhesive AD may be formed as the first transparent layer 12 provided on the first substrate SUB1.
  • the display device DSP includes a panel control unit 113 in addition to the illuminance sensor 100, the sensor control unit 110, the light source control unit 111, and the voltage control unit 112.
  • the voltage control unit 112 is electrically connected to the wiring board F1.
  • the panel control unit 113 is electrically connected to the wiring board F2.
  • the panel control unit 113 controls the display panel PNL based on the image data, and also controls the drive voltage corresponding to each mode based on the control signal from the sensor control unit 110.
  • the first display mode will be described with reference to FIG.
  • the sensor control unit 110 outputs a control signal for executing the first display mode when the illuminance measured by the illuminance sensor 100 is equal to or higher than a predetermined threshold value (bright place).
  • the light source control unit 111 turns off the light source LS based on the control signal from the sensor control unit 110.
  • the voltage control unit 112 controls the voltages of the first transparent electrode 11 and the second transparent electrode 21 so as to form a transparent state in the electrolyte layer EL based on the control signal from the sensor control unit 110.
  • the external light L0 transmitted through the second substrate SUB2 is transmitted through the first substrate SUB1 and illuminates the display panel PNL.
  • the external light L0 is natural light.
  • the component that has passed through the optical film OF is reflected by the pixel electrode PE.
  • the component that has passed through the optical film OF passes through the first substrate SUB1 and the second substrate SUB2.
  • FIG. 10 is a diagram for explaining a second display mode of the display device DSP of the present embodiment.
  • the sensor control unit 110 outputs a control signal for executing the second display mode when the illuminance measured by the illuminance sensor 100 is less than a predetermined threshold value (dark place).
  • the light source control unit 111 lights the light source LS based on the control signal from the sensor control unit 110.
  • the voltage control unit 112 controls the voltages of the first transparent electrode 11 and the second transparent electrode 21 so as to form the reflection layer 25 on the second transparent electrode 21 based on the control signal.
  • the illumination light L1 emitted from the light source LS enters the electrochromic element EC and propagates along the second direction Y.
  • the illumination light L1 reflected by the reflection layer 25 passes through the first substrate SUB1 and illuminates the display panel PNL.
  • the illumination light L1 is natural light.
  • the component that has passed through the optical film OF is reflected by the pixel electrode PE.
  • the component that has passed through the optical film OF passes through the first substrate SUB1 and the second substrate SUB2.
  • a display device DSP capable of switching between a first display mode and a second display mode according to a usage environment.
  • the reflection layer 25 is not formed on the electrochromic element EC, most of the external light L0 incident on the electrochromic element EC contributes to the illumination of the display panel PNL, and the external light is used. Efficiency can be improved.
  • the reflective layer 25 is not formed and the light guide pattern such as unevenness does not exist, the display quality of the image displayed on the display panel PNL can be improved.
  • the reflection layer 25 is locally formed in the electrochromic element EC, and the illumination light L1 from the light source LS is reflected toward the display panel PNL.
  • the proportion of the illumination light L1 that contributes to the illumination of the display panel PNL is increased as compared with the case where the reflection layer 25 is not formed on the electrochromic element EC, and the utilization efficiency of the illumination light L1 can be improved. it can. Further, by improving the utilization efficiency of the illumination light L1, the brightness of the light source LS can be reduced, and the power consumption can be reduced.
  • the reflected light from the reflection layer 25 is reflected in a direction close to the normal direction of the display panel PNL. Therefore, the brightness when the display device DSP is observed from the front can be improved.
  • the reflective layers 25 formed in the second display mode are arranged densely as they are separated from the light source LS, or are arranged sparsely as they are closer to the light source LS. Therefore, the difference in brightness between the first region A1 separated from the light source LS and the second region A2 close to the light source LS is alleviated, and the entire display panel PNL can be illuminated with substantially uniform brightness.
  • the reflective layer 25 is formed inside the electrochromic element EC (electrolyte layer EL) in the second display mode, and is not formed in the first display mode. Therefore, in the present embodiment, undesired scattering can be suppressed and a decrease in the contrast ratio of the image displayed on the display panel PNL can be suppressed as compared with the case where a light guide pattern such as unevenness is provided. ..
  • FIG. 11 is a cross-sectional view showing another configuration example of the display device DSP of the present embodiment.
  • the light source LS is provided between the extension portion Ex1 of the electrochromic element EC and the extension portion Ex2 of the display panel PNL. Is different. That is, the configuration example shown in FIG. 11 corresponds to the case where the light source LS shown in FIG. 1 is provided in the extension portion Ex1.
  • the light source LS is provided on the side edge EB opposite to the side edge EA of the electrochromic element EC, and emits illumination light toward the side edge EB.
  • the second transparent electrode 21 is provided on the second slope 23B on the side of the protrusion 23 facing the light source LS. Even in such a configuration example, the same effect as the above configuration example can be obtained. In addition, since the light source LS is housed between the extension portions Ex1 and Ex2, the length of the display device DSP along the second direction Y can be shortened.
  • a display device obtained from the configuration disclosed in the present specification is added below.
  • a light source provided on the side edge of the electrochromic element is provided.
  • the electrochromic element is With the first transparent substrate The first transparent electrode provided on the first transparent substrate and A second transparent substrate facing the first transparent substrate and A protrusion provided on the second transparent substrate and protruding toward the first transparent substrate, A second transparent electrode provided on a part of the protrusion and An electrolyte layer provided between the first transparent substrate and the second transparent substrate and containing an electrochromic material containing a redox-reducible reflective material, A lighting device equipped with.
  • the protrusion has a first slope on the side facing the light source and a second slope on the opposite side of the first slope.
  • the lighting device wherein the second transparent electrode is provided on the first slope and exposes the second slope.
  • the first transparent layer provided on the first transparent substrate and A second transparent layer provided on the second transparent substrate is provided.
  • the refractive index of the first transparent layer is smaller than the refractive index of the first transparent substrate.
  • the lighting device according to (1) or (2), wherein the refractive index of the second transparent layer is smaller than the refractive index of the second transparent substrate.
  • Illuminance sensor and A light source control unit that controls the light source and A voltage control unit for controlling the voltage applied to the electrolyte layer is provided.
  • the light source control unit When the illuminance measured by the illuminance sensor is equal to or higher than a predetermined threshold value, the light source control unit turns off the light source, and the voltage control unit controls the voltage so as to form a transparent state in the electrolyte layer. , When the illuminance measured by the illuminance sensor is less than a predetermined threshold value, the light source control unit lights the light source, and the voltage control unit applies a voltage so as to form a reflection layer on the second transparent electrode.
  • the lighting device according to any one of (1) to (3) to be controlled.
  • the plurality of light sources are arranged at intervals in the first direction.
  • the plurality of protrusions are arranged at intervals in the second direction intersecting the first direction.
  • the second transparent electrode is provided on each of the protrusions.
  • the electrochromic element is With the first transparent substrate
  • the first transparent electrode provided on the first transparent substrate and A second transparent substrate facing the first transparent substrate and A protrusion provided on the second transparent substrate and protruding toward the first transparent substrate, A second transparent electrode provided on a part of the protrusion and An electrolyte layer provided between the first transparent substrate and the second transparent substrate and containing an electrochromic material containing a redox-reducible reflective material,
  • a display device equipped with (9)
  • the display panel includes a switching element provided for each pixel, a pixel electrode electrically connected to the switching element, and a common electrode provided over a plurality of pixels.
  • the display device according to (8) or (9), wherein the pixel electrode has a reflective electrode.
  • the protrusion has a first slope on the side facing the light source and a second slope on the opposite side of the first slope.
  • the display device according to any one of (8) to (10), wherein the second transparent electrode is provided on the first slope and exposes the second slope.
  • the first transparent layer provided on the first transparent substrate and A second transparent layer provided on the second transparent substrate is provided.
  • the refractive index of the first transparent layer is smaller than the refractive index of the first transparent substrate.
  • the display device according to any one of (8) to (11), wherein the refractive index of the second transparent layer is smaller than the refractive index of the second transparent substrate.
  • Illuminance sensor and A light source control unit that controls the light source and A voltage control unit for controlling the voltage applied to the electrolyte layer is provided.
  • the light source control unit turns off the light source, and the voltage control unit controls the voltage so as to form a transparent state in the electrolyte layer.
  • the light source control unit lights the light source, and the voltage control unit applies a voltage so as to form a reflection layer on the second transparent electrode.
  • the display device according to any one of (8) to (12) to be controlled.
  • the plurality of light sources are arranged at intervals in the first direction.
  • the plurality of protrusions are arranged at intervals in the second direction intersecting the first direction.
  • the second transparent electrode is provided on each of the protrusions.
  • the display device according to (14), wherein the distance between the protrusions adjacent to each other in the first region is smaller than the distance between the protrusions adjacent to each other in the second region between the light source and the first region.
  • the redox-reducible reflective material is silver.
  • IL ... Illumination device LS ... Light source EC ... Electrochromic element SUB1 ... First substrate 10 ... First transparent substrate 11 ... First transparent electrode 12 ... First transparent layer SUB2 ... Second substrate 20 ... Second transparent substrate 21 ... Second Transparent electrode 22 ... Second transparent layer 23 ... Projection 23A ... First slope 23B ... Second slope 25 ... Reflective layer EL ... Electrolyte layer DSP ... Display device PNL ... Display panel LC ... Liquid crystal layer SW ... Switching element PE ... Pixel electrode CE ... Common electrode 100... Illuminance sensor 110... Sensor control unit 111... Light source control unit 112... Voltage control unit 113... Panel control unit

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本実施形態の目的は、光の利用効率を改善することが可能な照明装置及び表示装置を提供することにある。 本実施形態の照明装置は、エレクトロクロミック素子と、前記エレクトロクロミック素子の側縁に設けられた光源と、を備え、前記エレクトロクロミック素子は、第1透明基板と、前記第1透明基板に設けられた第1透明電極と、前記第1透明基板に対向する第2透明基板と、前記第2透明基板に設けられ、前記第1透明基板に向かって突出した突起と、前記突起の一部に設けられた第2透明電極と、前記第1透明基板と前記第2透明基板との間に設けられ、酸化還元可能な反射性材料を含むエレクトロクロミック材料を含む電解質層と、を備える。

Description

照明装置及び表示装置
 本発明の実施形態は、照明装置及び表示装置に関する。
 表示装置の一例として、一対の電極と、これらの電極の間に挟持されたエレクトロクロミック材料を含む電解質層とを備えたエレクトロクロミック表示装置が提案されている。このような表示装置は、電解質層に印加する電圧を制御することで、透明状態、鏡面状態、遮光(黒)状態を切り替え可能に構成されたものである。
特開2012-181389号公報
 本実施形態の目的は、光の利用効率を改善することが可能な照明装置及び表示装置を提供することにある。
 本実施形態の照明装置は、
 エレクトロクロミック素子と、前記エレクトロクロミック素子の側縁に設けられた光源と、を備え、前記エレクトロクロミック素子は、第1透明基板と、前記第1透明基板に設けられた第1透明電極と、前記第1透明基板に対向する第2透明基板と、前記第2透明基板に設けられ、前記第1透明基板に向かって突出した突起と、前記突起の一部に設けられた第2透明電極と、前記第1透明基板と前記第2透明基板との間に設けられ、酸化還元可能な反射性材料を含むエレクトロクロミック材料を含む電解質層と、を備える。 
 本実施形態の表示装置は、
 反射型の表示パネルと、前記表示パネルに重畳するエレクトロクロミック素子と、前記エレクトロクロミック素子の側縁に設けられた光源と、を備え、前記エレクトロクロミック素子は、第1透明基板と、前記第1透明基板に設けられた第1透明電極と、前記第1透明基板に対向する第2透明基板と、前記第2透明基板に設けられ、前記第1透明基板に向かって突出した突起と、前記突起の一部に設けられた第2透明電極と、前記第1透明基板と前記第2透明基板との間に設けられ、酸化還元可能な反射性材料を含むエレクトロクロミック材料を含む電解質層と、を備える。
 本実施形態によれば、光の利用効率を改善することが可能な照明装置及び表示装置を提供することができる。
図1は、本実施形態に係る照明装置ILの一構成例を示す平面図である。 図2は、図1に示した照明装置ILの第1モードを説明するための図である。 図3は、図1に示した照明装置ILにおける第2モードを説明するための図である。 図4は、第1斜面23Aの傾斜角を説明するための図である。 図5は、エレクトロクロミック素子ECに設けられる突起23の一構成例を示す平面図である。 図6は、エレクトロクロミック素子ECの他の構成例を示す断面図である。 図7は、エレクトロクロミック素子ECの他の構成例を示す断面図である。 図8は、表示パネルPNLの一構成例を示す平面図である。 図9は、本実施形態の表示装置DSPの第1表示モードを説明するための図である。 図10は、本実施形態の表示装置DSPの第2表示モードを説明するための図である。 図11は、本実施形態の表示装置DSPの他の構成例を示す断面図である。
 以下、本実施形態について、図面を参照しながら説明する。なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は、説明をより明確にするため、実際の態様に比べて、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を適宜省略することがある。
  《照明装置》 
 図1は、本実施形態に係る照明装置ILの一構成例を示す平面図である。一例では、第1方向X、第2方向Y、及び、第3方向Zは、互いに直交しているが、90度以外の角度で交差していてもよい。第1方向X及び第2方向Yは、照明装置ILを構成する基板の主面と平行な方向に相当し、第3方向Zは、照明装置ILの厚さ方向に相当する。本実施形態においては、第1方向X及び第2方向Yで規定されるX-Y平面を見ることを平面視という。 
 照明装置ILは、エレクトロクロミック素子ECと、光源LSと、配線基板F1と、を備えている。
 エレクトロクロミック素子ECは、第1基板SUB1と、第2基板SUB2と、電解質層ELと、シールSE1と、を備えている。第1基板SUB1及び第2基板SUB2は、平面視で、重畳している。第1基板SUB1及び第2基板SUB2は、シールSE1によって接着されている。電解質層ELは、第1基板SUB1と第2基板SUB2との間に保持され、シールSE1によって封止されている。シールSE1によって囲まれた領域は、有効領域或いはアクティブエリアAAと称する。 
 配線基板F1は、第2基板SUB2の延出部Ex1に実装されている。延出部Ex1は、第2基板SUB2のうち第1基板SUB1と重畳しない部分に相当する。配線基板F1は、例えば折り曲げ可能なフレキシブルプリント回路基板である。 
 光源LSは、例えば発光ダイオードであり、白色の照明光を出射する。光源LSは、エレクトロクロミック素子ECの側縁EAに設けられ、この側縁EAに向かって照明光を出射する。図1に示す例では、エレクトロクロミック素子ECは平面視において長方形状に形成され、側縁EAはエレクトロクロミック素子ECの短辺に相当する。なお、光源LSは、エレクトロクロミック素子ECの長辺に相当する側縁に設けられてもよい。また、光源LSは、延出部Ex1に設けられてもよい。複数の光源LSは、第1方向Xに間隔をおいて並んでいる。
 図2は、図1に示した照明装置ILの第1モードを説明するための図である。 
 まず、図2を参照しながら、エレクトロクロミック素子ECの断面構造の一例について説明する。
 第1基板SUB1は、第1透明基板10と、第1透明電極11と、第1透明層12と、を備えている。第1透明基板10は、電解質層ELと向かい合う側の内面10Aと、内面10Aの反対側の外面10Bと、を有している。第1透明電極11は、第1透明基板10において、その内面10Aに設けられている。第1透明層12は、第1透明基板において、その外面10Bに設けられている。第1透明電極11及び第1透明層12は、図1に示したアクティブエリアAAのほぼ全域に亘って形成されている。なお、第1透明層12は、第1透明基板10と第1透明電極11との間に設けられてもよい。
 第2基板SUB2は、第2透明基板20と、第2透明電極21と、第2透明層22と、突起23と、を備えている。第2透明基板20は、電解質層ELと向かい合う側の内面20Aと、内面20Aの反対側の外面20Bと、を有している。第2透明層22は、第2透明基板20において、その内面20Aに設けられている。突起23は、第2透明基板において、その内面20Aの側に設けられ、第1透明基板10に向かって突出している。図2に示す例では、突起23は、第2透明層22に接して設けられている。第2透明層22は、図1に示したアクティブエリアAAのほぼ全域に亘って形成され、第2方向Yに隣接する突起23の間にも設けられている。第2透明電極21は、突起23の一部に設けられている。第2透明電極21は、第3方向Zにおいて、電解質層ELを挟んで、第1透明電極11と向かい合っている。
 第1透明基板10及び第2透明基板20は、例えばガラス基板及び樹脂基板などの絶縁基板である。第1透明電極11及び第2透明電極21は、例えば、インジウム・ティン・オキサイド(ITO)やインジウム・ジンク・オキサイド(IZO)などの透明な導電材料によって形成されている。これらの第1透明電極11及び第2透明電極21のうち、少なくとも第2透明電極21の表面は、後述する平滑な反射層(鏡面)が形成可能な程度に平滑化されている。
 突起23は、透明な絶縁体であり、例えば樹脂によって形成されている。図2に示す例では、突起23は、第2方向Y及び第3方向Zによって規定されるY-Z平面の断面視において、略三角形の断面形状を有している。突起23は、光源LSと対向する側の第1斜面23Aと、第1斜面23Aの反対側の第2斜面23Bと、を有している。第2透明電極21は、第1斜面23Aに設けられ、第2斜面23Bを露出している。第1透明電極11、第2透明電極21及び第2斜面23Bは、電解質層ELに接している。
 第1透明層12及び第2透明層22は、無機絶縁材料または有機絶縁材料によって形成されている。第1透明層12の屈折率は、第1透明基板10の屈折率より小さい。第2透明層22の屈折率は、第2透明基板20の屈折率より小さい。例えば、第1透明基板10及び第2透明基板20の屈折率n1は約1.5であり、第1透明層12及び第2透明層22の屈折率n2は約1.4である(n1>n2)。
 電解質層ELは、第1透明基板10と第2透明基板20との間に設けられている。電解質層ELは、例えば銀を含むエレクトロクロミック材料を含む液体電解質によって形成されている。電圧が印加されていない状態の電解質層ELは、概ね透明である。なお、本実施形態では、一例として銀について述べるが、これに限定されない。銀に代えて、他の酸化還元可能な反射性材料、例えば白金、金、アルミニウム、マンガン、或いは鉛等の金属材料を含むエレクトロクロミック材料を含む液体電解質を、電解質層ELとして用いてもよい。 
 なお、電解質層ELと第1透明電極11との間、あるいは、電解質層ELと第2透明電極21との間には、エレクトロクロミック層などの他の機能層が設けられてもよい。
 照明装置ILは、さらに、照度センサ100と、センサ制御部110と、光源制御部111と、電圧制御部112と、を備えている。照度センサ100は、照明装置ILへ入射する外光の照度を測定する。センサ制御部110は、照度センサ100によって測定された照度に基づいて、光源制御部111及び電圧制御部112にそれぞれ制御信号を出力する。この照明装置ILにおいて、センサ制御部110は、測定された照度が所定のしきい値以上の場合に(明所)、第1モードを実行するための制御信号を出力する。また、センサ制御部110は、測定された照度が所定のしきい値未満の場合に(暗所)、後述する第2モードを実行するための制御信号を出力する。
 光源制御部111は、センサ制御部110からの制御信号に基づいて光源LSを制御する。電圧制御部112は、センサ制御部110からの制御信号に基づいて電解質層ELに印加する電圧を制御する。
 図2を参照しながら、第1モードについて説明する。 
 光源制御部111は、センサ制御部110からの制御信号に基づいて光源LSを消灯する。電圧制御部112は、センサ制御部110からの制御信号に基づいて電解質層ELに透明状態を形成するように第1透明電極11及び第2透明電極21の電圧を制御する。例えば、電圧制御部112は、電解質層ELには電圧が印加されないように制御する。これにより、電解質層ELには透明状態が形成される。 
 このような第1モードの照明装置ILにおいて、第2基板SUB2を透過した外光L0は、電解質層ELにおいてほとんど反射されず、第1基板SUB1を透過する。このとき、第2透明電極21及び突起23に到達した外光L0も、ほとんど反射されず、第1基板SUB1を透過する。なお、図示を省略するが、第1基板SUB1を透過した光についても同様に第2基板SUB2を透過する。
 図3は、図1に示した照明装置ILにおける第2モードを説明するための図である。第2モードでは、光源制御部111は、センサ制御部110からの制御信号に基づいて光源LSを点灯する。電圧制御部112は、センサ制御部110からの制御信号に基づいて第2透明電極21に反射層25を形成するように第1透明電極11及び第2透明電極21の電圧を制御する。例えば、電圧制御部112は、第2透明電極21の電位が第1透明電極11の電位に対して相対的に負極性の電位となるように制御する。このように、電解質層ELに所定の電圧が印加された状態では、電解質層ELに溶出していた銀イオンが還元され、銀24の微粒子が第2透明電極21の表面に析出する。これにより、第2透明電極21が析出した銀24によって覆われ、凝集した銀24の集合体として反射層25が形成される。なお、電解質層ELの電圧印加を解除すると、析出した銀は、酸化されて銀イオンとなり、電解質層ELに溶出する。 
 なお、このようなエレクトロクロミック素子ECにおいて、電解質層ELに印加する電圧を制御すると、第1透明電極11の表面に銀を析出させることができる。第1透明電極11の表面に比較的大きな凹凸が形成されている場合、エレクトロクロミック素子ECへの入射光は、析出した銀によって乱反射される。このため、エレクトロクロミック素子ECには、遮光状態(あるいは、黒状態)を形成することができる。
 このような第2モードの照明装置ILにおいて、光源LSから出射された照明光L1は、第1透明層12と第2透明層22との間を第2方向Yに沿って伝播する。そして、反射層25に到達した照明光L1は、第1基板SUB1に向けて反射され、第1基板SUB1を透過する。このとき、反射層25が第1斜面23Aに形成されているため、第2方向Yに沿って伝播した照明光L1は、照明装置ILの法線方向(あるいは第3方向Z)に近い方向に反射され、第1基板SUB1を透過する。 
 また、第1透明電極11と反射層25との間を伝播した照明光L1は、さらに第2方向Yに沿って伝播し、他の反射層25で反射される。
 図4は、第1斜面23Aの傾斜角を説明するための図である。ここでは、第1基板SUB1への光L1の入射角をθ1とし、第1基板SUB1からの光L1の出射角をθ2とし、第1斜面23Aの傾斜角をθ3とする。θ1乃至θ3は、いずれも第3方向Zに平行な法線(図中の点線で示す)に対するなす角度である。傾斜角θ3は、以下の式で表される。なお、式中のn1は第1透明基板10の屈折率であり、n2は第1透明層12の屈折率である。 
  θ3=90-(sin-1(n1/n2)-sin-1(sinθ2*n1/n2))
 本実施形態の照明装置ILでは、第2方向Yに沿って伝播する照明光L1を照明装置ILの法線方向に沿って反射する観点において、出射角θ2を0°~15°とするためには、傾斜角θ3は20°~35°に設定される。
 図5は、エレクトロクロミック素子ECに設けられる突起23の一構成例を示す平面図である。複数の光源LSは、第1方向Xに沿って間隔をおいて並んでいる。複数の突起23は、それぞれ第1方向Xに延出し、また、第2方向Yに沿って間隔をおいて並んでいる。第2透明電極21は、突起23の各々に設けられている。上記の通り、第2透明電極21は、突起23の一部(光源LSに対向する側の斜面)を覆うように形成されている。平面視において、第2透明電極21の面積は、第2透明電極21に反射層25が形成された際に光の透過を阻害しない観点において、突起23の面積の50%以下であることが望ましい。
 第2透明電極21の各々は、配線LAと電気的に接続されている。配線LAは、アクティブエリアAAの外側に設けられ、アルミニウムなどの金属材料によって形成されている。配線LAの各々は、端子TAと電気的に接続されている。端子TAは、図1に示した配線基板F1と電気的に接続される。
 エレクトロクロミック素子ECは、アクティブエリアAAにおいて、第1領域A1と、第2領域A2と、を有している。第2領域A2は、光源LSと第1領域A1との間に位置している。第1領域A1において隣接する突起23の間隔P1は、第2領域A2において隣接する突起23の間隔P2より小さい。つまり、突起23は、光源LSから離れるほど密に配置され、あるいは、光源LSに近接するほど疎に配置されている。さらには、反射層25を形成するための第2透明電極21は、光源LSから離れるほど密に配置され、あるいは、光源LSに近接するほど疎に配置されている。
 光源LSからの照明光L1は、第2方向Yに沿って伝播するにしたがって次第に減衰する。また、図3を参照して説明したように、照明光L1は、反射層25によって反射される。このため、光源LSから離間した第1領域A1での照明光L1の輝度は、第2領域A2での照明光L1の輝度より極端に低下する。本実施形態では、第2透明電極21が光源LSから離れるほど密に配置されているため、第2透明電極21に反射層25が形成された際に、第2領域A2での照明光L1の反射が抑制されるとともに、第1領域A1での照明光L1の反射が促進される。これにより、第1領域A1と第2領域A2とでの輝度差が緩和される。
  《エレクトロクロミック素子ECの他の構成例》 
 図6は、エレクトロクロミック素子ECの他の構成例を示す断面図である。図6に示す構成例は、図2などの示した構成例と比較して、断面視において突起23が略台形の断面形状を有する点で相違している。突起23は、光源LSと対向する側の第1斜面23Aと、第1斜面23Aの反対側の第2斜面23Bと、第2透明層22に接する上底面23Cと、第1基板SUB1と向かい合う下底面23Dと、を有している。第2方向Yにおいて、上底面23Cの幅は、下底面23Dの幅より大きい。第1斜面23Aの傾斜角θ3については、図4を参照して説明した通りである。但し、第1斜面23Aが平面ではない場合には、傾斜角θ3は、例えば、第1斜面23Aのうち突起23の高さHの1/2の位置における第1斜面23Aの接線と法線とのなす角度とのなす角度として規定することができる。 
 第2透明電極21は、第1斜面23Aに設けられ、第2斜面23B及び下底面23Dを露出している。
 図7は、エレクトロクロミック素子ECの他の構成例を示す断面図である。図7に示す構成例は、図2などの示した構成例と比較して、断面視において突起23が略半円形の断面形状を有する点で相違している。突起23は、光源LSと対向する側の第1斜面23Aと、第1斜面23Aの反対側の第2斜面23Bと、を有している。これらの第1斜面23A及び第2斜面23Bは、曲面である。第2透明電極21は、第1斜面23Aに設けられ、第2斜面23Bを露出している。第1斜面23Aの傾斜角θ3は、例えば、第1斜面23Aのうち突起23の高さHの1/2の位置における第1斜面23Aの接線と法線とのなす角度とのなす角度として規定することができる。あるいは、断面視において、突起23の曲率半径が一定でない場合には、傾斜角θ3は、曲率半径が平均値をとる位置における第1斜面23Aの接線と法線とのなす角度として規定することができる。突起23の曲率半径が一定でない場合とは、例えば突起23が半楕円形であった場合が挙げられる。
  《表示装置》 
 次に、上記の照明装置ILと組み合わせ可能な表示パネルPNLについて説明する。 
 図8は、表示パネルPNLの一構成例を示す平面図である。本実施形態の表示パネルPNLは、外光を選択的に反射することで画像が表示される反射型の表示パネルである。反射型の表示パネルとしては、液晶層を備えた液晶パネルや、電気泳動層を備えた表示パネルなどが挙げられる。以下、表示パネルPNLの一例として、液晶パネルについて説明する。
 表示パネルPNLは、第3基板SUB3と、第4基板SUB4と、液晶層LCと、シールSE2と、を備えている。第3基板SUB3及び第4基板SUB4は、平面視で、重畳している。第3基板SUB3及び第4基板SUB4は、シールSE2によって接着されている。液晶層LCは、第3基板SUB3と第4基板SUB4との間に保持され、シールSE2によって封止されている。シールSE2によって囲まれた領域は、画像を表示する表示領域DAを有している。
 表示領域DAは、第1方向X及び第2方向Yにマトリクス状に配列された複数の画素PXを備えている。図8において拡大して示すように、各画素PXは、スイッチング素子SW、画素電極PE、共通電極CE、液晶層LC等を備えている。スイッチング素子SWは、例えば薄膜トランジスタ(TFT)によって構成され、走査線G及び信号線Sと電気的に接続されている。走査線Gは、第1方向Xに並んだ画素PXの各々におけるスイッチング素子SWと電気的に接続されている。信号線Sは、第2方向Yに並んだ画素PXの各々におけるスイッチング素子SWと電気的に接続されている。画素電極PEは、スイッチング素子SWと電気的に接続されている。共通電極CEは、複数の画素電極PEに対して共通に設けられている。液晶層LCは、画素電極PEと共通電極CEとの間に生じる電界によって駆動される。容量CSは、例えば、共通電極CEと同電位の電極、及び、画素電極PEと同電位の電極の間に形成される。一例では、走査線G、信号線S、スイッチング素子SW、及び、画素電極PEは、第3基板SUB3に設けられ、共通電極CEは、第4基板SUB4に設けられている。
 配線基板F2は、第3基板SUB3の延出部Ex2に実装されている。延出部Ex2は、第3基板SUB3のうち第4基板SUB4と重畳しない部分に相当する。配線基板F2は、例えば折り曲げ可能なフレキシブルプリント回路基板である。
 図9は、本実施形態の表示装置DSPの第1表示モードを説明するための図である。 
 まず、図9を参照しながら、表示装置DSPの断面構造の一例について説明する。
 表示装置DSPは、上記の照明装置ILを構成する光源LS及びエレクトロクロミック素子ECの他に、図8を参照して説明した表示パネルPNLと、光学フィルムOFと、接着剤ADと、を備えている。以下、表示パネルPNLの一例として、縦電界方式の液晶パネルの基本構成について説明する。
 第3基板SUB3は、第3透明基板30と、透明な絶縁膜31と、スイッチング素子SWと、画素電極PEと、配向膜AL1と、を備えている。スイッチング素子SWは、第3透明基板30と絶縁膜31との間に設けられている。画素電極PEは、スイッチング素子SWと電気的に接続されている。配向膜AL1は、画素電極PEを覆っている。 
 第4基板SUB4は、第4透明基板40と、共通電極CEと、配向膜AL2と、を備えている。共通電極CEは、表示領域DAのほぼ全域に亘って設けられ、第3方向Zにおいて複数の画素電極PEと対向している。配向膜AL2は、共通電極CEを覆っている。液晶層LCは、配向膜AL1と配向膜AL2との間に位置している。
 第3透明基板30及び第4透明基板40は、例えばガラス基板または樹脂基板などの絶縁基板である。画素電極PEは、反射電極を有している。すなわち、画素電極PEが反射電極であってもよいし、画素電極PEが透明電極と反射電極との積層体であってもよい。一例では、画素電極PEは、例えば、銀、アルミニウムなどの光反射性の金属材料によって形成された反射電極である。共通電極CEは、例えば、ITOやIZOなどの透明な導電材料によって形成された透明電極である。 
 なお、表示パネルPNLは、カラーフィルタ層や遮光層などを備えている場合があるが、ここでは図示を省略している。
 光学フィルムOFは、第4透明基板40に接着されている。光学フィルムOFは、反射型の表示パネルPNLからの反射光を選択的に透過するためのフィルムであり、例えば偏光板及び位相差板を含んでいる。なお、光学フィルムOFは、第1透明基板10に接着されていてもよい。
 エレクトロクロミック素子ECについては、主要部のみを図示している。エレクトロクロミック素子ECは、表示パネルPNLに重畳している。エレクトロクロミック素子ECのアクティブエリアAAは、表示パネルPNLの表示領域DAに重畳している。図9に示す例では、表示パネルPNL及びエレクトロクロミック素子ECは、第3方向Zにおいて、第4基板SUB4と第1基板SUB1とが向かい合うように配置されている。また、表示パネルPNL及びエレクトロクロミック素子ECは、光学フィルムOFと第1透明基板10との間に介在する透明な接着剤ADによって接着されている。表示パネルPNLとエレクトロクロミック素子ECとの境界での不所望な反射及び散乱を抑制する観点で、接着剤ADの屈折率は、第1透明基板10及び光学フィルムOFの屈折率と同等であることが望ましい。また、接着剤ADは、第1基板SUB1に設けられる第1透明層12として形成されてもよい。
 表示装置DSPは、照度センサ100、センサ制御部110、光源制御部111、電圧制御部112に加えて、パネル制御部113を備えている。電圧制御部112は、配線基板F1と電気的に接続されている。パネル制御部113は、配線基板F2と電気的に接続されている。パネル制御部113は、画像データに基づいて表示パネルPNLを制御するとともに、センサ制御部110からの制御信号に基づいて各モードに対応した駆動電圧を制御する。
 図9を参照しながら、第1表示モードについて説明する。 
 センサ制御部110は、照度センサ100によって測定された照度が所定のしきい値以上の場合に(明所)、第1表示モードを実行するための制御信号を出力する。光源制御部111は、センサ制御部110からの制御信号に基づいて光源LSを消灯する。電圧制御部112は、センサ制御部110からの制御信号に基づいて電解質層ELに透明状態を形成するように第1透明電極11及び第2透明電極21の電圧を制御する。
 このような第1表示モードの表示装置DSPにおいて、第2基板SUB2を透過した外光L0は、第1基板SUB1を透過し、表示パネルPNLを照明する。外光L0は、自然光である。外光L0のうち、光学フィルムOFを透過した成分は、画素電極PEで反射される。画素電極PEで反射された外光L0のうち、光学フィルムOFを透過した成分は、第1基板SUB1及び第2基板SUB2を透過する。 
 このように、表示装置1の使用環境が明所である場合には、外光L0を選択的に反射することで画像が表示される。
 図10は、本実施形態の表示装置DSPの第2表示モードを説明するための図である。 
 センサ制御部110は、照度センサ100によって測定された照度が所定のしきい値未満である場合に(暗所)、第2表示モードを実行するための制御信号を出力する。光源制御部111は、センサ制御部110からの制御信号に基づいて光源LSを点灯する。電圧制御部112は、制御信号に基づいて第2透明電極21に反射層25を形成するように第1透明電極11及び第2透明電極21の電圧を制御する。
 このような第2表示モードの表示装置DSPにおいて、光源LSから出射された照明光L1は、エレクトロクロミック素子ECに入射し、第2方向Yに沿って伝播する。電解質層ELを伝播する照明光L1のうち、反射層25で反射された照明光L1は、第1基板SUB1を透過して表示パネルPNLを照明する。照明光L1は、自然光である。照明光L1のうち、光学フィルムOFを透過した成分は、画素電極PEで反射される。画素電極PEで反射された照明光L1のうち、光学フィルムOFを透過した成分は、第1基板SUB1及び第2基板SUB2を透過する。 
 このように、表示装置1の使用環境が暗所である場合には、照明光L1を選択的に反射することで画像が表示される。
 本実施形態によれば、使用環境に応じて第1表示モードと第2表示モードとを切り替え可能な表示装置DSPを提供することができる。また、第1表示モードにおいては、エレクトロクロミック素子ECには反射層25が形成されないため、エレクトロクロミック素子ECに入射した外光L0の大部分が表示パネルPNLの照明に寄与し、外光の利用効率を改善することができる。また、第1表示モードにおいては、反射層25が形成されず、また、凹凸などの導光パターンが存在しないため、表示パネルPNLに表示される画像の表示品位を改善することができる。
 また、第2表示モードにおいては、エレクトロクロミック素子ECにおいて局所的に反射層25が形成され、光源LSからの照明光L1が表示パネルPNLに向けて反射される。本実施形態では、エレクトロクロミック素子ECに反射層25が形成されない場合と比較して、表示パネルPNLの照明に寄与する照明光L1の割合が増加し、照明光L1の利用効率を改善することができる。また、照明光L1の利用効率が改善することで、光源LSの低輝度化が可能となり、消費電力を低減することができる。
 また、反射層25での反射光は、表示パネルPNLの法線方向に近い方向に反射される。このため、表示装置DSPを正面から観察した際の輝度を向上することができる。
 また、第2表示モードにおいて形成される反射層25は、光源LSから離れるほど密に配置され、あるいは、光源LSに近接するほど疎に配置されている。このため、光源LSから離間した第1領域A1と、光源LSに近接した第2領域A2とでの輝度差が緩和され、表示パネルPNLの全域をほぼ均一な輝度で照明することができる。
 また、反射層25は、第2表示モードにおいてエレクトロクロミック素子ECの内部(電解質層EL)に形成され、第1表示モードにおいては形成されない。このため、本実施形態では、凹凸などの導光パターンを備えた場合と比較して、不所望な散乱が抑制され、表示パネルPNLに表示される画像のコントラスト比の低下を抑制することができる。
  《表示装置の他の構成例》 
 図11は、本実施形態の表示装置DSPの他の構成例を示す断面図である。図11に示す構成例は、図9などに示した構成例と比較して、光源LSがエレクトロクロミック素子ECの延出部Ex1と表示パネルPNLの延出部Ex2との間に設けられた点で相違している。つまり、図11に示す構成例は、図1に示した光源LSが延出部Ex1に設けられた場合に相当する。光源LSは、エレクトロクロミック素子ECの側縁EAとは反対側の側縁EBに設けられ、この側縁EBに向かって照明光を出射する。
 第2透明電極21は、突起23において、光源LSと対向する側の第2斜面23Bに設けられている。 
 このような構成例においても、上記の構成例と同様の効果が得られる。加えて、光源LSが延出部Ex1及びEx2の間に収容されるため、表示装置DSPの第2方向Yに沿った長さを短縮することができる。
 以上説明したように、本実施形態によれば、光の利用効率を改善することが可能な照明装置及び表示装置を提供することができる。
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 本明細書にて開示した構成から得られる表示装置の一例を以下に付記する。 
(1)
 エレクトロクロミック素子と、
 前記エレクトロクロミック素子の側縁に設けられた光源と、を備え、
 前記エレクトロクロミック素子は、
 第1透明基板と、
 前記第1透明基板に設けられた第1透明電極と、
 前記第1透明基板に対向する第2透明基板と、
 前記第2透明基板に設けられ、前記第1透明基板に向かって突出した突起と、
 前記突起の一部に設けられた第2透明電極と、
 前記第1透明基板と前記第2透明基板との間に設けられ、酸化還元可能な反射性材料を含むエレクトロクロミック材料を含む電解質層と、
 を備えた、照明装置。
(2)
 前記突起は、前記光源と対向する側の第1斜面と、前記第1斜面の反対側の第2斜面とを有し、
 前記第2透明電極は、前記第1斜面に設けられ、前記第2斜面を露出している、(1)に記載の照明装置。
(3)
 前記第1透明基板に設けられた第1透明層と、
 前記第2透明基板に設けられた第2透明層と、を備え、
 前記第1透明層の屈折率は、前記第1透明基板の屈折率より小さく、
 前記第2透明層の屈折率は、前記第2透明基板の屈折率より小さい、(1)または(2)に記載の照明装置。
(4)
 照度センサと、
 前記光源を制御する光源制御部と、
 前記電解質層に印加する電圧を制御する電圧制御部と、を備え、
 前記照度センサによって測定された照度が所定のしきい値以上の場合に、前記光源制御部は前記光源を消灯し、前記電圧制御部は前記電解質層に透明状態を形成するように電圧を制御し、
 前記照度センサによって測定された照度が所定のしきい値未満の場合に、前記光源制御部は前記光源を点灯し、前記電圧制御部は前記第2透明電極に反射層を形成するように電圧を制御する、(1)乃至(3)のいずれか1項に記載の照明装置。
(5)
 複数の前記光源は、第1方向に間隔をおいて並び、
 前記突起は、前記第1方向に延出している、(1)乃至(4)のいずれか1項に記載の照明装置。
(6)
 複数の前記突起は、前記第1方向に交差する第2方向に間隔をおいて並び、
 前記第2透明電極は、前記突起の各々に設けられ、
 第1領域において隣接する前記突起の間隔は、前記光源と前記第1領域との間の第2領域において隣接する前記突起の間隔より小さい、(5)に記載の照明装置。
(7)
 前記酸化還元可能な反射性材料は、銀である、(1)乃至(6)のいずれか1項に記載の照明装置。
(8)
 反射型の表示パネルと、
 前記表示パネルに重畳するエレクトロクロミック素子と、
 前記エレクトロクロミック素子の側縁に設けられた光源と、を備え、
 前記エレクトロクロミック素子は、
 第1透明基板と、
 前記第1透明基板に設けられた第1透明電極と、
 前記第1透明基板に対向する第2透明基板と、
 前記第2透明基板に設けられ、前記第1透明基板に向かって突出した突起と、
 前記突起の一部に設けられた第2透明電極と、
 前記第1透明基板と前記第2透明基板との間に設けられ、酸化還元可能な反射性材料を含むエレクトロクロミック材料を含む電解質層と、
 を備えた、表示装置。
(9)
 前記表示パネル及び前記エレクトロクロミック素子を接着する透明な接着剤を備える、(8)に記載の表示装置。
(10)
 前記表示パネルは、画素毎に設けられたスイッチング素子と、前記スイッチング素子と電気的に接続された画素電極と、複数の画素に亘って設けられた共通電極と、を備え、
 前記画素電極は、反射電極を有している、(8)または(9)に記載の表示装置。
(11)
 前記突起は、前記光源と対向する側の第1斜面と、前記第1斜面の反対側の第2斜面とを有し、
 前記第2透明電極は、前記第1斜面に設けられ、前記第2斜面を露出している、(8)乃至(10)のいずれか1項に記載の表示装置。
(12)
 前記第1透明基板に設けられた第1透明層と、
 前記第2透明基板に設けられた第2透明層と、を備え、
 前記第1透明層の屈折率は、前記第1透明基板の屈折率より小さく、
 前記第2透明層の屈折率は、前記第2透明基板の屈折率より小さい、(8)乃至(11)のいずれか1項に記載の表示装置。
(13)
 照度センサと、
 前記光源を制御する光源制御部と、
 前記電解質層に印加する電圧を制御する電圧制御部と、を備え、
 前記照度センサによって測定された照度が所定のしきい値以上の場合に、前記光源制御部は前記光源を消灯し、前記電圧制御部は前記電解質層に透明状態を形成するように電圧を制御し、
 前記照度センサによって測定された照度が所定のしきい値未満の場合に、前記光源制御部は前記光源を点灯し、前記電圧制御部は前記第2透明電極に反射層を形成するように電圧を制御する、(8)乃至(12)のいずれか1項に記載の表示装置。
(14)
 複数の前記光源は、第1方向に間隔をおいて並び、
 前記突起は、前記第1方向に延出している、(8)乃至(13)のいずれか1項に記載の表示装置。
(15)
 複数の前記突起は、前記第1方向に交差する第2方向に間隔をおいて並び、
 前記第2透明電極は、前記突起の各々に設けられ、
 第1領域において隣接する前記突起の間隔は、前記光源と前記第1領域との間の第2領域において隣接する前記突起の間隔より小さい、(14)に記載の表示装置。
(16)
 前記酸化還元可能な反射性材料は、銀である、(8)乃至(15)のいずれか1項に記載の表示装置。
 IL…照明装置 LS…光源 EC…エレクトロクロミック素子
 SUB1…第1基板 10…第1透明基板 11…第1透明電極 12…第1透明層
 SUB2…第2基板 20…第2透明基板 21…第2透明電極 22…第2透明層
 23…突起 23A…第1斜面 23B…第2斜面 25…反射層
 EL…電解質層
 DSP…表示装置 PNL…表示パネル LC…液晶層
 SW…スイッチング素子 PE…画素電極 CE…共通電極
 100…照度センサ 110…センサ制御部
 111…光源制御部 112…電圧制御部 113…パネル制御部

Claims (16)

  1.  エレクトロクロミック素子と、
     前記エレクトロクロミック素子の側縁に設けられた光源と、を備え、
     前記エレクトロクロミック素子は、
     第1透明基板と、
     前記第1透明基板に設けられた第1透明電極と、
     前記第1透明基板に対向する第2透明基板と、
     前記第2透明基板に設けられ、前記第1透明基板に向かって突出した突起と、
     前記突起の一部に設けられた第2透明電極と、
     前記第1透明基板と前記第2透明基板との間に設けられ、酸化還元可能な反射性材料を含むエレクトロクロミック材料を含む電解質層と、
     を備えた、照明装置。
  2.  前記突起は、前記光源と対向する側の第1斜面と、前記第1斜面の反対側の第2斜面とを有し、
     前記第2透明電極は、前記第1斜面に設けられ、前記第2斜面を露出している、請求項1に記載の照明装置。
  3.  前記第1透明基板に設けられた第1透明層と、
     前記第2透明基板に設けられた第2透明層と、を備え、
     前記第1透明層の屈折率は、前記第1透明基板の屈折率より小さく、
     前記第2透明層の屈折率は、前記第2透明基板の屈折率より小さい、請求項1に記載の照明装置。
  4.  照度センサと、
     前記光源を制御する光源制御部と、
     前記電解質層に印加する電圧を制御する電圧制御部と、を備え、
     前記照度センサによって測定された照度が所定のしきい値以上の場合に、前記光源制御部は前記光源を消灯し、前記電圧制御部は前記電解質層に透明状態を形成するように電圧を制御し、
     前記照度センサによって測定された照度が所定のしきい値未満の場合に、前記光源制御部は前記光源を点灯し、前記電圧制御部は前記第2透明電極に反射層を形成するように電圧を制御する、請求項1に記載の照明装置。
  5.  複数の前記光源は、第1方向に間隔をおいて並び、
     前記突起は、前記第1方向に延出している、請求項1に記載の照明装置。
  6.  複数の前記突起は、前記第1方向に交差する第2方向に間隔をおいて並び、
     前記第2透明電極は、前記突起の各々に設けられ、
     第1領域において隣接する前記突起の間隔は、前記光源と前記第1領域との間の第2領域において隣接する前記突起の間隔より小さい、請求項5に記載の照明装置。
  7.  前記酸化還元可能な反射性材料は、銀である、請求項1に記載の照明装置。
  8.  反射型の表示パネルと、
     前記表示パネルに重畳するエレクトロクロミック素子と、
     前記エレクトロクロミック素子の側縁に設けられた光源と、を備え、
     前記エレクトロクロミック素子は、
     第1透明基板と、
     前記第1透明基板に設けられた第1透明電極と、
     前記第1透明基板に対向する第2透明基板と、
     前記第2透明基板に設けられ、前記第1透明基板に向かって突出した突起と、
     前記突起の一部に設けられた第2透明電極と、
     前記第1透明基板と前記第2透明基板との間に設けられ、酸化還元可能な反射性材料を含むエレクトロクロミック材料を含む電解質層と、
     を備えた、表示装置。
  9.  前記表示パネル及び前記エレクトロクロミック素子を接着する透明な接着剤を備える、請求項8に記載の表示装置。
  10.  前記表示パネルは、画素毎に設けられたスイッチング素子と、前記スイッチング素子と電気的に接続された画素電極と、複数の画素に亘って設けられた共通電極と、を備え、
     前記画素電極は、反射電極を有している、請求項8に記載の表示装置。
  11.  前記突起は、前記光源と対向する側の第1斜面と、前記第1斜面の反対側の第2斜面とを有し、
     前記第2透明電極は、前記第1斜面に設けられ、前記第2斜面を露出している、請求項8に記載の表示装置。
  12.  前記第1透明基板に設けられた第1透明層と、
     前記第2透明基板に設けられた第2透明層と、を備え、
     前記第1透明層の屈折率は、前記第1透明基板の屈折率より小さく、
     前記第2透明層の屈折率は、前記第2透明基板の屈折率より小さい、請求項8に記載の表示装置。
  13.  照度センサと、
     前記光源を制御する光源制御部と、
     前記電解質層に印加する電圧を制御する電圧制御部と、を備え、
     前記照度センサによって測定された照度が所定のしきい値以上の場合に、前記光源制御部は前記光源を消灯し、前記電圧制御部は前記電解質層に透明状態を形成するように電圧を制御し、
     前記照度センサによって測定された照度が所定のしきい値未満の場合に、前記光源制御部は前記光源を点灯し、前記電圧制御部は前記第2透明電極に反射層を形成するように電圧を制御する、請求項8に記載の表示装置。
  14.  複数の前記光源は、第1方向に間隔をおいて並び、
     前記突起は、前記第1方向に延出している、請求項8に記載の表示装置。
  15.  複数の前記突起は、前記第1方向に交差する第2方向に間隔をおいて並び、
     前記第2透明電極は、前記突起の各々に設けられ、
     第1領域において隣接する前記突起の間隔は、前記光源と前記第1領域との間の第2領域において隣接する前記突起の間隔より小さい、請求項14に記載の表示装置。
  16.  前記酸化還元可能な反射性材料は、銀である、請求項8に記載の表示装置。
PCT/JP2020/027265 2019-09-05 2020-07-13 照明装置及び表示装置 WO2021044736A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/680,571 US20220179271A1 (en) 2019-09-05 2022-02-25 Illumination device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-162182 2019-09-05
JP2019162182A JP2021039314A (ja) 2019-09-05 2019-09-05 照明装置及び表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/680,571 Continuation US20220179271A1 (en) 2019-09-05 2022-02-25 Illumination device and display device

Publications (1)

Publication Number Publication Date
WO2021044736A1 true WO2021044736A1 (ja) 2021-03-11

Family

ID=74848595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027265 WO2021044736A1 (ja) 2019-09-05 2020-07-13 照明装置及び表示装置

Country Status (3)

Country Link
US (1) US20220179271A1 (ja)
JP (1) JP2021039314A (ja)
WO (1) WO2021044736A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116088224B (zh) 2023-02-27 2023-06-30 惠科股份有限公司 背光模组、显示装置及显示驱动方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275261A (ja) * 2004-03-26 2005-10-06 Casio Comput Co Ltd 表示装置及びその表示駆動方法
WO2012086516A1 (ja) * 2010-12-20 2012-06-28 シャープ株式会社 表示装置
JP2018045104A (ja) * 2016-09-14 2018-03-22 スタンレー電気株式会社 照明装置及び液晶表示装置
JP2018180351A (ja) * 2017-04-17 2018-11-15 スタンレー電気株式会社 電気光学装置、表示装置
US20180356657A1 (en) * 2016-10-28 2018-12-13 Boe Technology Group Co., Ltd. Display device
CN109633999A (zh) * 2019-01-22 2019-04-16 合肥鑫晟光电科技有限公司 阵列基板、液晶显示装置及其驱动方法
US20190250481A1 (en) * 2018-02-13 2019-08-15 Boe Technology Group Co., Ltd. Electronic paper display screen, method for driving the same, and electronic paper display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275261A (ja) * 2004-03-26 2005-10-06 Casio Comput Co Ltd 表示装置及びその表示駆動方法
WO2012086516A1 (ja) * 2010-12-20 2012-06-28 シャープ株式会社 表示装置
JP2018045104A (ja) * 2016-09-14 2018-03-22 スタンレー電気株式会社 照明装置及び液晶表示装置
US20180356657A1 (en) * 2016-10-28 2018-12-13 Boe Technology Group Co., Ltd. Display device
JP2018180351A (ja) * 2017-04-17 2018-11-15 スタンレー電気株式会社 電気光学装置、表示装置
US20190250481A1 (en) * 2018-02-13 2019-08-15 Boe Technology Group Co., Ltd. Electronic paper display screen, method for driving the same, and electronic paper display device
CN109633999A (zh) * 2019-01-22 2019-04-16 合肥鑫晟光电科技有限公司 阵列基板、液晶显示装置及其驱动方法

Also Published As

Publication number Publication date
JP2021039314A (ja) 2021-03-11
US20220179271A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
US11719877B2 (en) Display device
WO2021039007A1 (ja) 表示装置
KR20160085388A (ko) 표시 장치
CN112262340A (zh) 显示装置及电子设备
CN112771416A (zh) 电子设备
US11668867B2 (en) Display device
US11988865B2 (en) Display device
WO2021044736A1 (ja) 照明装置及び表示装置
JP7234019B2 (ja) 表示装置、発光モジュール、及び、電子部品
JP2020177731A (ja) カバーガラス及び表示装置
US20240176182A1 (en) Display device
US12001048B2 (en) Display device
US20240176175A1 (en) Display device and cover glass
US20230280518A1 (en) Display device
US11630347B2 (en) Display device
JP7326558B2 (ja) 表示装置
JP7218467B2 (ja) 表示装置
WO2020213218A1 (ja) 表示装置
WO2023157371A1 (ja) 面光源装置および表示装置
JP2022186253A (ja) 表示装置
JP2022186251A (ja) 表示装置
JP2021096292A (ja) 視野角制御素子及び表示装置
JP2021060447A (ja) 表示装置及び表示装置の駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860273

Country of ref document: EP

Kind code of ref document: A1