WO2021044730A1 - レーザ発振装置 - Google Patents

レーザ発振装置 Download PDF

Info

Publication number
WO2021044730A1
WO2021044730A1 PCT/JP2020/026983 JP2020026983W WO2021044730A1 WO 2021044730 A1 WO2021044730 A1 WO 2021044730A1 JP 2020026983 W JP2020026983 W JP 2020026983W WO 2021044730 A1 WO2021044730 A1 WO 2021044730A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
ld1a
switching element
laser beams
Prior art date
Application number
PCT/JP2020/026983
Other languages
English (en)
French (fr)
Inventor
吉田 隆幸
葛西 孝昭
中井 出
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080061543.8A priority Critical patent/CN114342195A/zh
Priority to JP2021543638A priority patent/JPWO2021044730A1/ja
Priority to EP20860272.2A priority patent/EP4027468A4/en
Publication of WO2021044730A1 publication Critical patent/WO2021044730A1/ja
Priority to US17/673,867 priority patent/US20220173576A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0811Construction or shape of optical resonators or components thereof comprising three or more reflectors incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/0812Construction or shape of optical resonators or components thereof comprising three or more reflectors incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1068Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using an acousto-optical device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/107Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/143Littman-Metcalf configuration, e.g. laser - grating - mirror
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/115Q-switching using intracavity electro-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4068Edge-emitting structures with lateral coupling by axially offset or by merging waveguides, e.g. Y-couplers

Definitions

  • the present invention relates to a direct diode laser type laser oscillator mainly used for processing applications such as cutting and welding.
  • one aspect of the present invention includes the plurality of laser beams by directing the plurality of semiconductor laser diodes and the plurality of laser beams emitted from the plurality of semiconductor laser diodes in specific directions.
  • the superposed laser beam comprises an optical component that generates a superposed laser beam propagating in a specific direction and an optical switching element that receives the superposed laser beam from the optical component, and the superposed laser beam has a plurality of wavelengths. ..
  • the present invention it is possible to easily realize a laser oscillator that generates a laser beam having a stable output while adopting the DDL method.
  • FIG. 1 is a schematic diagram for explaining the configuration of a laser light generation portion which is the core of the laser oscillator according to the present embodiment, and is a diagram schematically explaining laser light generation by the DDL method.
  • the semiconductor laser diodes (LD) 1a to 1e emit laser beams 121a to 121e.
  • the plurality of laser beams 121a to 121e are incident on the diffraction grating 5 via the first collimators 2a to 2e, the rotating elements 3a to 3e, and the second collimators 4a to 4e.
  • the diffraction grating 5 receives the laser beams 121a to 121e and generates one superimposed laser beam 122 including the laser beams 121a to 121e.
  • each of the LD1a to 1e forms a pair with the corresponding one of the first collimators 2a to 2e, the corresponding one of the rotating elements 3a to 3e, and the corresponding one of the second collimators 4a to 4e. doing.
  • the number of LDs is 5 in FIG. 1, the present embodiment is not limited to the number of LDs. The number of LDs can be adjusted according to the desired laser output energy.
  • LD1a to 1e generate laser beams 121a to 121e.
  • the LD is, for example, a chip-shaped LD chip.
  • an end face emitting type (EEL: Edge Emitting Laser) LD chip is preferably used.
  • EEL Edge Emitting Laser
  • the end face light emitting type LD chip for example, a long bar-shaped resonator is formed in the chip in parallel with the substrate surface.
  • the resonator has a first end face and a second end face that are located apart from each other in the longitudinal direction of the resonator.
  • the first end face is covered with a first reflective film having a first high reflectance so that the laser beam is almost totally reflected.
  • the second end face is covered with a second reflective film having a second high reflectance, which is smaller than the first high reflectance.
  • Laser light that is amplified by the reflection of the first end face and the second end face and has the same phase is emitted from the second end face.
  • the length of the resonator in the longitudinal direction is called the resonator length (CL: Cavity Length).
  • the LD chip may have a plurality of resonators and emit a plurality of laser beams.
  • the plurality of laser beams can be emitted from the plurality of locations on the second end face, respectively. That is, the LD may have a plurality of light emitting points. The light emitting points can be aligned one-dimensionally along the end face of the chip, which is the second end face of the resonator.
  • LD1a to 1e are connected to a constant current source 110 (see FIG. 2).
  • the LD1a to 1e may be connected in series with the constant current source 110, or may be connected in parallel.
  • the laser beams 121a to 121e have a wavelength band in which a high output (gain) can be obtained.
  • This wavelength band has a certain width.
  • the wavelength band in which this high output (gain) is obtained can change depending on the temperature of the LD chip (that is, depending on the length of the period during which the LD1a to 1e are driven).
  • a sufficient time has passed from the start of driving the LD1a to 1e, and when the output of the laser beam emitted from the LD1a to 1e becomes stable, a high output (gain) can be obtained within the wavelength band described later.
  • Each of LD1a to 1e is configured so that the lock wavelength exists.
  • the wavelength of the laser light is not particularly limited, but for example, an infrared laser having a peak wavelength of 975 ⁇ 25 nm or 895 ⁇ 25 nm, a blue laser having a peak wavelength of 400 to 425 nm, or the like can be used.
  • the direction perpendicular to the substrate surface of the LD chip can generally be the direction of the speed axis of the laser beam emitted from the LD chip.
  • the direction parallel to the substrate surface of the LD chip and along the light emitting surface can generally be the direction of the slow axis of the laser beam emitted from the LD chip.
  • the first collimators 2a to 2e are, for example, convex lenses.
  • the rotating elements 3a to 3e receive the laser beams 121a to 121e collimated in the first direction from the first collimators 2a to 2e, and rotate these laser beams 121a to 121e.
  • rotating the light means rotating the cross-sectional shape on the plane perpendicular to the propagation direction of the light (beam).
  • At least one of LD1a to 1e may be an LD chip having a plurality of light emitting points.
  • Each of LD1a to 1e may have a plurality of light emitting points.
  • the LD1a is an LD chip having a plurality of light emitting points
  • a plurality of laser beams corresponding to the light emitting points are generated and emitted, diffused with propagation, and the beam width thereof is widened.
  • the rotating element 3a rotates the cross-sectional shape of each laser beam so that the overlap between the laser beams having different emission points is reduced. As a result, a high-power laser beam can be obtained.
  • each laser beam is aligned in a direction parallel to the substrate surface of the LD chip and along the light emitting surface (chip end surface).
  • the cross-sectional shape of each laser beam is a flat shape (for example, an ellipse or a square) with the first direction as the short axis.
  • the rotating element 3a is elliptical so that, for example, the angle formed by the long axis direction of the elliptical laser beam and the substrate surface approaches a right angle (the angle formed by the short axis direction and the substrate surface approaches 0 °). Rotate the laser beam of the shape.
  • the laser beam can be rotated by 90 ° by the rotating element 3a.
  • the rotating element 3a is, for example, a convex lens, and is formed by arranging cylindrical lenses that are perpendicular to the emission direction of the laser beam and have an axis that is inclined by, for example, 45 ° with respect to the substrate surface, along the alignment direction of the light emitting points.
  • the second collimators 4a to 4e receive the laser beams 121a to 121e parallelized in the first direction by the first collimators 2a to 2e, and parallelize the laser beams 121a to 121e in the second direction. That is, the second collimators 4a to 4e suppress the expansion of the beam width in the second direction of the laser beam parallelized in the first direction by the first collimators 2a to 2e, and the beam width in the second direction is substantially constant.
  • the laser beam is made parallel so as to be.
  • the second collimators 4a to 4e may be those that convert the laser beam through the rotating elements 3a to 3e into parallel light after passing through the first collimators 2a to 2e.
  • the second direction is different from the first direction and is, for example, a direction perpendicular to the first direction.
  • the second direction is different from the first direction after rotation, for example, a direction perpendicular to the first direction after rotation.
  • the rotating elements 3a to 3e rotate the laser beam by 90 °
  • the first direction and the second direction can be parallel.
  • the second direction can be the direction of the slow axis of the laser beam emitted from the LD chip.
  • the second collimators 4a to 4e are, for example, convex lenses.
  • the diffraction grating 5 receives the laser beams 121a to 121e emitted from the LD1a to 1e and passed through the first collimators 2a to 2e, the rotating elements 3a to 3e, and the second collimators 4a to 4e.
  • the diffraction grating 5 generates superimposed laser light 122 propagating in a specific direction by directing the received laser light 121a to 121e in a specific direction independent of LD1a to 1e.
  • the superimposed laser light 122 includes laser light 121a to 121e, each of which is directed in a specific direction.
  • the diffraction grating 5 may be a reflective type or a transmissive type.
  • the LD1a to 1e are arranged apart from each other in the laser oscillator 100. Therefore, it is inevitable that the incident angles of the laser beams 121a to 121e incident on the diffraction grating 5 differ for each of the LD1a to 1e. In general, the diffraction angle at which the diffraction intensity is maximized depends on the incident angle. Therefore, if the wavelengths of the laser beams 121a to 121e emitted from the LD1a to 1e are the same, the diffraction angle also differs for each LD1a to 1e, and the superimposed laser is used. It is difficult to direct the light 122 in the same direction.
  • the diffraction angle also depends on the wavelength
  • the angle of incidence on the diffraction grating 5 is different for each of the LD1a to 1e. Even so, the diffraction angles of the laser beams 121a to 121e can be made constant, and as a result, the laser beams 121a to 121e emitted from the LD1a to 1e can be directed in a specific direction.
  • the respective wavelengths of the laser beams 121a to 121e when the laser beams 121a to 121e emitted from the LD1a to 1e are diffracted in this specific direction are referred to as lock wavelengths.
  • the lock wavelength is different for each of LD1a to 1e.
  • the superimposed laser beam 122 has a plurality of wavelengths (lock wavelengths) that are different for each of the LD1a to 1e. That is, the superposed laser light 122 superimposes a plurality of laser light 121a to 121e, each of which has a wavelength distribution having a different lock wavelength as a peak.
  • an optical component of a medium that refracts light such as a prism or a lens, may be used to direct the laser beams 121a to 121e emitted from the LD1a to 1e in a specific direction.
  • the diffraction angle at which the diffraction intensity from the optical component is maximized (if the wavelength of the laser beam is the same) also differs for each LD.
  • the transmission angle after refraction (if the wavelength of the laser beam is the same) also differs for each LD.
  • the diffraction angle and transmission angle also depend on the wavelengths of the laser beams 121a to 121e. Therefore, by adjusting the wavelengths of the output laser beams 121a to 121e for each of the LD1a to 1e, the diffraction angle or transmission angle from the optical component can be made substantially constant regardless of the LD1a to 1e.
  • the laser beams 121a to 121e emitted from the plurality of LD1a to 1e are combined into one superimposed laser beam 122 and directed in a specific direction regardless of the arrangement of the LD121a to 121e.
  • the superimposed laser beam 122 has a plurality of wavelengths (lock wavelengths) corresponding to each of the LD1a to 1e.
  • the superimposed laser beam 122 includes laser beams 121a to 121e having a plurality of different lock wavelengths according to each LD. Therefore, each LD needs to be selected based on the characteristics of the LD and individually adjusted in the apparatus so that a high gain can be obtained at the lock wavelength determined by the arrangement thereof.
  • the output in a laser oscillator equipped with an LD, it takes a certain period of time (for example, about several seconds) for the output to stabilize after the power is turned on.
  • the wavelength band in which a high gain can be obtained high gain wavelength band
  • the high gain wavelength band is on the short wavelength side, and the high gain wavelength band moves to the long wavelength side as the temperature rises.
  • the optical switching element 130 receives the superimposed laser beam 122 from the diffraction grating 5 and transmits or blocks the superimposed laser beam 122 (on state) or blocks (off state) according to the applied electric signal (for example, voltage signal). ).
  • the applied electric signal for example, voltage signal.
  • the superimposed laser beam 122 transmits or reflects through the output mirror 10, and the external resonator is in an oscillating state.
  • the superimposed laser beam 122 leading to the output mirror 10 is blocked by the optical switching element 130. Therefore, the external cavity does not oscillate.
  • the output of the superimposed laser light 122 emitted from the output mirror 10 is changed according to the electric signal. be able to.
  • the pulse laser light 124 can be extracted from the output mirror 10.
  • Examples of the configuration of the optical switching element 130 include an electro-optic (EO) element and an acoustic optical (AO) element.
  • An example of an electro-optical element is a Pockels cell. In the Pockels cell, an electro-optical material whose birefringence changes with the application of a voltage is used. As a result, the refraction or polarization state of light is controlled according to the application of voltage, and the light is operated as an optical switch.
  • An example of an acousto-optic element is an acousto-optic modulator in which the refractive index changes periodically by the application of ultrasonic waves. The periodic change in the refractive index acts as a diffraction grating and can be used as a switch by outputting the diffracted light.
  • the optical switching element 130 may be subjected to a process such as covering the incident surface and the emitting surface of the laser light of the Pockels cell with a wide band antireflection film.
  • the optical switching element 130 does not need to completely block the superimposed laser beam 122 from the diffraction grating 5 in the off state, and the superimposed laser beam 122 incident on the output mirror 10 to such an extent that the oscillation by the external resonator is stopped. Anything that reduces the output will do.
  • the optical switching element 130 is preferably capable of transmitting 10% or less of the output of the superposed laser light 122 (in other words, blocking 90% or more of the output of the laser light) in the off state.
  • the output mirror 10 reflects the superposed laser beam 122 from the diffraction grating 5 except for a part thereof.
  • the superimposed laser beam 122 reflected by the output mirror 10 returns to the diffraction grating 5, is separated into a plurality of laser beams by the diffraction grating 5, and returns to LD1a to 1e.
  • the laser beams 121a to 121e are externally resonated in the laser oscillator 100 (when the optical switching element 130 is in the ON state).
  • a part of the superimposed laser beam 122 whose output is increased by external resonance passes through the output mirror 10 and is emitted to the outside.
  • FIG. 2 is a block diagram showing an outline of the configuration of the laser oscillator 100 according to the embodiment of the present invention.
  • the laser oscillator 100 includes a constant current source 110, a laser photosynthesis unit 120, and an optical switching element 130.
  • the laser photosynthesis unit 120 may not include all or a part of the first collimators 2a to 2e, the rotating elements 3a to 3e, and the second collimators 4a to 4e.
  • the optical component may receive the laser beams 121a to 121e directly from the LD1a to 1e.
  • the laser oscillator of the present invention is a direct diode laser type laser oscillator and is useful for laser processing because of its high output.
  • Laser oscillator 10 Output mirror 110: Constant current source 120: Laser photosynthesis unit 1a to 1e: Semiconductor laser diode (LD) 2a to 2e: 1st collimator 3a to 3e: Rotating element 4a to 4e, 2nd collimator 5: Diffraction grating 130: Optical switching element

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

レーザ発振装置(100)は、複数の半導体レーザダイオード(1a~1e)と、複数の半導体レーザダイオード(1a~1e)から発される複数のレーザ光(121a~121e)を、特定の方向に向けることで、複数のレーザ光(121a~121e)を含み特定の方向に伝搬する重畳レーザ光(122)を生成する光学部品(5)と、光学部品(5)から重畳レーザ光(122)を受ける光スイッチング素子(130)と、を備える。重畳レーザ光(122)は、複数の波長を有する。

Description

レーザ発振装置
 本発明は、主として切断や溶接などの加工用途に用いられるダイレクトダイオードレーザ方式のレーザ発振装置に関する。
 レーザ発振装置の構成として、複数のレーザ源から出射された複数のレーザを合成して、一本のレーザを形成する技術がある(例えば、特許文献1参照)。
 近年、上記技術のレーザ源としてレーザダイオード(LD)を用いたダイレクトダイオード方式(DDL方式)によるレーザ発振装置が実現されている。DDL方式のレーザ発振装置は、レーザダイオードの高い発振効率を活かし、直接加工に使用することができる。
米国特許第6208679号明細書
 しかしながら、上記DDL方式に基づいて、安定した出力のレーザ光を生成するレーザ発振装置を実現することは容易ではなかった。
 上記に鑑み、本発明の一側面は、複数の半導体レーザダイオードと、前記複数の半導体レーザダイオードから発される複数のレーザ光を、特定の方向に向けることで、前記複数のレーザ光を含み前記特定の方向に伝搬する重畳レーザ光を生成する光学部品と、前記光学部品から前記重畳レーザ光を受ける光スイッチング素子と、を備え、前記重畳レーザ光は、複数の波長を有する、レーザ発振装置に関する。
 本発明によれば、DDL方式を採用しながら、安定した出力のレーザ光を生成するレーザ発振装置を容易に実現できる。
本発明の一実施形態に係るレーザ発振装置のレーザ光生成部分の構成を説明する概略図である。 本発明の一実施形態に係るレーザ発振装置の概略構成を示すブロック図である。
 本実施形態に係るレーザ発振装置は、複数の半導体レーザダイオード(以下において、単に「LD」とも称する)と、複数の半導体レーザダイオードから発される複数のレーザ光を、特定の方向に向けることで、複数のレーザ光を含み特定の方向に伝搬する重畳レーザ光を生成する光学部品と、光学部品から重畳レーザ光を受ける光スイッチング素子と、重畳レーザ光の光路上に位置する出力鏡と、を備える。光学部品は、例えば回折格子であるが、プリズムなどの光を屈折させる媒体であってもよい。
 以下、本実施形態に係るレーザ発振装置の構成について、図面を参照しながら、より詳細に説明する。
 図1は、本実施形態に係るレーザ発振装置の中核であるレーザ光生成部分の構成を説明する概略図であり、DDL方式によるレーザ光生成を模式的に説明する図である。図1において、半導体レーザダイオード(LD)1a~1eは、レーザ光121a~121eを発する。複数のレーザ光121a~121eは、第1コリメータ2a~2e、回転素子3a~3e、および、第2コリメータ4a~4eを介して、回折格子5に入射する。回折格子5は、レーザ光121a~121eを受けて、レーザ光121a~121eを含む一本の重畳レーザ光122を生成する。重畳レーザ光122は、光スイッチング素子130、および、出力鏡10を介して、外部に向けて出射される。第1コリメータ2a~2e、回転素子3a~3e、第2コリメータ4a~4e、および、回折格子5は、全体でレーザ光合成部120を構成している。
 図1において、LD1a~1eのそれぞれが、第1コリメータ2a~2eの対応する1つ、回転素子3a~3eの対応する1つ、および、第2コリメータ4a~4eの対応する1つと組を形成している。なお、図1において、LDの個数は5個であるが、本実施形態はLDの数に限定されるものではない。LDの個数は、所望のレーザの出力エネルギーに応じて調整され得る。
 (半導体レーザダイオード(LD))
 LD1a~1eは、レーザ光121a~121eを生成する。LDは、例えば、チップ形状のLDチップである。LDチップとしては、端面発光型(EEL:Edge Emitting Laser)のLDチップが好ましく用いられる。端面発光型のLDチップでは、例えば、長尺のバー形状の共振器が、チップ内において基板面と平行に形成されている。共振器は、共振器の長手方向に離れて位置する第1端面と第2端面とを有する。第1端面はレーザ光がほぼ全反射するように第1高反射率の第1反射膜で覆われている。一方、第2端面は第1高反射率よりも小さな第2高反射率の第2反射膜で覆われている。第1端面と第2端面の反射により増幅され位相の揃ったレーザ光が第2端面から出射される。共振器の長手方向の長さは、共振器長(CL:Cavity Length)と呼ばれる。
 LDチップが複数の共振器を備え、複数のレーザ光を出射してもよい。この場合、複数のレーザ光は、第2端面の複数の箇所からそれぞれ出射され得る。つまり、LDは複数の発光点を有し得る。発光点は、共振器の第2端面であるチップの端面に沿って、一次元的に整列し得る。
 LD1a~1eは、定電流源110(図2参照)と接続されている。LD1a~1eは、定電流源110と直列に接続されていてもよく、並列に接続されていてもよい。
 レーザ光121a~121eは、高い出力(利得)が得られる波長帯域を有する。この波長帯域は、ある程度の幅を有する。また、この高出力(利得)が得られる波長帯域は、LDチップの温度に依存して(すなわち、LD1a~1eを駆動させた期間の長さによって)変化し得る。なお、本実施形態では、LD1a~1eの駆動開始から十分時間が経過し、LD1a~1eから発されるレーザ光の出力が安定した時点において高出力(利得)が得られる波長帯域内に後述するロック波長が存在するように、LD1a~1eのそれぞれが構成されている。
 レーザ光の波長については、特に限定されるものではないが、例えば、ピーク波長975±25nmまたは895±25nmの赤外レーザ、ピーク波長400~425nmの青色レーザなどを用いることができる。
 (第1コリメータ)
 LD1a~1eから発されるレーザ光121a~121eは、いずれも、伝播に伴い拡散し、そのビーム幅を広げる。第1コリメータ2a~2eは、レーザ光121a~121eを第1方向に平行光化する。すなわち、第1コリメータ2a~2eは、レーザ光121a~121eの第1方向におけるビーム幅の拡大を抑制し、第1方向におけるビーム幅が略一定となるようにレーザ光121a~121eを平行光化する。第1方向は、ビーム幅の広がりが最も大きくなる方向であってもよい。第1方向は、例えば、LDチップの基板面に垂直な方向である。LDチップの基板面に垂直な方向は、一般に、LDチップから発されるレーザ光の速軸の方向であり得る。これに対し、LDチップの基板面に平行で且つ光の出射面に沿う方向は、一般に、LDチップから発するレーザ光の遅軸の方向であり得る。第1コリメータ2a~2eは、例えば、凸レンズである。
 (回転素子)
 回転素子3a~3eは、第1コリメータ2a~2eから第1方向に平行光化されたレーザ光121a~121eを受け、これらのレーザ光121a~121eを回転させる。なお、上記において、「光を回転させる」とは、光(ビーム)の伝播方向に垂直な面における断面形状を回転させることを意味する。
 LD1a~1eの少なくとも1つが複数の発光点を有するLDチップであってもよい。LD1a~1eのいずれもが複数の発光点を有してもよい。例えば、LD1aが複数の発光点を有するLDチップである場合、発光点に対応する複数のレーザ光が生成および出射され、伝播に伴い拡散し、そのビーム幅を広げる。回転素子3aは、発光点の異なるレーザ光同士の重なりが低減されるように、それぞれのレーザ光の断面形状を回転させる。これにより、高出力のレーザビームが得られる。
 回転素子3aを通過する前において、発光点の異なる複数のレーザ光は、LDチップの基板面に平行で且つ光の出射面(チップ端面)に沿う方向に整列している。また、第1コリメータ2aによる平行光化を受けているので、それぞれのレーザ光の断面形状は、第1方向を短軸とする扁平な形状(例えば、楕円または方形)となっている。回転素子3aは、例えば、楕円形状のレーザ光の長軸方向と基板面とのなす角が直角に近づくように(短軸方向と基板面とのなす角が0°に近づくように)、楕円形状のレーザ光を回転させる。例えば、第1方向がLDチップの基板面に垂直な方向である場合、レーザ光は回転素子3aによって90°回転され得る。回転素子3aは、例えば、凸レンズであり、レーザ光の出射方向に垂直であって且つ基板面に対し例えば45°傾いた軸を有する円柱レンズを発光点の整列方向に沿って配列させてなる。
 第1コリメータ2a~2eおよび回転素子3a~3eは、それぞれ、対応するLD1a~1eに取り付けられ得る。そして、LD1a~1eの対応する1つと、第1コリメータ2a~2eの対応する1つと、回転素子3a~3eの対応する1つとが一体化された部品を用いて、レーザ発振装置が組み立てられ得る。
 (第2コリメータ)
 第2コリメータ4a~4eは、第1コリメータ2a~2eにより第1方向に平行光化されたレーザ光121a~121eを受け、これらのレーザ光121a~121eを第2方向において平行化する。すなわち、第2コリメータ4a~4eは、第1コリメータ2a~2eによって第1方向に平行光化されたレーザ光の第2方向におけるビーム幅の拡大を抑制し、第2方向におけるビーム幅が略一定となるようにレーザ光を平行光化する。好ましくは、第2コリメータ4a~4eは、第1コリメータ2a~2eを介した後、回転素子3a~3eを介したレーザ光を平行光化するものであってよい。回転素子3a~3eを設けない場合、第2方向は、第1方向と異なり、例えば第1方向に垂直な方向である。回転素子3a~3eが設けられる場合、第2方向は、回転後の第1方向と異なり、例えば回転後の第1方向に垂直な方向である。回転素子3a~3eがレーザ光を90°回転させる場合、第1方向と第2方向とは平行であり得る。第2方向は、LDチップから発するレーザ光の遅軸の方向であり得る。第2コリメータ4a~4eは、例えば、凸レンズである。
 (回折格子)
 回折格子5は、LD1a~1eから発され、第1コリメータ2a~2e、回転素子3a~3e、第2コリメータ4a~4eを通過したレーザ光121a~121eを受ける。回折格子5は、受けたレーザ光121a~121eをLD1a~1eに依らない特定の方向に向けることで、特定の方向に伝搬する重畳レーザ光122を生成する。重畳レーザ光122は、それぞれが特定の方向に向かうレーザ光121a~121eを含む。回折格子5は、反射型であってもよく、透過型であってもよい。
 LD1a~1eは、レーザ発振装置100内で離間して配置される。このため、回折格子5に入射されるレーザ光121a~121eの入射角がLD1a~1eごとに異なることは避けられない。一般に、回折強度が極大となる回折角は入射角に依存するので、LD1a~1eから出射されるレーザ光121a~121eの波長を同じとすれば、回折角もLD1a~1eごとに異なり、重畳レーザ光122を同一方向に向けることが難しい。
 しかしながら、回折角は波長にも依存するため、LD1a~1eから出射されるレーザ光121a~121eの波長を互いに異ならせておくことで、回折格子5への入射角がLD1a~1eごとに異なる場合であっても、レーザ光121a~121eの回折角を一定とし、その結果、LD1a~1eから出射されたレーザ光121a~121eを特定の方向に向けることができる。この特定の方向に、LD1a~1eから出射されたレーザ光121a~121eが回折するときのレーザ光121a~121eのそれぞれの波長をロック波長と呼ぶ。ロック波長は、LD1a~1eごとに異なる。
 よって、重畳レーザ光122は、LD1a~1eごとに異なる複数の波長(ロック波長)を有する。すなわち、重畳レーザ光122は、それぞれが異なるロック波長をピークに持つ波長分布を有する複数のレーザ光121a~121eを重畳的に含む。
 なお、回折格子5の代わりに、プリズムあるいはレンズなど、光を屈折させる媒体の光学部品を用いて、LD1a~1eから出射されるレーザ光121a~121eを特定の方向に向けてもよい。
 本実施形態に係るレーザ発振装置は、複数のLD1a~1eから発される複数のレーザ光121a~121を、回折格子などの光学部品(例えば回折格子5)を介して重畳し、一本のレーザビーム(重畳レーザ光122)を生成する。LD1a~1eから発されるレーザ光121a~121eのそれぞれは、光学部品により伝播方向を変える。しかしながら、LD1a~1eのそれぞれは離間して配置されているため、光学部品に入射するレーザ光121a~121eの入射角がLD1a~1eごとに異なる。結果、例えば光学部品が回折格子の場合、(レーザ光の波長が同じであれば)光学部品からの回折強度が極大となる回折角もLDごとに異なる。同様に、例えば光学部品がプリズムの場合、(レーザ光の波長が同じであれば)屈折後の透過角もLDごとに異なる。
 しかしながら、回折角および透過角は、レーザ光121a~121eの波長にも依存する。よって、LD1a~1eのそれぞれについて、出力されるレーザ光121a~121eの波長を調整することで、LD1a~1eに依らず光学部品からの回折角または透過角を略一定とすることができる。これにより、複数のLD1a~1eから発されるレーザ光121a~121eは一本の重畳レーザ光122にまとめられ、LD121a~121eの配置に依らない特定の方向に向けられる。この場合、重畳レーザ光122は、LD1a~1eのそれぞれに対応する複数の波長(ロック波長)を有する。
 すなわち、重畳レーザ光122は、それぞれのLDに応じた複数の異なるロック波長を有するレーザ光121a~121eを含む。このため、それぞれのLDは、その配置により決まるロック波長において高い利得が得られるように、そのLDの特性に基づいた選別を行い、装置内での個別の調整を行う必要が生じる。
 一方で、LDを備えたレーザ発振装置では、電源投入後、出力が安定するまでに一定の期間(例えば、数秒程度)を要する。この理由は、電源投入直後から出力安定時までの期間では、温度変化により、高利得が得られる波長帯域(高利得波長帯域)が変化し得るためである。電源投入直後では、例えば、高利得波長帯域は短波長側にあり、温度上昇とともに高利得波長帯域が長波長側に移動する。通常、出力安定時において利得の高い波長帯域内にロック波長が存在するように、個々のLDの特性に基づいた選別、ならびに発振装置の全体構成を調整する必要がある。
 ところが、上記のようなLD毎の温度特性を有する場合、個々の配置箇所毎にLD位置の調整、選別をする条件が極めて厳しくなる。結果的に、少なくとも1つのLDのロック波長がその配置にて高利得波長帯域内にない場合も起こり得る。この場合、所望の総出力が得られないレーザ発振装置となってしまう。
 そこで、本実施形態では、光スイッチング素子を設けることで、上記の課題を解消することを目指した。光スイッチング素子の作用については後述する。
 (光スイッチング素子)
 光スイッチング素子130は、回折格子5から重畳レーザ光122を受け、印加される電気信号(例えば、電圧信号)に応じて、重畳レーザ光122を透過させ(オン状態)、あるいは遮断させる(オフ状態)。オン状態の場合、重畳レーザ光122は出力鏡10を透過または反射し、外部共振器が発振状態となる。一方、オフ状態では、出力鏡10へと至る重畳レーザ光122は光スイッチング素子130により遮られる。よって、外部共振器は発振しない。
 定電流源によりLD1a~1eの発光を維持した状態で、光スイッチング素子130に電気信号を印加することで、電気信号に応じて、出力鏡10から出射される重畳レーザ光122の出力を変化させることができる。例えば、光スイッチング素子130にパルス信号を印加すると、出力鏡10からパルスレーザ光124を取り出すことができる。
 この場合、パルス信号が印加される期間において、LD1a~1eのそれぞれは駆動状態のままでよい。すなわち、LD1a~1eに定電流を印加した状態を維持したままでよい。よって、LD1a~1eの駆動には一般的な定電流源を使用でき、高価なパルス定電流源を用いる必要がない。また、パルス信号の印加中はLDに定電流を印加した状態が維持されるため、LD1a~1eの温度は略一定であり、高利得波長帯域は変化しない。よって、安定した出力のパルスレーザが得られる。レーザ発振装置は、パルスレーザを発生後、連続レーザを発生するように切替えることも容易であり、レーザ加工用途に適している。
 ただし、上述の通り、光スイッチング素子130は、複数のロック波長を有するレーザ光121a~121eを含む重畳レーザ光122を受ける。このため、光スイッチング素子130は、異なるロック波長を有するレーザ光121a~121eのそれぞれを遮断可能な性能を有している。LD1a~1eにおいて、最長のロック波長と最短のロック波長との差は、通常、20nm程度である。よって、光スイッチング素子130は、レーザ光をスイッチング可能な波長帯域の幅が20nm以上のものが用いられる。レーザ光をスイッチング可能な波長帯域の幅は、50nm以上であるとより好ましい。
 また、重畳レーザ光122は、複数のLD1a~1eから出射されたレーザ光121a~121eを含むため、大きなレーザ出力を有する。光スイッチング素子130は、このような重畳レーザ光122を遮断できるように、遮断可能なレーザ出力が大きい(例えば、1kW以上)ものが用いられる。
 光スイッチング素子130の構成としては、例えば、電気光学(EO)素子を含むもの、あるいは、音響光学(AO)素子を含むものが挙げられる。電気光学素子の例としては、ポッケルスセルが挙げられる。ポッケルスセルでは、電圧の印加に応じて複屈折性が変化する電気光学材料が用いられる。これにより電圧の印加に応じて光の屈折または偏光状態を制御し、光スイッチとして動作させる。音響光学素子の例としては、超音波の印加により周期的な屈折率の変化が生じる音響光学変調器が挙げられる。周期的な屈折率の変化は、回折格子として作用し、回折光を出力とすることでスイッチに利用することができる。
 スイッチング可能な波長帯域幅を広げるために、ポッケルスセルのレーザ光の入射面および出射面を広帯域の反射防止膜で覆う等の処理を光スイッチング素子130に施してもよい。
 光スイッチング素子130は、オフ状態において、回折格子5からの重畳レーザ光122を完全に遮る必要はなく、外部共振器による発振が停止する程度に、出力鏡10に入射される重畳レーザ光122の出力を低減させるものであればよい。光スイッチング素子130は、オフ状態において、重畳レーザ光122の出力の10%以下を透過させる(換言すると、レーザ光の出力の90%以上を遮断する)性能を有しているとよい。
 複数の光スイッチング素子を組み合わせ、全体で1つの光スイッチング素子130を構成してもよい。例えば第1および第2の光スイッチング素子を、第1の光スイッチング素子からの出射光が第2の光スイッチング素子に入射されるように直列に接続し、全体で1つの光スイッチング素子130を構成してもよい。この場合、それぞれの第1および第2の光スイッチング素子は、オフ状態においてレーザ光の出力の例えば30%以下を透過させる(換言すると、レーザ光の出力の70%以上を遮断する)性能を有していてもよい。オフ状態において、光スイッチング素子130を透過するレーザ光の出力は9%以下となるため、光スイッチング素子130を容易に実現することができる。
 光スイッチング素子130は、重畳レーザ光122の光路において出力鏡10よりも前段に(すなわち、回折格子5と出力鏡10との間に)配置されていてもよいし、出力鏡10よりも後段に(すなわち、出力鏡10を挟んで回折格子5と対向する側に)配置されていてもよい。
 (出力鏡)
 出力鏡10は、回折格子5からの重畳レーザ光122を、その一部を除いて反射させる。出力鏡10で反射された重畳レーザ光122は、回折格子5に戻り、回折格子5で複数のレーザ光に分離してLD1a~1eに戻る。これにより、レーザ発振装置100内において、レーザ光121a~121eを外部共振させる(光スイッチング素子130がオン状態の場合)。外部共振により出力が高められた重畳レーザ光122の一部は、出力鏡10を透過し、外部に出射される。
 図2は、本発明の一実施形態に係るレーザ発振装置100の構成の概略を示すブロック図である。レーザ発振装置100は、定電流源110、レーザ光合成部120、および、光スイッチング素子130を備える。
 レーザ光合成部120には、定電流源110により駆動される複数のLDが設けられている。レーザ光合成部120は、複数のLD1a~1eから出射される複数のレーザ光121a~121eをまとめて、一本の重畳レーザ光122を生成する。重畳レーザ光122は、この状態では、時間によって出力が一定のCW(Continuous Wave)出力である。重畳レーザ光122は、光スイッチング素子130に入射される。このとき、光スイッチング素子130に印加されるパルス電圧132に応じて、光スイッチング素子130を通過する重畳レーザ光122の出力が変調される。よって、パルスレーザ光124を取り出すことができる。なお、パルス電圧132は、レーザ発振装置100に内蔵あるいは外付けで設けられた制御回路により生成され得る。
 上述した実施形態は本発明の一例に過ぎず、各部の具体的な構成は上述した具体例に限定されるものではなく、本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。
 例えば、レーザ光合成部120は、第1コリメータ2a~2e、回転素子3a~3eおよび第2コリメータ4a~4eの全部または一部を備えていなくてもよい。例えば、光学部品は、レーザ光121a~121eをLD1a~1eから直接受けてもよい。
 本発明のレーザ発振装置は、ダイレクトダイオードレーザ方式のレーザ発振装置であり、高出力であることから、レーザ加工に有用である。
 100:レーザ発振装置
 10:出力鏡
 110:定電流源
 120:レーザ光合成部
 1a~1e:半導体レーザダイオード(LD)
 2a~2e:第1コリメータ
 3a~3e:回転素子
 4a~4e、第2コリメータ
 5:回折格子
 130:光スイッチング素子

Claims (6)

  1.  複数の半導体レーザダイオードと、
     前記複数の半導体レーザダイオードから発される複数のレーザ光を、特定の方向に向けることで、前記複数のレーザ光を含み前記特定の方向に伝搬する重畳レーザ光を生成する光学部品と、
     前記光学部品から前記重畳レーザ光を受ける光スイッチング素子と、を備え、
     前記重畳レーザ光は、複数の波長を有する、レーザ発振装置。
  2.  前記光スイッチング素子は、20nm以上のスイッチング可能な波長帯域幅を有する、請求項1に記載のレーザ発振装置。
  3.  前記複数の半導体レーザダイオードの少なくとも1つは、複数の発光点を有する、請求項1または2に記載のレーザ発振装置。
  4.  前記複数の半導体レーザダイオードの少なくとも1つから発される前記レーザ光を第1方向において平行光化する第1コリメータと、
     前記第1コリメータから前記第1コリメータにより前記第1方向に平行光化されたレーザ光を受け、前記第1方向に平行光化された前記レーザ光を回転させる回転素子と、
     前記回転素子から前記回転素子により回転された前記レーザ光を受け、回転された前記レーザ光を第2方向において平行光化する第2コリメータと、を備える、請求項1~3のいずれか1項に記載のレーザ発振装置。
  5.  前記光スイッチング素子は、ポッケルスセルおよび音響光学素子の少なくともいずれか1つを含む、請求項1~4のいずれか1項に記載のレーザ発振装置。
  6.  前記複数のレーザ光は、複数の異なる波長を有し、
     前記光学部品は、前記複数のレーザ光を前記複数の異なる波長に応じた複数の異なる入射角で受け、前記複数のレーザ光を同一の出射角で出射することにより、前記複数のレーザ光を前記特定の方向に向ける、請求項1~5のいずれか1項に記載のレーザ発振装置。
PCT/JP2020/026983 2019-09-06 2020-07-10 レーザ発振装置 WO2021044730A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080061543.8A CN114342195A (zh) 2019-09-06 2020-07-10 激光振荡装置
JP2021543638A JPWO2021044730A1 (ja) 2019-09-06 2020-07-10
EP20860272.2A EP4027468A4 (en) 2019-09-06 2020-07-10 LASER OSCILLATION DEVICE
US17/673,867 US20220173576A1 (en) 2019-09-06 2022-02-17 Laser oscillation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019163218 2019-09-06
JP2019-163218 2019-09-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/673,867 Continuation US20220173576A1 (en) 2019-09-06 2022-02-17 Laser oscillation device

Publications (1)

Publication Number Publication Date
WO2021044730A1 true WO2021044730A1 (ja) 2021-03-11

Family

ID=74852660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026983 WO2021044730A1 (ja) 2019-09-06 2020-07-10 レーザ発振装置

Country Status (5)

Country Link
US (1) US20220173576A1 (ja)
EP (1) EP4027468A4 (ja)
JP (1) JPWO2021044730A1 (ja)
CN (1) CN114342195A (ja)
WO (1) WO2021044730A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021118271A (ja) * 2020-01-27 2021-08-10 パナソニックIpマネジメント株式会社 レーザ発振器及びレーザ加工方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193303A (ja) * 1993-12-27 1995-07-28 Toshiba Corp アレキサンドライトレーザ再生増幅方法及びその装置
US6208679B1 (en) 1998-09-08 2001-03-27 Massachusetts Institute Of Technology High-power multi-wavelength external cavity laser
JP2007019265A (ja) * 2005-07-07 2007-01-25 Sony Corp 発光装置
JP2008028019A (ja) * 2006-07-19 2008-02-07 Jtekt Corp 集光ブロック
WO2016067343A1 (ja) * 2014-10-27 2016-05-06 ギガフォトン株式会社 レーザ装置及び極端紫外光生成装置
JP2018056147A (ja) * 2015-02-06 2018-04-05 スペクトロニクス株式会社 レーザ光源装置及びレーザパルス光生成方法
JP2018518048A (ja) * 2015-05-13 2018-07-05 トルンプフ レーザー ゲゼルシャフト ミット ベシュレンクテル ハフツングTRUMPF Laser GmbH 可変フィードバック制御をともなう稠密波長ビーム結合
JP2019102517A (ja) * 2017-11-29 2019-06-24 日亜化学工業株式会社 光源装置
US20190214786A1 (en) * 2018-01-09 2019-07-11 Daylight Solutions, Inc. Laser assembly with spectral beam combining
WO2019163335A1 (ja) * 2018-02-26 2019-08-29 パナソニックIpマネジメント株式会社 光共振器及びレーザ加工機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040057475A1 (en) * 2002-09-24 2004-03-25 Robert Frankel High-power pulsed laser device
US20060092994A1 (en) * 2004-11-01 2006-05-04 Chromaplex, Inc. High-power amplified spectrally combined mode-locked laser
JP5701618B2 (ja) * 2010-03-04 2015-04-15 ギガフォトン株式会社 極端紫外光生成装置
DE112011100812T5 (de) * 2010-03-05 2013-03-07 TeraDiode, Inc. System und Verfahren zur Wellenlängenstrahlkombination
US9134538B1 (en) * 2013-02-06 2015-09-15 Massachusetts Institute Of Technology Methods, systems, and apparatus for coherent beam combining
US9391713B2 (en) * 2013-10-14 2016-07-12 Trumpf Laser Gmbh High brightness dense wavelength multiplexing laser
US9762022B2 (en) * 2013-12-05 2017-09-12 Mitsubishi Electric Corporation Multi wavelength laser device
CN104979749B (zh) * 2015-06-25 2017-11-28 鞍山伟光力激光科技有限公司 一种高功率半导体光纤耦合激光器及其耦合方法
JP2021118271A (ja) * 2020-01-27 2021-08-10 パナソニックIpマネジメント株式会社 レーザ発振器及びレーザ加工方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193303A (ja) * 1993-12-27 1995-07-28 Toshiba Corp アレキサンドライトレーザ再生増幅方法及びその装置
US6208679B1 (en) 1998-09-08 2001-03-27 Massachusetts Institute Of Technology High-power multi-wavelength external cavity laser
JP2007019265A (ja) * 2005-07-07 2007-01-25 Sony Corp 発光装置
JP2008028019A (ja) * 2006-07-19 2008-02-07 Jtekt Corp 集光ブロック
WO2016067343A1 (ja) * 2014-10-27 2016-05-06 ギガフォトン株式会社 レーザ装置及び極端紫外光生成装置
JP2018056147A (ja) * 2015-02-06 2018-04-05 スペクトロニクス株式会社 レーザ光源装置及びレーザパルス光生成方法
JP2018518048A (ja) * 2015-05-13 2018-07-05 トルンプフ レーザー ゲゼルシャフト ミット ベシュレンクテル ハフツングTRUMPF Laser GmbH 可変フィードバック制御をともなう稠密波長ビーム結合
JP2019102517A (ja) * 2017-11-29 2019-06-24 日亜化学工業株式会社 光源装置
US20190214786A1 (en) * 2018-01-09 2019-07-11 Daylight Solutions, Inc. Laser assembly with spectral beam combining
WO2019163335A1 (ja) * 2018-02-26 2019-08-29 パナソニックIpマネジメント株式会社 光共振器及びレーザ加工機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4027468A4

Also Published As

Publication number Publication date
US20220173576A1 (en) 2022-06-02
JPWO2021044730A1 (ja) 2021-03-11
EP4027468A1 (en) 2022-07-13
CN114342195A (zh) 2022-04-12
EP4027468A4 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
US9379514B2 (en) High-power, phased-locked, laser arrays
JP5900934B2 (ja) 高輝度ダイオード出力の方法及びデバイス
JP3421184B2 (ja) 波長可変レーザーにおける波長選択方法および波長可変レーザーにおける波長選択可能なレーザー発振装置
JP2007527616A (ja) レーザー発光特性調整のためのボリューム・ブラッグ・グレーティングの使用
JP2011520292A5 (ja)
US20070053388A1 (en) Coherent light source and optical device
JP4747841B2 (ja) 波長変換レーザ装置および画像表示装置
US6501782B1 (en) Compact laser apparatus
KR100451117B1 (ko) 광파라메트릭발진장치
WO2021044730A1 (ja) レーザ発振装置
US7760775B2 (en) Apparatus and method of generating laser beam
JP2015056469A (ja) 外部共振器により波長制御されたダイオードレーザモジュール
WO2015085544A1 (zh) 一种激光器
CN113258433A (zh) 激光振荡器以及激光加工方法
JP3250609B2 (ja) レーザ発振装置、レーザメス
JP2007073552A (ja) レーザ光発生装置及び画像生成装置
KR100451116B1 (ko) 파장가변레이저에서의파장선택가능레이저오실레이터
CN220066399U (zh) 一种脉冲时序可调控的激光产生装置
WO1991006139A1 (en) Diode pumped segmented fibre bundle coupled conical rod laser system
JP3845687B2 (ja) ラマン・レーザー発振装置
JP2010186816A (ja) レーザ光源
JP4862960B2 (ja) 波長変換レーザ装置および画像表示装置
JP3031740B2 (ja) 高調波発生装置
CN116581629A (zh) 一种脉冲时序可调控的激光产生装置
JP3074772B2 (ja) 第2高調波発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543638

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020860272

Country of ref document: EP

Effective date: 20220406