WO2021044659A1 - レンズユニット - Google Patents

レンズユニット Download PDF

Info

Publication number
WO2021044659A1
WO2021044659A1 PCT/JP2020/015412 JP2020015412W WO2021044659A1 WO 2021044659 A1 WO2021044659 A1 WO 2021044659A1 JP 2020015412 W JP2020015412 W JP 2020015412W WO 2021044659 A1 WO2021044659 A1 WO 2021044659A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lenses
polarized light
lens unit
focal length
Prior art date
Application number
PCT/JP2020/015412
Other languages
English (en)
French (fr)
Inventor
佳史 村田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021044659A1 publication Critical patent/WO2021044659A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below

Definitions

  • the present invention relates to a lens unit.
  • Patent Document 1 discloses a bifocal crystal lens composed of a uniaxial crystal in which at least one of the two coaxial surfaces is a curved surface. According to Patent Document 1, by using the lens, it is possible to obtain bifocals by separating the polarized light of anomalous rays and ordinary rays having vibration planes orthogonal to each other by utilizing the birefringence of a uniaxial crystal. .. Further, Patent Document 2 is an optical lens device including two lenses, in which each of the two lenses has birefringence in a specific direction in the lens surface, and each of the two lenses has a birefringence.
  • a device in which the birefringent directions are arranged so as to have a predetermined angle.
  • Patent Document 2 in the optical lens device, the influence of birefringence can be reduced as a whole by arranging two lenses so that the directions of each birefringence have a predetermined angle. It is possible.
  • the present inventor has found that it may be useful to separate the focal points of polarized light not only in an optical pickup optical system but also in a laser processing machine, an imaging device, a measuring device, a lighting device, and the like.
  • it is difficult to increase the defocusing amount of polarized light by the techniques described in Patent Documents 1 and 2.
  • the present invention has been made in view of such circumstances, and one of the objects of the present invention is to provide a lens unit capable of increasing the defocusing amount of polarized light.
  • the lens unit according to one aspect of the present invention includes two or more lenses each having double refractive property, and one of the two or more lenses adjacent to each other has a positive refractive force and the other lens has a negative refractive force.
  • the vibration planes of light waves that have refractive power and maximize the refractive index are orthogonal, two or more lenses are separated, and the distance between the main points of two or more lenses. Is less than the maximum of the absolute values of the focal distances of each of the two or more lenses.
  • the illumination lens unit used together with the observation optical system includes two or more lenses each having double refractive property, and one of the two or more lenses adjacent to each other has a positive refractive force.
  • the other lens has a negative refractive power, and in one lens and the other lens, the vibration planes of the light wave that maximizes the refractive index are orthogonal to each other, and two or more lenses are separated from each other.
  • the distance between the main points of two or more lenses is less than the maximum of the absolute values of the focal distances of each of the two or more lenses, and one lens of the illumination lens unit and the other of the illumination lens unit.
  • One of the vibrating surfaces of the light wave having the maximum refractive index in the lens of the lens is configured to include a line connecting the center of the incident pupil of the observation optical system and the center of the exit pupil of the illumination lens unit in substantially the plane. Has been done.
  • the present invention it is possible to provide a lens unit capable of increasing the defocusing amount of polarized light.
  • the lens unit according to the first embodiment includes two or more lenses 11 and 12, which have birefringence, respectively.
  • one of the two or more lenses 11 and 12 adjacent to each other has a positive refractive power
  • the other lens 12 has a negative refractive power
  • one lens has a negative refractive power.
  • the vibration planes of the light wave having the maximum refractive index are orthogonal to each other.
  • two or more lenses 11 and 12 are separated from each other, and the distance between the principal points of the two or more lenses 11 and 12 is the focal length of each of the two or more lenses 11 and 12.
  • the materials of the lenses 11 and 12 may be different from each other, but the case where the same glass material is used for both will be described below.
  • the separation amount generated by each lens may differ depending on the magnitude of the birefringence amount of the materials, but the effect of the present embodiment of increasing the focal separation amount can be obtained. Be done.
  • the lenses 11 and 12 having birefringence are made of a material having birefringence.
  • Anisotropic crystals are an example of a material having birefringence.
  • anisotropic crystals include quartz (SiO 2 ), calcite (CaCO 3 ), rutile, and KDP (KH 2 PO 4 ).
  • the lenses 11 and 12 are arranged so that the crystal axis of one lens 11 and the crystal axis of the other lens 12 are orthogonal to each other. When the lens is a uniaxial crystal, the crystal axis and the optic axis coincide with each other.
  • the molding material such as resin or molten glass may be provided with birefringence by using structural birefringence, or birefringence generated by stress during resin molding may be used.
  • the structure may be such that the lens is pressed from above and below, and stress is intentionally applied to the lens to give the lens birefringence, and the amount of birefringence may be adjusted by a combination of these.
  • the lens 11 having a positive refractive power is a convex lens
  • the lens 12 having a negative refractive power is a concave lens.
  • the lens 11 having a positive refractive power may be arranged first, and then the lens 12 having a negative refractive power may be arranged, or the negative refractive power may be first arranged.
  • a lens 12 having a lens 12 may be arranged, and then a lens 11 having a positive refractive power may be arranged.
  • the principal point of a lens is a representative case in which the lens is treated by paraxial theory and expressed as a single lens having no thickness based on the incident light on the lens and the emitted light from the lens. It is a point.
  • the distance between the principal points of the two or more lenses 11 and 12 shown in FIGS. 1 and 2 is less than the maximum value f max of the absolute values of the focal lengths of the two or more lenses 11 and 12, the lenses It is possible to reduce the size of the unit. If it is desired to increase the focal length with respect to the unit size, a lens having a positive refractive power may be arranged in advance. Further, if it is desired to increase the back focus with respect to the unit size, a lens having a negative refractive power may be arranged in advance.
  • the focusing point is not generated between the lenses 11 and 12 by setting the distance between the principal points to be less than the maximum value f max of the absolute value of the focal length.
  • an optical system in which the optical path is folded back by a flat mirror is often used for the purpose of making it compact or preventing dust and the like from accumulating on the member. If the mirror is arranged in the mirror, even a slight amount of dust adhesion, surface defects (line scratches, digs, etc.) and coating defects lead to a noticeable loss of light intensity, which is not preferable. That is, in order to improve the workability of the member and the degree of freedom in arranging the member, it is preferable that there is no focusing point between the lenses.
  • the distance between the principal points of the lenses 11 and 12 may be larger than 0, and the minimum value among the absolute values of the focal lengths of the two or more lenses 11 and 12 is set to f min , for example, 0. If 10f min or more to Isaoso but more preferably as long 0.15F min or more, but more preferable that not less aberration 0.20F min or more when considering a certain preferably, or 0.25 F min or more, particularly Not limited.
  • the focal length f of the single lens is given by the following equation (1).
  • is the reciprocal of the focal length
  • n is the refractive index
  • r 1 is the radius of curvature of the injection surface
  • r 2 is the radius of curvature of the incident surface.
  • the power in the first polarized light incident on the lens pair and the power in the second polarized light orthogonal to the first polarized light have a difference due to the difference in refractive index between the two.
  • is given by the following equation (2).
  • ⁇ n takes a positive value when the refractive index in the first polarized light is large and the refractive index in the second polarized light is small, the refractive index in the first polarized light is small, and the refractive index in the second polarized light is small. Takes a negative value when is large.
  • the combined focal length f s of the lens pair of the lens having the focal length f 1 and the lens having the focal length f 2 is given by the following equation (3), where d is the distance between the principal points of the lens.
  • 1 / f s (1 / f 1 ) + (1 / f 2 ) -d / (f 1 ⁇ f 2 ) (3)
  • ⁇ s ⁇ 1 + ⁇ 2- d ⁇ 1 ⁇ 2
  • the power difference ⁇ s between the first polarized light incident on the lens pair and the second polarized light orthogonal to the first polarized light is given by the following equation (5).
  • the composite focal length is standardized for comparison.
  • the combined focal length may not be constant due to restrictions on the optical system (numerical aperture, beam diameter, working distance, focusing diameter, angle of view, etc.).
  • the crystal axis of the first lens 101 of the lens pair and the crystal axis of the second lens 102 are orthogonal to each other, and the first and second lenses of the lens pair are orthogonal to each other.
  • the first polarized light beam incident on the first lens 101 receives a refraction action at the refractive index in the second polarization when it is incident on the second lens 102.
  • the second polarized light ray incident on the first lens 101 is incident on the second lens 102, it is subjected to a refraction action at the refractive index of the first polarized light.
  • the refractive index difference ⁇ n 1 in the first lens 101 and the refractive index difference ⁇ n 2 in the second lens 102 have different signs, but the absolute values are the same
  • the power difference ⁇ s between the lens pairs given by the above equation (5) can be approximated by the following equation (6).
  • the power phi 1 of the value and the power phi 2 of the value of the second lens 102 of the first lens 101 Has the same code. Therefore, the absolute value of the difference between the value of the power ⁇ 1 of the first lens 101 and the value of the power ⁇ 2 of the second lens 102 becomes small, so that the value of the power difference ⁇ s in the lens pair given by Eq. Becomes smaller and the amount of defocusing becomes smaller.
  • the positive and negative refractive power of the positive and negative and the second lens 102 of the refractive power of the first lens 101 is different, the value of the power phi 2 of the power phi 1 value and the second lens 102 of the first lens 101 is different It becomes a code. Therefore, the absolute value of the difference between the value of the power ⁇ 1 of the first lens 101 and the value of the power ⁇ 2 of the second lens 102 becomes large, so that the value of the power difference ⁇ s in the lens pair given by Eq. Increases, and the amount of defocusing increases.
  • the absolute value of the power ⁇ 1 of the first lens 101 and the second lens 102 in the equation (6) Increasing any of the absolute values of the power ⁇ 2 of the lens increases the value of the power difference ⁇ ⁇ s between the lens pairs. Further, even if both the absolute value of the power ⁇ 1 of the first lens 101 and the absolute value of the power ⁇ 2 of the second lens 102 in the equation (6) are increased, the value of the power difference ⁇ s between the lens pairs becomes large. growing.
  • Increasing the power with a positive lens with a high ray height has a greater degree of deterioration due to aberration than increasing it. Therefore, it is preferable to increase only one of the absolute value of the power ⁇ 1 of the first lens 101 and the absolute value of the power ⁇ 2 of the second lens 102, and it is more preferable to increase only the absolute value of the power of the negative lens. ..
  • the power ⁇ s of the lens pair given by the above equation (4) is constant.
  • the value of the power ⁇ 1 of the first lens 101 and the value of the power ⁇ 2 of the second lens 102 have different signs, if the absolute value of the power with the negative sign is increased, the first value of the equation (4) is increased. Even if the value of the term ⁇ 1 or the second term ⁇ 2 becomes small, the value of the third term ( ⁇ d ⁇ 1 ⁇ 2 ) becomes large. Therefore, it is easy to keep the power ⁇ s of the lens pair constant without increasing the absolute value of the power of the one having a positive sign.
  • the value of the power ⁇ 1 of the first lens 101 and the value of the power ⁇ 2 of the second lens 102 have different signs, and the distance d between the main points is 0, and the third term of the equation (4).
  • the power ⁇ s of the lens pair is kept constant unless both the absolute value of the first term ⁇ 1 and the absolute value of the second term ⁇ 2 in equation (4) are increased.
  • the aberration can be increased.
  • the material of the negative lens is a birefringent material having a high refractive index. Since a surface having a strong power can be a surface having a large radius of curvature, it is effective in suppressing aberrations. Since a material having a high refractive index often has a large dispersion, it is preferable to use a material for a negative lens as a birefringent material having a high refractive index in terms of chromatic aberration correction.
  • the lens unit according to the first embodiment shown in FIGS. 1 and 2 since the lenses 11 and 12 are separated from each other and the distance d between the principal points is not 0, the power of any of the lenses 11 and 12 is increased. As a result, the combined focal length can be easily made constant without increasing the aberration, and since the refractive powers of the lenses 11 and 12 have different codes, it is possible to increase the focal separation amount of the polarized light.
  • the crystal axis of the first lens 201 of the lens pair and the crystal axis of the second lens 202 are parallel, and the materials of the first and second lenses 201 and 202 of the lens pair are the same.
  • the refractive index difference ⁇ n 1 in the first lens 201 and the refractive index difference ⁇ n 2 in the second lens 202 have the same reference numerals and the absolute values are the same
  • the power difference ⁇ s between the lens pairs given by the above equation (5) can be approximated by the following equation (7).
  • the power phi 1 of the value and the power phi 2 of the value of the second lens 202 of the first lens 201 Has the same code. Therefore, the difference in function phi 1 phi for 2 value increases, the power in the lens pair, given in equation (7) power phi 2 value of the power phi 1 value and the second lens 202 of the first lens 201 [Delta] [phi The value of s becomes smaller, and the amount of defocusing becomes smaller.
  • the first embodiment will be further described using specific values of the refractive index, the radius of curvature, the focal length, and the amount of focal separation, but it goes without saying that the first embodiment is not limited to the following.
  • the first polarized light refractive index is used.
  • the second polarized light refractive index n o orthogonal to the first polarization is 1.53 when the curvature radius of the lens 11 is 70 mm, the radius of curvature of the lens 12 is -83Mm, lens
  • the focal length f 1e of the first polarized light of 11 is 129.6 mm
  • the focal length f 1o of the second polarized light of the lens 11 is 132.1 mm
  • the focal length f 2e of the first polarized light of the lens 12 is -153.7 mm.
  • the focal length f 2o of the second polarized light of the lens 12 is -156.6 mm.
  • the ratio of the distance between the principal points to the absolute value of 156.6 mm of the maximum focal length is 51%, and the principal is to the absolute value of 129.6 mm of the minimum focal length.
  • the ratio of the distance between points is 62%.
  • the combined focal length of the lenses 11 and 12 when the first polarized light ray is incident on the lens 11 is 189.8 mm
  • the combined focal length of the lenses 11 and 12 when the second polarized light ray is incident on the lens 11 is 189.8 mm.
  • the focal length is 199.8 mm. Therefore, the amount of focal separation ⁇ f between the polarized light passing through the lenses 11 and 12 and whose polarization directions are orthogonal to each other is 10.0 mm.
  • the focal length f 1o of the second polarized light of the lens 21 is 196.3 mm
  • the focal length ⁇ f between the polarized rays whose polarization directions are orthogonal to each other is 3.7 mm, so that the focal length can be increased.
  • lenses 31 and 32 having refractive powers having the same code are arranged so that the vibration planes of the light wave having the maximum refractive index are parallel to each other, and the smaller the distance d from the above equation (7), the more the focus is separated.
  • the lenses 31 and 32 are arranged so as not to be separated from each other in consideration of the increase in the focus separation, the focus separation cannot be increased.
  • Each of the first polarized light refractive index n e is 1.54 of the lens 31, the second polarized light refractive index n o is 1.53, the curvature radius of 215mm lens 31, the radius of curvature of the lens 32 is 210mm.
  • the focal length f 1e of the first polarized light of the lens 31 is 398.1 mm
  • the focal length f 1o of the second polarized light of the lens 31 is 405.7 mm
  • the focal length f 2e of the first polarized light of the lens 32 Is 388.9 mm
  • the focal length f 2o of the second polarized light of the lens 32 is 396.2 mm.
  • the combined focal length of the lenses 31 and 32 when the first polarized light is incident on the lens 31 is 196.7 mm
  • the combined focal length of the lenses 31 and 32 when the second polarized light is incident on the lens 31. Is 200.4 mm. Therefore, the amount of focal separation ⁇ f between the polarized light passing through the lenses 31 and 32 and whose polarization directions are orthogonal to each other is 3.7 mm. That is, the focal separation cannot be increased as in the case of using a single lens.
  • the first polarized light refractive index n e is 1.54, a second polarized light refractive index n o is 1.53, the radius of curvature of the lens 51 is 70 mm, the radius of curvature of the lens 52
  • the focal length f 1e of the first polarized light of the lens 51 is 129.6 mm
  • the focal length f 1o of the second polarized light of the lens 51 is 132.1 mm
  • f 2e is 3388.9 mm
  • the focal length f 2o of the second polarized light of the lens 52 is -396.2 mm.
  • the combined focal length of the lenses 51 and 52 when the first polarized light ray is incident on the lens 51 is 192.7 mm. Further, the combined focal length of the lenses 51 and 52 when the second polarized light ray is incident on the lens 51 is 200.0 mm. Therefore, the amount of focal separation ⁇ f between the polarized light passing through the lenses 51 and 52 and whose polarization directions are orthogonal to each other is 7.3 mm.
  • the positive lens of FIG. 8 is the same as the positive lens of FIG.
  • the power of the positive lens and the power of the negative lens must be increased at the same time, but the positive power already has a large refractive power. Aberrations occur as the power of the lens increases, and the aberrations cannot be completely corrected by the negative lens. Therefore, when the lenses 51 and 52 are not separated from each other, it is disadvantageous in that the focus separation amount cannot be increased without increasing the aberration.
  • the glass material is either a quartz crystal, when the wavelength is intended to cover laser 1.3 .mu.m, the first polarized light refractive index n e is 1.555, and the first polarization second polarized light refractive index n o perpendicular is 1.546, when the curvature radius of the lens 111 is 31.9 mm, the radius of curvature of the lens 112 is -61.0Mm, focal point of the first polarized light of the lens 111
  • the distance f 1e is 57.5 mm
  • the focal length f 1o of the second polarized light of the lens 111 is 58.4 mm
  • the focal length f 2e of the first polarized light of the lens 112 is -109.9 mm
  • the focal length f 2o of is -111.7 mm.
  • the ratio of the distance between the principal points to the absolute value of 111.7 mm of the maximum focal length is 9%, and the principal is to the absolute value of 57.5 mm of the minimum focal length.
  • the ratio of the distance between points is 17%.
  • the combined focal length of the lenses 111 and 112 when the first polarized light ray is incident on the lens 111 is 100.0 mm
  • the combined focal length of the lenses 111 and 112 when the second polarized light ray is incident on the lens 111 is 100.0 mm.
  • the focal length is 104.4 mm.
  • the focal separation amount ⁇ f between the polarized light passing through the lenses 111 and 112 and whose polarization directions are orthogonal to each other is 4.4 mm, and the ratio of the focal separation amount ⁇ f to the combined focal length is large. For example, if the scale of the entire optical system is increased and the combined focal length is set to 200.0 mm, the focal separation amount ⁇ f becomes 8.8 mm.
  • a relatively large amount of focus separation can be obtained with respect to the focal length. If the surfaces of the lenses 111 and 112 are too close to each other, it becomes difficult to increase the power of only one lens while maintaining the combined focal length. However, if the power of both the positive lens and the negative lens is increased, there is a problem of aberration. Can occur.
  • the glass material is either a quartz crystal, when the wavelength is intended to cover laser 1.3 .mu.m, the first polarized light refractive index n e is 1.555, and the first polarization second polarized light refractive index n o perpendicular is 1.546, when the curvature radius of the lens 211 is 60.0 mm, the radius of curvature of the lens 212 is -20.0Mm, focal point of the first polarized light of the lens 211
  • the distance f 1e is 54.1 mm
  • the focal length f 1o of the second polarized light of the lens 211 is 70.0 mm
  • the focal length f 2e of the first polarized light of the lens 212 is -18.0 mm
  • the second polarized light of the lens 212 The focal length f 2o of is -18.3 mm.
  • the ratio of the distance between the principal points to the absolute value of 70.0 mm of the maximum focal length is 83%, and the absolute value of the minimum focal length is 18.0 mm.
  • the ratio of the distance between the principal points to is 252%.
  • the combined focal length of the lenses 211 and 212 when the first polarized light ray is incident on the lens 211 is 102.2 mm
  • the combined focal length of the lenses 211 and 212 when the second polarized light ray is incident on the lens 211 is 102.2 mm.
  • the focal length is 116.5 mm. Therefore, the amount of focal separation ⁇ f between the polarized light passing through the lenses 211 and 212 and whose polarization directions are orthogonal to each other is 14.3 mm.
  • a larger focal amount can be obtained by increasing the power of the lens 212, which is a negative lens.
  • a glass material is calcite lens 311 shown in FIG. 11, the glass material of the lens 312 is sapphire, the wavelength is intended to cover laser 1.3 .mu.m, the first polarized light refractive index n e of the lens 311 is 1.643 the second polarized light refractive index n o is 1.48 which is orthogonal to the first polarization, the radius of curvature of the lens 311 is 45.0 mm, the first polarized light refractive index n e of the lens 312 is 1.755, the second polarized light refractive index n o is 1.746, the radius of curvature of the lens 312 be a -51.2Mm, the focal length f 1e of the first polarized light lens 311 93.8Mm, the second polarized light lens 311 The focal distance f 1o is 54.9 mm, the focal distance f 2e of the first polarized light of the lens 312 is ⁇ 67.8 mm, and the focal distance f
  • the ratio of the distance between the principal points to the absolute value of 93.8 mm of the maximum focal length is 28%
  • the absolute value of the minimum focal length is 67.8 mm.
  • the ratio of the distance between the principal points to is 38%.
  • the combined focal length of the lenses 311 and 312 when the first polarized light is incident on the lens 311 is 194.9 mm
  • the focal length is 98461 mm. Therefore, the amount of focal separation ⁇ f between the polarized light passing through the lenses 311 and 312 and whose polarization directions are orthogonal to each other is 98266.1 mm.
  • the amount of focus separation by the lens unit shown in FIG. 11 is large, the emitted light corresponding to the second polarized light ray incident on the lens 311 is substantially a collimated beam, and the lens unit shown in FIG. 11 functions as a beam expander. To do. In this way, by appropriately setting the power of at least one of the lenses 311 and 312, the focal length of at least one of the plurality of polarized lights can be increased to infinity or increased to obtain the first embodiment.
  • a lens unit may be used as a beam expander.
  • any glass material is sapphire
  • the wavelength is intended to cover laser 1.3 .mu.m
  • the first polarized light refractive index n e is 1.755
  • the first polarization second polarized light refractive index n o perpendicular is 1.746
  • the curvature radius of the lens 411 -20.0Mm the radius of curvature of the lens 412 is 35.9 mm
  • the focal point of the first polarization beam lens 411 The distance f 1e is -26.5 mm
  • the focal length f 1o of the second polarized light of the lens 411 is -26.8 mm
  • the focal length f 2e of the first polarized light of the lens 412 is 47.5 mm
  • the focal length f 2o of the light beam is 48.1 mm.
  • the ratio of the distance between the principal points to the absolute value of 48.1 mm of the maximum focal length is 58%, and the absolute value of the minimum focal length is 26.5 mm.
  • the ratio of the distance between the principal points to is 106%.
  • the combined focal length of the lenses 411 and 412 when the first polarized light ray is incident on the lens 411 is 200.2 mm
  • the combined focal length of the lenses 411 and 412 when the second polarized light ray is incident on the lens 411 is 200.2 mm.
  • the focal length is 175.6 mm. Therefore, the amount of focal separation ⁇ f between the polarized light passing through the lenses 411 and 412 and whose polarization directions are orthogonal to each other is 24.6 mm.
  • the folded mirror is arranged in FIG. 12 for convenience of illustration, the mirror is not always necessary.
  • the negative lens By arranging the negative lens first in the traveling direction of the light incident on the lens unit, it is possible to lengthen the back focus.
  • the glass material of the lens 511 shown in FIG. 13 is a sapphire, glass material of the lens 512 is calcite, when the wavelength is intended to cover laser 1.064 .mu.m, the first polarized light refractive index n e of the lens 511 is 1.755 the second polarized light refractive index n o orthogonal to the first polarization 1.746, the radius of curvature of the lens 511 is -12.7Mm, first polarized light refractive index n e of the lens 512 is 1.643, the 2 polarized light refractive index n o is 1.48, when the curvature radius of the lens 512 is 25.0 mm, the first focal length f 1e of the polarized light of the lens 511 -16.8Mm, second polarized light lens 511 The focal distance f 1o of the lens 512 is -17.0 mm, the focal distance f 2e of the first polarized light of the lens 512 is 38.9 mm
  • the ratio of the distance between the principal points to the absolute value of 52.1 mm of the maximum focal length is 84%
  • the absolute value of the minimum focal length is 16.8 mm.
  • the ratio of the distance between principal points to is 262%.
  • the combined focal length of the lenses 511 and 512 when the first polarized light ray is incident on the lens 511 is 100.3 mm
  • the combined focal length of the lenses 511 and 512 when the second polarized light ray is incident on the lens 511 is 100.3 mm.
  • the focal length is 30 mm. Therefore, the amount of focal separation ⁇ f between the polarized light passing through the lenses 511 and 512 and whose polarization directions are orthogonal to each other is 70.3 mm.
  • the folded mirror is arranged in FIG. 13 for convenience of illustration, the mirror is not always necessary.
  • the negative lens By arranging the negative lens first in the traveling direction of the light incident on the lens unit, it is possible to lengthen the back focus.
  • the lens unit according to the first embodiment it is possible to increase the amount of focus separation. According to the lens unit according to the first embodiment, it is possible to reduce the amount of focus separation. Therefore, according to the lens unit according to the first embodiment, the focus separation amount can be arbitrarily set according to the application.
  • the use of the lens unit according to the first embodiment is not particularly limited, but it can be used, for example, as an optical system of a laser processing machine.
  • the focal separation amount of the polarized light of the laser light may be set, and two thick objects may be processed at the same time.
  • the front and back of an object may be processed at the same time.
  • two parts may be processed at the same time.
  • cutting of an object and deburring may be performed at the same time.
  • the cross-sectional shape of the beam irradiated on the object may be changed by focusing one of the polarized lights on the object and shifting the other focal point of the polarized light from the object.
  • the sudden boiling phenomenon caused by the sudden rise in temperature at the point where the beam is focused leads to the scattering of the material, so the welding target has a large spot and a small spot among the large spots.
  • the material to be welded has a gentle temperature distribution, so that the material is suppressed from scattering due to a sudden temperature rise, and smooth welding becomes possible.
  • the lens unit according to the first embodiment can also be used as an optical system of an imaging device. Since the lens unit according to the first embodiment has a large amount of focal separation, it is possible to acquire both near and far images with high sensitivity.
  • the lens unit according to the first embodiment may be used in the optical system of an OCT (optical coherence tomography) to image two locations inside the observation target.
  • OCT optical coherence tomography
  • OCT optical coherence tomography
  • imaging is performed by the interference intensity of backscattered light and reference light, and the sensitivity drops sharply in places other than the focused position. Therefore, mixing (crosstalk) of both signals due to the formation of two or more focal points is not a problem in many cases, and the effect can be reduced as the amount of separation is increased as in the present embodiment.
  • the high-sensitivity regions may be connected to each other to expand the imaging region. It is clear that the same content can be similarly applied to applications other than imaging (for example, a distance measuring device using interference).
  • the lens unit according to the first embodiment can also be used as an optical system of an optical measuring device.
  • the target is irradiated with the light that has passed through the lens unit at regular time intervals, and the return light intensity is measured with a confocal detector. That is, the time when the return light is maximized is regarded as the time when the object is confocal, and the speed at which the object is approaching is measured by dividing the amount of defocusing by the time interval at which the reflected light is detected. It is possible.
  • the detection system may be configured in consideration of the fact that the polarizations of the beams are different at the two focusing points.
  • two detectors having different polarizations to be detected may be prepared, or a detector capable of switching between the two polarizations at high speed may be used.
  • a detector capable of switching between the two polarizations at high speed may be used.
  • the lens unit according to the first embodiment can also be used as an optical system of a lighting device.
  • the lens unit according to the first embodiment can be used.
  • the illumination unit optimized for perspective may be used as an illumination unit capable of simultaneously irradiating the illumination.
  • the illumination unit includes, for example, a light source 60 and a lens unit including a lens 711, a lens 712, and a lens 713.
  • the lenses 711 and 712 for example, calcite is used as a glass material.
  • the lens 713 uses, for example, sapphire as a glass material. In the example shown in FIG.
  • the lens 712 has a positive refractive power
  • the lens 713 has a negative refractive power
  • the lenses 712 and 713 are separated from each other.
  • the light source 60 including the optical fiber bundle irradiates the illumination light including the first polarized light and the second polarized light orthogonal to the first polarized light.
  • the amount of focal separation between the first polarized light and the second polarized light contained in the illumination light is expanded, and the polarized light closer to the lens unit is focused on the proximity illumination and the lens unit focuses on it. It is possible to use the farther polarized light for distant illumination.
  • some endoscopes have a zoom function, and some have a deep depth of focus and can withstand both near and far observations.
  • priority is given to brightness even at a narrow angle of view and no halation.
  • the illumination using the lens unit according to the present embodiment since one polarized light acts as the main illumination and the other acts as the auxiliary light, it is easy to realize the ideal illumination as described above.
  • wide-angle illumination for distant observation where a large amount of reflected light should return is S-polarized light (light that vibrates in a plane perpendicular to the surface connecting the illumination unit and the observation unit), and for near-field observation where halation is likely to occur.
  • the narrow-angle illumination of the above By configuring the narrow-angle illumination of the above so that it is illuminated by P-polarized light (light that vibrates in the plane connecting the illumination unit and the observation unit), it tends to be bright in the distance and halation due to normal reflection is suppressed in the vicinity. , Can be ideal lighting.
  • a polarizing element such as a polarizing plate, a rotator, or a wave plate.
  • the dimming may be such that the emitted illumination light is uniformly dimmed, or only a part of the spectral band is dimmed in order to make it easier to observe a specific object. ..
  • birefringent materials for example, sapphire
  • some birefringent materials have resistance to strong acids such as digestive juices and strong alkalis, and resistance to autoclave sterilization, which is also convenient in that sense.
  • superimposing the two illumination lights due to the birefringence of the emission illumination from the fiber bundle also reduces the illuminance unevenness due to the projection of the brightness unevenness on the end face of the bundle, which is also convenient in this respect. ..
  • the number of lenses included in the lens unit according to the embodiment is not particularly limited as long as it is plural.
  • the lens unit according to the second embodiment shown in FIGS. 15 and 16 includes three or more lenses 61, 62, 63, and as shown in FIG. 15, the adjacent third or more lenses 61, 62, 63.
  • One lens 61 has a positive refractive power
  • the second lens 62 has a negative refractive power
  • the third lens 63 has a positive refractive power, or as shown in FIG. 16, three or more lenses.
  • the adjacent first lens 61 has a negative refractive force
  • the second lens 62 has a positive refractive force
  • the third lens 63 has a negative refractive force.
  • the vibration planes of the light wave having the maximum refractive index are orthogonal to each other, and the refractive index is maximized in the second lens 62 and the third lens 63.
  • the vibration planes of the light waves are orthogonal.
  • the three or more lenses 61, 62, 63 are separated from each other, and the distance between the principal points of the three or more lenses 61, 62, 63 is the focal length of each of the three or more lenses 61, 62, 63. It is less than the maximum of the absolute values.
  • a plurality of lens units according to the embodiment may be arranged in series.
  • a first lens 61 having a positive refractive power and a third lens having a positive refractive power on both sides of the second lens 62 having a negative refractive power Aberration can be suppressed by using a so-called triplet type in which 63 is arranged.
  • the focal length of at least one of the plurality of polarized lights is made infinite, and the second embodiment is made.
  • the lens unit according to the above may be used as a beam expander. Further, for example, by moving the lenses 162 and 163 in the optical axis direction, it is possible to change the focal length of one polarized light while keeping the same focal length of the other polarized light.
  • the lenses 161, 162, and 163 may all be made of the same glass material, or may be made of different glass materials.
  • a plano-convex lens having a radius of curvature of 40 mm and a glass material of square stone is used as a lens 161 and a biconcave lens having a radius of curvature of 28 mm and a glass material of sapphire is used as a lens 162 and having a radius of curvature of 52.9 mm.
  • An example of handling a laser having a wavelength of 1.064 ⁇ m in a lens unit in the case where a plano-convex lens whose glass material is crystal is used as a lens 163 is shown.
  • FIG. 19 by moving the lens 162 or the lens 163 in the optical axis direction, the focal length of one polarized light is kept the same, the focal length of the other polarized light is changed, and the amount of defocusing is adjusted. It is possible to do.
  • the condenser lens 164 may be arranged on the rear side of the lens 163 in the optical axis direction, that is, on the injection side of the beam expander.
  • the condenser lens 164 may be made of a birefringent material or a non-birefringent material.
  • the illumination lens unit used together with the observation optical system 70 according to the third embodiment includes two or more lenses 611 and 612 having birefringence, respectively.
  • One of the two or more lenses 611 and 612 adjacent to each other has a positive refractive power
  • the other lens has a negative refractive power
  • the refractive power is maximized in one lens and the other lens.
  • the vibration planes of the light waves are orthogonal, the two or more lenses 611 and 612 are separated, and the distance between the main points of the two or more lenses 611 and 612 is the focal distance of each of the two or more lenses 611 and 612. It is less than the maximum of the absolute values.
  • One of the lenses of the illumination lens unit and the vibration surface of the light wave having the maximum refractive index in the other lens of the illumination lens unit are the center of the entrance pupil of the observation optical system 70 and the illumination.
  • the line connecting the center of the exit pupil of the lens unit is configured to be included in the substantially plane.
  • the illumination lens unit is irradiated with illumination light including, for example, a first polarized light and a second polarized light orthogonal to the first polarized light from a light source 60 provided with an optical fiber bundle.
  • illumination light including, for example, a first polarized light and a second polarized light orthogonal to the first polarized light from a light source 60 provided with an optical fiber bundle.
  • the amount of focal separation between the first polarized light and the second polarized light contained in the illumination light is expanded by transmitting through the lenses 611 and 612.
  • the lens unit according to each embodiment of the present invention has the configuration and the effect according to the following example by any one or a plurality of combinations described above.
  • the lens unit according to the present embodiment includes two or more lenses 11 and 12 having double refractive property, respectively, and one of the two or more lenses 11 and 12 adjacent to each other has a positive refractive force and the other.
  • Lens 12 has a negative refractive force, and in one lens 11 and the other lens 12, the vibration planes of light waves having the maximum refractive index are orthogonal to each other, and two or more lenses 11 and 12 are separated from each other.
  • the distance between the main points of the two or more lenses 11 and 12 is less than the maximum value of the absolute values of the focal distances of the two or more lenses 11 and 12.
  • the lens unit according to this embodiment can increase the amount of defocusing of polarized light.
  • the adjacent first lens 61 of the three or more lenses 61, 62, 63 has a positive refractive force
  • the second lens 62 is negative.
  • the third lens 63 has a positive refractive power, or the adjacent first lens 61 of the three or more lenses 61, 62, 63 has a negative refractive power
  • the second lens 62 has a positive refractive force
  • the third lens 63 has a negative refractive force
  • the vibration planes of the light wave having the maximum refractive index are orthogonal to each other in the first lens 61 and the second lens 62.
  • the vibration planes of the light waves having the maximum refractive index are orthogonal to each other, the three or more lenses 61, 62, 63 are separated from each other, and the three or more lenses 61, 62. , 63 may be less than the maximum of the absolute values of the respective focal distances of the three or more lenses 61, 62, 63.
  • the focal length of at least one of a plurality of polarized lights may be set to infinity.
  • the lens unit according to this embodiment can be used as a beam expander.
  • At least one of two or more lenses may be movable in the optical axis direction.
  • the illumination lens unit used together with the observation optical system 70 includes two or more lenses 611 and 612 having double refractive properties, respectively, and one of the two or more lenses 611 and 612 that is adjacent to each other.
  • the other lens has a negative refractive power
  • the vibration planes of the light wave that maximizes the refractive index are orthogonal to each other, and two or more lenses. 611 and 612 are separated, and the distance between the main points of the two or more lenses 611 and 612 is less than the maximum value of the absolute values of the respective focal distances of the two or more lenses 611 and 612, and is used for the illumination.
  • any one of the vibration planes of the light wave having the maximum refractive index in one lens of the lens unit and the other lens of the illumination lens unit is the center of the incident pupil of the observation optical system 70 and the illumination lens unit. It is configured to include the line connecting the centers of the exit pupils in the substantially plane.
  • each of the embodiments described above is for facilitating the understanding of the present invention, and is not for limiting and interpreting the present invention.
  • the present invention can be modified / improved without departing from the spirit of the present invention, and the present invention also includes an equivalent thereof. That is, those skilled in the art with appropriate design changes to each embodiment are also included in the scope of the present invention as long as they have the features of the present invention.
  • each element included in each embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those exemplified, and can be changed as appropriate.
  • each embodiment is an example, and it goes without saying that the configurations shown in different embodiments can be partially replaced or combined, and these are also included in the scope of the present invention as long as the features of the present invention are included. ..

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

それぞれ複屈折性を有する2以上のレンズ11、12を備え、2以上のレンズ11、12のうち隣接する一方のレンズ11が正の屈折力を有し、他方のレンズ12が負の屈折力を有し、一方のレンズ11と他方のレンズ12において、屈折率が最大になる光波の振動面が直交しており、2以上のレンズ11、12が離間しており、2以上のレンズ11、12の主点間距離が、2以上のレンズ11、12のそれぞれの焦点距離の絶対値のうちの最大値未満である、レンズユニット。

Description

レンズユニット
  本発明は、レンズユニットに関する。
 光ピックアップ光学系では、複数の複屈折レンズが組み合わされている。例えば、特許文献1は、2つの共軸面の少なくとも1つが曲面表面である一軸結晶からなる二焦点結晶レンズを開示している。特許文献1によれば、当該レンズを用いることにより、一軸結晶の複屈折を利用して互いに直交する振動面を有する異常光線及び常光線の偏光を分離して二焦点を得ることが可能である。また、特許文献2は、2枚のレンズを備える光学レンズ装置であって、2枚のレンズの各々がレンズ面内の特定の方向に複屈折性を有し、2枚のレンズが、各々の複屈折性の方向が所定の角度を有するように配置される装置を開示している。特許文献2によれば、当該光学レンズ装置において、各々の複屈折性の方向が所定の角度を有するように2枚のレンズを配置することにより、複屈折性の影響を全体として減少させることが可能である。
特開平9-43401号公報 特開2003-21771号公報
 本発明者は、光ピックアップ光学系のみならず、レーザー加工機、イメージング機器、測定装置、及び照明装置等において、偏光の焦点を分離することが有用であり得ることを見出した。しかし、特許文献1、2に記載された技術では、偏光の焦点分離量を大きくすることは困難である。本発明は、このような事情に鑑みてなされたものであり、偏光の焦点分離量を大きくすることができるレンズユニットを提供することを目的の一つとする。
 本発明の一側面に係るレンズユニットは、それぞれ複屈折性を有する2以上のレンズを備え、2以上のレンズのうち隣接する一方のレンズが正の屈折力を有し、他方のレンズが負の屈折力を有し、一方のレンズと他方のレンズにおいて、屈折率が最大になる光波の振動面が直交しており、2以上のレンズが離間しており、2以上のレンズの主点間距離が、2以上のレンズのそれぞれの焦点距離の絶対値のうちの最大値未満である。
 また、本発明の一側面に係る観察用光学系と共に用いる照明用レンズユニットは、それぞれ複屈折性を有する2以上のレンズを備え、2以上のレンズのうち隣接する一方のレンズが正の屈折力を有し、他方のレンズが負の屈折力を有し、一方のレンズと他方のレンズにおいて、屈折率が最大になる光波の振動面が直交しており、2以上のレンズが離間しており、2以上のレンズの主点間距離が、2以上のレンズのそれぞれの焦点距離の絶対値のうちの最大値未満であり、当該照明用レンズユニットの一方のレンズと当該照明用レンズユニットの他方のレンズにおける屈折率が最大になる光波の振動面のいずれか一つが、観察用光学系の入射瞳中心と、当該照明用レンズユニットの出射瞳中心を結んだ線を略面内に含むよう構成されている。
  本発明によれば、偏光の焦点分離量を大きくすることができるレンズユニットを提供可能である。
第1実施形態に係るレンズユニットを示す模式的側面図である。 第1実施形態に係るレンズユニットを示す模式的側面図である。 第1実施形態に係る主点を説明するための模式図である。 第1実施形態に係るレンズユニットを示す模式的斜視図である。 参考例に係るレンズユニットを示す模式的斜視図である。 参考例に係るレンズを示す模式的側面図である。 参考例に係るレンズユニットを示す模式的側面図である。 参考例に係るレンズユニットを示す模式的側面図である。 第1実施形態に係るレンズユニットを示す模式的側面図である。 第1実施形態に係るレンズユニットを示す模式的側面図である。 第1実施形態に係るレンズユニットを示す模式的側面図である。 第1実施形態に係るレンズユニットを示す模式的側面図である。 第1実施形態に係るレンズユニットを示す模式的側面図である。 第1実施形態に係るレンズユニットを示す模式的側面図である。 第2実施形態に係るレンズユニットを示す模式的側面図である。 第2実施形態に係るレンズユニットを示す模式的側面図である。 第2実施形態に係るレンズユニットを示す模式的側面図である。 第2実施形態に係るレンズユニットを示す模式的側面図である。 第2実施形態に係るレンズユニットを示す模式的側面図である。 第2実施形態に係るレンズユニットを示す模式的側面図である。 第2実施形態に係るレンズユニットを示す模式的側面図である。 第3実施形態に係るレンズユニットを示す模式的側面図である。
  以下、本発明の実施形態について図面を参照して説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。ただし、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
 [第1実施形態]
 第1実施形態に係るレンズユニットは、図1及び図2に示すように、それぞれ複屈折性を有する2以上のレンズ11、12を備える。第1実施形態に係るレンズユニットにおいて、2以上のレンズ11、12のうち隣接する一方のレンズ11が正の屈折力を有し、他方のレンズ12が負の屈折力を有し、一方のレンズ11と他方のレンズ12において、屈折率が最大になる光波の振動面が直交している。第1実施形態に係るレンズユニットにおいて、2以上のレンズ11、12が離間しており、2以上のレンズ11、12の主点間距離が、2以上のレンズ11、12のそれぞれの焦点距離の絶対値のうちの最大値未満である。なお、レンズ11、12の材料は互いに異なっていてもよいが、以下では、両者で同じ硝材を用いた場合を説明する。レンズ11、12の材料が互いに異なる場合、材料の複屈折量の大小により、それぞれのレンズで発生する分離量には差が生じうるが、焦点分離量を拡大するという本実施形態の効果は得られる。
 複屈折性を有するレンズ11、12は、複屈折性を有する材料からなる。複屈折性を有する材料の例としては、異方性の結晶が挙げられる。異方性の結晶の例としては、水晶(SiO2)、方解石(CaCO3)、ルチル、及びKDP(KH2PO4)が挙げられる。一方のレンズ11の結晶軸と、他方のレンズ12の結晶軸とが、直交するよう、レンズ11、12は配置される。レンズが1軸性結晶である場合、結晶軸と光学軸は一致する。また、樹脂や溶融ガラスなどの成型材料に構造複屈折を用いて複屈折を持たせてもよいし、樹脂成型時の応力によって発生する複屈折を利用してもよい。あるいは、レンズを上下より押圧する構造とし、意図的にレンズに応力を加えて、レンズに複屈折を持たせる構成としてもよく、これらの組み合わせによって複屈折量が調整されてもよい。
 例えば、正の屈折力を有するレンズ11は凸レンズであり、負の屈折力を有するレンズ12は凹レンズである。レンズユニットに入射する光の進行方向において、最初に正の屈折力を有するレンズ11を配置し、次に負の屈折力を有するレンズ12を配置してもよいし、最初に負の屈折力を有するレンズ12を配置し、次に正の屈折力を有するレンズ11を配置してもよい。
 レンズの主点とは、図3に示すように、レンズを近軸理論にて扱うことにより、レンズへの入射光とレンズからの出射光に基づいて厚みのない単レンズとして表現した場合の代表点である。図1及び図2に示す2以上のレンズ11、12の主点間距離が、2以上のレンズ11、12のそれぞれの焦点距離の絶対値のうちの最大値fmax未満とすることにより、レンズユニットを小型化することが可能である。ユニットサイズに対して焦点距離を長くしたい場合は正の屈折力を有するレンズを先行させえて配置してもよい。また、ユニットサイズに対してバックフォーカスを大きくしたい場合は負の屈折力を有するレンズを先行させて配置してもよい。
 また、コリメートビームに対してレンズ11、12を用いる場合、主点間距離を焦点距離の絶対値の最大値fmax未満とすることにより、レンズ11、12の間に集光点が生じないという利点がある。レンズ11、12の間に仮に集光点が生じると、例えば出力が大きい加工機にレンズユニットを適用する場合、集光点近傍において空気中の分子や塵、埃等からプラズマが発生し、レンズにダメージを与えたり、光線の強度がふらつく等の悪影響が生じ得たりする。さらに、加工機以外の用途にレンズユニットを用いる場合にも、コンパクト化、あるいは埃などの部材への堆積を防ぐ目的で、光路を平面ミラーによって折り返す光学系を用いることが多いが、集光位置にミラーが配置されると、僅かな埃の付着や表面欠陥(線キズ、ディグなど)及びコーティングの欠陥でも目立った光量ロスに繋がることから好ましくない。即ち、部材の加工性向上や、部材配置の自由度を向上するためにも、レンズ間に集光点がない方が好ましい。
 レンズ11、12の主点間距離は、例えば、0.95fmax以下であれば功奏するが、0.90fmax以下であれば更に好ましく、収差を考慮すると0.85fmax以下であるのが好ましく、あるいは0.80fmax以下であると更に好ましいが、特に限定されない。
 第1実施形態に係るレンズユニットにおいて、2以上のレンズ11、12が離間していることにより、レンズユニットを透過した少なくとも2つの偏光の焦点距離を異ならせることが可能である。したがって、レンズ11、12の主点間距離は、0より大であればよく、2以上のレンズ11、12のそれぞれの焦点距離の絶対値のうちの最小値をfminとして、例えば、0.10fmin以上であれば功奏するが、0.15fmin以上であれば更に好ましく、収差を考慮すると0.20fmin以上であるのが好ましく、あるいは0.25fmin以上であると更に好ましいが、特に限定されない。
 単レンズの焦点距離fは、下記(1)式で与えられる。
 1/f=φ=(n-1)((1/r1)-(1/r2))    (1)
 (1)式において、φは焦点距離の逆数であるパワー、nは屈折率、r1は射出面の曲率半径、r2は入射面の曲率半径を表す。
 複屈折材料にてレンズを構成した場合、レンズ対に入射する第1偏光におけるパワーと、第1偏光と直交する第2偏光におけるパワーには、両者の屈折率差に伴う差が生じる。両者のパワーの差をΔφとすると、Δφは下記(2)式で与えられる。
 Δφ=Δn((1/r1)-(1/r2))=Δn・φ/(n-1)    (2)
 (2)式において、Δnは、第1偏光における屈折率が大、第2偏光における屈折率が小の場合に正の値をとり、第1偏光における屈折率が小、第2偏光における屈折率が大の場合に負の値をとる。
 焦点距離がf1のレンズと、焦点距離がf2のレンズと、のレンズ対の合成焦点距離fsは、レンズの主点間距離をdとして、下記(3)式で与えられる。
 1/fs=(1/f1)+(1/f2)-d/(f1・f2)    (3)
 (3)式の焦点距離の逆数をパワーで置き換えると、下記(4)式が得られる。
 φs=φ1+φ2-dφ1φ2    (4)
 レンズ対に入射する第1偏光と、第1偏光と直交する第2偏光のパワーの差Δφsは、下記(5)式で与えられる。
Figure JPOXMLDOC01-appb-M000001
 上記(5)式で与えられるレンズ対のパワー差Δφsが大きいほど、焦点分離量が大きくなる。
 なお、以下では比較のために合成焦点距離が一定に規格化されているものとする。ただし、実際には、光学系の制約(開口数やビーム径、ワーキングディスタンス、集光径、画角など)によって、合成焦点距離が一定にならない場合もある。
 例えば一軸性結晶を用いたレンズを考え、図4に示すように、レンズ対の第1レンズ101の結晶軸と第2レンズ102の結晶軸が直交しており、レンズ対の第1及び第2レンズ101、102のそれぞれの材料が同じである場合、第1レンズ101に入射した第1偏光光線は、第2レンズ102に入射すると、第2偏光における屈折率での屈折作用を受ける。また、第1レンズ101に入射した第2偏光光線は、第2レンズ102に入射すると、第1偏光における屈折率での屈折作用を受ける。そのため、第1レンズ101における屈折率差Δn1と第2レンズ102における屈折率差Δn2は、異符号であるが、絶対値は同じ|ΔnC|になる。この場合、上記(5)式で与えられたレンズ対におけるパワーの差Δφsは、下記(6)式で近似できる。
Figure JPOXMLDOC01-appb-M000002
 ここで、仮に第1レンズ101の屈折力の正負と第2レンズ102の屈折力の正負が同じであれば、第1レンズ101のパワーφ1の値と第2レンズ102のパワーφ2の値が同符号となる。そのため、第1レンズ101のパワーφ1の値と第2レンズ102のパワーφ2の値の差の絶対値が小さくなるため、(6)式で与えられるレンズ対におけるパワーの差Δφsの値が小さくなり、焦点分離量が小さくなる。これに対し、第1レンズ101の屈折力の正負と第2レンズ102の屈折力の正負が異なる場合、第1レンズ101のパワーφ1の値と第2レンズ102のパワーφ2の値が異符号となる。そのため、第1レンズ101のパワーφ1の値と第2レンズ102のパワーφ2の値の差の絶対値が大きくなるため、(6)式で与えられるレンズ対におけるパワーの差Δφsの値が大きくなり、焦点分離量が大きくなる。
 第1レンズ101のパワーφ1の値と第2レンズ102のパワーφ2の値が異符号である場合、(6)式中の第1レンズ101のパワーφ1の絶対値と第2レンズ102のパワーφ2の絶対値のいずれかを大きくすると、レンズ対におけるパワーの差Δφsの値が大きくなる。また、(6)式中の第1レンズ101のパワーφ1の絶対値と第2レンズ102のパワーφ2の絶対値の両方を大きくしても、レンズ対におけるパワーの差Δφsの値が大きくなる。しかし、第1レンズ101のパワーφ1の絶対値と第2レンズ102のパワーφ2の絶対値の両方を大きくすると、それぞれで大きな収差が発生してしまうので、補正すべき収差が大きくなり、好ましくない。一般に、光線高が大きくなるほど収差が増加する(収差論からは、球面収差は光線高さの3乗に比例して増加することが知られている)ので、本実施形態のように正の屈折力を有するレンズ(以下、「正レンズ」ともいう。)と負の屈折力を有するレンズ(以下、「負レンズ」ともいう。)を組み合わせて用いる場合は、光線高の低い負レンズのパワーを大きくすることに比べ、光線高の高い正レンズでパワーを大きくすることは収差による悪化の度合いが大きい。そのため、第1レンズ101のパワーφ1の絶対値と第2レンズ102のパワーφ2の絶対値の一方のみを大きくすることが好ましく、負レンズのパワーの絶対値のみを大きくすることがより好ましい。
 一方、上記(4)式で与えられるレンズ対のパワーφsは一定であることが好ましい。第1レンズ101のパワーφ1の値と第2レンズ102のパワーφ2の値が異符号である場合、符号が負である方のパワーの絶対値を大きくすると、(4)式の第1項φ1又は第2項φ2の値が小さくなっても、第3項(-dφ1φ2)の値が大きくなる。そのため、符号が正である方のパワーの絶対値を大きくしなくても、レンズ対のパワーφsを一定に保ちやすい。これに対し、第1レンズ101のパワーφ1の値と第2レンズ102のパワーφ2の値が異符号であり、かつ、仮に主点間距離dが0で(4)式の第3項(-dφ1φ2)がない場合、(4)式の第1項φ1の絶対値と第2項φ2の絶対値の両方を大きくしないと、レンズ対のパワーφsを一定に保てない。しかし、上述したように、第1レンズ101のパワーφ1の絶対値と第2レンズ102のパワーφ2の絶対値の両方を大きくすると、収差が大きくなり得る。なお、レンズ対の第1及び第2レンズ101、102のそれぞれの材料が同じでなくとも、同様の効果が得られる。その場合は、負レンズの材料を高屈折率の複屈折材料とするとより好ましい。パワーの強い面を曲率半径の大きな面とすることが出来るので、収差抑制に効果がある。高屈折率の材料は分散も大きい場合が多いので、負レンズの材料を高屈折率の複屈折材料とすることは、色収差補正の上でも好ましい。
 図1及び図2に示す第1実施形態に係るレンズユニットは、レンズ11、12同士が離間しており、主点間距離dが0でないため、レンズ11、12のいずれかのパワーを大きくすることによって、収差を大きくすることなく合成焦点距離を一定にしやすく、また、レンズ11、12の屈折力が互いに異符号であるため、偏光の焦点分離量を大きくすることが可能である。
 図5に示すように、レンズ対の第1レンズ201の結晶軸と第2レンズ202の結晶軸が平行であり、レンズ対の第1及び第2レンズ201、202のそれぞれの材料が同じである場合、第1レンズ201における屈折率差Δn1と第2レンズ202における屈折率差Δn2は、同符号で、絶対値は同じ|ΔnC|になる。この場合、上記(5)式で与えられたレンズ対におけるパワーの差Δφsは、下記(7)式で近似できる。
Figure JPOXMLDOC01-appb-M000003
 ここで、仮に第1レンズ201の屈折力の正負と第2レンズ202の屈折力の正負が同じであれば、第1レンズ201のパワーφ1の値と第2レンズ202のパワーφ2の値が同符号となる。そのため、第1レンズ201のパワーφ1の値と第2レンズ202のパワーφ2の値の関φ1φ2の値が大きくなるため、(7)式で与えられるレンズ対におけるパワーの差Δφsの値が小さくなり、焦点分離量が小さくなる。
 また、第1レンズ201のパワーφ1の値と第2レンズ202のパワーφ2の値が異符号である場合、(7)式中の(-dφ1φ2)は正となる。しかし、(7)式中のφはほぼ一定であり、主点間距離dは焦点距離f1、f2と比較して短いため、(7)式中の(φ-dφ1φ2)を大きくするには限度がある。したがって、レンズ対の第1レンズ201の結晶軸と第2レンズ202の結晶軸が平行である場合、焦点分離量の拡大には限度がある。
 以下、具体的な屈折率、曲率半径、焦点距離、及び焦点分離量の値を用いて第1実施形態をさらに説明するが、第1実施形態が以下に限定されないことはもちろんである。
 例えば、図1及び図2に示すレンズ11、12のそれぞれにおいて、硝材がいずれも水晶であり、波長が1.3μmのレーザー(たとえばInGaAsP系半導体レーザー)を扱うものとすると、第1偏光光線屈折率neが1.54、第1偏光と直交する第2偏光光線屈折率noが1.53であり、レンズ11の曲率半径が70mm、レンズ12の曲率半径が-83mmである場合、レンズ11の第1偏光光線の焦点距離f1eは129.6mm、レンズ11の第2偏光光線の焦点距離f1oは132.1mm、レンズ12の第1偏光光線の焦点距離f2eは-153.7mm、レンズ12の第2偏光光線の焦点距離f2oは-156.6mmである。
 レンズ11、12を主点間距離において80mm離して配置する場合、最大焦点距離の絶対値156.6mmに対する主点間距離の割合は51%であり、最小焦点距離の絶対値129.6mmに対する主点間距離の割合は62%である。また、この場合、レンズ11に第1偏光光線が入射したときのレンズ11、12の合成焦点距離は189.8mmであり、レンズ11に第2偏光光線が入射したときのレンズ11、12の合成焦点距離は199.8mmである。したがって、レンズ11、12を通過した、偏光方向が互いに直交している偏光同士の焦点分離量Δfは10.0mmである。
 図6に示すような、単体の片凸レンズ21を用いて、焦点分離量に関して実施形態に係るレンズユニットと同等のレンズを実現することはできない。第1偏光光線屈折率neを1.54、第2偏光光線屈折率noを1.53とし、曲率半径を108mmとしても、レンズ21の第1偏光光線の焦点距離f1eは200.0mm、レンズ21の第2偏光光線の焦点距離f1oは196.3mmであり、偏光方向が互いに直交している偏光同士の焦点分離量Δfは3.7mmであって、焦点分離を大きくすることができない。
 図7に示すように、同符号の屈折力のレンズ31、32を、屈折率が最大になる光波の振動面が平行になるよう配置し、上記(7)式から離間dが小さいほど焦点分離が大きくなることを考慮してレンズ31、32を離間しないように配置した場合も同様に、焦点分離を大きくすることはできない。レンズ31、32のそれぞれの第1偏光光線屈折率neが1.54、第2偏光光線屈折率noが1.53であり、レンズ31の曲率半径が215mm、レンズ32の曲率半径が210mmであると、レンズ31の第1偏光光線の焦点距離f1eは398.1mm、レンズ31の第2偏光光線の焦点距離f1oは405.7mm、レンズ32の第1偏光光線の焦点距離f2eは388.9mm、レンズ32の第2偏光光線の焦点距離f2oは396.2mmである。
 この場合、レンズ31に第1偏光光線が入射したときのレンズ31、32の合成焦点距離は196.7mmであり、レンズ31に第2偏光光線が入射したときのレンズ31、32の合成焦点距離は200.4mmである。したがって、レンズ31、32を通過した、偏光方向が互いに直交している偏光同士の焦点分離量Δfは3.7mmである。即ち、単一のレンズを用いた場合と同様に、焦点分離を大きくすることができていない。
 図8に示すように、レンズ51、52が離間していない場合も焦点分離を大きくできない。レンズ51、52のそれぞれにおいて、第1偏光光線屈折率neが1.54、第2偏光光線屈折率noが1.53であり、レンズ51の曲率半径が70mm、レンズ52の曲率半径が-210mmである場合、レンズ51の第1偏光光線の焦点距離f1eは129.6mm、レンズ51の第2偏光光線の焦点距離f1oは132.1mm、レンズ52の第1偏光光線の焦点距離f2eは-388.9mm、レンズ52の第2偏光光線の焦点距離f2oは-396.2mmである。
 レンズ51、52が離間していない場合、レンズ51に第1偏光光線が入射したときのレンズ51、52の合成焦点距離は192.7mmである。また、レンズ51に第2偏光光線が入射したときのレンズ51、52の合成焦点距離は200.0mmである。したがって、レンズ51、52を通過した、偏光方向が互いに直交している偏光同士の焦点分離量Δfは7.3mmである。
 図8の正レンズは、図1の正レンズと同様である。合成焦点距離を保ちつつ、焦点分離量を7.3mmより大きくするためには、正レンズのパワーと負レンズのパワーとを同時に大きくせざるを得えないが、既に大きな屈折力を持った正レンズのパワーが更に大きくなることに伴って収差が発生し、当該収差を負レンズでは補正しきれない。したがって、レンズ51、52が離間していない場合、収差の増大なしに焦点分離量を拡大することができない点で、不利である。
 図9に示すレンズ111、112のそれぞれにおいて、硝材がいずれも水晶であり、波長が1.3μmのレーザーを扱うものとすると、第1偏光光線屈折率neが1.555、第1偏光と直交する第2偏光光線屈折率noが1.546であり、レンズ111の曲率半径が31.9mm、レンズ112の曲率半径が-61.0mmである場合、レンズ111の第1偏光光線の焦点距離f1eは57.5mm、レンズ111の第2偏光光線の焦点距離f1oは58.4mm、レンズ112の第1偏光光線の焦点距離f2eは-109.9mm、レンズ112の第2偏光光線の焦点距離f2oは-111.7mmである。
 レンズ111、112を主点間距離において10mm離して配置する場合、最大焦点距離の絶対値111.7mmに対する主点間距離の割合は9%であり、最小焦点距離の絶対値57.5mmに対する主点間距離の割合は17%である。また、この場合、レンズ111に第1偏光光線が入射したときのレンズ111、112の合成焦点距離は100.0mmであり、レンズ111に第2偏光光線が入射したときのレンズ111、112の合成焦点距離は104.4mmである。したがって、レンズ111、112を通過した、偏光方向が互いに直交している偏光同士の焦点分離量Δfは4.4mmであり、合成焦点距離に占める焦点分離量Δfの割合が大きい。例えば、光学系全体のスケールを大きくし、合成焦点距離を200.0mmにすれば、焦点分離量Δfは8.8mmとなる。
 図9に示すレンズユニットによれば、焦点距離に対して比較的大きな焦点分離量を得ることができる。レンズ111、112の面間を近づけすぎると、合成焦点距離を維持しながら片方のレンズのパワーのみを強くすることが困難になるが、正レンズ、負レンズともにパワーを強くすると、収差の問題が生じ得る。
 図10に示すレンズ211、212のそれぞれにおいて、硝材がいずれも水晶であり、波長が1.3μmのレーザーを扱うものとすると、第1偏光光線屈折率neが1.555、第1偏光と直交する第2偏光光線屈折率noが1.546であり、レンズ211の曲率半径が60.0mm、レンズ212の曲率半径が-20.0mmである場合、レンズ211の第1偏光光線の焦点距離f1eは54.1mm、レンズ211の第2偏光光線の焦点距離f1oは70.0mm、レンズ212の第1偏光光線の焦点距離f2eは-18.0mm、レンズ212の第2偏光光線の焦点距離f2oは-18.3mmである。
 レンズ211、212を主点間距離において45.43mm離して配置する場合、最大焦点距離の絶対値70.0mmに対する主点間距離の割合は83%であり、最小焦点距離の絶対値18.0mmに対する主点間距離の割合は252%である。また、この場合、レンズ211に第1偏光光線が入射したときのレンズ211、212の合成焦点距離は102.2mmであり、レンズ211に第2偏光光線が入射したときのレンズ211、212の合成焦点距離は116.5mmである。したがって、レンズ211、212を通過した、偏光方向が互いに直交している偏光同士の焦点分離量Δfは14.3mmである。
 図10に示すレンズユニットにおいては、負レンズであるレンズ212のパワーを大きくすることによって、より大きな焦点分量を得ることができている。
 図11に示すレンズ311の硝材が方解石であり、レンズ312の硝材がサファイアであり、波長が1.3μmのレーザーを扱うものとすると、レンズ311の第1偏光光線屈折率neが1.643、第1偏光と直交する第2偏光光線屈折率noが1.48、レンズ311の曲率半径が45.0mmであり、レンズ312の第1偏光光線屈折率neが1.755、第2偏光光線屈折率noが1.746、レンズ312の曲率半径が-51.2mmである場合、レンズ311の第1偏光光線の焦点距離f1eは93.8mm、レンズ311の第2偏光光線の焦点距離f1oは54.9mm、レンズ312の第1偏光光線の焦点距離f2eは-67.8mm、レンズ312の第2偏光光線の焦点距離f2oは-68.6mmである。
 レンズ311、312を主点間距離において26.0mm離して配置する場合、最大焦点距離の絶対値93.8mmに対する主点間距離の割合は28%であり、最小焦点距離の絶対値67.8mmに対する主点間距離の割合は38%である。また、この場合、レンズ311に第1偏光光線が入射したときのレンズ311、312の合成焦点距離は194.9mmであり、レンズ311に第2偏光光線が入射したときのレンズ311、312の合成焦点距離は98461mmである。したがって、レンズ311、312を通過した、偏光方向が互いに直交している偏光同士の焦点分離量Δfは98266.1mmである。
 図11に示すレンズユニットによる焦点分離量は大きく、レンズ311に入射する第2偏光光線に対応する出射光は、実質的にコリメートビームであり、図11に示すレンズユニットは、ビームエクスパンダーとして機能する。このように、レンズ311、312の少なくともいずれかのパワーを適当に設定することにより、複数の偏光のうちの少なくとも一つの偏光の焦点距離を無限大に、又は大きくして、第1実施形態に係るレンズユニットをビームエクスパンダーとして使用してもよい。
 図12に示すレンズ411、412のそれぞれにおいて、硝材がいずれもサファイアであり、波長が1.3μmのレーザーを扱うものとすると、第1偏光光線屈折率neが1.755、第1偏光と直交する第2偏光光線屈折率noが1.746であり、レンズ411の曲率半径が-20.0mm、レンズ412の曲率半径が35.9mmである場合、レンズ411の第1偏光光線の焦点距離f1eは-26.5mm、レンズ411の第2偏光光線の焦点距離f1oは-26.8mm、レンズ412の第1偏光光線の焦点距離f2eは47.5mm、レンズ412の第2偏光光線の焦点距離f2oは48.1mmである。
 レンズ411、412を主点間距離において28.0mm離して配置する場合、最大焦点距離の絶対値48.1mmに対する主点間距離の割合は58%であり、最小焦点距離の絶対値26.5mmに対する主点間距離の割合は106%である。また、この場合、レンズ411に第1偏光光線が入射したときのレンズ411、412の合成焦点距離は200.2mmであり、レンズ411に第2偏光光線が入射したときのレンズ411、412の合成焦点距離は175.6mmである。したがって、レンズ411、412を通過した、偏光方向が互いに直交している偏光同士の焦点分離量Δfは24.6mmである。
 図12において図示の便宜のため折り返しミラーを配置しているが、ミラーは必ずしもなくてもよい。レンズユニットに入射する光の進行方向において、負レンズを先に配置することにより、バックフォーカスを長くすることが可能である。
 図13に示すレンズ511の硝材がサファイアであり、レンズ512の硝材が方解石であり、波長が1.064μmのレーザーを扱うものとすると、レンズ511の第1偏光光線屈折率neが1.755、第1偏光と直交する第2偏光光線屈折率noが1.746、レンズ511の曲率半径が-12.7mmであり、レンズ512の第1偏光光線屈折率neが1.643、第2偏光光線屈折率noが1.48、レンズ512の曲率半径が25.0mmである場合、レンズ511の第1偏光光線の焦点距離f1eは-16.8mm、レンズ511の第2偏光光線の焦点距離f1oは-17.0mm、レンズ512の第1偏光光線の焦点距離f2eは38.9mm、レンズ512の第2偏光光線の焦点距離f2oは52.1mmである。
 レンズ511、512を主点間距離において44.0mm離して配置する場合、最大焦点距離の絶対値52.1mmに対する主点間距離の割合は84%であり、最小焦点距離の絶対値16.8mmに対する主点間距離の割合は262%である。また、この場合、レンズ511に第1偏光光線が入射したときのレンズ511、512の合成焦点距離は100.3mmであり、レンズ511に第2偏光光線が入射したときのレンズ511、512の合成焦点距離は30mmである。したがって、レンズ511、512を通過した、偏光方向が互いに直交している偏光同士の焦点分離量Δfは70.3mmである。
 図13において図示の便宜のため折り返しミラーを配置しているが、ミラーは必ずしもなくてもよい。レンズユニットに入射する光の進行方向において、負レンズを先に配置することにより、バックフォーカスを長くすることが可能である。
 以上の例示からも明らかなように、単体のレンズ、屈折力が同符号のレンズ対、及び離間していないレンズ対等では、焦点分離量を大きくすることが困難である。これに対し、第1実施形態に係るレンズユニットによれば、焦点分離量を大きくすることが可能である。なお、第1実施形態に係るレンズユニットによれば、焦点分離量を小さくすることも可能である。したがって、第1実施形態に係るレンズユニットによれば、用途に応じて、焦点分離量を任意に設定することが可能である。
 第1実施形態に係るレンズユニットの用途は特に限定されないが、例えば、レーザー加工機の光学系として用いられ得る。第1実施形態に係るレンズユニットをレーザー加工機の光学系として用いることにより、レーザー光の偏光の焦点分離量を設定し、厚みのある物の2点を同時に加工してもよい。例えば、物の表と裏を同時に加工してもよい。あるいは、光造形において、2部品を同時に加工してもよい。またあるいは、物の切断とバリ取りを同時に行ってもよい。即ち、板材の切断の際はビームを板材の表面ではなく内部に集光した方が、キーホール生成が促進され切断しやすいことが知られているが、板材の内部のみに集光点を設定すると、板材の表面と集光位置とが離れていることで、表面に至るまでの急峻な温度変化が生じ、切断面のエッジが滑らかでない場合がある。これに対し、本実施形態に係るレンズユニットを用いれば、エッジとなる板材の表面近傍にも集光点があるようにすることで、滑らかなエッジを加工できる。
 また、物の上に偏光の一方の焦点をあわせ、偏光の他方の焦点を物の上からずらすことにより、物の上に照射されるビームの断面形状を変更させてもよい。例えば、溶接の際に、ビームが集光されている箇所での温度が急激に上がることによる突沸現象が材料の飛散に繋がるため、溶接対象に、大きなスポットと、大きなスポットの中の小さなスポットと、を照射することにより、溶接対象に緩やかな温度分布を持たせることで急激な温度上昇による材料の飛散が抑制され、スムーズな溶接が可能となる。
 第1実施形態に係るレンズユニットは、イメージング機器の光学系としても用いられ得る。第1実施形態に係るレンズユニットは焦点分離量が大きいため、遠近両方の画像を高い感度で取得することが可能である。第1実施形態に係るレンズユニットを、OCT(光干渉断層計)の光学系に用いて、観察対象内部の2か所を画像化してもよい。OCTでは、後方散乱光と参照光の干渉強度によってイメージングが行われ、集光位置以外の箇所については感度が急激に落ちることが知られている。したがって、焦点が二つ以上出来ることによる両者の信号の混合(クロストーク)は問題とならない場合が多く、本実施形態のように分離量を拡大するほど、その影響は小さくすることができる。もちろん、感度の高い領域同士を接続し、イメージング領域を拡大してもよい。なお、同内容はイメージング以外の他の用途(例えば、干渉を用いた測距装置)についても同様に適用可能であることは明らかである。
 第1実施形態に係るレンズユニットは、光学的測定装置の光学系としても用いられ得る。一定時間間隔ごとに、レンズユニットを通過した光を対象に照射し、共焦点検出器で戻り光強度を測定する。即ち、戻り光が最大になった時刻が対象に対し共焦点になった時刻とみなし、焦点分離量を反射光が検出された時間間隔で除することにより、対象が近づいてくる速度を測定することが可能である。その際、二つの集光点において、ビームの偏光が異なっていることを考慮して、検出系を構成してもよい。即ち、検出する偏光が互いに異なる検出器を二つ用意してもよいし、二つの偏光を高速に切り替えて検出可能な検出器を用いてもよい。これによって、共焦点となったのがいずれの集光点の光なのかを判別することができ、誤検出を避けたり、遠ざかる方向の速度に対しても測定が可能になったりする機能を実現できる。
 第1実施形態に係るレンズユニットは、照明装置の光学系としても用いられ得る。例えば、プロジェクションマッピングのように、平面でない、凹凸のある面に画像を照射する際に、第1実施形態に係るレンズユニットを使用可能である。あるいは、遠近に最適化された照明を、同時に照射可能な照明ユニットとしてもよい。照明ユニットは、図14に示すように、例えば、光源60と、レンズ711、レンズ712、及びレンズ713を備えるレンズユニットと、を備える。レンズ711、712は、例えば、方解石を硝材とする。レンズ713は、例えばサファイアを硝材とする。図14に示す例においては、レンズ712が正の屈折力を有し、レンズ713が負の屈折力を有し、レンズ712、713が離間している。例えば、光ファイババンドルを備える光源60から、第1偏光と、第1偏光と直交する第2偏光と、を含む照明光が照射される。レンズ712、713を透過することにより、照明光に含まれる第1偏光と第2偏光との焦点分離量が拡大し、レンズユニットに焦点が近いほうの偏光を近接用照明に、レンズユニットから焦点が遠いほうの偏光を遠方用照明に使用することが可能である。
 例えば、内視鏡にはズーム機能を持つものや、焦点深度が深く設計され、遠近両方の観察に耐えるものがあるが、遠方観察時(たとえば、ワイド状態)には遠方を広範囲に照射し、近方観察時(たとえば、テレ状態)には狭い画角でも明るく、ハレーションが生じないことが優先される。本実施形態に係るレンズユニットを用いた照明によれば、片方の偏光がメインの照明、他方が補助光として働くので、上記のような理想的な照明を実現しやすい。特に、反射光が多く戻ってくるべき遠方観察用の広角照明をS偏光(照明ユニットと、観察ユニットを結んだ面とは垂直な面内で振動する光)、ハレーションが生じやすい近方観察用の狭角照明をP偏光(照明ユニットと、観察ユニットを結んだ面内で振動する光)による照明となるように構成することで、遠方は明るくなりやすく、近傍では正反射によるハレーションを抑えた、理想的な照明とすることが出来る。もちろん、一方の光での観察時に他方の光との強度比を変えたい場合は、偏光板やローテータ、波長板などの偏光素子を用いて、他方の光を減光するのもよい。減光は、出射される照明光を一様に減光してもよいし、特定の対象を観察しやすくするために、スペクトル帯域の一部のみを減光するようなものであってもよい。
 更に一部の複屈折材料(例えば、サファイア)は、消化液などの強酸、強アルカリに対する耐性や、オートクレーブ滅菌に対する耐性を持つので、その意味でも都合がよい。加えて、ファイババンドルからの出射照明複屈折による2つの照明光が重ね合わされることは、バンドル端面の輝度ムラが投影されることによる照度ムラを低減することにもなり、この点でも都合がよい。
 [第2実施形態]
 第2実施形態以降では第1実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
 実施形態に係るレンズユニットが備えるレンズの数は複数であれば特に限定されない。図15及び図16に示す第2実施形態に係るレンズユニットは、3以上のレンズ61、62、63を備え、図15に示すように、3以上のレンズ61、62、63のうち隣接する第1レンズ61が正の屈折力を有し、第2レンズ62が負の屈折力を有し、第3レンズ63が正の屈折力を有するか、又は図16に示すように、3以上のレンズ61、62、63のうち隣接する第1レンズ61が負の屈折力を有し、第2レンズ62が正の屈折力を有し、第3レンズ63が負の屈折力を有する。
 図15及び図16に示す第1レンズ61と第2レンズ62において、屈折率が最大になる光波の振動面が直交しており、第2レンズ62と第3レンズ63において、屈折率が最大になる光波の振動面が直交している。また、3以上のレンズ61、62、63が離間しており、3以上のレンズ61、62、63のそれぞれの主点間距離が、3以上のレンズ61、62、63のそれぞれの焦点距離の絶対値のうちの最大値未満である。
 図17に示すように、実施形態に係るレンズユニットを複数直列に配置してもよい。
 実施形態に係るレンズユニットを構成するレンズの数を増やすことにより、焦点分離量を増やすことが可能である。
 また、レンズが少なくとも3枚ある場合、図15に示すように、負の屈折力を有する第2レンズ62の両隣に正の屈折力を有する第1レンズ61と正の屈折力を有する第3レンズ63を配置する、所謂トリプレットタイプにすることにより、収差を抑制することが可能である。
 図18に示すように、レンズ161、162、163の少なくともいずれかのパワーを適当に設定することにより、複数の偏光のうちの少なくとも一つの偏光の焦点距離を無限大にして、第2実施形態に係るレンズユニットをビームエクスパンダーとして使用してもよい。また、例えば、レンズ162、163を光軸方向に移動させることにより、一方の偏光の焦点距離を同じに保ったまま、他方の偏光の焦点距離を変更させることが可能である。レンズ161、162、163は、いずれも同じ硝材で構成してもよいし、互いに異なる硝材で構成してもよい。
 図18は、曲率半径が40mmであり、硝材が方解石である平凸レンズをレンズ161とし、曲率半径が28mmであり、硝材がサファイアである両凹レンズをレンズ162とし、曲率半径が52.9mmであり、硝材が水晶である平凸レンズをレンズ163とした場合のレンズユニットで波長が1.064μmのレーザーを扱う例を示す。図19に示すように、レンズ162又はレンズ163を光軸方向に移動させることにより、一方の偏光の焦点距離を同じに保ったまま、他方の偏光の焦点距離を変更させ、焦点分離量を調整することが可能である。
 また、図20及び図21に示すように、集光レンズ164をレンズ163の光軸方向後ろ側、即ちビームエクスパンダーの射出側に配置してもよい。集光レンズ164は複屈折材料からなっていてもよいし、非複屈折材料からなっていてもよい。レンズ162、163を光軸方向に移動させることにより、一方の偏光の焦点距離を同じに保ったまま、他方の偏光の焦点距離を変更させ、焦点分離量を調整することが可能である。
 [第3実施形態]
 図22に示すように、第3実施形態に係る、観察用光学系70と共に用いる照明用レンズユニットは、それぞれ複屈折性を有する2以上のレンズ611、612を備える。2以上のレンズ611、612のうち隣接する一方のレンズが正の屈折力を有し、他方のレンズが負の屈折力を有し、一方のレンズと他方のレンズにおいて、屈折率が最大になる光波の振動面が直交しており、2以上のレンズ611、612が離間しており、2以上のレンズ611、612の主点間距離が、2以上のレンズ611、612のそれぞれの焦点距離の絶対値のうちの最大値未満である。
 当該照明用レンズユニットの一方のレンズと当該照明用レンズユニットの他方のレンズにおける屈折率が最大になる光波の振動面のいずれか一つが、観察用光学系70の入射瞳中心と、当該照明用レンズユニットの出射瞳中心を結んだ線を略面内に含むよう構成されている。これにより、遠方は正反射で明るく、近傍では正反射によるハレーションを抑えた照明を提供可能である。
 照明用レンズユニットには、例えば、光ファイババンドルを備える光源60から、第1偏光と、第1偏光と直交する第2偏光と、を含む照明光が照射される。第1実施形態で説明したように、レンズ611、612を透過することにより、照明光に含まれる第1偏光と第2偏光との焦点分離量が拡大する。
 以上のとおり、本発明の各実施形態に係るレンズユニットは、上述したいずれか1つ又は複数の組み合わせによる以下の例による構成及び作用効果を有する。
 本実施形態に係るレンズユニットは、それぞれ複屈折性を有する2以上のレンズ11、12を備え、2以上のレンズ11、12のうち隣接する一方のレンズ11が正の屈折力を有し、他方のレンズ12が負の屈折力を有し、一方のレンズ11と他方のレンズ12において、屈折率が最大になる光波の振動面が直交しており、2以上のレンズ11、12が離間しており、2以上のレンズ11、12の主点間距離が、2以上のレンズ11、12のそれぞれの焦点距離の絶対値のうちの最大値未満である。
 本実施形態に係るレンズユニットは、偏光の焦点分離量を大きくすることが可能である。
 上記のレンズユニットにおいて、3以上のレンズ61、62、63を備え、3以上のレンズ61、62、63のうち隣接する第1レンズ61が正の屈折力を有し、第2レンズ62が負の屈折力を有し、第3レンズ63が正の屈折力を有するか、又は3以上のレンズ61、62、63のうち隣接する第1レンズ61が負の屈折力を有し、第2レンズ62が正の屈折力を有し、第3レンズ63が負の屈折力を有し、第1レンズ61と第2レンズ62において、屈折率が最大になる光波の振動面が直交しており、第2レンズ62と第3レンズ63において、屈折率が最大になる光波の振動面が直交しており、3以上のレンズ61、62、63が互いに離間しており、3以上のレンズ61、62、63のそれぞれの主点間距離が、3以上のレンズ61、62、63のそれぞれの焦点距離の絶対値のうちの最大値未満であってもよい。
 これによれば、偏光の焦点分離量をさらに大きくすることが可能である。
 上記のレンズユニットにおいて、複数の偏光のうちの少なくとも一つの偏光の焦点距離を無限大にしてもよい。
 これによれば、本実施形態に係るレンズユニットを、ビームエクスパンダーとして使用可能である。
 上記のレンズユニットにおいて、2以上のレンズの少なくとも1つが光軸方向に移動可能であってもよい。
 これによれば、偏光の焦点分離量を調整することが可能である。
 また、本実施形態に係る観察用光学系70と共に用いる照明用レンズユニットは、それぞれ複屈折性を有する2以上のレンズ611、612を備え、2以上のレンズ611、612のうち隣接する一方のレンズが正の屈折力を有し、他方のレンズが負の屈折力を有し、一方のレンズと他方のレンズにおいて、屈折率が最大になる光波の振動面が直交しており、2以上のレンズ611、612が離間しており、2以上のレンズ611、612の主点間距離が、2以上のレンズ611、612のそれぞれの焦点距離の絶対値のうちの最大値未満であり、当該照明用レンズユニットの一方のレンズと当該照明用レンズユニットの他方のレンズにおける屈折率が最大になる光波の振動面のいずれか一つが、観察用光学系70の入射瞳中心と、当該照明用レンズユニットの出射瞳中心を結んだ線を略面内に含むよう構成されている。
 なお、以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。すなわち、各実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、各実施形態が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもなく、これらも本発明の特徴を含む限り本発明の範囲に包含される。
 11、12、21、31、32、41、42、51、52、61、62、63、71、101、102、201、202・・・レンズ
 

Claims (6)

  1.  それぞれ複屈折性を有する2以上のレンズを備え、
     前記2以上のレンズのうち隣接する一方のレンズが正の屈折力を有し、他方のレンズが負の屈折力を有し、
     前記一方のレンズと前記他方のレンズにおいて、屈折率が最大になる光波の振動面が直交しており、
     前記2以上のレンズが離間しており、
     前記2以上のレンズの主点間距離が、前記2以上のレンズのそれぞれの焦点距離の絶対値のうちの最大値未満である、
     レンズユニット。
  2.  3以上の前記レンズを備え、
     前記3以上のレンズのうち隣接する第1レンズが正の屈折力を有し、第2レンズが負の屈折力を有し、第3レンズが正の屈折力を有するか、又は
     前記3以上のレンズのうち隣接する前記第1レンズが負の屈折力を有し、前記第2レンズが正の屈折力を有し、前記第3レンズが負の屈折力を有し、
     前記第1レンズと前記第2レンズにおいて、屈折率が最大になる光波の振動面が直交しており、
     前記第2レンズと前記第3レンズにおいて、屈折率が最大になる光波の振動面が直交しており、
     前記3以上のレンズが離間しており、
     前記3以上のレンズの主点間距離が、前記3以上のレンズのそれぞれの焦点距離の絶対値のうちの最大値未満である、
     請求項1に記載のレンズユニット。
  3.  複数の偏光のうちの少なくとも一つの偏光の焦点距離を無限大にする、請求項1又は2に記載のレンズユニット。
  4.  ビームエクスパンダーである、請求項3に記載のレンズユニット。
  5.  前記2以上のレンズの少なくとも1つが光軸方向に移動可能である、請求項1から4のいずれか1項に記載のレンズユニット。
  6.  観察用光学系と共に用いる照明用レンズユニットであって、
     それぞれ複屈折性を有する2以上のレンズを備え、
     前記2以上のレンズのうち隣接する一方のレンズが正の屈折力を有し、他方のレンズが負の屈折力を有し、
     前記一方のレンズと前記他方のレンズにおいて、屈折率が最大になる光波の振動面が直交しており、
     前記2以上のレンズが離間しており、
     前記2以上のレンズの主点間距離が、前記2以上のレンズのそれぞれの焦点距離の絶対値のうちの最大値未満であり、
     当該照明用レンズユニットの前記一方のレンズと当該照明用レンズユニットの前記他方のレンズにおける前記屈折率が最大になる光波の振動面のいずれか一つが、前記観察用光学系の入射瞳中心と、当該照明用レンズユニットの出射瞳中心を結んだ線を略面内に含むよう構成された、
     照明用レンズユニット。
     
PCT/JP2020/015412 2019-09-04 2020-04-03 レンズユニット WO2021044659A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019161134 2019-09-04
JP2019-161134 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021044659A1 true WO2021044659A1 (ja) 2021-03-11

Family

ID=74853157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015412 WO2021044659A1 (ja) 2019-09-04 2020-04-03 レンズユニット

Country Status (1)

Country Link
WO (1) WO2021044659A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415272A (zh) * 2022-02-14 2022-04-29 成都耶塔科技有限责任公司 双折射晶体透镜和成像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4811056B1 (ja) * 1968-04-06 1973-04-10
JPS61233448A (ja) * 1985-04-08 1986-10-17 Canon Inc 光ピツクアツプ装置
JPH07306025A (ja) * 1994-05-10 1995-11-21 Seiko Epson Corp 表面形状又は波面形状の測定装置及び測定方法
JP2011005537A (ja) * 2009-06-29 2011-01-13 Seishin Shoji Kk レーザー照射装置及びレーザー加工方法
WO2017130111A1 (en) * 2016-01-28 2017-08-03 Gap Technologijos, Uab Laser material processing with multi-focus optics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4811056B1 (ja) * 1968-04-06 1973-04-10
JPS61233448A (ja) * 1985-04-08 1986-10-17 Canon Inc 光ピツクアツプ装置
JPH07306025A (ja) * 1994-05-10 1995-11-21 Seiko Epson Corp 表面形状又は波面形状の測定装置及び測定方法
JP2011005537A (ja) * 2009-06-29 2011-01-13 Seishin Shoji Kk レーザー照射装置及びレーザー加工方法
WO2017130111A1 (en) * 2016-01-28 2017-08-03 Gap Technologijos, Uab Laser material processing with multi-focus optics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415272A (zh) * 2022-02-14 2022-04-29 成都耶塔科技有限责任公司 双折射晶体透镜和成像装置

Similar Documents

Publication Publication Date Title
US11314097B2 (en) Optical system
US6128127A (en) Differential interference contrast microscope and microscopic image processing system using the same
US9823457B2 (en) Multiplane optical microscope
US5126549A (en) Automatic focusing telescope
US20170059878A1 (en) Polarization dependent filter, system using the same, and associated kits and methods
WO2019171642A1 (ja) 内視鏡光学系及び内視鏡装置
JP6496745B2 (ja) 結像光学系、照明装置および観察装置
WO2021044659A1 (ja) レンズユニット
EP1395799A2 (en) Method and apparatus for measuring wavefront aberrations
US11002978B2 (en) Microscope having a beam splitter assembly
JP6257874B1 (ja) 対物光学系及びそれを備えた内視鏡装置
US20210180950A1 (en) Measurement device and light projection system using the measurement device
JP2022522653A (ja) 偏光分離装置、かかる装置を含む差動式干渉計及び微分干渉光学顕微鏡
JP7539651B2 (ja) 照明受光装置
JP2010164834A (ja) 顕微鏡装置、蛍光キューブ
RU2498363C1 (ru) Зеркально-линзовый объектив
US8773759B2 (en) Microscope having an adjustment device for the focus range
JP2003015042A (ja) 微分干渉顕微鏡
US6549334B1 (en) Transmission illumination type differential interference microscope
WO2007026791A1 (ja) 偏光補償光学系
US20140240823A1 (en) Method and apparatus for producing a super-magnified wide-field image
JP2019215433A (ja) 全反射型偏光子
JP5403404B2 (ja) 顕微鏡装置
RU2190245C1 (ru) Светосильный объектив
JP2021162395A (ja) イメージング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP