WO2019171642A1 - 内視鏡光学系及び内視鏡装置 - Google Patents

内視鏡光学系及び内視鏡装置 Download PDF

Info

Publication number
WO2019171642A1
WO2019171642A1 PCT/JP2018/037261 JP2018037261W WO2019171642A1 WO 2019171642 A1 WO2019171642 A1 WO 2019171642A1 JP 2018037261 W JP2018037261 W JP 2018037261W WO 2019171642 A1 WO2019171642 A1 WO 2019171642A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
optical system
order
astigmatism
wavelength plate
Prior art date
Application number
PCT/JP2018/037261
Other languages
English (en)
French (fr)
Inventor
露木浩
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2019171642A1 publication Critical patent/WO2019171642A1/ja
Priority to US17/009,840 priority Critical patent/US11857158B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000095Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope for image enhancement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres

Definitions

  • the present invention relates to an endoscope optical system and an endoscope apparatus.
  • the depth of field becomes narrower as the number of pixels of the image sensor increases. That is, when the pixel pitch (the vertical and horizontal dimensions of one pixel) is reduced in order to increase the number of pixels in the imaging device, the permissible circle of confusion is also reduced accordingly, and the depth of field of the imaging device is reduced.
  • Patent Document 1 discloses a configuration in which a ⁇ / 4 wavelength plate is disposed between an objective optical system and a polarizing beam splitter.
  • Patent Document 2 discloses a specific configuration of a depolarizing plate.
  • Patent Documents 1 and 2 only describe a limited depolarization effect that circularly polarizes linearly polarized light with a zero-order or low-order multi-order ⁇ / 4 wavelength plate, and depolarization that assumes any polarization state. (Scramble) is not considered at all. Further, Patent Documents 1 and 2 do not disclose or suggest the generation of aberration due to the birefringent material used for the ⁇ / 4 wavelength plate.
  • the present invention has been made in view of the above, and obtains a good image by reducing astigmatism generated in a ⁇ / 4 wavelength plate (depolarization plate) while obtaining a sufficient depolarization effect. It is an object of the present invention to provide an endoscope optical system and an endoscope apparatus that can be used.
  • an endoscope optical system includes an objective optical system, a ⁇ / 4 wavelength plate made of one birefringent material, an objective, in order from the object side.
  • a polarization beam splitter that divides light from the optical system into two and an image pickup device that picks up two divided images, and satisfies the following conditional expression (1).
  • Fno is the effective F number of the objective optical system
  • d is the thickness of the ⁇ / 4 wavelength plate
  • ⁇ n is the birefringence of the e-line (546.1 nm) of the ⁇ / 4 wavelength plate, where
  • an endoscope apparatus includes the above-described endoscope optical system, and an image processing unit including an image composition unit that combines images captured by an image sensor into a single image. It is characterized by that.
  • the present invention provides an endoscope optical system and an endoscope that can obtain a satisfactory image by reducing astigmatism generated in a ⁇ / 4 wavelength plate (depolarization plate) while obtaining a sufficient depolarization effect. There is an effect that a mirror device can be provided.
  • FIG. 1 is a schematic configuration diagram of a high-order multi-order ⁇ / 4 wavelength plate, an optical path dividing unit, and an image sensor that an endoscope apparatus according to an embodiment of the present invention has.
  • FIG. It is a schematic structure figure of an image sensor which an endoscope apparatus concerning an embodiment of the present invention has.
  • (A), (b), (c), (d) is a figure explaining the structure of a (lambda) / 4 wavelength plate.
  • FIG. 1 is a lens cross-sectional configuration diagram of an endoscope optical system according to Embodiment 1.
  • FIG. FIG. 6 is a diagram illustrating optical characteristics of a high-order multi-order ⁇ / 4 wavelength plate for 16 wavelengths in Example 1.
  • Example 1 shows the finally obtained astigmatism
  • (b) shows the astigmatism in the adhesive layer (wedge part) of the polarizing beam splitter
  • (c) shows the higher order.
  • 6 is a lens cross-sectional configuration diagram of an endoscope optical system according to Example 2.
  • FIG. FIG. 6 is a diagram illustrating optical characteristics of a high-order multi-order ⁇ / 4 wavelength plate for 24 wavelengths in Example 2.
  • (a) shows the finally obtained astigmatism
  • (b) shows the astigmatism in the adhesive layer (wedge) of the polarizing beam splitter
  • (c) shows the higher order.
  • Example 3 It is a figure which shows the astigmatism in a multi-order (lambda) / 4 wavelength plate.
  • (a) shows the finally obtained astigmatism
  • (b) shows the astigmatism in the adhesive layer (wedge) of the polarizing beam splitter
  • (c) shows the higher order.
  • Example 4 shows the astigmatism finally obtained, (b) shows the astigmatism in the adhesive layer (wedge part) of the polarizing beam splitter, and (c) shows the higher order. It is a figure which shows the astigmatism in a multi-order (lambda) / 4 wavelength plate.
  • 10 is a lens cross-sectional configuration diagram of an endoscope optical system according to Example 5.
  • FIG. FIG. 10 is a diagram showing optical characteristics of a high-order multi-order ⁇ / 4 wavelength plate for 19 wavelengths in Example 5.
  • Example 5 shows the astigmatism finally obtained, (b) shows the astigmatism in the adhesive layer (wedge part) of the polarizing beam splitter, and (c) shows the higher order.
  • Example 6 shows the astigmatism in a multi-order (lambda) / 4 wavelength plate. It is a figure which shows the optical characteristic of the high-order multi-order (lambda) / 4 wavelength plate for 38 wavelengths in Example 6.
  • FIG. In Example 6, (a) shows the finally obtained astigmatism, (b) shows the astigmatism in the adhesive layer (wedge part) of the polarizing beam splitter, and (c) shows the higher order. It is a figure which shows the astigmatism in a multi-order (lambda) / 4 wavelength plate.
  • Example 7 shows the astigmatism finally obtained, (b) shows the astigmatism in the adhesive layer (wedge) of the polarizing beam splitter, and (c) shows the higher order. It is a figure which shows the astigmatism in a multi-order (lambda) / 4 wavelength plate.
  • FIG. 10 is a diagram illustrating optical characteristics of a high-order multi-order ⁇ / 4 wavelength plate for 10 wavelengths in Example 8.
  • Example 8 shows the finally obtained astigmatism, (b) shows the astigmatism in the adhesive layer (wedge) of the polarizing beam splitter, and (c) shows the higher order.
  • FIG. 1 is a diagram (normal observation state) showing a cross-sectional configuration of an objective optical system, a high-order multi-order ⁇ / 4 wavelength plate, an optical path dividing unit, and an image pickup device included in the endoscope apparatus according to the present embodiment.
  • the objective optical system includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a positive refractive power. Yes.
  • the aperture stop S is disposed in the third lens group G3.
  • the second lens group G2 moves on the optical axis AX to the image side, and corrects the change in the focal position accompanying the change from the normal observation state to the close observation state.
  • the endoscope optical system divides the light from the objective optical system OBL, the ⁇ / 4 wavelength plate 121a made of one birefringent material, and the objective optical system OBL in order from the object side.
  • Polarization beam splitters 121b and 121e (FIG. 2), and an image sensor 122 that captures two divided images, and satisfies the following conditional expression (1).
  • Fno is the effective F number of the objective optical system
  • d is the thickness of the ⁇ / 4 wave plate
  • ⁇ n is the birefringence of the e-line (546.1 nm) of the ⁇ / 4 wavelength plate, where
  • the ⁇ / 4 wavelength plate 121a made of one birefringent material is a high-order multi-order ⁇ / 4 wavelength plate.
  • the high-order multi-order ⁇ / 4 wavelength plate has a function as a depolarizing plate.
  • a material having a large birefringence for the multi-order ⁇ / 4 wavelength plate a higher-order phase difference is generated.
  • FIG. 2 is a diagram showing a schematic configuration of a high-order multi-order ⁇ / 4 wavelength plate 121a, an optical path dividing unit 120, and an image sensor 122.
  • the light emitted from the objective optical system OBL is incident on the optical path dividing unit 120 through the high-order multi-order ⁇ / 4 wavelength plate 121a.
  • the optical path dividing unit 120 includes a polarization beam splitter 121 that divides a subject image into two optical images with different focus points, and an imaging element 122 that captures two optical images and acquires two images.
  • the polarization beam splitter 121 includes an object-side prism 121b, an image-side prism 121e, a mirror 121c, and a ⁇ / 4 plate 121d. Both the object-side prism 121b and the image-side prism 121e have beam split surfaces having an inclination of 45 degrees with respect to the optical axis AX.
  • the object-side prism 121b and the image-side prism 121e are bonded together by a bonding layer 130 made of an adhesive.
  • a polarization separation film 121f is formed on the beam split surface of the object-side prism 121b.
  • the object-side prism 121b and the image-side prism 121e constitute a polarization beam splitter 121 by bringing their beam split surfaces into contact with each other via a polarization separation film 121f.
  • the mirror 121c is provided near the end face of the object-side prism 121b via a ⁇ / 4 plate 121d.
  • An image sensor 122 is attached to the end face of the image-side prism 121e via a cover glass CG.
  • I is an imaging plane (imaging plane).
  • An object image from the objective optical system OBL is separated into a P-polarized component (transmitted light) and an S-polarized component (reflected light) by a polarization separation film 121f provided on the beam splitting surface in the prism 121b on the object side, and P-polarized light.
  • the optical image of the component and the optical image of the S-polarized component are separated into two optical images.
  • the optical image of the S-polarized component is reflected to the imaging element 122 by the polarization separation film 121f, passes through the A optical path, passes through the ⁇ / 4 plate 121d, is reflected by the mirror 121c, and is folded back to the imaging element 122 side. It is.
  • the folded optical image is transmitted through the ⁇ / 4 plate 121d again to rotate the polarization direction by 90 °, passes through the polarization separation film 121f, and is formed on the image sensor 122.
  • the optical image of the P-polarized component is reflected by a mirror surface provided on the side opposite to the beam split surface of the image-side prism 121e that passes through the polarization separation film 121f, passes through the B optical path, and is folded vertically toward the image sensor 122. Then, an image is formed on the image sensor 122.
  • a prism glass path is set so that a predetermined optical path difference of, for example, about several tens of ⁇ m is generated between the A optical path and the B optical path, and two optical images with different focus are received on the light receiving surface of the image sensor 122. To form an image.
  • the optical path length on the transmitted light side to the image sensor 122 in the object-side prism 121b (so that the object-side prism 121b and the image-side prism 121e can be separated into two optical images having different focus positions of the subject image (
  • the optical path length on the reflected light side is shorter (smaller) than the (glass path length).
  • FIG. 3 is a schematic configuration diagram of the image sensor 122. As illustrated in FIG. 3, the image sensor 122 receives two optical images having different focus positions by separately receiving and capturing two optical images (effective pixels) among all the pixel areas of the image sensor 122. Regions) 122a and 122b are provided.
  • FIG. 4A shows a front configuration of a high-order multi-order ⁇ / 4 wavelength plate 121a (optical axis 90 degrees), and FIG. 4B shows a cross-sectional configuration.
  • FIG. 4C shows a front configuration of a high-order multi-order ⁇ / 4 wavelength plate 121a (optical axis 45 degrees), and
  • FIG. 4D shows a cross-sectional configuration.
  • an anti-reflection coating AR is applied to the object side surface of the high-order multi-order ⁇ / 4 wavelength plate 121a. Thereby, the problems of flare, ghost, and brightness loss due to surface reflection can be reduced. Note that an antireflection coating AR may also be applied to the bonding surface side of the high-order multi-order ⁇ / 4 wavelength plate 121a with the glass substrate 121g.
  • FIG. 5 (a) shows astigmatism occurring in the higher-order multi-order ⁇ / 4 wavelength plate DP1.
  • An optical system in which an object point P forms an image is shown. Light rays from the object point P are imaged through the objective lenses OBL1 and OBL2.
  • a high-order multi-order ⁇ / 4 wavelength plate (uniaxial crystal) DP1 is disposed in the optical path between the objective lens OBL1 and the objective lens OBL2. Thereby, the position of the imaging point Po for ordinary light and the imaging point Pe for abnormal light are different.
  • the refractive index ne is always obtained for light rays in the XZ plane.
  • the light beam in the YZ plane has a refractive index no.
  • the refracting action of the light beam differs between the X direction and the Y direction. For this reason, astigmatism occurs on the axis only in the direction of the optical axis.
  • FIG. 5 (b) is a diagram for explaining astigmatism generated by a high-order multi-order ⁇ / 4 wavelength plate and astigmatism generated by a polarization beam splitter.
  • Astigmatism ASA indicated by a solid line and a dotted line is generated in a high-order multi-order ⁇ / 4 wavelength plate 121a (depolarization plate) (not shown in FIG. 5B).
  • an astigmatism ASB indicated by a solid line and a dotted line is generated.
  • Astigmatism ASA and astigmatism ASB have substantially the same absolute value of the amount of aberration, and their signs are opposite.
  • a depolarization effect can be obtained in a pseudo manner by using a high-order multi-order ⁇ / 4 wavelength plate 121a (depolarization plate) having a large birefringence.
  • the depolarization effect can be enhanced by increasing the thickness of the high-order multi-order ⁇ / 4 wavelength plate 121a.
  • astigmatism occurs on the axis only in the direction of the optical axis. That is, the amount of astigmatism is determined by the birefringence of the higher-order multi-order ⁇ / 4 wavelength plate 121a, its thickness, and the angle of incidence on the higher-order multi-order ⁇ / 4 wavelength plate.
  • Conditional expression (1) defines the optimum range of Fno / (d /
  • the incident angle of the light beam on the higher-order multi-order ⁇ / 4 wave plate 121a is too large.
  • the high-order multi-order ⁇ / 4 wavelength plate 121a is too thick, the on-axis astigmatism is too large. As a result, the image quality is degraded. Alternatively, the birefringence is too small to obtain a good depolarization effect.
  • the objective optical system becomes too dark (the F number increases).
  • the high-order multi-order ⁇ / 4 wavelength plate 121a is too thin to obtain a sufficient depolarization effect.
  • birefringence is too large and astigmatism is greatly generated. For this reason, since image quality deteriorates, it is not preferable.
  • ⁇ n The material used for the high-order multi-order ⁇ / 4 wavelength plate 121a is desirably a material having a certain degree of birefringence.
  • a material with small birefringence, such as quartz, is not preferable because the amount of phase difference generated is too small, and if it is made thick to obtain a depolarization effect, it will not fit in the distal end of the endoscope.
  • the ⁇ / 4 wavelength plate is disposed between the aperture stop of the objective optical system and the optical path dividing surface of the polarization beam splitter.
  • the high-order multi-order ⁇ / 4 wavelength plate is disposed on the image plane side behind the aperture stop and between the polarization beam splitter and the front side (object side).
  • astigmatism AS When obliquely incident light is incident on a crystal material having a large birefringence, astigmatism AS is generated in the direction of the optical axis.
  • a high-order multi-order ⁇ / 4 wavelength plate since it has a depolarization effect, light incident on the polarization beam splitter becomes non-polarized astigmatism.
  • the light separated into two optical paths by the polarization beam splitter includes astigmatism AS equally in the P-polarized light path and the S-polarized light path.
  • the adhesive layer 130 for joining the polarization beam splitters 121b and 121e is disposed obliquely (wedge shape) with respect to the incident light beam.
  • another astigmatism B (ASB in FIG. 5B) occurs due to the refractive index difference of the polarizing beam splitter and the refractive index difference of the adhesive of the adhesive layer.
  • the astigmatism A (ASA in FIG. 5B) and the astigmatism B have substantially the same absolute value, the astigmatisms having opposite signs (reverse directions) cancel each other out. .
  • the astigmatism can be reduced to an amount that can be substantially zero on the imaging surface (the light receiving surface of the image sensor).
  • the ⁇ / 4 wavelength plate is a uniaxial crystal material having negative birefringence.
  • a high-order multi-order ⁇ / 4 wavelength plate having negative birefringence which is a uniaxial crystal, is used, the sign of astigmatism generated in the adhesive layer oblique to the incident light beam in the polarization beam splitter is reversed. Astigmatism occurs. For this reason, astigmatism can be canceled out.
  • np is the refractive index of the e-line (546.1 nm) of the glass material used in the polarizing beam splitter
  • ⁇ n is the birefringence of the e-line of the ⁇ / 4 wavelength plate, where
  • ⁇ n, d is the thickness of the ⁇ / 4 wavelength plate
  • lpc is the thickness of the adhesive layer of the adhesive used on the plane of the polarizing beam splitter, It is.
  • the amount of astigmatism generated can be controlled by the glass material and refractive index used for the polarizing beam splitter, the thickness of the adhesive layer, the birefringence of the crystal material used for the wave plate and its thickness.
  • conditional expression (2) If the lower limit of conditional expression (2) is not reached, the ⁇ / 4 wavelength plate is too thick. Alternatively, astigmatism cannot be canceled out because the birefringence is too large. This degrades the image.
  • conditional expression (2) If the upper limit value of conditional expression (2) is exceeded, the thickness of the ⁇ / 4 wavelength plate is too thin, making it difficult to perform optimal aberration correction. In addition, there are problems in processing the ⁇ / 4 wavelength plate. Alternatively, the refractive index of the glass material used for the polarizing beam splitter is too high, and astigmatism generated in the polarizing beam splitter is too large, and astigmatism cannot be canceled out. This degrades the image.
  • FIG. 6 is a diagram illustrating a cross-sectional configuration of an objective optical system, a high-order multi-order ⁇ / 4 wavelength plate, an optical path dividing unit, and an image sensor.
  • FIG. 6 is a diagram showing a cross-sectional configuration of the objective optical system in a normal observation state (a long distance object point).
  • the objective optical system can be switched to the close observation state (short distance object point) by driving the lens L5.
  • a plano-concave negative lens L1 having a plane facing the object side, a parallel plate L2, a biconcave negative lens L3, a positive meniscus lens L4 having a convex surface facing the object side, and a convex surface facing the object side
  • Positive meniscus lens L5 biconvex positive lens L6, negative meniscus lens L7 having a convex surface toward the image side, brightness stop S, biconvex positive lens L8, biconvex positive lens L9, and image side
  • a negative meniscus lens L10 having a convex surface.
  • the negative lens L3 and the positive meniscus lens L4 are cemented.
  • the positive lens L6 and the negative meniscus lens L7 are cemented.
  • the positive lens L9 and the negative meniscus lens L10 are cemented.
  • the optical path dividing unit 120 described above is arranged on the image side of the objective optical system. In the prism in the optical system, the optical path is bent.
  • the parallel flat plate L2 is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • I is an imaging plane (imaging plane).
  • a ⁇ / 4 wavelength plate 121a is disposed in the optical path between the optical path dividing unit 120 and the image side of the objective optical system.
  • the numerical data of each of the above examples is shown below. Symbols r are radii of curvature of the lens surfaces, d is the distance between the lens surfaces, ne is the refractive index of the e-line of each lens, ⁇ e is the Abbe number of each lens, FNO is the F number, and ⁇ is the half angle of view. It is.
  • the back focus fb represents the distance from the most image-side optical surface to the paraxial image surface in terms of air. The total length is obtained by adding back focus to the distance (not converted to air) from the lens surface closest to the object side to the optical surface closest to the image side.
  • the aperture is a brightness aperture.
  • FIG. 7 shows optical characteristics of the higher-order multi-order ⁇ / 4 wavelength plate 121a included in the endoscope apparatus according to the first embodiment.
  • the optical characteristic is a wavelength scramble characteristic (polarization elimination characteristic) when linearly polarized light is incident on a high-order multi-order ⁇ / 4 wavelength plate 121a. This is an example of generating a phase difference for 16 wavelengths.
  • a solid line (X intensity) and a dotted line (Y intensity) indicate orthogonal polarization components, respectively.
  • the horizontal axis represents wavelength (nm), and the vertical axis represents the intensity of P-polarized light (for example, X intensity) and S-polarized light (for example, Y intensity) after passing through a high-order multi-order ⁇ / 4 wavelength plate.
  • a high-order multi-order ⁇ / 4 wavelength plate 121a having a large birefringence is disposed between the objective optical system OBL of the endoscope and the polarization beam splitter 121, and is used as a depolarization plate.
  • the high-order multi-order ⁇ / 4 wavelength plate 121a can be regarded as equivalent to non-polarized light in the visible region (400 nm to 700 nm) because the polarization changes with a high period depending on the wavelength.
  • a zero-order or multi-order ⁇ / 4 wave plate for several wavelengths can convert linearly polarized light with a specific wavelength into circularly polarized light, but it has a large dependence on the wavelength and polarization in the entire visible range. It is impossible to always keep the division strength in the image constant, and an image with uniform strength cannot be obtained. With the configuration shown in this embodiment, it is not necessary to obtain a sufficient depolarization effect and use a depolarization plate having a complicated configuration. For this reason, there exists an effect that size reduction of the endoscope front-end
  • FIGS. 8A, 8B, and 8C are diagrams showing on-axis MTF (Modulation Transfer Function) in the present embodiment.
  • the horizontal axis indicates the defocus amount, and the vertical axis indicates the MTF.
  • the axial MTF is proportional to astigmatism.
  • the solid line indicates the axial MTF in the sagittal direction, and the dotted line indicates the MTF in the meridional direction.
  • the figure which shows on-axis MTF in all the following examples is shown by the same notation as a present Example.
  • FIG. 8A shows astigmatism in the final image plane.
  • FIG. 8B shows astigmatism in the adhesive layer 130 of the polarization beam splitters 121b and 121e.
  • FIG. 8C shows astigmatism after passing through the high-order multi-order ⁇ / 4 wavelength plate 121a.
  • the astigmatism on the image plane shown in FIG. 8A is obtained by adding the characteristic curve shown in FIG. 8B and the characteristic curve shown in FIG. 8C. As apparent from FIG. 8A, the difference between the astigmatism in the meridional direction and the astigmatism in the sagittal direction is reduced.
  • FIG. 9 is a diagram illustrating a cross-sectional configuration of an objective optical system, a high-order multi-order ⁇ / 4 wavelength plate, an optical path dividing unit, and an image sensor.
  • a high-order multi-order ⁇ / 4 wavelength plate is disposed in the objective optical system.
  • FIG. 9 is a diagram showing a cross-sectional configuration of the objective optical system in a normal observation state (a long distance object point). The objective optical system can be switched to the close observation state (short distance object point) by driving the lens L5.
  • a plano-concave negative lens L1 having a plane facing the object side, a parallel plate L2, a biconcave negative lens L3, a plano-convex positive lens L4 having a convex surface facing the object side, and a convex surface facing the object side.
  • the negative lens L3 and the positive lens L4 are cemented.
  • the positive lens L6 and the negative meniscus lens L7 are cemented.
  • the parallel flat plate L8 and the parallel flat plate L9 are joined.
  • the positive lens L11 and the negative meniscus lens L12 are cemented.
  • the thickness of LiNbO 3 in Example 2 is 0.15 mm, and in Example 5 to be described later, the thickness of LiNbO 3 is as thin as 0.12 mm. For this reason, it is necessary to pay attention to breakage in the handling of the high-order multi-order ⁇ / 4 wavelength plate. Therefore, a glass plate which is a parallel plate is bonded together as in the present embodiment to improve the handleability of the high-order multi-order ⁇ / 4 wavelength plate.
  • a glass substrate may be used for bonding, but a material having a close linear expansion coefficient such as quartz glass is more preferable.
  • the optical path dividing unit 120 described above is arranged on the image side of the objective optical system. In the prism in the objective optical system, the optical path is bent.
  • the parallel flat plate L2 is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • I is an imaging plane (imaging plane).
  • a high-order multi-order ⁇ / 4 wavelength plate 121a is arranged on the 14th surface of the parallel plate L8.
  • FIG. 10 shows optical characteristics of the higher-order multi-order ⁇ / 4 wavelength plate 121a included in the endoscope apparatus according to the second embodiment. This is an example of generating a phase difference for 24 wavelengths.
  • a high-order multi-order ⁇ / 4 wavelength plate 121a having a large birefringence is disposed on the 14th surface of the objective optical system and used as a depolarization plate.
  • the high-order multi-order ⁇ / 4 wavelength plate 121a can be regarded as equivalent to non-polarized light in the visible region (400 nm to 700 nm) because the polarization changes with a high period depending on the wavelength.
  • FIG. 11A shows astigmatism on the final image plane.
  • FIG. 11B shows astigmatism in the adhesive layer 130 of the polarization beam splitters 121b and 121e.
  • FIG. 11C shows astigmatism after passing through the high-order multi-order ⁇ / 4 wavelength plate 121a.
  • the astigmatism on the image plane shown in FIG. 11 (a) is obtained by adding the characteristic curve shown in FIG. 11 (b) and the characteristic curve shown in FIG. 11 (c). As apparent from FIG. 11A, the difference between the astigmatism in the meridional direction and the astigmatism in the sagittal direction is reduced.
  • Example 3 An endoscope optical system according to Example 3 will be described.
  • the optical characteristics of the higher-order multi-order ⁇ / 4 wavelength plate 121a included in the endoscope apparatus according to the third embodiment are the same as those in the first embodiment (see FIG. 7). For this reason, description of optical characteristics is omitted.
  • FIG. 12A shows astigmatism on the final image plane.
  • FIG. 12B shows astigmatism in the adhesive layer 130 of the polarization beam splitters 121b and 121e.
  • FIG. 12C shows astigmatism after passing through the high-order multi-order ⁇ / 4 wavelength plate 121a.
  • the astigmatism on the image plane shown in FIG. 12 (a) is obtained by adding the characteristic curve shown in FIG. 12 (b) and the characteristic curve shown in FIG. 12 (c). As is apparent from FIG. 12A, the difference between the astigmatism in the meridional direction and the astigmatism in the sagittal direction is reduced.
  • FIG. 13 shows optical characteristics of the higher-order multi-order ⁇ / 4 wavelength plate 121a included in the endoscope apparatus according to the fourth embodiment. This is an example of generating a phase difference for 56 wavelengths.
  • a multi-order ⁇ / 4 wavelength plate 121a having a large birefringence is disposed and used as a depolarizing plate.
  • the high-order multi-order ⁇ / 4 wavelength plate 121a can be regarded as equivalent to non-polarized light in the visible region (400 nm to 700 nm) because the polarization changes with a high period depending on the wavelength.
  • FIG. 14A shows astigmatism on the final image plane.
  • FIG. 14B shows astigmatism in the adhesive layer 130 of the polarization beam splitters 121b and 121e.
  • FIG. 14C shows astigmatism after passing through a high-order multi-order ⁇ / 4 wave plate.
  • the astigmatism on the image plane shown in FIG. 14 (a) is obtained by adding the characteristic curve shown in FIG. 14 (b) and the characteristic curve shown in FIG. 14 (c). As apparent from FIG. 14A, the difference between the astigmatism in the meridional direction and the astigmatism in the sagittal direction is reduced.
  • FIG. 15 is a diagram illustrating a cross-sectional configuration of an objective optical system, a high-order multi-order ⁇ / 4 wavelength plate, an optical path dividing unit, and an image sensor.
  • FIG. 15 is a diagram showing a cross-sectional configuration of the objective optical system in a normal observation state (a long distance object point).
  • the objective optical system can be switched to the close observation state (short distance object point) by driving the lens L5.
  • the high-order multi-order ⁇ / 4 wavelength plate 121a is arranged in the objective optical system.
  • a plano-concave negative lens L1 having a plane facing the object side, a parallel plate L2, a biconcave negative lens L3, a plano-convex positive lens L4 having a convex surface facing the object side, and a convex surface facing the object side.
  • the negative lens L3 and the positive lens L4 are cemented.
  • the parallel flat plate L6 and the parallel flat plate L7 are joined.
  • the positive lens L11 and the negative meniscus lens L12 are cemented.
  • the optical path dividing unit 120 described above is arranged on the image side of the objective optical system. In the prism in the optical system, the optical path is bent.
  • the parallel flat plate L2 is a filter provided with a coating for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • I is an imaging plane (imaging plane). The reason why the parallel flat plate L6 and the parallel flat plate L7 are joined is as described above.
  • a high-order multi-order ⁇ / 4 wavelength plate 121a is arranged on the eleventh surface of the parallel plate L6.
  • FIG. 16 illustrates the optical characteristics of the higher-order multi-order ⁇ / 4 wavelength plate 121a included in the endoscope apparatus according to the fifth embodiment. This is an example of generating a phase difference for 19 wavelengths.
  • a high-order multi-order ⁇ / 4 wavelength plate 121a having a large birefringence is disposed and used as a depolarizing plate.
  • the high-order multi-order ⁇ / 4 wavelength plate 121a can be regarded as equivalent to non-polarized light in the visible region (400 nm to 700 nm) because the polarization changes with a high period depending on the wavelength.
  • FIG. 17A shows astigmatism on the final image plane.
  • FIG. 17B shows astigmatism in the adhesive layer 130 of the polarization beam splitters 121b and 121e.
  • FIG. 17 (c) shows astigmatism after passing through a high-order multi-order ⁇ / 4 wave plate.
  • the astigmatism on the image plane shown in FIG. 17A is obtained by adding the characteristic curve shown in FIG. 17B and the characteristic curve shown in FIG. As apparent from FIG. 17A, the difference between the astigmatism in the meridional direction and the astigmatism in the sagittal direction is reduced.
  • FIG. 18 illustrates optical characteristics of the higher-order multi-order ⁇ / 4 wavelength plate 121a included in the endoscope apparatus according to the sixth embodiment. This is an example of generating a phase difference for 38 wavelengths.
  • a high-order multi-order ⁇ / 4 wavelength plate 121a having a large birefringence is disposed and used as a depolarizing plate.
  • the high-order multi-order ⁇ / 4 wavelength plate 121a can be regarded as equivalent to non-polarized light in the visible region (400 nm to 700 nm) because the polarization changes with a high period depending on the wavelength.
  • FIG. 19A shows astigmatism on the final image plane.
  • FIG. 19B shows astigmatism in the adhesive layer 130 of the polarization beam splitters 121b and 121e.
  • FIG. 19C shows astigmatism after passing through a high-order multi-order ⁇ / 4 wave plate.
  • the astigmatism on the image plane shown in FIG. 19 (a) is obtained by adding the characteristic curve shown in FIG. 19 (b) and the characteristic curve shown in FIG. 19 (c). As is clear from FIG. 19A, the difference between the astigmatism in the meridional direction and the astigmatism in the sagittal direction is reduced.
  • Example 7 An endoscope optical system according to Example 7 will be described.
  • the optical characteristics of the high-order multi-order ⁇ / 4 wavelength plate 121a included in the endoscope apparatus according to the seventh embodiment are the same as those in the first embodiment (see FIG. 7). For this reason, description of optical characteristics is omitted.
  • FIG. 20A shows astigmatism on the final image plane.
  • FIG. 20B shows astigmatism in the adhesive layer 130 of the polarization beam splitters 121b and 121e.
  • FIG. 20 (c) shows astigmatism after passing through a high-order multi-order ⁇ / 4 wavelength plate.
  • Astigmatism on the image plane shown in FIG. 20 (a) is obtained by adding the characteristic curve shown in FIG. 20 (b) and the characteristic curve shown in FIG. 20 (c). As apparent from FIG. 20A, the difference between the astigmatism in the meridional direction and the astigmatism in the sagittal direction is reduced.
  • FIG. 21 illustrates optical characteristics of the higher-order multi-order ⁇ / 4 wavelength plate 121a included in the endoscope apparatus according to the eighth embodiment. This is an example of generating a phase difference for 10 wavelengths.
  • a high-order multi-order ⁇ / 4 wavelength plate 121a having a large birefringence is disposed and used as a depolarizing plate.
  • the high-order multi-order ⁇ / 4 wave plate 121a can be regarded as equivalent to non-polarized light in the visible region (400 nm to 700 nm) because the polarization changes with a high period depending on the wavelength.
  • FIG. 22A shows astigmatism on the final image plane.
  • FIG. 22B shows astigmatism in the adhesive layer 130 of the polarization beam splitters 121b and 121e.
  • FIG. 22 (c) shows astigmatism after passing through a high-order multi-order ⁇ / 4 wave plate.
  • the astigmatism on the image plane shown in FIG. 22 (a) is obtained by adding the characteristic curve shown in FIG. 22 (b) and the characteristic curve shown in FIG. 22 (c). As apparent from FIG. 22A, the difference between the astigmatism in the meridional direction and the astigmatism in the sagittal direction is reduced.
  • the higher-order multi-order ⁇ / 4 wavelength plate (depolarizing plate) is not a negative birefringent material. For this reason, the astigmatism that occurs in the high-order multi-order ⁇ / 4 wavelength plate and the astigmatism that occurs in the polarization beam splitter do not cancel each other.
  • the high-order multi-order ⁇ / 4 wavelength plate is made as thin as possible, and the refractive index of the glass material of the polarizing beam splitter is also reduced.
  • the absolute value of astigmatism generated by the higher-order multi-order ⁇ / 4 wavelength plate and the absolute value of astigmatism generated by the polarization beam splitter are reduced.
  • Example 1 Example 2
  • Example 3 Negative negative negative negative negative Crystal material of ⁇ / 4 wave plate LiNbO 3 LiNbO 3 LiNO 3 LiNbO 3 Fno 3.75 3.6 3 4.5 d 0.1 0.15 0.1 0.35 ⁇ n -0.08798 -0.08798 -0.08798 0.08798 lpc 0.01 0.02 0.005 0.015 np 1.64129 1.64129 1.75844 1.75844
  • Example 5 Example 6
  • Example 8 Negative Negative Negative Negative Positive Crystal material of ⁇ / 4 wave plate LiNbO 3 Calcite ⁇ -BBO YVO 4 Fno 3.6 3.75 4.7 5 d 0.12 0.12 0.07 0.0236 ⁇ n -0.08798 -0.17372 -0.12377 0.23122 lpc 0.005 0.02 0.023 0.01 np 1.75844 1.75844 1.64129 1.51825
  • PBS indicates a polarizing beam splitter.
  • a mark indicates that the mark is very good.
  • a circle indicates that it is good.
  • the ⁇ mark indicates that it is slightly better.
  • Depolarization effect PBS adhesive layer adjustment
  • PBS extinction ratio Example 1 ⁇ ⁇ ⁇ Example 2 ⁇ ⁇ ⁇ Example 3 ⁇ No adjustment required ⁇
  • Example 4 ⁇ ⁇ ⁇ Example 5 ⁇ No adjustment required ⁇
  • the prisms 121b and 121e used in the polarization beam splitter 121 generally have an angular manufacturing error. If the manufacturing error is relatively large, an image formed on the image plane I of the image sensor 122 is not preferable because the image quality in the vertical and horizontal directions is biased. Therefore, it is desirable to make an adjustment such that the image quality of the optical image on the image plane I is made uniform by relatively tilting the prisms 121b and 121e using the distance between the adhesive layers 130. In Embodiments 2, 6, and 7, the thickness of the adhesive layer 130 is relatively large, so that the range in which the tilt can be adjusted is widened, and the imaging quality on the imaging surface I is improved. On the other hand, the third and fifth embodiments are examples in which the tilt adjustment itself is eliminated by precisely processing the prisms 121b and 121e. Either method may be adopted in consideration of parts cost and adjustment cost.
  • the extinction ratio of the polarizing beam splitter will be described with reference to FIG. It is desirable that the light beams divided by the polarization beam splitter 121 have substantially the same intensity. In other words, when S-polarized light is incident on the polarization splitting film 121f, it is ideally reflected in the A optical path with 100% intensity and transmitted to the B optical path with 100% intensity when P-polarized light is incident. In general, the ratio of the intensity divisions of the A and B optical paths is defined as an extinction ratio and used as an indicator of PBS quality. The extinction ratio becomes better as the difference between the refractive index of the material used for the polarization beam splitter 121 (prism 121b) and the refractive index of the material used for the polarization separation film increases.
  • Example 8 instead of suppressing the extinction ratio to an acceptable quality, a general glass material is used for the polarizing beam splitter 121 (prism 121b), thereby providing a polarizing beam splitter configuration that is favorable in terms of cost. Yes.
  • An endoscope apparatus includes the above-described endoscope optical system and an image processing unit including an image composition unit that combines images captured by an image sensor into a single image. To do.
  • FIG. 23 shows a configuration of the endoscope apparatus.
  • An endoscope apparatus 1 according to this embodiment includes an endoscope 2 that is inserted into a subject, a light source device 3 that supplies illumination light to the endoscope 2, a processor device 4, and an image display unit 5. Have.
  • the processor device 4 has a function of performing image processing, but also has other functions.
  • the processor device 4 includes an actuator control unit 25, an image processor 30, and a control unit 39.
  • the image display unit 5 displays the image signal generated by the processor device 4 as an endoscopic image.
  • the endoscope 2 includes an elongated insertion portion 6 that is inserted into the subject, and an operation portion 7 provided at the rear end of the insertion portion 6. From the operation unit 7, a light guide cable 8 extends outward. One end of the light guide cable 8 is detachably connected to the light source device 3 via a connection portion 8a.
  • the light guide cable 8 has a light guide 9 inside. A part of the light guide 9 is disposed in the insertion portion 6.
  • the light source device 3 incorporates a lamp 11 such as a xenon lamp as a light source.
  • the light source is not limited to the lamp 11 such as a xenon lamp, and a light emitting diode (abbreviated as LED) may be used.
  • the illumination light generated by the lamp 11, for example, white light is adjusted in passing light amount by the diaphragm 12. Then, the illumination light is collected by the condenser lens 13 and enters the incident end face of the light guide 9.
  • the aperture diameter of the diaphragm 12 can be changed by the diaphragm driver 14.
  • the light guide 9 transmits the illumination light generated by the light source device 3 to the distal end portion 6 a of the insertion portion 6.
  • the transmitted illumination light is emitted from the tip surface of the light guide 9.
  • An illumination lens 15 is disposed at the distal end portion 6a so as to face the distal end surface.
  • the illumination lens 15 emits illumination light from the illumination window 15a. As a result, the site to be observed inside the subject is illuminated.
  • the observation window 20 is provided in the front-end
  • An objective optical system is disposed behind the observation window 20.
  • the objective optical system OBL includes a lens group 16 and an optical path dividing unit 120.
  • the lens group 16 includes a lens 16a and a lens 21.
  • the lens 21 is movable along the optical axis. Thereby, focusing is performed.
  • An actuator 22 is arranged for moving the lens 21.
  • one image sensor 122 (not shown) is arranged in the optical path dividing unit 120. Two optical images are simultaneously formed on the light receiving surface of the image sensor 122. Two optical images are captured by the image sensor.
  • the operation unit 7 is connected to the processor device 4 via the cable 24.
  • a signal connector 24 a is provided at a location where the processor device 4 is connected. Various types of information are transmitted between the endoscope 2 and the processor device 4 via the cable 24.
  • the signal connector 24 a has a correction parameter storage unit 37.
  • the correction parameter storage 37 stores correction parameters (information) used for image correction.
  • the correction parameters are different for each endoscope. Assume that an endoscope having unique endoscope identification information is connected to the processor device 4. In this case, a correction parameter unique to the connected endoscope is read from the correction parameter storage unit 37 based on the endoscope identification information. Based on the read correction parameter, the image correction processing unit 32 corrects the image. The presence or absence of correction is performed by the control unit 39.
  • the actuator 22 is controlled by the actuator control unit 25.
  • the actuator 22 and the actuator controller 25 are connected via a signal line 23.
  • the image sensor is connected to the image processor 30 via the signal line 27a. A signal from the image sensor is input to the image processor 30. Information on the switch 26 provided in the operation unit 7 is also transmitted to the processor device 4 through the signal line.
  • the two optical images are picked up by the image sensor.
  • An image signal obtained by imaging is input to the image processor 30 via the signal line 27a.
  • the image processor 30 includes an image reading unit 31, an image correction processing unit 32, an image composition processing unit 33, a subsequent image processing unit 34, an image output unit 35, and a light control unit 36.
  • the image reading unit 31 reads image signals of a plurality of images from the input image signal.
  • the number of optical images and the number of images are both two.
  • the geometric difference includes a relative deviation (difference) between two optical images, for example, a magnification deviation (difference), a positional deviation (difference), and a rotational deviation (difference). It is difficult to completely eliminate these differences when manufacturing the objective optical system. However, when the amount of deviation (difference) increases, for example, the composite image looks double. Therefore, it is preferable to correct the above-described geometric difference in the image correction processing unit 32.
  • the image correction processing unit 32 performs image correction on the two read images.
  • a process of matching at least one difference among a relative magnification difference, a position difference, and a rotation difference between two images is performed.
  • the image correction processing unit 32 performs color tone correction.
  • the image correction processing unit 32 includes a color tone correction unit (not shown).
  • a color tone correction unit (not shown).
  • the color correction may be performed by the image correction processing unit 32 without providing the color correction unit.
  • the image correction processing unit 32 changes the luminance of one of the two images so that it substantially matches the luminance of the other image.
  • the image correction processing unit 32 changes the saturation in one image so as to substantially match the saturation in the other image.
  • image synthesis using two images is performed. If there is a difference in brightness or color tone between the two optical images, a difference in brightness or color tone also occurs in the two images obtained by imaging. In the endoscope apparatus of the present embodiment, even if brightness differences or color tone differences occur in a plurality of images, brightness differences or color tone differences can be reduced. Therefore, the color reproducibility of the synthesized image can be further improved.
  • contrast comparison is performed using two images. This comparison is performed for each spatially identical pixel area in the two images. Subsequently, a pixel region having a higher contrast is selected. Then, one image is generated using the selected pixel region. In this way, one composite image is generated from the two images.
  • a composite image may be generated after performing composite image processing for adding each image with a predetermined weight.
  • the post-stage image processing unit 34 performs image processing such as contour enhancement and gamma correction on the composite image.
  • the image output unit 35 outputs the image-processed image to the image display device 5.
  • the light control unit 36 generates a light control signal for adjusting light to a reference brightness from the image read by the image reading unit 31.
  • the dimming signal is output to the aperture driving unit 14 of the light source device 3.
  • the aperture drive unit 14 adjusts the aperture amount of the aperture 12 so as to maintain the reference brightness according to the dimming signal.
  • FIG. 24 is a flowchart showing a flow when two optical images are synthesized in the present embodiment.
  • step S101 the image correction processing unit 32 performs correction processing on two images of the perspective image and the image related to the near-point image acquired by the image sensor 122, which are different in focus. That is, according to a preset correction parameter, the two images are corrected so that the relative position, angle, and magnification in the optical images of the two images are substantially the same, and the corrected images are combined.
  • the data is output to the processing unit 33. In addition, you may correct
  • step S102 the two images subjected to the correction processing are combined by the image combining processing unit 33. At this time, contrast values are calculated and compared in the corresponding pixel regions of the two perspective images.
  • step S103 it is determined whether or not there is a difference in the compared contrast values. If there is a difference in contrast, the process proceeds to step S105, where a region having a high contrast value is selected and synthesized.
  • the difference in the contrast value to be compared is small or almost the same, it becomes an unstable factor in processing which of the two perspective images is selected. For example, if there is a fluctuation of a signal such as noise, a discontinuous area may be generated in the synthesized image, or a problem may occur that the originally resolved subject image is blurred.
  • step S104 if the contrast values of the two images are substantially the same in the pixel region to be subjected to the contrast comparison, weighting is performed, and the weighted image is added in the next step S105 to perform image selection. The instability is resolved.
  • the field of view is prevented while preventing a discontinuous region from being generated in the composite image or the optical image from being blurred due to noise or the like.
  • An image with an increased depth can be acquired.
  • FIG. 25 is a diagram showing an image formation state when an image is formed on the image sensor after an odd number of reflections by the polarization beam splitter 121.
  • an optical image is formed on the image sensor 122 after one reflection, that is, an odd number of reflections.
  • any one of the images is brought into an image formation state (mirror image) as shown in FIG. 8, and image processing is performed in the image processor 30 to invert the mirror image and to match the image directions.
  • the correction of the mirror image by the optical even number of reflections may increase the size of the objective optical system and the cost of the prism, the correction of the mirror image by the odd number of reflections may be reversed by the image correction processing unit 32. It is preferable to carry out by.
  • the image sensor 122 has a long shape in the longitudinal direction of the endoscope, it is preferable to appropriately rotate the composite image in consideration of the aspect ratio of the image display device 5.
  • an endoscope optical system and an endoscope apparatus that can obtain a satisfactory image by reducing astigmatism generated in a wave plate (polarization depolarizing plate) while obtaining a sufficient depolarizing effect. Useful for.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Multimedia (AREA)
  • Lenses (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

十分な偏光解消効果を得つつ、波長板(偏光解消板)で発生する非点収差を低減して、良好な画像を得ることができる内視鏡光学系及び内視鏡装置を提供することを目的とする。 内視鏡光学系は、物体側から順に、対物光学系OBLと、1つの複屈折素材からなるλ/4波長板121aと、対物光学系OBLからの光を2つに分割する偏光ビームスプリッター121と、分割した2つの像を撮像する撮像素子122と、を備え、以下の条件式(1)を満たす。 1.1≦Fno/(d/|Δn|)≦49 (1) ここで、 Fnoは、対物光学系の有効Fナンバー、 dは、λ/4波長板の厚み、 Δnは、λ/4波長板のe線(546.1nm)の複屈折、ただし、|0.01|<Δn、 である。

Description

内視鏡光学系及び内視鏡装置
 本発明は、内視鏡光学系及び内視鏡装置に関するものである。
 一般に、内視鏡装置等の撮像素子を備えた機器において、撮像素子の高画素化に伴い、被写界深度が狭くなることが知られている。すなわち、撮像素子において、画素数を増やすために画素ピッチ(1画素の縦横の寸法)を小さくすると、これに伴って許容錯乱円も小さくなるため、撮像装置の被写界深度が狭くなる。
 被写界深度を拡大するために、例えば、自画像を分割して結像させ、取得した画像を画像処理で合成し深度を拡大する構成が提案されている。ここで、自画像を分割する際、偏光を利用した光路分割ユニットを用いることが効率的である。偏光を利用した光路分割ユニットでは、偏光状態を解消した光を光路分割ユニットへ入射させることが望ましい。このような偏光状態を解消する素子の構成は、例えば、特許文献1、2に開示されている。
 特許文献1は、対物光学系と偏光ビームスプリッターの間にλ/4波長板を配置した構成を開示している。特許文献2は、偏光解消板の具体的な構成を開示している。
特許第05393926号公報 特許6023919号公報
 しかしながら、特許文献1、2には、ゼロオーダーもしくは低次のマルチオーダーのλ/4波長板によって直線偏光を円偏光する限定的な偏光解消効果の記載のみで、あらゆる偏光状態を想定した偏光解消(スクランブル)に関しては全く考慮されていない。また、特許文献1、2は、λ/4波長板に用いる複屈折材料による収差発生に関して、開示、示唆していない。
 本発明は、上記に鑑みてなされたものであって、十分な偏光解消効果を得つつ、λ/4波長板(偏光解消板)で発生する非点収差を低減して、良好な画像を得ることができる内視鏡光学系及び内視鏡装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る内視鏡光学系は、物体側から順に、対物光学系と、1つの複屈折素材からなるλ/4波長板と、対物光学系からの光を2つに分割する偏光ビームスプリッターと、分割した2つの像を撮像する撮像素子と、を備え、以下の条件式(1)を満たすことを特徴とする。
 1.1≦Fno/(d/|Δn|)≦49   (1)
 ここで、
 Fnoは、対物光学系の有効Fナンバー、
 dは、λ/4波長板の厚み、
 Δnは、λ/4波長板のe線(546.1nm)の複屈折、ただし、|0.01|<Δn、
である。
 他の側面において本発明に係る内視鏡装置は、上述の内視鏡光学系と、撮像素子で撮像した像を合成して1つの画像とする画像合成部を有する画像処理部と、を備えることを特徴とする。
 本発明は、十分な偏光解消効果を得つつ、λ/4波長板(偏光解消板)で発生する非点収差を低減して、良好な画像を得ることができる内視鏡光学系及び内視鏡装置を提供できるという効果を奏する。
本発明の実施形態に係る内視鏡装置が有する対物光学系、λ/4波長板、光路分割ユニット及び撮像素子の断面構成を示す図(通常観察状態)である。 本発明の実施形態に係る内視鏡装置が有する高次マルチオーダーのλ/4波長板と、光路分割ユニットと撮像素子との概略構成図である。 本発明の実施形態に係る内視鏡装置が有する撮像素子の概略構成図である。 (a)、(b)、(c)、(d)はλ/4波長板の構成を説明する図である。 (a)は高次マルチオーダーのλ/4波長板で生ずる非点収差を説明する図である。(b)は高次マルチオーダーのλ/4波長板で生ずる非点収差と偏光ビームスプリッターで生ずる非点収差を説明する図である。 実施例1に係る内視鏡光学系のレンズ断面構成図である。 実施例1における16波長分の高次マルチオーダーのλ/4波長板の光学特性を示す図である。 実施例1における、それぞれ(a)は最終的に得られる非点収差を示す図、(b)は偏光ビームスプリッターの接着層(楔部)における非点収差を示す図、(c)は高次マルチオーダーのλ/4波長板における非点収差を示す図である。 実施例2に係る内視鏡光学系のレンズ断面構成図である。 実施例2における24波長分の高次マルチオーダーのλ/4波長板の光学特性を示す図である。 実施例2における、それぞれ(a)は最終的に得られる非点収差を示す図、(b)は偏光ビームスプリッターの接着層(楔部)における非点収差を示す図、(c)は高次マルチオーダーのλ/4波長板における非点収差を示す図である。 実施例3における、それぞれ(a)は最終的に得られる非点収差を示す図、(b)は偏光ビームスプリッターの接着層(楔部)における非点収差を示す図、(c)は高次マルチオーダーのλ/4波長板における非点収差を示す図である。 実施例4における56波長分の高次マルチオーダーのλ/4波長板の光学特性を示す図である。 実施例4における、それぞれ(a)は最終的に得られる非点収差を示す図、(b)は偏光ビームスプリッターの接着層(楔部)における非点収差を示す図、(c)は高次マルチオーダーのλ/4波長板における非点収差を示す図である。 実施例5に係る内視鏡光学系のレンズ断面構成図である。 実施例5における19波長分の高次マルチオーダーのλ/4波長板の光学特性を示す図である。 実施例5における、それぞれ(a)は最終的に得られる非点収差を示す図、(b)は偏光ビームスプリッターの接着層(楔部)における非点収差を示す図、(c)は高次マルチオーダーのλ/4波長板における非点収差を示す図である。 実施例6における38波長分の高次マルチオーダーのλ/4波長板の光学特性を示す図である。 実施例6における、それぞれ(a)は最終的に得られる非点収差を示す図、(b)は偏光ビームスプリッターの接着層(楔部)における非点収差を示す図、(c)は高次マルチオーダーのλ/4波長板における非点収差を示す図である。 実施例7における、それぞれ(a)は最終的に得られる非点収差を示す図、(b)は偏光ビームスプリッターの接着層(楔部)における非点収差を示す図、(c)は高次マルチオーダーのλ/4波長板における非点収差を示す図である。 実施例8における10波長分の高次マルチオーダーのλ/4波長板の光学特性を示す図である。 実施例8における、それぞれ(a)は最終的に得られる非点収差を示す図、(b)は偏光ビームスプリッターの接着層(楔部)における非点収差を示す図、(c)は高次マルチオーダーのλ/4波長板における非点収差を示す図である。 実施形態に係る内視鏡装置の構成を示す機能ブロック図である。 実施形態に係る内視鏡装置において、2つの光学像を合成する場合の流れを示すフローチャートである。 実施形態に係る内視鏡装置において、ビームスプリッターにより奇数回の反射後に撮像素子に結像される場合の結像状態を示す図である。
 以下に、実施形態に係る内視鏡装置を図面に基づいて詳細に説明する。なお、この実施形態により、この発明が限定されるものではない。
 図1は本実施形態に係る内視鏡装置が有する対物光学系、高次マルチオーダーのλ/4波長板、光路分割ユニット及び撮像素子の断面構成を示す図(通常観察状態)である。
 対物光学系は、物体側から順に、負の屈折力の第1レンズ群G1と、正の屈折力の第2レンズ群G2と、正の屈折力の第3レンズ群G3と、から構成されている。また、明るさ絞りSは、第3レンズ群G3内に配置されている。第2レンズ群G2は、光軸AX上を像側に移動して、通常観察状態から近接観察状態への変化に伴う焦点位置の変化を補正する。
 本実施形態に係る内視鏡光学系は、物体側から順に、対物光学系OBLと、1つの複屈折素材からなるλ/4波長板121aと、対物光学系OBLからの光を2つに分割する偏光ビームスプリッター121b、121e(図2)と、分割した2つの像を撮像する撮像素子122と、を備え、以下の条件式(1)を満たすことを特徴とする。
 1.1≦Fno/(d/|Δn|)≦49   (1)
 ここで、
 Fnoは、対物光学系の有効Fナンバー、
 dは、λ/4波長板の厚み、
 Δnは、λ/4波長板のe線(546.1nm)の複屈折、ただし、|0.01|<Δn、
である。
 1つの複屈折素材からなるλ/4波長板121aは、高次マルチオーダーのλ/4波長板である。高次マルチオーダーのλ/4波長板は、偏光解消板としての機能を有する。
マルチオーダーλ/4波長板に複屈折の大きい材料を用いる事で、より高次の位相差を発生させ、波長によって、異常光線(S偏光)の強度と、常光線(P偏光)の強度とが高周期で変化する偏波は、可視域(400nm-700nm)では無偏光と等価と見なすことができる。
 図2は、高次マルチオーダーのλ/4波長板121aと、光路分割ユニット120と、撮像素子122との概略構成を示す図である。
 対物光学系OBLを射出した光は、高次マルチオーダーのλ/4波長板121aを経て、光路分割ユニット120に入射する。
 光路分割ユニット120は、被写体像をピントの異なる2つの光学像に分割する偏光ビームスプリッター121と、2つの光学像を撮像して2つの画像を取得する撮像素子122と、を有する。
 偏光ビームスプリッター121は、図2に示すように、物体側のプリズム121b、像側のプリズム121e、ミラー121c、及びλ/4板121dを備えている。物体側のプリズム121b及び像側のプリズム121eは共に光軸AXに対して45度の斜度であるビームスプリット面を有する。
 そして、物体側のプリズム121b及び像側のプリズム121eとは、接着剤による接合層130で接合されている。
 物体側のプリズム121bのビームスプリット面には偏光分離膜121fが形成されている。そして、物体側のプリズム121b及び像側のプリズム121eは、互いのビームスプリット面を偏光分離膜121fを介して当接させて偏光ビームスプリッター121を構成している。
 また、ミラー121cは、物体側のプリズム121bの端面近傍にλ/4板121dを介して設けられている。像側のプリズム121eの端面には、カバーガラスCGを介して撮像素子122が取り付けられている。Iは、結像面(撮像面)である。
 対物光学系OBLからの被写体像は、物体側のプリズム121bにおいてビームスプリット面に設けられた偏光分離膜121fによりP偏光成分(透過光)とS偏光成分(反射光)とに分離され、P偏光成分の光学像とS偏光成分の光学像との2つの光学像に分離される。
 S偏光成分の光学像は、偏光分離膜121fで撮像素子122に対して対面側に反射されA光路を通り、λ/4板121dを透過後、ミラー121cで反射され、撮像素子122側に折り返される。折り返された光学像は、λ/4板121dを再び透過することで偏光方向が90°回転し、偏光分離膜121fを透過して撮像素子122に結像される。
 P偏光成分の光学像は、偏光分離膜121fを透過してB光路を通り、撮像素子122に向かって垂直に折り返す像側のプリズム121eのビームスプリット面と反対側に設けられたミラー面によって反射され、撮像素子122に結像される。この際、A光路とB光路で、例えば、数十μm程度の所定の光路差を生じさせるように、プリズム硝路を設定しておき、ピントが異なる2つの光学像を撮像素子122の受光面に結像させる。
 すなわち、物体側のプリズム121b及び像側のプリズム121eが、被写体像のピント位置が異なる2つの光学像に分離できるように、物体側のプリズム121bにおける撮像素子122に至る透過光側の光路長(硝路長)に対して反射光側の光路長が短く(小さく)なるように配置する。
 図3は、撮像素子122の概略構成図である。撮像素子122は、図3に示すように、ピント位置が異なる2つの光学像を各々個別に受光して撮像するために、撮像素子122の全画素領域の中に、2つの受光領域(有効画素領域)122a、122bが設けられている。
 図4(a)は、高次マルチオーダーのλ/4波長板121a(光学軸90度)の正面構成を示し、図4(b)は、断面構成を示す。図4(c)は、高次マルチオーダーのλ/4波長板121a(光学軸45度)の正面構成を示し、図4(d)は、断面構成を示す。
 また、高次マルチオーダーのλ/4波長板121aの物体側表面には、反射防止コーティングARが施されている。これにより、表面反射によるフレア、ゴースト、明るさロスという問題を低減できる。なお、高次マルチオーダーのλ/4波長板121aの、ガラス基板121gとの接合面側にも併せて反射防止コーティングARを施しても良い。
 次に、従来構成の内視鏡光学系において偏光解消効果を得ようとする場合、偏光解消板で発生する非点収差により良好な画像をえられない理由を説明する。
 図5(a)は、高次マルチオーダーのλ/4波長板DP1で生ずる非点収差を示す。物点Pが結像する光学系を示す。物点Pからの光線は、対物レンズOBL1、OBL2を介して結像する。ここで、対物レンズOBL1と対物レンズOBL2との間の光路中に高次マルチオーダーのλ/4波長板(1軸結晶)DP1を配置する。これにより、常光の結像点Poと異常光の結像点Peとは位置が異なる。
 この際、Y方向に光学軸を持つ屈折率楕円体を考えたとき、XZ面内の光線に対しては常に屈折率neとなる。一方でYZ面内の光線に対しては屈折率noを有することになる。高次マルチオーダーのλ/4波長板DP1へ入射する光線の角度によってX方向とY方向で光線の屈折作用が異なる。このため、光学軸の方向のみに軸上でも非点収差が発生してしまう。この非点収差の発生は、水晶等を用いたゼロオーダーもしくは低次のλ/4波長板では無視出来るが、複屈折が大きい高次マルチオーダーのλ/4波長板では無視できなくなる。
 図5(b)は、高次マルチオーダーのλ/4波長板で生ずる非点収差と偏光ビームスプリッターで生ずる非点収差を説明する図である。高次マルチオーダーのλ/4波長板121a(偏光解消板)(図5(b)では不図示)において実線と点線とで示す非点収差ASAを生ずる。偏光ビームスプリッターでは、実線と点線とで示す非点収差ASBを生ずる。非点収差ASAと非点収差ASBは、収差量の絶対値が略同じで、その符号が逆である。
 したがって、非点収差ASA+非点収差ASB=0となり、撮像素子IMGにおける結像点は一致する。
 上述のように、複屈折の大きな高次マルチオーダーのλ/4波長板121a(偏光解消板)を使うことにより、擬似的に偏光解消効果を得られる。一方で、高次マルチオーダーのλ/4波長板121aの厚みを増すことにより、偏光解消効果は高めることができる。しかし、高次マルチオーダーのλ/4波長板121aに入射する光線が傾いていくと、光学軸の方向のみに軸上でも非点収差が生じてしまう。つまり、高次マルチオーダーのλ/4波長板121aの複屈折の大きさ、その厚み、高次マルチオーダーのλ/4波長板への入射角で、非点収差の発生量が決まる。
 次に、本実施形態における条件式(1)に関して説明する。条件式(1)は、Fno/(d/|Δn|)の最適な範囲を規定している。
 条件式(1)の下限値を下回ると、光線の高次マルチオーダーのλ/4波長板121aへの入射角が大きすぎる。もしくは高次マルチオーダーのλ/4波長板121aが厚すぎるため、軸上の非点収差が大きすぎてしまう。この結果、画像品質が劣化してしまう。または、複屈折が小さすぎて良好な偏光解消効果が得られない。
 一方、条件式(1)の上限値を上回ると、対物光学系が暗くなりすぎる(Fナンバーが大きくなる)。もしくは高次マルチオーダーのλ/4波長板121aが薄すぎて、十分な偏光解消効果が得られない。または、複屈折が大きすぎて非点収差が大きく発生してしまう。このため、画像品質が劣化するため好ましくない。なお、|0.01|<Δnと限定している。高次マルチオーダーのλ/4波長板121aに用いる材料はある程度複屈折の大きい材料が望ましい。水晶等の複屈折の小さい素材は位相差の発生量が小さすぎ、偏光解消効果を得るために厚くすると、内視鏡先端部に収まらなくなってしまうため好ましくない。
 また、本実施形態の好ましい態様によれば、λ/4波長板は、対物光学系の明るさ絞りと、偏光ビームスプリッターの光路分割面と、の間に配置されていることが望ましい。
 高次マルチオーダーのλ/4波長板への光線入射角は、光軸に平行に近いほど非点収差の発生を抑えることができる。内視鏡のような広角なレトロフォーカス光学系では、明るさ絞りよりも前群側では軸外光線の斜入射角が大きすぎてしまう。このため、前群側に高次マルチオーダーのλ/4波長板を配置すると軸外でも大きな非点収差が発生してしまうため好ましくない。従って、高次マルチオーダーのλ/4波長板は、明るさ絞りより後側の像面側であって、偏光ビームスプリッターより前側(物体側)の間に配置することが望ましい。
 また、本実施形態の好ましい態様によれば、λ/4波長板で生じた軸上の非点収差に対して、偏光ビームスプリッターで逆符号の軸上の非点収差を発生させることが望ましい。
 複屈折の大きな結晶材料に斜入射光が入射すると、光学軸がある方向に非点収差ASが発生する。高次マルチオーダーのλ/4波長板においては、偏光解消効果を有するため偏光ビームスプリッターに入射する光は非偏光の非点収差となる。偏光ビームスプリッターにより2つの光路に分離された光は、P偏光光路とS偏光光路に均等に非点収差ASが含まれる。
 一方で偏光ビームスプリッター121b、121eを接合する接着層130は、入射光線に対して斜め(楔状)に配置されている。このため、偏光ビームスプリッターの屈折率と、接着層の接着剤の屈折率差によって、別の非点収差B(図5(b)のASB)が生じる。この際、非点収差A(図5(b)のASA)と非点収差Bの絶対値の大きさが略同じで、逆符号(逆向き)の非点収差であれば、お互いに打ち消し合う。この結果、結像面(撮像素子の受光面)において非点収差を略ゼロできる程度の量に低減できる。
 また、本実施形態の好ましい態様によれば、λ/4波長板は、負の複屈折を有する一軸結晶材料であることが望ましい。
 負の一軸結晶では、常光の屈折率no>異常光の屈折率neとなり、複屈折が負となる。一軸結晶である負の複屈折を有する高次マルチオーダーのλ/4波長板を用いると、偏光ビームスプリッターにおける入射光線に対して斜めである接着層にて生じる非点収差の符号と、逆の非点収差が生じる。このため、非点収差を打ち消しあうことができる。
 また、本実施形態の好ましい態様によれば、以下の条件式(2)を満足することが望ましい。
 0.8≦(np/Δn)/(d/lpc)≦4.4   (2)
 ここで、
 npは、偏光ビームスプリッターで使用される硝材のe線(546.1nm)の屈折率、Δnは、λ/4波長板のe線の複屈折、ただし、|0.01|<Δn、
 dは、λ/4波長板の厚み、
 lpcは、偏光ビームスプリッターの面に使用される接着剤の接着層の厚さ、
である。
 非点収差の発生量は、偏光ビームスプリッターに使用される硝材と屈折率、接着層の厚み、波長板に使用する結晶材料の複屈折とその厚みで制御することができる。
 条件式(2)の下限値を下回ると、λ/4波長板の厚みが厚すぎる。もしくは複屈折が大きすぎることにより、非点収差の打消しができなくなる。このため、画像を劣化させてしまう。
 条件式(2)の上限値を上回ると、λ/4波長板の厚みが薄すぎて、最適な収差補正が困難になる。また、λ/4波長板の加工上の課題が生じる。あるいは偏光ビームスプリッターに使用する硝材の屈折率が高すぎて、偏光ビームスプリッターで生じる非点収差が大きすぎてしまい、非点収差を打ち消しあうことができなくなる。このため、画像を劣化させてしまう。
 実施例1に係る内視鏡装置が有する内視鏡光学系について説明する。
 図6は、対物光学系、高次マルチオーダーのλ/4波長板、光路分割ユニット、撮像素子の断面構成を示す図である。ここで、図6は、通常観察状態(遠距離物点)における対物光学系の断面構成を示す図である。対物光学系は、レンズL5を駆動することで、近接観察状態(近距離物点)に切り替えることができる。
 物体側から順に、物体側に平面を向けた平凹負レンズL1と、平行平板L2と、両凹負レンズL3と、物体側に凸面を向けた正メニスカスレンズL4と、物体側に凸面を向けた正メニスカスレンズL5と、両凸正レンズL6と、像側に凸面を向けた負メニスカスレンズL7と、明るさ絞りSと、両凸正レンズL8と、両凸正レンズL9と、像側に凸面を向けた負メニスカスレンズL10と、からなる。ここで、負レンズL3と正メニスカスレンズL4とは接合されている。正レンズL6と負メニスカスレンズL7とは接合されている。正レンズL9と負メニスカスレンズL10とは接合されている。
 対物光学系の像側に、上述した光路分割ユニット120を配置している。光学系中のプリズムでは、光路が折り曲げられる。なお、平行平板L2は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのコーティングが施されたフィルターである。Iは、結像面(撮像面)である。
 また、対物光学系の像側で光路分割ユニット120との間の光路中にλ/4波長板121aが配置されている。
 以下に、上記各実施例の数値データを示す。記号は、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、neは各レンズのe線の屈折率、νeは各レンズのアッベ数、FNOはFナンバー、ωは半画角である。また、バックフォーカスfbは、最も像側の光学面から近軸像面までの距離を空気換算して表したものである。全長は、最も物体側のレンズ面から最も像側の光学面までの距離(空気換算しない)にバックフォーカスを加えたものである。絞りは、明るさ絞りである。
 実施例の数値データを以下に示す。
数値実施例1
単位  mm
 
面データ
  面番号        r          d          ne       νe
      1         ∞        0.49      1.88815    40.52
      2        1.812      0.79
      3         ∞        0.84      1.52300    66.3
      4         ∞        0.34
      5       -4.881      0.56      1.88815    40.52
      6        1.866      2.13      1.85504    23.59
      7       77.332      可変
      8        2.010      0.81      1.48915    70.04
      9        2.149      可変
     10        3.354      1.13      1.65222    33.53
     11       -1.665      0.32      2.01169    28.07
     12       -9.987      0.04
     13(絞り)   ∞        0.56
     14      512.363      0.95      1.70442    29.89
     15       -3.552      0.36
     16        9.128      0.94      1.48915    70.04
     17       -2.180      0.39      1.93429    18.74
     18       -4.093      4.59
     19(撮像面) ∞        
 
各種データ
                 通常観察状態 
    焦点距離        1.00  
    FNO.        3.58  
    画角2ω      144.9   
    fb (in air)     4.59  
    全長 (in air)  17.15  
      d7            0.47  
      d9            1.43  
 
(実施例1)
 図7は、実施例1に係る内視鏡装置が有する高次マルチオーダーのλ/4波長板121aの光学特性を示す。光学特性とは、直線偏光が高次マルチオーダーのλ/4波長板121aに入射した場合の波長スクランブル特性(偏光解消特性)である。16波長分の位相差を発生させる例である。実線(X強度)と点線(Y強度)は、それぞれ直交する偏光成分を示す。横軸は波長(nm)、縦軸は高次マルチオーダーのλ/4波長板を透過した後のP偏光(例えばX強度)、S偏光(例えばY強度)の強度を示す。内視鏡の対物光学系OBLと偏光ビームスプリッター121の間に複屈折の大きい高次マルチオーダーのλ/4波長板121aを配置して、偏光解消板として用いる。高次マルチオーダーのλ/4波長板121aは、波長によって偏波が高周期で変化するため、可視域(400nm-700nm)では無偏光と等価と見なすことができる。
 ゼロオーダーもしくは数波長分のマルチオーダーのλ/4波長板では、特定の波長の直線偏光を円偏光に変換することはできるが、可視域全域の波長、偏光依存性が大きいため、偏光ビームスプリッターでの分割強度を常に一定に保つことができず、均等な強度の画像を得ることができない。本実施例に示す構成とすることで、十分な偏光解消効果を得て、且つ複雑な構成の偏光解消板を用いる必要が無い。このため、内視鏡装置の内視鏡先端部の小型化が実現できるという作用効果を奏する。
 図8(a)、(b)、(c)は、本実施例における軸上MTF(Modulation Transfer Function)を示す図である。横軸はデフォーカス量、縦軸はMTFを示す。軸上MTFは、非点収差に比例する。図中、実線はサジタル方向の軸上MTF、点線はメリジオナル方向のMTFを示す。以下の全ての実施例における軸上MTFを示す図は、本実施例と同じ表記により示す。
 図8(a)は、最終的な像面における非点収差を示す。図8(b)は、偏光ビームスプリッター121b、121eの接着層130における非点収差を示す。図8(c)は、高次マルチオーダーのλ/4波長板121aを透過した後の非点収差を示す。
 図8(a)で示す像面における非点収差は、図8(b)で示す特性曲線と図8(c)で示す特性曲線とを加算したものである。図8(a)から明らかなように、メリジオナル方向の非点収差とサジタル方向の非点収差の差が低減している。
 これにより、本実施例では、十分な偏光解消を達成できると共に、高次マルチオーダーのλ/4波長板で発生する非点収差を低減でき、良好な画像を得ることができる。
(実施例2)
 実施例2に係る内視鏡装置が有する内視鏡光学系について説明する。
 図9は、対物光学系、高次マルチオーダーのλ/4波長板、光路分割ユニット、撮像素子の断面構成を示す図である。高次マルチオーダーのλ/4波長板は、対物光学系中に配置する。ここで、図9は、通常観察状態(遠距離物点)における対物光学系の断面構成を示す図である。対物光学系は、レンズL5を駆動することで、は、近接観察状態(近距離物点)に切り替えることもできる。
 物体側から順に、物体側に平面を向けた平凹負レンズL1と、平行平板L2と、両凹負レンズL3と、物体側に凸面を向けた平凸正レンズL4と、物体側に凸面を向けた正メニスカスレンズL5と、明るさ絞りSと、両凸正レンズL6と、像側に凸面を向けた負メニスカスレンズL7と、平行平板L8と、平行平板L9と、像側に凸面を向けた平凸正レンズL10と、両凸正レンズL11と、像側に凸面を向けた負メニスカスレンズL12と、からなる。ここで、負レンズL3と正レンズL4とは接合されている。正レンズL6と負メニスカスレンズL7とは接合されている。平行平板L8と平行平板L9とは接合されている。正レンズL11と負メニスカスレンズL12とは接合されている。
 平行平板L8と平行平板L9とを2枚接合している理由は、高次マルチオーダーのλ/4波長板の取り扱い性を向上させるためである。例えば、実施例2のLiNbOの厚みは0.15mm、後述する実施例5では、LiNbOの厚みは0.12mmというように薄い。このため、高次マルチオーダーのλ/4波長板の取り扱い上、破損などに注意が必要となる。そこで、本実施例のように平行平板であるガラス板を貼り合わせて、高次マルチオーダーのλ/4波長板の取り扱い性を向上させている。接合するのはガラス基板でも良いが、石英ガラス等の線膨張係数が近い材料であることがより好ましい。
 対物光学系の像側に、上述した光路分割ユニット120を配置している。対物光学系中のプリズムでは、光路が折り曲げられる。なお、平行平板L2は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのコーティングが施されたフィルターである。Iは、結像面(撮像面)である。平行平板L8の第14面に高次マルチオーダーのλ/4波長板121aが配置されている。
 実施例の数値データを以下に示す。
数値実施例2
単位 mm
 
面データ
  面番号             r        d         ne        νe     
      1              ∞       0.49      1.88815     40.52     
      2             1.6876    1.42               
      3              ∞       0.56      1.523       66.3     
      4              ∞       0.34               
      5            -8.2416    0.70      1.88815     40.52     
      6             1.999     2.02      1.85504     23.59     
      7              ∞       0.46               
      8             1.999     0.88      1.48915     70.04     
      9             2.107     1.63               
     10(絞り)        ∞       0.07               
     11             3.9026    1.09     1.65222     33.79     
     12            -1.588     0.42     2.01169     28.27     
     13            -7.6482    0.04               
     14(λ/4波長板)  ∞       0.15     2.31649     18.72     
     15              ∞       0.15     1.51825     63.93     
     16              ∞       0.03               
     17              ∞       0.70     1.70442     29.89     
     18            -2.9908    0.03               
     19            17.82      0.94     1.48915     70.04     
     20            -2.3806    0.42     1.93429     18.74     
     21            -5.0866    4.56               
     22(撮像面)      ∞                    
                              
各種データ                              
     焦点距離  1                    
     Fno.      3.6                    
     画角2ω 152.6                    
     fb      4.56                    
     第14面(λ/4波長板) LiNbO3
 
 図10は、実施例2に係る内視鏡装置が有する高次マルチオーダーのλ/4波長板121aの光学特性を示す。24波長分の位相差を発生させる例である。対物光学系の第14面に複屈折の大きい高次マルチオーダーのλ/4波長板121aを配置して、偏光解消板として用いる。高次マルチオーダーのλ/4波長板121aは、波長によって偏波が高周期で変化するため、可視域(400nm-700nm)では無偏光と等価と見なすことができる。
 図11(a)は、最終的な像面における非点収差を示す。図11(b)は、偏光ビームスプリッター121b、121eの接着層130における非点収差を示す。図11(c)は、高次マルチオーダーのλ/4波長板121aを透過した後の非点収差を示す。
 図11(a)で示す像面における非点収差は、図11(b)で示す特性曲線と図11(c)で示す特性曲線とを加算したものである。図11(a)から明らかなように、メリジオナル方向の非点収差とサジタル方向の非点収差の差が低減している。
 これにより、本実施例では、十分な偏光解消を達成できると共に、高次マルチオーダーのλ/4波長板で発生する非点収差を低減でき、良好な画像を得ることができる。
(実施例3)
 実施例3に係る内視鏡光学系について説明する。実施例3に係る内視鏡装置が有する高次マルチオーダーのλ/4波長板121aの光学特性は、上記実施例1と同じである(図7参照)。このため、光学特性の記載を省略する。
 図12(a)は、最終的な像面における非点収差を示す。図12(b)は、偏光ビームスプリッター121b、121eの接着層130における非点収差を示す。図12(c)は、高次マルチオーダーのλ/4波長板121aを透過した後の非点収差を示す。
 図12(a)で示す像面における非点収差は、図12(b)で示す特性曲線と図12(c)で示す特性曲線とを加算したものである。図12(a)から明らかなように、メリジオナル方向の非点収差とサジタル方向の非点収差の差が低減している。
 これにより、本実施例では、十分な偏光解消を達成できると共に、λ/4波長板で発生する非点収差を低減でき、良好な画像を得ることができる。
(実施例4)
 実施例4に係る内視鏡光学系について説明する。図13は、実施例4に係る内視鏡装置が有する高次マルチオーダーのλ/4波長板121aの光学特性を示す。56波長分の位相差を発生させる例である。複屈折の大きいマルチオーダーのλ/4波長板121aを配置して、偏光解消板として用いる。高次マルチオーダーのλ/4波長板121aは、波長によって偏波が高周期で変化するため、可視域(400nm-700nm)では無偏光と等価と見なすことができる。
 図14(a)は、最終的な像面における非点収差を示す。図14(b)は、偏光ビームスプリッター121b、121eの接着層130における非点収差を示す。図14(c)は、高次マルチオーダーのλ/4波長板を透過した後の非点収差を示す。
 図14(a)で示す像面における非点収差は、図14(b)で示す特性曲線と図14(c)で示す特性曲線とを加算したものである。図14(a)から明らかなように、メリジオナル方向の非点収差とサジタル方向の非点収差の差が低減している。
 これにより、本実施例では、十分な偏光解消を達成できると共に、高次マルチオーダーのλ/4波長板で発生する非点収差を低減でき、良好な画像を得ることができる。
 (実施例5)
 実施例5に係る内視鏡装置が有する内視鏡光学系について説明する。
 図15は、対物光学系、高次マルチオーダーのλ/4波長板、光路分割ユニット、撮像素子の断面構成を示す図である。ここで、図15は、通常観察状態(遠距離物点)における対物光学系の断面構成を示す図である。対物光学系は、レンズL5を駆動することで、近接観察状態(近距離物点)に切り替えることもできる。高次マルチオーダーのλ/4波長板121aは、対物光学系中に配置されている。
 物体側から順に、物体側に平面を向けた平凹負レンズL1と、平行平板L2と、両凹負レンズL3と、物体側に凸面を向けた平凸正レンズL4と、物体側に凸面を向けた正メニスカスレンズL5と、明るさ絞りSと、平行平板L6と、平行平板L7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、物体側に平面を向けた平凸正レンズL10と、両凸正レンズL11と、像側に凸面を向けた負メニスカスレンズL12と、からなる。ここで、負レンズL3と正レンズL4とは接合されている。平行平板L6と平行平板L7とは接合されている。正レンズL11と負メニスカスレンズL12は接合されている。
 対物光学系の像側に、上述した光路分割ユニット120を配置している。光学系中のプリズムでは、光路が折り曲げられる。なお、平行平板L2は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのコーティングが施されたフィルターである。Iは、結像面(撮像面)である。平行平板L6と平行平板L7とを接合している理由は、上述のとおりである。平行平板L6の第11面に高次マルチオーダーのλ/4波長板121aが配置されている。
 以下に、上記各実施例の数値データを示す。
数値実施例5
単位  mm
 
面データ
  面番号             r        d         ne        νe     
      1              ∞       0.50      1.88815     40.52
      2             1.7216    1.46          
      3              ∞       0.57      1.523       66.3
      4              ∞       0.35          
      5            -8.5506    0.72      1.88815     40.52
      6             2.0726    2.01      1.85504     23.59
      7              ∞       0.47          
      8             2.0507    0.92      1.48915     70.04
      9             2.1645    1.67          
     10(絞り)        ∞       0.07          
     11(λ/4波長板)  ∞       0.12      2.31649     18.72
     12              ∞       0.18      1.51825     63.93
     13              ∞       0.03          
     14             3.8932    1.15      1.65222     33.79
     15            -1.6009    0.33      2.01169     28.27
     16            -8.7901    0.03          
     17              ∞       0.82      1.70442     29.89
     18            -2.9852    0.03          
     19            14.9972    0.96      1.48915     70.04
     20            -2.4888    0.36      1.93429     18.74
     21            -5.2167    4.58          
     22(撮像面)      ∞               
                         
各種データ                         
     焦点距離     1               
     Fno.         3.6               
     画角2ω    160.5               
     fb         4.53               
     第11面(λ/4波長板) LiNbO3
 
 実施例5に係る内視鏡光学系について説明する。図16は、実施例5に係る内視鏡装置が有する高次マルチオーダーのλ/4波長板121aの光学特性を示す。19波長分の位相差を発生させる例である。複屈折の大きい高次マルチオーダーのλ/4波長板121aを配置して、偏光解消板として用いる。高次マルチオーダーのλ/4波長板121aは、波長によって偏波が高周期で変化するため、可視域(400nm-700nm)では無偏光と等価と見なすことができる。
 図17(a)は、最終的な像面における非点収差を示す。図17(b)は、偏光ビームスプリッター121b、121eの接着層130における非点収差を示す。図17(c)は、高次マルチオーダーのλ/4波長板を透過した後の非点収差を示す。
 図17(a)で示す像面における非点収差は、図17(b)で示す特性曲線と図17(c)で示す特性曲線とを加算したものである。図17(a)から明らかなように、メリジオナル方向の非点収差とサジタル方向の非点収差の差が低減している。
 これにより、本実施例では、十分な偏光解消を達成できると共に、高次マルチオーダーのλ/4波長板で発生する非点収差を低減でき、良好な画像を得ることができる。
(実施例6)
 実施例6に係る内視鏡光学系について説明する。図18は、実施例6に係る内視鏡装置が有する高次マルチオーダーのλ/4波長板121aの光学特性を示す。38波長分の位相差を発生させる例である。複屈折の大きい高次マルチオーダーのλ/4波長板121aを配置して、偏光解消板として用いる。高次マルチオーダーのλ/4波長板121aは、波長によって偏波が高周期で変化するため、可視域(400nm-700nm)では無偏光と等価と見なすことができる。
 図19(a)は、最終的な像面における非点収差を示す。図19(b)は、偏光ビームスプリッター121b、121eの接着層130における非点収差を示す。図19(c)は、高次マルチオーダーのλ/4波長板を透過した後の非点収差を示す。
 図19(a)で示す像面における非点収差は、図19(b)で示す特性曲線と図19(c)で示す特性曲線とを加算したものである。図19(a)から明らかなように、メリジオナル方向の非点収差とサジタル方向の非点収差の差が低減している。
 これにより、本実施例では、十分な偏光解消を達成できると共に、高次マルチオーダーのλ/4波長板で発生する非点収差を低減でき、良好な画像を得ることができる。
(実施例7)
 実施例7に係る内視鏡光学系について説明する。実施例7に係る内視鏡装置が有する高次マルチオーダーのλ/4波長板121aの光学特性は、上記実施例1と同じである(図7参照)。このため、光学特性の記載を省略する。
 図20(a)は、最終的な像面における非点収差を示す。図20(b)は、偏光ビームスプリッター121b、121eの接着層130における非点収差を示す。図20(c)は、高次マルチオーダーのλ/4波長板を透過した後の非点収差を示す。
 図20(a)で示す像面における非点収差は、図20(b)で示す特性曲線と図20(c)で示す特性曲線とを加算したものである。図20(a)から明らかなように、メリジオナル方向の非点収差とサジタル方向の非点収差の差が低減している。
 これにより、本実施例では、十分な偏光解消を達成できると共に、高次マルチオーダーのλ/4波長板で発生する非点収差を低減でき、良好な画像を得ることができる。
(実施例8)
 実施例8に係る内視鏡光学系について説明する。図21は、実施例8に係る内視鏡装置が有する高次マルチオーダーのλ/4波長板121aの光学特性を示す。10波長分の位相差を発生させる例である。複屈折の大きい高次マルチオーダーのλ/4波長板121aを配置して、偏光解消板として用いる。高次のマルチオーダーのλ/4波長板121aは、波長によって偏波が高周期で変化するため、可視域(400nm-700nm)では無偏光と等価と見なすことができる。
 図22(a)は、最終的な像面における非点収差を示す。図22(b)は、偏光ビームスプリッター121b、121eの接着層130における非点収差を示す。図22(c)は、高次マルチオーダーのλ/4波長板を透過した後の非点収差を示す。
 図22(a)で示す像面における非点収差は、図22(b)で示す特性曲線と図22(c)で示す特性曲線とを加算したものである。図22(a)から明らかなように、メリジオナル方向の非点収差とサジタル方向の非点収差の差が低減している。
 これにより、本実施例では、十分な偏光解消を達成できると共に、高次マルチオーダーのλ/4波長板で発生する非点収差を低減でき、良好な画像を得ることができる。
 なお、本実施例では、高次マルチオーダーのλ/4波長板(偏光解消板)は負の複屈折素材ではない。このため、高次マルチオーダーのλ/4波長板で生ずる非点収差と、偏光ビームスプリッターで生ずる非点収差とは、打ち消し合わない。ただし、高次マルチオーダーのλ/4波長板を可能な限り薄く構成して、併せて偏光ビームスプリッターの硝材の屈折率を小さくしている。これにより、本実施例では、高次マルチオーダーのλ/4波長板で生ずる非点収差の絶対値と、偏光ビームスプリッターで生じる非点収差の絶対値とを小さくしている。
(実施例の各種データ)
 
                      実施例1     実施例2     実施例3    実施例4
                       負           負           負          負   
λ/4波長板の結晶材料   LiNbO3       LiNbO3        LiNO3       LiNbO3 
Fno                    3.75         3.6          3           4.5   
d                      0.1          0.15         0.1         0.35  
Δn                   -0.08798     -0.08798     -0.08798     0.08798
lpc                    0.01         0.02         0.005       0.015  
np                     1.64129      1.64129      1.75844     1.75844   
 
                      実施例5     実施例6     実施例7    実施例8
                       負           負           負          正
λ/4波長板の結晶材料   LiNbO3       方解石       α-BBO      YVO4
Fno                    3.6          3.75         4.7         5
d                      0.12         0.12         0.07        0.0236
Δn                   -0.08798     -0.17372     -0.12377     0.23122
lpc                    0.005        0.02         0.023       0.01
np                     1.75844      1.75844      1.64129     1.51825
                                         
 上記各実施例の特徴を以下に示す。
PBSは、偏光ビームスプリッターを示す。
◎印は、極めて良好であることを示す。
○印は、良好であることを示す。
△印は、やや良好であることを示す。
 
 
             偏光解消効果    PBSの接着層調整    PBSの消光比
実施例1        ○              ○                    ○
実施例2        ○              ◎                    ○
実施例3        ○             調整不要               ◎
実施例4        ◎              ○                    ◎
実施例5        ○             調整不要               ◎
実施例6        ◎              ◎                    ◎
実施例7        ○              ◎                    ○
実施例8        ◎              ○                    ○~△
 
 偏光ビームスプリッターの接着層調整に関して図2を用いて説明する。
 偏光ビームスプリッター121に用いるプリズム121bと121eは、一般的に角度の製造誤差を有する。製造誤差が比較的大きい場合、撮像素子122の結像面Iに結像する像は、上下、左右方向の結像品質に偏りが生じてしまい好ましくない。そこで、接着層130の間隔を利用して、プリズム121bと121eとを相対的にチルトさせて、結像面Iでの光学像の結像品質を均一にする様な調整を行う事が望ましい。実施例2、6、7は接着層130の厚みを比較的大きくとる事で、チルト調整できる範囲を広げ結像面Iにおける結像品質の向上を図っている。一方、実施例3、5は、プリズム121bと121eを精密加工する事で、チルト調整そのものを無くした例である。部品コストと調整コストを考慮して、どちらの方法を採用しても良い。
 偏光ビームスプリッターの消光比に関して図2を用いて説明する。
 偏光ビームスプリッター121で光路分割する光は強度が略同じである事が望ましい。言い換えると、偏光分離膜121fにS偏光が入射した場合、100%の強度でA光路に反射され、P偏光が入射した場合は100%の強度でB光路へ透過される状態が理想である。一般的に、この様なA,B光路の強度分割の比率を消光比と定義して、PBSの品質の指標として用いられる。消光比は偏光ビームスプリッター121(プリズム121b)に用いられる材料の屈折率、偏光分離膜に用いられる材料の屈折率の差が大きいほど良好となる。ただし、偏光ビームスプリッター121(プリズム121b)と接着層130との屈折率差が大きすぎる場合、発生する非点収差が大きすぎて画像を劣化させるため、適当な屈折率差に収めておく事が望ましい。実施例3,4、5、6ではプリズム121bに用いるガラスの屈折率を比較的高くする事で消光比の向上を図っている。一方、実施例8は消光比を許容される品質まで抑える代わりに、偏光ビームスプリッター121(プリズム121b)に一般的なガラス材料を用いる事で、コスト面で良好な偏光ビームスプリッター構成を提供している。
 
 上記各実施例の条件式対応値を以下に示す。
(1)  Fno/(d/|Δn|)
(2)  (np/Δn)/(d/lpc)
                                        
条件式  実施例1  実施例2  実施例3  実施例4 
(1)       3.30      2.11      2.64      1.13   
(2)       1.87      2.49      1.00      0.86    
                                        
        実施例5  実施例6  実施例7  実施例8
(1)       2.64      5.43      8.31     48.99 
(2)       0.83      1.69      4.36      2.78 
 
 実施形態に係る内視鏡装置は、上述の内視鏡光学系と、撮像素子で撮像した像を合成して1つの画像とする画像合成部を有する画像処理部と、を備えることを特徴とする。図23は、内視鏡装置の構成を示す。本実施形態の内視鏡装置1は、被検体内に挿入される内視鏡2と、この内視鏡2に照明光を供給する光源装置3と、プロセッサ装置4と、画像表示部5と、を有する。
 プロセッサ装置4は、画像処理を行う機能を有するが、それ以外の機能も有する。プロセッサ装置4は、アクチュエータ制御部25と、画像プロセッサ30と、制御部39と、を有する。画像表示部5は、プロセッサ装置4により生成された画像信号を内視鏡画像として表示する。
 内視鏡2は、被検体内に挿入される細長の挿入部6と、この挿入部6の後端に設けられた操作部7と、を有する。操作部7からは、ライトガイドケーブル8が外側に向かって延びている。ライトガイドケーブル8の一端は、接続部8aを介して、光源装置3に着脱自在に接続されている。ライトガイドケーブル8は、内側にライトガイド9を有する。ライトガイド9の一部は挿入部6内に配置されている。
 光源装置3は、光源として例えばキセノンランプ等のランプ11を内蔵する。なお、光源として、キセノンランプ等のランプ11に限定されるものでなく、発光ダイオード(LEDと略記)を用いても良い。ランプ11により発生した照明光、例えば、白色光は、絞り12により通過光量が調整される。そして、照明光は、コンデンサレンズ13により集光されて、ライトガイド9の入射端面に入射する。絞り12の開口径は、絞り駆動部14によって変えることができる。
 ライトガイド9は、光源装置3で生成された照明光を、挿入部6の先端部6aに伝送する。伝送された照明光は、ライトガイド9の先端面から出射する。先端部6aには、先端面に対向して照明レンズ15が配置されている。照明レンズ15は照明光を照明窓15aから出射する。これにより、被検体内部の観察対象部位が照明される。 
 先端部6aには、観察窓20が、照明窓15aの隣に設けられている。観察対象部位からの光は、観察窓20を通過して、先端部6a内に入射する。観察窓20の後方には、対物光学系が配置されている。対物光学系OBLは、レンズ群16と光路分割ユニット120とで構成されている。
 レンズ群16は、レンズ16aやレンズ21を有する。レンズ21は光軸に沿って移動可能になっている。これにより、合焦が行われる。レンズ21を移動させるために、アクチュエータ22が配置されている。
 光路分割ユニット120には、1つの撮像素子122(不図示)が配置されている。撮像素子122の受光面に、2つの光学像が同時に形成される。2つの光学像は、撮像素子によって撮像される。
 操作部7は、ケーブル24を介して、プロセッサ装置4と接続されている。プロセッサ装置4との接続箇所には、信号コネクタ24aが設けられている。様々な情報の伝達が、ケーブル24を介して、内視鏡2とプロセッサ装置4との間で行われる。信号コネクタ24aは、補正パラメータ格納部37を有する。
 補正パラメータ格納部37には、画像の補正に使用する補正パラメータ(の情報)が格納されている。補正パラメータは、個々の内視鏡で異なる。固有の内視鏡識別情報を有する内視鏡が、プロセッサ装置4に接続されたとする。この場合、内視鏡識別情報に基づいて、接続された内視鏡に固有の補正パラメータが、補正パラメータ格納部37から読み出される。読み出された補正パラメータに基づいて、画像補正処理部32において、画像の補正が行われる。補正の有無は、制御部39によって行われる。
 アクチュエータ22の制御は、アクチュエータ制御部25によって行われる。そのために、アクチュエータ22とアクチュエータ制御部25とは、信号線23を介して接続されている。また、撮像素子は、信号線27aを介して、画像プロセッサ30と接続されている。撮像素子からの信号は、画像プロセッサ30に入力される。また、操作部7に設けられたスイッチ26の情報も、信号線を介して、プロセッサ装置4に送信される。
 第1の光路における光路長が、第2の光路における光路長と僅かに異なる場合、撮像面の前後に、ピントの合った光学像が2つ形成される。撮像面に対する光学像のズレ量は僅かである。そのため、撮像面には、一部の領域だけにピントが合っている状態の光学像が、2つ形成される。
 2つの光学像は撮像素子で撮像される。撮像で得られた画像信号は、信号線27aを介して画像プロセッサ30に入力される。この画像プロセッサ30は、画像読出部31と、画像補正処理部32と、画像合成処理部33と、後段画像処理部34と、画像出力部35と、調光部36と、を有する。
 画像読出部31では、入力された画像信号から、複数の画像の画像信号を読み出す。ここでは、光学像の数と画像の数は、共に2つとする。
 2つの光学像を形成する光学系では、幾何的な差異が生じる場合がある。幾何的な差異としては、2つの光学像における相対的ズレ(差異)、例えば、倍率のズレ(差異)、位置ズレ(差異)及び回転方向のズレ(差異)、がある。これらの差異を、対物光学系の製造時などにおいて、完全に無くすことは難しい。しかし、それらのズレ(差異)量が大きくなると、例えば、合成画像が2重に見えてしまう。このため、画像補正処理部32にて上述した幾何的な差異を補正することが好ましい。 
 画像補正処理部32は、読み出された2つの画像に対する画像補正を行う。画像補正処理部32では、例えば、2つの画像における相対的な倍率の差異、位置の差異、回転の差異のうち、少なくとも1つの差異を合致させる処理が行われる。
 更に、画像補正処理部32では、色調補正を行う。そのために、画像補正処理部32は、色調補正部(不図示)を有する。色調補正では、2つの画像の相対的な輝度と彩度を、少なくとも1つの任意の特定波長帯域において略一致させる処理を行う。色調補正部を設けずに、画像補正処理部32で色調補正を行っても良い。
 画像補正処理部32では、2つの画像のうち、一方の画像における輝度を、他方の画像における輝度と略一致するように変更する。また、画像補正処理部32では、一方の画像における彩度を、他方の画像における彩度と略一致するように変更する。
 上述のように、被写界深度の大きな画像を取得する方法では、複数の画像からピントが合っている領域だけを抽出し、抽出した領域の合成が行われる。本実施形態の内視鏡装置では、複数の画像における明るさの差や色調の差を少なくすることができる。よって、合成した画像において明るさのムラや色調の違いを少なくすることができる。
 また、画像の色再現性を向上させる方法では、2つの画像を用いた画像合成が行われる。2つの光学像において明るさの差や色調の差が生じていると、撮像で得られた2つの画像にも、明るさの差や色調の差が生じる。本実施形態の内視鏡装置では、複数の画像において明るさの差や色調の差が生じていても、明るさの差や色調の差を少なくすることができる。よって、合成した画像の色再現性をより向上させることができる。
 画像合成処理部33では、まず、2つの画像を用いてコントラストの比較が行われる。この比較は、2つの画像における空間的に同一の画素領域それぞれについて行われる。続いて、相対的にコントラストが高い方の画素領域の選択が行われる。そして、選択した画素領域を用いて1つの画像を生成する。このように、2つの画像から1つの合成画像を生成する。なお、2つの画像のコントラスト差が小さい場合は、各画像に所定の重み付けして加算する合成画像処理を行った後、合成画像を生成すれば良い。
 後段画像処理部34では、合成画像に対して、例えば、輪郭強調、ガンマ補正等の画像処理が行われる。画像出力部35は、画像処理された画像を画像表示装置5に出力する。
 調光部36では、画像読出部31により読み出された画像から、基準の明るさに調光するための調光信号が生成される。調光信号は、光源装置3の絞り駆動部14に出力される。絞り駆動部14は、調光信号に従って、基準の明るさを維持するように絞り12の開口量を調整する。
 次、図24は、本実施例において、2つの光学像を合成する場合の流れを示すフローチャートである。
 ステップS101において、撮像素子122において取得された、ピントの異なる遠点像に係る画像と近点像に係る画像とが、画像補正処理部32において、遠近2画像の補正処理が行なわれる。すなわち、予め設定された補正パラメータに従って、2つの画像の各光学像における相対的な位置、角度及び倍率が略同一となるように2つの画像に対して補正を行い、補正後の画像を画像合成処理部33に出力する。なお、必要に応じて2画像の明るさや色の差異を補正してもよい。
 ステップS102において、補正処理が行なわれた2つの画像が画像合成処理部33にて合成される。この際、遠近2画像の各々対応する画素領域において、コントラスト値が各々算出され、比較される。
 ステップS103において、比較されたコントラスト値に差があるか否か判断し、コントラストに差がある場合、ステップS105に進み、コントラスト値の高い領域を選択して合成される。
 ここで、比較するコントラスト値の差が小さい乃至はほぼ同じである場合には、遠近2画像のどちらを選択するか処理上の不安定要因となる。例えば、ノイズ等の信号の揺らぎがあると、合成画像に不連続領域が生じたり、本来は解像している被写体像がボケてしまう不具合を生じさせたりする。
 そこで、ステップS104に進み、重み付けを行う。ステップS104において、コントラス比較を行なう画素領域において、2画像でコントラスト値がほぼ同一である場合には、重み付けを行い、次のステップS105で重み付けを行った画像の加算処理を行うことで、画像選択の不安定さを解消している。
 このように、本実施形態によれば、近接観察及び遠方観察の何れにおいても、ノイズ等によって合成画像において不連続領域が発生したり、光学像がぼけたりすることを防止しながら、被写界深度を拡大させた画像を取得することができる。
 図25は、偏光ビームスプリッター121により奇数回の反射後に撮像素子に結像される場合の結像状態を示す図である。上述した図2の偏光ビームスプリッター121の場合には、1回、つまり奇数回の反射後に撮像素子122に光学像が結像される。このため、何れか一方の画像が図8のような結像状態(鏡像)となり、画像プロセッサ30において鏡像を反転させて像方向を一致させる画像処理が施される。
 光学的な偶数回の反射による鏡像の補正は、対物光学系の大型化やプリズムのコスト高となる場合があるので、奇数回の反射による鏡像の補正は、画像補正処理部32にて鏡像反転により行なうことが好ましい。
 なお、撮像素子122が、内視鏡長手方向に長尺な形状となっている場合には、画像表示装置5のアスペクト比を考慮して合成画像を適宜回転させることが好ましい。
 以上、本発明の種々の実施形態について説明したが、本発明は、これらの実施形態のみに限られるものではなく、その趣旨を逸脱しない範囲で、これら実施形態の構成を適宜組合せて構成した実施形態も本発明の範疇となるものである。
 以上のように、十分な偏光解消効果を得つつ、波長板(偏光解消板)で発生する非点収差を低減して、良好な画像を得ることができる内視鏡光学系及び内視鏡装置に有用である。
 OBJ 対物光学系
 1 内視鏡装置
 2 内視鏡
 3 光源装置
 4 プロセッサ装置
 5 画像表示装置
 6 挿入部
 6a 先端部
 7 操作部
 8 ライトガイドケーブル
 8a 接続部
 9 ライトガイド
 11 ランプ
 12 絞り
 13 コンデンサレンズ
 14 絞り駆動部
 15 照明レンズ
 15a 照明窓
 16 レンズ群
 16a レンズ
 19 光路分割ユニット
 20 観察窓
 21 レンズ
 22 アクチュエータ
 23 信号線
 24 ケーブル
 24a 信号コネクタ
 25 アクチュエータ制御部
 26 スイッチ
 27a 信号線
 30 画像プロセッサ
 31 画像読出部
 32 画像補正処理部
 33 画像合成処理部
 34 後段画像処理部
 35 画像出力部
 36 調光部
 37 補正パラメータ格納部
 39 制御部
 120 光路分割ユニット
 121 偏光ビームスプリッター
 121a λ/4波長板
 121b 物体側のプリズム
 121c ミラー
 121d λ/4板
 121e 像側のプリズム
 121f 偏光分離膜
 121g ガラス
 122 撮像素子
 122a、122b 受光領域
 122c 補正画素領域
 130 接着層
 AX 光軸
 CG カバーガラス
 OBL 対物光学系
 G1 第1レンズ群
 G2 第2レンズ群
 G3 第3レンズ群
 S  明るさ絞り
 L1-L19 レンズ
 I 結像面(撮像面)

Claims (6)

  1.  物体側から順に、対物光学系と、1つの複屈折素材からなるλ/4波長板と、前記対物光学系からの光を2つに分割する偏光ビームスプリッターと、分割した2つの像を撮像する撮像素子と、を備え、
     以下の条件式(1)を満たすことを特徴とする内視鏡光学系。
     1.1≦Fno/(d/|Δn|)≦49   (1)
     ここで、
     Fnoは、前記対物光学系の有効Fナンバー、
     dは、前記λ/4波長板の厚み、
     Δnは、前記λ/4波長板のe線(546.1nm)の複屈折、ただし、|0.01|<Δn、
    である。
  2.  前記λ/4波長板は、前記対物光学系の明るさ絞りと、前記偏光ビームスプリッターの光路分割面と、の間に配置されていることを特徴とする請求項1に記載の内視鏡光学系。
  3.  前記λ/4波長板で生じた軸上の非点収差に対して、前記偏光ビームスプリッターで逆符号の軸上の非点収差を発生させることを特徴とする請求項1に記載の内視鏡光学系。
  4.  前記λ/4波長板は、負の複屈折を有する一軸結晶材料であることを特徴とする請求項3に記載の内視鏡光学系。
  5.  以下の条件式(2)を満足することを特徴とする請求項4に記載の内視鏡光学系。
     0.8≦(np/Δn)/(d/lpc)≦4.4   (2)
     ここで、
     npは、前記偏光ビームスプリッターに使用される硝材のe線の屈折率、
     Δnは、前記λ/4波長板のe線(546.1nm)の複屈折、ただし、|0.01|<Δn、
     dは、前記λ/4波長板の厚み、
     lpcは、前記偏光ビームスプリッターの面に使用される接着剤の接着層の厚さ、
    である。
  6.  請求項1から5の何れか1項の内視鏡光学系と、
     前記撮像素子で撮像した像を合成して、1つの画像とする画像合成部を有する画像処理部と、を備えることを特徴とする内視鏡装置。
PCT/JP2018/037261 2018-03-06 2018-10-04 内視鏡光学系及び内視鏡装置 WO2019171642A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/009,840 US11857158B2 (en) 2018-03-06 2020-09-02 Optical system, endoscope apparatus and endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018039711 2018-03-06
JP2018-039711 2018-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/009,840 Continuation US11857158B2 (en) 2018-03-06 2020-09-02 Optical system, endoscope apparatus and endoscope

Publications (1)

Publication Number Publication Date
WO2019171642A1 true WO2019171642A1 (ja) 2019-09-12

Family

ID=67846157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037261 WO2019171642A1 (ja) 2018-03-06 2018-10-04 内視鏡光学系及び内視鏡装置

Country Status (2)

Country Link
US (1) US11857158B2 (ja)
WO (1) WO2019171642A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245517A (zh) * 2020-02-21 2020-06-05 中国科学院西安光学精密机械研究所 一种用于激光通信的1/4波片组件
EP3824792A1 (en) * 2019-11-22 2021-05-26 Karl Storz Imaging, Inc. Medical imaging device with split image on common image sensor
US20210321860A1 (en) * 2019-03-22 2021-10-21 Olympus Corporation Endoscope
WO2022230270A1 (ja) * 2021-04-27 2022-11-03 ソニーグループ株式会社 医療撮像システムおよび撮像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1196583A (ja) * 1997-09-19 1999-04-09 Nec Corp 光ヘッドの非点隔差補正方法及び補正装置
JP2000047029A (ja) * 1998-07-29 2000-02-18 Toyo Commun Equip Co Ltd 光デバイスおよび光デバイスの製造方法
JP2005164652A (ja) * 2003-11-28 2005-06-23 Nikon Corp 対物レンズ
WO2017073292A1 (ja) * 2015-10-29 2017-05-04 オリンパス株式会社 内視鏡撮像ユニット
WO2018173412A1 (ja) * 2017-03-24 2018-09-27 オリンパス株式会社 内視鏡システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7656774B2 (en) * 2004-04-09 2010-02-02 Konica Minolta Opto, Inc. Objective lens, optical head, and optical pickup apparatus
EP2547298B1 (en) * 2010-03-19 2019-05-08 Avedro, Inc. Systems for applying and monitoring eye therapy
WO2013027459A1 (ja) 2011-08-24 2013-02-28 オリンパスメディカルシステムズ株式会社 撮像装置及び撮像装置システム
JP6023919B2 (ja) 2014-09-18 2016-11-09 オリンパス株式会社 内視鏡システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1196583A (ja) * 1997-09-19 1999-04-09 Nec Corp 光ヘッドの非点隔差補正方法及び補正装置
JP2000047029A (ja) * 1998-07-29 2000-02-18 Toyo Commun Equip Co Ltd 光デバイスおよび光デバイスの製造方法
JP2005164652A (ja) * 2003-11-28 2005-06-23 Nikon Corp 対物レンズ
WO2017073292A1 (ja) * 2015-10-29 2017-05-04 オリンパス株式会社 内視鏡撮像ユニット
WO2018173412A1 (ja) * 2017-03-24 2018-09-27 オリンパス株式会社 内視鏡システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210321860A1 (en) * 2019-03-22 2021-10-21 Olympus Corporation Endoscope
US12023000B2 (en) * 2019-03-22 2024-07-02 Olympus Corporation Endoscope
EP3824792A1 (en) * 2019-11-22 2021-05-26 Karl Storz Imaging, Inc. Medical imaging device with split image on common image sensor
US11333829B2 (en) 2019-11-22 2022-05-17 Karl Storz Imaging, Inc. Medical imaging device with split image on common image sensor
US11666205B2 (en) 2019-11-22 2023-06-06 Karl Storz Imaging, Inc. Method for producing enhanced images with a split image on common image sensor
CN111245517A (zh) * 2020-02-21 2020-06-05 中国科学院西安光学精密机械研究所 一种用于激光通信的1/4波片组件
WO2022230270A1 (ja) * 2021-04-27 2022-11-03 ソニーグループ株式会社 医療撮像システムおよび撮像装置

Also Published As

Publication number Publication date
US20210038060A1 (en) 2021-02-11
US11857158B2 (en) 2024-01-02

Similar Documents

Publication Publication Date Title
JP6498364B2 (ja) 内視鏡システム及び内視鏡システムの調整方法
JP6513307B2 (ja) 内視鏡システム
WO2019171642A1 (ja) 内視鏡光学系及び内視鏡装置
JP6006464B1 (ja) 内視鏡システム
US8582218B2 (en) Endoscope for oblique viewing
WO2014129089A1 (ja) 内視鏡用対物光学系及び撮像装置
WO2011049195A1 (ja) 立体撮影用対物光学系および内視鏡
JP6463573B1 (ja) 内視鏡撮像システム
CN106461920B (zh) 斜视物镜光学系统以及具备斜视物镜光学系统的内窥镜
CN107430260B (zh) 斜视物镜光学系统和具备该斜视物镜光学系统的斜视用内窥镜
WO2017183371A1 (ja) 内視鏡システム
WO2017073292A1 (ja) 内視鏡撮像ユニット
JP2017209154A (ja) 内視鏡システム
JP6257874B1 (ja) 対物光学系及びそれを備えた内視鏡装置
JP6363818B1 (ja) 内視鏡システム
US20240192479A1 (en) Objective optical system, imaging unit, endoscope and endoscope apparatus
WO2024010089A1 (ja) 光学モジュール、光学装置、および光学モジュールの製造方法
JP2005292641A (ja) 結像光学系を用いた光学装置および投写光学系を用いた光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP