WO2021043048A1 - 一种电致变色玻璃及其制造方法 - Google Patents

一种电致变色玻璃及其制造方法 Download PDF

Info

Publication number
WO2021043048A1
WO2021043048A1 PCT/CN2020/111549 CN2020111549W WO2021043048A1 WO 2021043048 A1 WO2021043048 A1 WO 2021043048A1 CN 2020111549 W CN2020111549 W CN 2020111549W WO 2021043048 A1 WO2021043048 A1 WO 2021043048A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent substrate
layer
conductive material
conductive
conductive layer
Prior art date
Application number
PCT/CN2020/111549
Other languages
English (en)
French (fr)
Inventor
刘江
王群华
吉顺青
Original Assignee
南通繁华新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通繁华新材料科技有限公司 filed Critical 南通繁华新材料科技有限公司
Priority to US17/640,374 priority Critical patent/US20220334444A1/en
Priority to JP2022515558A priority patent/JP2022547180A/ja
Priority to KR1020227010918A priority patent/KR20220058589A/ko
Priority to EP20860509.7A priority patent/EP4027191A4/en
Publication of WO2021043048A1 publication Critical patent/WO2021043048A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/161Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes

Definitions

  • the invention relates to the field of electrochromic glass, in particular to an electrochromic glass and a manufacturing method thereof.
  • Electrochromism refers to the phenomenon of stable and reversible color changes in optical properties (reflectance, transmittance, absorption, etc.) under the action of an external electric field. Electrochromic technology has been developed for more than 40 years. Electrochromic devices (Electrochromic Device, ECD) have the characteristics of continuous adjustment of transmitted light intensity, low energy loss, and open-circuit memory function. Displays, spacecraft temperature control modulation, automotive non-glare rearview mirrors, weapon equipment stealth and other fields have broad application prospects. As a new type of smart window, ECD-based glass can adjust the intensity of incident sunlight according to comfort requirements, effectively reduce energy consumption, and demonstrate a significant energy-saving effect.
  • ECD With the continuous improvement of human requirements for consumer products, ECD has shown great market prospects and application value in the fields of automobiles, home appliances, furniture, aerospace, rail transit, and green buildings. Electrochromic products have caused more and more attention at home and abroad. Extensive attention and attention are the new generation of high-efficiency building energy-saving products after heat-absorbing glass, heat-reflective coated glass, and low-e glass.
  • Vacuum glass is a new type of glass deep processing product. It is one of the few cutting-edge products with independent intellectual property rights in my country's glass industry. Its research and development and promotion are in line with my country’s policy of encouraging independent innovation and the country’s energy-saving policies. It has a great effect in terms of development and has good development potential and prospects. Combining the advantages of both is a new generation of curtain wall glass with ultra-high performance and user experience in future buildings.
  • the electrode is directly extended into the electrochromic element and connected to the conductive layer, and then the electrode is led out with a wire, and then the glass is sealed. This setting will reduce the vacuum of the vacuum glass. And airtightness affects product quality.
  • the technical problem to be solved by the present invention is to change the way the electrodes are arranged on the electrochromic element, without introducing wires into the electrochromic device, simplifying the production steps and reducing the production difficulty.
  • the present invention provides an electrochromic glass comprising: a first transparent substrate, a second transparent substrate, and a functional laminate; the functional laminate includes a first conductive layer, an electrochromic laminate And a second conductive layer;
  • the first conductive layer, the electrochromic laminate, and the second conductive layer are sequentially disposed on the first transparent substrate and located between the first transparent substrate and the second transparent substrate between;
  • the first conductive layer is provided with a first exposed area, the first exposed area is provided with a first conductive material, and an end of the second conductive layer away from the first exposed area is provided with the first conductive material ;
  • a second conductive material is provided between the first transparent substrate and the second transparent substrate, the second conductive material is provided along the outer circumference of the functional laminate, and the second conductive material is connected to the first transparent substrate.
  • a conductive material is in contact, and the second conductive material is hermetically connected to the first transparent substrate and the second transparent substrate.
  • the resistance of the electrochromic laminate ⁇ the resistance of the first conductive material ⁇ the resistance of the second conductive material ⁇ the resistance of the first conductive layer and the resistance of the second conductive layer.
  • the functional laminate further includes: an inert gas layer located between the functional laminate and the second transparent substrate.
  • an array of support columns is provided between the first transparent substrate and the second transparent substrate, and the array of support columns includes evenly distributed support columns.
  • the support columns are connected to the first transparent substrate.
  • the second transparent substrate is vertically connected.
  • the supporting pillar includes a third conductive material.
  • the functional laminate further includes: a vacuum layer located between the functional laminate and the second transparent substrate.
  • the functional laminate further includes: an ion barrier layer;
  • the ion blocking layer includes silicon oxide or silicon aluminum oxide, the ion blocking layer is provided on the second conductive layer, and an end of the second conductive layer away from the first exposed area is provided with a second exposed area. In the second exposed area, a first conductive material is provided.
  • the functional laminate further includes: an isolation layer;
  • the isolation layer is disposed on the ion barrier layer, and the composition of the isolation layer includes at least one of the following: titanium nitride, aluminum nitride, silicon nitride, and boron nitride.
  • first conductive material and the second conductive material include conductive paste or conductive paste
  • the conductive paste and the conductive paste include silver powder, nickel powder, copper powder, silver-plated copper powder or carbon powder. One or more.
  • the present invention also provides a method for manufacturing electrochromic glass, including:
  • Forming a functional stack depositing an electrochromic stack on a first transparent substrate with a first conductive layer, and depositing a second conductive layer on the electrochromic stack;
  • the second transparent substrate and the first transparent substrate are aligned, heat-sealed and packaged.
  • the package is heated under an inert gas atmosphere.
  • the functional laminate also includes:
  • Pasting an array of support columns on the first transparent substrate wherein the array of support columns includes evenly distributed support columns, and the support columns are vertically connected to the first transparent substrate and the second transparent substrate .
  • the heating is vacuum heating.
  • forming a functional laminate further includes:
  • the coating of the first conductive material on the end of the second conductive layer away from the first exposed area specifically includes:
  • a first conductive material is coated on the second exposed area.
  • forming a functional stack also includes:
  • a pure substance or mixture of titanium, aluminum, silicon, and boron is used as a target, and an isolation layer is deposited on the ion barrier layer in a nitrogen atmosphere.
  • the invention has simple preparation method, low investment cost, high controllability of finished product quality, good discoloration uniformity, simple and light product structure, excellent sound insulation and low thermal conductivity, and can realize large-area industrial production.
  • Fig. 1 is a schematic structural diagram of an embodiment of the present invention
  • Fig. 2 is a schematic structural diagram of another embodiment of the present invention.
  • Figure 1 shows a cross-sectional view of the structure of electrochromic glass.
  • the present invention has a first transparent substrate 100 and a second transparent substrate 200, which are flat glass in this embodiment.
  • the first transparent substrate 100 and the second transparent substrate 200 may also be curved glass.
  • a functional stack is sequentially deposited between the first transparent substrate 100 and the second transparent substrate 200, including a first conductive layer 105, an electrochromic stack 110, and a second conductive layer 115.
  • the thickness of the first conductive layer 105 and the second conductive layer 115 is 20 to 400 nanometers (nm), in one example, 20 to 50 nm, in one example, 50 to 100 nm, and in one example, 100 to 250 nm. In an example, it is 300 to 400 nm.
  • the sheet resistance should be 5 to 25 ohms, and the average transmittance of visible light is >85%.
  • the first conductive layer 105 and the second conductive layer 115 are selected from one or more of indium tin oxide (ITO), aluminum-doped zinc oxide (AZO), boron-doped zinc oxide (BZO), and fluorine-doped tin oxide (FTO) .
  • the deposition method can be selected from vacuum coating, evaporation coating, sol-gel and other processes.
  • the first conductive layer 105 may not be deposited, and the coated glass plated with the above-mentioned materials may be directly used as the first transparent substrate 100.
  • the electrochromic laminate 110 is a conventional electrochromic element, and includes an electrochromic layer, an ion conductive layer, and an ion storage layer. Cooperating with the first conductive layer 105 and the second conductive layer 115 in the case of forward voltage and reverse voltage, it can be reversibly switched between the colored state and the bleached state, and its overall resistance is about 2 to 10 ohms .
  • the bottom layer in the electrochromic laminate 110 is an electrochromic layer, which is deposited on the first conductive layer 105 by vacuum coating, evaporation coating, etc., with a film thickness of 200 to 600 nm.
  • the material is selected from one or more of tungsten oxide (WO 3 ), molybdenum oxide (MoO 3 ), niobium oxide (Nb 2 O 5 ), and titanium oxide (TiO 2 ).
  • an ion conductive layer is deposited on the electrochromic layer to connect the ions between the electrochromic layer and the ion storage layer.
  • the material is preferably metallic lithium, and the film thickness is 10 to 300 nm.
  • materials such as tantalum, niobium, cobalt, aluminum, silicon, phosphorus, and boron can be doped in the lithium film layer.
  • an ion storage layer is deposited on the ion conductive layer to store lithium ions conducted from the electrochromic layer due to voltage, and the film thickness is 150 to 650 nm.
  • the material of the ion storage layer is selected from one or more of nickel oxide (NiO x ) and iridium oxide (IrO 2 ).
  • the ion storage layer may include electrochromic or non-electrochromic materials. If both the ion storage layer and the electrochromic layer use electrochromic materials, one of them is a cathodic coloring material and the other is an anodic coloring material.
  • the electrochromic layer may use a cathodic coloring material, such as tungsten oxide; the ion storage layer may use an anode coloring material, such as nickel oxide. That is, after lithium ions leave the ion storage layer, the ion storage layer will also enter a colored state. Thus, the electrochromic layer and the ion storage layer are combined and together reduce the amount of light transmitted through the stack.
  • the functional laminate covering the first conductive layer 110 is removed to expose a part of the first conductive layer 110 to form a first exposed area.
  • the first exposed area is coated with a first conductive material 130, preferably containing silver
  • the amount of conductive silver paste is higher than 50%, the coating thickness is 0.1 to 0.5 millimeters (mm), the width of the first exposed area is about 90 to 120 microns ( ⁇ m), so that the resistance of the first conductive material 130 is strictly controlled at About 5 ohms, which is smaller than the resistance of the first conductive layer 110 and the second conductive layer 115.
  • the conductive paste or conductive glue can also be silver powder, nickel powder, copper powder, silver-plated copper powder or carbon powder. According to the different materials used, the coating thickness of the first conductive material 130 and the width of the exposed area can be adjusted according to the required resistance.
  • the second conductive layer 115 also needs to be coated with the first conductive material 130, preferably at one end away from the first exposed area.
  • a second conductive material 135 is disposed between the first transparent substrate 100 and the second transparent substrate 200, and is disposed along the outer circumference of the functional laminate.
  • the second conductive material 135 needs to be in contact with the first conductive material 130, and its resistance should be greater than that of the first conductive material 130, and smaller than the first conductive layer 105 and the second conductive layer 115, preferably with a silver content of not more than 30% Conductive silver paste, the coating thickness is 0.3 to 0.8mm.
  • the second conductive material 135 will seal the first transparent substrate 100 and the second transparent substrate 200, so that the functional laminate is not affected by the external environment, such as moisture, thereby increasing the life of the functional laminate and the suitable use environment. Sex.
  • the current flows from the second conductive material 135 on one side through the first conductive material 130 into the first conductive layer 105, and then through the electrochromic element 110 back to the second conductive layer 115, and enters the first conductive layer on the other side.
  • the conductive material 130 and the second conductive material 135 form a loop. Since the resistance in the electrochromic element ⁇ the first conductive material ⁇ the second conductive material ⁇ the first conductive layer 105 and the second conductive layer 115, the current will not escape and will inevitably pass through the electrochromic layer 110.
  • the position of the first exposed area can be any position. Because as long as the second conductive material 135 is in contact with the first conductive material 130, current will always flow to the first conductive material 130 and the electrochromic laminate 110 under the influence of the resistance difference.
  • FIG. 2 shows a schematic diagram of the structure of the electrochromic vacuum glass. As shown in FIG. 2, on the basis of FIG. 1, it also includes a supporting column 300, and the functional stack also includes an ion barrier layer 120, an isolation layer 125 and a vacuum layer 150.
  • a support pillar 300 is introduced.
  • the supporting pillars 300 are uniformly distributed and pasted on the first transparent substrate 100 in an array form, and the supporting pillars 300 are vertically connected to the first transparent substrate 100 and the second transparent substrate 200.
  • the height of the support column 300 is preferably 0.2 to 0.5 mm. It is determined according to the thickness of the vacuum layer 150 and the functional laminate.
  • the vacuum layer 150 due to the introduction of the vacuum layer 150, it greatly improves the life and reliability of the electrochromic film layer, and takes into account the effects of energy saving, heat insulation, sound insulation, noise reduction, and non-condensation of vacuum glass.
  • the vacuum layer 150 can also be replaced with an inert gas protective layer, such as an argon protective layer, to achieve similar effects as described above.
  • the support pillar 300 includes a third conductive material, preferably a metal or conductive polymer, such as silver, platinum, copper or conductive ceramic, which serves as a good conductor of electricity.
  • a third conductive material preferably a metal or conductive polymer, such as silver, platinum, copper or conductive ceramic, which serves as a good conductor of electricity.
  • an ion blocking layer 120 and an isolation layer 125 are sequentially provided on the second conductive layer 115 as additional functional layers.
  • the ion barrier layer 120 uses a silicon (Si) or silicon aluminum (SiAl) target with a thickness of 20 to 80 nm and a composition of silicon oxide (SiO x ) and silicon aluminum oxide (SiAlO x ).
  • SiO x silicon oxide
  • SiAlO x silicon aluminum oxide
  • the thickness of the isolation layer 125 is 100 to 1000 nm, and the isolation layer 125 may be one or more of titanium nitride, aluminum nitride, silicon nitride, and boron nitride. These materials have high transparency and high resistance, can prevent the current from escaping after the device is energized, and can also protect the functional layer deposited under it and reduce its physical and chemical loss.
  • the functional laminate covering the second conductive layer 115 needs to be removed, preferably the end of the second conductive layer 115 away from the first exposed area is removed , A part of the second conductive layer 115 is exposed to form a second exposed area, and the first conductive material 130 is coated in the second exposed area and is in contact with the second conductive material 135.
  • the device When the device is in operation, it can reversibly cycle between the bleached state and the colored state.
  • the bleaching state by applying voltage at the first conductive layer 105 and the second conductive layer 115, the lithium ions in the electrochromic stack mainly reside in the ion storage layer.
  • the electrochromic layer contains the cathode electrochromic material, the device is in a bleached state.
  • the voltage potential on the electrochromic stack 110 is reversed, lithium ions cross the ion conductive layer and enter the electrochromic layer, causing the device to switch to a colored state.
  • the electrochromic device can not only switch back and forth between the bleached state and the colored state, but also can switch to one or more intermediate color states between the bleached state and the colored state.
  • the present invention also provides a method for manufacturing electrochromic glass, which includes the following steps:
  • step S101 a support pillar array is pasted on the first transparent substrate.
  • the high temperature resistant adhesive is applied on the cleaned first transparent substrate 100 by a dispenser to form a regular and uniform array, and then the support pillars are bonded to the glass through the high temperature resistant adhesive.
  • Step S102 forming a functional stack, depositing an electrochromic stack on a first transparent substrate with a first conductive layer, and depositing a second conductive layer on the electrochromic stack.
  • the first conductive layer 105 can be directly deposited on the first transparent substrate 100 by vacuum coating, evaporation coating, sol-gel and other processes, or it can be directly deposited on the first transparent substrate 100 with the first conductive layer 105. ⁇ stack 110.
  • the electrochromic laminate 110 has an electrochromic layer, an ion conductive layer, and an ion storage layer.
  • an electrochromic layer is formed on the first conductive layer 105 by vacuum coating, evaporation coating, and other methods.
  • Reactive sputtering can be carried out by doping oxygen with argon gas through metal targets such as tungsten, molybdenum, niobium, and titanium.
  • the oxygen doping ratio is 2%-50%, and it can also be sputtered directly through the ceramic target of metal oxide.
  • a metal lithium ion conductive layer is formed on the electrochromic layer by vacuum coating and other methods.
  • the ion storage layer is formed on the ion conductive layer by vacuum coating, evaporation coating, electrochemical deposition and other methods.
  • a metal target of nickel or iridium can be used for reactive sputtering with argon doped with oxygen, and the oxygen doping ratio is 0.5% ⁇ 20%, the metal oxide obtained at this time, such as nickel oxide, in which the nickel is divalent, the color is lighter, and the light transmittance of the transparent substrate is retained as much as possible.
  • the deposition method of the second conductive layer 115 is the same as that of the first conductive layer 105, and will not be repeated here.
  • silicon or a mixture of silicon and aluminum is used as a target on the second conductive layer 115, and an ion barrier layer 120 is deposited as an additional functional layer by vacuum coating, evaporation coating, or other methods.
  • a pure substance or mixture of titanium, aluminum, silicon, and boron is used as a target on the ion barrier layer 120, and an isolation layer 125 is deposited on the ion barrier layer as an additional functional layer in a nitrogen atmosphere.
  • the first conductive layer 105, the electrochromic stack 110, the second conductive layer 115, the ion barrier layer 120, and the isolation layer 125 are used as functional stacks, which are deposited and formed on the deposition system at one time, and then the functional layer is deposited At this time, the first transparent substrate 100 does not leave the deposition system.
  • step S103 a first exposed area is formed on the first conductive layer, and a second exposed area is formed on an end of the second conductive layer away from the first exposed area.
  • first conductive layer 105 and the second conductive layer 115 are removed to form a first conductive layer.
  • the second exposed area is preferably an end of the second conductive layer 115 away from the first exposed area.
  • Electrode scribing can use wavelengths of 248nm, 355nm (ultraviolet laser (UV)), 1030nm (infrared laser (IR), such as disk laser), 1064nm (for example, neodymium-doped yttrium aluminum garnet (Nd: YAG) laser) and The guided and focused energy of one of 532nm (for example, a green laser) removes part of the functional layer. Lasers with wavelengths of 1064 nm and 532 nm are preferred. This is because the functional layer absorbs well at the above wavelengths, so that the functional layer can be scribed with high quality, and the scribing position does not leave byproducts after the functional layer is removed.
  • UV ultraviolet laser
  • IR infrared laser
  • 532nm for example, a green laser
  • Step S104 coating a first conductive material on the first exposed area and the second exposed area.
  • the first conductive material 130 preferably a conductive silver paste, is dotted on the surfaces of the first exposed area and the second exposed area through a dispensing process.
  • Step S105 coating a second conductive material along the outer circumference of the functional laminate, and the second conductive material is in contact with the first conductive material;
  • the second conductive material 135 is coated along the outer peripheral surface of the functional laminate by processes such as glue dispensing and screen printing, and the glass is initially edge-sealed.
  • Step S106 align the second transparent substrate with the first transparent substrate, and vacuum heat and seal the package.
  • the vacuum pressure is 6 to 105 kilopascals (kPa).
  • the glass is heated during the vacuum extraction process, and the heating temperature is 280 to At 350°C, heating and combining the sheets for air extraction time: 60 to 120 minutes, and then the completed electrochromic vacuum glass is obtained.
  • step S106 after the second transparent substrate is aligned with the first transparent substrate, an inert gas is filled, and the package is heated and sealed in an inert gas atmosphere, preferably argon.
  • the electrochromic function of the electrochromic vacuum glass can be realized after the second conductive material layer of the completed device is connected to the wire and the low-voltage power supply.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种电致变色玻璃,涉及电致变色玻璃领域,包括:第一透明衬底(100)、第二透明衬底(200)、功能叠层,功能叠层包括第一导电层(105)、电致变色叠层(110)和第二导电层(115);第一导电层(105)、电致变色叠层(110)和第二导电层(115)依序设于第一透明衬底(100)并且位于第一透明衬底(100)和第二透明衬底(200)之间;第一导电层(105)设有第一暴露区,第一暴露区内设有第一导电材料(130),第二导电层(115)远离第一暴露区的一端设有第一导电材料(130);第一透明衬底(100)和第二透明衬底(200)之间设有第二导电材料(135),第二导电材料(135)沿功能叠层的外周设置,第二导电材料(135)与第一导电材料(130)相接触,第二导电材料(135)与第一透明衬底(100)、第二透明衬底(200)均密封连接。

Description

一种电致变色玻璃及其制造方法 技术领域
本发明涉及电致变色玻璃领域,尤其涉及一种电致变色玻璃及其制造方法。
背景技术
电致变色是指光学属性(反射率、透过率、吸收率等)在外加电场的作用下发生稳定、可逆颜色变化的现象。电致变色技术发展已有四十余年,电致变色器件(Electrochromic Device,ECD)由于其具有对透射光强度的连续可调性、能量损耗低、具有开路记忆功能等特点,在智能窗、显示器、航天器温控调制、汽车无眩后视镜、武器装备隐身等领域具有广阔的应用前景。基于ECD的玻璃作为一类全新的智能窗,能按舒适需求来调节入射太阳光的强度,有效降低耗能,展示出了显著的节能效果。随着人类对消费产品要求的不断提高,ECD在汽车、家电家具、航天航空、轨道交通、绿色建筑等领域展现出巨大的市场前景和应用价值,电致变色产品最已经引起国内外越来越广泛的关注和重视,是继吸热玻璃、热反射镀膜玻璃、低辐射玻璃之后的新一代高效建筑节能产品。
真空玻璃是新型玻璃深加工产品,是我国玻璃工业中为数不多的具有自主知识产权的前沿产品,它的研发推广符合我国鼓励自主创新的政策,也符合国家大力提倡的节能政策,在节能、隔音方面有很大的作用,具有良好的发展潜力和前景,集合两者的优势是未来建筑极具超高性能和用户体验的新一代幕墙玻璃。
然而,目前大多的电致变色真空玻璃,其电极是直接伸入电致变色元件并与导电层相连接,再用导线将电极引出后,再将玻璃封闭,如此设置会降低真空玻璃的真空度与密封性,影响产品质量。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是改变电极 设置在电致变色元件上的方式,无需将导线引入电致变色器件内部,简化生产步骤,降低生产难度。
为实现上述目的,本发明提供了一种电致变色玻璃,包括:第一透明衬底、第二透明衬底、功能叠层;所述功能叠层包括第一导电层、电致变色叠层和第二导电层;
所述第一导电层、所述电致变色叠层和所述第二导电层依序设于所述第一透明衬底并且位于所述第一透明衬底和所述第二透明衬底之间;
所述第一导电层设有第一暴露区,所述第一暴露区内设有第一导电材料,所述第二导电层远离所述第一暴露区的一端设有所述第一导电材料;
所述第一透明衬底和所述第二透明衬底之间设有第二导电材料,所述第二导电材料沿所述功能叠层的外周设置,所述第二导电材料与所述第一导电材料相接触,所述第二导电材料与所述第一透明衬底、所述第二透明衬底均密封连接。
进一步地,所述电致变色叠层的电阻<所述第一导电材料的电阻<所述第二导电材料的电阻<所述第一导电层的电阻、所述第二导电层的电阻。
进一步地,所述功能叠层还包括:惰性气体层,位于所述功能叠层和所述第二透明衬底之间。
进一步地,所述第一透明衬底和所述第二透明衬底之间设有支撑柱阵列,所述支撑柱阵列包括均匀分布的支撑柱,所述支撑柱与所述第一透明衬底、所述第二透明衬底垂直连接。
进一步地,所述支撑柱包含第三导电材料。
进一步地,所述功能叠层还包括:真空层,位于所述功能叠层和所述第二透明衬底之间。
进一步地,所述功能叠层还包括:离子阻挡层;
所述离子阻挡层包含硅氧化物或硅铝氧化物,所述离子阻挡层设于所述第二导电层上,所述第二导电层远离所述第一暴露区的一端设有第二暴露区,所述第二暴露区内设有第一导电材料。
进一步地,所述功能叠层还包括:隔离层;
所述隔离层设于所述离子阻挡层上,所述隔离层的组分包含以下至少 之一:氮化钛、氮化铝、氮化硅、氮化硼。
进一步地,所述第一导电材料和所述第二导电材料包括导电浆或导电胶,所述导电浆和所述导电胶包含银粉、镍粉、铜粉、镀银铜粉或碳粉中的一种或多种。
本发明还提供了了一种电致变色玻璃制造方法,包括:
形成功能叠层,在具有第一导电层的第一透明衬底上沉积电致变色叠层,在所述电致变色叠层上沉积第二导电层;
在所述第一导电层形成第一暴露区;
在所述第一暴露区涂覆第一导电材料;
在所述第二导电层远离所述第一暴露区的一端涂覆第一导电材料;
沿所述功能叠层的外周涂覆第二导电材料,所述第二导电材料与所述第一导电材料接触;
将第二透明衬底与所述第一透明衬底对位加热密封封装。
进一步地,将第二透明衬底与所述第一透明衬底对位加热封装时,在惰性气体气氛下加热封装。
进一步地,在形成功能叠层之前,还包括:
在所述第一透明衬底上粘贴支撑柱阵列;其中,所述支撑柱阵列包括均匀分布的支撑柱,所述支撑柱与所述第一透明衬底、所述第二透明衬底垂直连接。
进一步地,将第二透明衬底与所述第一透明衬底对位加热封装时,所述加热为真空加热。
进一步地,其特征在于,形成功能叠层还包括:
在所述电致变色叠层上沉积所述第二导电层之后,以硅或硅铝的混合物为靶材,在所述第二导电层上沉积离子阻挡层;
所述第二导电层远离所述第一暴露区的一端涂覆第一导电材料具体包括:
在所述第二导电层远离所述第一暴露区的一端形成第二暴露区;
在所述第二暴露区涂覆第一导电材料。
进一步地,形成功能叠层还包括:
在所述第二导电层上沉积所述离子阻挡层之后,以钛、铝、硅、硼的纯净物或混合物为靶材,在氮气气氛下在所述离子阻挡层上沉积隔离层。
本发明制备方法简单、投入成本低、成品质量可控性高、变色均匀性好、产品结构简单轻薄、隔音和低热传导性能优异、可实现大面积产业化生产。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明一实施例的结构示意图;
图2为本发明另一实施例的结构示意图。
附图标记说明:100-第一透明衬底;200-第二透明衬底;300-支撑柱;105-第一导电层;110-电致变色叠层;115-第二导电层;120-离子阻挡层;125-隔离层;150-真空层;130-第一导电材料;135-第二导电材料。
具体实施方式
以下参考说明书附图介绍本发明的多个优选实施例,使其技术内容更加清楚和便于理解。本发明可以通过许多不同形式的实施例来得以体现,本发明的保护范围并非仅限于文中提到的实施例。
在附图中,结构相同的部件以相同数字标号表示,各处结构或功能相似的组件以相似数字标号表示。附图所示的每一组件的尺寸和厚度是任意示出的,本发明并没有限定每个组件的尺寸和厚度。为了使图示更清晰,附图中有些地方适当夸大了部件的厚度。
实施例一
图1示出了电致变色玻璃的结构截面图。如图1所示,本发明具有第一透明衬底100和第二透明衬底200,本实施例中为平面玻璃。在一个实施例中,第一透明衬底100和第二透明衬底200也可为曲面玻璃。
在第一透明衬底100与第二透明衬底200之间依次沉积功能叠层,包括第一导电层105、电致变色叠层110和第二导电层115。第一导电层105和第二导电层115的厚度为20至400纳米(nm),在一个实例中为20至50nm,在一个实例中为50至100nm,在一个实例中为100至250nm,在一个实例中为300至400nm,此时方块电阻应为5至25欧姆,可见光平均透过率>85%。其中第一导电层105第二导电层115选自氧化铟锡(ITO)、掺铝氧化锌(AZO)、掺硼氧化锌(BZO)、掺氟氧化锡(FTO)中的一种或多种。沉积方式可以选自真空镀膜、蒸发镀膜、溶胶凝胶等工艺。在本发明另一种实施例中,也可不沉积第一导电层105,直接使用镀有上述材料的镀膜玻璃作为第一透明衬底100。
电致变色叠层110为常规电致变色元件,包括电致变色层、离子传导层和离子存储层。在正向电压和反向电压的情况下与第一导电层105和第二导电层115相配合,可在着色状态和漂白状态两种情况下可逆地切换,其整体电阻大约为2至10欧姆。
电致变色叠层110中的底层为电致变色层,通过真空镀膜、蒸发镀膜等方法沉积在第一导电层105上,膜厚为200至600nm。材料选自氧化钨(WO 3)、氧化钼(MoO 3)、氧化铌(Nb 2O 5)、氧化钛(TiO 2)中的一种或多种。
之后在电致变色层其上沉积离子传导层,用于连通电致变色层与离子存储层之间的离子,材料优选为金属锂,膜厚为10至300nm。为了提高锂离子稳定性和提高离子空隙率来提高传输速率,可在锂薄膜层里掺杂钽、铌、钴、铝、硅、磷、硼等材料。
最后在离子传导层其上沉积离子存储层,用于存储由于电压作用从电致变色层传导过来的锂离子,膜厚为150至650nm。离子存储层的材料选自镍氧化物(NiO x)、氧化铱(IrO 2)的一种或多种。
由上述可知,离子存储层可以包含电致变色或非电致变色的材料。如果离子存储层和电致变色层两者均采用了电致变色材料,则它们中的一个是阴极着色材料而另一个是阳极着色材料。例如,电致变色层可以采用阴极着色材料,例如氧化钨;离子存储层可以采用阳极着色材料,例如镍氧 化物。即,锂离子从离子存储层离开后,离子存储层也会进入着色状态。由此,电致变色层和离子存储层相组合,并共同减少了透射通过叠层的光的量。
之后移除在第一导电层110上覆盖的功能叠层,暴露出第一导电层110的一部分,形成第一暴露区,在第一暴露区中涂覆第一导电材料130,优选为含银量高于50%的导电银浆,涂覆厚度为0.1至0.5毫米(mm),第一暴露区的宽度约为90至120微米(μm),使第一导电材料130的电阻被严格控制在5欧姆左右,小于第一导电层110和第二导电层115的电阻。当然地,导电浆或导电胶也可以是银粉、镍粉、铜粉、镀银铜粉或碳粉等。根据使用材料的不同,第一导电材料130的涂覆厚度,暴露区的宽度都可以根据所需要的电阻进行调整。
为了使电致变色叠层构成回路,第二导电层115也需涂覆第一导电材料130,优选为远离第一暴露区的一端位置。
之后,在第一透明衬底100和第二透明衬底200之间设有第二导电材料135,沿功能叠层的外周设置。第二导电材料135需与第一导电材料130相接触,且其电阻应大于第一导电材料130,小于第一导电层105和第二导电层115,优选为含银量不高于30%的导电银浆,涂覆厚度为0.3至0.8mm。此外,第二导电材料135将密封了第一透明衬底100和第二透明衬底200,使功能叠层不受外界环境,例如水气的影响,增加了功能叠层的寿命以及使用环境适宜性。
器件通电后,电流会从一侧的第二导电材料135经过第一导电材料130进入第一导电层105,再经过电致变色元件110回到第二导电层115,进入另一侧的第一导电材料130和第二导电材料135,构成回路。由于电致变色元件内的电阻<第一导电材料<第二导电材料<第一导电层105和第二导电层115,因此电流不会逸散,必然会经过电致变色层110。同时,由于导线连接在器件外部而不是器件内部,无需从器件内部引出导线,导线位置无需进行密封处理,简化工序的同时且真空玻璃内部的密封性能也得到了保证。
由上述可见,第一暴露区的位置可为任意位置。因为只要第二导电材 料135与第一导电材料130相接触,在电阻差的影响下,电流总是会向第一导电材料130和电致变色叠层110流动。
实施例二
图2示出了电致变色真空玻璃的结构示意图,如图2所示,在图1基础上,还包括支撑柱300,功能叠层还包括离子阻挡层120、隔离层125和真空层150。
由于真空层150的存在,为防止第一透明衬底100和第二透明衬底200由于内外气压的不同而破裂,引入了支撑柱300。支撑柱300以阵列形式均匀分布粘贴在第一透明衬底100上,支撑柱300与第一透明衬底100和第二透明衬底200均为垂直连接。支撑柱300的高度优选为0.2至0.5毫米。根据真空层150和功能叠层的厚度决定。
此外由于真空层150的引入,其大幅度提高了电致变色膜层的寿命和可靠性,而且兼顾了真空玻璃的节能、隔热保温、隔音降噪、不结露的效果。类似地,真空层150也可替换为惰性气体保护层,例如氩气保护层,以达到与上述类似的效果。
进一步地,支撑柱300包含第三导电材料,优选为金属或导电聚合物,例如银、铂、铜或导电陶瓷,其作为电的良导体,在器件通电时,部分电流会通过第一导电层105经过数个支撑柱300向第二导电层115传输,电流扩散更快,提高了变色均匀性。
可选地,在第二导电层115上方还依次设有离子阻挡层120和隔离层125作为额外功能层。其中,离子阻挡层120使用硅(Si)或硅铝(SiAl)靶材,厚度为20至80nm,组分为硅氧化物(SiO x)、硅铝氧化物(SiAlO x)。其中由于铝的致密性好,可以有效的阻挡玻璃中的钠、镁的迁移,提升了使电致变色薄膜在玻璃上的附着力,使其不至于剥落。
隔离层125的膜厚为100至1000nm,隔离层125可以为氮化钛、氮化铝、氮化硅、氮化硼的一种或多种。这些材料具有较高的透明度和较高的电阻,可以在器件通电后令电流不至于逸散,也可保护沉积于其下的功能层,降低其物理及化学损耗。
由于第二导电层115上额外覆盖了离子阻挡层120和隔离层125,因此需要将覆盖第二导电层115的功能叠层移除,优选移除第二导电层115远离第一暴露区的一端,使第二导电层115的一部分暴露,形成第二暴露区,第一导电材料130涂覆在第二暴露区内,并与第二导电材料135接触。
器件在操作时,可以可逆地在漂白状态和着色状态之间循环。在漂白状态下,通过在第一导电层105和第二导电层115处施加电压,使电致变色叠层中的锂离子主要驻留在离子存储层中。此时如果电致变色层含有阴极电致变色材料,则器件处于漂白状态。当在电致变色叠层110上的电压电位反向时,锂离子跨过离子传导层并进入电致变色层,使器件转换为着色状态。
当对器件施加的电压再次反向时,离子从电致变色层离开,通过离子传导层回到离子存储层内。由此,器件转换至漂白状态。根据电压控制的不同,电致变色装置不但可以在漂白状态和着色状态之间来回转换,而且可以转换成在漂白状态和着色状态之间的一个或多个中间色彩状态。
实施例三
本发明还提供了一种电致变色玻璃制造方法,包括以下步骤:
步骤S101,在第一透明衬底上粘贴支撑柱阵列。
通过点胶机在清洗后的第一透明衬底100上点耐高温粘接胶,形成规则均匀的阵列,之后支撑柱通过耐高温粘接胶和玻璃粘合在一起。
步骤S102,形成功能叠层,在具有第一导电层的第一透明衬底上沉积电致变色叠层,在所述电致变色叠层上沉积第二导电层。
第一导电层105可利用真空镀膜、蒸发镀膜、溶胶凝胶等工艺直接沉积在第一透明衬底100上,也可直接在具有第一导电层105的第一透明衬底100上沉积电致变色叠层110。
电致变色叠层110具有电致变色层、离子传导层和离子存储层。首先通过真空镀膜、蒸发镀膜等方法在第一导电层105上形成一层电致变色层。可以通过钨、钼、铌、钛等金属靶材以氩气掺杂氧气进行反应溅射。为了有效的控制氧化价态,达到最佳变色效果,氧掺杂比例为2%~50%,也可 通过金属氧化物的陶瓷靶材直接进行溅射。
之后利用真空镀膜等方法在电致变色层上形成金属锂离子传导层。
最后在离子传导层上利用真空镀膜、蒸发镀膜、电化学沉积等方法形成离子存储层,可选用镍、铱的金属靶以氩气掺杂氧气进行反应溅射,氧掺杂比例为0.5%~20%,此时得到的金属氧化物,例如镍氧化物,其中的镍为二价,颜色更浅,尽可能的保留了透明衬底的透光率。此外,也可以通过金属氧化物的陶瓷靶材直接进行溅射。
第二导电层115的沉积方式与第一导电层105相同,在此不再赘述。
可选地,在第二导电层115上以硅或硅铝的混合物为靶材,利用真空镀膜、蒸发镀膜等方法沉积一层离子阻挡层120作为额外功能层。
进一步地,在离子阻挡层120上以钛、铝、硅、硼的纯净物或混合物为靶材,在氮气气氛下在所述离子阻挡层上沉积隔离层125作为额外功能层。
在一个实施例中,第一导电层105、电致变色叠层110、第二导电层115、离子阻挡层120和隔离层125作为功能叠层,在沉积系统上一次沉积成型,在沉积功能层时,第一透明衬底100不离开沉积系统。
步骤S103,在所述第一导电层形成第一暴露区,在所述第二导电层远离所述第一暴露区的一端形成第二暴露区。
在功能叠层沉积完毕后,需要对沉积好的电致变色玻璃器件进行电极划刻,移除覆盖在第一导电层105和第二导电层115上的功能层的一部分,各自形成第一导电层105的第一暴露区和第二导电层115的第二暴露区。第二暴露区优选为第二导电层115远离第一暴露区的一端。电极划刻可使用波长为248nm、355nm(紫外激光(UV))、1030nm(红外激光(IR),例如盘形激光)、1064nm(例如,掺钕钇铝石榴石(Nd:YAG)激光)和532nm(例如,绿激光)之一的引导和聚焦能量将功能层的一部分移除。优选为波长1064nm和532nm的激光器,这是由于功能层在上述波长下吸收较好,可以高质量的划刻功能层,且划刻位置不会残留功能层移除后的副产物。
步骤S104,在所述第一暴露区和所述第二暴露区涂覆第一导电材料。
通过点胶工艺将第一导电材料130,优选为导电银浆,点在第一暴露 区和第二暴露区的表面。
步骤S105,沿所述功能叠层的外周涂覆第二导电材料,所述第二导电材料与所述第一导电材料接触;
采用点胶、丝网印刷等工艺沿功能叠层外周表面涂布第二导电材料135,对玻璃进行初步封边。
步骤S106,将第二透明衬底与所述第一透明衬底对位,并真空加热密封封装。
将初步封边的器件利用真空烧结炉进行真空抽气和烧结粘接,抽真空压力为6至105千帕(kPa),在真空抽气过程中的同时对玻璃进行加热,加热温度为280至350℃,加热合片抽气时间为:60至120分钟,即得到完成的电致变色真空玻璃。
在另一个实施例中,步骤S106将第二透明衬底与所述第一透明衬底对位后,充入惰性气体,在惰性气体气氛下加热密封封装,优选为氩气。
最后在完成的器件的第二导电材料层连接导线与低压电源后即可实现电致变色真空玻璃的电致变色功能。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (15)

  1. 一种电致变色玻璃,其特征在于,包括:第一透明衬底、第二透明衬底、功能叠层;所述功能叠层包括第一导电层、电致变色叠层和第二导电层;
    所述第一导电层、所述电致变色叠层和所述第二导电层依序设于所述第一透明衬底并且位于所述第一透明衬底和所述第二透明衬底之间;
    所述第一导电层设有第一暴露区,所述第一暴露区内设有第一导电材料,所述第二导电层远离所述第一暴露区的一端设有所述第一导电材料;
    所述第一透明衬底和所述第二透明衬底之间设有第二导电材料,所述第二导电材料沿所述功能叠层的外周设置,所述第二导电材料与所述第一导电材料相接触,所述第二导电材料与所述第一透明衬底、所述第二透明衬底均密封连接。
  2. 如权利要求1所述的电致变色玻璃,其特征在于,所述电致变色叠层的电阻<所述第一导电材料的电阻<所述第二导电材料的电阻<所述第一导电层的电阻、所述第二导电层的电阻。
  3. 如权利要求1所述的一种电致变色玻璃,其特征在于,所述功能叠层还包括:惰性气体层,位于所述功能叠层和所述第二透明衬底之间。
  4. 如权利要求1所述的电致变色玻璃,其特征在于,所述第一透明衬底和所述第二透明衬底之间设有支撑柱阵列,所述支撑柱阵列包括均匀分布的支撑柱,所述支撑柱与所述第一透明衬底、所述第二透明衬底垂直连接。
  5. 如权利要求4所述的电致变色玻璃,其特征在于,所述支撑柱包含第三导电材料。
  6. 如权利要求4所述的一种电致变色玻璃,其特征在于,所述功能叠层还包括:真空层,位于所述功能叠层和所述第二透明衬底之间。
  7. 如权利要求1至7中任一项所述的电致变色玻璃,其特征在于,所述功能叠层还包括:离子阻挡层;
    所述离子阻挡层包含硅氧化物或硅铝氧化物,所述离子阻挡层设于所述第二导电层上,所述第二导电层远离所述第一暴露区的一端设有第二暴露区,所述第二暴露区内设有第一导电材料。
  8. 如权利要求7所述的电致变色玻璃,其特征在于,所述功能叠层还包括:隔离层;
    所述隔离层设于所述离子阻挡层上,所述隔离层的组分包含以下至少之一:氮化钛、氮化铝、氮化硅、氮化硼。
  9. 如权利要求1至6中任一项所述的电致变色玻璃,其特征在于,所述第一导电材料和所述第二导电材料包括导电浆或导电胶,所述导电浆和所述导电胶包含银粉、镍粉、铜粉、镀银铜粉或碳粉中的一种或多种。
  10. 一种电致变色玻璃制造方法,其特征在于,包括:
    形成功能叠层,在具有第一导电层的第一透明衬底上沉积电致变色叠层,在所述电致变色叠层上沉积第二导电层;
    在所述第一导电层形成第一暴露区;
    在所述第一暴露区涂覆第一导电材料;
    在所述第二导电层远离所述第一暴露区的一端涂覆第一导电材料;
    沿所述功能叠层的外周涂覆第二导电材料,所述第二导电材料与所述第一导电材料接触;
    将第二透明衬底与所述第一透明衬底对位加热密封封装。
  11. 如权利要求10所述的电致变色玻璃制造方法,其特征在于,将第二透明衬底与所述第一透明衬底对位加热封装时,在惰性气体气氛下加热封装。
  12. 如权利要求10所述的电致变色玻璃制造方法,其特征在于,在形成功能叠层之前,还包括:
    在所述第一透明衬底上粘贴支撑柱阵列;其中,所述支撑柱阵列包括均匀分布的支撑柱,所述支撑柱与所述第一透明衬底、所述第二透明衬底垂直连接。
  13. 如权利要求12所述的电致变色玻璃制造方法,其特征在于,将第二透明衬底与所述第一透明衬底对位加热封装时,所述加热为真空加热。
  14. 如权利要求10至13中任一项所述的电致变色玻璃制造方法,其特征在于,形成功能叠层还包括:
    在所述电致变色叠层上沉积所述第二导电层之后,以硅或硅铝的混合物为靶材,在所述第二导电层上沉积离子阻挡层;
    所述第二导电层远离所述第一暴露区的一端涂覆第一导电材料具体包括:
    在所述第二导电层远离所述第一暴露区的一端形成第二暴露区;
    在所述第二暴露区涂覆第一导电材料。
  15. 如权利要求14所述的电致变色玻璃制造方法,其特征在于,形成功能叠层还包括:
    在所述第二导电层上沉积所述离子阻挡层之后,以钛、铝、硅、硼的纯净物或混合物为靶材,在氮气气氛下在所述离子阻挡层上沉积隔离层。
PCT/CN2020/111549 2019-09-06 2020-08-27 一种电致变色玻璃及其制造方法 WO2021043048A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/640,374 US20220334444A1 (en) 2019-09-06 2020-08-27 Electrochromic glass and method for manufacturing same
JP2022515558A JP2022547180A (ja) 2019-09-06 2020-08-27 エレクトロクロミックガラスおよびその製造方法
KR1020227010918A KR20220058589A (ko) 2019-09-06 2020-08-27 전기 변색 유리 및 그 제조방법
EP20860509.7A EP4027191A4 (en) 2019-09-06 2020-08-27 ELECTROCHROMIC GLASS AND ITS MANUFACTURING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910851239.2 2019-09-06
CN201910851239.2A CN110471230B (zh) 2019-09-06 2019-09-06 一种电致变色玻璃及其制造方法

Publications (1)

Publication Number Publication Date
WO2021043048A1 true WO2021043048A1 (zh) 2021-03-11

Family

ID=68515358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111549 WO2021043048A1 (zh) 2019-09-06 2020-08-27 一种电致变色玻璃及其制造方法

Country Status (6)

Country Link
US (1) US20220334444A1 (zh)
EP (1) EP4027191A4 (zh)
JP (1) JP2022547180A (zh)
KR (1) KR20220058589A (zh)
CN (1) CN110471230B (zh)
WO (1) WO2021043048A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110471230B (zh) * 2019-09-06 2021-10-08 南通繁华新材料科技有限公司 一种电致变色玻璃及其制造方法
CN113763804A (zh) * 2020-06-01 2021-12-07 深圳市万普拉斯科技有限公司 显示屏幕、显示方法及电子设备
CN113568233B (zh) * 2021-07-21 2022-10-14 深圳市光羿科技有限公司 一种电致变色器件及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1227362A1 (de) * 2001-01-24 2002-07-31 Gesimat GmbH, Gesellschaft für intelligente Materialen, und Technologien Elektrochromes Verbundglas
CN104102060A (zh) * 2014-03-28 2014-10-15 能源X控股有限公司 一种智能变色窗制备方法
CN104656336A (zh) * 2013-11-20 2015-05-27 常州雅谱智能变色光学器件有限公司 车辆电致变色防眩装置制造的封装方法
CN104808413A (zh) * 2015-05-21 2015-07-29 京东方科技集团股份有限公司 一种电致变色显示面板及其制作方法、显示装置
CN107473607A (zh) * 2017-07-28 2017-12-15 浙江上方电子装备有限公司 一种夹胶式电致变色玻璃、制备方法及其应用
CN109613782A (zh) * 2019-02-02 2019-04-12 Oppo广东移动通信有限公司 电致变色器件及制备方法、壳体、电子设备
CN110471230A (zh) * 2019-09-06 2019-11-19 南通繁华新材料科技有限公司 一种电致变色玻璃及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19737978C2 (de) * 1997-08-30 1999-09-16 Bayer Ag Elektrochromer Spiegel
AU2001288117A1 (en) * 2000-11-10 2002-05-21 Murakami Corporation Solid state electrochromic element and mirror device and crt display comprising it
US8693079B2 (en) * 2008-01-31 2014-04-08 Ajjer, Llc Sealants and conductive busbars for chromogenic devices
FR2939527B1 (fr) * 2008-12-05 2011-10-21 Saint Gobain Dispositif electrocommandable presentant un acheminement ameliore des charges electriques du milieu electroactif
CN102176102B (zh) * 2010-12-27 2013-06-26 航天材料及工艺研究所 一种变发射率、变反射率电致变色智能热控涂层及制备方法
KR20190041044A (ko) * 2014-09-24 2019-04-19 젠텍스 코포레이션 융제 형성 표시를 갖는 전기 광학 요소 및 이를 제조하는 방법
US20180024401A1 (en) * 2016-07-19 2018-01-25 Gentex Corporation Electrical connections for electro-optic elements
CN108803183B (zh) * 2018-04-18 2022-02-25 南通繁华新材料科技有限公司 一种双层全无机电致变色器件及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1227362A1 (de) * 2001-01-24 2002-07-31 Gesimat GmbH, Gesellschaft für intelligente Materialen, und Technologien Elektrochromes Verbundglas
CN104656336A (zh) * 2013-11-20 2015-05-27 常州雅谱智能变色光学器件有限公司 车辆电致变色防眩装置制造的封装方法
CN104102060A (zh) * 2014-03-28 2014-10-15 能源X控股有限公司 一种智能变色窗制备方法
CN104808413A (zh) * 2015-05-21 2015-07-29 京东方科技集团股份有限公司 一种电致变色显示面板及其制作方法、显示装置
CN107473607A (zh) * 2017-07-28 2017-12-15 浙江上方电子装备有限公司 一种夹胶式电致变色玻璃、制备方法及其应用
CN109613782A (zh) * 2019-02-02 2019-04-12 Oppo广东移动通信有限公司 电致变色器件及制备方法、壳体、电子设备
CN110471230A (zh) * 2019-09-06 2019-11-19 南通繁华新材料科技有限公司 一种电致变色玻璃及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4027191A4 *

Also Published As

Publication number Publication date
CN110471230B (zh) 2021-10-08
CN110471230A (zh) 2019-11-19
EP4027191A1 (en) 2022-07-13
KR20220058589A (ko) 2022-05-09
EP4027191A4 (en) 2023-11-22
US20220334444A1 (en) 2022-10-20
JP2022547180A (ja) 2022-11-10

Similar Documents

Publication Publication Date Title
WO2021043048A1 (zh) 一种电致变色玻璃及其制造方法
JP7379600B2 (ja) エレクトロクロミック素子及び陽極着色エレクトロクロミック物質
US20230176439A1 (en) Electrochromic devices and methods
TWI736526B (zh) 電致變色堆疊及系統及製備其之方法
KR101535100B1 (ko) 전기변색 스마트 윈도우 및 그 제조 방법
EP2470953B1 (en) Electrochromic device and assembly incorporating the same
CN106959566B (zh) 一种准固态电致变色器件的制备方法
CN107765490A (zh) 一种柔性电致变色隔热智能窗膜及其制备工艺
CN110398867B (zh) 一种电致变色器件及其制备方法
CN106462021A (zh) 低缺陷率电致变色装置的制作
CN109613781A (zh) 含无机透明导电膜的全无机固态电致变色模组
CN108803183A (zh) 一种双层全无机电致变色器件及其制备方法
CN103304150A (zh) 智能调光低辐射玻璃及其制备方法
CN111650795A (zh) 一种电致变色玻璃
CN108169975A (zh) 一种集成电致变色与电双层电容结构的器件及其激光加工方法
CN107045242A (zh) 电致变色结构及其形成方法
US11500257B2 (en) Inorganic solid-state electrochromic module containing inorganic transparent conductive film
JP2007087866A (ja) 透明導電性基板及びその製造方法並びに光電変換素子
JP2008107587A (ja) エレクトロクロミック素子及びその製造方法
CN213122540U (zh) 一种电致变色玻璃
TW201843292A (zh) 一種堆疊式電致色變薄膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022515558

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227010918

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020860509

Country of ref document: EP

Effective date: 20220406