WO2021043010A1 - 信息增强方法、装置、设备和存储介质 - Google Patents

信息增强方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2021043010A1
WO2021043010A1 PCT/CN2020/110497 CN2020110497W WO2021043010A1 WO 2021043010 A1 WO2021043010 A1 WO 2021043010A1 CN 2020110497 W CN2020110497 W CN 2020110497W WO 2021043010 A1 WO2021043010 A1 WO 2021043010A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
repeated
dcis
resource
information
Prior art date
Application number
PCT/CN2020/110497
Other languages
English (en)
French (fr)
Inventor
叶新泉
蒋创新
鲁照华
李儒岳
吴昊
肖华华
陈艺戬
张淑娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20859781.5A priority Critical patent/EP4027725A4/en
Priority to BR112022003972A priority patent/BR112022003972A2/pt
Priority to US17/640,025 priority patent/US20220329386A1/en
Publication of WO2021043010A1 publication Critical patent/WO2021043010A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • This application relates to a wireless communication network, for example, to an information enhancement method, device, device, and storage medium.
  • NR New Ratio Access Technology
  • Multi-TRP multiple transmission and reception
  • Multi-Pannel multi-panel
  • Repeated transmission is a common method to improve communication reliability.
  • physical layer downlink shared channel Physical Downlink Share Channel, PDSCH
  • Physical Downlink Control Channel Physical Downlink Channel, PDSCH
  • PDSCH Physical Downlink Control Channel
  • PDCCH Downlink Control Channel
  • the present application provides an information enhancement method, device, equipment, and storage medium to improve the reliability of PDCCH repeated transmission in a Multi-TRP/Pannel scenario.
  • the embodiment of the present application provides an information enhancement method, and the method includes:
  • DCI Downlink Control Information
  • the DCI related information in the DCI set is determined according to the repeated DCI.
  • the embodiment of the present application also provides an information enhancement method, the method includes:
  • An embodiment of the present application also provides an information enhancement device, including:
  • a repeated DCI determination module configured to determine a first DCI subset and a second DCI subset in a downlink control information DCI set, wherein the first DCI subset includes N repeated DCIs, and the second DCI subset includes MN non-repeated DCI; N is an integer greater than 1, and M is an integer greater than N;
  • the related information determining module is configured to determine the related information of the DCI in the DCI set according to the repeated DCI.
  • An embodiment of the present application also provides an information enhancement device, including:
  • the configuration module is configured to configure the association relationship of N repeated DCIs, the first resource information and the second resource information;
  • the sending module is configured to send the association relationship, the first resource information and the second resource information to the UE.
  • An embodiment of the present application also provides a user equipment, including:
  • One or more processors are One or more processors;
  • Memory used to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the information enhancement method described above.
  • An embodiment of the present application also provides a base station, which includes:
  • One or more processors are One or more processors;
  • Memory used to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the information enhancement method described above.
  • the embodiment of the present application also provides a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, any one of the methods in the embodiments of the present application is implemented.
  • FIG. 1 is a schematic flowchart of an information enhancement method provided by this application
  • FIG. 2 is a schematic diagram of the structure of a wireless network provided by this application.
  • FIG. 3 is a schematic diagram of DAI values that are detected for repeated DCI provided by this application.
  • FIG. 4 is a schematic diagram of DAI calculation provided by this application.
  • FIG. 5 is a schematic diagram of DAI values provided by this application where no repeated DCI is detected
  • FIG. 6 is a schematic diagram of the DAI value that is detected by only the first repeated DCI provided by this application.
  • FIG. 7 is a schematic diagram of the DAI value that is detected only after repeated DCI is provided in this application.
  • FIG. 8 is a schematic diagram of the final DCI value when at least one repeated DCI is detected provided by this application.
  • FIG. 9 is a schematic structural diagram of scheduling a PDSCH on different time slots with repeated DCI provided by this application.
  • FIG. 10 is a schematic structural diagram of scheduling a PUSCH on different time slots with repeated DCI provided by this application;
  • FIG. 11 is a schematic structural diagram of scheduling an AP SRS on different time slots with repeated DCI provided by this application;
  • FIG. 12 is a schematic structural diagram of the repeated DCI scheduling multiple PDSCHs in different time slots provided by this application.
  • FIG. 13 is a schematic structural diagram of the repeated DCI scheduling multiple PUSCHs in different time slots provided by this application;
  • FIG. 14 is a schematic flowchart of an information enhancement method provided by this application.
  • FIG. 15 is a schematic structural diagram of an information enhancement device provided by this application.
  • FIG. 16 is a schematic structural diagram of an information enhancement device provided by this application.
  • FIG. 17 is a schematic structural diagram of a user equipment provided by this application.
  • FIG. 18 is a schematic structural diagram of a base station provided by this application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LIE-A Advanced long term evolution
  • UMTS Universal Mobile Telecommunication System
  • 5G fifth generation mobile network
  • the embodiments of this application can be used in wireless networks of different standards.
  • the wireless access network may include different communication nodes in different systems.
  • Fig. 2 is a schematic structural diagram of a wireless network system provided by this application.
  • the wireless network system 100 includes a base station 101, a user equipment 110, a user equipment 120, and a user equipment 130.
  • the base station 101 performs wireless communication with the user equipment 110, the user equipment 120, and the user equipment 130, respectively.
  • the base station may be a device that can communicate with user equipment.
  • the base station can be any device with wireless transceiver function. Including but not limited to: base station NodeB, evolved base station eNodeB, base station in 5G communication system, base station in future communication system, access node in WiFi system, wireless relay node, wireless backhaul node, etc.
  • the base station may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario; the base station may also be a small station, a transmission reference point (TRP), etc., which are not limited in this embodiment of the application.
  • cloud radio access network cloud radio access network, CRAN
  • TRP transmission reference point
  • User equipment is a device with wireless transceiver function. It can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes and balloons). And satellite class).
  • the user equipment may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and wireless terminals in transportation safety , Wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • User equipment may sometimes be called terminal, access terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal, mobile device, UE terminal, wireless communication device, UE agent, UE device, etc.
  • the embodiments of the present application are not limited.
  • the embodiment of the present application includes one UE and at least two TRPs (or one TRP includes two panels).
  • the repeated PDCCH or PDSCH comes from two different TRPs, and they can be on different CCs or BWPs, or on the same CC or BWP.
  • FIG. 1 is a schematic flowchart of an information enhancement method provided by this application. This method can be applied to the case of repeated PDCCH transmission in the Multi-TRP/Pannel scenario. This method may be executed by the information enhancement apparatus provided in the present application, and the information enhancement apparatus may be implemented by software and/or hardware and integrated on user equipment (UE).
  • UE user equipment
  • the information enhancement method provided by the embodiment of the present application mainly includes steps S110 and S120.
  • S110 Determine a first DCI subset and a second DCI subset in a downlink control information DCI set, where the first DCI subset includes N repeated DCIs, and the second DCI subset includes MN non-repetitive DCIs ; N is an integer greater than 1, and M is an integer greater than N.
  • DCI refers to the information carried in the PDCCH.
  • the domains contained in different types of DCI and the contents of the domains may be different.
  • DAI Downlink Assignment Index
  • HARQ Hybrid Automatic Repeat Request
  • ACK acknowledgement message
  • RV Redundancy version
  • the 4 bits in the Time domain resource assignment (TDRA) field in DCI format 0_0 are used to index the slot offset K2 of the scheduled PUSCH relative to the DCI, the symbol start position S in the slot, and The symbol length in the slot is L; 4 bits in the TDRA field in the DCI format 1_0 are used to index the slot offset K0 of the scheduled PDSCH relative to the DCI, the symbol start position S in the slot, and the symbol length L in the slot.
  • TDRA Time domain resource assignment
  • the PDCCH can send downlink scheduling information to the UE to instruct the UE to receive the PDSCH; it can also send uplink scheduling information to the UE to instruct the UE to send the physical layer uplink shared channel (Physical Uplink Shared Channel, PUSCH); it can also send the physical layer uplink control channel (Physical Uplink Shared Channel, PUSCH).
  • the control channel resource set (Control Resource Set, CORESET) is composed of one or more control channel elements (Control Chanel Element, CCE), and represents the time-frequency resource location where the base station may send the PDCCH.
  • CCE Control Chanel Element
  • the UE does not know which form of DCI is carried by the PDCCH, nor does it know which candidate CCE the DCI is transmitted on.
  • the UE needs to blindly decode all possible DCI formats on CCEs of different aggregation levels.
  • the concept of Search Space (SS) is introduced.
  • SS is composed of a set of CCEs with a given aggregation level.
  • the base station can configure one or more SSs for the UE.
  • the time domain opportunity occurrence is determined by the monitoring period and the offset monitoringSlotPeriodicityAndOffset in the SS, which represents the time domain position where the base station may transmit the PDCCH, and the carrier unit (Componet Carrier, CC) represents the subcarrier and represents the frequency domain position.
  • the carrier unit Componet Carrier, CC
  • the UE knows its SS according to the configuration information of the base station, and first tries to use the corresponding Radio Network Temporary Identifier (RNTI), possible DCI format, and possible aggregation level to perform cyclic redundancy check on the CCE in its SS ( Cyclic Redundancy Check, CRC), if the check is successful, the UE knows that the information is needed by itself, and thus the content in the DCI can be solved.
  • RNTI Radio Network Temporary Identifier
  • CRC Cyclic Redundancy Check
  • the UE blindly detects the DCI in the corresponding search space (Search Space, SS) in the order of the time domain and then the frequency domain, and obtains the downlink assignment index (DAI), because the repeated DCI content has the same DAI value In this way, the value of DAI violates the established rules after the blind solution, and the UE may understand the error and think that a missed detection has occurred. That is, when the UE blindly decodes the DCI, it cannot guarantee the correct demodulation of all DCIs. It needs to consider the detection of repeated DCIs and how to solve the problem of DAI misalignment encountered.
  • DAI downlink assignment index
  • the DCI set includes M DCIs, where the M DCIs include N repeated DCIs and M-N non-repetitive DCIs; the first DCI subset includes N repeated DCIs, where M is an integer greater than N.
  • the method further includes: receiving the pre-configured association relationship of the N repeated DCIs, where the association relationship is used to determine the repeated DCI.
  • the configured association relationship of the N repeated DCIs includes at least one of the following:
  • Each repeated DCI adds a search space reference (Search Space Reference, SSREF) field to the search space SS, where the content in the SSREF field is not a Search Space Identifier (SSID) where the current DCI is located.
  • SSREF Search Space Reference
  • SSID Search Space Identifier
  • Each repeated DCI adds a control channel resource set reference (CORESETREF) field to the control channel resource set CORESET, where the content in the CORESETREF field is not the control channel resource set identifier (CORESETID) where the current DCI is located.
  • CORESETREF control channel resource set reference
  • a predefined high-level repetitive signaling rule wherein the repetitive signaling rule includes at least one of the following: the same first information element is configured on the SS, wherein the first information element includes at least one of the following: A duration, monitoring time slot cycle, monitoring time slot cycle offset, number of candidate PDCCHs, DCI format, symbol position in the monitoring time slot; CORESET is configured with the same second information element, wherein the second information
  • the elements include at least one of the following: second duration, control channel element to resource element group mapping type, frequency domain resources, interleaving size, PDCCH DMRS scrambling ID, precoding granularity, transmission control information set, shift list, resource Number of group bindings.
  • the base station configures M CORESETs or SSs for the UE, and indicates to the UE that there are N CORESETs or DCIs on the SS in the M CORESETs or SSs, and the DCI on the SS is repeated, where M and N are positive integers.
  • the repeated DCI can be configured with reference information through any one or a combination of the following methods.
  • the base station only configures reference information for the SS where the two repeated DCIs are located, and the SS where the other two non-repetitive DCIs are located does not configure the reference information.
  • the base station only configures reference information for the CORESET where the two repeated DCIs are located, and does not configure the reference information for the CORESET where the other two non-repetitive DCIs are located.
  • the base station configures repeated signaling rules.
  • Configuring repeated signaling rules includes at least one of the following: for two repeated DCIs, configure the same one or more first information elements on the SS; for two non-repetitive DCIs, configure a different one on the SS Or multiple first information elements. For two repeated DCIs, configure the same one or more second information elements on CORESET; for two non-repetitive DCIs, configure one or more different second information elements on CORESET.
  • the first information element may be at least one of the following: first duration, monitoring slot period, monitoring slot period offset, number of candidate PDCCHs, DCI format, symbol position in the monitoring slot, etc.
  • the second information element may be at least one of the following: second duration, control channel element to resource element group mapping type, frequency domain resources, interleaving size, PDCCH DMRS scrambling ID, precoding granularity, transmission control information set , Shift the number of directories or resource groups bound.
  • the search space SS is configured with the same first duration, the same monitoring time slot cycle, the same monitoring time slot cycle offset, the same number of candidate PDCCHs, the same DCI format, and the same monitoring time slot. Symbol position.
  • control channel resource set CORESET is configured with the same configuration second duration, the same control channel element to resource element group mapping type, the same frequency domain resources, the same interleaving size, the same PDCCH DMRS scrambling ID, and the same Precoding granularity, the same transmission control information set, the same shift directory or the same number of resource group bindings.
  • the UE determines the time-frequency resource position of the blind DCI according to the information of the M CORESET or SS configured by the base station and the rule indicating the repeated DCI, the number of the blind solution DCI is required, and the time-frequency resource position of the DCI is repeated.
  • determining the N repeated DCIs in the DCI set includes at least one of the following methods: determining the N DCIs satisfying the high-level repeated signaling rules in the DCI set as repeated DCIs; and setting the DCI set in the search space
  • the N DCIs with a search space reference on the SSREF domain on the SS are determined to be repeated DCIs; the N DCIs in the DCI set with a channel control channel resource set on the control channel resource set CORESET reference CORESETREF domain are determined to be repeated DCIs; wherein, The contents of all fields included in the N DCIs are the same.
  • determining the N duplicate DCIs in the DCI set may be that the UE detects that there is an SSREF domain in both the first SS and the second SS.
  • the contents in the SSREF domain are SSID2 and SSID1, respectively.
  • SSID1 is for the first SS. If SSID2 corresponds to the second SS, it is determined that the DCI on the first SS and the second SS are repeated DCIs.
  • determining the N duplicate DCIs in the DCI set may also be that the UE detects that there is a CORESETREF domain in both the first CORESET and the second CORESET.
  • the contents in the CORESETREF domain are CORESETID2 and CORESETID1, respectively, and CORESETID1 corresponds to the first CORESET CORESET, CORESETID2 correspond to the second CORESET, it is determined that the DCI on the first CORESET and the second CORESET are repeated DCIs.
  • the determination of N repeated DCIs in the DCI set may also be the detection of at least one or more identical first information elements on the SS, and then it is determined that the DCI on the SS is a repeated DCI.
  • the first information element may be at least one of the following: a first duration, a monitoring slot period, a monitoring slot period offset, the number of candidate PDCCHs, a DCI format, a symbol position in a monitoring slot, and so on.
  • the determination of N repeated DCIs in the DCI set may also be that at least one or more identical second information elements are detected on CORESET, and then the DCI on CORESET is determined to be repeated DCIs.
  • the second information element can be at least one of the following: second duration, control channel element to resource element group mapping type, frequency domain resources, interleaving size, PDCCH DMRS scrambling ID, precoding granularity, transmission control information set, shift Bit directory, number of resource group bindings, etc.
  • S120 Determine DCI related information in the DCI set according to the repeated DCI.
  • the determining DCI related information in the DCI set according to the repeated DCI includes one of the following methods:
  • the DCI set includes M DCIs, where the M DCIs include N repeating DCIs and M-N non-repeating DCIs; the first DCI subset includes N repeating DCIs, where M is a positive integer and M>N.
  • the value of the downlink allocation indicator DAI of the DCI set is determined according to the repeated DCI.
  • the determining the value of the downlink allocation indication DAI in the DCI set according to the repeated DCI includes: determining the DCI set according to the detection results of N repeated DCIs in the first DCI subset A value of DAI, where the DAI values of repeated DCIs in the first DCI subset are the same.
  • FIG. 3 is a schematic diagram of the DAI values when the repeated DCI is detected.
  • the UE sequentially Blindly solve DCI at the position of (occasion 0, CC0), (occasion 0, CC1), (occasion 0, CC2), (occasion 1, CC0), (occasion 1, CC1), and know (occasion 0, CC0)
  • the DCI on (occasion 1, CC0) is repeated, that is, the DCI at the position of the dashed box and the DCI at the position of the real box in the figure are repeated.
  • the UE blindly decodes the DCI it cannot guarantee the correct demodulation of all DCIs. It is necessary to consider the detection of repeated DCIs and how to solve the problem of DAI misalignment encountered.
  • Fig. 4 is a schematic diagram of the DAI calculation provided by the present application. As shown in Fig. 4, the calculation of the DAI value is based on the sequence of time domain followed by frequency domain and the result modulo 4 plus 1.
  • the value of the DCI set DAI is determined according to the order in which the DCI is actually detected.
  • FIG. 5 is a schematic diagram of DAI values provided by the present application where no repeated DCI is detected. As shown in Figure 5, repeated DCI is not detected, that is, the 1 in the real and dashed box positions in Figure 5 is not detected.
  • the UE will calculate the DAI value in the order of actual DCI detection, and will not follow the DAI in the DCI.
  • the value is reserved, that is, the final DAI value is 123 instead of 234.
  • the DCI with the smallest time domain opportunity index and carrier index in the first DCI subset is used as the target DCI, and the first DCI subset is
  • the DAI is placed at the target DCI position, and the DAI value of the DCI set is determined according to the DAI of the target DCI and the DAI of the non-repeated DCI in the DCI set, where the position of the DAI is determined by the time domain opportunity index and the carrier unit index.
  • the DAI value of the non-target DCI position in the first DCI subset is ignored, the relative order of the DAI of the non-repeated DCI in the DCI set remains unchanged, and the relative order of the DAI of the non-repeated DCI and the DAI of the target DCI in the DCI set is kept No change, where the DAI value of the non-repeated DCI in the DCI set is determined according to the content of the DAI field in the detected DCI.
  • FIG. 3 is a schematic diagram of the DAI values that are detected for repeated DCI in this application.
  • both DCIs are detected, and 1s at the positions of the real frame and the virtual frame are both detected.
  • the UE determines that the DCI at the position of 1 of the real frame and the virtual frame is repeated, and the value of DAI after blind solution is 12314.
  • the UE already knows the first real frame 1 and the second The dashed frame 1 is repeated.
  • the target DCI is located at the position of the first real frame 1, and the final DAI value is 1234.
  • FIG. 6 is a schematic diagram of the DAI value that only the first repeated DCI is detected provided by this application. Only the foremost duplicate DCI is detected, that is, the solid frame 1 in Figure 6 is detected, and the dashed frame 1 is not detected. In the repeated DCI, the target DCI is located at the position of the first real box 1. After the UE blind solution, the DAI value is 1234, and the DAI value is normal.
  • FIG. 7 is a schematic diagram of the DAI value when only the later repeated DCI is detected provided by this application. Only the last repeated DCI is detected, that is, the solid frame 1 in Figure 7 is not detected, and the dashed frame 1 is detected. After the UE blind solution, the DAI value is 2341. The UE knows that the DCI of the real frame 1 and the DCI of the virtual frame 1 are duplicates. Although the DCI at the position of the real frame 1 is not detected, the target DCI of the repeated DCI is located in the first real frame. At the position of 1, the final DAI value is 1234.
  • FIG. 8 is a schematic diagram of a final DCI sequence in which at least one repeated DCI is detected provided in this application.
  • the final DAI value of the duplicate DCI needs to be placed in the DCI position where the time domain opportunity index and the carrier unit index are the smallest in the duplicate DCI, corresponding to the real box 1 in Fig. 8 Position, according to the OR operation, the final DCI value is 1234.
  • the transmission time slot of the repeated DCI scheduling resource is determined according to the repeated DCI.
  • the determining the N repeated DCIs in the DCI set includes: determining the N DCIs satisfying the high-level repeated signaling rules in the DCI set as repeated DCIs; and determining that there are in the DCI set on the search space SS
  • the N DCIs in the search space reference SSREF domain are determined to be repeated DCIs
  • the N DCIs in the DCI set that have a channel control channel resource set on the control channel resource set CORESET reference CORESETREF domain are determined to be repeated DCIs; wherein, the N DCIs The content of all domains included is the same.
  • the determination of N repeated DCIs in the DCI set is basically the same as the determination of N repeated DCIs in the DCI set provided in the foregoing embodiment.
  • the determination of N repeated DCIs in the DCI set provided in the foregoing embodiment.
  • the resource type and the number of resources for repeated DCI scheduling are determined, where the resource type includes at least one of the following: physical layer downlink shared channel PDSCH, physical layer uplink shared channel PUSCH, and aperiodic sounding reference Signal (Aperiodic Sounding Reference Signal, AP SRS).
  • the resource type includes at least one of the following: physical layer downlink shared channel PDSCH, physical layer uplink shared channel PUSCH, and aperiodic sounding reference Signal (Aperiodic Sounding Reference Signal, AP SRS).
  • the N repeated DCIs are transmitted in N different transmission time slots, and the repeated DCIs schedule the same resource.
  • the method further includes: receiving configured first resource information, where the first resource information includes: the type and number of repeated DCI scheduling resources, the resource reference DCI of the repeated DCI scheduling, and the resource The type includes at least one of the following: physical layer downlink shared channel PDSCH, physical layer uplink shared channel PUSCH, and aperiodic sounding reference signal AP SRS.
  • the first resource information is configured by the base station.
  • determining the resource transmission time slot of the repeated DCI scheduling includes: determining the resource transmission time slot of the repeated DCI scheduling according to the reference DCI of the N repeated DCIs.
  • the reference DCI includes at least one of the following: the DCI with the smallest transmission time slot among the N repeated DCIs; the DCI with the largest transmission time slot among the N repeated DCIs; the DCI with the smallest control channel resource set identifier corresponding to the N repeated DCIs; N
  • the control channel resource set corresponding to the repeated DCIs identifies the largest DCI; the search space corresponding to the N repeated DCIs identifies the smallest DCI; the search space corresponding to the N repeated DCIs identifies the largest DCI.
  • the base station configures repeated DCI to schedule only one PDSCH on different time slots.
  • the base station configures repeated DCI to schedule only one PDSCH on different time slots and the PDSCH position is determined by the DCI with the smallest transmission time slot.
  • the UE determines the time-frequency resource position of the blind DCI according to the information of the M CORESET or SS configured by the base station and the rule indicating the repeated DCI, the number of the blind solution DCI is required, and the time-frequency resource position of the DCI is repeated.
  • the UE determines the final scheduled resource type and the number of resources according to the number of PDSCH resources that can be scheduled by the repeated DCI configured by the base station and the detection of the repeated DCI after blind solution.
  • the UE determines that 2 repeated DCIs are located on different time slots and schedules the same PDSCH. Then there is a time slot offset problem between the repeated DCI at the back of the transmission time slot and the scheduled PDSCH. .
  • Figure 9 is a schematic diagram of the structure of the repeated DCI scheduling a PDSCH in different time slots of the present application. As shown in Figure 9, DCI0 and DCI1 are repeated and both schedule PDSCH1. DCI0, DCI1, and PDSCH are located in slot p1, slot p2, respectively. slot p1+q1, where p2>p1>0, q1>(p2-p1).
  • DCI0 and DCI1 will schedule different PDSCHs. In order to ensure that the same PDSCH is scheduled, when calculating the transmission timeslots for the DCI1 scheduled PDSCH, DCI0 should be referred to.
  • the transmission time slot TD of the PDSCH is determined by the reference DCI transmission time slot n1, the carrier spacing parameter ⁇ PDSCH of the PDSCH , and the carrier spacing parameter ⁇ PDCCH and K 0 of the physical downlink control channel corresponding to the DCI.
  • K 0 is the transmission slot offset of the reference DCI and PDSCH, and K 0 can be 0 or 1.
  • N repeated DCIs schedule a PDSCH.
  • the reference time slot of the PDSCH is the time slot of the smallest DCI in the repeated DCI.
  • the PDSCH transmission time slot is:
  • the TD is the PDSCH transmission time slot scheduled by repeated DCI
  • n1 is a positive integer
  • ⁇ PDSCH is the PDSCH carrier spacing configuration parameter
  • ⁇ PDCCH is the physical layer downlink control channel PDCCH carrier spacing configuration parameter
  • K 0 is the repeated DCI and its scheduled PDSCH
  • the offset between the time slots, K 0 is determined by the numerology information of the PDSCH system parameter set, K 0 is 0 or 1
  • n1 is the time slot of the smallest DCI in the first DCI subset.
  • the base station configures repeated DCI to schedule only one PDSCH on different time slots.
  • the base station configures repeated DCIs in different slots and schedules a PDSCH, and the position of the PDSCH is determined by the DCI with the smallest transmission time slot.
  • the base station configures repeated DCIs in different slots and schedules a PDSCH.
  • the time interval between the DCI and the PDSCH is the time interval between the DCI with the largest transmission time slot and the scheduled PDSCH.
  • the UE determines the time-frequency resource position of the blind DCI according to the information of the M CORESET or SS configured by the base station and the rule indicating the repeated DCI, the number of the blind solution DCI is required, and the time-frequency resource position of the DCI is repeated.
  • the UE determines the final scheduled resource type and the number of resources according to the number of PDSCH resources that can be scheduled by the repetitive DCI configured by the base station and the repetitive DCI detection condition after blind solution.
  • the UE determines that the two repeated DCIs are located on different slots and schedules the same PDSCH.
  • the PDSCH position is determined by the smallest repeated DCI in the transmission time slot, and the highest repeated DCI determines the space-related parameters.
  • the repeated DCI and PDSCH time interval is the time interval between the DCI with the largest transmission time slot and the scheduled PDSCH.
  • DCI0 and DCI1 are repeated and both schedule PDSCH0.
  • DCI0, DCI1, and PDSCH0 are located on slot p1, slot p2, and slot p1+q1 respectively, where p2>p1>0, q1>(p2-p1 ).
  • the time interval between DCI0 and the scheduled PDSCH is greater than the time interval between DCI1 and the scheduled PDSCH, in order to ensure that there are the same criteria for the default receiving beam, when determining the space-related parameters Calculate the time interval between DCI0 and the scheduled PDSCH with reference to the time interval between DCI1 and the scheduled PDSCH.
  • the time interval between the repeated DCI and the scheduled PDSCH is determined according to the difference between the transmission time slot of the PDSCH and the transmission time slot n2 of the second reference DCI; and the space-related parameters of the PDSCH are determined according to the time interval.
  • the second reference DCI is any DCI in the reference DCI that is not the first reference DCI.
  • the time interval between repeated DCI and scheduled PDSCH is:
  • Td is the time interval between repeated DCI and PDSCH
  • n1 is a positive integer
  • n1 is the time slot with the smallest repeated DCI
  • n2 is the time slot with the largest repeated DCI
  • ⁇ PDSCH is the PDSCH carrier interval configuration parameter
  • ⁇ PDCCH is the PDCCH carrier spacing configuration parameter
  • K 0 is the time slot offset between the repeated DCI and its scheduled PDSCH
  • K 0 is determined by the numerology information of the PDSCH system parameter set
  • K 0 is 0 or 1
  • n1 and n2 are both Positive integer.
  • the DCI with repeated configurations of the base station can only schedule one PUSCH on different slots.
  • the base station configures repeated DCIs in different slots and schedules a PUSCH, and the position of the PUSCH is determined by the DCI with the smallest transmission time slot.
  • the UE determines the time-frequency resource position of the blind DCI according to the information of the M CORESET or SS configured by the base station and the rule indicating the repeated DCI, the number of the blind solution DCI is required, and the time-frequency resource position of the DCI is repeated.
  • the UE determines the final scheduled resource type and the number of resources according to the number of PUSCH resources that can be scheduled by the repeated DCI configured by the base station and the detection situation of the repeated DCI after blind solution.
  • the UE determines that two repeated DCIs are located on different slots and schedules the same PUSCH.
  • the DCI with the smallest transmission time slot determines the PUSCH position, then the repeated DCI at the back of the transmission time slot is the same as There is a time slot offset problem between scheduled PUSCHs.
  • Figure 10 is a schematic structural diagram of the repeated DCI scheduling a PUSCH in different time slots provided by this application. As shown in Figure 10, DCI0 and DCI1 are repeated, and PUSCH0 is scheduled. DCI0, DCI1, and PUSCH0 are located in slot p1 and slot respectively. p2, slot p1+q2, where p2>p1>0, q2>(p2-p1).
  • DCI0 and DCI1 will schedule different PUSCHs. In order to ensure that the same PUSCH is scheduled, DCI0 should be referred to when calculating the transmission timeslots for PDSCH scheduled by DCI1.
  • the resource for the repeated DCI scheduling is the physical layer uplink shared channel PUSCH, the transmission time slot TU of the PUSCH is transmitted by reference to the DCI transmission time slot n1, the carrier spacing parameter ⁇ PUSCH of the PUSCH , and the physical downlink control channel corresponding to the DCI
  • the carrier spacing parameters ⁇ PDCCH and K 1 are determined, where the K 1 is the transmission slot offset of the reference DCI and the PUSCH.
  • N repeated DCIs schedule a PUSCH.
  • the reference time slot of the PUSCH is the time slot of the smallest DCI in the repeated DCI.
  • the PUSCH transmission time slot is:
  • TU is the PUSCH transmission time slot scheduled by repeated DCI
  • n1 is the time slot with the smallest repeated DCI
  • ⁇ PUSCH is the PUSCH carrier spacing configuration parameter
  • ⁇ PDCCH is the PDCCH carrier spacing configuration parameter
  • K 1 is the repeated DCI and its scheduled PUSCH
  • the time slot offset between the two K 1 is determined by the numerology information of the PDSCH system parameter set, and K 1 is any positive integer from 1 to 6.
  • the DCI with repeated configuration of the base station can only schedule one AP SRS on different slots.
  • the base station configures repeated DCIs in different slots and schedules an AP SRS, and the AP SRS position is determined by the DCI with the smallest transmission time slot.
  • the UE determines the time-frequency resource position of the blind DCI according to the information of the M CORESET or SS configured by the base station and the rule indicating the repeated DCI, the number of the blind solution DCI is required, and the time-frequency resource position of the DCI is repeated.
  • the UE determines the final scheduled resource type and the number of resources according to the number of APs and SRS resources that can be scheduled by the base station with repeated DCI and the detection of the repeated DCI after blind solution.
  • the UE determines that the two repeated DCIs are located in different slots, and schedules the same AP SRS.
  • the DCI with the smallest transmission time slot determines the SRS position, and then the repeated DCI at the back of the transmission time slot There is a time slot offset problem with the scheduled AP SRS.
  • Figure 11 is a schematic structural diagram of the repeated DCI scheduling an AP SRS in different time slots provided by this application.
  • DCI0 and DCI1 are repeated and both scheduling SRS0.
  • DCI0, DCI1, and SRS0 are located in slot p1 and slot respectively.
  • DCI0 and DCI1 will trigger different AP SRS. To ensure that the same AP SRS is triggered, DCI0 should be referenced when calculating the AP SRS transmission time slot triggered by DCI1.
  • the resource scheduling is repeated DCI AP SRS, the AP SRS transmission time slot designated by reference DCI TA transmission slot n1, the carrier spacing AP SRS parameters ⁇ SRS, the corresponding physical downlink control channel DCI carrier
  • the interval parameter ⁇ PDCCH and k are determined, where the k is the transmission slot offset between the reference DCI and the AP SRS, k is determined by the slot offset parameter in the SRS resource set resource set in the high-level signaling, and k is 0 To any integer of 32.
  • the N repeated DCIs schedule an AP SRS
  • the resource transmission time slot is the time slot of the smallest DCI among repeated DCI time slots
  • the AP SRS transmission time slot is:
  • TA is the AP SRS transmission time slot scheduled by repeated DCI
  • n1 is the time slot with the smallest repeated DCI
  • ⁇ SRS is the SRS carrier spacing configuration parameter
  • ⁇ PDCCH is the PDCCH carrier spacing configuration parameter
  • k is the DCI and its scheduled AP
  • the slot offset between SRSs, k is determined by the slot offset parameter in the resource set of the SRS resource set in the high-level signaling, and k is an integer from 0 to 32.
  • the repeated DCI redundancy version RV is determined according to the repeated DCI.
  • the determining the N repeated DCIs in the DCI set includes at least one of the following: determining the N DCIs satisfying the high-level repeated signaling rules in the DCI set as repeated DCIs; and searching in the DCI set
  • the determination of N repeated DCIs in the DCI set is basically the same as the determination of N repeated DCIs in the DCI set provided in the foregoing embodiment.
  • the determination of N repeated DCIs in the DCI set provided in the foregoing embodiment.
  • the resource type includes at least one of the following: physical layer downlink shared channel PDSCH, physical layer uplink shared channel PUSCH.
  • the N repeated DCIs are transmitted in N different transmission time slots, and the repeated DCI schedules multiple resources.
  • the determining the repeated DCI redundancy version RV includes: determining the repeated DCI redundancy version RV according to the configured redundancy version RV remapping rule and the detection result of the repeated DCI.
  • the method further includes: receiving pre-configured second resource information, where the second resource information includes: the type and number of repeated DCI scheduling resources, the repeated DCI redundancy version RV, and the resource
  • the type includes at least one of the following: physical layer downlink shared channel PDSCH, physical layer uplink shared channel PUSCH.
  • the redundancy version RV in the repeated DCI is remapped according to a predetermined rule.
  • the redundancy version RV in the repeated DCI is remapped according to a predetermined rule.
  • the base station configures repeated DCI to schedule multiple PDSCHs on different slots.
  • the base station configures repeated DCI to schedule multiple PDSCHs on different slots, and repeats the RV remapping rule of DCI.
  • the UE determines the time-frequency resource position of the blind DCI according to the information of the M CORESET or SS configured by the base station and the rule indicating the repeated DCI.
  • the number of the blind solution DCI is required to repeat the time-frequency resource position of the DCI.
  • the UE determines the final scheduled resource type and number according to the number of PDSCH resources that can be scheduled by the repetitive DCI configured by the base station and the repetitive DCI detection condition after blind solution.
  • the UE determines the final RV of the repeated DCI according to the RV remapping rule of the repeated DCI redundancy version configured by the base station and the detection of the repeated DCI after blind solution.
  • the UE determines that the two repeated DCIs are located on different slots, and schedules two different PDSCHs, and determines the RV in the repeated DCI according to the RV remapping rule configured by the base station.
  • Figure 12 is a schematic structural diagram of the repeated DCI scheduling multiple PDSCHs in different time slots provided by this application.
  • DCI0, DCI1, PDSCH0, and PDSCH1 are located in slot p1, slot p2, slot p1+td1, slot p2 +td2, where p2>p1>0, (p2+td2)>(p1+td1), DCI0 and DCI1 schedule PDSCH0 and PDSCH1 respectively.
  • DCI1 and DCI0 carry the same content, they are solved in different slots.
  • the RV is the same, the UE can have a different understanding. Different rules can be used to remap the RV.
  • the base station configuration will solve the sequence of repeated DCIs.
  • the sequence accumulation count (starting from 1) modulo 4 is used as the directory index of the RV remapping, and the corresponding elements in the RV remapping sequence are mapped to the corresponding elements in the RV remapping sequence according to the directory index.
  • the RV remapping sequence can be ⁇ 0, 3, 2, 1 ⁇ or ⁇ 0, 2, 3, 1 ⁇ or ⁇ 0, 1, 2, 3 ⁇ .
  • the RVs in DCI0 and DCI1 are 0 and 3 respectively; if they are mapped according to ⁇ 0, 2, 3, 1 ⁇ , The RVs in DCI0 and DCI1 are 0 and 2 respectively; if mapped according to ⁇ 0, 1, 2, 3 ⁇ , the RVs in DCI0 and DCI1 are 0 and 1 respectively.
  • the base station configures repeated DCI to schedule multiple PUSCHs on different slots.
  • the base station configures repeated DCI to schedule multiple PUSCHs on different slots, and repeats the RV remapping rule of the DCI.
  • the UE determines which time-frequency resource positions to blindly decode the DCI, the number of blindly decoded DCIs, and repeats the time-frequency resource positions of the DCI according to the information of the M CORESET or SS configured by the base station and the rules indicating repeated DCI.
  • the UE determines the final scheduled resource type and number according to the number of PDSCH/PUSCH/AP SRS resources that can be scheduled by the repeated DCI configured by the base station and the detection of the repeated DCI after blind solution.
  • the UE determines the final RV of the repeated DCI according to the RV remapping rule of the repeated DCI redundancy version configured by the base station and the detection of the repeated DCI after blind solution.
  • the UE determines that the two repeated DCIs are located on different slots, and schedules two different PUSCHs, and determines the RV in the repeated DCI according to the RV remapping rule configured by the base station.
  • Figure 13 is a schematic structural diagram of the repeated DCI scheduling multiple PUSCHs in different time slots provided by this application.
  • DCI0, DCI1, PUSCH0, and PUSCH1 are located in slot p1, slot p2, slot p1+tu1, slot p2, respectively On +tu2, where p2>p1>0, (p2+tu2)>(p1+tu1), DCI0 and DCI1 schedule PUSCH0 and PUSCH1 respectively.
  • DCI1 and DCI0 carry the same content, they are solved on different slots.
  • the RV is the same, the UE can have a different understanding. Different rules can be used to remap the RV.
  • the base station configuration can solve the sequence of repeated DCIs.
  • the sequence accumulation count (starting from 1) modulo 4 is used as the directory index of the RV remapping, and the corresponding elements in the RV remapping sequence are mapped to the corresponding elements in the RV remapping sequence according to the directory index.
  • the RV remapping sequence can be ⁇ 0, 3, 2, 1 ⁇ or ⁇ 0, 2, 3, 1 ⁇ or ⁇ 0, 1, 2, 3 ⁇ .
  • the RVs in DCI0 and DCI1 are 0 and 3 respectively; if they are mapped according to ⁇ 0, 2, 3, 1 ⁇ , The RVs in DCI0 and DCI1 are 0 and 2 respectively; if mapped according to ⁇ 0, 1, 2, 3 ⁇ , the RVs in DCI0 and DCI1 are 0 and 1 respectively.
  • FIG. 14 is a schematic flowchart of an information enhancement method of this application. This method can be applied to the case of repeated PDCCH transmission in the Multi-TRP/Pannel scenario.
  • the method can be executed by the information enhancement device provided by the present application, and the information enhancement device can be implemented by software and/or hardware and integrated on the base station.
  • the information enhancement method provided by the embodiment of the present application mainly includes steps S1410 and S1420.
  • the association relationship is used to determine repeated DCIs, and the DCI set includes M DCIs, where the M DCIs include N repeated DCIs and MN non-repeated DCIs; the DCI set includes a first DCI subset and a second DCI subset The first DCI subset includes N repeated DCIs, and the second DCI subset includes MN non-repetitive DCIs, where M and N are both positive integers and M>N>1.
  • the configuration of the association relationship of the N repeated DCIs includes at least one of the following:
  • An SSREF field is added to the search space SS for each repeated DCI, where the content in the SSREF field is not the SSID of the search space where the current DCI is located.
  • a CORESETREF field is added to the control channel resource set CORESET for each repeated DCI, where the content in the CORESETREF field is not the control channel resource set ID CORESETID where the current DCI is located.
  • the repeated signaling rules include at least one of the following: the same first information element is configured on the SS, where the first information element includes at least one of the following: first persistent Time, monitoring time slot cycle, monitoring time slot cycle offset, number of candidate PDCCHs, DCI format, symbol position in the monitoring time slot; the same second information element is configured on CORESET, where the second information element includes At least one of the following: second duration, control channel element to resource element group mapping type, frequency domain resources, interleaving size, PDCCH DMRS scrambling ID, precoding granularity, transmission control information set, shift list, resource group binding Set the number.
  • association relationship can be configured for the repeated DCI through any one or a combination of the following methods.
  • an SSREF field is added to the search space SS for each repeated DCI.
  • the base station only configures the association relationship for the SS where the two repeated DCIs are located, and does not configure the association relationship for the SS where the other two non-repeated DCIs are located.
  • a CORESETREF field is added to the control channel resource set CORESET for each repeated DCI, where the content in the CORESETREF field is not the CORESETID where the current DCI is located.
  • the base station only configures the association relationship for the CORESET where the two repeated DCIs are located, and does not configure the association relationship for the CORESET where the other two non-duplicated DCIs are located.
  • the third method is to configure high-level repeated signaling rules.
  • Configuring repeated signaling rules includes at least one of the following: for two repeated DCIs, configure the same one or more first information elements on the SS; for two non-repetitive DCIs, configure a different one on the SS Or multiple first information elements. For two repeated DCIs, configure the same one or more second information elements on CORESET; for two non-repetitive DCIs, configure one or more different second information elements on CORESET.
  • the first information element may be at least one of the following: first duration, monitoring slot period, monitoring slot period offset, number of candidate PDCCHs, DCI format, symbol position in the monitoring slot, etc.
  • the second information element may be at least one of the following: second duration, control channel element to resource element group mapping type, frequency domain resources, interleaving size, PDCCH DMRS scrambling ID, precoding granularity, transmission control information set , Shift the number of directories or resource groups bound.
  • the search space SS is configured with the same first duration, the same monitoring time slot cycle, the same monitoring time slot cycle offset, the same number of candidate PDCCHs, the same DCI format, and the same monitoring time slot. Symbol position.
  • control channel resource set CORESET is configured with the same configuration second duration, the same control channel element to resource element group mapping type, the same frequency domain resources, the same interleaving size, the same PDCCH DMRS scrambling ID, and the same Precoding granularity, the same transmission control information set, the same shift directory or the same number of resource group bindings.
  • the first resource information includes the type and number of repeated DCI scheduling resources, and the resource reference DCI for repeated DCI scheduling.
  • the resource type includes at least one of the following: physical layer downlink shared channel PDSCH, physical layer uplink Shared channel PUSCH, aperiodic sounding reference signal AP SRS.
  • the configuration of the first resource information includes but is not limited to at least one of the following:
  • the base station indicates that the repeated DCI of the UE can only schedule one PDSCH on the same slot; the base station indicates that the repeated DCI of the UE can only schedule one PUSCH on the same slot; the base station indicates that the repeated DCI of the UE can only schedule one AP SRS on the same slot; It indicates that the repeated DCI of the UE can schedule multiple PDSCHs on the same slot; the base station indicates that the repeated DCI of the UE can schedule multiple PUSCHs on the same slot; the base station indicates that the repeated DCI of the UE can schedule multiple AP SRS on the same slot; the base station does not The number of PDSCHs that can be scheduled by the UE with repeated DCI in the same slot is limited by the UE according to its own capabilities; the base station does not limit the number of PUSCHs that can be scheduled by the UE with repeated DCI in the same slot, and the UE is determined according to its own capabilities; the base station does not limit the UE The number of APs and SRSs that repeated DCI
  • the base station indicates that the repeated DCI of the UE is in different transmission time slots and schedules reference time slots related to the same resource.
  • the reference DCI includes at least one of the following: the DCI with the smallest transmission time slot among the N repeated DCIs; the DCI with the largest transmission time slot among the N repeated DCIs; the control corresponding to the N repeated DCIs
  • the channel resource set identifies the smallest DCI; the control channel resource set corresponding to the N repeated DCIs identifies the largest DCI; the search space identifies the smallest DCI corresponding to the N repeated DCIs; the DCI with the largest search space identifies the N repeated DCIs.
  • the base station configures repeated DCI on different slots and schedules the same PDSCH, it includes but is not limited to one of the ways to determine the transmission time slot of the PDSCH:
  • the PDSCH position is determined by the DCI with the smallest transmission time slot; the PDSCH position is determined by the DCI with the largest transmission time slot; the PDSCH position is determined by the DCI with the smallest control channel resource set identifier; the PDSCH position is determined by the DCI with the largest control channel resource set identifier; The PDSCH location is determined by the DCI with the smallest search space identifier; the PDSCH location is determined by the DCI with the largest search space identifier.
  • the base station configures repeated DCI on different slots and schedules the same PDSCH, when determining the space-related parameters, it is necessary to compare the time interval between the DCI and the scheduled PDSCH with the UE capability parameter.
  • the time interval between DCI and scheduled PDSCH includes but is not limited to one of the methods:
  • the base station configures repeated DCI on different slots and schedules the same PUSCH, it includes but is not limited to one of the ways to determine the transmission time slot of the PUSCH:
  • the PUSCH position is determined by the DCI with the smallest transmission time slot; the PUSCH position is determined by the DCI with the largest transmission time slot; the PUSCH position is determined by the DCI with the smallest control channel resource set identifier; the PUSCH position is determined by the DCI with the largest control channel resource set identifier; The PUSCH location is determined by the DCI with the smallest search space identifier; the PUSCH location is determined by the DCI with the largest search space identifier.
  • the second resource information includes: repeated DCI scheduling resource type and number, repeated DCI redundancy version RV, and the resource type includes at least one of the following: physical layer downlink shared channel PDSCH, physical layer Uplink shared channel PUSCH.
  • the base station configures repeated DCI on different slots and schedules the same AP SRS, it includes but is not limited to one of the methods to determine the SRS transmission time slot:
  • the SRS location is determined by the DCI with the smallest transmission time slot; the SRS location is determined by the DCI with the largest transmission time slot; the SRS location is determined by the DCI with the smallest control channel resource set identifier; the SRS location is determined by the DCI with the largest control channel resource set identifier; The SRS location is determined by the DCI with the smallest search space identifier; the SRS location is determined by the DCI with the largest search space identifier.
  • the configured repeated DCI repeats the redundancy version RV of the DCI when multiple resources are scheduled in different time slots.
  • the repeated DCI is in different time slots and multiple PDSCHs are scheduled, including but not limited to the following methods:
  • the sequence of repeated DCI solutions is accumulated and counted (starting from 1) modulo 4 as the directory index of the RV remapping, and then mapped to the corresponding elements in the RV remapping sequence according to the directory index.
  • the RV remapping sequence includes but is not limited to ⁇ 0,3,2,1 ⁇ , ⁇ 0,2,3,1 ⁇ , ⁇ 0,1,2,3 ⁇ .
  • the repeated DCI is in different time slots and multiple PUSCHs are scheduled, including but not limited to the following methods:
  • the sequence of repeated DCI solutions is accumulated and counted (starting from 1) modulo 4 as the directory index of the RV remapping, and then mapped to the corresponding elements in the RV remapping sequence according to the directory index.
  • the RV remapping sequence includes but is not limited to ⁇ 0,3,2,1 ⁇ , ⁇ 0,2,3,1 ⁇ , ⁇ 0,1,2,3 ⁇ .
  • the configured association relationship needs to be sent to the UE.
  • the UE does not detect repeated DCI, and the related operations of the base station and the UE.
  • the DCI with repeated configuration of the base station can only schedule one PDSCH on different slots.
  • the UE determines which time-frequency resource positions to blindly decode the DCI, the number of blindly decoded DCIs, and repeats the time-frequency resource position of the DCI according to the association relationship of M CORESET or SS configured by the base station and the rule indicating repeated DCI.
  • the UE determines the final scheduled resource type and the number of resources according to the number of PDSCH resources that can be scheduled by the repeated DCI configured by the base station and the detection of the repeated DCI after blind solution.
  • the repeated DCI is not detected.
  • the 1 in the real and dashed box positions in Figure 5 in the above embodiment is not detected.
  • the UE will calculate the DAI value according to the actual DCI detected order, and not according to the DAI value in the repeated DCI. Reserved, that is, the final DAI value is 123 instead of 234.
  • the UE detects that the repeated DCI is on the same slot, and only schedules one PDSCH, and the base station and the UE perform related operations.
  • the base station can only schedule one PDSCH on the same slot when the DCI is configured repeatedly.
  • the UE determines which time-frequency resource positions to blindly decode the DCI, the number of blindly decoded DCIs, and repeats the time-frequency resource positions of the DCI according to the information of the M CORESET or SS configured by the base station and the rules indicating repeated DCI.
  • the specific configuration manner refer to the manner in which the base station provides repeated DCI configuration information provided in the foregoing embodiment, which is not repeated in this embodiment.
  • the UE determines the final scheduled resource type and the number of resources according to the number of PDSCH/PUSCH/AP SRS resources that can be scheduled by the repetitive DCI configured by the base station and the repetitive DCI detection condition after blind solution.
  • the UE determines that the two repeated DCIs are located on the same slot and schedule the same PDSCH.
  • the UE detects at least one duplicate DCI, refer to the manner in which at least one duplicate DCI is detected to solve the DAI misalignment provided in the above-mentioned embodiment, which will not be repeated in this embodiment.
  • the UE detects that the repeated DCI is on the same slot, and only schedules one PUSCH, and the base station and the UE perform related operations.
  • the DCI with repeated configurations of the base station can only schedule one PUSCH on the same slot.
  • the UE determines which time-frequency resource positions to blindly decode the DCI, the number of blindly decoded DCIs, and repeats the time-frequency resource positions of the DCI according to the information of the M CORESET or SS configured by the base station and the rules indicating repeated DCI.
  • the specific configuration manner refer to the manner in which the base station provides repeated DCI configuration information provided in the foregoing embodiment, which is not repeated in this embodiment.
  • the UE determines the final scheduled resource type and the number of resources according to the number of PDSCH/PUSCH/AP SRS resources that can be scheduled by the repetitive DCI configured by the base station and the repetitive DCI detection condition after blind solution.
  • the UE determines that the two repeated DCIs are located on the same slot and schedule the same PUSCH.
  • the UE detects at least one duplicate DCI, refer to the manner in which at least one duplicate DCI is detected to solve the DAI misalignment provided in the above-mentioned embodiment, which will not be repeated in this embodiment.
  • the UE detects that the repeated DCI is on a different slot, and only schedules one PDSCH, the base station and the UE's related operations.
  • the base station configures repeated DCIs in different slots and schedules a PDSCH, and the PDSCH position is determined by the DCI with the smallest transmission time slot.
  • the base station configures repeated DCIs in different slots and schedules an AP SRS, and the SRS position is determined by the DCI with the smallest transmission time slot.
  • the base station configures repeated DCIs in different slots and schedules a PDSCH.
  • the time interval between the DCI and the PDSCH is the time interval between the DCI with the largest transmission time slot and the scheduled PDSCH.
  • the UE determines which time-frequency resource positions to blindly decode the DCI, the number of blindly decoded DCIs, and repeats the time-frequency resource positions of the DCI according to the information of the M CORESET or SS configured by the base station and the rules indicating repeated DCI.
  • the UE determines the final scheduled resource type and number according to the number of APs and SRS resources that can be scheduled by the base station with repeated DCI and the detection of repeated DCI after blind solution.
  • the UE determines that the two repeated DCIs are located on different slots and schedule the same PDSCH.
  • the repeated DCI is on different slots and only one PDSCH is scheduled, there is a slot offset problem between the repeated DCI at the end of the transmission time slot and the scheduled PDSCH.
  • the repeated DCI at the front of the transmission time slot determines the space-related parameters, DCI and PDSCH
  • the problem of slot offset is the problem of slot offset between the repeated DCI at the back of the transmission time slot and the triggered AP SRS.
  • the repetitive DCI at the back of the transmission slot refers to the smallest repetitive DCI in the non-transmission time slot, that is, all repetitive DCI except the repetitive DCI with the smallest transmission time slot.
  • the repetitive DCI at the front of the transmission time slot refers to the largest non-transmission time slot.
  • the repeated DCI that is, all repeated DCI except the largest repeated DCI in the transmission time slot.
  • the UE detects at least one duplicate DCI, refer to the manner in which at least one duplicate DCI is detected to solve the DAI misalignment provided in the above-mentioned embodiment, which will not be repeated in this embodiment.
  • the UE detects that the repeated DCI is on a different slot, and only schedules one PUSCH, and related operations of the base station and the UE are scheduled.
  • the base station configures repeated DCIs in different slots and schedules a PUSCH, and the PDSCH position is determined by the DCI with the smallest transmission time slot.
  • the base station configures repeated DCIs in different slots and schedules an AP SRS, and the SRS position is determined by the DCI with the smallest transmission time slot.
  • the specific configuration manner refer to the manner in which the base station configures the association relationship for the repeated DCI provided in the foregoing embodiment, and details are not described in this embodiment.
  • the UE determines which time-frequency resource positions to blindly decode the DCI, the number of blindly decoded DCIs, and repeats the time-frequency resource positions of the DCI according to the information of the M CORESET or SS configured by the base station and the rules indicating repeated DCI.
  • the UE determines the final scheduled resource type and number according to the number of PDSCH/PUSCH/AP SRS resources that can be scheduled by the repeated DCI configured by the base station and the detection of the repeated DCI after blind solution.
  • the UE determines that the two repeated DCIs are located in different slots and schedule the same PUSCH.
  • the UE detects at least one duplicate DCI, refer to the manner in which at least one duplicate DCI is detected to solve the DAI misalignment provided in the above-mentioned embodiment, which will not be repeated in this embodiment.
  • the UE detects that the repeated DCI is on a different slot, and schedules multiple PDSCHs, and related operations of the base station and the UE.
  • the UE detects that the repeated DCI is on a different slot, and schedules multiple PDSCHs;
  • the base station configures repeated DCI to schedule multiple PDSCHs on different slots.
  • the base station configures repeated DCI redundancy version RV remapping rules.
  • the UE determines which time-frequency resource positions to blindly decode the DCI, the number of blindly decoded DCIs, and repeats the time-frequency resource positions of the DCI according to the information of the M CORESET or SS configured by the base station and the rules indicating repeated DCI.
  • the UE determines the final scheduled resource type and number according to the number of PDSCH resources that can be scheduled by the repetitive DCI configured by the base station and the repetitive DCI detection condition after blind solution.
  • the UE determines that two repeated DCIs are located on different slots, and schedules two different PDSCHs.
  • the final RV of the repeated DCI is determined according to the repeated DCI redundancy version RV remapping rule and the blind resolution of the repeated DCI detection situation after the base station configures the repeated DCI. Refer to the above-mentioned embodiment. The embodiments will not be repeated.
  • the UE detects at least one duplicate DCI, refer to the manner in which at least one duplicate DCI is detected to solve the DAI misalignment provided in the above-mentioned embodiment, which will not be repeated in this embodiment.
  • the UE detects that the repeated DCI is on a different slot, and schedules multiple PUSCHs, base station and UE related operations.
  • the base station configures repeated DCI to schedule multiple PUSCHs on different slots.
  • the base station configures repeated DCI redundancy version RV remapping rules.
  • the specific configuration manner refer to the manner in which the base station configures the association relationship for the repeated DCI provided in the foregoing embodiment, and details are not described in this embodiment.
  • the UE determines which time-frequency resource positions to blindly decode the DCI, the number of blindly decoded DCIs, and repeats the time-frequency resource positions of the DCI according to the information of the M CORESET or SS configured by the base station and the rules indicating repeated DCI.
  • the UE determines the final scheduled resource type and number according to the number of PUSCH resources that can be scheduled by the repeated DCI configured by the base station and the detection situation of the repeated DCI after blind solution.
  • the UE determines that two repeated DCIs are located on different slots, and schedules two different PUSCHs.
  • the UE detects at least one duplicate DCI, refer to the manner in which at least one duplicate DCI is detected to solve the DAI misalignment provided in the above-mentioned embodiment, which will not be repeated in this embodiment.
  • the final RV of the repeated DCI is determined according to the repeated DCI redundancy version RV remapping rule and the blind resolution of the repeated DCI detection situation after the base station configures the repeated DCI.
  • the embodiments will not be repeated.
  • the UE detects at least one duplicate DCI, refer to the manner in which at least one duplicate DCI is detected to solve the DAI misalignment provided in the above-mentioned embodiment, which will not be repeated in this embodiment.
  • FIG. 15 is a schematic structural diagram of an information enhancement device provided by this application. This method can be applied to the case of repeated PDCCH transmission in the Multi-TRP/Pannel scenario.
  • the information enhancement apparatus may be implemented by software and/or hardware, and integrated on user equipment (UE).
  • the information enhancement device provided by the embodiment of the present application mainly includes modules 1510 and 1520.
  • the repeated DCI determining module 1510 is configured to determine a first DCI subset and a second DCI subset in a downlink control information DCI set, wherein the first DCI subset includes N repeated DCIs, and the second DCI subset It includes MN non-repetitive DCIs; N is an integer greater than 1, and M is an integer greater than N; and the related information determining module 1520 is configured to determine DCI related information in the DCI set according to the repeated DCI.
  • the information enhancement device provided in this embodiment is used in the information enhancement method of the embodiment of the present application.
  • the implementation principle and technical effect of the information enhancement device provided in this embodiment are similar to the information enhancement method of the embodiment of the present application, and will not be repeated here.
  • the related information determining module 1520 is configured to determine DCI related information in the DCI set in one of the following ways:
  • the DCI set includes M DCIs, where M DCIs include N repeating DCIs and MN non-repeating DCIs; the first DCI subset includes N repeating DCIs, where M is greater than An integer of N.
  • the repeated DCI determination module 1510 is configured to use at least one of the following to determine the repeated DCI:
  • the resource set CORESET has a channel control channel resource set that refers to the N DCIs of the CORESETREF domain and is determined to be a repeated DCI; wherein, the contents of all domains included in the N DCIs are the same.
  • the related information determining module 1520 is configured to determine the value of the DCI set DAI according to the detection results of N repeated DCIs in the first DCI subset, wherein the repeated DCIs in the first DCI subset The DAI value is the same.
  • the related information determining module 1520 is configured to determine the value of the DCI set DAI according to the order in which the DCI is actually detected if no duplicate DCI in the first DCI subset is detected.
  • the related information determining module 1520 is configured to, if at least one duplicate DCI in the first DCI subset is detected, then the DCI with the smallest time domain opportunity index and carrier component index in the first DCI subset is taken as the target DCI, place the DAI in the first DCI subset at the target DCI position, and determine the DAI value of the DCI set according to the DAI of the target DCI and the DAI of the non-repeated DCI in the DCI set, where the position of the DAI is indexed by the time domain opportunity Determined together with the carrier unit index.
  • the N repeated DCIs are transmitted in N different transmission time slots, and the repeated DCIs schedule the same resource.
  • the related information determining module 1520 is configured to determine the resource transmission time slot scheduled by the repeated DCI according to the reference DCI of the N repeated DCIs, wherein the reference DCI includes at least one of the following: The DCI with the smallest transmission time slot among the N repeated DCIs; the DCI with the largest transmission time slot among the N repeated DCIs; the DCI with the smallest control channel resource set identifier corresponding to the N repeated DCIs; the control channel resource set identifier corresponding to the N repeated DCIs The largest DCI; the search space corresponding to the N repeated DCIs identifies the smallest DCI; the search space corresponding to the N repeated DCIs identifies the largest DCI.
  • the related information determining module 1520 is configured to set the resource of the repeated DCI scheduling as the physical layer downlink shared channel PDSCH, the transmission time slot TD of the PDSCH is determined by the first reference DCI transmission time slot n1,
  • the carrier spacing parameter ⁇ PDSCH of the PDSCH , the carrier spacing parameters ⁇ PDCCH of the physical downlink control channel corresponding to the DCI and K 0 are determined, where the K 0 is the transmission slot offset of the reference DCI and the PDSCH,
  • the first reference DCI is any DCI in the reference DCI.
  • the related information determining module 1520 is configured to determine the time interval between the repeated DCI and the scheduled PDSCH according to the difference between the transmission time slot of the PDSCH and the transmission time slot n2 of the second reference DCI ; Determine the space-related parameters of the PDSCH according to the time interval, where the second reference DCI is any DCI in the reference DCI that is not the first reference DCI.
  • the related information determining module 1520 is configured to set the resource of the repeated DCI scheduling as the PUSCH, the transmission time slot TU of the PUSCH is determined by the reference DCI transmission time slot n1, and the carrier spacing parameter ⁇ of the PUSCH PUSCH , the carrier spacing parameters ⁇ PDCCH and K 1 of the physical downlink control channel corresponding to the DCI are determined, where the K 1 is the transmission slot offset of the reference DCI and the PUSCH.
  • the related information determining module 1520 is configured to set the resource for the repeated DCI scheduling as AP SRS, the transmission time slot TA of the AP SRS is referenced by the DCI transmission time slot n1, and the carrier of the AP SRS
  • the interval parameter ⁇ SRS is determined by the carrier interval parameters ⁇ PDCCH of the physical downlink control channel corresponding to the DCI and k, where k is the transmission time slot offset of the reference DCI and the AP SRS, and k is determined by the high-level signaling
  • the time slot offset parameter in the resource set of the SRS resource set is determined.
  • the apparatus further includes: a receiving module configured to receive configured first resource information, where the first resource information includes: a type and number of repeated DCI scheduling resources, and a resource reference for repeated DCI scheduling DCI, the resource type includes at least one of the following: physical layer downlink shared channel PDSCH, physical layer uplink shared channel PUSCH, and aperiodic sounding reference signal AP SRS.
  • a receiving module configured to receive configured first resource information, where the first resource information includes: a type and number of repeated DCI scheduling resources, and a resource reference for repeated DCI scheduling DCI, the resource type includes at least one of the following: physical layer downlink shared channel PDSCH, physical layer uplink shared channel PUSCH, and aperiodic sounding reference signal AP SRS.
  • the N repeated DCIs are transmitted in N different transmission time slots, and the repeated DCI schedules a plurality of the resources.
  • the related information determining module 1520 is configured to determine the redundant DCI redundancy version RV according to the configured redundancy version RV remapping rule and the duplicate DCI detection result.
  • the receiving module is configured to receive pre-configured second resource information, where the second resource information includes: the type and number of repetitive DCI scheduling resources, the repetitive DCI redundancy version RV, and the resource type It includes at least one of the following: physical layer downlink shared channel PDSCH, physical layer uplink shared channel PUSCH.
  • the related information determining module 1520 is configured to repeat the DCI redundancy version RV.
  • the redundancy version RV in the repeat DCI is remapped according to a predetermined rule.
  • the related information determining module 1520 is configured to repeat the DCI redundancy version RV, and when the N repeat DCIs schedule N PUSCHs, the redundancy version RV in the repeat DCI is remapped according to a predetermined rule.
  • the apparatus further includes: a receiving module configured to receive the configured association relationship of the N repeated DCIs, and the association relationship is used to determine the repeated DCI.
  • the association relationship of the N repeated DCIs includes at least one of the following:
  • Each repeated DCI adds an SSREF field to the search space SS, where the content in the SSREF field is not the search space identification SSID where the current DCI is located; each repeated DCI adds a CORESETREF field to the control channel resource set CORESET, where the CORESETREF field is The content is not the CORESETID of the control channel resource set where the current DCI is located.
  • a predefined high-level repetitive signaling rule wherein the repetitive signaling rule includes at least one of the following: the same first information element is configured on the SS, wherein the first information element includes at least one of the following: first Duration, monitoring time slot cycle, monitoring time slot cycle offset, number of candidate PDCCHs, DCI format, symbol position in the monitoring time slot; the same second information element is configured on CORESET, wherein the second information element Including at least one of the following: second duration, control channel element to resource element group mapping type, frequency domain resources, interleaving size, PDCCH DMRS scrambling ID, precoding granularity, transmission control information set, shift list, resource group The number of bindings.
  • FIG. 16 is a schematic structural diagram of an information enhancement device provided by this application. This method can be applied to the case of repeated PDCCH transmission in the Multi-TRP/Pannel scenario.
  • the information enhancement device can be implemented by software and/or hardware and integrated on the base station.
  • the information enhancement device provided by the embodiment of the present application mainly includes modules 1610 and 1620.
  • the configuration module 1610 is configured to configure the association relationship of N repeated DCIs, the first resource information and the second resource information; the sending module 1620 is configured to send the association relationship, the first resource information and the second resource information to UE.
  • the information enhancement device provided in this embodiment is used in the information enhancement method of the embodiment of the present application.
  • the implementation principle and technical effect of the information enhancement device provided in this embodiment are similar to the information enhancement method of the embodiment of the present application, and will not be repeated here.
  • the association relationship is used to determine repeated DCIs, and the DCI set includes M DCIs, where the M DCIs include N repeated DCIs and MN non-repeated DCIs; the DCI set includes the first DCI subset and a second DCI subset, the first DCI subset includes N repeated DCIs, and the second DCI subset includes MN non-repetitive DCIs, where M and N are both integers and M>N> 1.
  • the association relationship of the N repeated DCIs includes at least one of the following:
  • the repetitive signaling rules include at least one of the following: the same first information element is configured on the SS, where the first information element includes at least one of the following: first duration , Monitoring time slot cycle, monitoring time slot cycle offset, number of candidate PDCCHs, DCI format, symbol position in the monitoring time slot; CORESET is configured with the same second information element, where the second information element includes the following At least one of: second duration, control channel element to resource element group mapping type, frequency domain resources, interleaving size, PDCCH DMRS scrambling ID, precoding granularity, transmission control information set, shift list, resource group binding Number.
  • the first resource information includes: the type and number of repetitive DCI scheduling resources, and the resource reference DCI for repetitive DCI scheduling, and the resource type includes at least one of the following: physical layer downlink shared channel PDSCH, physical Layer uplink shared channel PUSCH, aperiodic sounding reference signal AP SRS.
  • the configuration module 1610 is configured to configure a resource reference DCI for repeated DCI scheduling, where the reference DCI includes at least one of the following: DCI with the smallest transmission time slot among the N repeated DCIs; N repeats The DCI with the largest transmission time slot in the DCI; the DCI with the smallest ID of the control channel resource set corresponding to the N repeated DCIs; the DCI with the largest ID of the control channel resource set corresponding to the N repeated DCIs; the DCI with the smallest search space ID corresponding to the N repeated DCIs DCI; the search space corresponding to the N repeated DCIs identifies the largest DCI.
  • the configuration module 1610 is configured to configure when one PDSCH is scheduled among N repeated DCIs, and when determining the position of the PDSCH time slot of the repeated DCI scheduling, the reference DCI is the DCI with the smallest transmission time slot.
  • the configuration module 1610 is configured to configure when one PDSCH is scheduled among N repeated DCIs, when determining the PDSCH space-related parameters for repeated DCI scheduling, the first reference DCI is the DCI with the smallest transmission time slot, and the first reference DCI is the DCI with the smallest transmission time slot.
  • the second reference DCI is the DCI with the largest transmission time slot.
  • the configuration module 1610 is configured to configure when one PUSCH is scheduled among N repeated DCIs, and when determining the position of the PUSCH time slot of the repeated DCI scheduling, the reference DCI is the DCI with the smallest transmission time slot.
  • the configuration module 1610 is configured to configure when one AP SRS is scheduled among N repeated DCIs, when determining the position of the SRS time slot for repeated DCI scheduling, the reference DCI is the DCI with the smallest transmission time slot.
  • the second resource information includes: the type and number of repeated DCI scheduling resources, and the repeated DCI redundancy version RV, and the resource type includes at least one of the following: physical layer downlink shared channel PDSCH, physical layer Uplink shared channel PUSCH.
  • the configuration module 1610 is configured to configure the remapping rule of the redundant version RV in the DCI when the N repeated DCIs schedule N PDSCHs.
  • the configuration module 1610 is configured to configure the remapping rule of the redundancy version RV in the DCI when the N repeated DCIs schedule N PUSCHs.
  • FIG. 17 is a schematic structural diagram of a user equipment provided in this application.
  • the user equipment provided in this application includes one or more processors 171 and a memory. 172; there may be one or more processors 171 in the user equipment, and one processor 171 is taken as an example in FIG. 17; the memory 172 is used to store one or more programs; the one or more programs are used by the one Or multiple processors 171 execute, so that the one or more processors 171 implement the information enhancement method as described in the embodiments of the present application.
  • the user equipment also includes: a communication device 173, an input device 174, and an output device 175.
  • the processor 171, the memory 172, the communication device 173, the input device 174, and the output device 175 in the user equipment may be connected through a bus or other methods.
  • the connection through a bus is taken as an example.
  • the input device 174 can be used to receive inputted digital or character information, and generate key signal input related to user settings and function control of the user equipment.
  • the output device 175 may include a display device such as a display screen.
  • the communication device 173 may include a receiver and a transmitter.
  • the communication device 173 is configured to transmit and receive information according to the control of the processor 171.
  • the memory 172 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the information enhancement method described in the embodiments of the present application (for example, repetitive information in the information enhancement device). DCI determination module 1510 and related information determination module 1520,).
  • the memory 172 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 172 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 172 may include a memory remotely provided with respect to the processor 171, and these remote memories may be connected to the user equipment through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • FIG. 18 is a schematic structural diagram of a base station provided in this application.
  • the base station provided in this application includes one or more processors 1810 and a memory 1820; There may be one or more processors 1810 in the base station.
  • one processor 1810 is taken as an example; the memory 1820 is used to store one or more programs; the one or more programs are processed by the one or more programs.
  • the processor 1810 executes, so that the one or more processors 1810 implement the information enhancement method described in the embodiment of the present application.
  • the base station also includes: a communication device 1830, an input device 1840, and an output device 1850.
  • the processor 1810, the memory 1820, the communication device 1830, the input device 1840, and the output device 1850 in the base station may be connected by a bus or other methods.
  • the connection by a bus is taken as an example.
  • the input device 1840 may be used to receive inputted digital or character information, and generate key signal input related to user settings and function control of the user equipment.
  • the output device 1850 may include a display device such as a display screen.
  • the communication device 1830 may include a receiver and a transmitter.
  • the communication device 1830 is configured to transmit and receive information according to the control of the processor 1810.
  • the memory 1820 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the information enhancement method described in the embodiments of the present application (for example, the configuration module in the information enhancement device). 1610 and sending module 1620).
  • the memory 1820 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 1820 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 1820 may include a memory remotely provided with respect to the processor 1810, and these remote memories may be connected to the base station through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • An embodiment of the present application further provides a storage medium that stores a computer program, and the computer program implements the information enhancement method described in any of the embodiments of the present application when the computer program is executed by a processor.
  • a storage medium that stores a computer program
  • the computer program implements the information enhancement method described in any of the embodiments of the present application when the computer program is executed by a processor.
  • Information enhancement methods applied to user equipment include:
  • the DCI related information in the DCI set is determined according to the repeated DCI.
  • Information enhancement methods applied to base stations include:
  • user terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicle-mounted mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • the embodiments of the present application may be implemented by executing computer program instructions by a data processor of a mobile device, for example, in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions can be assembly instructions, instruction set architecture (Instruction Set Architecture, ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

本文公开一种信息增强方法、装置、设备和存储介质。所述信息增强包括:确定下行控制信息DCI集合中的第一DCI子集和第二DCI子集,其中,所述第一DCI子集包括N个重复DCI,所述第二DCI子集包括M-N个非重复DCI;N为大于1的整数,M为大于N的整数;根据所述重复DCI确定所述DCI集合中的DCI的相关信息。

Description

信息增强方法、装置、设备和存储介质
本申请要求在2019年09月03日提交中国专利局、申请号为201910829052.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种信息增强方法、装置、设备和存储介质。
背景技术
有效性和可靠性是衡量无线通信质量的两个重要指标,新的无线接入技术(New Ratio Access Technology,NR)为了进一步提高传输的有效性,NR支持多点发送接收(Multiple Transmission and Reception Point,Multi-TRP)和多面板(Multi-Pannel)传输。重复传输是提高通信可靠性的一种常用的方法,Multi-TRP/Pannel场景下已经支持物理层下行共享信道(Physical Downlink Share Channel,PDSCH)重复传输,但还不支持物理层下行控制信道(Physical Downlink Control Channel,PDCCH)重复传输,Multi-TRP/Pannel场景下需要进一步提高PDCCH重复传输的可靠性。
发明内容
本申请提供一种信息增强方法、装置、设备和存储介质,提高Multi-TRP/Pannel场景下PDCCH重复传输的可靠性。
本申请实施例提供了一种信息增强方法,所述方法包括:
确定下行控制信息(Downlink Control Information,DCI)集合中的第一DCI子集和第二DCI子集,其中,所述第一DCI子集包括N个重复DCI,所述第二DCI子集包括M-N个非重复DCI;N为大于1的整数,M为大于N的整数;
根据所述重复DCI确定DCI集合中DCI的相关信息。
本申请实施例还提供了一种信息增强方法,所述方法包括:
配置N个重复DCI的关联关系、第一资源信息和第二资源信息;
将所述关联关系、所述第一资源信息和第二资源信息发送至UE。
本申请实施例还提供了一种信息增强装置,包括:
重复DCI确定模块,设置为确定下行控制信息DCI集合中的第一DCI子集 和第二DCI子集,其中,所述第一DCI子集包括N个重复DCI,所述第二DCI子集包括M-N个非重复DCI;N为大于1的整数,M为大于N的整数;
相关信息确定模块,设置为根据所述重复DCI确定DCI集合中DCI的相关信息。
本申请实施例还提供了一种信息增强装置,包括:
配置模块,设置为配置N个重复DCI的关联关系、第一资源信息和第二资源信息;
发送模块,设置为将所述关联关系、所述第一资源信息和第二资源信息发送至UE。
本申请实施例还提供了一种用户设备,包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上所述的信息增强方法。
本申请实施例还提供了一种基站,其中,包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上所述的信息增强方法。
本申请实施例还提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中的任意一种方法。
附图说明
图1为本申请提供的一种信息增强方法的流程示意图;
图2为本申请提供的一种无线网路的结构示意图;
图3为本申请提供的重复DCI均被检测到的DAI取值的示意图;
图4为本申请提供的DAI计算的示意图;
图5为本申请提供的重复DCI均未被检测到的DAI取值的示意图;
图6为本申请提供的仅靠前重复DCI被检测到的DAI取值的示意图;
图7为本申请提供的仅靠后重复DCI被检测到的DAI取值的示意图;
图8为本申请提供的至少一个重复DCI被检测到的最终DCI取值示意图;
图9为本申请提供的重复DCI在不同时隙上调度一个PDSCH的结构示意图;
图10为本申请提供的重复DCI在不同时隙上调度一个PUSCH的结构示意图;
图11为本申请提供的重复DCI在不同时隙上调度一个AP SRS的结构示意图;
图12为本申请提供的重复DCI在不同时隙上调度多个PDSCH的结构示意图;
图13为本申请提供的重复DCI在不同时隙上调度多个PUSCH的结构示意图;
图14为本申请提供的一种信息增强方法的流程示意图;
图15为本申请提供的一种信息增强装置的结构示意图;
图16为本申请提供的一种信息增强装置的结构示意图;
图17为本申请提供的一种用户设备的结构示意图;
图18为本申请提供的一种基站的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
为了说明本申请的内容,首先对本申请实施例中涉及到名词、工作过程进行解释说明。
本申请的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LIE-A(Advanced long term evolution,先进的长期演进)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及第五代移动通信(5th generation mobile networks,5G)系统等,本申请实施例并不限定。
本申请实施例可以用于不同的制式的无线网络。无线接入网络在不同的系统中可包括不同的通信节点。图2为本申请提供的一种无线网络系统的结构示意图。如图2所示,该无线网络系统100包括基站101、用户设备110、用户设备120和用户设备130。基站101分别与用户设备110、用户设备120和用户设备130之间进行无线通信。
本申请实施例中,基站可以是能和用户设备通信的设备。基站可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、5G通信系统中的基站、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点等。基站还可以是云无线接入网络(cloud radioaccess network,CRAN)场景下的无线控制器;基站还可以是小站,传输节点(transmission reference point,TRP)等,本申请实施例并不限定。
用户设备是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述用户设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。用户设备有时也可以称为终端、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、无线通信设备、UE代理或UE装置等。本申请实施例并不限定。
作为举例,本申请的实施例包括1个UE和至少两个TRP(或者一个TRP中包括两个面板)。重复的PDCCH或者PDSCH来自于两个不同的TRP,它们可以在不同的CC或BWP上,也可以在相同的CC或BWP上。
在一个示例性实施方式中,图1为本申请提供的一种信息增强方法的流程示意图。该方法可以适用于Multi-TRP/Pannel场景下PDCCH重复传输的情况。该方法可以由本申请提供的信息增强装置执行,该信息增强装置可以由软件和/或硬件实现,并集成在用户设备(user equipment,UE)上。
如图1所示,本申请实施例提供的信息增强方法主要包括步骤S110和S120。
S110、确定下行控制信息DCI集合中的第一DCI子集和第二DCI子集,其中,所述第一DCI子集包括N个重复DCI,所述第二DCI子集包括M-N个非重复DCI;N为大于1的整数,M为大于N的整数。
DCI是指PDCCH中携带的信息。不同类型的DCI所包含的域及域中内容可能不一样。
例如:下行分配指示(Downlink assignment index,DAI)用于指示在混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)的反馈时间窗口内有多个子帧包含下行传输,防止一些DCI丢失时,UE可能错误地反馈确认消息(Acknowledgement,ACK),在NR协议中仅DCI格式(format)0_1和1_1中存在DAI域。
又如:冗余版本(Redundancy version,RV)表示从缓冲区取数据的起始位置,不同的RV版本数据可以增量合并,提高解码正确率,NR协议中仅DCI format0_1、0_0、1_0和1_1中存在RV域。
再如:DCI format 0_0中时域资源分配(Time domain resource assignment,TDRA)域中4比特(bit)用来索引调度的PUSCH相对DCI的时隙偏移K2、时隙内符号起始位置S和时隙内符号长度L;DCI format 1_0中TDRA域中4bit用来索引调度的PDSCH相对DCI的时隙偏移K0、时隙内符号起始位置S和时隙内符号长度L。
PDCCH可以向UE发送下行调度信息,指示UE接收PDSCH;也可以向UE发送上行调度信息,指示UE发送物理层上行共享信道(Physical Uplink Shared Channel,PUSCH);还可以发送物理层上行控制信道(Physical Uplink Control Channel,PUCCH)、PUSCH和探测参考信号(Sounding reference signal,SRS)的功控命令;还可以通知UE的时隙格式等。
控制信道资源集合(Control Resource Set,CORESET)由一个或多个控制信道元素(Control Chanel Element,CCE)组成,表示基站可能发送PDCCH的时频资源位置。但UE并不知道PDCCH携带哪种形式的DCI,也不知道该DCI在哪个候选CCE上传输,UE需要对在不同聚合等级CCE上对所有可能的DCI格式盲解。为了减少盲解次数,引入搜索空间(Search Space,SS)的概念,SS是由给定聚合等级的CCE集合组成。基站可以给UE配置一个或多个SS。时域机会occasion由SS中监测周期及偏移monitoringSlotPeriodicityAndOffset决定,表示基站可能发送PDCCH的时域位置,载波单元(Componet Carrier,CC)代表子载波,表示频域位置。
UE根据基站配置信息知道自己的SS,首先尝试使用相应的无线网络临时标识(Radio Network Temporary Identifier,RNTI)、可能的DCI format、可能的聚合等级对自己SS内的CCE做循环冗余校验(Cyclic Redundancy Check,CRC),如果校验成功,UE知道该信息是自己需要的,从而解出DCI中的内容。
UE按照先时域后频域的顺序在相应的搜索空间(Search Space,SS)上依次盲检DCI,得到下行分配指示(Downlink assignment index,DAI),由于重复的DCI内容中有相同的DAI值,这样盲解后DAI取值违反了既定规则,UE就可能理解错误,以为发生了漏检。即UE在盲解DCI时,不能保证正确解调所有的DCI,需要考虑重复的DCI的检测情况及如何解决遇到DAI不对齐问题。
所述DCI集合包括M个DCI,其中,M个DCI包括N个重复DCI和M-N个非重复DCI;第一DCI子集包含N个重复DCI,其中,M为大于N的整数。在一个示例性实施方式中,所述方法还包括:接收所述预先配置的N个重复DCI的关联关系,所述关联关系用于确定重复DCI。
所述配置的N个重复DCI的关联关系包括以下至少之一:
每个重复DCI在搜索空间SS上增加搜索空间参考(Search Space Reference,SSREF)域,其中,所述SSREF域中内容非当前DCI所在搜索空间标识(Search Space Identifier,SSID)。
每个重复DCI在控制信道资源集合CORESET上增加控制信道资源集合参考(Control Resource Set Reference,CORESETREF)域,其中,CORESETREF域中内容非当前DCI所在控制信道资源集合标识(Control Resource Set Identifier,CORESETID)。
预定义的高层重复信令规则,其中,所述重复信令规则,包括以下至少之一:SS上配置有相同的第一信息元素,其中,所述第一信息元素包括以下至少之一:第一持续时间、监测时隙周期、监测时隙周期偏移、候选PDCCH个数、DCI格式、监测时隙内的符号位置;CORESET上配置有相同的第二信息元素,其中,所述第二信息元素包括以下至少之一:第二持续时间、控制信道元素到资源元素组映射类型、频域资源、交织大小、PDCCH DMRS的加扰ID、预编码粒度、传输控制信息集合、移位目录、资源组绑定个数。
在一个示例性实施方式中,基站给UE配置M个CORESET或者SS,并且指示给UE,M个CORESET或者SS中存在N个CORESET或SS上的DCI是重复的,其中,M、N为正整数且M>N>1,如M=4,N=2。
在本实施例中可以通过如下方式中的任意一种或者多种的组合来给重复的DCI配置参考信息。
第一种方式,基站只给2个重复DCI所在的SS配置参考信息,另外2个非重复DCI所在的SS不配置参考信息。
如果第一SS和第二SS上的DCI是重复的,且第一SS对应的ID为SSID1,第二SS对应的ID为SSID2,那么在第一SS增加一个SSREF域,SSREF域中 的内容为SSID2,在第二SS增加一个SSREF域,SSREF域中的内容为SSID1。
第二种方式,基站只给2个重复DCI所在的CORESET配置参考信息,另外2个非重复DCI所在的CORESET不配置参考信息。
如果第一CORESET和第二CORESET上的DCI是重复的,且第一CORESET对应的ID为CORESETID1,第二CORESET对应的ID为CORESETID2,那么在第一CORESET增加一个CORESETREF域,CORESETREF域中的内容为CORESETID2,在第二CORESET增加一个CORESETREF域,CORESETREF域中的内容为CORESETID1。
第三种方式,基站配置重复信令规则。
配置重复信令规则包括以下至少之一:给2个的重复的DCI,在SS上配置相同的一个或多个第一信息元素;给不重复的2个DCI,在SS上,配置不同的一个或多个第一信息元素。给2个的重复的DCI,在CORESET上配置相同的一个或多个第二信息元素;给不重复的2个DCI,在CORESET上,配置不同的一个或多个第二信息元素。
第一信息元素可以是以下至少之一:第一持续时间、监测时隙周期、监测时隙周期偏移、候选PDCCH个数、DCI格式、监测时隙内的符号位置等。其中,第二信息元素可以是以下至少之一:第二持续时间、控制信道元素到资源元素组映射类型、频域资源、交织大小、PDCCH DMRS的加扰ID、预编码粒度、传输控制信息集合、移位目录或资源组绑定个数。
例如:搜索空间SS上配置有相同的第一持续时间、相同的监测时隙周期、相同的监测时隙周期偏移、相同的候选PDCCH个数、相同的DCI格式和相同的监测时隙内的符号位置。
例如:控制信道资源集合CORESET上配置有相同的配置第二持续时间、相同的控制信道元素到资源元素组映射类型、相同频域资源、相同交织大小、相同的PDCCH DMRS的加扰ID、相同的预编码粒度、相同的传输控制信息集合、相同的移位目录或相同的资源组绑定个数。
UE按照基站配置M个CORESET或者SS的信息,及指示重复DCI的规则,确定盲解DCI的时频资源位置,需要盲解DCI的个数,重复DCI的时频资源位置。
在一个示例性实施方式中,确定DCI集合中N个重复DCI,包括以下至少方式之一:将DCI集合中满足高层重复信令规则的N个DCI确定为重复DCI;将DCI集合中在搜索空间SS上有搜索空间参考SSREF域的N个DCI确定为重复DCI;将DCI集合中在控制信道资源集合CORESET上有信道控制信道资源 集合参考CORESETREF域的N个DCI确定为重复DCI;其中,所述N个DCI包括的所有域的内容相同。
在一个示例性实施方式中,确定DCI集合中N个重复DCI可以是UE检测到第一SS和第二SS都存在一个SSREF域,SSREF域中的内容分别为SSID2和SSID1,SSID1对于第一SS,SSID2对应第二SS,则确定第一SS和第二SS上的DCI是重复DCI。
在一个示例性实施方式中,确定DCI集合中N个重复DCI还可以是UE检测到第一CORESET和第二CORESET都存在一个CORESETREF域,CORESETREF域中的内容分别为CORESETID2和CORESETID1,CORESETID1对应第一CORESET,CORESETID2对应第二CORESET,则确定第一CORESET和第二CORESET上的DCI是重复DCI。
在一个示例性实施方式中,确定DCI集合中N个重复DCI还可以是在SS上检测到至少一个或多个相同的第一信息元素,则确定SS上的DCI为重复DCI。第一信息元素可以为以下至少之一:第一持续时间、监测时隙周期、监测时隙周期偏移、候选PDCCH个数、DCI格式、监测时隙内的符号位置等。
在一个示例性实施方式中,确定DCI集合中N个重复DCI还可以是在CORESET上检测到至少一个或多个相同的第二信息元素,则确定CORESET上的DCI为重复DCI。第二信息元素可以为以下至少之一:第二持续时间、控制信道元素到资源元素组映射类型、频域资源、交织大小、PDCCH DMRS的加扰ID、预编码粒度、传输控制信息集合、移位目录、资源组绑定个数等。
S120、根据所述重复DCI确定DCI集合中DCI的相关信息。
在一个示例性实施方式中,所述根据所述重复DCI确定DCI集合中DCI的相关信息,包括下述方式之一:
根据所述重复DCI确定所述DCI集合下行分配指示DAI的取值;根据所述重复DCI确定所述重复DCI调度资源的传输时隙;根据所述重复DCI确定所述重复DCI冗余版本RV;根据所述重复DCI确定所述DCI集合DAI的取值和所述重复DCI调度资源的传输时隙;根据所述重复DCI确定所述DCI集合下行分配指示DAI的取值和所述重复DCI冗余版本RV。
所述DCI集合包括M个DCI,其中,M个DCI包括N个重复DCI和M-N个非重复DCI;第一DCI子集包含N个重复DCI,其中,M为正整数且M>N。
在一个示例性实施方式中,根据所述重复DCI确定所述DCI集合下行分配指示DAI的取值。
在一个示例性实施方式中,所述根据所述重复DCI确定所述DCI集合中下 行分配指示DAI的取值,包括:根据第一DCI子集中N个重复DCI的检测结果,确定所述DCI集合DAI取值,其中,所述第一DCI子集中重复DCI的DAI值相同。
在本实施例中,UE根据基站的参考信息可以确定哪些位置的DCI是重复的,图3为本申请提供的重复DCI均被检测到的DAI取值的示意图,如图3所示,UE依次在(occasion 0,CC0)、(occasion 0,CC1)、(occasion 0,CC2)、(occasion 1,CC0)、(occasion 1,CC1)的位置上盲解DCI,并且知道(occasion 0,CC0)、(occasion 1,CC0)上的DCI是重复的,即图中虚框位置的1的DCI与实框位置的1的DCI是重复的。但UE在盲解DCI时,并不能保证正确解调所有的DCI,需要考虑重复的DCI的检测情况及如何解决遇到DAI不对齐问题。
图4是本申请提供的DAI计算的示意图,如图4所示,DAI值的计算是按照先时域后频域的顺序累加后结果模4加1。
在一个示例性实施方式中,如果未检测到第一DCI子集中任一个重复DCI,则根据实际检测到DCI的顺序确定DCI集合DAI的取值。图5是本申请提供的重复DCI均未被检测到的DAI取值的示意图。如图5所示,重复DCI都没有检测到,即图5中实框和虚框位置的1都没有检测到,UE会按照实际检测到DCI顺序来计算DAI值,并不会按照DCI中DAI值预留,即最终的DAI取值为123,而不是234。
在一个示例性实施方式中,如果检测到第一DCI子集中至少一个重复DCI,则将第一DCI子集中时域机会索引和载波单元索引均最小的DCI作为目标DCI,将第一DCI子集中DAI放到目标DCI位置,并根据目标DCI的DAI和DCI集合中非重复DCI的DAI确定所述DCI集合的DAI取值,其中,DAI的位置由时域机会索引和载波单元索引共同确定。
第一DCI子集中非目标DCI位置的DAI值忽略,DCI集合中非重复DCI的DAI之间的相对顺序保持不变,DCI集合中非重复DCI的DAI与目标DCI的DAI之间的相对顺序保持不变,其中,DCI集合中非重复DCI的DAI值根据检测DCI中DAI域的内容确定。
图3是本申请的重复DCI均被检测到的DAI取值的示意图。如图3所示,两个DCI的都检测到,实框和虚框位置的1都检测到。UE根据检测结果及基站配置情况确定实框和虚框位置的1所在位置的DCI是重复的,盲解后的DAI取值是12314,此时UE已经知道第一个实框1与第二个虚框1是重复的,重复的DCI中目标DCI位于第一个实框1的位置,最终的DAI取值是1234。
图6是本申请提供的仅靠前重复DCI被检测到的DAI取值的示意图。只有最前面的重复DCI被检测到,即图6中实框1被检测到,虚框1没有被检测到。重复的DCI中目标DCI位于第一个实框1的位置,UE盲解后DAI取值是1234,DAI取值正常。
图7是本申请提供的仅靠后重复DCI被检测到的DAI取值的示意图。只有最后面的重复DCI检测到,即图7中实框1没有被检测到,虚框1被检测到。UE盲解后DAI取值是2341,UE知道实框1的DCI与虚框1的DCI是重复,虽然实框1位置的DCI没有检测到,但重复的DCI中目标DCI位于第一个实框1的位置,最终的DAI取值是1234。
图8是本申请提供的至少一个重复DCI被检测到的最终DCI序列示意图。上述三种至少一个重复DCI被检测到的情况,需要将重复的DCI的最终DAI值放在重复DCI中时域机会索引和载波单元索引都最小的的DCI位置,对应图8中实框1的位置,按照或运算得到最终DCI取值为1234。
在一个示例性实施方式中,根据所述重复DCI确定所述重复DCI调度资源的传输时隙。
在一个示例性实施方式中,所述确定DCI集合中N个重复DCI,包括:将DCI集合中满足高层重复信令规则的N个DCI确定为重复DCI;将DCI集合中在搜索空间SS上有搜索空间参考SSREF域的N个DCI确定为重复DCI;将DCI集合中在控制信道资源集合CORESET上有信道控制信道资源集合参考CORESETREF域的N个DCI确定为重复DCI;其中,所述N个DCI包括的所有域的内容相同。
本实施例中,确定DCI集合中N个重复DCI与上述实施例中提供的确定DCI集合中N个重复DCI基本相同,具体实施方式可以参照上述实施例中的,描述,本实施例不再赘述。
在一个示例性实施方式中,确定重复DCI调度的资源类型及资源个数,其中,所述资源类型包括以下至少之一:物理层下行共享信道PDSCH、物理层上行共享信道PUSCH、非周期探测参考信号(Aperiodic Sounding Reference Signal,AP SRS)。
所述N个重复DCI在N个不同的传输时隙传输,所述重复DCI调度同一个所述资源。
在一个示例性实施方式中,所述方法还包括:接收配置的第一资源信息,其中,第一资源信息包括:重复DCI调度资源类型及个数、重复DCI调度的资 源参考DCI,所述资源类型包括如下至少之一:物理层下行共享信道PDSCH、物理层上行共享信道PUSCH、非周期探测参考信号AP SRS。其中,第一资源信息由基站进行配置。
在一个示例性实施例中,确定重复DCI调度的资源传输时隙,包括:根据所述N个重复DCI的参考DCI确定所述重复DCI调度的资源传输时隙。所述参考DCI包括以下至少之一:N个重复DCI中传输时隙最小的DCI;N个重复DCI中传输时隙最大的DCI;N个重复DCI对应的控制信道资源集合标识最小的DCI;N个重复DCI对应的控制信道资源集合标识最大的DCI;N个重复DCI对应的搜索空间标识最小的DCI;N个重复DCI对应的搜索空间标识最大的DCI。
在一个示例性实施方式中,基站给UE配置M个CORESET或者SS,并且指示给UE,N个CORESET或SS上的DCI是重复的,其中,M、N为正整数且M>N>1,如M=4,N=2。
基站配置重复DCI在不同时隙slot上只能调度一个PDSCH。
基站配置重复DCI在不同时隙slot上只能调度一个PDSCH且由传输时隙最小的DCI确定PDSCH位置。
UE按照基站配置M个CORESET或者SS的信息,及指示重复DCI的规则,确定盲解DCI的时频资源位置,需要盲解DCI的个数,重复DCI的时频资源位置。
UE按照基站配置重复的DCI能调度的PDSCH资源个数及盲解后的重复DCI检测情况,确定最终调度的资源类型及资源个数。
UE根据基站配置情况最终盲解的结果,确定2个重复DCI位于不同时隙slot上,并且调度同一个PDSCH,那么传输时隙靠后的重复DCI与调度的PDSCH之间存在时隙偏移问题。
图9是本申请的重复DCI在不同时隙上调度一个PDSCH的结构示意图,如图9所示,DCI0与DCI1是重复的并且都调度PDSCH1,DCI0、DCI1、PDSCH分别位于slot p1、slot p2、slot p1+q1上,其中,p2>p1>0,q1>(p2-p1)。
如果按照相关协议确定DCI调度的PDSCH传输时隙,DCI0与DCI1会调度不同PDSCH,为了保证调度同一个PDSCH,在计算DCI1调度PDSCH的传输时隙,应该参考DCI0。
重复DCI调度的资源为PDSCH时,PDSCH的传输时隙TD由参考DCI传输时隙n1,PDSCH的载波间隔参数μ PDSCH,DCI对应的物理下行控制信道的载 波间隔参数μ PDCCH和K 0确定,其中,K 0为参考DCI与PDSCH的传输时隙偏置,K 0可以取0或1。
N个重复DCI调度一个PDSCH,PDSCH的参考时隙是重复DCI中时隙最小的DCI所在时隙,PDSCH传输时隙为:
Figure PCTCN2020110497-appb-000001
所述TD为重复DCI调度的PDSCH传输时隙,n1为正整数,μ PDSCH为PDSCH载波间隔配置参数,μ PDCCH为物理层下行控制信道PDCCH载波间隔配置参数,K 0为重复DCI与其调度的PDSCH之间的时隙偏移,K 0由PDSCH的系统参数集numerology信息确定,K 0为0或1,n1为第一DCI子集中时隙最小的DCI所在时隙。
在一个示例性实施方式中,基站给UE配置M个CORESET或者SS,并且指示给UE,N个CORESET或SS上的DCI是重复的,其中,M、N为正整数且M>N>1,如M=4,N=2。
基站配置重复DCI在不同时隙slot上只能调度一个PDSCH。
基站配置重复的DCI在不同slot且调度一个PDSCH,由传输时隙最小的DCI确定PDSCH位置。
基站配置重复的DCI在不同slot且调度一个PDSCH,确定空间相关参数时,DCI与PDSCH时间间隔为传输时隙最大的DCI与调度PDSCH之间的时间间隔。
UE按照基站配置M个CORESET或者SS的信息,及指示重复DCI的规则,确定盲解DCI的时频资源位置,需要盲解DCI的个数,重复DCI的时频资源位置。
UE按照基站配置重复DCI能调度的PDSCH资源个数及盲解后的重复DCI检测情况,确定最终调度的资源类型及资源个数。
UE根据及基站配置情况最终盲解的结果,确定2个重复DCI位于不同slot上,并且调度同一个PDSCH,由传输时隙最小的重复DCI确定PDSCH位置,最靠前的重复DCI确定空间相关参数时,重复DCI与PDSCH时间间隔为传输时隙最大的DCI与调度PDSCH之间的时间间隔。
如图9所示,DCI0与DCI1是重复的并且都调度PDSCH0,DCI0、DCI1和PDSCH0分别位于slot p1、slot p2、slot p1+q1上,其中,p2>p1>0,q1>(p2-p1)。
如果按照相关协议确定DCI与调度的PDSCH之间时间间隔,DCI0与调度的PDSCH之间时间间隔大于DCI1与调度的PDSCH之间时间间隔,为了保证 有同一准则默认接收波束,在确定空间相关参数时计算DCI0与调度的PDSCH之间时间间隔参考DCI1与调度的PDSCH之间时间间隔。
根据所述PDSCH的传输时隙和第二参考DCI的传输时隙n2的差值确定所述重复DCI与调度PDSCH之间的时间间隔;根据所述时间间隔确定所述PDSCH的空间相关参数。其中,所述第二参考DCI为参考DCI中的非所述第一参考DCI的任一DCI。
所述重复DCI与调度PDSCH之间的时间间隔为:
Figure PCTCN2020110497-appb-000002
Td为重复DCI与PDSCH之间的时间间隔,n1为正整数,n1是时隙最小的重复DCI所在时隙,n2是时隙最大的重复DCI所在时隙,μ PDSCH为PDSCH载波间隔配置参数,μ PDCCH为PDCCH载波间隔配置参数,K 0为重复DCI与其调度的PDSCH之间的时隙偏移,K 0由PDSCH的系统参数集numerology信息确定,K 0为0或1,n1和n2均为正整数。
在一个示例性实施方式中,基站给UE配置M个CORESET或者SS,并且指示给UE,N个CORESET或SS上的DCI是重复的,其中,M、N为正整数且M>N>1,如M=4,N=2。
基站配置重复的DCI在不同slot上只能调度一个PUSCH。
基站配置重复的DCI在不同slot且调度一个PUSCH,由传输时隙最小的DCI确定PUSCH位置。
UE按照基站配置M个CORESET或者SS的信息,及指示重复DCI的规则,确定盲解DCI的时频资源位置,需要盲解DCI的个数,重复DCI的时频资源位置。
UE按照基站配置重复的DCI能调度的PUSCH资源个数及盲解后的重复DCI检测情况,确定最终调度的资源类型及资源个数。
UE根据及基站配置情况最终盲解的结果,确定2个重复的DCI位于不同slot上,并且调度同一个PUSCH,由传输时隙最小的DCI确定PUSCH位置,那么传输时隙靠后的重复DCI与调度的PUSCH之间存在时隙偏移问题。
图10为本申请提供的重复DCI在不同时隙上调度一个PUSCH的结构示意图,如图10所示,DCI0与DCI1是重复的,并且都调度PUSCH0,DCI0、DCI1、PUSCH0分别位于slot p1、slot p2、slot p1+q2上,其中,p2>p1>0,q2>(p2-p1)。
如果按照相关协议确定DCI调度的PUCH传输时隙,DCI0与DCI1会调度不同PUSCH,为了保证调度同一个PUSCH,在计算DCI1调度PDSCH的传输时隙,应该参考DCI0。
所述重复DCI调度的资源为物理层上行共享信道PUSCH,所述PUSCH的传输时隙TU由参考DCI传输时隙n1,所述PUSCH的载波间隔参数μ PUSCH,所述DCI对应的物理下行控制信道的载波间隔参数μ PDCCH和K 1确定,其中,所述K 1为参考DCI与所述PUSCH的传输时隙偏置。
N个重复DCI调度一个PUSCH,PUSCH的参考时隙是重复DCI中时隙最小的DCI所在时隙,PUSCH传输时隙为:
Figure PCTCN2020110497-appb-000003
TU为重复DCI调度的PUSCH传输时隙,n1是时隙最小的重复DCI所在时隙,μ PUSCH为PUSCH载波间隔配置参数,μ PDCCH为PDCCH载波间隔配置参数,K 1为重复DCI与其调度的PUSCH之间的时隙偏移,K 1由PDSCH的系统参数集numerology信息确定,K 1为1至6中任一正整数。
在一个示例性实施方式中,基站给UE配置M个CORESET或者SS,并且指示给UE,N个CORESET或SS上的DCI是重复的,其中,M、N为正整数且M>N>1,如M=4,N=2。检测到至少一个重复DCI的情况。
基站配置重复的DCI在不同slot上只能调度一个AP SRS。
基站配置重复的DCI在不同slot且调度一个AP SRS,由传输时隙最小的DCI确定AP SRS位置。
UE按照基站配置M个CORESET或者SS的信息,及指示重复DCI的规则,确定盲解DCI的时频资源位置,需要盲解DCI的个数,重复DCI的时频资源位置。
UE按照基站配置重复的DCI能调度的AP SRS资源个数及盲解后的重复DCI检测情况,确定最终调度的资源类型及资源个数。
UE根据及基站配置情况最终盲解的结果,确定2个重复的DCI位于不同slot上,并且调度同一个AP SRS,由传输时隙最小的DCI确定SRS位置,那么传输时隙靠后的重复DCI与调度的AP SRS之间存在时隙偏移问题。
图11为本申请提供的重复DCI在不同时隙上调度一个AP SRS的结构示意图,如图11所示,DCI0与DCI1是重复的并且都调度SRS0,DCI0、DCI1、SRS0 分别位于slot p1、slot p2、slot p1+q3上,其中,p2>p1>0,q3>(p2-p1)。
如果按照相关协议确定DCI触发的AP SRS传输时隙,DCI0与DCI1会触发不同AP SRS,为了保证触发同一个AP SRS,在计算DCI1触发的AP SRS的传输时隙,应该参考DCI0。
所述重复DCI调度的资源为AP SRS,所述AP SRS的传输时隙TA由参考DCI传输时隙n1,所述AP SRS的载波间隔参数μ SRS,所述DCI对应的物理下行控制信道的载波间隔参数μ PDCCH和k确定,其中,所述k为参考DCI与所述AP SRS的传输时隙偏置,k由高层信令中SRS资源集resource set中时隙偏移参数确定,k为0至32中任一整数。
所述N个重复DCI调度一个AP SRS,资源传输时隙是重复DCI中时隙最小的DCI所在时隙,AP SRS传输时隙为:
Figure PCTCN2020110497-appb-000004
其中,TA为重复DCI调度的AP SRS传输时隙,n1是时隙最小的重复DCI所在时隙,μ SRS为SRS载波间隔配置参数,μ PDCCH为PDCCH载波间隔配置参数,k为DCI与其调度AP SRS之间时隙偏移,k由高层信令中SRS资源集resource set中时隙偏移参数确定,k为0至32中整数。
在一个示例性实施方式中,根据所述重复DCI确定重复DCI冗余版本RV。
在一个示例性实施方式中,所述确定DCI集合中N个重复DCI,包括如下至少之一:将DCI集合中满足高层重复信令规则的N个DCI确定为重复DCI;将DCI集合中在搜索空间SS上有搜索空间参考SSREF域的N个DCI确定为重复DCI;将DCI集合中在信道控制信道资源集合CORESET上有信道控制信道资源集合参考CORESETREF域的N个DCI确定为重复DCI。
本实施例中,确定DCI集合中N个重复DCI与上述实施例中提供的确定DCI集合中N个重复DCI基本相同,具体实施方式可以参照上述实施例中的,描述,本实施例不再赘述。
确定重复DCI调度的资源类型及资源个数,其中,所述资源类型包括如下至少之一:物理层下行共享信道PDSCH、物理层上行共享信道PUSCH。
所述N个重复DCI在N个不同的传输时隙传输,所述重复DCI调度多个所述资源。
在一个示例性实施方式中,所述确定重复DCI冗余版本RV,包括:根据配 置的冗余版本RV重映射规则和重复DCI的检测结果确定重复DCI冗余版本RV。
在一个示例性实施方式中,所述方法还包括:接收预先配置的第二资源信息,其中,第二资源信息包括:重复DCI调度资源类型及个数、重复DCI冗余版本RV,所述资源类型包括以下至少之一:物理层下行共享信道PDSCH、物理层上行共享信道PUSCH。
在一个示例性实施方式中,所述N个重复DCI调度N个PDSCH时,对重复DCI中冗余版本RV按照预定规则重映射。
在一个示例性实施方式中,所述N个重复DCI调度N个PUSCH时,对重复DCI中冗余版本RV按照预定规则重映射。
在一个示例性实施方式中,基站给UE配置M个CORESET或者SS,并且指示给UE,N个CORESET或SS上的DCI是重复的,其中,M、N为正整数且M>N>1,如M=4,N=2。
基站配置重复的DCI在不同slot上能调度多个PDSCH。
基站配置重复的DCI在不同slot上调度多个PDSCH,重复DCI的RV重映射规则。
UE按照基站配置M个CORESET或者SS的信息,及指示重复DCI的规则确定盲解DCI的时频资源位置,需要盲解DCI的个数,重复DCI的时频资源位置。
UE按照基站配置重复DCI能调度的PDSCH资源个数及盲解后的重复DCI检测情况,确定最终调度的资源类型及个数。
UE按照基站配置重复DCI冗余版本RV重映射规则及盲解后的重复DCI检测情况,确定重复DCI的最终RV。
UE根据及基站配置情况最终盲解的结果,确定2个重复的DCI位于不同slot上,并且调度2个不同PDSCH,按照基站配置的RV重映射规则确定重复DCI中的RV。
图12为本申请提供的重复DCI在不同时隙上调度多个PDSCH的结构示意图,如图12所示,DCI0、DCI1、PDSCH0、PDSCH1分别位于slot p1、slot p2、slot p1+td1、slot p2+td2上,其中,p2>p1>0,(p2+td2)>(p1+td1),DCI0、DCI1分别调度PDSCH0、PDSCH1。
虽然DCI1与DCI0携带内容一样,但在不同slot上解出,虽然是相同的RV 但UE可以有不同的理解,可以采用不同的规则对RV重映射,如基站配置将重复的DCI解出的先后次序累加计数(从1开始)模4后作为RV重映射的目录索引,按照目录索引依次映射到RV重映射序列中相应的元素,RV重映射序列可以是{0,3,2,1}或者{0,2,3,1}或者{0,1,2,3}。对于本实施例中有两个重复的DCI,如果按照{0,3,2,1}映射,DCI0、DCI1中的RV分别为0、3;如果按照{0,2,3,1}映射,DCI0、DCI1中的RV分别为0、2;如果按照{0,1,2,3}映射,DCI0、DCI1中的RV分别为0、1。
在一个示例性实施方式中,基站给UE配置M个CORESET或者SS,并且指示给UE,N个CORESET或SS上的DCI是重复的,其中,M、N为正整数且M>N>1,如M=4,N=2。
基站配置重复的DCI在不同slot上能调度多个PUSCH。
基站配置重复的DCI在不同slot上调度多个PUSCH,重复DCI的RV重映射规则。
UE按照基站配置M个CORESET或者SS的信息,及指示重复DCI的规则,确定在哪些时频资源位置盲解DCI,需要盲解DCI的个数,重复DCI的时频资源位置。
UE按照基站配置重复的DCI能调度的PDSCH/PUSCH/AP SRS资源个数及盲解后的重复DCI检测情况,确定最终调度的资源类型及个数。
UE按照基站配置重复的DCI冗余版本RV重映射规则及盲解后的重复DCI检测情况,确定重复DCI的最终RV。
UE根据及基站配置情况最终盲解的结果,确定2个重复的DCI位于不同slot上,并且调度2个不同PUSCH,按照基站配置的RV重映射规则确定重复DCI中的RV。
图13为本申请提供的重复DCI在不同时隙上调度多个PUSCH的结构示意图,如图13所示,DCI0、DCI1、PUSCH0、PUSCH1分别位于slot p1、slot p2、slot p1+tu1、slot p2+tu2上,其中,p2>p1>0,(p2+tu2)>(p1+tu1),DCI0、DCI1分别调度PUSCH0、PUSCH1。
虽然DCI1与DCI0携带内容一样,但在不同slot上解出,虽然是相同的RV但UE可以有不同的理解,可以采用不同的规则对RV重映射,如基站配置将重复的DCI解出的先后次序累加计数(从1开始)模4后作为RV重映射的目录索引,按照目录索引依次映射到RV重映射序列中相应的元素,RV重映射序列 可以是{0,3,2,1}或者{0,2,3,1}或者{0,1,2,3}。对于本实施例中有两个重复的DCI,如果按照{0,3,2,1}映射,DCI0、DCI1中的RV分别为0、3;如果按照{0,2,3,1}映射,DCI0、DCI1中的RV分别为0、2;如果按照{0,1,2,3}映射,DCI0、DCI1中的RV分别为0、1。
在一个示例性实施方式中,图14为本申请的一种信息增强方法的流程示意图。该方法可以适用于Multi-TRP/Pannel场景下PDCCH重复传输的情况。该方法可以由本申请提供的信息增强装置执行,该信息增强装置可以由软件和/或硬件实现,并集成在基站上。
如图14所示,本申请实施例提供的信息增强方法主要包括步骤S1410和S1420。
S1410、配置N个重复DCI的关联关系、第一资源信息和第二资源信息。
所述关联关系用于确定重复DCI,所述DCI集合包括M个DCI,其中,M个DCI包括N个重复DCI和M-N个非重复DCI;DCI集合包括第一DCI子集和第二DCI子集,所述第一DCI子集包含N个重复DCI,所述第二DCI子集包括M-N个非重复DCI,其中,M和N均为正整数且M>N>1。
在一个示例性实施方式中,所述配置N个重复DCI的关联关系包括以下至少之一:
对每个重复DCI在搜索空间SS上增加SSREF域,其中,所述SSREF域中内容非当前DCI所在搜索空间标识SSID。
对每个重复DCI在控制信道资源集合CORESET上增加CORESETREF域,其中,CORESETREF域中内容非当前DCI所在控制信道资源集合标识CORESETID。
定义高层重复信令规则,其中,所述重复信令规则,包括以下至少之一:SS上配置有相同的第一信息元素,其中,所述第一信息元素包括以下至少之一:第一持续时间、监测时隙周期、监测时隙周期偏移、候选PDCCH个数、DCI格式、监测时隙内的符号位置;CORESET上配置有相同的第二信息元素,其中,所述第二信息元素包括以下至少之一:第二持续时间、控制信道元素到资源元素组映射类型、频域资源、交织大小、PDCCH DMRS的加扰ID、预编码粒度、传输控制信息集合、移位目录、资源组绑定个数。
在本实施例中可以通过如下方式中的任意一种或者多种的组合来给重复DCI配置关联关系。
第一种方式,对每个重复DCI在搜索空间SS上增加SSREF域。基站只给2个重复DCI所在的SS配置关联关系,另外2个非重复DCI所在的SS不配置关联关系。
如果第一SS和第二SS上的DCI是重复的,且第一SS对应的ID为SSID1,第一SS对应的ID为SSID2,那么在第一SS增加一个SSREF域,SSREF域中的内容为SSID2,在第二SS增加一个SSREF域,SSREF域中的内容为SSID1。
第二种方式,对每个重复DCI在控制信道资源集合CORESET上增加CORESETREF域,其中,CORESETREF域中内容非当前DCI所在CORESETID。基站只给2个重复的DCI所在的CORESET配置关联关系,另外2个不重复的DCI所在的CORESET不配置关联关系。
如果第一CORESET和第二CORESET上的DCI是重复的,且第一CORESET对应的ID为CORESETID1,第一CORESET对应的ID为CORESETID2,那么在第一CORESET增加一个CORESETREF域,CORESETREF域中的内容为CORESETID2,在第二CORESET增加一个CORESETREF域,CORESETREF域中的内容为CORESETID1。
第三种方式,配置高层重复信令规则。
配置重复信令规则包括以下至少之一:给2个的重复的DCI,在SS上配置相同的一个或多个第一信息元素;给不重复的2个DCI,在SS上,配置不同的一个或多个第一信息元素。给2个的重复的DCI,在CORESET上配置相同的一个或多个第二信息元素;给不重复的2个DCI,在CORESET上,配置不同的一个或多个第二信息元素。
第一信息元素可以是以下至少之一:第一持续时间、监测时隙周期、监测时隙周期偏移、候选PDCCH个数、DCI格式、监测时隙内的符号位置等。其中,第二信息元素可以是以下至少之一:第二持续时间、控制信道元素到资源元素组映射类型、频域资源、交织大小、PDCCH DMRS的加扰ID、预编码粒度、传输控制信息集合、移位目录或资源组绑定个数。
例如:搜索空间SS上配置有相同的第一持续时间、相同的监测时隙周期、相同的监测时隙周期偏移、相同的候选PDCCH个数、相同的DCI格式和相同的监测时隙内的符号位置。
例如:控制信道资源集合CORESET上配置有相同的配置第二持续时间、相同的控制信道元素到资源元素组映射类型、相同频域资源、相同交织大小、相同的PDCCH DMRS的加扰ID、相同的预编码粒度、相同的传输控制信息集合、相同的移位目录或相同的资源组绑定个数。
在一个示例性实施方式中,第一资源信息包括重复DCI调度资源类型及个数、重复DCI调度的资源参考DCI,所述资源类型包括以下至少之一:物理层下行共享信道PDSCH、物理层上行共享信道PUSCH、非周期探测参考信号AP SRS。
配置第一资源信息包括但不限于以下至少之一:
基站指示UE重复的DCI在相同slot上只能调度一个PDSCH;基站指示UE重复的DCI在相同slot上只能调度一个PUSCH;基站指示UE重复的DCI在相同slot上只能调度一个AP SRS;基站指示UE重复的DCI在相同slot上能调度多个PDSCH;基站指示UE重复的DCI在相同slot上能调度多个PUSCH;基站指示UE重复的DCI在相同slot上能调度多个AP SRS;基站不限制UE重复的DCI在相同slot上能调度PDSCH的个数,UE根据自身能力决定;基站不限制UE重复的DCI在相同slot上能调度PUSCH的个数,UE根据自身能力决定;基站不限制UE重复的DCI在相同slot上能调度AP SRS的个数,UE根据自身能力决定;基站指示UE重复的DCI在不同slot上只能调度一个PDSCH;基站指示UE重复的DCI在不同slot上只能调度一个PUSCH;基站指示UE重复的DCI在不同slot上只能调度一个AP SRS;基站指示UE重复的DCI在不同slot上能调度多个PDSCH;基站指示UE重复的DCI在不同slot上能调度多个PUSCH;基站指示UE重复的DCI在不同slot上能调度多个AP SRS;基站不限制UE重复的DCI在不同slot上能调度PDSCH的个数,UE根据自身能力决定;基站不限制UE重复的DCI在不同同slot上能调度PUSCH的个数,UE根据自身能力决定;基站不限制UE重复的DCI在不同同slot上能调度AP SRS的个数,UE根据自身能力决定。
基站指示UE重复的DCI在不同传输时隙且调度同一资源相关的参考时隙。
在一个示例性的实施例中,所述参考DCI包括以下至少之一:N个重复DCI中传输时隙最小的DCI;N个重复DCI中传输时隙最大的DCI;N个重复DCI对应的控制信道资源集合标识最小的DCI;N个重复DCI对应的控制信道资源集合标识最大的DCI;N个重复DCI对应的搜索空间标识最小的DCI;N个重复DCI对应的搜索空间标识最大的DCI。
基站配置重复的DCI在不同slot上且调度同一PDSCH时,包括但不限于方式之一确定PDSCH的传输时隙:
由传输时隙最小的DCI确定PDSCH位置;由传输时隙最大的DCI确定PDSCH位置;由控制信道资源集合标识最小所在的DCI确定PDSCH位置;由控制信道资源集合标识最大所在的DCI确定PDSCH位置;由搜索空间标识最小所在的DCI确定PDSCH位置;由搜索空间标识最大所在的DCI确定PDSCH 位置。
基站配置重复的DCI在不同slot上且调度同一PDSCH时,确定空间相关参数时,需要比较DCI与调度的PDSCH时间间隔同UE能力参数的大小。
DCI与调度的PDSCH时间间隔为包括但不限于方式之一:
传输时隙最小的DCI与PDSCH时间间隔;传输时隙最大的DCI与PDSCH时间间隔;控制信道资源集合标识最小所在的DCI与PDSCH时间间隔;控制信道资源集合标识最大所在的DCI与PDSCH时间间隔;搜索空间标识最小所在的DCI与PDSCH时间间隔;搜索空间标识最大所在的DCI与PDSCH时间间隔。
基站配置重复的DCI在不同slot上且调度同一PUSCH时,包括但不限于方式之一确定PUSCH的传输时隙:
由传输时隙最小的DCI确定PUSCH位置;由传输时隙最大的DCI确定PUSCH位置;由控制信道资源集合标识最小所在的DCI确定PUSCH位置;由控制信道资源集合标识最大所在的DCI确定PUSCH位置;由搜索空间标识最小所在的DCI确定PUSCH位置;由搜索空间标识最大所在的DCI确定PUSCH位置。
在一个实施例性实施例中,第二资源信息包括:重复DCI调度资源类型及个数、重复DCI冗余版本RV,所述资源类型包括以下至少之一:物理层下行共享信道PDSCH、物理层上行共享信道PUSCH。
基站配置重复的DCI在不同slot上且调度同一AP SRS时,包括但不限于方式之一确定SRS的传输时隙:
由传输时隙最小的DCI确定SRS位置;由传输时隙最大的DCI确定SRS位置;由控制信道资源集合标识最小所在的DCI确定SRS位置;由控制信道资源集合标识最大所在的DCI确定SRS位置;由搜索空间标识最小所在的DCI确定SRS位置;由搜索空间标识最大所在的DCI确定SRS位置。
在一个示例性实施方式中,配置的重复DCI在不同时隙且调度多个资源时重复DCI的冗余版本RV。
重复的DCI在不同时隙且调度多个PDSCH,包括但不限于以下方式:
将重复的DCI解出的先后次序累加计数(从1开始)模4后作为RV重映射的目录索引,按照目录索引依次映射到RV重映射序列中相应的元素,RV重映射序列包括但不限于{0,3,2,1}、{0,2,3,1}、{0,1,2,3}。
重复的DCI在不同时隙且调度多个PUSCH,包括但不限于以下方式:
将重复的DCI解出的先后次序累加计数(从1开始)模4后作为RV重映射的目录索引,按照目录索引依次映射到RV重映射序列中相应的元素,RV重映射序列包括但不限于{0,3,2,1}、{0,2,3,1}、{0,1,2,3}。
S1420、将所述关联关系、所述第一资源信息和第二资源信息发送至UE。
为了使UE可以根据关联关系确定重复DCI,需要将配置的关联关系发送至UE。
在一个示例性实施方式中,UE没有检测到重复DCI,基站和UE的相关操作。
基站给UE配置M个CORESET或者SS,并且指示给UE,N个CORESET或SS上的DCI是重复的,其中,M、N为正整数且M>N>1,如M=4,N=2。
基站配置重复的DCI在不同slot上只能调度一个PDSCH。
UE按照基站配置M个CORESET或者SS的关联关系,及指示重复DCI的规则,确定在哪些时频资源位置盲解DCI,需要盲解DCI的个数,重复DCI的时频资源位置。
UE按照基站配置重复的DCI能调度的PDSCH资源个数及盲解后的重复DCI检测情况,确定最终调度的资源类型及资源个数。
重复的DCI都没有检测到,上述实施例图5中实框和虚框位置的1都没有检测到,UE会按照实际检测到DCI顺序来计算DAI值,并不会按照重复的DCI中DAI值预留,即最终的DAI取值为123,而不是234。
在一个示例性实施方式中,UE检测到重复的DCI在相同slot上,并且只调度一个PDSCH,基站和UE的相关操作。
基站给UE配置M个CORESET或者SS,并且指示给UE,N个CORESET或SS上的DCI是重复的,其中,M、N为正整数且M>N>1,如M=4,N=2。
基站配置重复的DCI在相同slot上只能调度一个PDSCH。
UE按照基站配置M个CORESET或者SS的信息,及指示重复DCI的规则, 确定在哪些时频资源位置盲解DCI,需要盲解DCI的个数,重复DCI的时频资源位置。具体配置方式参考上述实施例中提供的基站给重复DCI配置信息的方式,本实施例不再赘述。
UE按照基站配置重复的DCI能调度的PDSCH/PUSCH/AP SRS资源个数及盲解后的重复DCI检测情况,确定最终调度的资源类型及资源个数。
UE根据及基站配置情况最终盲解的结果,确定2个重复的DCI位于相同slot上,并且调度同一个PDSCH。
UE确定PDSCH传输时隙的方式,参考上述实施例中提供的PUSCH传输时隙确定的方式,本实施例不再赘述。
UE检测到至少一个重复DCI的情况,参考上述实施例中提供的检测到至少一个重复DCI解决DAI不对齐的方式,本实施例不再赘述。
在一个示例性实施方式中,UE检测到重复的DCI在相同slot上,并且只调度一个PUSCH,基站和UE的相关操作。
基站给UE配置M个CORESET或者SS,并且指示给UE,N个CORESET或SS上的DCI是重复的,其中,M、N为正整数且M>N>1,如M=4,N=2。
基站配置重复的DCI在相同slot上只能调度一个PUSCH。
UE按照基站配置M个CORESET或者SS的信息,及指示重复DCI的规则,确定在哪些时频资源位置盲解DCI,需要盲解DCI的个数,重复DCI的时频资源位置。具体配置方式参考上述实施例中提供的基站给重复DCI配置信息的方式,本实施例不再赘述。
UE按照基站配置重复的DCI能调度的PDSCH/PUSCH/AP SRS资源个数及盲解后的重复DCI检测情况,确定最终调度的资源类型及资源个数。
UE根据及基站配置情况最终盲解的结果,确定2个重复的DCI位于相同slot上,并且调度同一个PUSCH。
UE检测到至少一个重复DCI的情况,参考上述实施例中提供的检测到至少一个重复DCI解决DAI不对齐的方式,本实施例不再赘述。
UE确定PUSCH传输时隙的方式,参考上述实施例中提供的PUSCH传输时隙确定的方式,本实施例不再赘述。
在一个示例性实施方式中,UE检测到重复的DCI在不同slot上,并且只调 度一个PDSCH,基站和UE的相关操作。
基站给UE配置M个CORESET或者SS,并且指示给UE,N个CORESET或SS上的DCI是重复的,其中,M、N为正整数且M>N>1,如M=4,N=2。
基站配置重复的DCI在不同slot且调度一个PDSCH且由传输时隙最小的DCI确定PDSCH位置。
基站配置重复的DCI在不同slot且调度一个AP SRS且由传输时隙最小的DCI确定SRS位置。
基站配置重复的DCI在不同slot且调度一个PDSCH,确定默认波束时,DCI与PDSCH时间间隔为传输时隙最大的DCI与调度PDSCH之间的时间间隔。具体配置方式参考上述实施例中提供的基站给重复DCI配置关联关系的方式,本实施例不再赘述。
UE按照基站配置M个CORESET或者SS的信息,及指示重复DCI的规则,确定在哪些时频资源位置盲解DCI,需要盲解DCI的个数,重复DCI的时频资源位置。
UE按照基站配置重复的DCI能调度的AP SRS资源个数及盲解后的重复DCI检测情况,确定最终调度的资源类型及个数。
UE根据及基站配置情况最终盲解的结果,确定2个重复DCI位于不同slot上,并且调度同一个PDSCH。
由于重复的DCI在不同slot上,并且只调度一个PDSCH,存在传输时隙靠后的重复DCI与调度PDSCH之间的slot offset问题,传输时隙靠前的重复DCI确定空间相关参数,DCI与PDSCH之间的slot offset问题,传输时隙靠后的重复DCI与触发的AP SRS之间的slot offset问题。参考上述实施例中提供的slot offset问题的解决方式,本实施例不再赘述。
输时隙靠后的重复DCI是指非传输时隙最小的重复DCI,即除去传输时隙最小的重复DCI之外的所有重复DCI,传输时隙靠前的重复DCI是指非传输时隙最大的重复DCI,即除去传输时隙最大的重复DCI之外的所有重复DCI。
UE检测到至少一个重复DCI的情况,参考上述实施例中提供的检测到至少一个重复DCI解决DAI不对齐的方式,本实施例不再赘述。
在一个示例性实施方式中,UE检测到重复的DCI在不同slot上,并且只调度一个PUSCH,基站和UE的相关操作。
基站给UE配置M个CORESET或者SS,并且指示给UE,N个CORESET 或SS上的DCI是重复的,其中,M、N为正整数且M>N>1,如M=4,N=2。
基站配置重复的DCI在不同slot且调度一个PUSCH,且由传输时隙最小的DCI确定PDSCH位置。
基站配置重复的DCI在不同slot且调度一个AP SRS,且由传输时隙最小的DCI确定SRS位置。具体配置方式参考上述实施例中提供的基站给重复DCI配置关联关系的方式,本实施例不再赘述。
UE按照基站配置M个CORESET或者SS的信息,及指示重复DCI的规则,确定在哪些时频资源位置盲解DCI,需要盲解DCI的个数,重复DCI的时频资源位置。
UE按照基站配置重复的DCI能调度的PDSCH/PUSCH/AP SRS资源个数及盲解后的重复DCI检测情况,确定最终调度的资源类型及个数。
UE根据及基站配置情况最终盲解的结果,确定2个重复的DCI位于不同slot上,并且调度同一个PUSCH。
由于重复的DCI在不同slot上,并且只调度一个PUSCH,存在传输时隙靠后的重复DCI与调度PUSCH之间的slot offset问题,传输时隙靠后的重复DCI与触发的AP SRS之间的slot offset问题。参考上述实施例中提供的slot offset问题的解决方式,本实施例不再赘述。
UE检测到至少一个重复DCI的情况,参考上述实施例中提供的检测到至少一个重复DCI解决DAI不对齐的方式,本实施例不再赘述。
在一个示例性实施方式中,UE检测到重复的DCI在不同slot上,并且调度多个PDSCH,基站和UE的相关操作。
基站给UE配置M个CORESET或者SS,并且指示给UE,N个CORESET或SS上的DCI是重复的,其中,M、N为正整数且M>N>1,如M=4,N=2。具体配置方式参考上述实施例中提供的基站给重复DCI配置关联关系的方式,本实施例不再赘述。
UE检测到重复的DCI在不同slot上,并且调度多个PDSCH;
基站配置重复的DCI在不同slot上能调度多个PDSCH。
基站配置重复的DCI冗余版本RV重映射规则。
UE按照基站配置M个CORESET或者SS的信息,及指示重复DCI的规则,确定在哪些时频资源位置盲解DCI,需要盲解DCI的个数,重复DCI的时频资源位置。
UE按照基站配置重复的DCI能调度的PDSCH资源个数及盲解后的重复DCI检测情况,确定最终调度的资源类型及个数。
UE根据及基站配置情况最终盲解的结果,确定2个重复的DCI位于不同slot上,并且调度2个不同PDSCH。
由于重复的DCI在不同slot上且调度不同的PDSCH,按照基站配置重复的DCI冗余版本RV重映射规则及盲解后的重复DCI检测情况,确定重复DCI的最终RV,参考上述实施例,本实施例不再赘述。
UE检测到至少一个重复DCI的情况,参考上述实施例中提供的检测到至少一个重复DCI解决DAI不对齐的方式,本实施例不再赘述。
在一个示例性实施方式中,UE检测到重复的DCI在不同slot上,并且调度多个PUSCH,基站和UE的相关操作。
基站给UE配置M个CORESET或者SS,并且指示给UE,N个CORESET或SS上的DCI是重复的,其中,M、N为正整数且M>N>1,如M=4,N=2。基站配置重复的DCI在不同slot上能调度多个PUSCH。
基站配置重复的DCI冗余版本RV重映射规则。具体配置方式参考上述实施例中提供的基站给重复DCI配置关联关系的方式,本实施例不再赘述。
UE按照基站配置M个CORESET或者SS的信息,及指示重复DCI的规则,确定在哪些时频资源位置盲解DCI,需要盲解DCI的个数,重复DCI的时频资源位置。
UE按照基站配置重复的DCI能调度的PUSCH资源个数及盲解后的重复DCI检测情况,确定最终调度的资源类型及个数。
UE根据及基站配置情况最终盲解的结果,确定2个重复的DCI位于不同slot上,并且调度2个不同PUSCH。
UE检测到至少一个重复DCI的情况,参考上述实施例中提供的检测到至少一个重复DCI解决DAI不对齐的方式,本实施例不再赘述。
由于重复的DCI在不同slot上且调度不同的PUSCH,按照基站配置重复的DCI冗余版本RV重映射规则及盲解后的重复DCI检测情况,确定重复DCI的最终RV,参考上述实施例,本实施例不再赘述。
UE检测到至少一个重复DCI的情况,参考上述实施例中提供的检测到至少一个重复DCI解决DAI不对齐的方式,本实施例不再赘述。
本申请实施例还提供了一种信息增强装置,图15为本申请提供的一种信息增强装置的结构示意图。该方法可以适用于Multi-TRP/Pannel场景下PDCCH重复传输的情况。该信息增强装置可以由软件和/或硬件实现,并集成在用户设备(user equipment,UE)上。
如图15所示,本申请实施例提供的信息增强装置主要包括模块1510和1520。
重复DCI确定模块1510,设置为确定下行控制信息DCI集合中的第一DCI子集和第二DCI子集,其中,所述第一DCI子集包括N个重复DCI,所述第二DCI子集包括M-N个非重复DCI;N为大于1的整数,M为大于N的整数;相关信息确定模块1520,设置为根据所述重复DCI确定DCI集合中DCI的相关信息。
本实施例提供的信息增强装置用于本申请实施例的信息增强方法,本实施例提供的信息增强装置实现原理和技术效果与本申请实施例的信息增强方法类似,此处不再赘述。
在一个示例性实施方式中,相关信息确定模块1520,设置为采用下述方式之一确定DCI集合中DCI的相关信息:
根据所述重复DCI确定所述DCI集合下行分配指示DAI的取值;根据所述重复DCI确定所述重复DCI调度资源的传输时隙;根据所述重复DCI确定重复DCI冗余版本RV;根据所述重复DCI确定所述DCI集合DAI的取值和所述重复DCI调度资源的传输时隙;根据所述重复DCI确定所述DCI集合下行分配指示DAI的取值和重复DCI冗余版本RV。
在一个示例性实施方式中,所述DCI集合包括M个DCI,其中,M个DCI包括N个重复DCI和M-N个非重复DCI;第一DCI子集包含N个重复DCI,其中,M为大于N的整数。
在一个示例性实施方式中,重复DCI确定模块1510,设置为采用以下至少之一确定重复DCI:
将DCI集合中满足高层重复信令规则的N个DCI确定为重复DCI;将DCI集合中在搜索空间SS上有搜索空间参考SSREF域的N个DCI确定为重复DCI;将DCI集合中在控制信道资源集合CORESET上有信道控制信道资源集合参考CORESETREF域的N个DCI确定为重复DCI;其中,所述N个DCI包括的所有域的内容相同。
在一个示例性实施方式中,相关信息确定模块1520,设置为根据第一DCI子集中N个重复DCI的检测结果,确定所述DCI集合DAI取值,其中,所述第一DCI子集中重复DCI的DAI值相同。
在一个示例性实施方式中,相关信息确定模块1520,设置为如果未检测到第一DCI子集中任一个重复DCI,则根据实际检测到DCI的顺序确定DCI集合DAI的取值。
在一个示例性实施方式中,相关信息确定模块1520,设置为如果检测到第一DCI子集中至少一个重复DCI,则将第一DCI子集中时域机会索引和载波单元索引均最小的DCI作为目标DCI,将第一DCI子集中DAI放到目标DCI位置,并根据目标DCI的DAI和DCI集合中非重复DCI的DAI确定所述DCI集合的DAI取值,其中,DAI的位置由时域机会索引和载波单元索引共同确定。
在一个示例性实施方式中,所述N个重复DCI在N个不同的传输时隙传输,所述重复DCI调度同一个所述资源。
在一个示例性实施方式中,相关信息确定模块1520,设置为根据所述N个重复DCI的参考DCI确定所述重复DCI调度的资源传输时隙,其中,所述参考DCI包括以下至少之一:N个重复DCI中传输时隙最小的DCI;N个重复DCI中传输时隙最大的DCI;N个重复DCI对应的控制信道资源集合标识最小的DCI;N个重复DCI对应的控制信道资源集合标识最大的DCI;N个重复DCI对应的搜索空间标识最小的DCI;N个重复DCI对应的搜索空间标识最大的DCI。
在一个示例性实施方式中,相关信息确定模块1520,设置为所述重复DCI调度的资源为物理层下行共享信道PDSCH时,所述PDSCH的传输时隙TD由第一参考DCI传输时隙n1,所述PDSCH的载波间隔参数μ PDSCH,所述DCI对应的物理下行控制信道的载波间隔参数μ PDCCH和K 0确定,其中,所述K 0为参考DCI与所述PDSCH的传输时隙偏置,所述第一参考DCI为所述参考DCI中的任一DCI。
在一个示例性实施方式中,相关信息确定模块1520,设置为根据所述PDSCH的传输时隙和第二参考DCI的传输时隙n2的差值确定所述重复DCI与调度PDSCH之间的时间间隔;根据所述时间间隔确定所述PDSCH的空间相关参数,其中,所述第二参考DCI为参考DCI中的非所述第一参考DCI的任一DCI。
在一个示例性实施方式中,相关信息确定模块1520,设置为所述重复DCI调度的资源为PUSCH,所述PUSCH的传输时隙TU由参考DCI传输时隙n1,所述PUSCH的载波间隔参数μ PUSCH,所述DCI对应的物理下行控制信道的载波间隔参数μ PDCCH和K 1确定,其中,所述K 1为参考DCI与所述PUSCH的传输时隙偏置。
在一个示例性实施方式中,相关信息确定模块1520,设置为所述重复DCI 调度的资源为AP SRS,所述AP SRS的传输时隙TA由参考DCI传输时隙n1,所述AP SRS的载波间隔参数μ SRS,所述DCI对应的物理下行控制信道的载波间隔参数μ PDCCH和k确定,其中,所述k为参考DCI与所述AP SRS的传输时隙偏置,k由高层信令中SRS资源集resource set中时隙偏移参数确定。
在一个示例性实施方式中,所述装置还包括:接收模块,设置为接收配置的第一资源信息,其中,第一资源信息包括:重复DCI调度资源类型及个数、重复DCI调度的资源参考DCI,所述资源类型包括以下至少之一:物理层下行共享信道PDSCH、物理层上行共享信道PUSCH、非周期探测参考信号AP SRS。
在一个示例性实施方式中,所述N个重复DCI在N个不同的传输时隙传输,所述重复DCI调度多个所述资源。
在一个示例性实施方式中,相关信息确定模块1520,设置为根据配置的冗余版本RV重映射规则和重复DCI的检测结果确定重复DCI冗余版本RV。
在一个示例性实施方式中,接收模块,设置为接收预先配置的第二资源信息,其中,第二资源信息包括:重复DCI调度资源类型及个数、重复DCI冗余版本RV,所述资源类型包括以下至少之一:物理层下行共享信道PDSCH、物理层上行共享信道PUSCH。
在一个示例性实施方式中,相关信息确定模块1520,设置为重复DCI冗余版本RV,所述N个重复DCI调度N个PDSCH时,对重复DCI中冗余版本RV按照预定规则重映射。
在一个示例性实施方式中,相关信息确定模块1520,设置为重复DCI冗余版本RV,所述N个重复DCI调度N个PUSCH时,对重复DCI中冗余版本RV按照预定规则重映射。
在一个示例性实施方式中,所述装置还包括:接收模块,设置为接收所述配置的N个重复DCI的关联关系,所述关联关系用于确定重复DCI。
在一个示例性实施方式中,所述N个重复DCI的关联关系包括以下至少之一:
每个重复DCI在搜索空间SS上增加SSREF域,其中,所述SSREF域中内容非当前DCI所在搜索空间标识SSID;每个重复DCI在控制信道资源集合CORESET上增加CORESETREF域,其中,CORESETREF域中内容非当前DCI所在控制信道资源集合标识CORESETID。
预定义的高层重复信令规则,其中所述重复信令规则,包括以下至少之一:SS上配置有相同的第一信息元素,其中,所述第一信息元素包括以下至少之一:第一持续时间、监测时隙周期、监测时隙周期偏移、候选PDCCH个数、DCI 格式、监测时隙内的符号位置;CORESET上配置有相同的第二信息元素,其中,所述第二信息元素包括以下至少之一:第二持续时间、控制信道元素到资源元素组映射类型、频域资源、交织大小、PDCCH DMRS的加扰ID、预编码粒度、传输控制信息集合、移位目录、资源组绑定个数。
本申请实施例还提供了一种信息增强装置,本申请实施例还提供了一种信息增强装置,图16为本申请提供的一种信息增强装置的结构示意图。该方法可以适用于Multi-TRP/Pannel场景下PDCCH重复传输的情况。该信息增强装置可以由软件和/或硬件实现,并集成在基站上。
如图16所示,本申请实施例提供的信息增强装置主要包括模块1610和1620。
配置模块1610,设置为配置N个重复DCI的关联关系、第一资源信息和第二资源信息;发送模块1620,设置为将所述关联关系、所述第一资源信息和第二资源信息发送至UE。
本实施例提供的信息增强装置用于本申请实施例的信息增强方法,本实施例提供的信息增强装置实现原理和技术效果与本申请实施例的信息增强方法类似,此处不再赘述。
在一个示例性实施例方式中,所述关联关系用于确定重复DCI,所述DCI集合包括M个DCI,其中,M个DCI包括N个重复DCI和M-N个非重复DCI;DCI集合包括第一DCI子集和第二DCI子集,所述第一DCI子集包含N个重复DCI,所述第二DCI子集包括M-N个非重复DCI,其中,M和N均为整数且M>N>1。
在一个示例性实施例方式中,所述N个重复DCI的关联关系包括以下至少之一:
对每个重复DCI在搜索空间SS上增加SSREF域,其中,所述SSREF域中内容非当前DCI所在搜索空间标识SSID;对每个重复DCI在控制信道资源集合CORESET上增加CORESETREF域,其中,CORESETREF域中内容非当前DCI所在控制信道资源集合标识CORESETID。
定义高层重复信令规则,其中所述重复信令规则,包括以下至少之一:SS上配置有相同的第一信息元素,其中,所述第一信息元素包括以下至少之一:第一持续时间、监测时隙周期、监测时隙周期偏移、候选PDCCH个数、DCI格式、监测时隙内的符号位置;CORESET上配置有相同的第二信息元素,其中,所述第二信息元素包括以下至少之一:第二持续时间、控制信道元素到资源元素组映射类型、频域资源、交织大小、PDCCH DMRS的加扰ID、预编码粒度、 传输控制信息集合、移位目录、资源组绑定个数。
在一个示例性实施例方式中,第一资源信息包括:重复DCI调度资源类型及个数、重复DCI调度的资源参考DCI,所述资源类型包括以下至少之一:物理层下行共享信道PDSCH、物理层上行共享信道PUSCH、非周期探测参考信号AP SRS。
在一个示例性实施例方式中,配置模块1610,设置为配置重复DCI调度的资源参考DCI,其中所述参考DCI包括以下至少之一:N个重复DCI中传输时隙最小的DCI;N个重复DCI中传输时隙最大的DCI;N个重复DCI对应的控制信道资源集合标识最小的DCI;N个重复DCI对应的控制信道资源集合标识最大的DCI;N个重复DCI对应的搜索空间标识最小的DCI;N个重复DCI对应的搜索空间标识最大的DCI。
在一个示例性实施例方式中,配置模块1610,设置为配置N个重复DCI中调度一个PDSCH时,确定重复DCI调度的PDSCH时隙位置时,参考DCI为传输时隙最小的DCI。
在一个示例性实施例方式中,配置模块1610,设置为配置N个重复DCI中调度一个PDSCH时,确定重复DCI调度的PDSCH空间相关参数时,第一参考DCI为传输时隙最小的DCI,第二参考DCI为传输时隙最大的DCI。
在一个示例性实施例方式中,配置模块1610,设置为配置N个重复DCI中调度一个PUSCH时,确定重复DCI调度的PUSCH时隙位置时,参考DCI为传输时隙最小的DCI。
在一个示例性实施例方式中,配置模块1610,设置为配置N个重复DCI中调度一个AP SRS时,确定重复DCI调度的SRS时隙位置时,参考DCI为传输时隙最小的DCI。
在一个示例性实施例方式中,第二资源信息包括:重复DCI调度资源类型及个数、重复DCI冗余版本RV,所述资源类型包括以下至少之一:物理层下行共享信道PDSCH、物理层上行共享信道PUSCH。
在一个示例性实施例方式中,配置模块1610,设置为配置所述N个重复DCI调度N个PDSCH时,重复DCI中冗余版本RV的重映射规则。
在一个示例性实施例方式中,配置模块1610,设置为配置所述N个重复DCI调度N个PUSCH时,重复DCI中冗余版本RV的重映射规则。
本申请实施例还提供了一种用户设备,图17为本申请提供的一种用户设备 的结构示意图,如图17所示,本申请提供的用户设备,包括一个或多个处理器171和存储器172;该用户设备中的处理器171可以是一个或多个,图17中以一个处理器171为例;存储器172用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器171执行,使得所述一个或多个处理器171实现如本申请实施例中所述的信息增强方法。
用户设备还包括:通信装置173、输入装置174和输出装置175。
用户设备中的处理器171、存储器172、通信装置173、输入装置174和输出装置175可以通过总线或其他方式连接,图17中以通过总线连接为例。
输入装置174可用于接收输入的数字或字符信息,以及产生与用户设备的用户设置以及功能控制有关的按键信号输入。输出装置175可包括显示屏等显示设备。
通信装置173可以包括接收器和发送器。通信装置173设置为根据处理器171的控制进行信息收发通信。
存储器172作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述信息增强方法对应的程序指令/模块(例如,信息增强装置中的重复DCI确定模块1510和相关信息确定模块1520,)。存储器172可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器172可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器172可包括相对于处理器171远程设置的存储器,这些远程存储器可以通过网络连接至用户设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供了一种基站,图18为本申请提供的一种基站的结构示意图,如图18所示,本申请提供的基站,包括一个或多个处理器1810和存储器1820;该基站中的处理器1810可以是一个或多个,图18中以一个处理器1810为例;存储器1820用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器1810执行,使得所述一个或多个处理器1810实现如本申请实施例中所述的信息增强方法。
基站还包括:通信装置1830、输入装置1840和输出装置1850。
基站中的处理器1810、存储器1820、通信装置1830、输入装置1840和输出装置1850可以通过总线或其他方式连接,图18中以通过总线连接为例。
输入装置1840可用于接收输入的数字或字符信息,以及产生与用户设备的用户设置以及功能控制有关的按键信号输入。输出装置1850可包括显示屏等显示设备。
通信装置1830可以包括接收器和发送器。通信装置1830设置为根据处理器1810的控制进行信息收发通信。
存储器1820作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述信息增强方法对应的程序指令/模块(例如信息增强装置中的配置模块1610和发送模块1620)。存储器1820可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器1820可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器1820可包括相对于处理器1810远程设置的存储器,这些远程存储器可以通过网络连接至基站。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的信息增强方法。如应用于用户设备的信息增强方法和应用于基站的信息增强方法。
应用于用户设备的信息增强方法包括:
确定下行控制信息DCI集合中的第一DCI子集和第二DCI子集,其中,所述第一DCI子集包括N个重复DCI,所述第二DCI子集包括M-N个非重复DCI;N为大于1的整数,M为大于N的整数;根据所述重复DCI确定DCI集合中DCI的相关信息。
应用于基站的信息增强方法包括:
配置N个重复DCI的关联关系、第一资源信息和第二资源信息;将所述关联关系、所述第一资源信息和第二资源信息发送至UE。
以上所述,仅为本申请提供的示例性实施例而已,并非用于限定本申请的保护范围。
术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其 任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (34)

  1. 一种信息增强方法,包括:
    确定下行控制信息DCI集合中的第一DCI子集和第二DCI子集,其中,所述第一DCI子集包括N个重复DCI,所述第二DCI子集包括M-N个非重复DCI;N为大于1的整数,M为大于N的整数;
    根据所述重复DCI确定所述DCI集合中的DCI的相关信息。
  2. 根据权利要求1所述的方法,其中,所述根据所述重复DCI确定所述DCI集合中的DCI的相关信息,包括下述方式之一:
    根据所述重复DCI确定所述DCI集合的下行分配指示DAI的取值;
    根据所述重复DCI确定重复DCI调度的资源的传输时隙;
    根据所述重复DCI确定重复DCI的冗余版本RV;
    根据所述重复DCI确定所述DCI集合的DAI的取值和确定重复DCI调度的资源的传输时隙;
    根据所述重复DCI确定所述DCI集合的DAI的取值和确定重复DCI的RV。
  3. 根据权利要求1所述的方法,其中,所述DCI集合包括M个DCI,其中,所述M个DCI包括所述N个重复DCI和所述M-N个非重复DCI。
  4. 根据权利要求1所述的方法,其中,所述确定DCI集合中的第一DCI子集,包括以下至少之一:
    将所述DCI集合中满足高层重复信令规则的N个DCI确定为重复DCI;
    将所述DCI集合中在搜索空间SS上有搜索空间参考SSREF域的N个DCI确定为重复DCI;
    将所述DCI集合中在控制信道资源集合CORESET上有信道控制信道资源集合参考CORESETREF域的N个DCI确定为重复DCI;
    其中,所述N个DCI包括的所有域的内容相同。
  5. 根据权利要求2所述的方法,其中,所述根据所述重复DCI确定所述DCI集合中的DAI的取值,包括:
    根据所述第一DCI子集中的N个重复DCI的检测结果,确定所述DCI集合的DAI取值,其中,所述第一DCI子集中的N个重复DCI的DAI值相同。
  6. 根据权利要求5所述的方法,其中,所述根据所述第一DCI子集中的N个重复DCI的检测结果,确定所述DCI集合的DAI的取值,包括:
    在未检测到所述第一DCI子集中的重复DCI的情况下,根据实际检测到的 DCI的顺序确定所述DCI集合的DAI的取值。
  7. 根据权利要求5所述的方法,其中,所述根据所述第一DCI子集中的N个重复DCI的检测结果,确定所述DCI集合的DAI的取值,包括:
    在检测到所述第一DCI子集中的至少一个重复DCI的情况下,将所述第一DCI子集中的时域机会索引和载波单元索引均最小的DCI作为目标DCI,将所述第一DCI子集中的DAI放到所述目标DCI的位置,并根据所述目标DCI的DAI和所述DCI集合中的非重复DCI的DAI确定所述DCI集合的DAI取值,其中,DAI的位置由时域机会索引和载波单元索引共同确定。
  8. 根据权利要求2所述的方法,其中,所述N个重复DCI在N个不同的传输时隙传输,所述N个重复DCI调度同一个资源。
  9. 根据权利要求8所述的方法,其中,所述根据所述重复DCI确定重复DCI调度的资源的传输时隙,包括:
    根据所述N个重复DCI的参考DCI确定所述重复DCI调度的资源的传输时隙,其中,所述参考DCI包括以下至少之一:所述N个重复DCI中传输时隙最小的DCI;所述N个重复DCI中传输时隙最大的DCI;所述N个重复DCI对应的控制信道资源集合标识最小的DCI;所述N个重复DCI对应的控制信道资源集合标识最大的DCI;所述N个重复DCI对应的搜索空间标识最小的DCI;所述N个重复DCI对应的搜索空间标识最大的DCI。
  10. 根据权利要求9所述的方法,其中,所述根据所述N个重复DCI的参考DCI确定所述重复DCI调度的资源的传输时隙,包括:
    在所述重复DCI调度的资源为物理层下行共享信道PDSCH的情况下,所述PDSCH的传输时隙TD由第一参考DCI传输时隙n1,所述PDSCH的载波间隔参数μ PDSCH,DCI对应的物理层下行控制信道的载波间隔参数μ PDCCH和K 0确定,其中,K 0为参考DCI与所述PDSCH的传输时隙偏置,所述第一参考DCI为所述参考DCI中的一个DCI。
  11. 根据权利要求10所述的方法,其中,所述根据所述N个重复DCI的参考DCI确定所述重复DCI调度的资源的传输时隙,包括:
    根据所述PDSCH的传输时隙和第二参考DCI的传输时隙n2的差值确定重复DCI与调度PDSCH之间的时间间隔;
    根据所述时间间隔确定所述PDSCH的空间相关参数,其中,所述第二参考DCI为参考DCI中的非所述第一参考DCI的一个DCI。
  12. 根据权利要求9所述的方法,其中,所述根据所述N个重复DCI的参考 DCI确定所述重复DCI调度的资源的传输时隙,包括:
    在所述重复DCI调度的资源为物理层上行共享信道PUSCH的情况下,所述PUSCH的传输时隙TU由参考DCI传输时隙n1,所述PUSCH的载波间隔参数μ PUSCH,DCI对应的物理层下行控制信道的载波间隔参数μ PDCCH和K 1确定,其中,K 1为参考DCI与所述PUSCH的传输时隙偏置。
  13. 根据权利要求9所述的方法,其中,所述根据所述N个重复DCI的参考DCI确定所述重复DCI调度的资源的传输时隙,包括:
    在所述重复DCI调度的资源为非周期探测参考信号AP SRS的情况下,所述AP SRS的传输时隙TA由参考DCI传输时隙n1,所述AP SRS的载波间隔参数μ SRS,DCI对应的物理层下行控制信道的载波间隔参数μ PDCCH和k确定,其中,k为参考DCI与所述AP SRS的传输时隙偏置,k由高层信令中SRS资源集resource set中时隙偏移参数确定。
  14. 根据权利要求1所述的方法,还包括:
    接收预先配置的第一资源信息,其中,所述第一资源信息包括:重复DCI调度的资源类型及个数、以及重复DCI调度的资源参考DCI,所述资源类型包括以下至少之一:PDSCH、PUSCH、AP SRS。
  15. 根据权利要求2所述的方法,其中,所述N个重复DCI在N个不同的传输时隙传输,所述N个重复DCI调度多个资源。
  16. 根据权利要求15所述的方法,其中,所述根据所述重复DCI确定重复DCI的RV,包括:
    根据配置的RV重映射规则和重复DCI的检测结果确定所述重复DCI的RV。
  17. 根据权利要求16所述的方法,其中,在所述N个重复DCI调度N个PDSCH的情况下,对所述重复DCI的RV按照预定规则重映射。
  18. 根据权利要求16所述的方法,其中,在所述N个重复DCI调度N个PUSCH的情况下,对所述重复DCI的RV按照预定规则重映射。
  19. 根据权利要求1所述的方法,还包括:
    接收预先配置的第二资源信息,其中,所述第二资源信息包括:重复DCI调度的资源类型及个数、重复DCI的RV,所述资源类型包括以下至少之一:PDSCH、PUSCH。
  20. 根据权利要求1所述的方法,还包括:
    接收预先配置的所述N个重复DCI的关联关系,所述关联关系用于确定重复DCI。
  21. 根据权利要求20所述的方法,其中,所述N个重复DCI的关联关系包括以下至少之一:
    每个重复DCI在SS上增加SSREF域,其中,所述SSREF域中的内容非当前DCI所在搜索空间标识SSID;
    每个重复DCI在CORESET上增加CORESETREF域,其中,所述CORESETREF域中的内容非当前DCI所在控制信道资源集合标识CORESETID;
    预定义的高层重复信令规则,其中,所述重复信令规则,包括以下至少之一:SS上配置有相同的第一信息元素,其中,所述第一信息元素包括以下至少之一:第一持续时间、监测时隙周期、监测时隙周期偏移、候选物理层下行控制信道PDCCH个数、DCI格式、监测时隙内的符号位置;CORESET上配置有相同的第二信息元素,其中,所述第二信息元素包括以下至少之一:第二持续时间、控制信道元素到资源元素组映射类型、频域资源、交织大小、PDCCH解调参考信号DMRS的加扰ID、预编码粒度、传输控制信息集合、移位目录、资源组绑定个数。
  22. 一种信息增强方法,包括:
    配置N个重复下行控制信息DCI的关联关系、第一资源信息和第二资源信息,N为大于1的整数;
    将所述关联关系、所述第一资源信息和第二资源信息发送至用户设备UE。
  23. 根据权利要求22所述的方法,其中,所述关联关系用于确定重复DCI,DCI集合包括M个DCI,其中,M个DCI包括所述N个重复DCI和M-N个非重复DCI;所述DCI集合包括第一DCI子集和第二DCI子集,所述第一DCI子集包含所述N个重复DCI,所述第二DCI子集包括所述M-N个非重复DCI,其中,M为整数且M大于N。
  24. 根据权利要求22所述的方法,其中,所述N个重复DCI的关联关系包括以下至少之一:
    对每个重复DCI在搜索空间SS上增加搜索空间参考SSREF域,其中,所述SSREF域中的内容非当前DCI所在搜索空间标识SSID;
    对每个重复DCI在控制信道资源集合CORESET上增加信道控制信道资源集合参考CORESETREF域,其中,所述CORESETREF域中的内容非当前DCI所在控制信道资源集合标识CORESETID;
    定义高层重复信令规则,其中,所述重复信令规则,包括以下至少之一:SS上配置有相同的第一信息元素,其中,所述第一信息元素包括以下至少之一: 第一持续时间、监测时隙周期、监测时隙周期偏移、候选物理层下行控制信道PDCCH个数、DCI格式、监测时隙内的符号位置;CORESET上配置有相同的第二信息元素,其中,所述第二信息元素包括以下至少之一:第二持续时间、控制信道元素到资源元素组映射类型、频域资源、交织大小、PDCCH解调参考信号DMRS的加扰ID、预编码粒度、传输控制信息集合、移位目录、资源组绑定个数。
  25. 根据权利要求22所述的方法,其中,所述第一资源信息包括:重复DCI调度的资源类型及个数、以及重复DCI调度的资源参考DCI,所述资源类型包括以下至少之一:物理层下行共享信道PDSCH、物理层上行共享信道PUSCH、非周期探测参考信号AP SRS。
  26. 根据权利要求25所述的方法,还包括:
    配置所述重复DCI调度的资源参考DCI,其中,所述参考DCI包括以下至少之一:所述N个重复DCI中传输时隙最小的DCI;所述N个重复DCI中传输时隙最大的DCI;所述N个重复DCI对应的控制信道资源集合标识最小的DCI;所述N个重复DCI对应的控制信道资源集合标识最大的DCI;所述N个重复DCI对应的搜索空间标识最小的DCI;所述N个重复DCI对应的搜索空间标识最大的DCI。
  27. 根据权利要求22所述的方法,其中,所述第二资源信息包括:重复DCI调度的资源类型及个数、重复DCI的冗余版本RV,所述资源类型包括以下至少之一:PDSCH、PUSCH。
  28. 根据权利要求27所述的方法,其中,配置所述重复DCI的RV,包括:
    在所述N个重复DCI调度N个PDSCH的情况下,配置所述重复DCI的RV的重映射规则。
  29. 根据权利要求27所述的方法,其中,配置所述重复DCI的RV,包括:
    在所述N个重复DCI调度N个PUSCH的情况下,配置所述重复DCI的RV的重映射规则。
  30. 一种信息增强装置,包括:
    重复DCI确定模块,设置为确定下行控制信息DCI集合中的第一DCI子集和第二DCI子集,其中,所述第一DCI子集包括N个重复DCI,所述第二DCI子集包括M-N个非重复DCI;N为大于1的整数,M为大于N的整数;
    相关信息确定模块,设置为根据所述重复DCI确定所述DCI集合中的DCI的相关信息。
  31. 一种信息增强装置,包括:
    配置模块,设置为配置N个重复下行控制信息DCI的关联关系、第一资源信息和第二资源信息,N为大于1的整数;
    发送模块,设置为将所述关联关系、所述第一资源信息和第二资源信息发送至用户设备UE。
  32. 一种用户设备,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-21中任一项所述的信息增强方法。
  33. 一种基站,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求22-29中任一项所述的信息增强方法。
  34. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-29中任一项所述的信息增强方法。
PCT/CN2020/110497 2019-09-03 2020-08-21 信息增强方法、装置、设备和存储介质 WO2021043010A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20859781.5A EP4027725A4 (en) 2019-09-03 2020-08-21 INFORMATION ENHANCEMENT METHOD AND APPARATUS, DEVICE AND STORAGE MEDIUM
BR112022003972A BR112022003972A2 (pt) 2019-09-03 2020-08-21 Aparelho e método de aprimoramento de informações
US17/640,025 US20220329386A1 (en) 2019-09-03 2020-08-21 Information enhancement method and apparatus, device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910829052.2A CN110536451A (zh) 2019-09-03 2019-09-03 信息增强方法、装置、设备和存储介质
CN201910829052.2 2019-09-03

Publications (1)

Publication Number Publication Date
WO2021043010A1 true WO2021043010A1 (zh) 2021-03-11

Family

ID=68666685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110497 WO2021043010A1 (zh) 2019-09-03 2020-08-21 信息增强方法、装置、设备和存储介质

Country Status (5)

Country Link
US (1) US20220329386A1 (zh)
EP (1) EP4027725A4 (zh)
CN (1) CN110536451A (zh)
BR (1) BR112022003972A2 (zh)
WO (1) WO2021043010A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022237789A1 (zh) * 2021-05-11 2022-11-17 维沃移动通信有限公司 共享信道调度方法、装置、终端及网络侧设备

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536451A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信息增强方法、装置、设备和存储介质
KR20220124743A (ko) * 2020-01-17 2022-09-14 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 통신 처리 방법, 장치 및 컴퓨터 저장 매체
MX2022009678A (es) * 2020-02-07 2022-11-10 Lenovo Beijing Ltd Aparato y metodo de conjunto de espacio de busqueda conjunta para transmision pdcch mejorada con multiples haces desde multiples trp.
US20230071326A1 (en) * 2020-02-14 2023-03-09 Lenovo (Beijing) Ltd. Method and apparatus for enhancing physical downlink control channel (pdcch) coverage
CN113271661B (zh) * 2020-02-14 2024-02-09 大唐移动通信设备有限公司 一种控制信息传输方法及装置
CN113271669B (zh) * 2020-02-14 2023-06-30 大唐移动通信设备有限公司 一种控制信息传输方法及装置
CN115398839B (zh) 2020-04-17 2024-05-07 Lg电子株式会社 用于无线通信系统中的pdsch发送/接收的方法和装置
EP4150803A4 (en) * 2020-05-13 2024-01-10 Qualcomm Inc DEMODULATION REFERENCE SIGNAL IMPROVEMENTS FOR CONTROL CHANNEL REPEATS
CN113709870A (zh) * 2020-05-22 2021-11-26 大唐移动通信设备有限公司 一种确定信息传输位置的方法及装置
CN113784439A (zh) * 2020-06-09 2021-12-10 大唐移动通信设备有限公司 一种控制信息传输方法、终端及网络设备
WO2021249297A1 (zh) * 2020-06-12 2021-12-16 大唐移动通信设备有限公司 信号传输方法、终端和网络侧设备
EP4207897A4 (en) * 2020-08-28 2024-06-05 Ntt Docomo Inc TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION
CN114258131A (zh) * 2020-09-22 2022-03-29 中国移动通信有限公司研究院 物理上行共享信道的传输方法、接收方法、终端及基站
JP2023544575A (ja) * 2020-09-30 2023-10-24 日本電気株式会社 端末装置、ネットワーク装置、及び方法
EP4229915A4 (en) * 2020-10-19 2023-12-13 ZTE Corporation SYSTEM AND METHOD FOR DETERMINING TRANSMISSION INFORMATION
CN114390689A (zh) * 2020-10-21 2022-04-22 展讯半导体(南京)有限公司 资源标识确定方法及相关装置
CN114499784B (zh) * 2020-10-23 2024-01-26 大唐移动通信设备有限公司 传输资源确定方法、装置及存储介质
WO2022133896A1 (en) * 2020-12-24 2022-06-30 Zte Corporation Systems and methods for srs triggering flexibility enhancement
WO2022152962A1 (en) * 2021-01-12 2022-07-21 Nokia Technologies Oy Facilitating downlink control information (dci) repetition on linked physical downlink control channel (pdcch) candidates of different search space sets
CN115175211A (zh) * 2021-04-06 2022-10-11 华为技术有限公司 信息检测的方法和装置
WO2023241426A1 (zh) * 2022-06-13 2023-12-21 华为技术有限公司 通信方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106454694A (zh) * 2015-08-11 2017-02-22 中兴通讯股份有限公司 下行控制信息发送、接收方法及装置
US20190020506A1 (en) * 2017-07-14 2019-01-17 Fg Innovation Ip Company Limited Systems and methods for high-reliability ultra-reliable low latency communication transmissions
CN110535614A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信令信息的传输方法、装置、通信节点和存储介质
CN110536451A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信息增强方法、装置、设备和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061816B (zh) * 2018-08-31 2020-07-14 中国信息通信研究院 一种移动通信系统、网络设备、终端设备和数据调度方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106454694A (zh) * 2015-08-11 2017-02-22 中兴通讯股份有限公司 下行控制信息发送、接收方法及装置
US20190020506A1 (en) * 2017-07-14 2019-01-17 Fg Innovation Ip Company Limited Systems and methods for high-reliability ultra-reliable low latency communication transmissions
CN110535614A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信令信息的传输方法、装置、通信节点和存储介质
CN110536451A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 信息增强方法、装置、设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Enhancements on Multi-TRP and Multi-Panel Transmission", 3GPP DRAFT; R1-1908191 ENHANCEMENTS ON MULTI-TRP AND MULTI-PANEL TRANSMISSION, vol. RAN WG1, 17 August 2019 (2019-08-17), Prague, CZ, pages 1 - 21, XP051764810 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022237789A1 (zh) * 2021-05-11 2022-11-17 维沃移动通信有限公司 共享信道调度方法、装置、终端及网络侧设备

Also Published As

Publication number Publication date
BR112022003972A2 (pt) 2022-05-24
EP4027725A1 (en) 2022-07-13
EP4027725A4 (en) 2023-09-20
US20220329386A1 (en) 2022-10-13
CN110536451A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2021043010A1 (zh) 信息增强方法、装置、设备和存储介质
WO2021057977A1 (zh) 码本反馈方法、装置、设备和存储介质
TWI716803B (zh) 一種進行混合自動重送請求回饋的方法和終端
US20210337538A1 (en) Method for multiplexing uplink control information and apparatus
WO2021089043A1 (zh) 传输信道的配置方法和装置、传输信道的发送方法和装置、设备及存储介质
CN108353405B (zh) 用于无线通信系统中下行链路控制信道传送和检测的方法和装置
JP6419199B2 (ja) Tddアップリンク/ダウンリンク構成の機能強化
CN110495114B (zh) 用于码块分组的方法和设备
CN111770572B (zh) 确定反馈信息的方法和通信装置
EP3101982A1 (en) Base station, transmission method, mobile station, and retransmission control method
CN111200871B (zh) 接收数据的方法和通信装置
US11528734B2 (en) Uplink control information transmission method and device
CN110138523B (zh) 一种反馈码本确定方法及装置
US20190334675A1 (en) Data Transmission Method and Apparatus
US20180324821A1 (en) Cross-carrier scheduling method, feedback method, and apparatus
US20230371040A1 (en) Information determination method and apparatus, device, and storage medium
US11523382B2 (en) Resource determining method and apparatus, and resource indication method and apparatus
WO2020143813A1 (zh) 传输信息的方法和装置
WO2020210992A1 (zh) 上行传输的反馈方法、重传方法、装置、终端及存储介质
CN109983818B (zh) 用于发送/接收调度命令的方法和设备
RU2795154C1 (ru) Способ и аппарат оптимизации информации, устройство и носитель данных
JP7145861B2 (ja) 端末、無線通信方法及び基地局
KR20210096674A (ko) 처리 방법 및 기기
WO2022183765A1 (zh) 信息传输方法、装置、设备和存储介质
WO2022213913A1 (zh) 重传响应反馈方法及装置、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022003972

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020859781

Country of ref document: EP

Effective date: 20220404

ENP Entry into the national phase

Ref document number: 112022003972

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220303