WO2022183765A1 - 信息传输方法、装置、设备和存储介质 - Google Patents

信息传输方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2022183765A1
WO2022183765A1 PCT/CN2021/129755 CN2021129755W WO2022183765A1 WO 2022183765 A1 WO2022183765 A1 WO 2022183765A1 CN 2021129755 W CN2021129755 W CN 2021129755W WO 2022183765 A1 WO2022183765 A1 WO 2022183765A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
ofdm symbols
communication node
information transmission
different
Prior art date
Application number
PCT/CN2021/129755
Other languages
English (en)
French (fr)
Inventor
徐汉青
李新彩
田力
杨玲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21928838.8A priority Critical patent/EP4304140A1/en
Priority to US18/549,130 priority patent/US20240155646A1/en
Publication of WO2022183765A1 publication Critical patent/WO2022183765A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of communication technologies, for example, to an information transmission method, apparatus, device, and storage medium.
  • a new radio interface When a new radio interface (New Radio, NR) operates in a high frequency band (greater than 52.6 GHz), a large sub-carrier space (Sub-Carrier Space, SCS) (such as 480 kHz and 960 kHz) is usually used. At this time, the duration of a time slot in the time domain will be very short. If the Physical Downlink Control Channel (PDCCH) still adopts the transmission method in the related art, that is, if it is transmitted on less than or equal to 3 OFDM symbols, the time Very short-lived, poor coverage and reduced reliability.
  • PDCCH Physical Downlink Control Channel
  • the present application provides information transmission methods, apparatuses, devices and storage media.
  • an embodiment of the present application provides an information transmission method, and the method is applied to a first communication node, including:
  • the physical downlink control channel PDCCH is detected on consecutive OFDM symbols in one slot or multiple slots.
  • an embodiment of the present application provides an information transmission method, and the method is applied to a second communication node, including:
  • the physical downlink control channel PDCCH is sent on consecutive OFDM symbols of one time slot or multiple time slots, so that the first communication node detects the PDCCH.
  • an embodiment of the present application provides an information transmission apparatus, where the apparatus is configured on a first communication node, including:
  • the detection module is configured to detect the physical downlink control channel PDCCH on a time slot or multiple consecutive OFDM symbols of multiple time slots.
  • an embodiment of the present application provides an information transmission apparatus, where the apparatus is configured on a second communication node, including:
  • the sending module is configured to send the physical downlink control channel PDCCH on a time slot or multiple consecutive OFDM symbols of multiple time slots, so that the first communication node detects the PDCCH.
  • an information transmission device including:
  • processors one or more processors
  • memory configured to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the information transmission method described in any one of the above embodiments.
  • an embodiment of the present application provides a computer storage medium, where a computer program is stored in the computer storage medium, and when the computer program is executed by a processor, the information transmission method according to any one of the foregoing embodiments is implemented .
  • FIG. 3 is a schematic structural diagram of a resource unit provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another resource unit provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another resource unit provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of configuring different numbers of symbols in the next PDCCH under different SCSs provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of mapping one PDCCH to 4 OFDM symbols provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of mapping one PDCCH to 8 OFDM symbols provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another resource unit provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an information transmission apparatus provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an information transmission apparatus provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of an information transmission device provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • 5G fifth generation mobile communication technology
  • the base station may be a device capable of communicating with a user terminal.
  • the base station can be any device with wireless transceiver function. Including but not limited to: base station NodeB, evolved base station eNodeB, base station in 5G communication system, base station in future communication system, access node in WiFi system, wireless relay node, wireless backhaul node, etc.
  • the base station may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario; the base station may also be a small cell, a transmission reference point (transmission reference point, TRP), etc., which are not limited in the embodiments of the present application.
  • a 5G base station is used as an example for description.
  • the user terminal is a device with a wireless transceiver function.
  • User terminals can be deployed on land, including indoor or outdoor, hand-held, wearable or vehicle-mounted; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the user terminal may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal, an augmented reality (Augmented Reality, AR) terminal, an industrial control (industrial control) wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit application scenarios.
  • a user terminal may also sometimes be referred to as a terminal, access terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal, mobile device, UE terminal, wireless communication device, UE proxy, or UE device, or the like.
  • the embodiments of the present application are not limited.
  • a new radio interface When a new radio interface (New Radio, NR) operates in a high frequency band (greater than 52.6 GHz), a large sub-carrier space (Sub-Carrier Space, SCS) (such as 480 kHz and 960 kHz) is usually used. At this time, the duration of a time slot in the time domain will be very short. If the Physical Downlink Control Channel (PDCCH) still adopts the transmission method in the related art, that is, if it is transmitted on less than or equal to 3 OFDM symbols, the time Very short-lived, poor coverage and reduced reliability.
  • PDCCH Physical Downlink Control Channel
  • one PDCCH is used to schedule multiple Physical Downlink Shared Channels (PDSCH) and one PDCCH is used to schedule multiple Physical Uplink Shared Channels (PUSCH) scheduling mechanisms, as well as multiple time slots ( slot) PDCCH detection opportunity strategy, so once the downlink control information (Downlink Control Information, DCI) is lost, it will have a serious impact on data scheduling and transmission, which is not conducive to improving data transmission efficiency, and has a great impact on system performance.
  • PDSCH Physical Downlink Shared Channels
  • PUSCH Physical Uplink Shared Channels
  • the number of orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbols occupied by the PDCCH of NR is configured by the duration in the configuration control resource set (CORESET), and the value range is is is ⁇ 1, 2, 3 ⁇ , that is, one PDCCH is mapped to 3 OFDM symbols at most.
  • the demodulation reference signal (Demodulation Reference Signal, DMRS) and the PDCCH are multiplexed by means of FDM, that is, the DMRS and the PDCCH respectively occupy different resource elements (Resource Element, RE) of the same OFDM symbol.
  • the SCS of the PDCCH and the PDSCH/PUSCH are the same.
  • the base station For areas with regulatory requirements for unlicensed carriers, the base station must perform Listen Before Talk (LBT) before sending the PDCCH. If the LBT fails, the base station cannot send the PDCCH, and the base station can only send the PDCCH when the LBT is successful.
  • LBT Listen Before Talk
  • an embodiment of the present application provides an information transmission method, and the information transmission method may be executed by an information processing apparatus, and the information transmission apparatus may be implemented by means of software and/or hardware.
  • the information transmission method is applied to a first communication node, and the first communication node may be any of the foregoing terminals, which is not limited in this embodiment.
  • the information processing method provided by the embodiment of the present application mainly includes step S11 .
  • detecting the PDCCH on consecutive OFDM symbols in one slot or multiple slots includes:
  • the PDCCH is detected on consecutive M OFDM symbols of N time slots, where N is an integer greater than or equal to 1, and M is a positive integer greater than 3.
  • detecting the physical downlink control channel PDCCH on a time slot or multiple consecutive OFDM symbols of multiple time slots includes:
  • the repetitively transmitted PDCCH is detected on multiple OFDM symbols of one slot or multiple slots.
  • the repetition times of the PDCCH of different SCS configurations are different.
  • the time domain repetition times configuration information is included in the PDCCH high layer configuration parameter.
  • the value of the repetition factor that can be configured for different SCSs is different.
  • the repeated transmission of the PDCCH may occupy one or more slots at most.
  • the method further includes: determining that the PDCCH is transmitted in a repeated manner by one of the following methods:
  • the configured search space searchspace includes the PDCCH repetition factor.
  • the UE first determines the number of OFDM symbols occupied by a PDCCH without repetition according to the corresponding PDCCH symbol number parameter duration in the CORESET, and then repeatedly receives the PDCCH according to the repetition factor parameter configured in the search space. , and then combine and demodulate the PDCCH of each repeated data.
  • the CORESET configuration includes a repetition factor parameter in addition to the duration parameter.
  • a repetition factor parameter is added to the search space configuration, indicating the number of consecutive repetitions of the PDCCH.
  • detecting the physical downlink control channel PDCCH on a time slot or multiple consecutive OFDM symbols of multiple time slots includes:
  • the PDCCH transmitted by non-repetitive mapping is detected on multiple OFDM symbols in one slot.
  • the maximum number of PDCCH symbols supported by different SCSs is different.
  • the duration in the CORESET configuration of the control resource set is any integer between 3 and 14.
  • the value range of the duration in the CORESET configuration in the related art is modified.
  • the configuration value range of the duration corresponding to different SCSs is different.
  • one PDCCH is mapped to multiple OFDM symbols, including one of the following manners:
  • the PDCCH and the scheduled PDSCH or PUSCH use different SCSs.
  • the PDCCH carries beam indication information, where the beam indication information is used to indicate a beam for data transmission and reception.
  • an embodiment of the present application provides an information transmission method, and the information transmission method may be performed by an information processing apparatus, and the information transmission apparatus may be implemented by means of software and/or hardware.
  • the information processing method is applied to a second communication node, and the second communication node may be any of the foregoing base stations, which is not limited in this embodiment.
  • the information processing method provided by the embodiment of the present application mainly includes step S21 .
  • sending the physical downlink control channel PDCCH on a time slot or multiple consecutive OFDM symbols of multiple time slots includes one of the following ways:
  • the PDCCH is mapped to multiple OFDM symbols in one slot in a non-repetitive manner.
  • the method further includes:
  • the PDCCH adopts the default SCS.
  • the PDCCH adopts the default SCS.
  • 120kHz is not the same as the SCS of the configured BWP
  • the SCS of the PDSCH is still the same as the SCS of the configured BWP. Therefore, when the SCS configured by the activated BWP is not 120kHz, the downlink transmission adopts the method of Mixed numerology.
  • the method further includes:
  • the same downlink control information DCI is sent to the same first communication node through different PDCCHs by means of multiple TRPs.
  • the same downlink control information DCI is sent to the same first communication node through different PDCCHs by means of multiple TRPs, including one of the following ways:
  • Different TRPs send the PDCCH to the same first communication node by means of time division multiplexing mode TDM;
  • Different TRPs send the same DCI content to the same first communication node through different PDCCHs by means of FDM.
  • the OFDM symbols occupied by the PDCCH in the entire time domain are more sparse and the time is very short.
  • the transmission structure of the downlink channel needs to be modified.
  • the structure of downlink control and services within one RU (0.125 ms) may be as shown in Figure 4 below. That is, one PDCCH can be mapped to more than 3 consecutive symbols. Or consider some other PDCCH coverage and reliability improvement methods.
  • Method 1 The PDCCH is sent on multiple consecutive OFDM symbols on one or more slots in a repeated manner.
  • the maximum number of PDCCH symbols supported by different SCSs is different, and the repetition times of PDCCHs configured by different SCSs are different.
  • Method 2 The PDCCH is mapped to more than 3 consecutive OFDM symbols on one slot in a non-repetitive manner.
  • the maximum number of PDCCH symbols supported by different SCSs is different, and the PDCCH repetition times configured by different SCSs are different.
  • the number of symbols occupied by the PDCCH may be 4, 8, or 12 (according to the original number of symbols occupied by the PDCCH is 1 to 3).
  • the number of symbols occupied by the PDCCH can be 8, 16, or 24.
  • it also includes increasing the number of symbols of CORESET.
  • the PDCCH structure is extended over more than 3 OFDM symbols in one of the following ways.
  • Manner 1 Modify the number of REGs included in the original CCE and the number of REGs included in the REG bundle.
  • a REG bundle contains REGs
  • a CCE also contains REGs, where m and n are positive integers greater than 1.
  • Mode 2 The number of REGs included in the CCE is not modified, and the CCE aggregation level supported by one PDCCH is limited, so that one PDCCH occupies an integer number of REG bundles. At the same time, the duration in the high-level configuration CORESET is
  • Method 3 Modify the REG number to give priority to the frequency domain.
  • Method 3 No matter how many SCSs are configured with BWP, the PDCCH adopts the default SCS.
  • the SCS configured by the activated BWP is not 120 kHz, the downlink transmission adopts the sending mode of mixed SCS.
  • Method 4 The same PDCCH is sent to the same UE by means of multiple TRPs.
  • transmission modes between multiple TRPs include FDM and TDM.
  • the PDCCH and the corresponding DMRS can be transmitted on different OFDM symbols by means of TDM, so as to improve the channel estimation performance of the DMRS, thereby also improving the demodulation performance of the PDCCH.
  • the PDCCH carries beam indication information, and through the beam indication information, the UE can receive downlink data on the beam, or perform uplink channel sharing.
  • This embodiment describes the method for improving the PDCCH coverage performance by continuously sending the PDCCH on one or more slots in a repeated manner mentioned in the above method 1.
  • the time domain repetition times configuration information is included in the PDCCH high layer configuration parameter. For example, the value of the repetition factor that can be configured for different SCSs is different.
  • the repeated transmission of the PDCCH may occupy one or more slots at most.
  • a repetition factor parameter is added in the search space (searchspace) configuration to indicate the number of consecutive repetitions of the PDCCH.
  • searchspace search space
  • the set of configurable repetition factors is ⁇ 1, 2, 4, 8 ⁇ , for 480kHz SCS PDCCH
  • the set of configurable repetition factors is ⁇ 4, 8, 16, 32 ⁇ , for 960kHz
  • the set of configurable repetition factors is ⁇ 8, 16, 32, 64 ⁇ .
  • the UE first determines the number of OFDM symbols occupied by a PDCCH without repetition according to the corresponding PDCCH symbol number parameter duration in the CORESET, and then repeatedly receives the PDCCH according to the repetition factor parameter configured in the searchspace, and then combines the repeated data. Demodulate PDCCH.
  • the PDCCH is transmitted in a repeated manner for 8 consecutive symbols in a slot, and then starts from the third symbol. Repeated transmission 3 times, that is, the PDCCH is repeatedly transmitted 4 times in one slot. If the duration value is configured as 2 and the repetition factor is configured as 5, the PDCCH is repeatedly sent on 10 OFDM symbols in units of 2 symbols, as shown in Figure 5 below.
  • the CORESET configuration includes the repetition factor parameter in addition to the duration parameter.
  • the parameter that contains the number of repetitions in CORESET is 3, which means that CORESET will be repeated 3 times in a row.
  • the original design that one CCE of the PDCCH contains 6 REGs may not be modified, and the PDCCH is repeatedly transmitted according to the unit of the value configured in the duration to improve the coverage performance of the PDCCH.
  • This embodiment describes a configuration implementation method in which the PDCCH is mapped to more than 3 consecutive OFDM symbols on one slot in a non-repetitive manner in the above-mentioned method 2.
  • the value range of the duration in the CORESET configuration in the related art needs to be modified.
  • the configuration value range of the duration corresponding to different SCSs is different.
  • the current 1-3 OFDM symbols can be modified to 2-14 OFDM symbols, that is, the PDCCH can occupy a maximum of 14 OFDM symbols.
  • the configuration range of duration can be ⁇ 4 ⁇ 14*n ⁇
  • the configuration range of duration can be ⁇ 8 ⁇ 14 ⁇ m ⁇ , where m and n are positive integers and less than or equal to 4.
  • the number of symbols that can be configured on the next PDCCH for different SCSs may be different.
  • the slashed box represents the number of OFDM symbols occupied by the PDCCH
  • the horizontal box represents the OFDM symbols occupied by the PDSCH.
  • the number of symbols occupied by PDCCH may be two slots under 960kHz, and the number of symbols occupied by PDCCH may be one slot and 14 OFDM symbols under 480kHz.
  • the number of symbols occupied by PDCCH may be 6 OFDM symbols, and for 120 kHz, the number of symbols occupied by PDCCH may be 3 OFDM symbols.
  • the PDCCH will be finally mapped to the resources of the corresponding number of symbols according to the configuration information, and the specific mapping method will be specifically described in the following embodiments.
  • This configuration can improve the transmission coverage performance of the PDCCH.
  • PDCCH performs resource mapping in units of REG bundles.
  • a REG bundle uses the same precoding matrix.
  • a PDCCH occupies 4 symbols. If the CCE aggregation level is 1, it is necessary to modify a CCE to include 4 or 8 RGEs, so that a PDCCH can be mapped to 4 OFDM symbols, as shown in Figure 7. Or it is not modified that a CCE contains 6 REGs, but the CCE aggregation level of a PDCCH supports more than 2, that is, a PDCCH occupies at least 12 REGs, so that a PDCCH can also be mapped to 4 OFDM symbols.
  • a CCE contains at least 8 REGs, or the size of a CCE is not modified, but the aggregation level supported by the PDCCH must be above 4, that is, a PDCCH contains 3 REG bundles.
  • one PDCCH can be mapped to transmission of more than 3 OFDM symbols in one of the following three ways:
  • Manner 1 Modify the number of REGs included in the original CCE and the number of REGs included in the REG bundle.
  • a REG bundle contains REGs
  • a CCE also contains REGs, where m and n are positive integers greater than 1.
  • Mode 2 The number of REGs included in the CCE is not modified, and the CCE aggregation level supported by one PDCCH is limited, so that one PDCCH occupies an integer number of REG bundles.
  • Method 3 Modify the REG number to give priority to the frequency domain.
  • a PDCCH can be mapped to more than 3 OFDM symbols in a non-repetitive manner.
  • This embodiment describes another method for improving PDCCH coverage.
  • Mixed numerology For the downlink transmission in the high frequency band, Mixed numerology can be used, that is, the PDCCH can use the default 120kHz SCS regardless of the SCS of other channels.
  • PDCCH and PDSCH use different SCSs, that is, Mixed numerology.
  • Implementation methods include:
  • the PDCCH adopts the default SCS, such as 120 kHz, which is not the same as the SCS of the configured BWP, and the SCS of the PDSCH is still the same as the SCS of the configured BWP. Therefore, when the SCS configured by the activated BWP is not 120kHz, the downlink transmission adopts the method of Mixed numerology.
  • the SCS is configured when the BWP is configured. If all channel signals are not configured separately, this unified SCS is used.
  • the PDCCH high frequency is 120k by default, and the PDSCH is 480k.
  • This embodiment describes how to improve the reliability of the PDCCH by using the method of multiple TRPs.
  • Sending methods include:
  • Method 1 Different TRPs send the PDCCH to the same UE on different symbols or slots by means of TDM.
  • TRP1 sends PDCCH1 to the UE on symbols 0-2
  • TRP2 sends PDCCH2 to the UE on symbols 3-5
  • TRP3 sends PDCCH3 to the UE on symbols 6-8.
  • the DCI contents carried by the three PDCCHs are exactly the same, for example, it may be one DCI for scheduling multiple PDSCH transmissions.
  • the UE performs combined demodulation after receiving the three PDCCHs, and the reliability of the PDCCHs can be improved by this method.
  • Method 2 Different TRPs send the same DCI content to the UE through FDM.
  • the FDM scheme includes different carriers, different BWPs, or different REGs.
  • TRP1 sends PDCCH1 to the UE on BWP1
  • TRP2 sends PDCCH2 to the UE on BWP2
  • TRP3 sends PDCCH3 to the UE on BWP3.
  • the DCI contents carried by the three PDCCHs are exactly the same, for example, one DCI that schedules multiple PUSCH transmissions.
  • the UE performs combined demodulation after receiving the three PDCCHs, and the reliability of the PDCCHs can be improved by this method.
  • This embodiment describes the beam configuration of the PDCCH.
  • each CORESET can be configured with multiple TCI states, and the base station can perform LBT on beams corresponding to multiple TCI states before sending PDCCH on unlicensed carriers, or according to The priority sequence performs LBT on the beams corresponding to multiple TCI states in turn, whichever succeeds sends the PDCCH on which beam, and the base station notifies the subordinate UE of the beam information through DCI 2_0.
  • whether the base station includes beam indication information in DCI 2_0 is configured through RRC parameters.
  • this parameter is configured, the location of the information in the DCI will also be configured.
  • the UE After the UE receives the information, it will receive downlink data in the corresponding beam direction or can do channel occupancy sharing to transmit some uplink data.
  • an embodiment of the present application provides an information transmission apparatus, and the information transmission apparatus may be implemented by means of software and/or hardware.
  • the information transmission apparatus is configured in a first communication node, and the first communication node may be any terminal described above, which is not limited in this embodiment.
  • the information processing apparatus mainly includes a detection module 101 .
  • the detection module 101 is configured to detect the physical downlink control channel PDCCH on a time slot or multiple consecutive OFDM symbols of multiple time slots.
  • detecting the PDCCH on consecutive OFDM symbols in one slot or multiple slots includes:
  • the PDCCH is detected on consecutive M OFDM symbols of N time slots, where N is an integer greater than or equal to 1, and M is a positive integer greater than 3.
  • detecting the physical downlink control channel PDCCH on a time slot or multiple consecutive OFDM symbols of multiple time slots includes:
  • the repetitively transmitted PDCCH is detected on multiple OFDM symbols of one slot or multiple slots.
  • the repetition times of the PDCCH of different SCS configurations are different.
  • the method further includes: determining that the PDCCH is transmitted in a repeated manner by one of the following methods:
  • the configured search space searchspace includes the PDCCH repetition factor.
  • detecting the physical downlink control channel PDCCH on a time slot or multiple consecutive OFDM symbols of multiple time slots includes:
  • the PDCCH transmitted by non-repetitive mapping is detected on multiple OFDM symbols in one slot.
  • the maximum number of PDCCH symbols supported by different SCSs is different.
  • the duration in the CORESET configuration of the control resource set is any integer between 3 and 14.
  • one PDCCH is mapped to multiple OFDM symbols, including one of the following manners:
  • the PDCCH and the scheduled PDSCH or PUSCH use different SCSs.
  • the PDCCH carries beam indication information, where the beam indication information is used to indicate a beam used for data transceiving.
  • the information transmission apparatus provided in this embodiment can execute the information transmission method provided by any embodiment of this application, and has corresponding functional modules and beneficial effects for executing the method.
  • the information transmission apparatus provided in this embodiment can execute the information transmission method provided by any embodiment of this application, and has corresponding functional modules and beneficial effects for executing the method.
  • the units and modules included are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be realized;
  • the specific names of the functional units are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application.
  • an embodiment of the present application provides an information transmission apparatus, and the information transmission apparatus may be implemented by means of software and/or hardware.
  • the information transmission apparatus is configured in the second communication node, and the first communication node may be any of the foregoing base stations, which is not limited in this embodiment.
  • the information processing apparatus mainly includes a sending module 111 .
  • the sending module 111 is configured to send the physical downlink control channel PDCCH in one time slot or multiple consecutive OFDM symbols in multiple time slots, so that the first communication node detects the PDCCH.
  • the physical downlink control channel PDCCH is sent on a time slot or multiple consecutive OFDM symbols of multiple time slots, including one of the following ways:
  • the PDCCH is mapped to multiple OFDM symbols in one slot in a non-repetitive manner.
  • the method further includes:
  • the PDCCH adopts the default SCS.
  • the method further includes:
  • the same downlink control information DCI is sent to the same first communication node through different PDCCHs by means of multiple TRPs.
  • the same downlink control information DCI is sent to the same first communication node through different PDCCHs by means of multiple TRPs, including one of the following ways:
  • Different TRPs send the PDCCH to the same first communication node by means of TDM;
  • Different TRPs send the same DCI content to the same first communication node through different PDCCHs by means of FDM.
  • the information transmission apparatus provided in this embodiment can execute the information transmission method provided by any embodiment of this application, and has corresponding functional modules and beneficial effects for executing the method.
  • the information transmission apparatus provided in this embodiment can execute the information transmission method provided by any embodiment of this application, and has corresponding functional modules and beneficial effects for executing the method.
  • the units and modules included are only divided according to functional logic, but are not limited to the above division, as long as the corresponding functions can be realized;
  • the specific names of the functional units are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application.
  • FIG. 12 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device includes a processor 121 , a memory 122 , an input device 123 , an output device 124 and Communication device 1212; the number of processors 121 in the device may be one or more, and one processor 121 is taken as an example in FIG. 12; For connection in other ways, in Figure 12, the connection through the bus is taken as an example.
  • the memory 122 may be used to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the methods in the embodiments of the present application.
  • the processor 121 executes various functional applications and data processing of the device by running the software programs, instructions, and modules stored in the memory 122, ie, implements any method provided in the embodiments of the present application.
  • the memory 122 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the device, and the like. Additionally, memory 122 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device. In some examples, memory 122 may include memory located remotely from processor 121, which may be connected to the device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 123 is configured to receive input numerical or character information, and to generate key signal input related to user settings and function control of the device.
  • the output device 124 may include a display device such as a display screen.
  • Communication device 125 may include receivers and transmitters.
  • the communication device 125 is configured to transmit and receive information according to the control of the processor 121 .
  • the embodiments of the present application further provide a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute an information transmission method when executed by a computer processor, and the The method is applied to the first communication node, including:
  • the physical downlink control channel PDCCH is detected on consecutive OFDM symbols in one slot or multiple slots.
  • a storage medium containing computer-executable instructions provided by the embodiments of the present application, the computer-executable instructions of which are not limited to the above-mentioned method operations, and can also execute any of the information transmission methods provided in any embodiment of the present application. related operations.
  • the embodiments of the present application further provide a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute an information transmission method when executed by a computer processor, and the The method is applied to the second communication node, comprising:
  • the physical downlink control channel PDCCH is sent on consecutive OFDM symbols of one time slot or multiple time slots, so that the first communication node detects the PDCCH.
  • a storage medium containing computer-executable instructions provided by the embodiments of the present application, the computer-executable instructions of which are not limited to the above-mentioned method operations, and can also execute any of the information transmission methods provided in any embodiment of the present application. related operations.
  • the storage medium of computer-executable instructions may be a non-transitory computer-readable storage medium.
  • the present application can be implemented by means of software and necessary general-purpose hardware, and certainly can also be implemented by hardware.
  • the technical solutions of the present application can be embodied in the form of software products in essence or the parts that make contributions to related technologies, and the computer software products can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), flash memory (FLASH), hard disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, A server, or a network device, etc.) executes the methods described in the various embodiments of the present application.
  • a computer device which can be a personal computer, A server, or a network device, etc.
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile telephone, portable data processing device, portable web browser or vehicle mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • the computer program instructions may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state setting data, or source code written in any combination of one or more programming languages or object code.
  • ISA instruction set architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical memory devices and systems (Digital Versatile Discs). DVD or CD disc) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, special purpose computer, microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (FGPA) and processors based on multi-core processor architectures.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FGPA programmable logic device

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息传输方法、装置、设备和存储介质,包括:在一个时隙或多个时隙的连续多个OFDM符号上检测物理下行控制信道PDCCH。

Description

信息传输方法、装置、设备和存储介质 技术领域
本申请涉及通信技术领域,例如涉及一种信息传输方法、装置、设备和存储介质。
背景技术
当新空口(New Radio,NR)在高频段(大于52.6GHz)操作时,通常采用大的子载波间隔(Sub-Carrier Space,SCS)(比如480kHz和960kHz)。此时,一个时隙时域上持续时间会非常短,如果物理下行控制信道(Physical Downlink Control Channel,PDCCH)仍然采用相关技术中的传输方式,即在小于或等于3个OFDM符号上传输,时间非常短暂,则覆盖性差,可靠性降低。
发明内容
本申请提供了信息传输方法、装置、设备和存储介质。
第一方面,本申请实施例提供一种信息传输方法,所述方法应用于第一通信节点,包括:
在一个时隙或多个时隙的连续多个OFDM符号上检测物理下行控制信道PDCCH。
第二方面,本申请实施例提供一种信息传输方法,所述方法应用于第二通信节点,包括:
在一个时隙或多个时隙的连续多个OFDM符号上发送物理下行控制信道PDCCH,以使第一通信节点检测到所述PDCCH。
第三方面,本申请实施例提供一种信息传输装置,所述装置配置于第一通信节点,包括:
检测模块,被配置为在一个时隙或多个时隙的连续多个OFDM符号上检测物理下行控制信道PDCCH。
第四方面,本申请实施例提供一种信息传输装置,所述装置配置于第二通信节点,包括:
发送模块,被配置为在一个时隙或多个时隙的连续多个OFDM符号上发送物理下行控制信道PDCCH,以使第一通信节点检测到所述PDCCH。
第五方面,本申请实施例提供一种信息传输设备,包括:
一个或多个处理器;
存储器,被配置为存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上述实施例中任一项所述的信息传输方法。
第六方面,本申请实施例提供一种计算机存储介质,,所述计算机存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述实施例中任一项所述的信息传输方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1是本申请实施例提供的一种信息传输方法的流程图;
图2是本申请实施例提供的一种信息传输方法的流程图;
图3是本申请实施例提供的一个资源单元的结构示意图;
图4是本申请实施例提供的另一个资源单元的结构示意图;
图5是本申请实施例提供的又一个资源单元的结构示意图;
图6是本申请实施例提供的不同SCS下一个PDCCH配置不同符号数目的示意图;
图7是本申请实施例提供的将一个PDCCH映射到4个OFDM符号上的示意图;
图8是本申请实施例提供的将一个PDCCH映射到8个OFDM符号上的示意图;
图9是本申请实施例提供的又一个资源单元的结构示意图;
图10是本申请实施例提供的一种信息传输装置的示意图;
图11是本申请实施例提供的一种信息传输装置的示意图;
图12是本申请实施例提供的一种信息传输设备的示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本申请的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及第五代移动通信技术(5th generation wireless systems,5G)系统等,本申请实施例并不限定。在本申请中以5G系统为例进行说明。
本申请实施例中,基站可以是能和用户终端进行通信的设备。基站可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、5G通信系统中的基站、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点等。基站还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器;基站还可以是小站,传输节点(transmission reference point,TRP)等,本申请实施例并不限定。在本申请中以5G基站为例进行说明。
本申请实施例中,用户终端是一种具有无线收发功能的设备。用户终端可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述用户终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。用户终端有时也可以称为终端、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、无线通信设备、UE代理或UE装置等。本申请实施例并不限定。
当新空口(New Radio,NR)在高频段(大于52.6GHz)操作时,通常采用大的子载波间隔(Sub-Carrier Space,SCS)(比如480kHz和960kHz)。此时,一个时隙时域上持续时间会非常短,如果物理下行控制信道(Physical Downlink Control Channel,PDCCH)仍然采用相关技术中的传输方式,即在小于或等于3个OFDM符号上传输,时间非常短暂,则覆盖性差,可靠性降低。
此外,由于在高频段,采用一个PDCCH调度多个物理下行共享信道(Physical Downlink Shared Channel,PDSCH)以及一个PDCCH调度多个物理上行共享信道(Physical Uplink Shared Channel,PUSCH)调度机制,以及多时隙(slot)PDCCH检测机会策略,因此一旦下行控制信息(Downlink Control Information,DCI)丢失,则会对数据调度传输产生严重影响,不利于提高数据的传输效率,对系统性能产生非常大的影响。
目前在低频段,NR的PDCCH所占的正交频分复用技术(Orthogonal Frequency Division Multiplexing),OFDM)符号数目通过配置控制资源集(CORESET)中的持续时间(duration)进行配置,取值范围是{1,2,3},即一个PDCCH最多映射到3个OFDM符号。同时解调参考信号(Demodulation Reference Signal,DMRS)和PDCCH通过FDM的方式进行复用的,即DMRS和PDCCH分别占据同一个OFDM符号不同的资源元素(Resource Element,RE)。相关技术中,对于同一个带宽部分(Bandwidth Part,BWP),PDCCH和PDSCH/PUSCH的SCS都是一样的。
对于非授权载波有管制要求的地区,基站在发送PDCCH之前要先执行先听后送(Listen Before Talk,LBT),如果LBT失败则基站不能发送PDCCH,只有基站执行LBT成功才能发送PDCCH。
结合下述实施例对信息传输方法、装置、设备和存储介质进行详细介绍。
在一个实施例中,本申请实施例提供一种信息传输方法,该信息传输方法可以由信息处理装置来执行,所述信息传输装置可以通过软件和/或硬件的方式来实现。所述信息传输方法应用于第一通信节点中,所述第一通信节点可以是上述任意终端,本实施例不进行限定。
如图1所示,本申请实施例提供的信息处理方法,主要包括步骤S11。
S11、在一个时隙或多个时隙的连续多个OFDM符号上检测物理下行控制信道PDCCH。
在一个实施方式中,在一个时隙或多个时隙的连续多个OFDM符号上检测PDCCH,包括:
在N个时隙的连续M个OFDM符号上检测PDCCH,其中,N是大于或等于1的整数,M是大于3的正整数。
在一个实施方式中,在一个时隙或多个时隙的连续多个OFDM符号上检测物理下行控制信道PDCCH,包括:
在一个时隙或多个时隙的多个OFDM符号上检测通过重复方式传输的PDCCH。
在一个实施方式中,对于重复方式,不同的SCS配置的PDCCH的重复次数不同。
在本实施例中,在PDCCH高层配置参数里面包含时域重复次数配置信息。例如,不同SCS可以配置的重复因子的值是不同的。PDCCH重复发送最多可以占一个或多个slot。
在一个实施方式中,所述方法还包括:通过如下方式之一确定PDCCH采用重复的方式进行传输:
配置CORESET重复参数;
配置的搜索空间searchspace中包括PDCCH重复因子。
一个示例性的实施方式,UE根据CORESET里面的对应的PDCCH符号数目参数duration先确定不重复情况下一个PDCCH所占的OFDM符号数目,然后再根据searchspace配置的重复因子参数来重复的将PDCCH进行接收,然后将各个重复数据合并解调PDCCH。
或者,CORESET配置里面除了duration参数还包括重复因子参数。
一个示例性的实施方式,在搜索空间(searchspace)配置里面增加一个重复因子参数,指示PDCCH的连续重复次数。
在一个实施方式中,在一个时隙或多个时隙的连续多个OFDM符号上检测物理下行控制信道PDCCH,包括:
在一个时隙的多个OFDM符号上检测通过非重复的映射方式传输的PDCCH。
在一个实施方式中,对于非重复的映射方式,不同的SCS所支持的最大PDCCH符号数目不同。
在一个实施方式中,对于非重复的映射方式,控制资源集CORESET配置中持续时间取值为3至14之间的任一整数。
本实施例中,修改相关技术中CORESET配置里面duration的取值范围,例如,不同SCS对应的duration的配置取值范围不同。
在一个实施方式中,对于非重复的映射方式,将一个PDCCH映射到多个OFDM符号上,包括如下方式之一:
将一个资源粒子组REG bundle包含的REG个数修改为
Figure PCTCN2021129755-appb-000001
一个控制信道元素CCE包含的REG个数修改为
Figure PCTCN2021129755-appb-000002
其中,m和n均是大于1的正整数;
限制一个PDCCH支持的CCE聚合等级,使得一个PDCCH占据整数个REG bundle;
修改REG编号为频域优先。
在一个实施方式中,所述PDCCH和调度的PDSCH或PUSCH采用不同的SCS。
在一个实施方式中,所述PDCCH中携带波束指示信息,所述波束指示信息用于指示数据收发的波束。
在一个实施例中,本申请实施例提供一种信息传输方法,该信息传输方法可以由信息处 理装置来执行,所述信息传输装置可以通过软件和/或硬件的方式来实现。所述信息处理方法应用于第二通信节点中,所述第二通信节点可以是上述任意基站,本实施例不进行限定。
如图2所示,本申请实施例提供的信息处理方法,主要包括步骤S21。
S21、在一个时隙或多个时隙的连续多个OFDM符号上发送物理下行控制信道PDCCH,以使第一通信节点检测到所述PDCCH。
在一个实施方式中,在一个时隙或多个时隙的连续多个OFDM符号上发送物理下行控制信道PDCCH,包括如下方式之一:
通过重复的方式在一个或多个时隙上连续发送PDCCH;
通过非重复的方式将PDCCH映射到一个时隙的多个OFDM符号上。
在一个实施方式中,所述方法还包括:
PDCCH采用默认的SCS。
在本实施例中,对于高频段,PDCCH采用默认的SCS。例如120kHz,而不是跟配置的BWP的SCS相同,而PDSCH的SCS还是跟配置的BWP的SCS的相同。因此当激活BWP配置的SCS不是120kHz的时候,下行传输采用Mixed numerology的方式。
在一个实施方式中,所述方法还包括:
通过多TRP的方式将相同的下行控制信息DCI通过不同的PDCCH发送给同一个第一通信节点。
在一个实施方式中,通过多TRP的方式将相同的下行控制信息DCI通过不同的PDCCH发送给同一个第一通信节点,包括如下方式之一:
不同TRP通过时分复用模式TDM的方式将PDCCH发送给同一个第一通信节点;
不同TRP通过FDM的方式将同一个DCI内容通过不同的PDCCH发送给同一个第一通信节点。
在一个应用性实施例中,在高频段,对于下行PDCCH信道(假定配置占2个OFDM符号),如果是仍然按照原来的下行传输映射规则的话,对于480kHz的SCS下行信道在一个资源单元(Resource Unit,RU)(例如0.125ms,对应120kHz的SCS是一个时隙)内的结构如下图3所示。
另外,在高频段,由于支持多PDSCH调度,以及多个slot的PDCCH检测粒度,会导致PDCCH在整个时域上所占据的OFDM符号更加稀少,同时时间非常短暂。
由上所述,原来的传输方式不利于PDCCH的覆盖以及可靠性,因此,需要对下行信道的传输结构进行修改。例如,以480kHz的SCS为例,一个RU(0.125ms)内的下行控制和业务的结构可以如下图4所示。即一个PDCCH可以映射到大于3个连续的符号。或者考虑一些其他的PDCCH覆盖和可靠性提升方法。
为改善高频PDCCH的覆盖性能以及提高PDCCH的可靠性,本实施例中提供四种方法。
方法一:PDCCH通过重复的方式在一个或多个slot上连续的多个OFDM符号上发送。
例如,不同SCS所支持的最大PDCCH符号数目不同,不同SCS配置的PDCCH的重复次数不同。
方法二:PDCCH通过非重复的方式映射到一个slot上的大于3个连续OFDM符号。
例如,不同SCS所支持的最大PDCCH符号数目不同,不同SCS所配置的PDCCH重复次数不同。
例如,当SCS为480k的时候,PDCCH所占的符号数目可能为4,8,12个(按照原来PDCCH所占的符号数目为1~3)。当SCS为960k的时候,PDCCH所占的符号数目可以为8,16,24。
例如,还包括增加CORESET的符号数目。
例如,通过以下方式之一将PDCCH结构扩展到大于3个OFDM符号上。
方式一:对原来一个CCE包含的REG数目以及REG bundle包含的REG数目都进行修改。一个REG bundle包含
Figure PCTCN2021129755-appb-000003
个REG,一个CCE也包含
Figure PCTCN2021129755-appb-000004
个REG,其中m和n为大于1的正整数。
方式二:不修改CCE包含的REG的数目,限制一个PDCCH支持的CCE聚合等级,使得一个PDCCH占据整数个REG bundle。同时高层配置CORESET里面的duration为
Figure PCTCN2021129755-appb-000005
方式三:修改REG编号为频域优先。
方法三:不管配置BWP的SCS为多少,PDCCH都采用默认的SCS,当激活BWP配置的SCS不是120kHz的时候,下行传输采用混合SCS的发送方式。
方法四:通过多TRP的方式将同一个PDCCH发送给同一个UE。
例如,多TRP之间的发送方式包括FDM,TDM。
例如,PDCCH和对应的DMRS可以通过TDM的方式在不同的OFDM符号上进行传输,提高DMRS的信道估计性能,从而也提高PDCCH的解调性能。
例如,所述PDCCH携带波束指示信息,通过该波束指示信息,UE可以在该波束上接收下行数据,或者进行上行信道共享。
本实施例对上述方法一中提到的PDCCH通过重复的方式在一个或多个slot上连续发送来提高PDCCH覆盖性能的方法进行说明。
在PDCCH高层配置参数里面包含时域重复次数配置信息。例如,不同SCS可以配置的重复因子的值是不同的。PDCCH重复发送最多可以占一个或多个slot。
例如,在搜索空间(searchspace)配置里面增加一个重复因子参数,指示PDCCH的连续重复次数。例如对于120kHz的SCS PDCCH,配置的重复因子的集合为{1,2,4,8},对于480kHz的SCS PDCCH,可以配置的重复因子的集合为{4,8,16,32},对于960kHz的SCS PDCCH,可以配置的重复因子的集合为{8,16,32,64}。
UE根据CORESET里面的对应的PDCCH符号数目参数duration先确定不重复情况下一个PDCCH所占的OFDM符号数目,然后再根据searchspace配置的重复因子参数来重复的将PDCCH进行接收,然后将各个重复数据合并解调PDCCH。
假定searchspace配置的重复因子值为4,同时CORESET里面的对应的PDCCH符号数目参数duration值为2,则PDCCH在一个slot内连续的8个符号通过重复的方式进行传输,后面从第3个符号开始重复传输3次,即PDCCH在一个slot内重复传输了4次。如果duration 值配置为2,重复因子配置的值为5,则PDCCH以2个符号为单位重复在10个OFDM符号上发送,如下图5所示。
或者CORESET配置里面除了duration参数还包括重复因子参数。
例如,CORESET里面包含重复次数的参数为3,表示CORESET会连续重复3次。
通过重复发送的方式可以不修改原来PDCCH一个CCE包含6个REG的设计,PDCCH按照duration里面配置的值为单位进行重复发送来提高PDCCH的覆盖性能。
本实施例对上述方法二中PDCCH通过非重复的方式映射到一个slot上的大于3个连续OFDM符号的配置实现方法进行说明。
首先,需要修改相关技术中CORESET配置里面duration的取值范围,例如,不同SCS对应的duration的配置取值范围不同。
例如,对于120kHz的SCS PDCCH,可以从现在的1~3个OFDM符号修改为2~14个OFDM符号,即PDCCH可以占据最多14个OFDM符号。对于480kHz的SCS,duration的配置范围可以是{4~14*n},对于960kHz的SCS,duration的配置范围可以是{8~14×m},其中m和n为正整数,且小于或等于4。如下图6所示,不同SCS下一个PDCCH可以配置的符号数目可以不同。其中斜线框代表PDCCH所占的OFDM符号数目,横线框代表PDSCH所占的OFDM符号。对于0.125ms的一个传输单元内,960kHz下,PDCCH所占的符号数目可以为两个slot,对于480kHz下,PDCCH所占的符号数目可以为1个slot,14个OFDM符号。对于240kHz下,PDCCH所占的符号数目可以为6个OFDM符号,对于120kHz下,PDCCH所占的符号数目可以为3个OFDM符号。
PDCCH会根据配置信息最终映射到相应符号数目的资源上,具体映射方法在下面的实施例中有具体的说明。通过该配置能够提高PDCCH的传输覆盖性能。
本实施例对基站如何将PDCCH映射到大于3个符号的具体映射方法进行具体的说明。
NR里面PDCCH以REG bundle为单位进行资源映射,一个REG bundle用一个相同的预编码矩阵,预编码粒度precoderGranularity这个参数本来就是对频域定义的参数,以L=2,3,6为单位。CCE to REG bundle的映射过程如下:一个CCE映射到6/L个REG bundle,一个REG包括一个符号的RB,一个REG bundle包含L=2,3,6个REG。对于交织映射,也是以REG bundle为单位进行,按照行入列出原则进行。对于非交织的映射,L=6。
现在先对一个PDCCH占4个符号进行举例,如果CCE聚合等级为1,需要修改一个CCE包含4或者8个RGE,这样才可以将一个PDCCH映射到4个OFDM符号上,如图7所示。或者不修改一个CCE包含6个REG,但一个PDCCH的CCE聚合等级支持2以上,即一个PDCCH至少占12个REG,这样也可以将一个PDCCH映射到4个OFDM符号上。
同样,如果PDCCH映射到8个OFDM符号,目前的REG bundle大小2,3,6也没法支持。则应该扩大一个REG bundle包含的REG数目,即L=8才行,如下图8所示。同时需要扩大一个CCE包含的REG的数目,一个CCE至少包含8个REG,或者不修改一个CCE的大小,但PDCCH支持的聚合等级必须为4以上才可以,即一个PDCCH包含3个REG bundle。
总之,一个PDCCH映射到大于3个OFDM符号的传输可以采用下面三种方式之一:
方式一:对原来一个CCE包含的REG数目以及REG bundle包含的REG数目都进行修改。一个REG bundle包含
Figure PCTCN2021129755-appb-000006
个REG,一个CCE也包含
Figure PCTCN2021129755-appb-000007
个REG,其中m和n为大于1的正整数。
方式二:不修改CCE包含的REG的数目,限制一个PDCCH支持的CCE聚合等级,使得一个PDCCH占据整数个REG bundle。
方式三:修改REG编号为频域优先。
通过上面方式之一可以将一个PDCCH非重复的方式映射到大于3个OFDM符号上。
本实施例对提高PDCCH覆盖的另外一种方法进行说明。
对于高频段的下行传输,可以采用Mixed numerology,即不管其他信道的SCS是多少,PDCCH都可以用默认的120kHz的SCS。这样的话PDCCH和PDSCH用不同的SCS,也就是Mixed numerology。
实现方法包括:
对于高频段,PDCCH采用默认的SCS,例如120kHz,而不是跟配置的BWP的SCS相同,而PDSCH的SCS还是跟配置的BWP的SCS的相同。因此当激活BWP配置的SCS不是120kHz的时候,下行传输采用Mixed numerology的方式。
目前SCS是在BWP配置的时候配置的,所有信道信号如果没有再单独配置,都是用这个统一的SCS。例如,对于同一个UE,PDCCH高频默认用120k,PDSCH用480k,此时调度传输和HARQ-ACK反馈定时关系中的K0/K1/K2的值根据数据传输的SCS来进行确定。比如k1=10,则此时PDSCH和对应的HARQ-ACK反馈之间的绝对定时为10×0.125/4。如下图9所示。
本实施例对通过多TRP的方法来提高PDCCH可靠性进行说明。
对于同一个PDCCH,可以通过两个或三个TRP发送给同一个UE。这几个TRP发送的PDCCH的内容是完全相同的。发送方法包括:
方法一:不同TRP通过TDM的方式在不同的符号或slot上将PDCCH发送给同一UE。例如,TRP1在符号0~2上将PDCCH1发送给UE,TRP2在符号3~5上将PDCCH2发送给UE,TRP3在符号6~8上将PDCCH3发送给UE。这三个PDCCH承载的DCI内容是完全相同的,例如,可以是调度多个PDSCH传输的一个DCI。UE在接收到这三个PDCCH之后进行合并解调,通过该方法可以提高PDCCH的可靠性能。
方法二:不同TRP通过FDM的方式将同一个DCI内容发送给UE。
例如,FDM方式包括不同的载波,不同的BWP,或者不同的REG。例如,TRP1在BWP1上将PDCCH1发送给UE,TRP2在BWP2上将PDCCH2发送给UE,TRP3在BWP3上将PDCCH3发送给UE。这三个PDCCH承载的DCI内容是完全相同的,例如,可以是调度多个PUSCH传输的一个DCI。UE在接收到这三个PDCCH之后进行合并解调,通过该方法可以提高PDCCH的可靠性能。
本实施例对PDCCH的波束配置进行说明。
为了提高非授权载波上PDCCH的发送机会,则对于非授权载波,每个CORESET可以配置多个TCI state,基站在非授权载波发送PDCCH之前可以在多个TCI state对应的波束上面执行LBT,或者按照优先级顺序轮流在多个TCI state对应的beam上执行LBT,哪个成功了在哪个beam上发送PDCCH,并且基站将该beam信息通过DCI 2_0通知给下属的UE。
另外,基站在DCI 2_0里面是否包含beam指示信息是通过RRC参数进行配置的。当配置了该参数的时候同时会配置该信息在DCI中的位置,UE接收到该信息后,在相应的beam方向上接收下行数据或者可以做信道占用共享传输一些上行的数据。
在一个实施例中,本申请实施例提供一种信息传输装置,所述信息传输装置可以通过软件和/或硬件的方式来实现。所述信息传输装置配置于第一通信节点中,所述第一通信节点可以是上述任意终端,本实施例不进行限定。
如图10所示,本申请实施例提供的信息处理装置,主要包括检测模块101。
其中,检测模块101,被配置为在一个时隙或多个时隙的连续多个OFDM符号上检测物理下行控制信道PDCCH。
在一个实施例中,在一个时隙或多个时隙的连续多个OFDM符号上检测PDCCH,包括:
在N个时隙的连续M个OFDM符号上检测PDCCH,其中,N是大于或等于1的整数,M是大于3的正整数。
在一个实施例中,在一个时隙或多个时隙的连续多个OFDM符号上检测物理下行控制信道PDCCH,包括:
在一个时隙或多个时隙的多个OFDM符号上检测通过重复方式传输的PDCCH。
在一个实施例中,对于重复方式,不同的SCS配置的PDCCH的重复次数不同。
在一个实施例中,所述方法还包括:通过如下方式之一确定PDCCH采用重复的方式进行传输:
配置CORESET重复参数;
配置的搜索空间searchspace中包括PDCCH重复因子。
在一个实施例中,在一个时隙或多个时隙的连续多个OFDM符号上检测物理下行控制信道PDCCH,包括:
在一个时隙的多个OFDM符号上检测通过非重复的映射方式传输的PDCCH。
在一个实施例中,对于非重复的映射方式,不同的SCS所支持的最大PDCCH符号数目不同。
在一个实施例中,对于非重复的映射方式,控制资源集CORESET配置中持续时间取值为3至14之间的任一整数。
在一个实施例中,对于非重复的映射方式,将一个PDCCH映射到多个OFDM符号上,包括如下方式之一:
将一个资源粒子组REG bundle包含的REG个数修改为
Figure PCTCN2021129755-appb-000008
一个控制信道元素CCE包含的REG个数修改为
Figure PCTCN2021129755-appb-000009
其中,m和n均是大于1的正整数;
限制一个PDCCH支持的CCE聚合等级,使得一个PDCCH占据整数个REG bundle;
修改REG编号为频域优先。
在一个实施例中,所述PDCCH和调度的PDSCH或PUSCH采用不同的SCS。
在一个实施例中,所述PDCCH中携带波束指示信息,所述波束指示信息用于指示用于数据收发的波束。
本实施例中提供的信息传输装置可执行本申请任意实施例所提供的信息传输方法,具备执行该方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请任意实施例所提供信息传输方法。
值得注意的是,上述信息传输装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
在一个实施例中,本申请实施例提供一种信息传输装置,所述信息传输装置可以通过软件和/或硬件的方式来实现。所述信息传输装置配置于第二通信节点中,所述第一通信节点可以是上述任意基站,本实施例不进行限定。
如图11所示,本申请实施例提供的信息处理装置,主要包括发送模块111。
其中,发送模块111,被配置为在一个时隙或多个时隙的连续多个OFDM符号上发送物理下行控制信道PDCCH,以使第一通信节点检测到所述PDCCH。
在一个实施例中,在一个时隙或多个时隙的连续多个OFDM符号上发送物理下行控制信道PDCCH,包括如下方式之一:
通过重复的方式在一个或多个时隙上连续发送PDCCH;
通过非重复的方式将PDCCH映射到一个时隙的多个OFDM符号上。
在一个实施例中,所述方法还包括:
PDCCH采用默认的SCS。
在一个实施例中,所述方法还包括:
通过多TRP的方式将相同的下行控制信息DCI通过不同的PDCCH发送给同一个第一通信节点。
在一个实施例中,通过多TRP的方式将相同的下行控制信息DCI通过不同的PDCCH发送给同一个第一通信节点,包括如下方式之一:
不同TRP通过TDM的方式将PDCCH发送给同一个第一通信节点;
不同TRP通过FDM的方式将同一个DCI内容通过不同的PDCCH发送给同一个第一通信节点。
本实施例中提供的信息传输装置可执行本申请任意实施例所提供的信息传输方法,具备执行该方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请任意实施例所提供信息传输方法。
值得注意的是,上述信息传输装置的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。
本申请实施例还提供一种设备,图12是本申请实施例提供的一种设备的结构示意图,如 图12所示,该设备包括处理器121、存储器122、输入装置123、输出装置124和通信装置1212;设备中处理器121的数量可以是一个或多个,图12中以一个处理器121为例;设备中的处理器121、存储器122、输入装置123和输出装置124可以通过总线或其他方式连接,图12中以通过总线连接为例。
存储器122作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的方法对应的程序指令/模块。处理器121通过运行存储在存储器122中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现本申请实施例提供的任一方法。
存储器122可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器122可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器122可包括相对于处理器121远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置123被配置为接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置124可包括显示屏等显示设备。
通信装置125可以包括接收器和传输器。通信装置125设置为根据处理器121的控制进行信息收发通信。
在一个示例性的实施方式中,本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种信息传输方法,所述方法应用于第一通信节点,包括:
在一个时隙或多个时隙的连续多个OFDM符号上检测物理下行控制信道PDCCH。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的信息传输方法中的相关操作。
在一个示例性的实施方式中,本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种信息传输方法,所述方法应用于第二通信节点,包括:
在一个时隙或多个时隙的连续多个OFDM符号上发送物理下行控制信道PDCCH,以使第一通信节点检测到所述PDCCH。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的信息传输方法中的相关操作。计算机可执行指令的存储介质可以是非暂态计算机可读存储介质。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory, ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、可编程逻辑器件(FGPA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本申请的范围。因此,本申请的恰当范围将根据权利要求确定。

Claims (20)

  1. 一种信息传输方法,所述方法应用于第一通信节点,包括:
    在一个时隙或多个时隙的连续多个正交频分复用OFDM符号上检测物理下行控制信道PDCCH。
  2. 根据权利要求1所述的方法,其中,所述在一个时隙或多个时隙的连续多个OFDM符号上检测PDCCH,包括:
    在N个时隙的连续M个OFDM符号上检测PDCCH,其中,N是大于或等于1的整数,M是大于3的正整数。
  3. 根据权利要求1所述的方法,其中,所述在一个时隙或多个时隙的连续多个OFDM符号上检测PDCCH,包括:
    在所述一个时隙或多个时隙的连续多个OFDM符号上检测通过重复方式传输的PDCCH。
  4. 根据权利要求3所述的方法,其中,对于所述重复方式,不同的子载波间隔SCS配置的PDCCH的重复次数不同。
  5. 根据权利要求3所述的方法,还包括:通过如下方式之一确定所述PDCCH采用重复的方式进行传输:
    配置控制资源集CORESET重复参数;
    配置的搜索空间searchspace中包括PDCCH重复因子。
  6. 根据权利要求1所述的方法,其中,所述在一个时隙或多个时隙的连续多个OFDM符号上检测PDCCH,包括:
    在一个时隙的多个OFDM符号上检测通过非重复的映射方式传输的PDCCH。
  7. 根据权利要求6所述的方法,其中,对于所述非重复的映射方式,不同的SCS所支持的最大PDCCH符号数目不同。
  8. 根据权利要求6所述的方法,其中,对于所述非重复的映射方式,控制资源集CORESET配置中持续时间取值为3至14之间的任一整数。
  9. 根据权利要求6所述的方法,其中,对于所述非重复的映射方式,将一个PDCCH映射到多个OFDM符号上,包括如下方式之一:
    将一个资源粒子组REG bundle包含的REG个数修改为
    Figure PCTCN2021129755-appb-100001
    将一个控制信道元素CCE包含的REG个数修改为
    Figure PCTCN2021129755-appb-100002
    其中,m和n分别为大于1的正整数;
    限制一个PDCCH支持的CCE聚合等级,使得一个PDCCH占据整数个REG bundle;以及
    修改REG编号为频域优先。
  10. 根据权利要求1所述的方法,其中,所述PDCCH调度的物理下行共享信道PDSCH或物理上行共享信道PUSCH与所述PDCCH采用不同的SCS。
  11. 根据权利要求1所述的方法,其中,所述PDCCH中携带波束指示信息,所述波束 指示信息用于指示数据收发的波束。
  12. 一种信息传输方法,应用于第二通信节点,包括:
    在一个时隙或多个时隙的连续多个正交频分复用OFDM符号上发送物理下行控制信道PDCCH,以使第一通信节点检测到所述PDCCH。
  13. 根据权利要求12所述的方法,其中,所述在一个时隙或多个时隙的连续多个OFDM符号上发送PDCCH,包括如下方式之一:
    通过重复的方式在所述一个或多个时隙上连续发送PDCCH;
    通过非重复的方式将所述PDCCH映射到一个时隙的多个OFDM符号上。
  14. 根据权利要求12所述的方法,还包括:
    PDCCH采用默认的子载波间隔SCS。
  15. 根据权利要求12所述的方法,还包括:
    通过多传输节点TRP的方式将相同的下行控制信息DCI通过不同的PDCCH发送给同一个第一通信节点。
  16. 根据权利要求15所述的方法,其中,所述通过多TRP的方式将相同的下行控制信息DCI通过不同的PDCCH发送给同一个第一通信节点,包括如下方式之一:
    不同TRP通过时分复用TDM的方式将PDCCH发送给同一个第一通信节点;和
    不同TRP通过频分复用FDM的方式将同一个DCI通过不同的PDCCH发送给同一个第一通信节点。
  17. 一种信息传输装置,配置于第一通信节点,包括:
    检测模块,被配置为在一个时隙或多个时隙的连续多个OFDM符号上检测物理下行控制信道PDCCH。
  18. 一种信息传输装置,配置于第二通信节点,包括:
    发送模块,被配置为在一个时隙或多个时隙的连续多个OFDM符号上发送物理下行控制信道PDCCH,以使第一通信节点检测到所述PDCCH。
  19. 一种信息传输设备,包括:
    一个或多个处理器;
    存储器,被配置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现权利要求1-16中任一项所述的信息传输方法。
  20. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-16中任一项所述的信息传输方法。
PCT/CN2021/129755 2021-03-05 2021-11-10 信息传输方法、装置、设备和存储介质 WO2022183765A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21928838.8A EP4304140A1 (en) 2021-03-05 2021-11-10 Information transmission method, apparatus and device, and storage medium
US18/549,130 US20240155646A1 (en) 2021-03-05 2021-11-10 Information transmission method, apparatus and device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110244780.4A CN115037585A (zh) 2021-03-05 2021-03-05 一种信息传输方法、装置、设备和存储介质
CN202110244780.4 2021-03-05

Publications (1)

Publication Number Publication Date
WO2022183765A1 true WO2022183765A1 (zh) 2022-09-09

Family

ID=83117785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129755 WO2022183765A1 (zh) 2021-03-05 2021-11-10 信息传输方法、装置、设备和存储介质

Country Status (4)

Country Link
US (1) US20240155646A1 (zh)
EP (1) EP4304140A1 (zh)
CN (1) CN115037585A (zh)
WO (1) WO2022183765A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020089854A1 (en) * 2018-11-01 2020-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Handling multiple transmission opportunities in a paging occasion
CN111512575A (zh) * 2017-11-15 2020-08-07 夏普株式会社 用户设备、基站和方法
WO2020197355A1 (ko) * 2019-03-28 2020-10-01 엘지전자 주식회사 무선 통신 시스템에서 사전 설정된 자원을 이용한 상향링크 전송을 수행하는 방법 및 이를 위한 장치
CN111989965A (zh) * 2018-01-11 2020-11-24 夏普株式会社 用户设备、基站和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111512575A (zh) * 2017-11-15 2020-08-07 夏普株式会社 用户设备、基站和方法
CN111989965A (zh) * 2018-01-11 2020-11-24 夏普株式会社 用户设备、基站和方法
WO2020089854A1 (en) * 2018-11-01 2020-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Handling multiple transmission opportunities in a paging occasion
WO2020197355A1 (ko) * 2019-03-28 2020-10-01 엘지전자 주식회사 무선 통신 시스템에서 사전 설정된 자원을 이용한 상향링크 전송을 수행하는 방법 및 이를 위한 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (LENOVO): "Feature lead summary#2 for [104-e-NR-52-71GHz-02] on PDCCH monitoring enhancements", 3GPP DRAFT; R1-2102142, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 4 February 2021 (2021-02-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051976100 *

Also Published As

Publication number Publication date
US20240155646A1 (en) 2024-05-09
CN115037585A (zh) 2022-09-09
EP4304140A1 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
WO2021043010A1 (zh) 信息增强方法、装置、设备和存储介质
JP7148208B2 (ja) 伝送方法、端末デバイス、コンピュータ可読記憶媒体及びプログラム
WO2021089043A1 (zh) 传输信道的配置方法和装置、传输信道的发送方法和装置、设备及存储介质
JP2021533616A (ja) 通信方法及び装置
WO2022028616A1 (zh) 码本确定方法、装置、设备和存储介质
US11362791B2 (en) Terminal and a base station for mapping or receiving a demodulation reference signal
CN112119601A (zh) 用于在无线蜂窝通信系统中发送和接收控制信息的方法和设备
WO2022028584A1 (zh) 配置方法、通信节点及存储介质
CN102281593A (zh) 上行控制信息发送及接收方法、系统和设备
EP3082369B1 (en) Method and apparatus for transmitting and receiving system information
US11785607B2 (en) Method and apparatus for transmitting control information in wireless cellular communication system
US20220029737A1 (en) Method and apparatus for repetition-based data transmission for network cooperative communication
WO2018152821A1 (zh) 一种用户设备、基站中的用于动态调度的方法和装置
EP3965489A1 (en) User device and communication method
US20220394743A1 (en) Method and apparatus for transmitting data for wireless communication
KR20220072806A (ko) 사이드링크 전송 리소스의 확정 방법과 장치
WO2018081973A1 (zh) 传输信号的方法、终端设备和网络设备
US20220225380A1 (en) Method for transmitting and receiving uplink control information
US20230371040A1 (en) Information determination method and apparatus, device, and storage medium
WO2021204196A1 (zh) 控制信息传输方法、装置及系统
JP7117249B2 (ja) ユーザ端末及び無線通信方法
CN108306706A (zh) 一种数据接收、发送方法和接收、发送设备
WO2021031948A1 (zh) 处理数据的方法和通信装置
EP4090098A1 (en) Method and device for carrier scheduling
US20220239424A1 (en) Single carrier pdcch transmission and reception

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18549130

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202327065645

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021928838

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021928838

Country of ref document: EP

Effective date: 20231005

NENP Non-entry into the national phase

Ref country code: DE