WO2018152821A1 - 一种用户设备、基站中的用于动态调度的方法和装置 - Google Patents

一种用户设备、基站中的用于动态调度的方法和装置 Download PDF

Info

Publication number
WO2018152821A1
WO2018152821A1 PCT/CN2017/074895 CN2017074895W WO2018152821A1 WO 2018152821 A1 WO2018152821 A1 WO 2018152821A1 CN 2017074895 W CN2017074895 W CN 2017074895W WO 2018152821 A1 WO2018152821 A1 WO 2018152821A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
time
frequency resource
candidate mode
candidate
Prior art date
Application number
PCT/CN2017/074895
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
南通朗恒通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通朗恒通信技术有限公司 filed Critical 南通朗恒通信技术有限公司
Priority to CN201780068983.4A priority Critical patent/CN109923812B/zh
Priority to PCT/CN2017/074895 priority patent/WO2018152821A1/zh
Publication of WO2018152821A1 publication Critical patent/WO2018152821A1/zh
Priority to US16/546,290 priority patent/US11032833B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/003Adaptive formatting arrangements particular to signalling, e.g. variable amount of bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes

Definitions

  • the present invention relates to a transmission method and apparatus in a wireless communication system, and more particularly to a method and apparatus for transmission of a control channel in wireless communication used for dynamic scheduling.
  • the UE searches for the corresponding DCI (Downlink Control Information) in the downlink subframe.
  • the downlink grant (Grant) often schedules the DL-SCH (Downlink Shared Channel) of the current subframe, and the uplink grant often schedules the UL-SCH (Uplink Shared Channel) of the subsequent subframe.
  • Different DCI formats correspond to different Payload Sizes, and different load sizes correspond to independent blind detection (Blind Decoding). To reduce the number of blind detections by the UE, some different DCI formats maintain the same payload size by adding padding bits (such as the current DCI Format 1A and DCI Format 0).
  • a simple DCI format is designed to follow a DCI format in LTE that corresponds to a load size.
  • the data channel corresponding to the control signaling and the feedback channel will also adopt a sweeping transmission mode with a high probability.
  • the control signaling is transmitted in a non-scanning manner
  • the data channel corresponding to the control signaling and the feedback channel will also adopt a non-sweeping transmission mode with a high probability.
  • the DCI load size required for the data channel and the feedback channel using the sweep mode is often smaller than the data channel that does not use the sweep mode and the DCI load size required for the feedback channel.
  • the present invention provides a solution. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments of the present application may be combined with each other arbitrarily. For example, features in embodiments and embodiments in the UE of the present application may be applied to a base station, and vice versa.
  • the invention discloses a method in a UE used for wireless communication, which comprises the following steps:
  • Step A Detect the first signaling.
  • the first signaling is physical layer signaling.
  • the first signaling includes a first bit block, and the number of bits in the first bit block is related to a transmission manner of the first signaling.
  • the transmission manner of the first signaling is one of the candidate modes in multiple candidate manners.
  • the multiple candidate modes include at least a first candidate mode and a second candidate mode. For the first candidate mode, the first bit block is transmitted multiple times; for the second candidate mode, the first bit block is transmitted once.
  • the above method is characterized in that the load size of the first signaling is related to the transmission mode of the first signaling.
  • the first signaling adopts different transmission modes, the first signaling corresponds to a different load size.
  • an advantage of the foregoing method is that the load size of the first signaling is adjusted based on a transmission mode, and no padding bit needs to be introduced to maintain a format corresponding to a load size limitation, and the control signaling is reduced. Overhead, improve transmission efficiency.
  • another advantage of the foregoing method is that it is not required to design different DCI formats for all different load sizes, which reduces the complexity of the UE in blindly detecting the first signaling, thereby reducing the implementation complexity of the UE. .
  • the first block of bits is used for input of channel coding, the channel coding being based on a polarization code.
  • the first bit block is a bit other than a frozen bit.
  • the step A further includes the following steps:
  • the target wireless signal is used to recover the first signaling.
  • the target wireless sub-signal is a target bit block sequentially subjected to channel coding, a modulation mapper, a layer mapper, and a precoding.
  • Resource Element Mapper formed after the output of OFDM signal generation.
  • the target bit block includes the first block of bits.
  • the multiple candidate modes include only the first candidate mode and the second candidate mode.
  • the first signaling is a DCI.
  • the signaling format corresponding to the first signaling is unchanged.
  • the signaling format is DCI Format.
  • the first candidate mode corresponds to a transmission mode of the scan
  • the second candidate mode corresponds to a non-sweep transmission mode
  • the first candidate mode corresponds to a repetition transmission mode
  • the second candidate mode corresponds to a non-repetition transmission mode
  • the first candidate mode corresponds to a non-Beam-Specific transmission mode
  • the second candidate mode corresponds to a Beam-Specific transmission mode
  • the first bit block is composed of all bits of one field in the first signaling.
  • the first block of bits is composed of all information bits in the first signaling.
  • the first bit block includes all information bits in the first signaling and all padded dummy bits.
  • the first bit block includes all information bits and all padding bits in the first signaling.
  • the first bit block is composed of all padded dummy bits in the first signaling; or the first bit block is composed of all padding bits in the first signaling.
  • the transmission manner of the first signaling is the first candidate mode, the first bit block is composed of P1 bits; and the transmission manner of the first signaling is the In a second candidate mode, the first block of bits consists of P2 bits.
  • the P1 and the P2 are both positive integers, and the P1 is not equal to the P2.
  • the P1 is greater than the P2.
  • the first search space is a search space for the first signaling based on the first candidate mode
  • the second search space is based on the second candidate mode for the first signaling Search space
  • the first search space and the second search space are orthogonal in the time domain.
  • the first search space and the second search space are partially or completely overlapping in the time domain.
  • the first search space and the second search space are partially or completely overlapping in the frequency domain.
  • the first search space belongs to a first time-frequency resource pool
  • the second search space belongs to a second time-frequency resource pool.
  • the first time-frequency resource pool occupies a frequency bandwidth corresponding to a positive integer number of PRBs (Physical Resource Blocks) in the frequency domain, and occupies a positive integer multi-carrier symbol in the time domain.
  • the second time-frequency resource pool occupies a frequency bandwidth corresponding to a positive integer number of PRBs in the frequency domain, and occupies a positive integer multi-carrier symbol in the time domain.
  • the multicarrier symbol in the present invention is one of the following:
  • the method is characterized in that the first bit block includes all information bits in the first signaling.
  • the second candidate mode lacks a first bit field compared to the first candidate mode.
  • the first bit field contains a positive integer number of bits.
  • the method is characterized in that: whether the first bit field is related to the transmission manner of the first signaling in the first signaling.
  • the above method has the advantage that: when the first signaling adopts the When the second candidate mode is transmitted, the load size of the first signaling is reduced, the control signaling overhead is reduced, and the spectrum efficiency is improved.
  • the first bit field is used to determine at least one of ⁇ time domain resources, one or more downlink antenna ports, one or more uplink antenna ports ⁇ occupied by a given wireless signal.
  • the first signaling is a downlink grant
  • the transport channel corresponding to the given radio signal is a DL-SCH.
  • the first bit field is used to determine at least one of ⁇ time domain resources, one or more downlink antenna ports ⁇ occupied by the given wireless signal.
  • the first signaling is an uplink grant
  • the transport channel corresponding to the given wireless signal is a UL-SCH.
  • the first bit field is used to determine at least one of ⁇ time domain resources, one or more uplink antenna ports ⁇ occupied by the given wireless signal.
  • the bits in the first bit field are information bits.
  • the bits in the first bit field are padded dummy bits.
  • the first signaling is DCI
  • the first bit field is one of the first signaling
  • the method is characterized in that, for the first bit block, the second candidate mode and the first candidate mode share all but the first bit field Bit field.
  • the above method is characterized in that only the first bit field part of the first signaling is related to a transmission mode adopted by the first signaling.
  • the number of bits in any one of the other bit fields is the same for the second candidate mode and the first candidate mode.
  • all of the bits in all other bit fields are information bits.
  • the above method is characterized in that it further comprises the following steps:
  • Step B Operating the first wireless signal.
  • the operation is reception, or the operation is transmission.
  • the first wireless signal includes K wireless sub-signals, and the K is a positive integer.
  • a second block of bits is used to generate the wireless sub-signal.
  • the first signaling is used to determine the time domain occupied by the first wireless signal Resource, occupied frequency domain resource, MCS (Modulation and Coding Status), corresponding NDI (New Data Indicator), RV (Redundancy Version), corresponding At least one of HARQ (Hybrid Automatic Repeat reQuest) process number ⁇ .
  • the first bit block is used to determine the K; or the first bit field is used to determine the K.
  • the method is characterized in that: when the first signaling is used to schedule the first wireless signal, the first bit block is used to indicate the number of transmissions of the first wireless signal, or The first bit field is used to indicate the number of transmissions of the first wireless signal.
  • the time domain resources occupied by any two of the K wireless sub-signals are orthogonal (non-overlapping).
  • the wireless sub-signal is that the second bit block is sequentially subjected to channel coding, a modulation mapper, a layer mapper, a precoding, and a resource particle.
  • the Mapper (Resource Element Mapper) is formed by the output after the OFDM signal generation.
  • the first block of bits is used to determine the K, the first block of bits being composed of partial information bits in the first signaling.
  • the first bit block includes a given bit field, the given bit field indicating the K.
  • the first bit field is used to determine the K.
  • the K is 1.
  • the first signaling includes the first bit domain, the first bit domain is used to determine the K; and for the second candidate mode, The first signaling does not include the first bit field, and the K is 1.
  • the characteristics of the foregoing embodiment are: the control signaling is transmitted in a sweeping manner, and the data channel scheduled by the control signaling is also transmitted in a scanning manner.
  • the control signaling is transmitted in a non-scanning manner, and the data channel scheduled by the control signaling is also transmitted in a non-scanning manner.
  • the K wireless sub-signals are transmitted in K time windows, respectively.
  • the time window occupies one multi-carrier symbol in the time domain, or the time window occupies a plurality of multi-carrier symbols in the time domain.
  • the above method is characterized in that it further comprises Next steps:
  • Step C Send the second signalling.
  • the operation is reception.
  • the second signaling is used to determine if the first wireless signal is received correctly.
  • the second signaling is sent in a second time-frequency resource, and the second time-frequency resource belongs to a second time-frequency resource set.
  • the first bit block is used to determine the second time-frequency resource from the second time-frequency resource set; or the first bit field is used to determine from the second time-frequency resource set.
  • the second time-frequency resource is described.
  • the method is characterized in that the time-frequency resource occupied by the HARQ-ACK feedback corresponding to the first wireless signal is determined by the first bit block or the first bit field.
  • the number of bits in the first bit block used to indicate the time-frequency resource occupied by the HARQ-ACK feedback is related to the transmission manner of the first signaling, or whether the first bit field exists and the The transmission mode of the first signaling is related.
  • the second time-frequency resource set includes M sub-bands in the frequency domain and N time intervals in the time domain.
  • the second time-frequency resource occupies a target sub-band in the frequency domain, and the target sub-band is one of the M sub-bands.
  • the second time-frequency resource occupies a positive integer number of consecutive time intervals in the N time intervals in the time domain.
  • the M and the N are both positive integers.
  • the subbands occupy a positive integer number of subcarriers in the frequency domain.
  • the time interval occupies 1 multi-carrier symbol in the time domain, or a plurality of consecutive multi-carrier symbols.
  • the determining, by the second time-frequency resource set, the second time-frequency resource is used to determine the target from the M sub-bands a subband, and is used to determine the positive integer consecutive time intervals from the N time intervals.
  • the first bit block is used to determine the second time-frequency resource from the second time-frequency resource set, where the first bit block is by the first Part of the information bits in the signaling.
  • the first bit block includes a second bit field
  • the second bit field is used to determine the second time-frequency resource from the second time-frequency resource set.
  • the first signaling mode is the first candidate mode
  • the second bit field includes (Q1+Q2) bits
  • the Q1 is equal to
  • the Q2 is related to the value of the N. among them Represents the smallest positive integer not less than X.
  • the Q2 is equal to
  • the first signaling mode is the first candidate mode
  • the first signaling includes the first bit domain
  • the M is equal to 1.
  • the second time-frequency resource occupies the same sub-band in the frequency domain as the second time-frequency resource set.
  • the first bit field is used to determine the positive integer consecutive time intervals from the N time intervals.
  • the first bit field includes Bits.
  • the number of information bits included in the first bit field is related to the N.
  • the second time-frequency resource set includes M sub-bands in a frequency domain, and the second time-frequency resource occupies a target sub-band in a frequency domain, where the target sub-band is one of the M sub-bands.
  • the M is a positive integer.
  • the subbands occupy a positive integer number of subcarriers in the frequency domain.
  • the determining, by the second time-frequency resource set, the second time-frequency resource is used to determine the target from the M sub-bands Subband.
  • the first bit block is used to determine the second time-frequency resource from the second time-frequency resource set, where the first bit block is by the first Part of the information bits in the signaling.
  • the first bit block includes a second bit field
  • the second bit field is used to determine the second time-frequency resource from the second time-frequency resource set.
  • the transmission manner of the first signaling is the second candidate mode
  • the second bit field includes Q1 bits
  • the Q1 is equal to
  • the transmission manner of the first signaling is the second candidate mode, the first signaling does not include the first bit domain, and the M is equal to 1.
  • the second time-frequency resource occupies the same sub-band in the frequency domain as the second time-frequency resource set.
  • the method is characterized in that the step A further comprises the following steps:
  • the first information is used to determine ⁇ a first time-frequency resource pool, and a second time-frequency resource. At least one of the pools ⁇ .
  • the first time-frequency resource group includes at least one of ⁇ the first time-frequency resource pool, the second time-frequency resource pool ⁇ .
  • the detection of the first signaling is performed in the first time-frequency resource group.
  • the first time-frequency resource pool is a search space of the first signaling based on the first candidate mode.
  • the second time-frequency resource pool is a search space of the first signaling based on the second candidate mode.
  • the first time-frequency resource pool includes a positive integer number of PRBs in the frequency domain, and a positive integer multi-carrier symbol in the time domain;
  • the second time-frequency resource pool includes a positive integer number of PRBs in the frequency domain, A positive integer multi-carrier symbol is included in the time domain.
  • the first signaling adopts the first candidate mode, and the UE searches for the first signaling only in the first time-frequency resource pool; or the first signaling adopts In the second candidate mode, the UE searches for the first signaling only in the second time-frequency resource pool.
  • the UE searches for the first signaling in the first time-frequency resource group.
  • the method is characterized in that: the first signaling occupies Y RE sets, and the first time-frequency resource pool includes Y1 RE sets, and the second time-frequency
  • the resource pool contains Y2 of the RE sets.
  • the Y1 sets of the REs and the Y2 sets of the REs constitute Y3 sets of the REs.
  • the sum of Y1 and Y2 is equal to the Y3.
  • the code domain resource occupied by the second signaling in the second time-frequency resource is composed of ⁇ a given RE set in the Y1 of the RE sets, and a given RE is set in the Y2
  • the location in the RE set is determined by one of the locations of the set of REs in the Y3 of the RE sets.
  • the given RE set is the first of the Y RE sets.
  • the given RE set is the RE set with the smallest index of the corresponding RE set in the Y RE sets.
  • the first signaling mode of the first signaling is the first candidate mode, and the code domain resources occupied by the second signaling in the second time-frequency resource are set by the given RE The position in the Y1 sets of the REs is determined.
  • the transmission mode of the first signaling is the second candidate mode, and the code domain resources occupied by the second signaling in the second time-frequency resource are set by the given RE The position in the Y2 sets of the REs is determined.
  • the code domain resources occupied by the second signaling in the second time-frequency resource are determined by the location of the given RE set in the Y3 of the RE sets.
  • the second time-frequency resource is code-multiplexed by multiple UEs, and the multiple UEs respectively occupy different multiple code domain resources.
  • the RE set is a CCE (Control Channel Element); or the RE set is an NR-CCE (New Radio-CCE).
  • the RE set is a minimum unit that carries the first signaling.
  • the invention discloses a method in a base station used for dynamically scheduling wireless communication, which comprises the following steps:
  • Step A Send the first signaling.
  • the first signaling is physical layer signaling.
  • the first signaling includes a first bit block, and the number of bits in the first bit block is related to a transmission manner of the first signaling.
  • the transmission manner of the first signaling is one of the candidate modes in multiple candidate manners.
  • the multiple candidate modes include at least a first candidate mode and a second candidate mode. For the first candidate mode, the first bit block is transmitted multiple times; for the second candidate mode, the first bit block is transmitted once.
  • the step A further includes the following steps:
  • the bits in the first signaling are used to generate the target wireless signal.
  • the target wireless sub-signal is a target bit block sequentially subjected to channel coding, a modulation mapper, a layer mapper, a precoding, and a resource element mapper. , the output after the OFDM signal generation (Generation) is formed.
  • the target bit block includes the first block of bits.
  • the target bit block includes bits and freeze bits in the first signaling.
  • the method is characterized in that the first bit block includes all information bits in the first signaling.
  • the second candidate mode lacks a first bit field compared to the first candidate mode.
  • the first bit field contains a positive integer number of bits.
  • the method is characterized in that, for the first bit block, the second candidate mode and the first candidate mode share all but the first bit field Bit field.
  • the above method is characterized in that it further comprises the following steps:
  • Step B Execute the first wireless signal.
  • the execution is a transmission or the execution is a reception.
  • the first wireless signal includes K wireless sub-signals, and the K is a positive integer.
  • a second block of bits is used to generate the wireless sub-signal.
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS, the corresponding NDI, the adopted RV, the corresponding HARQ process number ⁇ At least one of them.
  • the first bit block is used to determine the K; or the first bit field is used to determine the K.
  • the first signaling is a downlink authorization
  • the execution is a transmission
  • the first signaling is an uplink grant
  • the performing is receiving.
  • the above method is characterized in that it further comprises the following steps:
  • the execution is a transmission.
  • the second signaling is used to determine if the first wireless signal is received correctly.
  • the second signaling is sent in a second time-frequency resource, and the second time-frequency resource belongs to a second time-frequency resource set.
  • the first bit block is used to determine the second time-frequency resource from the second time-frequency resource set; or the first bit field is used to determine from the second time-frequency resource set
  • the second time-frequency resource is described.
  • the method is characterized in that the step A further comprises the following steps:
  • Step A0 Send the first message.
  • the first information is used to determine at least one of ⁇ a first time-frequency resource pool, a second time-frequency resource pool ⁇ .
  • the first time-frequency resource group includes ⁇ the first time-frequency resource pool, the first At least one of the two time-frequency resource pools ⁇ .
  • the detection of the first signaling is performed in the first time-frequency resource group.
  • the method is characterized in that: the first signaling occupies Y RE sets, and the first time-frequency resource pool includes Y1 RE sets, and the second time-frequency
  • the resource pool contains Y2 of the RE sets.
  • the Y1 sets of the REs and the Y2 sets of the REs constitute Y3 sets of the REs.
  • the sum of Y1 and Y2 is equal to the Y3.
  • the code domain resource occupied by the second signaling in the second time-frequency resource is composed of ⁇ a given RE set in the Y1 of the RE sets, and a given RE is set in the Y2
  • the location in the RE set is determined by one of the locations of the set of REs in the Y3 of the RE sets.
  • the invention discloses a user equipment used for dynamic scheduling wireless communication, which comprises the following modules:
  • a first receiving module for detecting the first signaling.
  • the first signaling is physical layer signaling.
  • the first signaling includes a first bit block, and the number of bits in the first bit block is related to a transmission manner of the first signaling.
  • the transmission manner of the first signaling is one of the candidate modes in multiple candidate manners.
  • the multiple candidate modes include at least a first candidate mode and a second candidate mode. For the first candidate mode, the first bit block is transmitted multiple times; for the second candidate mode, the first bit block is transmitted once.
  • the foregoing user equipment for dynamically scheduling wireless communication is characterized in that the first receiving module is further configured to receive a target wireless signal.
  • the target wireless signal is used to recover the first signaling.
  • the target wireless sub-signal is a target bit block sequentially subjected to channel coding, a modulation mapper, a layer mapper, a precoding, and a resource element mapper. , the output after the OFDM signal generation (Generation) is formed.
  • the target bit block includes the first block of bits.
  • the foregoing user equipment for dynamically scheduling wireless communication is characterized in that the first receiving module is further configured to receive the first information.
  • the first information is used to determine at least one of ⁇ a first time-frequency resource pool, a second time-frequency resource pool ⁇ .
  • the first time-frequency resource group includes at least one of ⁇ the first time-frequency resource pool, the second time-frequency resource pool ⁇ .
  • For The detecting of the first signaling is performed in the first time-frequency resource group.
  • the foregoing user equipment for dynamically scheduling wireless communication is characterized in that:
  • a first processing module for operating the first wireless signal.
  • the operation is reception, or the operation is transmission.
  • the first wireless signal includes K wireless sub-signals, and the K is a positive integer.
  • a second block of bits is used to generate the wireless sub-signal.
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS, the corresponding NDI, the adopted RV, the corresponding HARQ process number ⁇ At least one of them.
  • the first bit block is used to determine the K; or the first bit field is used to determine the K.
  • the foregoing user equipment for dynamically scheduling wireless communication is characterized in that:
  • a first transmitting module for transmitting the second signaling.
  • the operation is reception.
  • the second signaling is used to determine if the first wireless signal is received correctly.
  • the second signaling is sent in a second time-frequency resource, and the second time-frequency resource belongs to a second time-frequency resource set.
  • the first bit block is used to determine the second time-frequency resource from the second time-frequency resource set; or the first bit field is used to determine from the second time-frequency resource set.
  • the second time-frequency resource is described.
  • the foregoing user equipment for dynamically scheduling wireless communication is characterized in that the first bit block includes all information bits in the first signaling.
  • the second candidate mode lacks a first bit field compared to the first candidate mode.
  • the first bit field contains a positive integer number of bits.
  • the foregoing user equipment for dynamically scheduling wireless communication is characterized in that, for the first bit block, the second candidate mode and the first candidate mode share a first bit field All other bit fields except.
  • the foregoing user equipment for dynamically scheduling wireless communication is characterized in that: the first signaling occupies Y RE sets, and the first time-frequency resource pool includes Y1 RE sets,
  • the second time-frequency resource pool contains Y2 sets of the REs.
  • the Y1 sets of the REs and the Y2 sets of the REs constitute Y3 sets of the REs.
  • the sum of Y1 and Y2 is equal to the Y3.
  • the code domain resource occupied by the second signaling in the second time-frequency resource is determined by a given RE set in the Y1 of the RE sets, and the given RE set is in the
  • the position in the Y2 sets of the REs is determined by one of the positions of the set of REs in the Y3 sets of the REs.
  • the invention discloses a base station device used for dynamic scheduling wireless communication, which comprises the following modules:
  • the first signaling is physical layer signaling.
  • the first signaling includes a first bit block, and the number of bits in the first bit block is related to a transmission manner of the first signaling.
  • the transmission manner of the first signaling is one of the candidate modes in multiple candidate manners.
  • the multiple candidate modes include at least a first candidate mode and a second candidate mode. For the first candidate mode, the first bit block is transmitted multiple times; for the second candidate mode, the first bit block is transmitted once.
  • the foregoing base station device for dynamically scheduling wireless communication is characterized in that the second sending module is further configured to send the first information.
  • the first information is used to determine at least one of ⁇ a first time-frequency resource pool, a second time-frequency resource pool ⁇ .
  • the first time-frequency resource group includes at least one of ⁇ the first time-frequency resource pool, the second time-frequency resource pool ⁇ .
  • the detection of the first signaling is performed in the first time-frequency resource group.
  • the base station device for wireless communication for dynamic scheduling is characterized in that the second sending module is further configured to send a target wireless signal.
  • the bits in the first signaling are used to generate the target wireless signal.
  • the target wireless sub-signal is a target bit block sequentially subjected to channel coding, a modulation mapper, a layer mapper, a precoding, and a resource element mapper. , the output after the OFDM signal generation (Generation) is formed.
  • the target bit block includes the first block of bits.
  • the foregoing base station device for dynamically scheduling wireless communication is characterized in that:
  • a second processing module for executing the first wireless signal.
  • the execution is a transmission or the execution is a reception.
  • the first wireless signal includes K wireless sub-signals, and the K is a positive integer.
  • a second block of bits is used to generate the wireless sub-signal.
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS, the corresponding NDI, the adopted RV, and the corresponding HARQ. At least one of the process numbers ⁇ .
  • the first bit block is used to determine the K; or the first bit field is used to determine the K.
  • the foregoing base station device for dynamically scheduling wireless communication is characterized in that:
  • a second receiving module for receiving the second signaling.
  • the execution is a transmission.
  • the second signaling is used to determine if the first wireless signal is received correctly.
  • the second signaling is sent in a second time-frequency resource, and the second time-frequency resource belongs to a second time-frequency resource set.
  • the first bit block is used to determine the second time-frequency resource from the second time-frequency resource set; or the first bit field is used to determine from the second time-frequency resource set
  • the second time-frequency resource is described.
  • the base station device for wireless communication for dynamic scheduling is characterized in that the first bit block includes all information bits in the first signaling.
  • the second candidate mode lacks a first bit field compared to the first candidate mode.
  • the first bit field contains a positive integer number of bits.
  • the foregoing base station device for dynamically scheduling wireless communication is characterized in that, for the first bit block, the second candidate mode and the first candidate mode share a first bit field All other bit fields except.
  • the foregoing base station device for dynamically scheduling wireless communication is characterized in that the first signaling occupies Y RE sets, and the first time-frequency resource pool includes Y1 RE sets,
  • the second time-frequency resource pool contains Y2 sets of the REs.
  • the Y1 sets of the REs and the Y2 sets of the REs constitute Y3 sets of the REs.
  • the sum of Y1 and Y2 is equal to the Y3.
  • the code domain resource occupied by the second signaling in the second time-frequency resource is composed of ⁇ a given RE set in the Y1 of the RE sets, and a given RE is set in the Y2
  • the location in the RE set is determined by one of the locations of the set of REs in the Y3 of the RE sets.
  • the present invention has the following technical advantages:
  • the load size of the first signaling is adjusted based on the transmission mode, and does not need to introduce padding bits to maintain a format corresponding to a load size limitation, reduce control signaling overhead, and improve transmission efficiency.
  • Figure 1 shows a flow chart of a first signaling transmission in accordance with one embodiment of the present invention
  • FIG. 2 shows a flow chart of a first signaling transmission in accordance with another embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a first bit block transmission mode according to an embodiment of the present invention.
  • FIG. 4 shows a schematic diagram of information bits in first signaling in accordance with an embodiment of the present invention
  • FIG. 5 shows a schematic diagram of a second time-frequency resource set according to an embodiment of the present invention
  • FIG. 6 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present invention.
  • Figure 7 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present invention.
  • Embodiment 1 illustrates a flow chart of a first signaling transmission in accordance with the present invention, as shown in FIG.
  • a base station N1 is a maintenance base station of a serving cell of UE U2.
  • the steps identified by block F0 are optional.
  • the first information is transmitted in step S10, the first signaling is transmitted in step S11, the first wireless signal is transmitted in step S12, and the second signaling is received in step S13.
  • the first information is received in step S20, the first signaling is detected in step S21, the first wireless signal is received in step S22, and the second signaling is transmitted in step S23.
  • the first signaling is physical layer signaling.
  • the first signaling includes a first bit block, and the number of bits in the first bit block is related to a transmission manner of the first signaling.
  • the transmission manner of the first signaling is one of the candidate modes in multiple candidate manners.
  • the multiple candidate modes include at least a first candidate mode and a second candidate mode.
  • For the first In a candidate mode the first block of bits is transmitted multiple times; for the second candidate mode, the first block of bits is transmitted once.
  • the first bit block includes all information bits in the first signaling.
  • the second candidate mode lacks a first bit field compared to the first candidate mode.
  • the first bit field contains a positive integer number of bits.
  • the first wireless signal includes K wireless sub-signals, and the K is a positive integer.
  • a second block of bits is used to generate the wireless sub-signal.
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS, the corresponding NDI, the adopted RV, the corresponding HARQ process number ⁇ At least one of them.
  • the first bit block is used to determine the K; or the first bit field is used to determine the K.
  • the second signaling is used to determine if the first wireless signal is received correctly.
  • the second signaling is sent in a second time-frequency resource, and the second time-frequency resource belongs to a second time-frequency resource set.
  • the first bit block is used to determine the second time-frequency resource from the second time-frequency resource set; or the first bit field is used to determine from the second time-frequency resource set
  • the second time-frequency resource is described.
  • the first information is used to determine at least one of ⁇ a first time-frequency resource pool, a second time-frequency resource pool ⁇ .
  • the first time-frequency resource group includes at least one of ⁇ the first time-frequency resource pool, the second time-frequency resource pool ⁇ .
  • the detection of the first signaling is performed in the first time-frequency resource group.
  • the first signaling occupies Y RE sets
  • the first time-frequency resource pool includes Y1 of the RE sets
  • the second time-frequency resource pool includes Y2 of the RE sets.
  • the Y1 sets of the REs and the Y2 sets of the REs constitute Y3 sets of the REs.
  • the sum of Y1 and Y2 is equal to the Y3.
  • the code domain resource occupied by the second signaling in the second time-frequency resource is composed of ⁇ a given RE set in the Y1 of the RE sets, and a given RE is set in the Y2
  • the location in the RE set is determined by one of the locations of the set of REs in the Y3 of the RE sets.
  • the first wireless signal is transmitted on a physical layer data channel (a physical layer channel that can be used to carry physical layer data).
  • the physical layer data channel is ⁇ PDSCH (Physical Downlink Shared Channel), sPDSCH (Short Latency-PDSCH), and NB-PDSCH (Narrowband-PDSCH (Narrowband Physical Downlink Shared Channel) , NR-PDSCH (New Radio-PDSCH, New Radio Physical Downlink Shared Channel) ⁇ .
  • the transport channel corresponding to the first wireless signal is a DL-SCH.
  • the first information is RRC (Radio Resource Control) layer signaling.
  • RRC Radio Resource Control
  • the RRC layer signaling is cell-specific.
  • the RRC layer signaling is beam-specific.
  • the RRC layer signaling is beam group-specific.
  • the RRC layer signaling is UE-specific.
  • the first information is transmitted by broadcast signaling.
  • Embodiment 2 illustrates a flow chart of another first signaling transmission in accordance with the present invention, as shown in FIG.
  • the base station N3 is a maintenance base station of the serving cell of the UE U4.
  • the steps identified by block F1 are optional.
  • the first information is transmitted in step S30, the first signaling is transmitted in step S31, and the first wireless signal is received in step S32.
  • the first information is received in step S40, the first signaling is detected in step S41, and the first wireless signal is transmitted in step S42.
  • the first signaling is physical layer signaling.
  • the first signaling includes a first bit block, and the number of bits in the first bit block is related to a transmission manner of the first signaling.
  • the transmission manner of the first signaling is one of the candidate modes in multiple candidate manners.
  • the multiple candidate modes include at least a first candidate mode and a second candidate mode.
  • the first bit block is transmitted multiple times; for the second candidate mode, the first bit block is transmitted once.
  • the first bit block includes all information bits in the first signaling.
  • the second candidate mode lacks a first bit field compared to the first candidate mode.
  • the first bit field contains a positive integer number of bits.
  • the first wireless signal includes K wireless sub-signals, and the K is a positive integer.
  • a second block of bits is used to generate the wireless sub-signal.
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS, the corresponding NDI, the adopted RV, the corresponding HARQ process number ⁇ At least one of them.
  • the first bit block is used to determine the K; or the first bit field is used to determine the K.
  • the first information is used to determine at least one of ⁇ a first time-frequency resource pool, a second time-frequency resource pool ⁇ .
  • the first time-frequency resource group includes ⁇ the first time-frequency resource pool, and the second time At least one of the frequency resource pools ⁇ . The detection of the first signaling is performed in the first time-frequency resource group.
  • the first wireless signal is transmitted on a physical layer data channel (a physical layer channel that can be used to carry physical layer data).
  • the physical layer data channel is ⁇ PUSCH (Physical Uplink Shared Channel), sPUSCH (Short Latency-PUSCH), NB-PUSCH (Narrowband-PUSCH, narrowband physical uplink shared channel) , NR-PUSCH (New Radio-PDSCH, new radio physical uplink shared channel) ⁇ .
  • the transport channel corresponding to the first wireless signal is a UL-SCH.
  • the first information is RRC layer signaling.
  • the RRC layer signaling is cell-specific.
  • the RRC layer signaling is beam-specific.
  • the RRC layer signaling is beam group-specific.
  • the RRC layer signaling is UE-specific.
  • the first information is transmitted by broadcast signaling.
  • Embodiment 3 illustrates a schematic diagram of a first bit block transmission mode according to the present invention.
  • the first signaling mode in the present invention is a first candidate mode, and the first bit block is sent T times in the T first type time units shown.
  • T is a positive integer greater than one;
  • the transmission mode of the first signaling in the present invention is a second candidate mode, and the first bit block is transmitted only once in the second type of time unit shown.
  • the first type of time unit occupies T1 multicarrier symbols in the time domain, and the second type of time unit occupies T2 multicarrier symbols in the time domain. Both T1 and T2 are positive integers.
  • the T1 is equal to the T2.
  • the T1 is equal to one.
  • the T first type of time units are respectively directed to T beam directions.
  • the T first-type time units are respectively instructed for T QCLs (quasi-co-location).
  • Embodiment 4 illustrates a schematic diagram of information bits in a first signaling according to the present invention.
  • the transmission manner of the first signaling in the present invention is a first candidate mode, and the first bit block includes P1 information bits; the transmission of the first signaling in the present invention
  • the mode is a second candidate mode, and the first bit block includes P2 information bits.
  • P1 and P2 are positive integers greater than 1, and the P1 is greater than the P2.
  • the first signaling adopts a given DCI format in both the first candidate mode and the second candidate mode.
  • the given DCI format also includes a positive integer number of padding bits.
  • the first candidate mode corresponds to a transmission mode of the scan
  • the second candidate mode corresponds to a non-sweep transmission mode
  • the first candidate mode corresponds to a repeated transmission mode
  • the second candidate mode corresponds to a non-repetitive transmission mode
  • the embodiment illustrates a schematic diagram of a second set of time-frequency resources in accordance with the present invention.
  • the first signaling mode of the present invention is a first candidate mode
  • the second time-frequency resource set includes M sub-bands in a frequency domain
  • the second time-frequency resource The set includes N time intervals in the time domain
  • the first signaling mode of the present invention is a second candidate mode
  • the second time-frequency resource set includes M sub-bands in the frequency domain
  • the second The time-frequency resource set contains only one time interval in the time domain.
  • the M is a positive integer and the N is a positive integer greater than one.
  • the second time-frequency resource occupies one of the M sub-bands in the frequency domain, such as sub-band #i shown in the figure, and the i is a positive integer not greater than 1 and not greater than M.
  • the second time-frequency resource occupies N1 time intervals in the N time intervals in the time domain, and the N1 is a positive integer greater than 1.
  • the second time-frequency resource occupies only one time interval in the time domain.
  • the time interval occupies the duration of one multi-carrier symbol.
  • the time interval occupies a duration of a plurality of multi-carrier symbols.
  • the M sub-bands are continuous in the frequency domain.
  • the M sub-bands are discrete in the frequency domain.
  • the second signaling is sent N1 times in the N1 time intervals respectively.
  • the second signaling includes N1 sub-signals, and the N1 sub-letters
  • the commands are sent in the N1 time intervals, respectively.
  • the transmission manner of the first signaling is a first candidate manner.
  • the first bit block is used to determine the subband #i and the N1 time intervals, or the first bit field is used to determine the subband #i and the N1 time interval.
  • the transmission manner of the first signaling is a second candidate mode.
  • the first block of bits is used to determine the sub-band #i.
  • Embodiment 6 exemplifies a structural block diagram of a processing device in one UE, as shown in FIG.
  • the UE processing apparatus 100 is mainly composed of a first receiving module 101, a first processing module 102, and a first transmitting module 103.
  • the first sending module 103 is optional.
  • a first receiving module 101 for detecting the first signaling
  • a first processing module 102 for operating the first wireless signal
  • a first transmitting module 103 for transmitting the second signaling.
  • the first signaling is physical layer signaling.
  • the first signaling includes a first bit block, and the number of bits in the first bit block is related to a transmission manner of the first signaling.
  • the transmission manner of the first signaling is one of the candidate modes in multiple candidate manners.
  • the multiple candidate modes include at least a first candidate mode and a second candidate mode.
  • For the first candidate mode the first bit block is transmitted multiple times; for the second candidate mode, the first bit block is transmitted once.
  • the operation is to receive, or the operation is to send.
  • the first wireless signal includes K wireless sub-signals, and the K is a positive integer.
  • a second block of bits is used to generate the wireless sub-signal.
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS, the corresponding NDI, the adopted RV, the corresponding HARQ process number ⁇ At least one of them.
  • the first bit block is used to determine the K; or the first bit field is used to determine the K.
  • the second signaling is used to determine if the first wireless signal is received correctly.
  • the second signaling is sent in a second time-frequency resource, and the second time-frequency resource belongs to a second time-frequency resource set.
  • the first bit block is used to determine the second time-frequency resource from the second time-frequency resource set; or the first bit field is used to determine from the second time-frequency resource set
  • the second time-frequency resource is described.
  • the first receiving module 101 is further configured to receive the first information.
  • the first information is used to determine at least one of ⁇ a first time-frequency resource pool, a second time-frequency resource pool ⁇ .
  • the first time-frequency resource group includes ⁇ the first time-frequency resource pool, and the second time-frequency resource pool ⁇ At least one of them.
  • the detection of the first signaling is performed in the first time-frequency resource group.
  • the first bit block includes all information bits in the first signaling.
  • the second candidate mode lacks a first bit field compared to the first candidate mode.
  • the first bit field contains a positive integer number of bits.
  • the second candidate mode and the first candidate mode share all bit fields except the first bit field.
  • the first signaling occupies Y RE sets
  • the first time-frequency resource pool includes Y1 RE sets
  • the second time-frequency resource pool includes Y2 RE sets.
  • the Y1 sets of the REs and the Y2 sets of the REs constitute Y3 sets of the REs.
  • the sum of Y1 and Y2 is equal to the Y3.
  • the code domain resource occupied by the second signaling in the second time-frequency resource is composed of ⁇ a given RE set in the Y1 of the RE sets, and a given RE is set in the Y2
  • the location in the RE set is determined by one of the locations of the set of REs in the Y3 of the RE sets.
  • Embodiment 7 exemplifies a structural block diagram of a processing device in a base station device, as shown in FIG.
  • the base station device processing apparatus 200 is mainly composed of a second sending module 201, a second processing module 202, and a second receiving module 203.
  • the second receiving module 203 is optional.
  • a second sending module 201 configured to send the first signaling
  • a third sending module 202 configured to execute the first wireless signal
  • the third receiving module 203 is configured to receive the second signaling.
  • the first signaling is physical layer signaling.
  • the first signaling includes a first bit block, and the number of bits in the first bit block is related to a transmission manner of the first signaling.
  • the transmission manner of the first signaling is one of the candidate modes in multiple candidate manners.
  • the multiple candidate modes include at least a first candidate mode and a second candidate mode.
  • For the first candidate mode the first bit block is transmitted multiple times; for the second candidate mode, the first bit block is transmitted once.
  • the operation is to receive, or the operation is to send.
  • the first wireless signal includes K wireless sub-signals, and the K is a positive integer.
  • a second block of bits is used to generate the wireless sub-signal.
  • the first signaling is used to determine the first wireless signal ⁇ the occupied time domain resource, the occupied frequency domain resource, the adopted MCS, the corresponding NDI, and the adopted RV, at least one of the corresponding HARQ process numbers ⁇ .
  • the first bit block is used to determine the K; or the first bit field is used to determine the K.
  • the second signaling is used to determine if the first wireless signal is received correctly.
  • the second signaling is sent in a second time-frequency resource, and the second time-frequency resource belongs to a second time-frequency resource set.
  • the first bit block is used to determine the second time-frequency resource from the second time-frequency resource set; or the first bit field is used to determine from the second time-frequency resource set
  • the second time-frequency resource is described.
  • the second sending module 201 is further configured to send the first information.
  • the first information is used to determine at least one of ⁇ a first time-frequency resource pool, a second time-frequency resource pool ⁇ .
  • the first time-frequency resource group includes at least one of ⁇ the first time-frequency resource pool, the second time-frequency resource pool ⁇ .
  • the detection of the first signaling is performed in the first time-frequency resource group.
  • the first bit block includes all information bits in the first signaling.
  • the second candidate mode lacks a first bit field compared to the first candidate mode.
  • the first bit field contains a positive integer number of bits.
  • the second candidate mode and the first candidate mode share all bit fields except the first bit field.
  • the first signaling occupies Y RE sets
  • the first time-frequency resource pool includes Y1 RE sets
  • the second time-frequency resource pool includes Y2 RE sets.
  • the Y1 sets of the REs and the Y2 sets of the REs constitute Y3 sets of the REs.
  • the sum of Y1 and Y2 is equal to the Y3.
  • the code domain resource occupied by the second signaling in the second time-frequency resource is composed of ⁇ a given RE set in the Y1 of the RE sets, and a given RE is set in the Y2
  • the location in the RE set is determined by one of the locations of the set of REs in the Y3 of the RE sets.
  • the UE and the terminal in the present invention include, but are not limited to, a mobile phone, a tablet computer, a notebook, an in-vehicle communication device, Wireless sensor, network card, IoT terminal, RFID terminal, NB-IOT terminal, MTC (Machine Type Communication) terminal, eMTC (enhanced MTC) terminal, data card, network card, vehicle communication device , low-cost mobile phones, low-cost tablets and other wireless communication devices.
  • the base station in the present invention includes, but is not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, and the like.

Abstract

本发明公开了一种用户设备、基站中的用于动态调度的方法和装置。UE检测第一信令。所述第一信令是物理层信令。所述第一信令包括第一比特块,所述第一比特块中比特的数量与所述第一信令的传输方式有关。所述所述第一信令的传输方式是多种候选方式中的一种所述候选方式。所述多种候选方式至少包括第一候选方式和第二候选方式。对于所述第一候选方式,所述第一比特块被发送多次;对于所述第二候选方式,所述第一比特块被发送一次。本发明通过将所述第一信令的负载尺寸和所述第一信令的传输方式建立联系,降低所述第一信令的负载尺寸,简化控制信令的盲检测复杂度,提高系统传输效率和频谱效率。

Description

一种用户设备、基站中的用于动态调度的方法和装置 技术领域
本发明涉及无线通信系统中的传输方法和装置,尤其涉及被用于动态调度的无线通信中控制信道的传输方法和装置。
背景技术
现有的LTE(Long Term Evolution,长期演进)系统中,对于一个下行子帧而言,UE会在所述下行子帧中搜索对应的DCI(Downlink Control Information,下行控制信息)。下行授权(Grant)往往调度当前子帧的DL-SCH(Downlink Shared Channel,下行共享信道),而上行授权往往调度后续子帧的UL-SCH(Uplink Shared Channel,上行共享信道)。不同的DCI格式(Format)对应不同的负载尺寸(Payload Size),不同的负载尺寸对应独立的盲检测(Blind Decoding)。为降低UE的盲检测次数,某些不同的DCI格式通过添加填充比特(Padding Bits)以保持相同的负载尺寸,例如目前的DCI Format 1A和DCI Format 0。
未来移动通信系统中,由于波束赋型(Beamforming)和大规模多天线系统的引入(Massive-MIMO)。控制信令将会分别以扫射(Sweeping)和非扫射(Non-Sweeping)的方式传输。相应的,DCI格式对应的负载尺寸将会被重新考虑。
发明内容
一种简单的DCI格式的设计方式就是沿用LTE中一种DCI格式对应一种负载尺寸的方式。然而,当控制信令采用扫射的方式传输时,所述控制信令对应的数据信道以及反馈信道也将会较大概率的采用扫射的传输方式。与之对应的,当控制信令采用非扫射的方式传输时,所述控制信令对应的数据信道以及反馈信道也将会较大概率的采用非扫射的传输方式。采用扫射方式的数据信道以及反馈信道所需要的DCI负载尺寸往往小于不采用扫射方式的数据信道以及反馈信道所需要的DCI负载尺寸。当仍按照上述一种DCI格式对应一种负载尺寸的方式设计,将会 增加额外的填充比特,进而带来控制信令资源的浪费。
针对上述问题,本发明提供了解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。例如,本申请的UE中的实施例和实施例中的特征可以应用到基站中,反之亦然。
本发明公开了一种被用于无线通信的UE中的方法,其中,包括如下步骤:
-步骤A.检测第一信令。
其中,所述第一信令是物理层信令。所述第一信令包括第一比特块,所述第一比特块中比特的数量与所述第一信令的传输方式有关。所述所述第一信令的传输方式是多种候选方式中的一种所述候选方式。所述多种候选方式至少包括第一候选方式和第二候选方式。对于所述第一候选方式,所述第一比特块被发送多次;对于所述第二候选方式,所述第一比特块被发送一次。
作为一个实施例,上述方法的特质在于:所述第一信令的负载尺寸与所述第一信令的传输方式有关。当所述第一信令采用不同的传输方式时,所述第一信令对应的负载尺寸不同。
作为一个实施例,上述方法的一个好处在于:所述第一信令的负载尺寸基于传输方式进行调整,而不需要引入填充比特以维持一种格式对应一种负载尺寸的限制,降低控制信令开销,提高传输效率。
作为一个实施例,上述方法的另一个好处在于:不需要为所有不同的负载尺寸设计不同的DCI格式,降低UE在盲检测所述第一信令时的复杂度,进而降低UE的实现复杂度。
作为一个实施例,所述第一比特块被用于信道编码的输入,所述信道编码基于极化码。
作为上述实施例的一个子实施例,所述第一比特块是冻结(Frozen)比特之外的比特。
作为一个实施例,所述步骤A还包括如下步骤:
-.接收目标无线信号。
其中,所述目标无线信号被用于恢复所述第一信令。所述目标无线子信号是目标比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding), 资源粒子映射器(Resource Element Mapper),OFDM信号发生(Generation)之后的输出形成的。所述目标比特块包括所述第一比特块。
作为一个实施例,所述多种候选方式仅包括所述第一候选方式和所述第二候选方式。
作为一个实施例,所述第一信令是DCI。
作为一个实施例,对于所述多种候选方式,所述第一信令对应的信令格式是不变的。
作为该实施例的一个子实施例,所述信令格式是DCI Format。
作为一个实施例,所述第一候选方式对应扫射的传输方式,所述第二候选方式对应非扫射的传输方式。
作为一个实施例,所述第一候选方式对应重复的(Repetition)传输方式,所述第二候选方式对应非重复的(Non-Repetition)传输方式。
作为一个实施例,所述第一候选方式对应非波束专属的(Non-Beam-Specific)传输方式,所述第二候选方式对应波束专属的(Beam-Specific)传输方式。
作为一个实施例,所述第一比特块是由所述第一信令中的一个域(Field)的所有比特组成。
作为一个实施例,所述第一比特块是由所述第一信令中的所有信息比特组成。
作为一个实施例,所述第一比特块包括所述第一信令中的所有信息比特和所有填充的伪比特(Dummy bit)。
作为一个实施例,所述第一比特块包括所述第一信令中的所有信息比特和所有填充比特。
作为一个实施例,所述第一比特块由所述第一信令中的所有填充的伪比特组成;或者所述第一比特块由所述第一信令中的所有填充比特组成。
作为一个实施例,所述所述第一信令的传输方式是所述第一候选方式,所述第一比特块由P1个比特组成;所述所述第一信令的传输方式是所述第二候选方式,所述第一比特块由P2个比特组成。所述P1和所述P2均是正整数,所述P1不等于所述P2。
作为该实施例的一个子实施例,所述P1大于所述P2。
作为一个实施例,第一搜索空间是基于所述第一候选方式的针对所述第一信令的搜索空间,第二搜索空间是基于所述第二候选方式的针对所述第一信令的搜索空间。
作为该实施例的一个子实施例,不存在一个RE(Resource Element,资源单元)同时属于所述第一搜索空间和所述第二搜索空间。
作为该实施例的一个子实施例,所述第一搜索空间和所述第二搜索空间在时域上是正交的。
作为该实施例的一个子实施例,所述第一搜索空间和所述第二搜索空间在时域上是部分或者全部重叠的。
作为该实施例的一个子实施例,所述第一搜索空间和所述第二搜索空间在频域上是部分或者全部重叠的。
作为该实施例的一个子实施例,所述第一搜索空间属于第一时频资源池,所述第二搜索空间属于第二时频资源池。所述第一时频资源池在频域占用正整数个PRB(Physical Resource Block,物理资源块)对应的频带宽度,在时域占用正整数个多载波符号。所述第二时频资源池在频域占用正整数个PRB对应的频带宽度,在时域占用正整数个多载波符号。
作为一个实施例,本发明中的多载波符号是以下之一:
-OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号;
-FBMC(Filtering Bank Multile Carrier,滤波器组多载波)符号;
-SC-FDMA(Single Carrier Frequency Division Multiple Access,单载波频分多址)符号。
具体的,根据本发明的一个方面,上述方法的特征在于,所述第一比特块包括所述第一信令中的所有信息比特。对于所述第一比特块,所述第二候选方式相比于所述第一候选方式缺少了第一比特域。所述第一比特域包含正整数个比特。
作为一个实施例,上述方法的特质在于:所述第一比特域在所述第一信令中是否存在与所述第一信令的传输方式有关。
作为一个实施例,上述方法的好处在于:当所述第一信令采用所述 第二候选方式传输时,所述第一信令的负载尺寸降低,降低控制信令开销,提高频谱效率。
作为一个实施例,所述第一比特域被用于确定给定无线信号所占用的{时域资源,一个或者多个下行天线端口,一个或者多个上行天线端口}中的至少之一。
作为该实施例的一个子实施例,所述第一信令是下行授权,所述给定无线信号对应的传输信道是DL-SCH。所述第一比特域被用于确定所述给定无线信号所占用的{时域资源,一个或者多个下行天线端口}中的至少之一。
作为该实施例的一个子实施例,所述第一信令是上行授权,所述给定无线信号对应的传输信道是UL-SCH。所述第一比特域被用于确定所述给定无线信号所占用的{时域资源,一个或者多个上行天线端口}中的至少之一。
作为一个实施例,所述第一比特域中的比特是信息比特。
作为一个实施例,所述第一比特域中的比特是填充的伪比特。
作为一个实施例,所述第一信令是DCI,所述第一比特域是所述第一信令中的一个域。
具体的,根据本发明的一个方面,上述方法的特征在于,对于所述第一比特块,所述第二候选方式和所述第一候选方式共享除了所述第一比特域之外的其他所有的比特域。
作为一个实施例,上述方法的特质在于:所述第一信令中仅所述第一比特域部分与所述第一信令所采用的传输方式有关。
作为一个实施例,所述其他所有的比特域中的任意一个所述比特域中的比特的数量对于所述第二候选方式和所述第一候选方式是相同的。
作为一个实施例,所述其他所有的比特域中的所有比特是信息比特。
具体的,根据本发明的一个方面,上述方法的特征在于,还包含以下步骤:
-步骤B.操作第一无线信号。
其中,所述操作是接收,或者所述操作是发送。所述第一无线信号包括K个无线子信号,所述K是正整数。第二比特块被用于生成所述无线子信号。所述第一信令被用于确定所述第一无线信号{所占用的时域 资源,所占用的频域资源,采用的MCS(Modulation and Coding Status,调制编码状态),对应的NDI(New Data Indicator,新数据指示),采用的RV(Redundancy Version,冗余版本),对应的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程号}中的至少之一。所述第一比特块被用于确定所述K;或者所述第一比特域被用于确定所述K。
作为一个实施例,上述方法的特质在于:所述第一信令用于调度所述第一无线信号时,所述第一比特块用于指示所述第一无线信号的传输次数,或者所述第一比特域用于指示所述第一无线信号的传输次数。
作为一个实施例,所述K个无线子信号中的任意两个所述无线子信号所占用的时域资源是正交的(不重叠)。
作为一个实施例,所述无线子信号是所述第二比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM信号发生(Generation)之后的输出形成的。
作为一个实施例,所述第一比特块被用于确定所述K,所述第一比特块是由所述第一信令中的部分信息比特组成的。
作为一个实施例,所述第一比特块包含给定比特域,所述给定比特域指示所述K。
作为一个实施例,所述第一比特域被用于确定所述K。对于所述第二候选方式,所述K为1。
作为一个实施例,对于所述第一候选方式,所述第一信令包含所述第一比特域,所述第一比特域被用于确定所述K;对于所述第二候选方式,所述第一信令不包含所述第一比特域,所述K为1。
作为该实施例的一个子实施例,上述实施例的特质在于:控制信令采用扫射的方式传输,所述控制信令调度的数据信道也采用扫射的方式传输。控制信令采用非扫射的方式传输,所述控制信令调度的数据信道也采用非扫射的方式传输。
作为一个实施例,所述K个无线子信号分别在K个时间窗中被传输。
作为该实施例的一个子实施例,所述时间窗在时域占用一个多载波符号,或者所述时间窗在时域占用多个多载波符号。
具体的,根据本发明的一个方面,上述方法的特征在于,还包含以 下步骤:
-步骤C.发送第二信令。
其中,所述操作是接收。所述第二信令被用于确定所述第一无线信号是否被正确接收。所述第二信令在第二时频资源中被发送,所述第二时频资源属于第二时频资源集合。所述第一比特块被用于从所述第二时频资源集合中确定所述第二时频资源;或者所述第一比特域被用于从所述第二时频资源集合中确定所述第二时频资源。
作为一个实施例,上述方法的特质在于:所述第一无线信号对应的HARQ-ACK反馈所占用的时频资源通过所述第一比特块或者所述第一比特域确定。所述第一比特块中用于指示所述HARQ-ACK反馈所占用的时频资源的比特的数目与所述第一信令的传输方式有关,或者是否存在所述第一比特域与所述第一信令的传输方式有关。
作为一个实施例,所述第二时频资源集合在频域包含M个子带,在时域包含N个时间间隔。所述第二时频资源在频域占据目标子带,所述目标子带是所述M个子带中的之一。所述第二时频资源在时域占据所述N个时间间隔中的正整数个连续的时间间隔。所述M和所述N均是正整数。所述子带在频域占据正整数个子载波。所述时间间隔在时域占据1个多载波符号,或者多个连续的多载波符号。
作为该实施例的一个子实施例,所述被用于从所述第二时频资源集合中确定所述第二时频资源是指:被用于从所述M个子带中确定所述目标子带,以及被用于从所述N个时间间隔中确定所述正整数个连续的时间间隔。
作为该实施例的一个子实施例,所述第一比特块被用于从所述第二时频资源集合中确定所述第二时频资源,所述第一比特块是由所述第一信令中的部分信息比特组成的。
作为该实施例的一个子实施例,所述第一比特块包含第二比特域,所述第二比特域被用于从所述第二时频资源集合中确定所述第二时频资源。
作为该子实施例的一个附属实施例,所述第一信令的传输方式是所述第一候选方式,所述第二比特域包含(Q1+Q2)个比特,所述Q1等于
Figure PCTCN2017074895-appb-000001
所述Q2与所述N的值有关。其中
Figure PCTCN2017074895-appb-000002
表示不小于X的最小正整 数。
作为该附属实施例的一个范例,所述Q2等于
Figure PCTCN2017074895-appb-000003
作为该实施例的一个子实施例,所述第一信令的传输方式是所述第一候选方式,所述第一信令包含所述第一比特域,所述M等于1。所述第二时频资源在频域与所述第二时频资源集合占用相同的子带。所述第一比特域被用于从所述N个时间间隔中确定所述正整数个连续的时间间隔。
作为该子实施例的一个附属实施例,所述第一比特域包含
Figure PCTCN2017074895-appb-000004
个比特。
作为该子实施例的一个附属实施例,所述第一比特域包含的信息比特数与所述N有关。
作为一个实施例,所述第二时频资源集合在频域包含M个子带,所述第二时频资源在频域占据目标子带,所述目标子带是所述M个子带中的之一。所述M是正整数。所述子带在频域占据正整数个子载波。
作为该实施例的一个子实施例,所述被用于从所述第二时频资源集合中确定所述第二时频资源是指:被用于从所述M个子带中确定所述目标子带。
作为该实施例的一个子实施例,所述第一比特块被用于从所述第二时频资源集合中确定所述第二时频资源,所述第一比特块是由所述第一信令中的部分信息比特组成的。
作为该实施例的一个子实施例,所述第一比特块包含第二比特域,所述第二比特域被用于从所述第二时频资源集合中确定所述第二时频资源。
作为该子实施例的一个附属实施例,所述第一信令的传输方式是所述第二候选方式,所述第二比特域包含Q1个比特,所述Q1等于
Figure PCTCN2017074895-appb-000005
作为该实施例的一个子实施例,所述第一信令的传输方式是所述第二候选方式,所述第一信令不包含所述第一比特域,所述M等于1。所述第二时频资源在频域与所述第二时频资源集合占用相同的子带。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A0.接收第一信息。
其中,所述第一信息被用于确定{第一时频资源池,第二时频资源 池}中的至少之一。第一时频资源组包含{所述第一时频资源池,所述第二时频资源池}中的至少之一。针对所述第一信令的检测是在所述第一时频资源组中被实行。
作为一个实施例,所述第一时频资源池是基于所述第一候选方式的所述第一信令的搜索空间。
作为一个实施例,所述第二时频资源池是基于所述第二候选方式的所述第一信令的搜索空间。
作为一个实施例,所述第一时频资源池在频域包含正整数个PRB,在时域包含正整数个多载波符号;所述第二时频资源池在频域包含正整数个PRB,在时域包含正整数个多载波符号。
作为一个实施例,所述第一信令采用所述第一候选方式,所述UE仅在所述第一时频资源池中搜索所述第一信令;或者所述第一信令采用所述第二候选方式,所述UE仅在所述第二时频资源池中搜索所述第一信令。
作为一个实施例,所述UE在所述第一时频资源组中搜索所述第一信令。
具体的,根据本发明的一个方面,上述方法的特征在于,所述第一信令占用Y个RE集合,所述第一时频资源池包含Y1个所述RE集合,所述第二时频资源池包含Y2个所述RE集合。所述Y1个所述RE集合和所述Y2个所述RE集合组成Y3个所述RE集合。所述Y1和所述Y2的和等于所述Y3。所述第二信令在所述第二时频资源中所占用的码域资源由{给定RE集合在所述Y1个所述RE集合中的位置,给定RE集合在所述Y2个所述RE集合中的位置,给定RE集合在所述Y3个所述RE集合中的位置}中的之一确定。
作为一个实施例,所述给定RE集合是所述Y个RE集合中的第一个所述RE集合。
作为一个实施例,所述给定RE集合是所述Y个RE集合中的对应的RE集合的索引最小的所述RE集合。
作为一个实施例,所述第一信令的传输方式是所述第一候选方式,所述第二信令在所述第二时频资源中所占用的码域资源由所述给定RE集合在所述Y1个所述RE集合中的位置确定。
作为一个实施例,所述第一信令的传输方式是所述第二候选方式,所述第二信令在所述第二时频资源中所占用的码域资源由所述给定RE集合在所述Y2个所述RE集合中的位置确定。
作为一个实施例,所述第二信令在所述第二时频资源中所占用的码域资源由所述给定RE集合在所述Y3个所述RE集合中的位置确定。
作为一个实施例,所述第二时频资源被多个UE码分复用,且所述多个UE分别占用不同的多个码域资源。
作为一个实施例,所述RE集合是一个CCE(Control Channel Element,控制信道单元);或者所述RE集合是一个NR-CCE(New Radio-CCE,新无线控制信道单元)。
作为一个实施例,所述RE集合是承载所述第一信令的最小单位。
本发明公开了一种被用于动态调度的无线通信的基站中的方法,其中,包括如下步骤:
-步骤A.发送第一信令。
其中,所述第一信令是物理层信令。所述第一信令包括第一比特块,所述第一比特块中比特的数量与所述第一信令的传输方式有关。所述所述第一信令的传输方式是多种候选方式中的一种所述候选方式。所述多种候选方式至少包括第一候选方式和第二候选方式。对于所述第一候选方式,所述第一比特块被发送多次;对于所述第二候选方式,所述第一比特块被发送一次。
作为一个实施例,所述步骤A还包括如下步骤:
-.发送目标无线信号。
其中,所述第一信令中的比特被用于生成所述目标无线信号。所述目标无线子信号是目标比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM信号发生(Generation)之后的输出形成的。所述目标比特块包括所述第一比特块。
作为一个实施例,所述目标比特块包括第一信令中的比特和冻结比特。
具体的,根据本发明的一个方面,上述方法的特征在于,所述第一比特块包括所述第一信令中的所有信息比特。对于所述第一比特块,所述第二候选方式相比于所述第一候选方式缺少了第一比特域。所述第一比特域包含正整数个比特。
具体的,根据本发明的一个方面,上述方法的特征在于,对于所述第一比特块,所述第二候选方式和所述第一候选方式共享除了所述第一比特域之外的其他所有的比特域。
具体的,根据本发明的一个方面,上述方法的特征在于,还包含以下步骤:
-步骤B.执行第一无线信号。
其中,所述执行是发送,或者所述执行是接收。所述第一无线信号包括K个无线子信号,所述K是正整数。第二比特块被用于生成所述无线子信号。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。所述第一比特块被用于确定所述K;或者所述第一比特域被用于确定所述K。
作为一个实施例,所述第一信令是下行授权,所述执行是发送。
作为一个实施例,所述第一信令是上行授权,所述执行是接收。
具体的,根据本发明的一个方面,上述方法的特征在于,还包含以下步骤:
-步骤C.接收第二信令。
其中,所述执行是发送。所述第二信令被用于确定所述第一无线信号是否被正确接收。所述第二信令在第二时频资源中被发送,所述第二时频资源属于第二时频资源集合。所述第一比特块被用于从所述第二时频资源集合中确定所述第二时频资源;或者所述第一比特域被用于从所述第二时频资源集合中确定所述第二时频资源。
具体的,根据本发明的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A0.发送第一信息。
其中,所述第一信息被用于确定{第一时频资源池,第二时频资源池}中的至少之一。第一时频资源组包含{所述第一时频资源池,所述第 二时频资源池}中的至少之一。针对所述第一信令的检测是在所述第一时频资源组中被实行。
具体的,根据本发明的一个方面,上述方法的特征在于,所述第一信令占用Y个RE集合,所述第一时频资源池包含Y1个所述RE集合,所述第二时频资源池包含Y2个所述RE集合。所述Y1个所述RE集合和所述Y2个所述RE集合组成Y3个所述RE集合。所述Y1和所述Y2的和等于所述Y3。所述第二信令在所述第二时频资源中所占用的码域资源由{给定RE集合在所述Y1个所述RE集合中的位置,给定RE集合在所述Y2个所述RE集合中的位置,给定RE集合在所述Y3个所述RE集合中的位置}中的之一确定。
本发明公开了一种被用于动态调度的无线通信的用户设备,其中,包括如下模块:
-第一接收模块:用于检测第一信令。
其中,所述第一信令是物理层信令。所述第一信令包括第一比特块,所述第一比特块中比特的数量与所述第一信令的传输方式有关。所述所述第一信令的传输方式是多种候选方式中的一种所述候选方式。所述多种候选方式至少包括第一候选方式和第二候选方式。对于所述第一候选方式,所述第一比特块被发送多次;对于所述第二候选方式,所述第一比特块被发送一次。
作为一个实施例,上述用于动态调度的无线通信的用户设备的特征在于,所述第一接收模块还用于接收目标无线信号。其中,所述目标无线信号被用于恢复所述第一信令。所述目标无线子信号是目标比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM信号发生(Generation)之后的输出形成的。所述目标比特块包括所述第一比特块。
作为一个实施例,上述用于动态调度的无线通信的用户设备的特征在于,所述第一接收模块还用于接收第一信息。所述第一信息被用于确定{第一时频资源池,第二时频资源池}中的至少之一。第一时频资源组包含{所述第一时频资源池,所述第二时频资源池}中的至少之一。针对 所述第一信令的检测是在所述第一时频资源组中被实行。
作为一个实施例,上述用于动态调度的无线通信的用户设备的特征在于,还包括:
-第一处理模块:用于操作第一无线信号。
其中,所述操作是接收,或者所述操作是发送。所述第一无线信号包括K个无线子信号,所述K是正整数。第二比特块被用于生成所述无线子信号。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。所述第一比特块被用于确定所述K;或者所述第一比特域被用于确定所述K。
作为该实施例的一个子实施例,上述用于动态调度的无线通信的用户设备的特征在于,还包括:
-第一发送模块:用于发送第二信令。
其中,所述操作是接收。所述第二信令被用于确定所述第一无线信号是否被正确接收。所述第二信令在第二时频资源中被发送,所述第二时频资源属于第二时频资源集合。所述第一比特块被用于从所述第二时频资源集合中确定所述第二时频资源;或者所述第一比特域被用于从所述第二时频资源集合中确定所述第二时频资源。
作为一个实施例,上述用于动态调度的无线通信的用户设备的特征在于,所述第一比特块包括所述第一信令中的所有信息比特。对于所述第一比特块,所述第二候选方式相比于所述第一候选方式缺少了第一比特域。所述第一比特域包含正整数个比特。
作为一个实施例,上述用于动态调度的无线通信的用户设备的特征在于,对于所述第一比特块,所述第二候选方式和所述第一候选方式共享除了所述第一比特域之外的其他所有的比特域。
作为一个实施例,上述用于动态调度的无线通信的用户设备的特征在于,所述第一信令占用Y个RE集合,所述第一时频资源池包含Y1个所述RE集合,所述第二时频资源池包含Y2个所述RE集合。所述Y1个所述RE集合和所述Y2个所述RE集合组成Y3个所述RE集合。所述Y1和所述Y2的和等于所述Y3。所述第二信令在所述第二时频资源中所占用的码域资源由{给定RE集合在所述Y1个所述RE集合中的位置,给定RE集合在所述 Y2个所述RE集合中的位置,给定RE集合在所述Y3个所述RE集合中的位置}中的之一确定。
本发明公开了一种被用于动态调度的无线通信的基站设备,其中,包括如下模块:
-第二发送模块:用于发送第一信令。
其中,所述第一信令是物理层信令。所述第一信令包括第一比特块,所述第一比特块中比特的数量与所述第一信令的传输方式有关。所述所述第一信令的传输方式是多种候选方式中的一种所述候选方式。所述多种候选方式至少包括第一候选方式和第二候选方式。对于所述第一候选方式,所述第一比特块被发送多次;对于所述第二候选方式,所述第一比特块被发送一次。
作为一个实施例,上述用于动态调度的无线通信的基站设备的特征在于,所述第二发送模块还用于发送第一信息。所述第一信息被用于确定{第一时频资源池,第二时频资源池}中的至少之一。第一时频资源组包含{所述第一时频资源池,所述第二时频资源池}中的至少之一。针对所述第一信令的检测是在所述第一时频资源组中被实行。
作为一个实施例,上述用于动态调度的无线通信的基站设备的特征在于,所述第二发送模块还用于发送目标无线信号。其中,所述第一信令中的比特被用于生成所述目标无线信号。所述目标无线子信号是目标比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM信号发生(Generation)之后的输出形成的。所述目标比特块包括所述第一比特块。
作为一个实施例,上述用于动态调度的无线通信的基站设备的特征在于,还包括:
-第二处理模块:用于执行第一无线信号。
其中,所述执行是发送,或者所述执行是接收。所述第一无线信号包括K个无线子信号,所述K是正整数。第二比特块被用于生成所述无线子信号。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ 进程号}中的至少之一。所述第一比特块被用于确定所述K;或者所述第一比特域被用于确定所述K。
作为该实施例的一个子实施例,上述用于动态调度的无线通信的基站设备的特征在于,还包括:
-第二接收模块:用于接收第二信令。
其中,所述执行是发送。所述第二信令被用于确定所述第一无线信号是否被正确接收。所述第二信令在第二时频资源中被发送,所述第二时频资源属于第二时频资源集合。所述第一比特块被用于从所述第二时频资源集合中确定所述第二时频资源;或者所述第一比特域被用于从所述第二时频资源集合中确定所述第二时频资源。
作为一个实施例,上述用于动态调度的无线通信的基站设备的特征在于,所述第一比特块包括所述第一信令中的所有信息比特。对于所述第一比特块,所述第二候选方式相比于所述第一候选方式缺少了第一比特域。所述第一比特域包含正整数个比特。
作为一个实施例,上述用于动态调度的无线通信的基站设备的特征在于,对于所述第一比特块,所述第二候选方式和所述第一候选方式共享除了所述第一比特域之外的其他所有的比特域。
作为一个实施例,上述用于动态调度的无线通信的基站设备的特征在于,所述第一信令占用Y个RE集合,所述第一时频资源池包含Y1个所述RE集合,所述第二时频资源池包含Y2个所述RE集合。所述Y1个所述RE集合和所述Y2个所述RE集合组成Y3个所述RE集合。所述Y1和所述Y2的和等于所述Y3。所述第二信令在所述第二时频资源中所占用的码域资源由{给定RE集合在所述Y1个所述RE集合中的位置,给定RE集合在所述Y2个所述RE集合中的位置,给定RE集合在所述Y3个所述RE集合中的位置}中的之一确定。
相比现有公开技术,本发明具有如下技术优势:
-.所述第一信令的负载尺寸基于传输方式进行调整,而不需要引入填充比特以维持一种格式对应一种负载尺寸的限制,降低控制信令开销,提高传输效率。
-.不需要为所有不同的负载尺寸设计不同的DCI格式,降低UE在 盲检测所述第一信令时的复杂度,进而降低UE的实现复杂度。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个实施例的第一信令传输的流程图;
图2示出了根据本发明的另一个实施例的第一信令传输的流程图;
图3示出了根据本发明的一个实施例的第一比特块传输方式的示意图;
图4示出了根据本发明的一个实施例的第一信令中的信息比特的示意图;
图5示出了根据本发明的一个实施例的第二时频资源集合的示意图;
图6示出了根据本发明的一个实施例的UE中的处理装置的结构框图;
图7示出了根据本发明的一个实施例的基站中的处理装置的结构框图;
具体实施方式
下文将结合附图对本发明的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本发明的一个第一信令传输的流程图,如附图1所示。附图1中,基站N1是UE U2的服务小区的维持基站。方框F0标识的步骤是可选的。
对于基站N1,在步骤S10中发送第一信息,在步骤S11中发送第一信令,在步骤S12中发送第一无线信号,在步骤S13中接收第二信令。
对于UE U2,在步骤S20中接收第一信息,在步骤S21中检测第一信令,在步骤S22中接收第一无线信号,在步骤S23中在发送第二信令。
实施例1中,所述第一信令是物理层信令。所述第一信令包括第一比特块,所述第一比特块中比特的数量与所述第一信令的传输方式有关。所述所述第一信令的传输方式是多种候选方式中的一种所述候选方式。所述多种候选方式至少包括第一候选方式和第二候选方式。对于所述第 一候选方式,所述第一比特块被发送多次;对于所述第二候选方式,所述第一比特块被发送一次。所述第一比特块包括所述第一信令中的所有信息比特。对于所述第一比特块,所述第二候选方式相比于所述第一候选方式缺少了第一比特域。所述第一比特域包含正整数个比特。对于所述第一比特块,所述第二候选方式和所述第一候选方式共享除了所述第一比特域之外的其他所有的比特域。所述第一无线信号包括K个无线子信号,所述K是正整数。第二比特块被用于生成所述无线子信号。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。所述第一比特块被用于确定所述K;或者所述第一比特域被用于确定所述K。所述第二信令被用于确定所述第一无线信号是否被正确接收。所述第二信令在第二时频资源中被发送,所述第二时频资源属于第二时频资源集合。所述第一比特块被用于从所述第二时频资源集合中确定所述第二时频资源;或者所述第一比特域被用于从所述第二时频资源集合中确定所述第二时频资源。所述第一信息被用于确定{第一时频资源池,第二时频资源池}中的至少之一。第一时频资源组包含{所述第一时频资源池,所述第二时频资源池}中的至少之一。针对所述第一信令的检测是在所述第一时频资源组中被实行。所述第一信令占用Y个RE集合,所述第一时频资源池包含Y1个所述RE集合,所述第二时频资源池包含Y2个所述RE集合。所述Y1个所述RE集合和所述Y2个所述RE集合组成Y3个所述RE集合。所述Y1和所述Y2的和等于所述Y3。所述第二信令在所述第二时频资源中所占用的码域资源由{给定RE集合在所述Y1个所述RE集合中的位置,给定RE集合在所述Y2个所述RE集合中的位置,给定RE集合在所述Y3个所述RE集合中的位置}中的之一确定。
作为一个子实施例,所述第一无线信号在物理层数据信道(能用于承载物理层数据的物理层信道)上传输。所述物理层数据信道是{PDSCH(Physical Downlink Shared Channel,物理下行共享信道),sPDSCH(Short Latency-PDSCH,短延迟物理下行共享信道),NB-PDSCH(NarrowBand-PDSCH,窄带物理下行共享信道),NR-PDSCH(NewRadio-PDSCH,新无线电物理下行共享信道)}中的一种。
作为一个子实施例,所述第一无线信号对应的传输信道是DL-SCH。
作为一个子实施例,所述第一信息是RRC(Radio Resource Control,无线资源控制)层信令。
作为该子实施例的一个附属实施例,所述RRC层信令是小区专属的。
作为该子实施例的一个附属实施例,所述RRC层信令是波束专属的。
作为该子实施例的一个附属实施例,所述RRC层信令是波束组专属的。
作为该子实施例的一个附属实施例,所述RRC层信令是UE专属的。
作为一个子实施例,所述第一信息通过广播信令传输。
实施例2
实施例2示例了根据本发明的另一个第一信令传输的流程图,如附图2所示。附图2中,基站N3是UE U4的服务小区的维持基站。方框F1标识的步骤是可选的。
对于基站N3,在步骤S30中发送第一信息,在步骤S31中发送第一信令,在步骤S32中接收第一无线信号。
对于UE U4,在步骤S40中接收第一信息,在步骤S41中检测第一信令,在步骤S42中发送第一无线信号。
实施例2中,所述第一信令是物理层信令。所述第一信令包括第一比特块,所述第一比特块中比特的数量与所述第一信令的传输方式有关。所述所述第一信令的传输方式是多种候选方式中的一种所述候选方式。所述多种候选方式至少包括第一候选方式和第二候选方式。对于所述第一候选方式,所述第一比特块被发送多次;对于所述第二候选方式,所述第一比特块被发送一次。所述第一比特块包括所述第一信令中的所有信息比特。对于所述第一比特块,所述第二候选方式相比于所述第一候选方式缺少了第一比特域。所述第一比特域包含正整数个比特。对于所述第一比特块,所述第二候选方式和所述第一候选方式共享除了所述第一比特域之外的其他所有的比特域。所述第一无线信号包括K个无线子信号,所述K是正整数。第二比特块被用于生成所述无线子信号。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。所述第一比特块被用于确定所述K;或者所述第一比特域被用于确定所述K。所述第一信息被用于确定{第一时频资源池,第二时频资源池}中的至少之一。第一时频资源组包含{所述第一时频资源池,所述第二时 频资源池}中的至少之一。针对所述第一信令的检测是在所述第一时频资源组中被实行。
作为一个子实施例,所述第一无线信号在物理层数据信道(能用于承载物理层数据的物理层信道)上传输。所述物理层数据信道是{PUSCH(Physical Uplink Shared Channel,物理上行共享信道),sPUSCH(Short Latency-PUSCH,短延迟物理上行共享信道),NB-PUSCH(NarrowBand-PUSCH,窄带物理上行共享信道),NR-PUSCH(NewRadio-PDSCH,新无线电物理上行共享信道)}中的一种。
作为一个子实施例,所述第一无线信号对应的传输信道是UL-SCH。
作为一个子实施例,所述第一信息是RRC层信令。
作为该子实施例的一个附属实施例,所述RRC层信令是小区专属的。
作为该子实施例的一个附属实施例,所述RRC层信令是波束专属的。
作为该子实施例的一个附属实施例,所述RRC层信令是波束组专属的。
作为该子实施例的一个附属实施例,所述RRC层信令是UE专属的。
作为一个子实施例,所述第一信息通过广播信令传输。
实施例3
实施例3示例了根据本发明的一个第一比特块传输方式的示意图。如附图3所示,本发明中的所述第一信令的传输方式是第一候选方式,所述第一比特块在所示的T个第一类时间单元中发送T次,所述T是大于1的正整数;本发明中的所述第一信令的传输方式是第二候选方式,所述第一比特块仅在所示的第二类时间单元中发送一次。所述第一类时间单元在时域占用T1个多载波符号,所述第二类时间单元在时域占用T2个多载波符号。所述T1和所述T2均是正整数。
作为一个子实施例,所述T1等于所述T2。
作为一个子实施例,所述T1等于1。
作为一个子实施例,所述T个第一类时间单元分别针对T个波束方向。
作为一个子实施例,所述T个第一类时间单元分别针对T个QCL(quasi-co-location,准同位置)指示(Indication)。
实施例4
实施例4示例了根据本发明的一个第一信令中的信息比特的示意图。 如附图4所示,本发明中的所述第一信令的传输方式是第一候选方式,所述第一比特块包含P1个信息比特;本发明中的所述第一信令的传输方式是第二候选方式,所述第一比特块包含P2个信息比特。所述P1和所述P2均是大于1的正整数,所述P1大于所述P2。
作为一个子实施例,所述第一信令在所述第一候选方式和所述第二候选方式中均采用一种给定DCI格式。
作为一个该子实施例的一个附属实施例,所述给定DCI格式中还包含正整数个填充比特。
作为一个子实施例,所述第一候选方式对应扫射的传输方式,所述第二候选方式对应非扫射的传输方式。
作为一个子实施例,所述第一候选方式对应重复的传输方式,所述第二候选方式对应非重复的传输方式。
实施例5
实施例示例了根据本发明的一个第二时频资源集合的示意图。如附图5所示,本发明中的所述第一信令的传输方式是第一候选方式,所述第二时频资源集合在频域包含M个子带,且所述第二时频资源集合在时域包含N个时间间隔;本发明中的所述第一信令的传输方式是第二候选方式,所述第二时频资源集合在频域包含M个子带,且所述第二时频资源集合在时域仅包含1个时间间隔。所述M是正整数,所述N是大于1的正整数。所述第二时频资源在频域占用所述M个子带中的一个所述子带,如图中所示的子带#i,所述i是不大于1且不大于M的正整数。针对所述第一候选方式,所述第二时频资源在时域占用所述N个时间间隔中的N1个时间间隔,所述N1是大于1的正整数。针对所述第二候选方式,所述第二时频资源在时域仅占用1个时间间隔。
作为一个子实施例,所述时间间隔占用一个多载波符号的持续时间。
作为一个子实施例,所述时间间隔占用多个多载波符号的持续时间。
作为一个子实施例,所述M个子带在频域是连续的。
作为一个子实施例,所述M个子带在频域是离散的。
作为一个子实施例,所述第二信令在所述N1个时间间隔中分别被发送了N1次。
作为一个子实施例,所述第二信令包含N1个子信令,所述N1个子信 令分别在所述N1个时间间隔中被发送。
作为一个子实施例,所述第一信令的传输方式是第一候选方式。所述第一比特块被用于确定所述子带#i以及所述N1个时间间隔,或者所述第一比特域被用于被用于确定所述子带#i以及所述N1个时间间隔。
作为一个子实施例,所述第一信令的传输方式是第二候选方式。所述第一比特块被用于确定所述子带#i。
实施例6
实施例6示例了一个UE中的处理装置的结构框图,如附图6所示。附图6中,UE处理装置100主要由第一接收模块101,第一处理模块102和第一发送模块103组成。其中,所述第一发送模块103是可选的。
-第一接收模块101:用于检测第一信令;
-第一处理模块102:用于操作第一无线信号;
-第一发送模块103:用于发送第二信令。
实施例6中,所述第一信令是物理层信令。所述第一信令包括第一比特块,所述第一比特块中比特的数量与所述第一信令的传输方式有关。所述所述第一信令的传输方式是多种候选方式中的一种所述候选方式。所述多种候选方式至少包括第一候选方式和第二候选方式。对于所述第一候选方式,所述第一比特块被发送多次;对于所述第二候选方式,所述第一比特块被发送一次。所述操作是接收,或者所述操作是发送。所述第一无线信号包括K个无线子信号,所述K是正整数。第二比特块被用于生成所述无线子信号。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。所述第一比特块被用于确定所述K;或者所述第一比特域被用于确定所述K。所述第二信令被用于确定所述第一无线信号是否被正确接收。所述第二信令在第二时频资源中被发送,所述第二时频资源属于第二时频资源集合。所述第一比特块被用于从所述第二时频资源集合中确定所述第二时频资源;或者所述第一比特域被用于从所述第二时频资源集合中确定所述第二时频资源。
作为一个子实施例,所述第一接收模块101还用于接收第一信息。所述第一信息被用于确定{第一时频资源池,第二时频资源池}中的至少之一。第一时频资源组包含{所述第一时频资源池,所述第二时频资源池} 中的至少之一。针对所述第一信令的检测是在所述第一时频资源组中被实行。
作为一个子实施例,所述第一比特块包括所述第一信令中的所有信息比特。对于所述第一比特块,所述第二候选方式相比于所述第一候选方式缺少了第一比特域。所述第一比特域包含正整数个比特。
作为一个子实施例,对于所述第一比特块,所述第二候选方式和所述第一候选方式共享除了所述第一比特域之外的其他所有的比特域。
作为一个子实施例,所述第一信令占用Y个RE集合,所述第一时频资源池包含Y1个所述RE集合,所述第二时频资源池包含Y2个所述RE集合。所述Y1个所述RE集合和所述Y2个所述RE集合组成Y3个所述RE集合。所述Y1和所述Y2的和等于所述Y3。所述第二信令在所述第二时频资源中所占用的码域资源由{给定RE集合在所述Y1个所述RE集合中的位置,给定RE集合在所述Y2个所述RE集合中的位置,给定RE集合在所述Y3个所述RE集合中的位置}中的之一确定。
实施例7
实施例7示例了一个基站设备中的处理装置的结构框图,如附图7所示。附图7中,基站设备处理装置200主要由第二发送模块201,第二处理模块202和第二接收模块203组成。其中,所述第二接收模块203是可选的。
-第二发送模块201:用于发送第一信令;
-第三发送模块202:用于执行第一无线信号;
-第三接收模块203:用于接收第二信令。
实施例7中,所述第一信令是物理层信令。所述第一信令包括第一比特块,所述第一比特块中比特的数量与所述第一信令的传输方式有关。所述所述第一信令的传输方式是多种候选方式中的一种所述候选方式。所述多种候选方式至少包括第一候选方式和第二候选方式。对于所述第一候选方式,所述第一比特块被发送多次;对于所述第二候选方式,所述第一比特块被发送一次。所述操作是接收,或者所述操作是发送。所述第一无线信号包括K个无线子信号,所述K是正整数。第二比特块被用于生成所述无线子信号。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的 RV,对应的HARQ进程号}中的至少之一。所述第一比特块被用于确定所述K;或者所述第一比特域被用于确定所述K。所述第二信令被用于确定所述第一无线信号是否被正确接收。所述第二信令在第二时频资源中被发送,所述第二时频资源属于第二时频资源集合。所述第一比特块被用于从所述第二时频资源集合中确定所述第二时频资源;或者所述第一比特域被用于从所述第二时频资源集合中确定所述第二时频资源。
作为一个子实施例,所述第二发送模块201还用于发送第一信息。所述第一信息被用于确定{第一时频资源池,第二时频资源池}中的至少之一。第一时频资源组包含{所述第一时频资源池,所述第二时频资源池}中的至少之一。针对所述第一信令的检测是在所述第一时频资源组中被实行。
作为一个子实施例,所述第一比特块包括所述第一信令中的所有信息比特。对于所述第一比特块,所述第二候选方式相比于所述第一候选方式缺少了第一比特域。所述第一比特域包含正整数个比特。
作为一个子实施例,对于所述第一比特块,所述第二候选方式和所述第一候选方式共享除了所述第一比特域之外的其他所有的比特域。
作为一个子实施例,所述第一信令占用Y个RE集合,所述第一时频资源池包含Y1个所述RE集合,所述第二时频资源池包含Y2个所述RE集合。所述Y1个所述RE集合和所述Y2个所述RE集合组成Y3个所述RE集合。所述Y1和所述Y2的和等于所述Y3。所述第二信令在所述第二时频资源中所占用的码域资源由{给定RE集合在所述Y1个所述RE集合中的位置,给定RE集合在所述Y2个所述RE集合中的位置,给定RE集合在所述Y3个所述RE集合中的位置}中的之一确定。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本发明中的UE和终端包括但不限于手机,平板电脑,笔记本,车载通信设备, 无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本发明中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种被用于动态调度的无线通信的UE中的方法,其中,包括如下步骤:
    -步骤A.检测第一信令。
    其中,所述第一信令是物理层信令。所述第一信令包括第一比特块,所述第一比特块中比特的数量与所述第一信令的传输方式有关。所述所述第一信令的传输方式是多种候选方式中的一种所述候选方式。所述多种候选方式至少包括第一候选方式和第二候选方式。对于所述第一候选方式,所述第一比特块被发送多次;对于所述第二候选方式,所述第一比特块被发送一次。
  2. 根据权利要求1所述的方法,其特征在于,所述第一比特块包括所述第一信令中的所有信息比特。对于所述第一比特块,所述第二候选方式相比于所述第一候选方式缺少了第一比特域。所述第一比特域包含正整数个比特。
  3. 根据权利要求2所述的方法,其特征在于,对于所述第一比特块,所述第二候选方式和所述第一候选方式共享除了所述第一比特域之外的其他所有的比特域。
  4. 根据权利要求1-3所述的方法,其特征在于,还包含以下步骤:
    -步骤B.操作第一无线信号。
    其中,所述操作是接收,或者所述操作是发送。所述第一无线信号包括K个无线子信号,所述K是正整数。第二比特块被用于生成所述无线子信号。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。所述第一比特块被用于确定所述K;或者所述第一比特域被用于确定所述K。
  5. 根据权利要求1-4所述的方法,其特征在于,还包含以下步骤:
    -步骤C.发送第二信令。
    其中,所述操作是接收。所述第二信令被用于确定所述第一无线信号是否被正确接收。所述第二信令在第二时频资源中被发送,所述第二时频资源属于第二时频资源集合。所述第一比特块被用于从所述第二时频资源集合中确定所述第二时频资源;或者所述第一比特域被用于从所述第二时频资源集合中确定所述第二时频资源。
  6. 根据权利要求1-5所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A0.接收第一信息。
    其中,所述第一信息被用于确定{第一时频资源池,第二时频资源池}中的至少之一。第一时频资源组包含{所述第一时频资源池,所述第二时频资源池}中的至少之一。针对所述第一信令的检测是在所述第一时频资源组中被实行。
  7. 根据权利要求5,6所述的方法,其特征在于,所述第一信令占用Y个RE集合,所述第一时频资源池包含Y1个所述RE集合,所述第二时频资源池包含Y2个所述RE集合。所述Y1个所述RE集合和所述Y2个所述RE集合组成Y3个所述RE集合。所述Y1和所述Y2的和等于所述Y3。所述第二信令在所述第二时频资源中所占用的码域资源由{给定RE集合在所述Y1个所述RE集合中的位置,给定RE集合在所述Y2个所述RE集合中的位置,给定RE集合在所述Y3个所述RE集合中的位置}中的之一确定。
  8. 一种被用于动态调度的无线通信的基站中的方法,其中,包括如下步骤:
    -步骤A.发送第一信令。
    其中,所述第一信令是物理层信令。所述第一信令包括第一比特块,所述第一比特块中比特的数量与所述第一信令的传输方式有关。所述所述第一信令的传输方式是多种候选方式中的一种所述候选方式。所述多种候选方式至少包括第一候选方式和第二候选方式。对于所述第一候选方式,所述第一比特块被发送多次;对于所述第二候选方式,所述第一比特块被发送一次。
  9. 根据权利要求8所述的方法,其特征在于,所述第一比特块包括所述第一信令中的所有信息比特。对于所述第一比特块,所述第二候选方式相比于所述第一候选方式缺少了第一比特域。所述第一比特域包含正整数个比特。
  10. 根据权利要求9所述的方法,其特征在于,对于所述第一比特块,所述第二候选方式和所述第一候选方式共享除了所述第一比特域之外的其他所有的比特域。
  11. 根据权利要求8-10所述的方法,其特征在于,还包含以下步骤:
    -步骤B.执行第一无线信号。
    其中,所述执行是发送,或者所述执行是接收。所述第一无线信号包括K个无线子信号,所述K是正整数。第二比特块被用于生成所述无线子信号。所述第一信令被用于确定所述第一无线信号{所占用的时域资源,所占用的频域资源,采用的MCS,对应的NDI,采用的RV,对应的HARQ进程号}中的至少之一。所述第一比特块被用于确定所述K;或者所述第一比特域被用于确定所述K。
  12. 根据权利要求8-11所述的方法,其特征在于,还包含以下步骤:
    -步骤C.接收第二信令。
    其中,所述执行是发送。所述第二信令被用于确定所述第一无线信号是否被正确接收。所述第二信令在第二时频资源中被发送,所述第二时频资源属于第二时频资源集合。所述第一比特块被用于从所述第二时频资源集合中确定所述第二时频资源;或者所述第一比特域被用于从所述第二时频资源集合中确定所述第二时频资源。
  13. 根据权利要求8-12所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A0.发送第一信息。
    其中,所述第一信息被用于确定{第一时频资源池,第二时频资源池}中的至少之一。第一时频资源组包含{所述第一时频资源池,所述第二时频资源池}中的至少之一。针对所述第一信令的检测是在所述第一时频资源组中被实行。
  14. 根据权利要求12,13所述的方法,其特征在于,所述第一信令占用Y个RE集合,所述第一时频资源池包含Y1个所述RE集合,所述第二时频资源池包含Y2个所述RE集合。所述Y1个所述RE集合和所述Y2个所述RE集合组成Y3个所述RE集合。所述Y1和所述Y2的和等于所述Y3。所述第二信令在所述第二时频资源中所占用的码域资源由{给定RE集合在所述Y1个所述RE集合中的位置,给定RE集合在所述Y2个所述RE集合中的位置,给定RE集合在所述Y3个所述RE集合中的位置}中的之一确定。
  15. 一种被用于动态调度的无线通信的用户设备,其中,包括如下模块:
    -第一接收模块:用于检测第一信令。
    其中,所述第一信令是物理层信令。所述第一信令包括第一比特块,所述第一比特块中比特的数量与所述第一信令的传输方式有关。所述所述第一信令的传输方式是多种候选方式中的一种所述候选方式。所述多种候选方式至少包括第一候选方式和第二候选方式。对于所述第一候选方式,所述第一比特块被发送多次;对于所述第二候选方式,所述第一比特块被发送一次。
  16. 一种被用于动态调度的无线通信的基站设备,其中,包括如下模块:
    -第一发送模块:用于发送第一信令。
    其中,所述第一信令是物理层信令。所述第一信令包括第一比特块,所述第一比特块中比特的数量与所述第一信令的传输方式有关。所述所述第一信令的传输方式是多种候选方式中的一种所述候选方式。所述多种候选方式至少包括第一候选方式和第二候选方式。对于所述第一候选方式,所述第一比特块被发送多次;对于所述第二候选方式,所述第一比特块被发送一次。
PCT/CN2017/074895 2017-02-25 2017-02-25 一种用户设备、基站中的用于动态调度的方法和装置 WO2018152821A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780068983.4A CN109923812B (zh) 2017-02-25 2017-02-25 一种用户设备、基站中的用于动态调度的方法和装置
PCT/CN2017/074895 WO2018152821A1 (zh) 2017-02-25 2017-02-25 一种用户设备、基站中的用于动态调度的方法和装置
US16/546,290 US11032833B2 (en) 2017-02-25 2019-08-20 Method and device for dynamic scheduling in UE and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/074895 WO2018152821A1 (zh) 2017-02-25 2017-02-25 一种用户设备、基站中的用于动态调度的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/546,290 Continuation US11032833B2 (en) 2017-02-25 2019-08-20 Method and device for dynamic scheduling in UE and base station

Publications (1)

Publication Number Publication Date
WO2018152821A1 true WO2018152821A1 (zh) 2018-08-30

Family

ID=63254178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074895 WO2018152821A1 (zh) 2017-02-25 2017-02-25 一种用户设备、基站中的用于动态调度的方法和装置

Country Status (3)

Country Link
US (1) US11032833B2 (zh)
CN (1) CN109923812B (zh)
WO (1) WO2018152821A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112769532A (zh) * 2019-11-06 2021-05-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115412223A (zh) * 2018-11-23 2022-11-29 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113891485B (zh) * 2020-07-02 2024-01-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114389773B (zh) * 2020-10-21 2024-03-26 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
CN114666019A (zh) * 2020-12-22 2022-06-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070097915A1 (en) * 2005-11-02 2007-05-03 Aris Papasakellariou Methods for Dimensioning the Control Channel for Transmission Efficiency in Communication Systems
CN101656602A (zh) * 2008-08-18 2010-02-24 华为技术有限公司 设置高速共享控制信道的方法与装置
CN102300224A (zh) * 2010-06-28 2011-12-28 华为技术有限公司 发送接收触发srs配置信息的方法、基站及用户设备
CN102378112A (zh) * 2010-08-12 2012-03-14 中兴通讯股份有限公司 多媒体广播多播业务中统计用户设备信息的方法和系统
EP2490391A2 (en) * 2009-03-09 2012-08-22 LG Electronics Inc. Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal
CN103997788A (zh) * 2013-02-18 2014-08-20 中兴通讯股份有限公司 用于设备到设备通信的设备发现方法及用户设备、网络侧设备
CN104601303A (zh) * 2013-10-30 2015-05-06 电信科学技术研究院 上行控制信息的发送方法和装置、以及接收方法和装置
CN105323049A (zh) * 2014-06-13 2016-02-10 中兴通讯股份有限公司 一种非授权载波的调度方法、设备和系统
CN105682241A (zh) * 2014-11-21 2016-06-15 中兴通讯股份有限公司 一种非授权载波的占用方法和设备
CN106160974A (zh) * 2015-04-08 2016-11-23 中兴通讯股份有限公司 一种实现信道传输的方法及基站

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631374B (zh) * 2009-08-05 2016-09-28 中兴通讯股份有限公司 一种下行传输方式的指示方法及装置
AU2011204012A1 (en) * 2010-01-11 2012-08-16 Electronics And Telecommunications Research Institute Carrier aggregation in wireless communication system
CN101969360B (zh) * 2010-09-29 2015-12-16 中兴通讯股份有限公司 一种确定传输块大小的方法及系统
CN102468917B (zh) * 2010-11-15 2014-04-30 华为技术有限公司 上行控制信息的传输和接收方法、终端以及基站
CN103024807B (zh) * 2011-09-23 2015-08-19 华为技术有限公司 传输控制信息的方法、用户设备和基站
WO2014205736A1 (en) * 2013-06-27 2014-12-31 Telefonaktiebolaget L M Ericsson (Publ) Method and bs for transmitting control information to ue, and method and ue for handling control information
CN107210892B (zh) * 2015-01-23 2020-10-13 瑞典爱立信有限公司 无线电节点、无线设备及其中用于配置无线设备的方法
CN106160983A (zh) * 2015-01-29 2016-11-23 北京三星通信技术研究有限公司 一种增强载波聚合系统的harq-ack传输方法和设备
US11218254B2 (en) * 2015-01-29 2022-01-04 Samsung Electronics Co., Ltd Method and apparatus for transmitting/receiving HARQ-ACK signal in wireless communication system supporting carrier aggregation
CN106559882B (zh) * 2015-09-25 2021-12-10 中兴通讯股份有限公司 一种授权协助接入设备竞争接入参数配置的方法及装置
EP3399683A4 (en) * 2016-02-05 2019-05-01 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR SENDING RETURN INFORMATION
CN107046720B (zh) * 2016-02-06 2021-05-18 华为技术有限公司 一种低时延业务传输方法、相关设备及系统
ES2934599T3 (es) * 2016-05-13 2023-02-23 Huawei Tech Co Ltd Método y aparato de envío de información de enlace ascendente, estación base y equipo de usuario
WO2018006312A1 (en) * 2016-07-07 2018-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Data receiving mode configuration for dual connectivity communications

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070097915A1 (en) * 2005-11-02 2007-05-03 Aris Papasakellariou Methods for Dimensioning the Control Channel for Transmission Efficiency in Communication Systems
CN101656602A (zh) * 2008-08-18 2010-02-24 华为技术有限公司 设置高速共享控制信道的方法与装置
EP2490391A2 (en) * 2009-03-09 2012-08-22 LG Electronics Inc. Apparatus for transmitting and receiving a signal and method of transmitting and receiving a signal
CN102300224A (zh) * 2010-06-28 2011-12-28 华为技术有限公司 发送接收触发srs配置信息的方法、基站及用户设备
CN102378112A (zh) * 2010-08-12 2012-03-14 中兴通讯股份有限公司 多媒体广播多播业务中统计用户设备信息的方法和系统
CN103997788A (zh) * 2013-02-18 2014-08-20 中兴通讯股份有限公司 用于设备到设备通信的设备发现方法及用户设备、网络侧设备
CN104601303A (zh) * 2013-10-30 2015-05-06 电信科学技术研究院 上行控制信息的发送方法和装置、以及接收方法和装置
CN105323049A (zh) * 2014-06-13 2016-02-10 中兴通讯股份有限公司 一种非授权载波的调度方法、设备和系统
CN105682241A (zh) * 2014-11-21 2016-06-15 中兴通讯股份有限公司 一种非授权载波的占用方法和设备
CN106160974A (zh) * 2015-04-08 2016-11-23 中兴通讯股份有限公司 一种实现信道传输的方法及基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112769532A (zh) * 2019-11-06 2021-05-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11617194B2 (en) 2019-11-06 2023-03-28 Shanghai Langbo Communication Technology Company Limited Method and device in nodes used for wireless communication

Also Published As

Publication number Publication date
CN109923812B (zh) 2021-09-24
CN109923812A (zh) 2019-06-21
US20190380136A1 (en) 2019-12-12
US11032833B2 (en) 2021-06-08

Similar Documents

Publication Publication Date Title
US11469857B2 (en) Method and apparatus for transmitting and receiving a feedback signal in a wireless communication system
CN106034360B (zh) 一种多用户叠加的传输方法和装置
CN110740519B (zh) 一种无线传输中的方法和装置
CN105992378B (zh) 一种增强的载波聚合中的pdcch方法和装置
CN111182641B (zh) 一种被用于用户和基站中的方法和设备
US20210250142A1 (en) Methods and apparatuses for transmitting signal
CN108123738B (zh) 一种用于动态调度的ue、基站中的方法和设备
WO2018152821A1 (zh) 一种用户设备、基站中的用于动态调度的方法和装置
CN111294194B (zh) 一种无线传输中的方法和装置
CN108235442B (zh) 一种ue、基站中的方法和设备
CN107959557B (zh) 一种支持多载波通信的ue、基站中的方法和设备
CN107634821B (zh) 一种无线传输的ue和基站中的方法和装置
CN107645777B (zh) 一种无线传输中的方法和装置
CN113891483B (zh) 一种被用于动态调度的用户设备、基站中的方法和装置
CN105992361B (zh) 一种增强的ca中的调度方法和装置
CN102281593A (zh) 上行控制信息发送及接收方法、系统和设备
EP3962145A1 (en) Terminal and communication method
CN107872299B (zh) 一种被用于免授予的ue、基站中的方法和设备
WO2017167139A1 (zh) 一种上行控制信号传输方法及装置、用户终端、存储介质
JPWO2017026091A1 (ja) 端末、基地局、送信方法及び受信方法
CN108076519B (zh) 一种被用于低延迟的ue、基站中的方法和设备
CN107682929B (zh) 一种无线传输中的方法和装置
CN108616998B (zh) 一种ue和基站中的方法和设备
WO2020063950A1 (zh) 处理干扰的方法及装置、存储介质和电子装置
CN110972318B (zh) 免调度资源的激活、去激活方法及装置、存储介质、基站、用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17897492

Country of ref document: EP

Kind code of ref document: A1