WO2022213913A1 - 重传响应反馈方法及装置、终端设备 - Google Patents

重传响应反馈方法及装置、终端设备 Download PDF

Info

Publication number
WO2022213913A1
WO2022213913A1 PCT/CN2022/084974 CN2022084974W WO2022213913A1 WO 2022213913 A1 WO2022213913 A1 WO 2022213913A1 CN 2022084974 W CN2022084974 W CN 2022084974W WO 2022213913 A1 WO2022213913 A1 WO 2022213913A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
harq
ack
downlink time
codebook
Prior art date
Application number
PCT/CN2022/084974
Other languages
English (en)
French (fr)
Inventor
周欢
桂鑫
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Priority to EP22783979.2A priority Critical patent/EP4322435A1/en
Priority to US18/284,605 priority patent/US20240163018A1/en
Publication of WO2022213913A1 publication Critical patent/WO2022213913A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows

Definitions

  • the present application relates to the field of communication technologies, in particular to a method and apparatus for retransmission response feedback, and also to a terminal device.
  • the downlink data scheduling time indication is shown in Figure 1, where K0 and K1 are all time slots (slot), and K0 represents PDSCH (Physical Downlink Shared Channel, physical downlink shared channel). ) and PDCCH (Physical Downlink Control Channel, physical downlink control channel) time interval, PDSCH is used to transmit downlink data, PDCCH is used to transmit DCI (Downlink Control Information, downlink control information); K1 represents the time between HARQ-ACK feedback and PDSCH interval.
  • the resource unit of PDCCH is CCE, and one PDCCH is n consecutive CCEs.
  • gNB generation NodeB, next generation base station
  • the dynamic scheduling DCI will indicate a PUCCH resource indication, and the UE determines which PUCCH resource is used in the PUCCH resource set to feed back the dynamically scheduled PDSCH HARQ-ACK according to this indication (and the PDCCH starting CCE index carrying the DCI).
  • Both the NR uplink and downlink use asynchronous HARQ, and the HARQ-ACK information can be carried on either the PUCCH or the PDCCH.
  • NR R15 only supports that the UE has only one PUCCH carrying HARQ-ACK information in one slot. If the UE detects that the PDSCH is received in the time slot n, or the UE detects the DCI released by the SPS (Semi-Persistent Scheduling) in the time slot n, the UE sends the corresponding HARQ-ACK information in the time slot (n+k). . Wherein, k is indicated by a timing indicator from PDSCH to HARQ in DCI, and if there is no such timing indicator in DCI, it is indicated by a higher layer parameter DI-DataToUL-ACK.
  • the HARQ-ACK feedback cannot be performed.
  • the HARQ-ACK feedback of the SPS PDSCH in the time slot n+2 is in the time slot n+5, but since the time slot n+5 is all downlink symbols, the HARQ-ACK feedback cannot be performed.
  • Embodiments of the present application provide a retransmission response feedback method, apparatus, and terminal device to ensure effective feedback of SPS PDSCH HARQ-ACK.
  • a retransmission response feedback method comprising:
  • the delayed downlink time slot refers to the downlink time slot corresponding to the ACK/NACK feedback determined according to the K1 that needs to be sent later;
  • the HARQ-ACK codebook is sent using the uplink channel.
  • the generating the HARQ-ACK codebook according to the HARQ-ACK information corresponding to the original downlink time slot and the HARQ-ACK information corresponding to the delayed downlink time slot includes:
  • the HARQ-ACK information corresponding to the original downlink time slot and the HARQ-ACK information corresponding to the delayed downlink time slot are set according to each ⁇ SPS configuration index, serving cell index ⁇
  • the HARQ-ACKs in the downlink time slot are arranged in ascending order, then each serving cell index is arranged in ascending order of HARQ-ACKs in the SPS configuration index, and finally the HARQ-ACKs in the serving cell index are arranged in ascending order to generate the SPS PDSCH HARQ-ACK codebook;
  • the HARQ-ACK codebook to be used is determined according to the high-level configuration information
  • the HARQ-ACK information of the delayed downlink time slot is placed behind the HARQ-ACK information of the original downlink time slot to generate a semi-static HARQ-ACK codebook; or according to The delayed downlink time slot expands the K1 time slot set, and generates a semi-static HARQ-ACK codebook according to the extended K1 time slot set;
  • a dynamic codebook is generated, a first codebook is generated according to the DAI indication in the DCI, a second codebook is generated from the HARQ-ACK information corresponding to the delayed downlink time slot, and the second codebook is placed in the first codebook. After a codebook, a dynamic HARQ-ACK codebook is obtained.
  • placing the HARQ-ACK information of the delayed downlink time slot behind the HARQ-ACK information of the original downlink time slot, and generating a semi-static HARQ-ACK codebook includes:
  • the HARQ-ACK information of the delayed downlink time slots of all serving cells is placed behind the HARQ-ACK information of the original downlink time slots of all serving cells, and sorted by cell index to generate a semi-static HARQ-ACK codebook.
  • extending the K1 time slot set according to the delayed downlink time slot, and generating the HARQ-ACK codebook according to the extended K1 time slot set includes:
  • a delayed time slot is added to the K1 time slot set according to the delayed downlink time slot to obtain an extended K1 time slot set, and a semi-static HARQ-ACK codebook is generated according to the extended K1 time slot set.
  • the generating the second codebook from the HARQ-ACK information corresponding to the delayed downlink time slot includes:
  • the method further includes:
  • first configuration parameter configured by a high layer, where the first configuration parameter is used to indicate the maximum allowable delayed feedback slot offset of the SPS PDSCH HARQ-ACK;
  • all SPS PDSCHs share the first configuration parameter; or each SPS PDSCH corresponds to its own first configuration parameter.
  • traversing the SPS PDSCH configured by each serving cell, and determining, according to the first configuration parameter, the delayed downlink time slot that needs to feed back the SPS PDSCH HARQ-ACK in each time slot of the uplink channel resource includes:
  • the original downlink time slot and the candidate delayed downlink time slot obtained by statistics are combined to obtain a set corresponding to each time slot;
  • the candidate delayed downlink time slot is a delayed downlink time slot for which SPS PDSCH HARQ-ACKR needs to be fed back in the current time slot.
  • traversing the SPS PDSCH configured by each serving cell, and determining, according to the first configuration parameter, the delayed downlink time slot that needs to feed back the SPS PDSCH HARQ-ACK in each time slot of the uplink channel resource includes:
  • a retransmission response feedback device comprising:
  • the original downlink time slot determination module is used to traverse each serving cell and determine the HARQ-ACK of the original downlink time slot in each serving cell for which uplink channel resources need to be fed back;
  • the downlink time slot corresponding to the ACK/NACK feedback determined by the time slot offset value K1 of the ACK/NACK feedback;
  • the delayed downlink time slot determination module is used to traverse each serving cell and determine the HARQ-ACK of the delayed downlink time slot in each serving cell whose uplink channel resources need to be fed back; the delayed downlink time slot refers to the need to delay the transmission Feedback the corresponding downlink time slot according to the ACK/NACK determined by the K1;
  • a feedback information obtaining module configured to obtain the HARQ-ACK information of the original downlink time slot and the HARQ-ACK information of the delayed downlink time slot respectively;
  • a codebook generation module configured to generate a HARQ-ACK codebook according to the HARQ-ACK information of the original downlink time slot and the HARQ-ACK information of the delayed downlink time slot;
  • a sending module configured to send the HARQ-ACK codebook using an uplink channel.
  • the codebook generation module includes:
  • the SPS codebook generation module is used to generate the HARQ-ACK information corresponding to the original downlink time slot and the HARQ-ACK information corresponding to the delayed downlink time slot according to each ⁇ SPS
  • the HARQ-ACKs in the downlink time slots of the configuration index, serving cell index ⁇ are arranged in ascending order, then each serving cell index is arranged in ascending order of HARQ-ACKs in the SPS configuration index, and finally the HARQ-ACKs in the serving cell index are arranged in ascending order to generate SPS PDSCH HARQ-ACK codebook;
  • the codebook type determination module is used to determine the HARQ-ACK code to be used according to the high-level configuration information when there is currently HARQ-ACK feedback of the PDCCH released by the dynamic scheduling PDSCH and/or SPS PDSCH, and there is SPS PDSCH HARQ-ACK feedback Book;
  • a semi-static codebook generation module configured to generate a semi-static HARQ-ACK codebook when the codebook type unit determines to generate a semi-static HARQ-ACK codebook;
  • the semi-static codebook generation module includes: a first semi-static HARQ-ACK codebook a codebook generation unit, or a second semi-static codebook generation unit;
  • the first semi-static codebook generating unit configured to place the HARQ-ACK information of the delayed downlink time slot behind the HARQ-ACK information of the original downlink time slot to generate a semi-static HARQ-ACK codebook
  • the second semi-static codebook generating unit is configured to expand the K1 time slot set according to the delayed downlink time slot, and generate a semi-static HARQ-ACK codebook according to the extended K1 time slot set;
  • the dynamic codebook generation module is configured to generate a first codebook according to the DAI indication in the DCI when the codebook type unit determines to generate a dynamic codebook, and generate a second codebook corresponding to the HARQ-ACK information of the delayed downlink time slot. codebook, the second codebook is placed behind the first codebook to obtain a dynamic HARQ-ACK codebook.
  • the first semi-static codebook generating unit is specifically configured to sequentially place the HARQ-ACK information of the delayed downlink time slot of each serving cell in the HARQ-ACK information of the original downlink time slot of the serving cell Afterwards, a semi-static HARQ-ACK codebook is generated; or the HARQ-ACK information of the delayed downlink time slots of all serving cells is placed behind the HARQ-ACK information of the original downlink time slots of all serving cells, and sorted by cell index, A semi-static HARQ-ACK codebook is generated.
  • the second semi-static codebook generating unit is specifically configured to add a delayed time slot to the K1 time slot set according to the delayed downlink time slot, to obtain an extended K1 time slot set, according to The extended set of K1 slots generates a semi-static HARQ-ACK codebook.
  • the dynamic codebook generation module arranges the HARQ-ACK information corresponding to the delayed downlink time slot in ascending order of HARQ-ACK in the downlink time slot of each ⁇ SPS configuration index, serving cell index ⁇ , and then each The serving cell index is arranged in ascending order of HARQ-ACKs in the SPS configuration index, and finally arranged in ascending order of HARQ-ACKs in the serving cell index to generate a second codebook.
  • the device further includes:
  • a configuration parameter obtaining module configured to obtain a first configuration parameter configured by a high layer, where the first configuration parameter is used to indicate the maximum allowable delayed feedback time slot offset of the SPS PDSCH HARQ-ACK;
  • the delayed downlink time slot determination module is specifically used to traverse the SPS PDSCH configured by each serving cell, and determine the delayed downlink time of the SPS PDSCH HARQ-ACK that needs to be fed back in each time slot of the uplink channel resource according to the first configuration parameter. gap.
  • all SPS PDSCHs share the first configuration parameter; or each SPS PDSCH corresponds to its own first configuration parameter.
  • the delayed downlink time slot determination module includes:
  • the first statistical unit is used to count the original downlink time slots that need to feed back SPS PDSCH HARQ-ACK in each time slot corresponding to the uplink channel resource, and the candidate delayed downlink that may need to feed back SPS PDSCH HARQ-ACK in the time slot time slot;
  • a collection unit configured to collect the original downlink time slot and the candidate delayed downlink time slot obtained by statistics to obtain a collection corresponding to each time slot;
  • the detection unit is configured to sequentially take each time slot corresponding to the uplink channel resource as the current time slot, use each candidate delayed downlink time slot in the collection corresponding to the current time slot as the time slot to be detected, and detect the time slot to be detected. Whether the difference between the original downlink time slot corresponding to the slot and the current time slot is less than or equal to the first configuration parameter corresponding to the SPS PDSCH; if so, determine that the candidate delayed downlink time slot is in the current time slot The delayed downlink time slot of SPS PDSCH HARQ-ACKR needs to be fed back.
  • the delayed downlink time slot determination module includes:
  • the candidate time slot determination unit is used to traverse each serving cell and determine the candidate time slot for which the SPS PDSCH HARQ-ACK needs to be fed back;
  • a delayed downlink time slot determination unit configured to determine, according to the first configuration parameter, a delayed downlink time slot for which the SPS PDSCH HARQ-ACK needs to be fed back when the candidate time slot has no available PUCCH resources;
  • the second statistical unit is used to count the delayed downlink time slots for which SPS PDSCH HARQ-ACK needs to be fed back in each time slot of the uplink channel resources.
  • a terminal device includes the aforementioned retransmission response feedback device.
  • Embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium is a non-volatile storage medium or a non-transitory storage medium, on which a computer program is stored, and the computer program is executed by a processor perform the steps of the above method.
  • the computer-readable storage medium is a non-volatile storage medium or a non-transitory storage medium, on which a computer program is stored, and the computer program is executed by a processor perform the steps of the above method.
  • An embodiment of the present application further provides an electronic device, including a memory and a processor, the memory stores a computer program that can be run on the processor, and the processor executes the steps of the above method when the computer program runs .
  • the retransmission response feedback method and device provided by the embodiments of the present application, by traversing each serving cell, determine the HARQ of the original downlink time slot and the delayed downlink time slot in each serving cell for which uplink channel resources need to be fed back -ACK; respectively obtain the HARQ-ACK information of the original downlink time slot and the HARQ-ACK information of the delayed downlink time slot; according to the HARQ-ACK information of the original downlink time slot and the delayed downlink time slot.
  • the HARQ-ACK codebook is generated by using the HARQ-ACK information obtained from the HARQ-ACK information, and the HARQ-ACK codebook is sent using the uplink channel, so as to ensure the effective feedback of the SPS PDSCH HARQ-ACK, thereby improving the performance of the terminal equipment and improving the communication quality.
  • 1 is a schematic diagram of downlink data scheduling time in the prior art
  • FIG. 2 is a schematic diagram of the relationship between the HARQ-ACK feedback time slot and the uplink and downlink time slots in the SPS in the prior art
  • FIG. 3 is a schematic structural diagram of a mobile communication system applicable to an embodiment of the present application.
  • FIG. 4 is a flowchart of a retransmission response feedback method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an original downlink time slot and a delayed downlink time slot that need to feed back HARQ-ACK in each time slot of an uplink channel resource in an embodiment of the present application;
  • Fig. 6 is an example of SPS PDSCH and corresponding feedback SPS PDSCH HARQ-ACK configured on different serving cells in the embodiment of the present application;
  • FIG. 7 is a flow chart of determining the original downlink time slot and the delayed downlink time slot that need to feed back SPS PDSCH HARQ-ACK in each time slot in the embodiment of the present application;
  • Fig. 8 is an example of the SPS PDSCH and corresponding feedback SPS PDSCH HARQ-ACK configured on different serving cells in the embodiment of the present application;
  • FIG. 9 is another flowchart of determining the original downlink time slot and the delayed downlink time slot for which SPS PDSCH HARQ-ACK needs to be fed back in each time slot in the embodiment of the present application;
  • FIG. 10 is a structural block diagram of a retransmission response feedback device according to an embodiment of the present application.
  • FIG. 11 is a structural block diagram of a codebook generation module in an embodiment of the present application.
  • FIG. 12 is another structural block diagram of a retransmission response feedback apparatus according to an embodiment of the present application.
  • FIG. 13 is a structural block diagram of a module for determining a delayed downlink time slot in an embodiment of the present application
  • FIG. 14 is another structural block diagram of the delayed downlink time slot determination module in the embodiment of the present application.
  • HARQ is a technology that combines FEC (Forward Error Correction, forward error correction) and ARQ (Automatic Repeat reQuest, automatic repeat request) methods.
  • FEC Forward Error Correction
  • ARQ Automatic Repeat reQuest, automatic repeat request
  • the receiving end uses an error detection code, usually a CRC (Cyclic Redundancy Check, Cyclic Redundancy Check) check, to detect whether the received data packet is in error. If there is no error, the receiver will send a positive acknowledgment (ACK) to the sender, and the sender will send the next packet after receiving the ACK.
  • CRC Cyclic Redundancy Check
  • the receiver will discard the packet and send a negative acknowledgment (NACK) to the sender. After receiving the NACK, the sender will resend the same packet.
  • NACK negative acknowledgment
  • SPS Semi-Persistent Scheduling, semi-persistent scheduling
  • SPS C-RNTI Cell-Radio Network Temporary Identifier, cell wireless network temporary identifier
  • SPS resources for the convenience of description, it will be referred to as SPS resources hereinafter.
  • the SPS PDSCH HARQ-ACK codebook is used, and when multiple SPS PDSCHs are configured
  • the HARQ-ACK bit order is: according to which time slot or subslot SPS PDSCH needs to be carried by the PUCCH in this time slot or subslot (slot/subslot), determine all the time slots or subslot index sets, traverse the Each time slot or sub-slot in this set is arranged in ascending order of HARQ-ACK in the downlink time slot of each ⁇ SPS configuration index, serving cell index ⁇ , and then in each serving cell index in ascending order of HARQ-ACK in the SPS configuration index Arranged in ascending order of HARQ-ACKs in the serving cell index.
  • the type 1 HARQ-ACK codebook or the type 2 HARQ-ACK codebook will be determined according to the configuration of the high-level signaling.
  • the type 1 HARQ-ACK codebook is a semi-static codebook.
  • M the number of possible PDSCH positions.
  • the factors affecting M include: the value range of K1, the time domain resource allocation configuration, the uplink and downlink SCS (Sub-Carrier Space , subcarrier spacing) configuration, semi-static uplink and downlink frame structure configuration. If the PDSCH is scheduled using the DCI format 1_1, the set of K1 is configured by higher layer signaling; if the PDSCH is scheduled using the DCI format 1_0, the set of K1 is fixed to ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ . K1 is a parameter of the PUCCH, and the corresponding SCS is the SCS of the PUCCH.
  • the type 1 HARQ-ACK codebook it is necessary to determine the set K1DL of K1 corresponding to the downlink according to the SCS configuration of the uplink and downlink; for the downlink time slot corresponding to each K1DL set, first find out the possibility of PDSCH without uplink and downlink frame structure conflict position, and then find out the possible positions of the PDSCH without overlapping.
  • the semi-static codebook of NR R15 needs to feed back HARQ-ACK in these possible positions.
  • the type 2 HARQ-ACK codebook is a dynamic codebook, and the determination of the codebook is based on the count DAI (Downlink Assignment Index, downlink assignment index) and the total DAI.
  • the total DAI is the total number of DCIs sent by all cell base stations from the first DAI time to the current DAI time in the PDCCH monitoring time set.
  • the counted DAI is the cumulative count of the number of DCIs from the first cell to the current cell sent by the base station at the current DAI time in the PDCCH monitoring time set, and the sum of the total DAI corresponding to the previous DAI time.
  • This application proposes corresponding solutions for the above three codebooks in different ways to ensure effective feedback of SPS PDSCH HARQ-ACK.
  • GSM Global System of Mobile Communication, Global Mobile Communication
  • CDMA Code Division Multiple Access, Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service, General Packet Radio Service
  • LTE Long TermEvolution, Long Term Evolution
  • LTE FDD Frequency Division Duplex
  • Frequency Division Duplex Frequency Division Duplex
  • UMTS Universal Mobile Telecommunication System, Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access, Worldwide Interoperability for Microwave Access
  • 5G (5th Generation) system 5G (5th Generation) system
  • NR New Radio, new wireless
  • the architecture of the mobile communication system applicable to the embodiment of the present application is shown in FIG. 3 , and the mobile communication system may include a core network device 301 , a radio access network device 302 and at least one terminal device 303 .
  • the terminal device 303 is wirelessly connected to the wireless access network device, and the wireless access network device is wirelessly or wiredly connected to the core network device.
  • the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of the wireless access network equipment. Terminal equipment can be fixed or movable.
  • the terminal device 303 may also be referred to as a terminal, UE (User Equipment, user equipment), MS (Mobile Station, mobile station), MT (Mobile terminal, mobile terminal) and the like.
  • the terminal device 303 can be a mobile phone, a tablet computer, a computer with a wireless transceiver function, a VR (Virtual Reality, virtual reality) terminal device, an AR (Augmented Reality, augmented reality) terminal device, a wireless terminal in industrial control, an unmanned driving wireless terminals in remote surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the aforementioned terminal devices and chips applicable to the aforementioned terminal devices are collectively referred to as terminal devices. It should be understood that the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the terminal device in this embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop, wireless local loop) station, a PDA (Personal Digital Assistant, personal digital processing), with a wireless communication function
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop, wireless local loop
  • PDA Personal Digital Assistant, personal digital processing
  • the handheld device, computing device, or other processing device connected to the wireless modem, vehicle-mounted device, wearable device, etc., are not limited in this embodiment of the present application.
  • the wireless access network device 302 is an access device that the terminal device 303 wirelessly accesses to the mobile communication system.
  • the wireless access network device 302 may be a base station, an evolved NodeB, a home base station, an AP (Access Point, access point) in a WIFI system, a wireless relay node, a wireless backhaul node, a TP (Transmission Point) , transmission point) or TRP (Transmission and Reception Point, sending and receiving point), etc., it can also be a gNB in the NR system, or it can also be a component or part of a device that constitutes a base station, such as CU (Centralized Unit, centralized unit), DU (Distributed Unit, distributed unit) or BBU (Baseband Unit, baseband unit) and so on.
  • CU Centralized Unit, centralized unit
  • DU Distributed Unit, distributed unit
  • BBU Baseband Unit, baseband unit
  • wireless access network equipment is referred to as network equipment for short.
  • network equipment refers to wireless access network equipment.
  • the network device may refer to the network device itself, or may be a chip applied in the network device to complete the wireless communication processing function.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as CPU (Central Processing Unit, central processing unit), MMU (Memory Management Unit, memory management unit) and memory.
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a Windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the methods provided by the embodiments of the present application, as long as the program that records the codes of the methods provided by the embodiments of the present application can be executed to provide the methods provided by the embodiments of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute a program.
  • the uplink channel resources mentioned in the embodiments of this application refer to the configured SPS PDSCH HARQ-ACK PUCCH resources.
  • the time slots mentioned in the following embodiments can also be replaced with sub-slots according to different needs, which is not limited in this application.
  • a method and device for retransmission response feedback provided by the embodiments of the present application, by traversing each serving cell, determine the original raw material in each serving cell for which uplink channel resources need to be fed back HARQ-ACK of the downlink time slot and the delayed downlink time slot; respectively obtain the HARQ-ACK information of the original downlink time slot and the HARQ-ACK information of the delayed downlink time slot; according to the HARQ-ACK information of the original downlink time slot - ACK information and the HARQ-ACK information of the delayed downlink time slot generate a HARQ-ACK codebook, and use the uplink channel to send the HARQ-ACK codebook.
  • FIG. 4 it is a flowchart of the retransmission response feedback method according to the embodiment of the present application, including the following steps:
  • Step 401 traverse each serving cell, and determine the HARQ-ACK of the original downlink time slot and the delayed downlink time slot in each serving cell for which uplink channel resources need to be fed back.
  • the PDSCH configured for each serving cell may include: SPS PDSCH and/or dynamic scheduling PDSCH.
  • D represents downlink channel resources
  • U represents uplink channel resources.
  • the dotted line with the arrow indicates the feedback time slot Slot5 of the HARQ-ACK of the SPS PDSCH1 (marked as SPS1-3) numbered 3. Since the time slot Slot5 corresponds to the downlink channel resource, it is necessary to delay the HARQ-ACK feedback to the back.
  • the specific time slot to which the time slot is delayed is not limited in the embodiment of the present application, and can be determined according to the prior art, for example, the time slot is delayed to the next available PUCCH resource time slot Slot8.
  • the original downlink time slot refers to the downlink time slot corresponding to the ACK/NACK feedback determined according to the time slot offset value K1 used to indicate PDSCH to the corresponding ACK/NACK feedback;
  • the time slot refers to the downlink time slot corresponding to the ACK/NACK feedback determined according to the K1 that needs to be sent after a delay.
  • the HARQ-ACK of the original downlink time slot and the HARQ-ACK of the delayed downlink time slot in each serving cell that need to be fed back for uplink channel resources can be determined.
  • the HARQ-ACK of the original downlink time slot that needs to be fed back is SPS1 PDSCH1 HARQ-ACK of Slot5
  • the delayed downlink time slot that needs to be fed back is SPS1 PDSCH1 HARQ-ACK of Slot3.
  • Step 402 Obtain the HARQ-ACK information of the original downlink time slot and the HARQ-ACK information of the delayed downlink time slot respectively.
  • Step 403 Generate a HARQ-ACK codebook according to the HARQ-ACK information of the original downlink time slot and the HARQ-ACK information of the delayed downlink time slot.
  • HARQ-ACK codebook generation methods for different codebook modes are also provided, as follows:
  • the HARQ-ACK information corresponding to the original downlink time slot and the HARQ-ACK information corresponding to the delayed downlink time slot are used to generate the HARQ-ACK code according to the bit order of the SPS codebook.
  • the HARQ-ACKs in the downlink time slots of each ⁇ SPS configuration index, serving cell index ⁇ are arranged in ascending order, then each serving cell index is arranged in ascending order according to the HARQ-ACK in the SPS configuration index, and finally the HARQ-ACK in the serving cell index is arranged in ascending order.
  • - ACKs are arranged in ascending order to generate the SPS PDSCH HARQ-ACK codebook.
  • HARQ-ACK codebooks need to be generated in different ways.
  • Mode 1 is to sequentially place the HARQ-ACK information of the delayed downlink time slot of each serving cell behind the HARQ-ACK information of the original downlink time slot of the serving cell to generate a semi-static HARQ-ACK codebook.
  • Mode 2 is to append the HARQ-ACK information of the delayed downlink time slots of all serving cells to the HARQ-ACK information of the original downlink time slots of all serving cells to generate a semi-static HARQ-ACK codebook.
  • the set of K1 time slots configured by high-level parameters is ⁇ 1, 2, 3 ⁇ .
  • SPS PDSCH is configured on the CC0 serving cell, which is SPS PDSCH1 (for convenience of description, it is referred to as SPS1 later), and its period is one time slot.
  • SPS1 is configured to allow delay;
  • a dynamic scheduling PDSCH is also configured on the CC0 serving cell, where the time slot is Slot6.
  • One SPS PDSCH is configured on the serving cell of CC1, which is SPS PDSCH2 (for convenience of description, it will be referred to as SPS2 later), its period is 3 time slots, and SPS2 is configured so that no delay is allowed.
  • the set of K1 time slots in each serving cell is traversed. Then traverse the delayed HARQ-ACK feedback time slot to obtain the SPS PDSCH HARQ-ACK information corresponding to the delayed HARQ-ACK feedback time slot.
  • the HARQ-ACK of the SPS PDSCH in time slot 2 needs to be delayed to Slot8; similarly, on CC1, the HARQ-ACK of the SPS PDSCH in time slot 2 needs to be delayed to Slot8, because SPS2 is configured to not allow delayed, so the HARQ-ACK of PDSCH in slot 2 on CC1 is discarded.
  • the codebook generated according to the above-mentioned method 1 is 100/1/110/0, wherein the first three bits are the bit information generated by the existing method on CC0, and the fourth bit is the delay of the downlink time slot SPS PDSCH1 on CC0.
  • HARQ-ACK The 5th to 7th bits are the bit information generated on CC1 in the existing way, and the 8th bit is the HARQ-ACK of the downlink time slot SPS PDSCH2 delayed by CC1. It should be noted that the slashes in the codebook are only for the convenience of understanding, and do not exist in the actual codebook.
  • the generation process of the HARQ-ACK codebook is similar to the method 1, the difference is that in the method 2, it is necessary to traverse the delayed HARQ-ACK feedback time slot and sort by the cell index at the end to generate the SPS corresponding to all the cells PDSCH HARQ-ACK information.
  • the codebook generated according to the above method 2 is 100/110/10, wherein the first three bits are the HARQ-ACK information of the original downlink time slots of all cells generated by the existing method on CC0, and the 4th to 6th bits are the information on CC1.
  • the HARQ-ACK information of the original downlink time slots of all cells generated in the existing way the 7th bit is the HARQ-ACK of the SPS PDSCH1 of the downlink time slot delayed by CC0, and the 8th bit is the downlink time slot delayed by CC1.
  • a delayed time slot is added to the K1 time slot set according to the delayed downlink time slot to obtain an extended K1 time slot set.
  • the HARQ-ACK of SPS PDSCH in time slot 2 needs to be delayed to Slot8; similarly, on CC1, on CC1, the HARQ-ACK of SPS PDSCH in time slot 2 The ACK needs to be delayed to Slot8. Since SPS2 is configured to not allow delay, the HARQ-ACK of PDSCH in slot 2 on CC1 is discarded.
  • Step 404 using the uplink channel to send the HARQ-ACK codebook.
  • the retransmission response feedback method by traversing each serving cell, determine the HARQ-ACK of the original downlink time slot and the delayed downlink time slot in each serving cell for which uplink channel resources need to be fed back; obtain the original downlink time slot respectively; HARQ-ACK information of the downlink time slot and HARQ-ACK information of the delayed downlink time slot; generate HARQ-ACK according to the HARQ-ACK information of the original downlink time slot and the HARQ-ACK information of the delayed downlink time slot ACK codebook, using the uplink channel to send the HARQ-ACK codebook, so as to ensure the effective feedback of the SPS PDSCH HARQ-ACK, thereby improving the performance of the terminal equipment and improving the communication quality.
  • the present application also provides a method for determining a delayed downlink time slot for which the SPS PDSCH HARQ-ACK needs to be fed back in the uplink channel resource. Traverse each serving cell, and determine the delayed downlink time slot in the uplink channel resource that needs to feed back SPS PDSCH HARQ-ACK according to the first configuration parameter configured by the high layer.
  • the first configuration parameter is used to indicate the maximum allowable delayed feedback slot offset of the SPS PDSCH HARQ-ACK, and the unit is a slot or a sub-slot.
  • the first configuration parameter can simultaneously indicate that all SPS PDSCH configurations can be fed back HARQ-ACK; it can also indicate that one or more SPS PDSCH configurations can be fed back, and others cannot be fed back.
  • all SPS PDSCHs may share the first configuration parameter; or each SPS PDSCH corresponds to its own first configuration parameter, which is not limited in this embodiment of the present application.
  • all SPS PDSCHs may be configured to share the first configuration parameter, that is, different SPS PDSCHs have the same first configuration parameter.
  • each SPS PDSCH may be configured with its own first configuration parameter, that is, corresponding to different SPS PDSCHs, the configuration parameters corresponding to C may be the same or different, which is not limited in this embodiment.
  • SPS PDSCH cannot feed back HARQ-ACK
  • its corresponding N 0
  • SPS PDSCH can feed back HARQ-ACK later its corresponding N is a value greater than 1, and the unit is the same as this SPS PDSCH HARQ -
  • the unit of ACK feedback is the same, which can be a time slot or a sub-slot.
  • Step 701 count the original downlink time slots that need to feed back SPS PDSCH HARQ-ACK in each time slot corresponding to the uplink channel resources, and the candidate delayed downlink time slots that may need to feed back SPS PDSCH HARQ-ACK in the time slot.
  • each serving cell and the SPS PDSCH configured on each serving cell it is necessary to traverse each serving cell and the SPS PDSCH configured on each serving cell, and determine the HARQ-ACK time slot corresponding to each SPS PDSCH according to the configuration parameters of each SPS PDSCH.
  • the time slot where the SPS PDSCH1 is located is recorded as time slot a1
  • the time slot where the corresponding HARQ-ACK is located is recorded as time slot b1
  • the time slot where SPS PDSCH1 is located is recorded as time slot a2
  • the time slot where the corresponding HARQ-ACK is located is recorded as time slot a2.
  • the slot is denoted as time slot b2.
  • the configured SPS PDSCH HARQ-ACK PUCCH resource can be used, and the original downlink time slot that needs to feed back the SPS PDSCH HARQ-ACK in the time slot b1 includes time slot a1;
  • the information corresponding to the SPS PDSCH2 HARQ-ACK on time slot b2 can be used in the next available PUCCH For example, if the resource is sent in time slot bn, it may be necessary to feed back the original downlink time slot of the SPS PDSCH HARQ-ACK in time slot bn, including time slot a2.
  • Step 702 Collect the original downlink time slot and the candidate delayed downlink time slot obtained by statistics to obtain a set corresponding to each time slot.
  • Step 703 successively take each time slot corresponding to the uplink channel resource as the current time slot, take each candidate delayed downlink time slot in the collection corresponding to the current time slot as the time slot to be detected, and detect the corresponding time slot to be detected. Whether the difference between the original downlink time slot and the current time slot is less than or equal to the first configuration parameter corresponding to the SPS PDSCH. If yes, go to step 704; otherwise, go to step 705.
  • Step 704 Determine that the candidate delayed downlink time slot is a delayed downlink time slot for which the SPS PDSCH HARQ-ACKR needs to be fed back in the current time slot.
  • Step 705 Determine that the candidate delayed downlink time slot is not a delayed downlink time slot that needs to feed back the SPS PDSCH HARQ-ACKR in the current time slot.
  • SPS1 SPS PDSCH1 (for convenience of description, it is hereinafter referred to as SPS1), and its period is one time slot.
  • the number of SPS PDSCHs configured on the serving cell of CC1 is 1, which is SPS PDSCH2 (for convenience of description, it will be referred to as SPS2 later), its period is 3 time slots, and SPS2 is configured to not allow delay, that is, its corresponding No.
  • a configuration parameter N 2 0.
  • the time slots where SPS1 is located are Slot0, Slot1, Slot2, Slot5, Slot6, and Slot7, and the time slots corresponding to the HARQ-ACK information of Slot0, Slot1, Slot2, and Slot5 should be: Slot3, Slot4, Slot5, and Slot8.
  • Downlink DL symbols cannot use the configured SPS PDSCH HARQ-ACK PUCCH resources.
  • One way is to send the HARQ-ACK information corresponding to SPS1 on Slot5 by using the next available PUCCH resource, that is, Slot8.
  • the time slots where SPS2 is located are Slot2 and Slot5, and the time slots where the HARQ-ACK information corresponding to Slot2 and Slot5 are located should be Slot5 and Slot8.
  • the configured SPS PDSCH HARQ-ACK PUCCH resources cannot be used due to the downlink DL symbols.
  • One way is to send the HARQ-ACK information corresponding to SPS2 on Slot5 using the next available PUCCH resource, that is, Slot8.
  • the original downlink time slots that need to feed back SPS PDSCH HARQ-ACK in each time slot corresponding to the uplink channel resource PUCCH are counted, respectively:
  • each time slot corresponding to the uplink channel resource PUCCH it may be necessary to feed back the delayed downlink time slot of the SPS PDSCH HARQ-ACK in the time slot, which are:
  • the original downlink time slot and the delayed downlink time slot obtained by statistics are combined to obtain a set corresponding to each time slot, and the set corresponding to Slot8 is ⁇ original downlink time slot: SPS1-Slot5, SPS2 -Slot5; delay downlink time slot: SPS1-Slot5, SPS2-Slot5 ⁇ .
  • the time slots Slot3, Slot4, and Slot8 corresponding to the uplink channel resources are sequentially used as the current time slot, and each delayed downlink time slot in the collection corresponding to the current time slot is used as the time slot to be detected , detecting whether the difference between the original downlink time slot corresponding to the to-be-detected time slot and the current time slot is less than or equal to the first configuration parameter corresponding to the SPS PDSCH.
  • the original downlink time slot of the corresponding SPS PDSCH HARQ-ACK is Slot5, and the difference from Slot8 is 3.
  • the original downlink time slot of the corresponding SPS PDSCH HARQ-ACK is Slot5, and the difference from Slot8 is 3.
  • the final HARQ-ACK feedback information on Slot8 is ⁇ 101 ⁇ .
  • the third parameter g is used to indicate that when the time slot for feeding back the HARQ-ACK corresponding to the SPS PDSCH has no available PUCCH resources, the time slot for feeding back the HARQ-ACK corresponding to the SPS PDSCH can be delayed, g ⁇ ⁇ 1 ...N ⁇ , N represents the maximum value of the time slot in which the HARQ-ACK corresponding to the SPS PDSCH can be fed back later, that is, the aforementioned delay threshold.
  • a delayed downlink time slot that needs to feed back the SPS PDSCH HARQ-ACK in each time slot of the uplink channel resource is as shown in Figure 9, and includes the following steps:
  • Step 901 traverse each serving cell, and determine a candidate time slot for which the SPS PDSCH HARQ-ACK needs to be fed back.
  • Step 902 check whether the candidate time slot has available PUCCH resources; if yes, go to step 903 ; otherwise, go to step 904 .
  • Step 903 Determine that the candidate time slot is the original downlink time slot for feeding back the SPS PDSCH HARQ-ACK.
  • Step 904 Determine the delayed downlink time slot for feeding back the SPS PDSCH HARQ-ACK according to the first configuration parameter.
  • Step 905 Count the delayed downlink time slots for which the SPS PDSCH HARQ-ACK needs to be fed back in each time slot of the uplink channel resources.
  • the number of SPS PDSCHs configured on the CC0 serving cell is 1, and the period thereof is 1 time slot.
  • the downlink time slots that need to be fed back in Slot8 include: SPS PDSCH HARQ-ACK in Slot5 on CC0 and SPS PDSCH HARQ-ACK in Slot2, on CC1 SPS PDSCH HARQ-ACK of Slot5.
  • the HARQ-ACK information in Table 1 it can be determined that the HARQ-ACK feedback information on Slot8 is ⁇ 101 ⁇ .
  • an embodiment of the present application further provides a retransmission response feedback device, as shown in FIG. 10 , in an embodiment of the device, the device includes the following modules:
  • the original downlink time slot determination module 11 is used to traverse each serving cell and determine the HARQ-ACK of the original downlink time slot in each serving cell for which uplink channel resources need to be fed back;
  • the downlink time slot corresponding to the ACK/NACK feedback determined by the time slot offset value K1 corresponding to the ACK/NACK feedback;
  • the delayed downlink time slot determination module 12 is used to traverse each serving cell and determine the HARQ-ACK of the delayed downlink time slot in each serving cell whose uplink channel resources need to be fed back; the delayed downlink time slot refers to the need to delay Send the downlink time slot corresponding to the ACK/NACK feedback determined according to the K1;
  • a feedback information obtaining module 13 configured to obtain the HARQ-ACK information of the original downlink time slot and the HARQ-ACK information of the delayed downlink time slot respectively;
  • a codebook generation module 14 configured to generate a HARQ-ACK codebook according to the HARQ-ACK information of the original downlink time slot and the HARQ-ACK information of the delayed downlink time slot;
  • the sending module 15 is configured to send the HARQ-ACK codebook by using the uplink channel.
  • FIG. 11 a structure of the codebook generation module 14 is shown in FIG. 11 , including the following modules:
  • the SPS codebook generation module 141 is configured to generate the HARQ-ACK information corresponding to the original downlink time slot and the HARQ-ACK information corresponding to the delayed downlink time slot according to every ⁇
  • the HARQ-ACKs in the downlink time slots of the SPS configuration index, serving cell index ⁇ are arranged in ascending order, then the HARQ-ACKs in each serving cell index are arranged in ascending order in the SPS configuration index, and finally the HARQ-ACKs in the serving cell index are arranged in ascending order, Generate SPS PDSCH HARQ-ACK codebook;
  • the codebook type determination module 140 is used to determine the HARQ-ACK that needs to be used according to the high-level configuration information when there is currently HARQ-ACK feedback of the PDCCH released by the dynamic scheduling PDSCH and/or SPS PDSCH, and when there is SPS PDSCH HARQ-ACK feedback codebook;
  • a semi-static codebook generating module 142 configured to generate a semi-static HARQ-ACK codebook when the codebook type unit determines to generate a semi-static HARQ-ACK codebook
  • the dynamic codebook generation module 143 is configured to generate a first codebook according to the DAI indication in the DCI when the codebook type unit determines to generate a dynamic codebook, and generate the first codebook from the HARQ-ACK information corresponding to the delayed downlink time slot. Two codebooks, the second codebook is placed behind the first codebook to obtain a dynamic HARQ-ACK codebook.
  • the HARQ-ACK information corresponding to the delayed downlink time slot can be arranged in ascending order of the HARQ-ACK information in the downlink time slot of each ⁇ SPS configuration index, serving cell index ⁇ , and then the SPS configuration index in each serving cell index Arrange the inner HARQ-ACKs in ascending order, and finally arrange them in the ascending order of the HARQ-ACKs in the serving cell index to generate a second codebook.
  • the semi-static codebook generating module 142 includes: a first semi-static codebook generating unit 1421 or a second semi-static codebook generating unit 1422 .
  • the first semi-static codebook generating unit 1421 is configured to place the HARQ-ACK information of the delayed downlink time slot behind the HARQ-ACK information of the original downlink time slot to generate a semi-static HARQ-ACK codebook ;
  • the second semi-static codebook generating unit 1422 is configured to expand the K1 timeslot set according to the delayed downlink timeslot, and generate a semi-static HARQ-ACK codebook according to the expanded K1 timeslot set.
  • the first semi-static codebook generating unit 1421 may specifically place the HARQ-ACK information of the delayed downlink time slot of each serving cell in the HARQ-ACK information of the original downlink time slot of the serving cell in turn Afterwards, a semi-static HARQ-ACK codebook is generated; or the HARQ-ACK information of the delayed downlink time slots of all serving cells is placed behind the HARQ-ACK information of the original downlink time slots of all serving cells, and sorted by cell index, A semi-static HARQ-ACK codebook is generated.
  • the second semi-static codebook generating unit 1422 may add a delayed time slot to the K1 time slot set according to the delayed downlink time slot to obtain an extended K1 time slot set, and according to the extended downlink time slot
  • the set of K1 slots generates a semi-static HARQ-ACK codebook.
  • the retransmission response feedback device determines the HARQ-ACK of the original downlink time slot and the delayed downlink time slot in each serving cell for which uplink channel resources need to be fed back by traversing each serving cell; HARQ-ACK information of the downlink time slot and HARQ-ACK information of the delayed downlink time slot; generate HARQ-ACK according to the HARQ-ACK information of the original downlink time slot and the HARQ-ACK information of the delayed downlink time slot ACK codebook, using the uplink channel to send the HARQ-ACK codebook, so as to ensure the effective feedback of the SPS PDSCH HARQ-ACK, thereby improving the performance of the terminal equipment and improving the communication quality.
  • the first configuration parameter configured by the high layer can also be used to determine the delayed downlink time slot in the uplink channel resource that needs to feed back the SPS PDSCH HARQ-ACK.
  • the first configuration parameter is used to indicate the maximum allowable delayed feedback slot offset of the SPS PDSCH HARQ-ACK, and the unit is a slot or a sub-slot.
  • the first configuration parameter can simultaneously indicate that all SPS PDSCH configurations can be fed back HARQ-ACK; it can also indicate that one or more SPS PDSCH configurations can be fed back, and others cannot be fed back.
  • all SPS PDSCHs may share the first configuration parameter; or each SPS PDSCH corresponds to its own first configuration parameter, which is not limited in this embodiment of the present application.
  • all SPS PDSCHs may be configured to share the first configuration parameter, that is, different SPS PDSCHs have the same first configuration parameter.
  • each SPS PDSCH may be configured with its own first configuration parameter, that is, corresponding to different SPS PDSCHs, the configuration parameters corresponding to C may be the same or different, which is not limited in this embodiment.
  • FIG. 12 it is another structural block diagram of the retransmission response feedback apparatus according to the embodiment of the present application.
  • the apparatus further includes: a configuration parameter obtaining module 21, configured to obtain a first configuration parameter of a high-level configuration, where the first configuration parameter is used to indicate the SPS Maximum allowed delayed feedback slot offset for PDSCH HARQ-ACK.
  • the delayed downlink time slot determination module 12 may determine, according to the first configuration parameter, that the SPS PDSCH needs to be fed back in each time slot of the uplink channel resource by traversing the SPS PDSCH configured by each serving cell. Delayed downlink time slot for HARQ-ACK.
  • FIG. 13 An embodiment of the delayed downlink time slot determination module 12 is shown in FIG. 13 , and includes the following units:
  • the first statistical unit 131 is used to count the original downlink time slots that need to feed back SPS PDSCH HARQ-ACK in each time slot corresponding to the uplink channel resources, and the candidate delays that may need to feed back SPS PDSCH HARQ-ACK in the time slot Downlink time slot;
  • the collection unit 132 is configured to collect the original downlink time slot and the candidate delayed downlink time slot obtained by statistics to obtain a collection corresponding to each time slot;
  • the detection unit 133 is configured to sequentially take each time slot corresponding to the uplink channel resource as the current time slot, and use each candidate delayed downlink time slot in the collection corresponding to the current time slot as the time slot to be detected, and detect the time slot to be detected. Whether the difference between the original downlink time slot corresponding to the time slot and the current time slot is less than or equal to the first configuration parameter corresponding to the SPS PDSCH; if so, determine that the candidate delayed downlink time slot is at the current time slot The delayed downlink time slot of the SPS PDSCH HARQ-ACKR needs to be fed back in the slot.
  • FIG. 14 An embodiment of the delayed downlink time slot determination module 12 is shown in FIG. 14 , and includes the following units:
  • the candidate time slot determination unit 141 is used to traverse each serving cell and determine the candidate time slot for which the SPS PDSCH HARQ-ACK needs to be fed back;
  • a first determining unit 142 configured to determine, according to the first configuration parameter, a delayed downlink time slot for which the SPS PDSCH HARQ-ACK needs to be fed back when the candidate time slot has no available PUCCH resources;
  • the second statistics unit 143 is configured to count the delayed downlink time slots that need to feed back the SPS PDSCH HARQ-ACK in each time slot of the uplink channel resources.
  • the delayed downlink time slot determination module of the embodiment shown in the above-mentioned FIG. 13 or FIG. 14 it is possible to more conveniently and accurately determine the delayed downlink time slot for which the uplink channel resources need to feed back the SPS PDSCH HARQ-ACK.
  • a terminal device including the above retransmission response feedback device provided by an embodiment of the present application, the terminal device determines the original downlink time slot and the delayed downlink time slot in each serving cell for which uplink channel resources need to be fed back by traversing each serving cell obtain the HARQ-ACK information of the original downlink time slot and the HARQ-ACK information of the delayed downlink time slot respectively; according to the HARQ-ACK information of the original downlink time slot and the delayed downlink time slot
  • the HARQ-ACK information of the time slot generates a HARQ-ACK codebook, and the HARQ-ACK codebook is sent using the uplink channel, so as to ensure the effective feedback of the SPS PDSCH HARQ-ACK, thereby improving the performance of the terminal equipment and improving the communication quality.
  • the above apparatus may correspond to a chip with a specific transmission resource selection function in a communication device, such as an SOC (System-On-a-Chip, system on chip), a baseband chip, etc.; or correspond to a communication device with transmission resource selection A functional chip module; or a chip module corresponding to a chip with data processing functions.
  • a communication device such as an SOC (System-On-a-Chip, system on chip), a baseband chip, etc.
  • SOC System-On-a-Chip, system on chip
  • a baseband chip etc.
  • a communication device with transmission resource selection A functional chip module or a chip module corresponding to a chip with data processing functions.
  • each module/unit included in each device and product described in the above embodiments it may be a software module/unit, a hardware module/unit, or a part of a software module/unit, a part of which is a software module/unit. is a hardware module/unit.
  • each module/unit included therein may be implemented by hardware such as circuits, or at least some of the modules/units may be implemented by a software program.
  • Running on the processor integrated inside the chip the remaining (if any) part of the modules/units can be implemented by hardware such as circuits; for each device and product applied to or integrated in the chip module, the modules/units contained therein can be They are all implemented by hardware such as circuits, and different modules/units can be located in the same component of the chip module (such as chips, circuit modules, etc.) or in different components, or at least some of the modules/units can be implemented by software programs.
  • the software program runs on the processor integrated inside the chip module, and the remaining (if any) part of the modules/units can be implemented by hardware such as circuits; for each device and product applied to or integrated in the terminal, each module contained in it
  • the units/units may all be implemented in hardware such as circuits, and different modules/units may be located in the same component (eg, chip, circuit module, etc.) or in different components in the terminal, or at least some of the modules/units may be implemented by software programs Realization, the software program runs on the processor integrated inside the terminal, and the remaining (if any) part of the modules/units can be implemented in hardware such as circuits.
  • an embodiment of the present application further provides a communication device including the above retransmission response feedback apparatus.
  • the communication equipment is terminal equipment, which may refer to various forms of user equipment (User Equipment, UE for short), access terminal, subscriber unit, subscriber station, mobile station, mobile station (Mobile Station, MS), remote station, remote A terminal, mobile device, user terminal, wireless communication device, user agent or user equipment.
  • User Equipment User Equipment
  • UE User Equipment
  • access terminal may refer to various forms of user equipment (User Equipment, UE for short), access terminal, subscriber unit, subscriber station, mobile station, mobile station (Mobile Station, MS), remote station, remote A terminal, mobile device, user terminal, wireless communication device, user agent or user equipment.
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless Communication-enabled handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or in future evolved Public Land Mobile Networks (PLMN) terminal equipment, etc., which are not limited in this embodiment of the present application.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • PLMN Public Land Mobile Networks
  • the technical solutions of the embodiments of the present application may be applicable to the fifth generation (5th Generation, 5G) communication system, and may also be applicable to the fourth generation (4th Generation, 4G) and third generation (3rd Generation, 3G) communication systems. It is applicable to various new communication systems in the future, such as the sixth generation (6th Generation, 6G), the seventh generation (7th Generation, 7G), etc., which are not limited in the embodiments of the present application.
  • the technical solution of the present application is also applicable to different network architectures, including but not limited to relay network architecture, dual-link architecture, vehicle-to-everything (V2X) architecture, device-to-device communication (Device- to-Device, D2D) and other architectures.
  • relay network architecture dual-link architecture
  • V2X vehicle-to-everything
  • D2D device-to-device communication
  • D2D device-to-device communication
  • Embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium is a non-volatile storage medium or a non-transitory storage medium, on which a computer program is stored, and the computer program is executed by a processor
  • the steps of the methods provided in the corresponding embodiments of FIG. 4 , FIG. 7 , and FIG. 9 are executed.
  • the steps of the methods provided in the corresponding embodiments of FIG. 4 , FIG. 7 , and FIG. 9 are executed.
  • An embodiment of the present application further provides an electronic device, including a memory and a processor, the memory stores a computer program that can be run on the processor, and the processor executes the above-mentioned FIG. 4 when the computer program runs. 7 and 9 correspond to the steps of the method provided by the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种重传响应反馈方法及装置,该方法包括:遍历各服务小区,确定上行信道资源需要反馈的每个服务小区内原始下行时隙及延后下行时隙的HARQ-ACK(401);分别获取所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息(402);根据所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息生成HARQ-ACK码本(403);使用上行信道发送所述HARQ-ACK码本(404)。利用本申请方案,可以保证SPS PDSCH HARQ-ACK的有效反馈。

Description

重传响应反馈方法及装置、终端设备
本申请要求2021年4月6日提交中国专利局、申请号为202110369457.X、发明名称为“重传响应反馈方法及装置、终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种重传响应反馈方法及装置,还涉及一种终端设备。
背景技术
在5G NR(New Radio,新空口)中,下行数据调度时间指示如图1所示,其中,K0,K1单位都是时隙(slot),K0表示PDSCH(Physical Downlink Shared Channel,物理下行共享信道)与PDCCH(Physical Downlink Control Channel,物理下行控制信道)的时间间隔,PDSCH用于传输下行数据,PDCCH用于传输DCI(Downlink Control Information,下行控制信息);K1表示HARQ-ACK反馈与PDSCH的时间间隔。PDCCH的资源单元是CCE,一个PDCCH是n个连续的CCE。
动态调度PDSCH HARQ(Hybrid Automatic Repeat reQuest,混合式自动重传请求)-ACK反馈所用的PUCCH资源,gNB(generation NodeB,下一代基站)最多给UE(User Equipment,用户设备)配置4个HARQ-ACK比特范围,且配置每个范围内可用于反馈动态PDSCH HARQ-ACK的PUCCH资源集合(Resource Set),即每个HARQ-ACK比特范围内均有唯一的PUCCH资源集合,每个PUCCH资源集合中可以包含多个PUCCH资源。动态调度DCI会指示一个PUCCH资源指示,UE根据此指示(及承载DCI的PDCCH起始CCE索引)确定PUCCH资源集合内用哪个PUCCH资源反馈动态调度PDSCH HARQ-ACK。
NR上下行均采用异步HARQ,HARQ-ACK信息既可以在PUCCH上承载,也可以在PDCCH上承载。NR R15仅支持UE在一个时隙仅有一个承载HARQ-ACK信息的PUCCH。如果UE检测到在时隙n接收PDSCH,或UE在时隙n检测到SPS(Semi-Persistent Scheduling,半持续调度)释放的DCI,UE在时隙(n+k)发送相应的HARQ-ACK信息。其中,k通过DCI中的PDSCH到HARQ的定时指示器来指示,如果DCI中没有该定时指示器,则通过高层参数DI-DataToUL-ACK来表示。
对于NR中的SPS,由于受到SPS周期的限制,会出现无法进行HARQ-ACK反馈的情况。比如图2所示,时隙n+2内SPS PDSCH的HARQ-ACK反馈在时隙n+5,但是由于时隙n+5全部为下行符号,无法进行HARQ-ACK反馈。
发明内容
本申请实施例提供一种重传响应反馈方法及装置、终端设备,以保证SPS PDSCH HARQ-ACK的有效反馈。
为此,本申请实施例提供如下技术方案:
一种重传响应反馈方法,所述方法包括:
遍历各服务小区,确定上行信道资源需要反馈的每个服务小区内原始下行时隙及延后下行时隙的HARQ-ACK;所述原始下行时隙是指根据用于指示PDSCH到对应ACK/NACK反馈的时隙偏移值K1确定的ACK/NACK反馈对应的下行时隙;所述延后下行时隙是指需要延后发送根据所述K1确定的ACK/NACK反馈对应的下行时隙;
分别获取所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息;
根据所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息生成HARQ-ACK码本;
使用上行信道发送所述HARQ-ACK码本。
可选地,所述根据所述原始下行时隙对应的HARQ-ACK信息及所述延后下行时隙对应的HARQ-ACK信息生成HARQ-ACK码本包括:
如果当前只有SPS PDSCH HARQ-ACK反馈,则将所述原始下行时隙对应的HARQ-ACK信息及所述延后下行时隙对应的HARQ-ACK信息按照每{SPS配置索引,服务小区索引}的下行时隙内HARQ-ACK升序排列,接着每个服务小区索引内按SPS配置索引内HARQ-ACK升序排列,最后按服务小区索引内HARQ-ACK的升序排列,生成SPS PDSCH HARQ-ACK码本;
如果当前有动态调度PDSCH和/或SPS PDSCH释放的PDCCH的HARQ-ACK反馈、并且有SPS PDSCH HARQ-ACK反馈,则根据高层配置信息确定需要使用的HARQ-ACK码本;
若生成半静态HARQ-ACK码本,则将所述延后下行时隙的HARQ-ACK信息置于所述原始下行时隙的HARQ-ACK信息后面,生成半静态HARQ-ACK码本;或者根据所述延后下行时隙扩展K1时隙集合,根据扩展后的K1时隙集合生成半静态HARQ-ACK码本;
若生成动态码本,则根据DCI内DAI指示生成第一码本,将所述延后下行时隙对应的HARQ-ACK信息生成第二码本,将所述第二码本置于所述第一码本后面,得到动态HARQ-ACK码本。
可选地,所述将所述延后下行时隙的HARQ-ACK信息置于所述原始下行时隙的HARQ-ACK信息后面,生成半静态HARQ-ACK码本包括:
依次将每个服务小区的延后下行时隙的HARQ-ACK信息置于该服务小区的原始下行时隙的HARQ-ACK信息后面,生成半静态HARQ-ACK码本;或者
将所有服务小区的延后下行时隙的HARQ-ACK信息置于所有服 务小区的原始下行时隙的HARQ-ACK信息后面、并按小区索引排序,生成半静态HARQ-ACK码本。
可选地,所述根据所述延后下行时隙扩展K1时隙集合,根据扩展后的K1时隙集合生成HARQ-ACK码本包括:
根据所述延后下行时隙在所述K1时隙集合中添加延后时隙,得到扩展后的K1时隙集合,根据扩展后的K1时隙集合生成半静态HARQ-ACK码本。
可选地,所述将所述延后下行时隙对应的HARQ-ACK信息生成第二码本包括:
将所述延后下行时隙对应的HARQ-ACK信息按照每{SPS配置索引,服务小区索引}的下行时隙内HARQ-ACK升序排列,接着每个服务小区索引内按SPS配置索引内HARQ-ACK升序排列,最后按服务小区索引内HARQ-ACK的升序排列,生成第二码本。
可选地,所述方法还包括:
获取高层配置的第一配置参数,所述第一配置参数用于指示SPS PDSCH HARQ-ACK的最大允许的延后反馈时隙偏置;
遍历各服务小区配置的SPS PDSCH,根据所述第一配置参数确定上行信道资源每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。
可选地,所有SPS PDSCH共享所述第一配置参数;或者每个SPS PDSCH对应各自的第一配置参数。
可选地,所述遍历各服务小区配置的SPS PDSCH,根据所述第一配置参数确定上行信道资源每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙包括:
统计上行信道资源对应的各时隙内需要反馈SPS PDSCH HARQ-ACK的原始下行时隙、以及可能需要在所述时隙内反馈SPS  PDSCH HARQ-ACK的候选延后下行时隙;
将统计得到的所述原始下行时隙和所述候选延后下行时隙取合集,得到各时隙对应的合集;
依次将上行信道资源对应的各时隙作为当前时隙,将所述当前时隙对应的合集中的各候选延后下行时隙作为待检测时隙,检测所述待检测时隙对应的原始下行时隙与所述当前时隙的差值是否小于等于所述SPS PDSCH对应的第一配置参数;
如果是,则确定所述候选延后下行时隙为在所述当前时隙内需要反馈SPS PDSCH HARQ-ACKR的延后下行时隙。
可选地,所述遍历各服务小区配置的SPS PDSCH,根据所述第一配置参数确定上行信道资源每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙包括:
遍历各服务小区,确定需要反馈SPS PDSCH HARQ-ACK的候选时隙;
如果所述候选时隙没有可用的PUCCH资源,则根据所述第一配置参数确定需要反馈所述SPS PDSCH HARQ-ACK的延后下行时隙;
统计上行信道资源每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。
一种重传响应反馈装置,所述装置包括:
原始下行时隙确定模块,用于遍历各服务小区,确定上行信道资源需要反馈的每个服务小区内原始下行时隙的HARQ-ACK;所述原始下行时隙是指根据用于指示PDSCH到对应ACK/NACK反馈的时隙偏移值K1确定的ACK/NACK反馈对应的下行时隙;
延后下行时隙确定模块,用于遍历各服务小区,确定上行信道资源需要反馈的每个服务小区内延后下行时隙的HARQ-ACK;所述延后下行时隙是指需要延后发送根据所述K1确定的ACK/NACK反馈 对应的下行时隙;
反馈信息获取模块,用于分别获取所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息;
码本生成模块,用于根据所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息生成HARQ-ACK码本;
发送模块,用于使用上行信道发送所述HARQ-ACK码本。
可选地,所述码本生成模块包括:
SPS码本生成模块,用于在当前只有SPS PDSCH HARQ-ACK反馈时,将所述原始下行时隙对应的HARQ-ACK信息及所述延后下行时隙对应的HARQ-ACK信息按照每{SPS配置索引,服务小区索引}的下行时隙内HARQ-ACK升序排列,接着每个服务小区索引内按SPS配置索引内HARQ-ACK升序排列,最后按服务小区索引内HARQ-ACK的升序排列,生成SPS PDSCH HARQ-ACK码本;
码本类型确定模块,用于在当前有动态调度PDSCH和/或SPS PDSCH释放的PDCCH的HARQ-ACK反馈、并且有SPS PDSCH HARQ-ACK反馈时,根据高层配置信息确定需要使用的HARQ-ACK码本;
半静态码本生成模块,用于在所述码本类型单元确定生成半静态HARQ-ACK码本时,生成半静态HARQ-ACK码本;所述半静态码本生成模块包括:第一半静态码本生成单元、或者第二半静态码本生成单元;
所述第一半静态码本生成单元,用于将所述延后下行时隙的HARQ-ACK信息置于所述原始下行时隙的HARQ-ACK信息后面,生成半静态HARQ-ACK码本;
所述第二半静态码本生成单元,用于根据所述延后下行时隙扩展K1时隙集合,根据扩展后的K1时隙集合生成半静态HARQ-ACK码 本;
动态码本生成模块,用于在所述码本类型单元确定生成动态码本时,根据DCI内DAI指示生成第一码本,将所述延后下行时隙对应的HARQ-ACK信息生成第二码本,将所述第二码本置于所述第一码本后面,得到动态HARQ-ACK码本。
可选地,所述第一半静态码本生成单元,具体用于依次将每个服务小区的延后下行时隙的HARQ-ACK信息置于该服务小区的原始下行时隙的HARQ-ACK信息后面,生成半静态HARQ-ACK码本;或者将所有服务小区的延后下行时隙的HARQ-ACK信息置于所有服务小区的原始下行时隙的HARQ-ACK信息后面、并按小区索引排序,生成半静态HARQ-ACK码本。
可选地,所述第二半静态码本生成单元,具体用于根据所述延后下行时隙在所述K1时隙集合中添加延后时隙,得到扩展后的K1时隙集合,根据扩展后的K1时隙集合生成半静态HARQ-ACK码本。
可选地,所述动态码本生成模块将所述延后下行时隙对应的HARQ-ACK信息按照每{SPS配置索引,服务小区索引}的下行时隙内HARQ-ACK升序排列,接着每个服务小区索引内按SPS配置索引内HARQ-ACK升序排列,最后按服务小区索引内HARQ-ACK的升序排列,生成第二码本。
可选地,所述装置还包括:
配置参数获取模块,用于获取高层配置的第一配置参数,所述第一配置参数用于指示SPS PDSCH HARQ-ACK的最大允许的延后反馈时隙偏置;
所述延后下行时隙确定模块,具体用于遍历各服务小区配置的SPS PDSCH,根据所述第一配置参数确定上行信道资源每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。
可选地,所有SPS PDSCH共享所述第一配置参数;或者每个SPS  PDSCH对应各自的第一配置参数。
可选地,所述延后下行时隙确定模块包括:
第一统计单元,用于统计上行信道资源对应的各时隙内需要反馈SPS PDSCH HARQ-ACK的原始下行时隙、以及可能需要在所述时隙内反馈SPS PDSCH HARQ-ACK的候选延后下行时隙;
合集单元,用于将统计得到的所述原始下行时隙和所述候选延后下行时隙取合集,得到各时隙对应的合集;
检测单元,用于依次将上行信道资源对应的各时隙作为当前时隙,将所述当前时隙对应的合集中的各候选延后下行时隙作为待检测时隙,检测所述待检测时隙对应的原始下行时隙与所述当前时隙的差值是否小于等于所述SPS PDSCH对应的第一配置参数;如果是,则确定所述候选延后下行时隙为在所述当前时隙内需要反馈SPS PDSCH HARQ-ACKR的延后下行时隙。
可选地,所述延后下行时隙确定模块包括:
候选时隙确定单元,用于遍历各服务小区,确定需要反馈SPS PDSCH HARQ-ACK的候选时隙;
延后下行时隙确定单元,用于在所述候选时隙没有可用的PUCCH资源的情况下,根据所述第一配置参数确定需要反馈所述SPS PDSCH HARQ-ACK的延后下行时隙;
第二统计单元,用于统计上行信道资源每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。
一种终端设备,包括前面所述的重传响应反馈装置。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行上述方法的步骤。
本申请实施例还提供一种电子设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述方法的步骤。
本申请实施例提供的本申请实施例提供的重传响应反馈方法及装置,通过遍历各服务小区,确定上行信道资源需要反馈的每个服务小区内原始下行时隙及延后下行时隙的HARQ-ACK;分别获取所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息;根据所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息生成HARQ-ACK码本,使用上行信道发送所述HARQ-ACK码本,从而可以保证SPS PDSCH HARQ-ACK的有效反馈,进而提高终端设备性能,提升通信质量。
附图说明
图1是现有技术中下行数据调度时间示意图;
图2是现有技术中SPS中HARQ-ACK反馈时隙与上、下行链路时隙关系示意图;
图3是适用于本申请实施例的移动通信系统的架构示意图;
图4是本申请实施例重传响应反馈方法的一种流程图;
图5是本申请实施例中上行信道资源各时隙内需要反馈HARQ-ACK的原始下行时隙及延后下行时隙的示意图;
图6是本申请实施例中不同服务小区上配置的SPS PDSCH及对应的反馈SPS PDSCH HARQ-ACK的一个示例;
图7是本申请实施例中确定需要在各时隙内反馈SPS PDSCH HARQ-ACK的原始下行时隙及延后下行时隙的一种流程图;
图8是本申请实施例中不同服务小区上配置的SPS PDSCH及对应的反馈SPS PDSCH HARQ-ACK的一个示例;
图9是本申请实施例中确定需要在各时隙内反馈SPS PDSCH HARQ-ACK的原始下行时隙及延后下行时隙的另一种流程图;
图10是本申请实施例重传响应反馈装置的一种结构框图;
图11是本申请实施例中码本生成模块的一种结构框图;
图12是本申请实施例重传响应反馈装置的另一种结构框图;
图13是本申请实施例中延后下行时隙确定模块的一种结构框图;
图14是本申请实施例中延后下行时隙确定模块的另一种结构框图。
具体实施方式
为使本申请的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本申请的具体实施例做详细的说明。
HARQ是一种结合FEC(Forward Error Correction,前向纠错)与ARQ(Automatic Repeat reQuest,自动重传请求)方法的技术。FEC通过添加冗余信息,使得接收端能够纠正一部分错误,从而减少重传的次数。对于FEC无法纠正的错误,接收端会通过ARQ机制请求发送端重发数据。接收端使用检错码,通常为CRC(Cyclic Redundancy Check,循环冗余校验)校验,来检测接收到的数据包是否出错。如果无错,则接收端会发送一个肯定的确认(ACK)给发送端,发送端收到ACK后,会接着发送下一个数据包。如果出错,则接收端会丢弃该数据包,并发送一个否定的确认(NACK)给发送端,发送端收到NACK后,会重发相同的数据包。UE在一个HARQ反馈资源,即PUSCH或PDSCH上反馈的HARQ-ACK信息的整体称为HARQ-ACK码本。
NR中的SPS(Semi-Persistent Scheduling,半持续调度)是指半静态配置无线资源,并将该无线资源周期性地分配给某个特定UE。 使用SPS C-RNTI(Cell-Radio Network Temporary Identifier,小区无线网络临时标识)加扰的PDCCH指定UE所使用的无线资源(为了便于描述,后面将其称为SPS资源),每过一个周期,UE就使用该SPS资源来收或发数据。gNB无需在该时隙重新下发PDCCH来指定分配的资源,降低了对应的PDCCH开销。
当只有SPS PDSCH HARQ-ACK反馈,没有调度PDCCH、或者SPS PDSCH激活PDCCH、或者SPS PDSCH去激活PDCCH的HARQ-ACK反馈时,采用SPS PDSCH HARQ-ACK码本,在配置了多个SPS PDSCH的情况下,HARQ-ACK比特顺序为:根据这个时隙或子时隙(slot/subslot)内PUCCH需要承载哪些时隙或子时隙内SPS PDSCH,确定所有的时隙或子时隙索引集合,遍历此集合内每个时隙或子时隙,按照每{SPS配置索引,服务小区索引}的下行时隙内HARQ-ACK升序排列,接着每个服务小区索引内按SPS配置索引内HARQ-ACK升序排列,最后按服务小区索引内HARQ-ACK的升序排列。
当有SPS PDSCH HARQ-ACK与动态调度PDSCH的HARQ-ACK一起进行反馈时,会按照高层信令的配置决定使用type 1 HARQ-ACK码本或type 2 HARQ-ACK码本。
type 1 HARQ-ACK码本为半静态码本,首先需要确定PDSCH可能位置的集合M,影响M的因素包括:K1的取值范围、时域资源分配配置、上下行的SCS(Sub-Carrier Space,子载波间隔)配置、半静态上下行帧结构配置。若采用DCI格式1_1调度PDSCH,K1的集合由高层信令配置;若采用DCI格式1_0调度PDSCH,K1的集合固定为{1,2,3,4,5,6,7,8}。K1为PUCCH的参数,其对应的SCS为PUCCH的SCS。type 1 HARQ-ACK码本中,需要根据上下行的SCS配置,确定下行对应的K1的集合K1DL;对于每一个K1DL集合对应的下行时隙,首先找出没有上下行帧结构冲突的PDSCH的可能的位置,然后找出没有重叠的PDSCH的可能的位置。NR R15的半静态码本 需要在这些可能的位置反馈HARQ-ACK。
type 2 HARQ-ACK码本为动态码本,码本的确定基于计数DAI(Downlink Assignment Index,下行链路分配索引)和总DAI。对于某一个PUCCH,总DAI为PDCCH监听时刻集合内从第一个DAI时刻至当前DAI时刻,在所有小区基站发送的DCI的总数量。计数DAI为PDCCH监听时刻集合内,基站在当前DAI时刻发送的从第一个小区至当前小区DCI次数的累加计数,与前一DAI时刻对应的总DAI之和。
本申请针对上面三种不同方式的码本,分别提出相应的解决方案,以保证SPS PDSCH HARQ-ACK的有效反馈。
本申请实施例的技术方案可以应用于各种移动通信系统,例如:GSM(GlobalSystem of Mobile Communication,全球移动通讯)系统、CDMA(Code Division MultipleAccess,码分多址)系统、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)系统、GPRS(General Packet Radio Service,通用分组无线业务)、LTE(Long TermEvolution,长期演进)系统、LTE FDD(Frequency Division Duplex,频分双工)系统、LTE TDD(Time Division Duplex,时分双工)、UMTS(Universal MobileTelecommunication System,通用移动通信系统)、WiMAX(Worldwide Interoperabilityfor Microwave Access,全球互联微波接入)通信系统、5G(5th Generation)系统、NR(New Radio,新无线)等。
适用于本申请实施例的移动通信系统的架构如图3所示,该移动通信系统可以包括核心网设备301、无线接入网设备302和至少一个终端设备303。终端设备303通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无 线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。
终端设备303也可以称为终端、UE(User Equipment,用户设备)、MS(Mobile Station,移动台)、MT(Mobile terminal,移动终端)等。终端设备303可以是手机、平板电脑、带无线收发功能的电脑、VR(Virtual Reality,虚拟现实)终端设备、AR(Augmented Reality,增强现实)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请中将前述终端设备及可应用于前述终端设备的芯片统称为终端设备。应理解,本申请实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、SIP(Session InitiationProtocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备等,本申请实施例对此并不限定。
在该移动通信系统中,无线接入网设备302是终端设备303通过无线方式接入到该移动通信系统中的接入设备。该无线接入网设备302可以是基站、演进型基站(evolved NodeB)、家庭基站、WIFI系统中的AP(Access Point,接入点)、无线中继节点、无线回传节点、TP(Transmission Point,传输点)或者TRP(Transmission and Reception Point,发送接收点)等,还可以为NR系统中的gNB,或者还可以是构成基站的组件或一部分设备,如CU(Centralized Unit,集中式单元)、DU(Distributed Unit,分布式单元)或BBU(Baseband Unit, 基带单元)等。应理解,本申请的实施例中,对无线接入网设备302所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。在本申请中,网络设备可以是指网络设备本身,也可以是应用于网络设备中完成无线通信处理功能的芯片。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括CPU(Central Processing Unit,中央处理器)、MMU(Memory Management Unit,内存管理单元)和内存等硬件。该操作系统可以是任意一种或多种通过进程实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
需要说明的是,本申请实施例中提到的上行信道资源是指配置的SPS PDSCH HARQ-ACK PUCCH资源。另外,后面实施例中所提到的时隙,根据不同应的需要,也可以替换为子时隙,对此本申请不做限定。
需要指出的是,本申请实施例中涉及的“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本申请实施例中涉及的等于可以与大于连用,适用于大于时所采用的技术方案,也可以与小于连用,适用于与小于时所采用的技术方案,需要说明的是,当等于与大于连用时,不与小于连用;当等于与小于连用时,不与大于连用。
针对现有技术中SPS PDSCH HARQ-ACK反馈存在的问题,本申请实施例提供的一种重传响应反馈方法及装置,通过遍历各服务小区,确定上行信道资源需要反馈的每个服务小区内原始下行时隙及延后下行时隙的HARQ-ACK;分别获取所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息;根据所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息生成HARQ-ACK码本,使用上行信道发送所述HARQ-ACK码本。
如图4所示,是本申请实施例重传响应反馈方法的一种流程图,包括以下步骤:
步骤401,遍历各服务小区,确定上行信道资源需要反馈的每个服务小区内原始下行时隙及延后下行时隙的HARQ-ACK。
在该实施例中,各服务小区配置的PDSCH可以包括:SPS PDSCH和/或动态调度PDSCH。
如图5所示的服务小区上配置的PDSCH有:SPS PDSCH1和SPS PDSCH2,K1=3。D表示下行信道资源,U表示上行信道资源。
带箭头的虚线指示编号为3的SPS PDSCH1(记为SPS1-3)的HARQ-ACK的反馈时隙Slot5,由于时隙Slot5对应的是下行信道资源,因此需要将该HARQ-ACK反馈延迟到后面PUCCH资源的时隙上,具体延迟到哪个时隙,本申请实施例不做限定,可以根据现有技术等来确定,比如延迟到下一个可用的PUCCH资源时隙Slot8上。
在本发明实施例中,所述原始下行时隙是指根据用于指示PDSCH到对应ACK/NACK反馈的时隙偏移值K1确定的ACK/NACK反馈对应的下行时隙;所述延后下行时隙是指需要延后发送根据所述K1确定的ACK/NACK反馈对应的下行时隙。
通过遍历各服务小区配置的PDSCH,可以确定上行信道资源需要反馈的每个服务小区内原始下行时隙的HARQ-ACK及延后下行时 隙的HARQ-ACK。比如图5示例中,上行信道资源Slot8内,需要反馈的原始下行时隙的HARQ-ACK有Slot5的SPS1 PDSCH1 HARQ-ACK,需要反馈的延后下行时隙有Slot3的SPS1 PDSCH1 HARQ-ACK。
步骤402,分别获取所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息。
步骤403,根据所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息生成HARQ-ACK码本。
由于针对不同码本,在各时隙内需要反馈的HARQ-ACK有不同的编码顺序。为此,在本申请实施例中,还提供了针对不同码本方式的HARQ-ACK码本生成方法,具体如下:
如果当前只有SPS PDSCH HARQ-ACK反馈,则将所述原始下行时隙对应的HARQ-ACK信息及所述延后下行时隙对应的HARQ-ACK信息按照SPS码本的比特顺序生成HARQ-ACK码本,即按照每{SPS配置索引,服务小区索引}的下行时隙内HARQ-ACK升序排列,接着每个服务小区索引内按SPS配置索引内HARQ-ACK升序排列,最后按服务小区索引内HARQ-ACK的升序排列,生成SPS PDSCH HARQ-ACK码本。
如果当前有动态调度PDSCH的HARQ-ACK反馈和/或PS PDSCH释放的PDCCH的HARQ-ACK反馈、并且有动态调度PDSCH的HARQ-ACK反馈和SPS PDSCH HARQ-ACK反馈,则根据高层配置信息确定需要使用的HARQ-ACK码本。相应地,需要采用不同的方式生成HARQ-ACK码本。
在生成半静态HARQ-ACK码本时,可以采用下面两种方式生成HARQ-ACK码本:
(1)将所述延后下行时隙的HARQ-ACK信息置于所述原始下行时隙的HARQ-ACK信息后面,生成半静态HARQ-ACK码本。
具体地,可以采用以下两种方式:
方式1是依次将每个服务小区的延后下行时隙的HARQ-ACK信息置于该服务小区的原始下行时隙的HARQ-ACK信息后面,生成半静态HARQ-ACK码本。
方式2是将所有服务小区的延后下行时隙的HARQ-ACK信息附在所有服务小区的原始下行时隙的HARQ-ACK信息后面,生成半静态HARQ-ACK码本。
参照图6所示服务小区配置的PDSCH进一步详细说明上述两种方式。
在该示例中有两个载波,分别为CC0,CC1,其中只有CC0发送PUCCH,SPS1和SPS2的HARQ-ACK反馈的偏置K1=3。高层参数配置的K1时隙集合为{1,2,3}。
CC0服务小区上配置有1个SPS PDSCH,为SPS PDSCH1(为便于描述,后续将其称为SPS1),其周期为1个时隙。SPS1配置为允许延后;
CC0服务小区上还配置有1个动态调度PDSCH,所在时隙为Slot6。
CC1服务小区上配置有1个SPS PDSCH,为SPS PDSCH2(为便于描述,后续将其称为SPS2),其周期为3个时隙,SPS2配置为不允许延后。
假设各时隙内SPS PDSCH所对应的HARQ-ACK信息及SPS PDSCH发送情况如下表1所示,其中,ACK用1表示,NACK用0表示。
表1
Slot索引 Slot 0 1 2 3 4 5 6 7
CC0 1 1 1 NA NA 0 1 1
CC1 NA NA 1 NA NA 1 NA NA
在生成Slot8 PUCCH内HARQ-ACK信息时,判断CC0的延后时隙K1_def={6},CC1的延后时隙K1_def={6}。
首先,遍历各服务小区内K1时隙集合。然后再遍历延后HARQ-ACK反馈时隙,获取对应所述延后HARQ-ACK反馈时隙的SPS PDSCH HARQ-ACK信息。
对于Slot 5,Slot 6,Slot 7内PDSCH的HARQ-ACK对应时隙的确定,与现有技术相同,在此不再赘述。
CC0上,判断对于Slot8内PUCCH需要承载K1={1,2,3}PDSCH HARQ-ACK,确定所有的需要反馈PDSCH时隙索引集合为{slot5,slot6,slot 7},遍历此集合内每个时隙,按照每下行时隙内PDSCH可能位置的HARQ-ACK升序排列为{0,1,0}。其中,slot 7上因为没有需要在此PUCCH上反馈的PDSCH,所以填充为NACK(0)。
CC1上,判断对于Slot8内PUCCH需要承载K1={1,2,3}PDSCH HARQ-ACK,确定所有的需要反馈PDSCH时隙索引集合为{slot5,slot6,slot 7},遍历此集合内每个slot,按照每下行时隙内PDSCH可能位置的HARQ-ACK升序排列为{1,0,0}。其中,slot 6和slot7上因为没有需要在此PUCCH上反馈的PDSCH,所以填充为NACK(0)。
CC0上,时隙2内SPS PDSCH的HARQ-ACK,需要延后到Slot8上;同样,CC1上,时隙2内SPS PDSCH的HARQ-ACK,需要延后到Slot8上,由于SPS2配置为不允许延后,因此将CC1上时隙2内PDSCH的HARQ-ACK丢弃。
因此,根据上述方式1生成的码本为100/1/110/0,其中,前三位是CC0上按现有方式生成的比特信息,第四位是CC0上延后下行时 隙SPS PDSCH1的HARQ-ACK。第5-7位是CC1上按现有方式生成的比特信息,第8位是CC1上延后下行时隙SPS PDSCH2的HARQ-ACK。需要说明的是,码本中的斜线只是为了方便理解,实际码本中并不存在。
采用上述方式2时,HARQ-ACK码本的生成过程与方式1类似,区别在于,在方式2中需要最后再遍历延后HARQ-ACK反馈时隙并按小区索引排序,生成对应所有小区的SPS PDSCH HARQ-ACK信息。根据上述方式2生成的码本为100/110/10,其中,前三位是CC0上按现有方式生成的所有小区的原始下行时隙的HARQ-ACK信息,第4-6位是CC1上按现有方式生成的所有小区的原始下行时隙的HARQ-ACK信息,第7位是CC0上延后下行时隙的SPS PDSCH1的HARQ-ACK,第8位是CC1上延后下行时隙的SPS PDSCH2的HARQ-ACK。
(2)根据所述延后下行时隙扩展K1时隙集合,根据扩展后的K1时隙集合生成半静态HARQ-ACK码本。
具体地,根据所述延后下行时隙在所述K1时隙集合中添加延后时隙,得到扩展后的K1时隙集合。
下面参照图6所示服务小区配置的PDSCH对此方式进一步详细说明。
在生成Slot8 PUCCH内HARQ-ACK信息时,判断CC0的延后时隙K1_def={6},CC1的延后时隙K1_def={6}。所以根据延后下行时隙对K1时隙集合进行扩展,扩展后的K1时隙集合为K1={1,2,3,6}。
遍历上述K1时隙集合,对于时隙2内HARQ-ACK,CC0上,时隙2内SPS PDSCH的HARQ-ACK需要延后到Slot8上;同样,CC1上,时隙2内SPS PDSCH的HARQ-ACK需要延后到Slot8上,由于SPS2配置为不允许延后,因此将CC1上时隙2内PDSCH的HARQ-ACK丢弃。
CC0上,遍历此K1时隙集合内每个时隙,由于时隙2内只有一个SPS PDSCH,其对应的HARQ-ACK为1,因此,按照每下行时隙内SPS配置索引的HARQ-ACK升序排列为{1};
CC1上,遍历此时隙集合K1内每个时隙,按照每下行时隙内SPS配置索引的HARQ-ACK升序排列为{1};
对于Slot5,Slot6,Slot7内PDSCH的HARQ-ACK对应时隙的确定,与现有技术相同,在此不再赘述。
CC0上,判断对于Slot8内PUCCH需要承载K1={1,2,3}PDSCH HARQ-ACK,确定所有的需要反馈PDSCH时隙索引集合为{Slot5,Slot6,Slot7},遍历此集合内每个时隙,按照每下行时隙内PDSCH可能位置的HARQ-ACK升序排列为{0,1,0}。其中,Slot 7上因为没有需要在此PUCCH上反馈的PDSCH,所以填充为NACK(0)。
CC1上,判断对于Slot8内PUCCH需要承载K1={1,2,3}PDSCH HARQ-ACK,确定所有的需要反馈PDSCH时隙索引集合为{slot5,Slot6,Slot7},遍历此集合内每个时隙,按照每下行时隙内PDSCH可能位置的HARQ-ACK升序排列为{1,0,0}。其中,Slot6,Slot7上因为没有需要在此PUCCH上反馈的PDSCH,所以填充为NACK(0)。
基于上述过程,确定Slot8内的HARQ-ACK反馈信息为{11010100}。
在生成动态HARQ-ACK码本时,可以按照以下方式:
根据DCI内DAI指示生成第一码本,将所述延后下行时隙对应的HARQ-ACK信息生成第二码本,将所述第二码本置于所述第一码本后面,得到动态HARQ-ACK码本。
步骤404,使用上行信道发送所述HARQ-ACK码本。
本申请实施例提供的重传响应反馈方法,通过遍历各服务小区, 确定上行信道资源需要反馈的每个服务小区内原始下行时隙及延后下行时隙的HARQ-ACK;分别获取所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息;根据所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息生成HARQ-ACK码本,使用上行信道发送所述HARQ-ACK码本,从而可以保证SPS PDSCH HARQ-ACK的有效反馈,进而提高终端设备性能,提升通信质量。
前面提到,针对SPS PDSCH HARQ-ACK需要延后反馈时,具体可以延后到PUCCH资源的哪个时隙上,可以采用现有技术来确定。在图4所示本申请实施例中并不做限定。
进一步地,本申请还提供一种确定需要在上行信道资源内反馈SPS PDSCH HARQ-ACK的延后下行时隙的方法。遍历各服务小区,根据高层配置的第一配置参数确定上行信道资源内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。所述第一配置参数用于指示SPS PDSCH HARQ-ACK的最大允许的延后反馈时隙偏置,其单位为时隙或子时隙。
需要说明的是,所述第一配置参数可以同时指示所有SPS PDSCH配置都可以延后反馈HARQ-ACK;也可以指示一个或多个SPS PDSCH配置可以延后反馈,其它不可以延后反馈。另外,所有SPS PDSCH可以共享所述第一配置参数;或者每个SPS PDSCH对应各自的第一配置参数,对此本申请实施例不做限定。
进一步地,可以配置所有SPS PDSCH共享所述第一配置参数,也就是说,不同的SPS PDSCH具有同样的第一配置参数。或者,可以配置每个SPS PDSCH对应各自的第一配置参数,也就是说,对应不同的SPS PDSCH,其C对应的配置参数可以相同,也可以不同,对此本实施例不做限定。
比如,当SPS PDSCH不能延后反馈HARQ-ACK时,其对应的N=0;当SPS PDSCH可以延后反馈HARQ-ACK时,其对应的N为 一个大于1的值,单位与此SPS PDSCH HARQ-ACK反馈的单位相同,可以为时隙或子时隙。
基于上述第一配置参数,确定上行信道资源需要反馈SPS PDSCH HARQ-ACK的延后下行时隙的一种实现方式如图7所示,包括以下步骤:
步骤701,统计上行信道资源对应的各时隙内需要反馈SPS PDSCH HARQ-ACK的原始下行时隙、以及可能需要在所述时隙内反馈SPS PDSCH HARQ-ACK的候选延后下行时隙。
具体地,需要遍历各服务小区、每个服务小区上配置的SPS PDSCH,根据各SPS PDSCH的配置参数,确定每个SPS PDSCH对应的HARQ-ACK的时隙。假设SPS PDSCH1所在的时隙记为时隙a1,其对应的HARQ-ACK所在的时隙记为时隙b1,SPS PDSCH1所在的时隙记为时隙a2,其对应的HARQ-ACK所在的时隙记为时隙b2。
遍历SPS PDSCH1,如果时隙b1内为上行链路UL符号,可以使用配置的SPS PDSCH HARQ-ACK PUCCH资源,则时隙b1内需要反馈SPS PDSCH HARQ-ACK的原始下行时隙包括时隙a1;
遍历SPS PDSCH2,如果时隙b2内为下行链路DL符号,无法使用配置的SPS PDSCH HARQ-A CK PUCCH资源,则可将时隙b2上对应SPS PDSCH2 HARQ-ACK的信息使用下一个可用的PUCCH资源比如时隙bn发送,则可能需要在时隙bn内反馈SPS PDSCH HARQ-ACK的原始下行时隙包括时隙a2。
步骤702,将统计得到的所述原始下行时隙和所述候选延后下行时隙取合集,得到各时隙对应的合集。
步骤703,依次将上行信道资源对应的各时隙作为当前时隙,将所述当前时隙对应的合集中的各候选延后下行时隙作为待检测时隙,检测所述待检测时隙对应的原始下行时隙与所述当前时隙的差值是否小于等于所述SPS PDSCH对应的第一配置参数。如果是,则执行 步骤704;否则,执行步骤705。
步骤704,确定所述候选延后下行时隙为在所述当前时隙内需要反馈SPS PDSCH HARQ-ACKR的延后下行时隙。
步骤705,确定所述候选延后下行时隙不是在所述当前时隙内需要反馈SPS PDSCH HARQ-ACKR的延后下行时隙。
下面结合图8举例说明利用图7所示实施例实现SPS PDSCH HARQ-ACK的过程。
如图8所示,有两个载波,分别为CC0,CC1,其中只有CC0发送PUCCH,SPS1和SPS2的HARQ-ACK反馈的偏置K1=3。
CC0服务小区上配置的SPS PDSCH个数为1,为SPS PDSCH1(为便于描述,后续将其称为SPS1),其周期为1个时隙。SPS1配置为允许延后,且其对应的第一配置参数N 1=3;
CC1服务小区上配置的SPS PDSCH个数为1,为SPS PDSCH2(为便于描述,后续将其称为SPS2),其周期为3个时隙,SPS2配置为不允许延后,即其对应的第一配置参数N 2=0。
SPS1所在的时隙为Slot0、Slot1、Slot2、Slot5、Slot6、Slot7,对应Slot0、Slot1、Slot2、Slot5的HARQ-ACK信息所在时隙应为:Slot3、Slot4、Slot5、Slot8,在Slot5内由于是下行链路DL符号,无法使用配置的SPS PDSCH HARQ-ACK PUCCH资源。一种方式是将Slot5上对应SPS1的HARQ-ACK信息使用下一个可用的PUCCH资源即Slot8发送。
SPS2所在的时隙为Slot2、Slot5,对应Slot2、Slot5的HARQ-ACK信息所在时隙应为Slot5、Slot8。同样,在Slot5内由于是下行链路DL符号,无法使用配置的SPS PDSCH HARQ-ACK PUCCH资源。一种方式是将Slot5上对应SPS2的HARQ-ACK信息使用下一个可用的PUCCH资源即Slot8发送。
因此,根据上述步骤401,统计上行信道资源PUCCH对应的各时隙内需要反馈SPS PDSCH HARQ-ACK的原始下行时隙,分别为:
Slot3:SPS1-Slot0;
Slot4:SPS1-Slot1;
Slot8:SPS1-Slot5、SPS2-Slot5;
统计上行信道资源PUCCH对应的各时隙内可能需要在所述时隙内反馈SPS PDSCH HARQ-ACK的延后下行时隙,分别为:
Slot8:SPS1-Slot2、SPS2-Slot2;
根据上述步骤702,将统计得到的所述原始下行时隙和所述延后下行时隙取合集,得到各时隙对应的合集,对应Slot8的合集为{原始下行时隙:SPS1-Slot5、SPS2-Slot5;延后下行时隙:SPS1-Slot5、SPS2-Slot5}。
根据上述步骤703及步骤704,依次将上行信道资源对应的各时隙Slot3、Slot4、Slot8作为当前时隙,将所述当前时隙对应的合集中的各延后下行时隙作为待检测时隙,检测所述待检测时隙对应的原始下行时隙与所述当前时隙的差值是否小于等于所述SPS PDSCH对应的第一配置参数。
对于Slot8内的延后下行时隙SPS1-Slot2,其对应的SPS PDSCH HARQ-ACK的原始下行时隙为Slot5,与Slot8的差值为3。SPS1配置为允许延后,且N 1=3;所述差值=3,等于SPS1对应的延后阈值3。因此,确定在Slot8反馈延后下行时隙Slot2-SPS1对应的SPS PDSCH HARQ-ACK。
对于Slot8内的延后下行时隙Slot2-SPS2,其对应的SPS PDSCH HARQ-ACK的原始下行时隙为Slot5,与Slot8的差值为3。因为SPS2配置为不允许延后,其对应的第一配置参数N 2=0,所述差值=3,大于SPS2对应的延后阈值0,因此不能在Slot8反馈延后下行时隙 Slot5-SPS2对应的SPS PDSCH HARQ-ACK。
假设各时隙内SPS PDSCH所对应的HARQ-ACK信息及SPS PDSCH发送情况如下表2所示,其中,ACK用1表示,NACK用0表示。
表2
Slot索引 Slot 0 1 2 3 4 5 6 7
CC0 1 1 1 NA NA 0 1 1
CC1 NA NA 1 NA NA 1 NA NA
根据上述分析,最终的Slot8上的HARQ-ACK反馈信息为{101}。
所述第三参数g用于指示在所述反馈对应SPS PDSCH的HARQ-ACK的时隙没有可用的PUCCH资源情况下,可延后反馈对应SPS PDSCH的HARQ-ACK的时隙,g∈{1…N},N表示可延后反馈对应SPS PDSCH的HARQ-ACK的时隙的最大值,即前面所述的延后阈值。
相应地,基于上述第一配置信息,确定需要在上行信道资源各时隙内反馈SPS PDSCH HARQ-ACK的延后下行时隙的一种实现流程如图9所示,包括以下步骤:
步骤901,遍历各服务小区,确定需要反馈SPS PDSCH HARQ-ACK的候选时隙。
步骤902,检查所述候选时隙是否有可用的PUCCH资源;如果有,则执行步骤903;否则,步骤904。
步骤903,确定所述候选时隙为反馈所述SPS PDSCH HARQ-ACK的原始下行时隙。
步骤904,根据所述第一配置参数确定反馈所述SPS PDSCH HARQ-ACK的延后下行时隙。
步骤905,统计上行信道资源每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。
仍以图8所示为例,CC0服务小区上配置的SPS PDSCH个数为1,其周期为1个时隙。SPS1配置为允许延后,且其对应的第一配置参数N 1=3;CC1服务小区上配置的上SPS PDSCH个数为1,其周期为3个时隙,SPS2配置为不允许延后,即其对应的第一配置参数N 2=0。
利用图9所示的方法,遍历各服务小区上配置的SPS PDSCH,可以确定Slot8内需要反馈的下行时隙包括:CC0上Slot5的SPS PDSCH HARQ-ACK和Slot2的SPS PDSCH HARQ-ACK、CC1上Slot5的SPS PDSCH HARQ-ACK。根据表1中的HARQ-ACK信息,可以确定Slot8上的HARQ-ACK反馈信息为{101}。
利用上述图7或图9所示实施例的方法,可以更方便、准确地确定上行信道资源需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。
相应地,本申请实施例还提供一种重传响应反馈装置,如图10所示,在该装置的一种实施例中,所述装置包括以下各模块:
原始下行时隙确定模块11,用于遍历各服务小区,确定上行信道资源需要反馈的每个服务小区内原始下行时隙的HARQ-ACK;所述原始下行时隙是指根据用于指示PDSCH到对应ACK/NACK反馈的时隙偏移值K1确定的ACK/NACK反馈对应的下行时隙;
延后下行时隙确定模块12,用于遍历各服务小区,确定上行信道资源需要反馈的每个服务小区内延后下行时隙的HARQ-ACK;所述延后下行时隙是指需要延后发送根据所述K1确定的ACK/NACK反馈对应的下行时隙;
反馈信息获取模块13,用于分别获取所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息;
码本生成模块14,用于根据所述原始下行时隙的HARQ-ACK信 息及所述延后下行时隙的HARQ-ACK信息生成HARQ-ACK码本;
发送模块15,用于使用上行信道发送所述HARQ-ACK码本。
其中,所述码本生成模块14的一种结构如图11所示,包括以下各模块:
SPS码本生成模块141,用于在当前只有SPS PDSCH HARQ-ACK反馈时,将所述原始下行时隙对应的HARQ-ACK信息及所述延后下行时隙对应的HARQ-ACK信息按照每{SPS配置索引,服务小区索引}的下行时隙内HARQ-ACK升序排列,接着每个服务小区索引内按SPS配置索引内HARQ-ACK升序排列,最后按服务小区索引内HARQ-ACK的升序排列,生成SPS PDSCH HARQ-ACK码本;
码本类型确定模块140,用于在当前有动态调度PDSCH和/或SPS PDSCH释放的PDCCH的HARQ-ACK反馈、并且有SPS PDSCH HARQ-ACK反馈时,根据高层配置信息确定需要使用的HARQ-ACK码本;
半静态码本生成模块142,用于在所述码本类型单元确定生成半静态HARQ-ACK码本时,生成半静态HARQ-ACK码本;
动态码本生成模块143,用于在所述码本类型单元确定生成动态码本时,根据DCI内DAI指示生成第一码本,将所述延后下行时隙对应的HARQ-ACK信息生成第二码本,将所述第二码本置于所述第一码本后面,得到动态HARQ-ACK码本。比如,可以将所述延后下行时隙对应的HARQ-ACK信息按照每{SPS配置索引,服务小区索引}的下行时隙内HARQ-ACK升序排列,接着每个服务小区索引内按SPS配置索引内HARQ-ACK升序排列,最后按服务小区索引内HARQ-ACK的升序排列,生成第二码本。
如图11所示,所述半静态码本生成模块142包括:第一半静态码本生成单元1421、或者第二半静态码本生成单元1422。
所述第一半静态码本生成单元1421,用于将所述延后下行时隙的HARQ-ACK信息置于所述原始下行时隙的HARQ-ACK信息后面,生成半静态HARQ-ACK码本;
所述第二半静态码本生成单元1422,用于根据所述延后下行时隙扩展K1时隙集合,根据扩展后的K1时隙集合生成半静态HARQ-ACK码本。
在实际应用中,所述第一半静态码本生成单元1421具体可以依次将每个服务小区的延后下行时隙的HARQ-ACK信息置于该服务小区的原始下行时隙的HARQ-ACK信息后面,生成半静态HARQ-ACK码本;或者将所有服务小区的延后下行时隙的HARQ-ACK信息置于所有服务小区的原始下行时隙的HARQ-ACK信息后面、并按小区索引排序,生成半静态HARQ-ACK码本。
其中,所述第二半静态码本生成单元1422具体可以根据所述延后下行时隙在所述K1时隙集合中添加延后时隙,得到扩展后的K1时隙集合,根据扩展后的K1时隙集合生成半静态HARQ-ACK码本。
本申请实施例提供的重传响应反馈装置,通过遍历各服务小区,确定上行信道资源需要反馈的每个服务小区内原始下行时隙及延后下行时隙的HARQ-ACK;分别获取所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息;根据所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息生成HARQ-ACK码本,使用上行信道发送所述HARQ-ACK码本,从而可以保证SPS PDSCH HARQ-ACK的有效反馈,进而提高终端设备性能,提升通信质量。
在本申请实施例中,针对SPS PDSCH HARQ-ACK需要延后反馈时,具体可以延后到PUCCH资源的哪个时隙上,可以采用现有技术来确定,对此本申请实施例中并不做限定。
进一步地,在本申请重传响应反馈装置另一实施例中,还可以利 用高层配置的第一配置参数确定上行信道资源内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。所述第一配置参数用于指示SPS PDSCH HARQ-ACK的最大允许的延后反馈时隙偏置,其单位为时隙或子时隙。
需要说明的是,所述第一配置参数可以同时指示所有SPS PDSCH配置都可以延后反馈HARQ-ACK;也可以指示一个或多个SPS PDSCH配置可以延后反馈,其它不可以延后反馈。另外,所有SPS PDSCH可以共享所述第一配置参数;或者每个SPS PDSCH对应各自的第一配置参数,对此本申请实施例不做限定。
进一步地,可以配置所有SPS PDSCH共享所述第一配置参数,也就是说,不同的SPS PDSCH具有同样的第一配置参数。或者,可以配置每个SPS PDSCH对应各自的第一配置参数,也就是说,对应不同的SPS PDSCH,其C对应的配置参数可以相同,也可以不同,对此本实施例不做限定。
如图12所示,是本申请实施例重传响应反馈装置的另一种结构框图。与图10所示实施例的区别在于,在该实施例中,所述装置还包括:配置参数获取模块21,用于获取高层配置的第一配置参数,所述第一配置参数用于指示SPS PDSCH HARQ-ACK的最大允许的延后反馈时隙偏置。
相应地,在该实施例中,所述延后下行时隙确定模块12可以通过遍历各服务小区配置的SPS PDSCH,根据所述第一配置参数确定上行信道资源每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。
所述延后下行时隙确定模块12的一种实施例如图13所示,包括以下各单元:
第一统计单元131,用于统计上行信道资源对应的各时隙内需要反馈SPS PDSCH HARQ-ACK的原始下行时隙、以及可能需要在所述 时隙内反馈SPS PDSCH HARQ-ACK的候选延后下行时隙;
合集单元132,用于将统计得到的所述原始下行时隙和所述候选延后下行时隙取合集,得到各时隙对应的合集;
检测单元133,用于依次将上行信道资源对应的各时隙作为当前时隙,将所述当前时隙对应的合集中的各候选延后下行时隙作为待检测时隙,检测所述待检测时隙对应的原始下行时隙与所述当前时隙的差值是否小于等于所述SPS PDSCH对应的第一配置参数;如果是,则确定所述候选延后下行时隙为在所述当前时隙内需要反馈SPS PDSCH HARQ-ACKR的延后下行时隙。
所述延后下行时隙确定模块12的一种实施例如图14所示,包括以下各单元:
候选时隙确定单元141,用于遍历各服务小区,确定需要反馈SPS PDSCH HARQ-ACK的候选时隙;
第一确定单元142,用于在所述候选时隙没有可用的PUCCH资源的情况下,根据所述第一配置参数确定需要反馈所述SPS PDSCH HARQ-ACK的延后下行时隙;
第二统计单元143用于统计上行信道资源每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。
利用上述图13或图14所示实施例的延后下行时隙确定模块,可以更方便、准确地确定上行信道资源需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。
本申请实施例提供的一种包括上述重传响应反馈装置的终端设备,该终端设备通过遍历各服务小区,确定上行信道资源需要反馈的每个服务小区内原始下行时隙及延后下行时隙的HARQ-ACK;分别获取所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息;根据所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息生成HARQ-ACK码本,使用上 行信道发送所述HARQ-ACK码本,从而可以保证SPS PDSCH HARQ-ACK的有效反馈,进而提高终端设备性能,提升通信质量。
在具体实施中,上述装置可以对应于通信设备中具体传输资源选择功能的芯片,例如SOC(System-On-a-Chip,片上系统)、基带芯片等;或者对应于通信设备中具有传输资源选择功能的芯片模组;或者对应于具有数据处理功能芯片的芯片模组。
在具体实施中,关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。
例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
相应地,本申请实施例还提供一种包括上面重传响应反馈装置的通信设备。所述通信设备为终端设备,可以指各种形式的用户设备(User Equipment,简称UE)、接入终端、用户单元、用户站、移动站、移动台(Mobile Station,MS)、远方站、远程终端、移动设备、 用户终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例的技术方案可适用于第五代(5th Generation,5G)通信系统,还可适用于第四代(4th Generation,4G)、第三代(3rd Generation,3G)通信系统,还可适用于未来新的各种通信系统,例如第六代(6th Generation,6G)、第七代(7th Generation,7G)等,本申请实施例对此并不限定。
本申请技术方案也适用于不同的网络架构,包括但不限于中继网络架构、双链接架构、车辆到任何物体的通信(Vehicle-to-Everything,V2X)架构、设备到设备的通信(Device-to-Device,D2D)等架构。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行上述图4、图7、图9对应实施例提供的方法的步骤。或者,所述计算机程序被处理器运行时执行上述图4、图7、图9对应实施例提供的方法的步骤。
本申请实施例还提供了一种电子设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述图4、图7、图9对应实施例所提供的方法的步骤。
虽然本申请披露如上,但本申请并非限定于此。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各种更动与修改,因此本申请的保护范围应当以权利要求所限定的范围为准。

Claims (21)

  1. 一种重传响应反馈方法,其特征在于,所述方法包括:
    遍历各服务小区,确定上行信道资源需要反馈的每个服务小区内原始下行时隙及延后下行时隙的HARQ-ACK;所述原始下行时隙是指根据用于指示PDSCH到对应ACK/NACK反馈的时隙偏移值K1确定的ACK/NACK反馈对应的下行时隙;所述延后下行时隙是指需要延后发送根据所述K1确定的ACK/NACK反馈对应的下行时隙;
    分别获取所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息;
    根据所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息生成HARQ-ACK码本;
    使用上行信道发送所述HARQ-ACK码本。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述原始下行时隙对应的HARQ-ACK信息及所述延后下行时隙对应的HARQ-ACK信息生成HARQ-ACK码本包括:
    如果当前只有SPS PDSCH HARQ-ACK反馈,则将所述原始下行时隙对应的HARQ-ACK信息及所述延后下行时隙对应的HARQ-ACK信息按照每{SPS配置索引,服务小区索引}的下行时隙内HARQ-ACK升序排列,接着每个服务小区索引内按SPS配置索引内HARQ-ACK升序排列,最后按服务小区索引内HARQ-ACK的升序排列,生成SPS PDSCH HARQ-ACK码本;
    如果当前有动态调度PDSCH和/或SPS PDSCH释放的PDCCH的HARQ-ACK反馈、并且有SPS PDSCH HARQ-ACK反馈,则根据高层配置信息确定需要使用的HARQ-ACK码本;
    若生成半静态HARQ-ACK码本,则将所述延后下行时隙的HARQ-ACK信息置于所述原始下行时隙的HARQ-ACK信息后面, 生成半静态HARQ-ACK码本;或者根据所述延后下行时隙扩展K1时隙集合,根据扩展后的K1时隙集合生成半静态HARQ-ACK码本;
    若生成动态码本,则根据DCI内DAI指示生成第一码本,将所述延后下行时隙对应的HARQ-ACK信息生成第二码本,将所述第二码本置于所述第一码本后面,得到动态HARQ-ACK码本。
  3. 根据权利要求2所述的方法,其特征在于,所述将所述延后下行时隙的HARQ-ACK信息置于所述原始下行时隙的HARQ-ACK信息后面,生成半静态HARQ-ACK码本包括:
    依次将每个服务小区的延后下行时隙的HARQ-ACK信息置于该服务小区的原始下行时隙的HARQ-ACK信息后面,生成半静态HARQ-ACK码本;或者
    将所有服务小区的延后下行时隙的HARQ-ACK信息置于所有服务小区的原始下行时隙的HARQ-ACK信息后面、并按小区索引排序,生成半静态HARQ-ACK码本。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述延后下行时隙扩展K1时隙集合,根据扩展后的K1时隙集合生成HARQ-ACK码本包括:
    根据所述延后下行时隙在所述K1时隙集合中添加延后时隙,得到扩展后的K1时隙集合,根据扩展后的K1时隙集合生成半静态HARQ-ACK码本。
  5. 根据权利要求2所述的方法,其特征在于,所述将所述延后下行时隙对应的HARQ-ACK信息生成第二码本包括:
    将所述延后下行时隙对应的HARQ-ACK信息按照每{SPS配置索引,服务小区索引}的下行时隙内HARQ-ACK升序排列,接着每个服务小区索引内按SPS配置索引内HARQ-ACK升序排列,最后按服务小区索引内HARQ-ACK的升序排列,生成第二码本。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    获取高层配置的第一配置参数,所述第一配置参数用于指示SPS PDSCH HARQ-ACK的最大允许的延后反馈时隙偏置;
    遍历各服务小区配置的SPS PDSCH,根据所述第一配置参数确定上行信道资源每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。
  7. 根据权利要求6所述的方法,其特征在于,所有SPS PDSCH共享所述第一配置参数;或者每个SPS PDSCH对应各自的第一配置参数。
  8. 根据权利要求6所述的方法,其特征在于,所述遍历各服务小区配置的SPS PDSCH,根据所述第一配置参数确定上行信道资源每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙包括:
    统计上行信道资源对应的各时隙内需要反馈SPS PDSCH HARQ-ACK的原始下行时隙、以及可能需要在所述时隙内反馈SPS PDSCH HARQ-ACK的候选延后下行时隙;
    将统计得到的所述原始下行时隙和所述候选延后下行时隙取合集,得到各时隙对应的合集;
    依次将上行信道资源对应的各时隙作为当前时隙,将所述当前时隙对应的合集中的各候选延后下行时隙作为待检测时隙,检测所述待检测时隙对应的原始下行时隙与所述当前时隙的差值是否小于等于所述SPS PDSCH对应的第一配置参数;
    如果是,则确定所述候选延后下行时隙为在所述当前时隙内需要反馈SPS PDSCH HARQ-ACKR的延后下行时隙。
  9. 根据权利要求6所述的方法,其特征在于,所述遍历各服务小区配置的SPS PDSCH,根据所述第一配置参数确定上行信道资源 每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙包括:
    遍历各服务小区,确定需要反馈SPS PDSCH HARQ-ACK的候选时隙;
    如果所述候选时隙没有可用的PUCCH资源,则根据所述第一配置参数确定需要反馈所述SPS PDSCH HARQ-ACK的延后下行时隙;
    统计上行信道资源每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。
  10. 一种重传响应反馈装置,其特征在于,所述装置包括:
    原始下行时隙确定模块,用于遍历各服务小区,确定上行信道资源需要反馈的每个服务小区内原始下行时隙的HARQ-ACK;所述原始下行时隙是指根据用于指示PDSCH到对应ACK/NACK反馈的时隙偏移值K1确定的ACK/NACK反馈对应的下行时隙;
    延后下行时隙确定模块,用于遍历各服务小区,确定上行信道资源需要反馈的每个服务小区内延后下行时隙的HARQ-ACK;所述延后下行时隙是指需要延后发送根据所述K1确定的ACK/NACK反馈对应的下行时隙;
    反馈信息获取模块,用于分别获取所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息;
    码本生成模块,用于根据所述原始下行时隙的HARQ-ACK信息及所述延后下行时隙的HARQ-ACK信息生成HARQ-ACK码本;
    发送模块,用于使用上行信道发送所述HARQ-ACK码本。
  11. 根据权利要求10所述的装置,其特征在于,所述码本生成模块包括:
    SPS码本生成模块,用于在当前只有SPS PDSCH HARQ-ACK反馈时,将所述原始下行时隙对应的HARQ-ACK信息及所述延后下行 时隙对应的HARQ-ACK信息按照每{SPS配置索引,服务小区索引}的下行时隙内HARQ-ACK升序排列,接着每个服务小区索引内按SPS配置索引内HARQ-ACK升序排列,最后按服务小区索引内HARQ-ACK的升序排列,生成SPS PDSCH HARQ-ACK码本;
    码本类型确定模块,用于在当前有动态调度PDSCH和/或SPS PDSCH释放的PDCCH的HARQ-ACK反馈、并且有SPS PDSCH HARQ-ACK反馈时,根据高层配置信息确定需要使用的HARQ-ACK码本;
    半静态码本生成模块,用于在所述码本类型单元确定生成半静态HARQ-ACK码本时,生成半静态HARQ-ACK码本;所述半静态码本生成模块包括:第一半静态码本生成单元、或者第二半静态码本生成单元;
    所述第一半静态码本生成单元,用于将所述延后下行时隙的HARQ-ACK信息置于所述原始下行时隙的HARQ-ACK信息后面,生成半静态HARQ-ACK码本;
    所述第二半静态码本生成单元,用于根据所述延后下行时隙扩展K1时隙集合,根据扩展后的K1时隙集合生成半静态HARQ-ACK码本;
    动态码本生成模块,用于在所述码本类型单元确定生成动态码本时,根据DCI内DAI指示生成第一码本,将所述延后下行时隙对应的HARQ-ACK信息生成第二码本,将所述第二码本置于所述第一码本后面,得到动态HARQ-ACK码本。
  12. 根据权利要求11所述的装置,其特征在于,
    所述第一半静态码本生成单元,具体用于依次将每个服务小区的延后下行时隙的HARQ-ACK信息置于该服务小区的原始下行时隙的HARQ-ACK信息后面,生成半静态HARQ-ACK码本;或者将所有服务小区的延后下行时隙的HARQ-ACK信息置于所有服务小区的原 始下行时隙的HARQ-ACK信息后面、并按小区索引排序,生成半静态HARQ-ACK码本。
  13. 根据权利要求11所述的装置,其特征在于,
    所述第二半静态码本生成单元,具体用于根据所述延后下行时隙在所述K1时隙集合中添加延后时隙,得到扩展后的K1时隙集合,根据扩展后的K1时隙集合生成半静态HARQ-ACK码本。
  14. 根据权利要求11所述的装置,其特征在于,
    所述动态码本生成模块将所述延后下行时隙对应的HARQ-ACK信息按照每{SPS配置索引,服务小区索引}的下行时隙内HARQ-ACK升序排列,接着每个服务小区索引内按SPS配置索引内HARQ-ACK升序排列,最后按服务小区索引内HARQ-ACK的升序排列,生成第二码本。
  15. 根据权利要求10至14任一项所述的装置,其特征在于,所述装置还包括:
    配置参数获取模块,用于获取高层配置的第一配置参数,所述第一配置参数用于指示SPS PDSCH HARQ-ACK的最大允许的延后反馈时隙偏置;
    所述延后下行时隙确定模块,具体用于遍历各服务小区配置的SPS PDSCH,根据所述第一配置参数确定上行信道资源每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。
  16. 根据权利要求15所述的装置,其特征在于,所有SPS PDSCH共享所述第一配置参数;或者每个SPS PDSCH对应各自的第一配置参数。
  17. 根据权利要求15所述的装置,其特征在于,所述延后下行时隙确定模块包括:
    第一统计单元,用于统计上行信道资源对应的各时隙内需要反馈 SPS PDSCH HARQ-ACK的原始下行时隙、以及可能需要在所述时隙内反馈SPS PDSCH HARQ-ACK的候选延后下行时隙;
    合集单元,用于将统计得到的所述原始下行时隙和所述候选延后下行时隙取合集,得到各时隙对应的合集;
    检测单元,用于依次将上行信道资源对应的各时隙作为当前时隙,将所述当前时隙对应的合集中的各候选延后下行时隙作为待检测时隙,检测所述待检测时隙对应的原始下行时隙与所述当前时隙的差值是否小于等于所述SPS PDSCH对应的第一配置参数;如果是,则确定所述候选延后下行时隙为在所述当前时隙内需要反馈SPS PDSCH HARQ-ACKR的延后下行时隙。
  18. 根据权利要求15所述的装置,其特征在于,所述延后下行时隙确定模块包括:
    候选时隙确定单元,用于遍历各服务小区,确定需要反馈SPS PDSCH HARQ-ACK的候选时隙;
    延后下行时隙确定单元,用于在所述候选时隙没有可用的PUCCH资源的情况下,根据所述第一配置参数确定需要反馈所述SPS PDSCH HARQ-ACK的延后下行时隙;
    第二统计单元,用于统计上行信道资源每个时隙内需要反馈SPS PDSCH HARQ-ACK的延后下行时隙。
  19. 一种终端设备,其特征在于,包括如权利要求10至18任一项所述的重传响应反馈装置。
  20. 一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行权利要求1至9中任一项所述方法的步骤。
  21. 一种电子设备,包括存储器和处理器,所述存储器上存储有 可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求1至9中任一项所述方法的步骤。
PCT/CN2022/084974 2021-04-06 2022-04-02 重传响应反馈方法及装置、终端设备 WO2022213913A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22783979.2A EP4322435A1 (en) 2021-04-06 2022-04-02 Retransmission response feedback method and apparatus, and terminal device
US18/284,605 US20240163018A1 (en) 2021-04-06 2022-04-02 Retransmission response feedback method and apparatus, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110369457.XA CN115174005A (zh) 2021-04-06 2021-04-06 重传响应反馈方法及装置、终端设备
CN202110369457.X 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022213913A1 true WO2022213913A1 (zh) 2022-10-13

Family

ID=83476325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084974 WO2022213913A1 (zh) 2021-04-06 2022-04-02 重传响应反馈方法及装置、终端设备

Country Status (4)

Country Link
US (1) US20240163018A1 (zh)
EP (1) EP4322435A1 (zh)
CN (1) CN115174005A (zh)
WO (1) WO2022213913A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034902A (zh) * 2018-01-12 2019-07-19 北京展讯高科通信技术有限公司 混合式自动重传请求码本的生成方法、用户设备、介质
CN110351018A (zh) * 2018-04-04 2019-10-18 展讯通信(上海)有限公司 Harq-ack反馈信息发送、接收方法及装置、存储介质、发送终端、接收终端
CN111431681A (zh) * 2019-01-10 2020-07-17 北京三星通信技术研究有限公司 传输harq-ack信息的方法、装置、电子设备及存储介质
US20200295882A1 (en) * 2017-09-29 2020-09-17 Samsung Electronics Co., Ltd. Uplink transmission method and corresponding equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113194544B (zh) * 2018-05-10 2023-10-31 北京三星通信技术研究有限公司 传输上行控制信息的方法及设备
CN110557231B (zh) * 2018-06-04 2021-02-12 华为技术有限公司 传输信息的方法和通信设备
CN110311762B (zh) * 2019-07-16 2021-04-16 北京紫光展锐通信技术有限公司 反馈信息传输方法、装置、终端及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200295882A1 (en) * 2017-09-29 2020-09-17 Samsung Electronics Co., Ltd. Uplink transmission method and corresponding equipment
CN110034902A (zh) * 2018-01-12 2019-07-19 北京展讯高科通信技术有限公司 混合式自动重传请求码本的生成方法、用户设备、介质
CN110351018A (zh) * 2018-04-04 2019-10-18 展讯通信(上海)有限公司 Harq-ack反馈信息发送、接收方法及装置、存储介质、发送终端、接收终端
CN111431681A (zh) * 2019-01-10 2020-07-17 北京三星通信技术研究有限公司 传输harq-ack信息的方法、装置、电子设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "UE feedback enhancements for HARQ-ACK", 3GPP DRAFT; R1-2100376, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970979 *

Also Published As

Publication number Publication date
US20240163018A1 (en) 2024-05-16
EP4322435A1 (en) 2024-02-14
CN115174005A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN109417449B (zh) 混合自动重传请求反馈和多传输时间间隔调度
US20220190983A1 (en) Method for data transmission and terminal device
US11032778B2 (en) Uplink channel power allocation method and apparatus
CN105393485B (zh) 无线通信系统中的方法和节点
US10812243B2 (en) Feedback information transmission and reception method and apparatus and communication system
CN111200871B (zh) 接收数据的方法和通信装置
CN114041303B (zh) 反馈信息传输的方法和装置
US11997686B2 (en) Transmission apparatus and method of feedback information
JP2017511018A (ja) アップリンクharqフィードバックのためのtdd及びfddサブフレームのキャリアアグリゲーション
EP3386254A1 (en) Cross-carrier scheduling method, feedback method and apparatus
US11991690B2 (en) Method and apparatus for flexible transmission on unlicensed spectrum
CN109218002B (zh) 在频宽部分中执行数据传输的装置及方法
WO2021057265A1 (zh) 一种harq信息传输方法及设备
CN113796032B (zh) 用于半静态harq-ack码本确定的方法及设备
WO2021208836A1 (zh) 一种harq-ack反馈方法及装置
WO2022150937A1 (zh) 用于接收数据的方法与装置和用于发送数据的方法与装置
CN109802772B (zh) 一种信息发送的方法及设备
JP7149970B2 (ja) フィードバック応答情報の伝送方法、装置及びシステム
WO2019047767A1 (zh) 数据传输方法、模式指示方法、模式确定方法、装置
WO2021068140A1 (zh) 无线通信的方法、终端设备和网络设备
JP6532912B2 (ja) キャリアアグリゲーションを使用するharqフィードバック
WO2022213913A1 (zh) 重传响应反馈方法及装置、终端设备
CN113676291B (zh) 一种信息发送的方法及设备
CN112369101B (zh) 一种数据传输方法及通信装置
KR20220165755A (ko) 사이드링크 피드백 정보를 송신 및 수신하기 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783979

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18284605

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022783979

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022783979

Country of ref document: EP

Effective date: 20231106