WO2021042757A1 - 折叠式楼板中柱组合节点及其组装方法 - Google Patents

折叠式楼板中柱组合节点及其组装方法 Download PDF

Info

Publication number
WO2021042757A1
WO2021042757A1 PCT/CN2020/089293 CN2020089293W WO2021042757A1 WO 2021042757 A1 WO2021042757 A1 WO 2021042757A1 CN 2020089293 W CN2020089293 W CN 2020089293W WO 2021042757 A1 WO2021042757 A1 WO 2021042757A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
wooden
ring plate
cross
steel
Prior art date
Application number
PCT/CN2020/089293
Other languages
English (en)
French (fr)
Inventor
牟犇
刘艺
王燕
宁宁
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to EP20859999.3A priority Critical patent/EP3865632B8/en
Publication of WO2021042757A1 publication Critical patent/WO2021042757A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • E04B1/2604Connections specially adapted therefor
    • E04B1/2608Connectors made from folded sheet metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/185Connections not covered by E04B1/21 and E04B1/2403, e.g. connections between structural parts of different material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • E04B1/2604Connections specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/30Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/023Separate connecting devices for prefabricated floor-slabs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/12Load-carrying floor structures formed substantially of prefabricated units with wooden beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/14Load-carrying floor structures formed substantially of prefabricated units with beams or girders laid in two directions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/292Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being wood and metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/36Columns; Pillars; Struts of materials not covered by groups E04C3/32 or E04C3/34; of a combination of two or more materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • E04B1/2604Connections specially adapted therefor
    • E04B2001/2644Brackets, gussets or joining plates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • E04B1/2604Connections specially adapted therefor
    • E04B2001/2652Details of nailing, screwing, or bolting
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/04Material constitution of slabs, sheets or the like of plastics, fibrous material or wood

Definitions

  • the invention relates to a new steel-wood composite node of a folding floor center column, which belongs to the field of building construction.
  • wood structure buildings can have high durability and high seismic performance; they are easy to obtain materials and fast in construction, but they are lacking in fire prevention and moisture resistance.
  • prefabricated concrete new column is referred to as prefabricated side column, prefabricated center column and prefabricated beam respectively.
  • the top of the prefabricated side column is equipped with a column top grouting groove, and the interior is equipped with column longitudinal reinforcement, and the lower end of the column longitudinal reinforcement extends in Column sleeve;
  • the bottom is equipped with a column bottom grouting groove, the outside of the bottom is provided with side column through rib grooves, the top of the side column through rib groove is provided with a beam through column hole, and the top is equipped with side column reserve and beam bottom steel bar Butt joint reinforcement;
  • the top of the prefabricated center column is equipped with a grouting groove at the top of the column, the bottom is equipped with a column bottom grouting groove and beam reinforcement holes, and the top is equipped with a center column reserved for butt connection with the beam bottom reinforcement;
  • Column outer ring stirrups and column inner ring stirrups are arranged along the height direction of the side column; steel rods with threaded ends and beam stirrups are evenly arranged along the length of the prefabricated beam, and the bottom of the pre
  • the above scheme mainly adopts precast concrete structure and steel bar connection structure.
  • it is inconvenient to obtain materials cannot carry out modular lap construction, and the construction speed is slower. More importantly, it is In order to improve the strength of the steel connection nodes, welding construction is necessary, and the construction quality is difficult to be guaranteed. And the overall node weight is relatively large, and the bearing capacity is relatively small.
  • the foldable floor center column combined node and the assembly method of the present invention are to solve the above-mentioned problems in the prior art and adopt the foldable floor slab and the fabricated column beam combined node with the combined use of steel and wood structure to achieve mechanical connection through steel Ways to improve the strength of the joints, reduce the welding construction quality problems, improve the overall bearing capacity and reduce the probability of damage to the joints.
  • the foldable floor slab center column combined node mainly includes steel-wood combined columns and square wooden beams, connecting components for connecting steel-wood combined columns and square wooden beams, and steel-wood combined columns , Foldable wooden floor slabs that are connected and carried by square wooden beams and connecting components;
  • the steel-wood composite column has a hollow cross-shaped outer wooden column, the cross-shaped outer wooden column is embedded with a steel sleeve, and the steel sleeve is embedded with an inner wooden column.
  • the inner end of the steel bar penetrates through the cross-shaped outer wooden column and is fixedly connected to the steel sleeve.
  • the outer end of the transverse steel bar is provided with threads.
  • first bolts for connecting the connecting components On both sides of the cross surface of the cross-shaped outer wooden column, there are provided first bolts for connecting the connecting components. hole;
  • the square wooden beam has a number of longitudinal overhanging steel bars penetrating into it, and the outer ends of the longitudinal overhanging steel bars are provided with threads; on both sides of the end of the square wooden beam are provided second bolts for connecting the connecting components Hole; A third bolt hole is provided on the top of the square wooden beam for connecting the foldable wooden floor;
  • a rotating shaft is connected between two adjacent wooden boards, and a third bolt hole for connecting the square wooden beams and connecting components is provided at the edge joint of each wooden board;
  • the connecting assembly includes a threaded sleeve connecting the transverse steel bars and the longitudinal overhanging steel bars at both ends, and a double ring plate;
  • the double ring plate has a cross-shaped upper ring plate and a lower ring plate.
  • the upper ring plate and the lower ring plate are provided with angle plates at the junction between the upper ring plate and the lower ring plate adjacent to the steel-wood composite column.
  • the fourth bolt hole; the inner end of the upper ring plate and the lower ring plate adjacent to the cross root is provided with a first bolt hole for connecting the cross-shaped outer wooden column; the outer end of the upper ring plate and the lower ring plate is provided with a square for connecting
  • the second bolt hole of the wooden beam; the top end of the upper ring plate and the lower ring plate is provided with a third bolt hole for connecting the square wooden beam and the folding wooden floor.
  • this application adopts a steel-wood composite structure compared to traditional reinforced concrete structures.
  • the excellent performance of each material is maximized, and the overall seismic resistance of the building is , Disaster prevention performance plays an extremely important role.
  • the foldable slab center-column composite node of the steel-wood structure is combined with two materials to realize the complementarity between the materials, so that the strength of the wood structure is significantly improved.
  • the addition of the wood structure to the steel structure can reduce the structural self-weight, which is beneficial to improve the unit mass The strength of the structure, while having extremely high durability.
  • the modular structure is not only convenient to obtain materials, but also fast in construction.
  • the joints of beams and columns are mechanically connected by steel, which can not only improve the strength of the joints, but also reduce the quality problems caused by welding construction; adding a steel structure to the structure of the wooden column significantly improves the overall bearing capacity of the wooden structure; combined joints
  • the overall strength is relatively high, which can reduce the probability of node damage to a certain extent and the nodes are recoverable.
  • the strength of the steel sleeve is greatly improved compared to the solid wooden column, and the transverse steel bars arranged in the cross-shaped outer wooden column can greatly improve the mechanical performance and seismic performance.
  • the structure has a higher bearing capacity per unit mass.
  • the longitudinal reinforcement of the column enhances the pressure-bearing and tensile performance of the wooden beam, and the seismic performance per unit mass is superior.
  • the square wooden beam has longitudinal steel bars in the beam, which can obviously enhance the tensile performance of the beam, so that the square wooden beam has superior seismic performance per unit mass.
  • the foldable floor slab is provided with a rotating shaft, which reduces the splicing between two adjacent floor slabs and has better assembly performance, correspondingly improves the construction efficiency and reduces the project cost, and the building construction is standardized and has a higher level of productization.
  • the connecting component adopts a threaded steel bar sleeve structure to mechanically connect the cross-shaped outer wooden column and the square wooden beam.
  • the connection method is simple and easy and does not need to be welded. Therefore, the construction quality and construction efficiency are greatly improved.
  • the double ring plate is formed by superimposing the upper and lower ring plates with the same structure.
  • the double ring plate is based on the secondary strengthened connection of the threaded sleeve, and the strength of the connection node between the beam and the column is significantly strengthened. It has superiorly reduced the shear failure of the beam and column joint welding in the earthquake, and has excellent seismic performance.
  • the upper ring plate and the lower ring plate of the double ring plate have cross-shaped grooves with the same shape as the cross-shaped outer wooden column. Through the cross-shaped groove, the steel-wood composite column after the integral assembly can penetrate the connecting components, and finally form the basic connection mode of the central column composite node.
  • a transitional reinforcement fastening connection is formed between the floor slab and the beam and column, that is, on the basis of the mechanical connection between the threaded sleeve and the steel bar in the beam and the steel bar in the column, it can be Replace the existing steel welding technology, welding construction quality problems can be avoided.
  • a dovetail groove and a dovetail convex groove for insertion can be symmetrically provided on the edge of the butt joint between the upper ring plate and the lower ring plate, that is, through the dovetail groove structure Realize the plug-in stable connection between the two.
  • the folding wooden floor slab connects the near-column end floor and the square floor slab through a rotating shaft.
  • the near-column end floor has a W-shaped notch that fits the cross-shaped outer wooden column at the near-column end, and there are 4 adjacent-column end floor slabs adjacent to each other.
  • the W-shaped notch forms a cross-shaped notch.
  • the adjacent four adjacent column end floor slabs surround the outer circumference of the steel-wood composite column, and the square floor slab surrounds the outside of the near column end floor slab.
  • the above-mentioned spliced floor fixing method can effectively improve the construction efficiency of the floor slab, and at the same time help to further improve the mutual fixed connection between the floor slab and the beams and columns, and realize a circular development building.
  • this application also proposes the following corresponding assembly methods:
  • Step 1) add a steel sleeve to the cross-shaped outer wooden column, weld and fix the transverse steel bars, fill the inner wooden column and insert the column longitudinal steel bars in it;
  • Step 2) insert longitudinal overhanging steel bars and overhanging steel bars in the square wooden beam;
  • Step 3 the assembled steel-wood composite column and the steel bar of the square wooden beam are butt-connected with a threaded sleeve;
  • Step 4 the upper ring plate and the lower ring plate are inserted through the dovetail groove structure, and the corner plates are spliced and fixed to form a double ring plate;
  • Step 5 the cross-shaped outer wooden column is inserted into the double-ring plate through the cross-shaped groove, and the double-ring plate is fastened and connected with the cross-shaped outer wooden column and the square wooden beam by bolts;
  • Step 6 surround the near-column end floor slabs of four adjacent folding wooden floor slabs around the cross-shaped outer wooden column, and implement the superimposed and fastened connection of the near-column end floor, square floor slab, double ring slab, and square wooden beam through bolts.
  • the components can be prefabricated in advance, which simplifies the construction process and improves the construction efficiency.
  • the steel structure mechanical connection components are used to connect the beam and column nodes, which can effectively avoid the quality problems caused by the welding of the steel structure.
  • the steel structure connection components have higher strength and improve the force performance of the nodes.
  • the foldable floor slab realizes the assembly-type rapid construction of the floor slab, simplifies the construction process, reduces the construction period, reduces the project cost, and has good economic performance.
  • the design of the steel-wood composite structure improves the overall bearing capacity of the structure, strengthens the seismic performance of the components, and the repairability in the event of damage, thereby fulfilling the recyclable requirements of building development.
  • Figure 1 is a schematic diagram of the structure of the assembled beam-type steel-wood composite node of the application
  • Figure 2 is a schematic diagram of the structure and installation process of the steel-wood composite column
  • Figure 3 is a schematic cross-sectional view of a steel-wood composite column
  • Figure 4 is a schematic diagram of the structure of a square wooden beam
  • Figure 5 is a schematic diagram of the structure of the threaded sleeve
  • Figure 6 is a schematic diagram of the process of connecting steel bars with a threaded sleeve
  • Figure 7 is an overall schematic diagram of using a threaded sleeve to connect a column and a beam
  • Figure 8 is a schematic diagram of the structure of the upper ring plate
  • Figure 9 is a schematic diagram of the connection of the double ring plate
  • Figure 10 is a schematic diagram of the structure after connecting the double ring plates
  • Figure 11 is an exploded schematic diagram of the components of the folding wooden floor
  • Figure 12 is a schematic diagram of the assembly of adjacent folding wooden floor slabs
  • Figure 13 is a schematic diagram of the assembly of the folding wooden floor composite node
  • FIG. 14 is a schematic diagram of the overall assembly process of the composite node of the foldable floor slab in this application.
  • steel-wood composite column 1 square wooden beam 2, folding wooden floor 3, connecting component 4, cross-shaped outer wooden column 5, column longitudinal reinforcement 6, transverse reinforcement 7, steel sleeve 8, threaded sleeve 9 , Longitudinal overhanging steel bar 10, double ring plate 11, first bolt hole 12, second bolt hole 13, third bolt hole 14, angle plate 15, rotating shaft 16, near column end floor 17, square floor slab 18, inner wooden column 19, The fourth bolt hole 20, the cross-shaped groove 21, the cross-shaped notch 22, the dovetail groove 23, the dovetail groove 24, the upper ring plate 123, the lower ring plate 456.
  • the foldable slab center column combined node mainly includes a steel-wood combined column 1, a square wooden beam 2, a foldable wooden floor 3, and a connecting component 4. among them,
  • the steel-wood composite column 1 has a hollow cross-shaped outer wooden column 5, the cross-shaped outer wooden column 5 is embedded with a circular steel sleeve 8, and the steel sleeve 8 is embedded with a circular inner wooden column 19 ,
  • the inner wooden column 19 is provided with column longitudinal steel bars 6, the inner end of the transverse steel bar 7 penetrates the cross-shaped outer wooden column 5 and is welded and fixed to the steel sleeve 8, and the outer end of the transverse steel bar 7 is provided with a tapered thread.
  • first bolt holes 12 On both sides of the cross surface of the cross-shaped outer wooden column 5 are provided first bolt holes 12 for connecting the connecting assembly 4;
  • the square wooden beam 2 has a longitudinal overhanging steel bar 10 penetrating into it, and the outer end of the longitudinal overhanging steel bar 10 is provided with a tapered thread; on both sides of the end of the square wooden beam 2 are provided for connecting the connecting components 4 second bolt hole 13; on the top of the square wooden beam 2 is provided with a third bolt hole 14 for connecting the folding wooden floor 3;
  • a rotating shaft 16 is connected between two adjacent wooden boards, and a third bolt hole 14 for connecting the square wooden beam 2 and the connecting assembly 4 is provided at the edge joint of each wooden board;
  • the near-column end floor 17 and the square floor slab 18 are connected by a rotating shaft 16.
  • the near-column end floor 17 has a W-shaped notch at the near-column end that fits with the cross-shaped outer wooden column 5, and there are four adjacent-column end floors adjacent to each other.
  • the W-shaped notch of 17 constitutes a cross-shaped notch 22;
  • the connecting assembly 4 includes a tapered threaded sleeve 9 that connects the transverse steel bars 7 and the longitudinal overhanging steel bars 10 at both ends, and a double ring plate 11; the double ring plates 11 have the same structure and overlap each other.
  • the connected cross-shaped upper ring plate 123 and the lower ring plate 456 are inserted through the dovetail groove 23 and the dovetail convex groove 24.
  • An angle plate 15 is provided at the root of the cross where the upper ring plate 123 and the lower ring plate 456 meet, and the upper ring
  • the plate 123 and the lower ring plate 456 have a cross-shaped groove 21 with the same shape as the cross-shaped outer wooden column 5; the angle plate 15 has a fourth bolt hole 20 for the fixed connection of the upper and lower ring plates after being superimposed;
  • the inner end of the ring plate 456 adjacent to the cross root is provided with a first bolt hole 12 for connecting the cross-shaped outer wooden column 5;
  • the inner end of the upper ring plate 123 and the lower ring plate 456 is provided with a second bolt hole for connecting the square wooden beam 2 Bolt hole 13;
  • a third bolt hole 14 for connecting the square wooden beam 2 and the folding wooden floor 3 is provided at the top end of the upper ring plate 123 and the lower ring plate 456.
  • Step 1) add a steel sleeve 8 to the cross-shaped outer wooden column 5, weld and fix the transverse steel bars 7, fill the inner wooden column 19 and insert the column longitudinal steel bars 6 into it;
  • Step 2) insert the longitudinal overhanging steel bar 10 into the square wooden beam 2 and overhanging the steel bar;
  • Step 3 use the threaded sleeve 9 to connect the steel-wood composite column 1 and the steel-reinforced projecting part of the square wooden beam 2 after being assembled;
  • Step 4 the upper ring plate 123 and the lower ring plate 456 are inserted through the dovetail groove 23 and the dovetail groove 24, and the angle plates 15 are spliced and fixed to form the double ring plate 11;
  • Step 5 the cross-shaped outer wooden column 5 is inserted into the double ring plate 11 through the cross-shaped groove 21, and the double ring plate 11 is fastened and connected with the cross-shaped outer wooden column 5 and the square wooden beam 2 by bolts;
  • Step 6 surround the near-column end floor 17 of the four adjacent folding wooden floor slabs 3 around the cross-shaped outer wooden column 5, and implement the near-column end floor 17, square floor slab 18, double ring slab 11, and square wooden beam 2 through bolts The superimposed fastening connection.
  • the wooden structure is easy to process, lightweight and high-strength, and has good seismic performance;
  • the steel structure has uniform material, strength, plasticity, toughness and its excellent, and the beam and column members can be connected by bolts in the structure to achieve nodes
  • the components can be replaced to improve the overall life of the structure;
  • the combined joints use square wooden beams, which have better shear resistance compared to I-shaped beams; and the square wooden beams are equipped with steel bars to improve the force performance of the columns; complete assembly-type construction is realized Construction, improve the construction progress, reduce the construction period, and reduce the project cost;
  • the steel-wood central column combined node supplemented with steel in the wooden structure, enhances the ability of the wooden structure to resist tension, compression, and bending, so that the structure has a Good seismic performance.

Abstract

本发明是一种折叠式楼板中柱组合节点及其组装方法,采用钢木并用结构,通过折叠式楼板、装配式柱梁组合节点,保障施工质量,提高施工效率,优化结构的抗震性能。折叠式楼板中柱组合节点包括钢木组合柱和方形木梁、用于连接钢木组合柱与方形木梁的连接组件、以及由钢木组合柱、方形木梁与连接组件共同连接并承载的折叠式木质楼板;连接组件包括两端分别连接所述的横向钢筋和纵向出挑钢筋的螺纹套筒,以及双环板;所述的双环板,具有十字槽的上环板和下环板,环板交界处设燕尾插槽,在上环板、下环板交接处的十字根部设有角形板。

Description

折叠式楼板中柱组合节点及其组装方法 技术领域
本发明涉及一种新的折叠式楼板中柱的钢木组合节点,属于建筑施工领域。
背景技术
随着绿色生态理念的逐步推广,如何提质增效、节能减排已成为建筑行业施工生产的必然工要求,钢木组合结构应运而生。
木结构建筑立足传统,能够具有很高的耐久性,抗震性能较高;取材方便,施工速度快等特点,但在防火防潮方面有所欠缺。
又如以下在先申请专利,申请号CN201510106368.0,名称装配式混凝土新式柱、梁结构及装配连接方法,其包括预制混凝土边柱、预制混凝土中柱和预制混凝土梁结构,预制混凝土边柱、预制混凝土中柱和预制混凝土梁以下分别简称预制边柱、预制中柱和预制梁,其中:预制边柱的柱顶部设有柱顶灌浆槽,内部配有柱纵向钢筋,柱纵向钢筋下端伸入柱套筒;底部设有柱底灌浆槽,底部的外侧设有边柱穿筋槽,边柱穿筋槽顶部设有贯通柱的穿梁钢筋孔,顶部设有边柱预留与梁底钢筋对接钢筋;预制中柱顶部设有柱顶灌浆槽,底部设有柱底灌浆槽和穿梁钢筋孔,顶部设有中柱预留与梁底钢筋对接钢筋;预制边柱和预制中柱内,沿边柱高度方向设有柱外圈箍筋和柱内圈箍筋;沿预制梁长度方向均匀设有预埋端头带螺纹的钢杆和梁箍筋,预制梁底设有梁底钢筋。
上述方案中主要采用预制混凝土结构与钢筋连接结构,与现有常见的拼装式楼板设计技术相比,其取材较不方便、无法进行模块化搭接施工,施工速度较慢,更为关键的是为提高钢连接节点的强度而必须进行焊接施工,施工质量难以得到保证。且整体节点重量较大、承载力相对地较小。
综上,现有技术的建筑节点技术难以在行业中大范围推广、标准化程度低。有鉴于此,特提出本专利申请。
发明内容
本发明所述的折叠式楼板中柱组合节点及其组装方法,在于解决上述现有技术存在的问题而采取钢木结构并用的折叠式楼板、装配式柱梁组合节点,以达到通过 钢机械连接方式提高节点强度、减少焊接施工质量问题、提高整体承载力和减少节点破坏概率的设计目的。
为实现上述设计目的,所述的折叠式楼板中柱组合节点,主要包括有钢木组合柱和方形木梁、用于连接钢木组合柱与方形木梁的连接组件、以及由钢木组合柱、方形木梁与连接组件共同连接并承载的折叠式木质楼板;
所述的钢木组合柱具有一中空的十字形外木柱,十字形外木柱内嵌钢套筒,钢套筒内嵌内木柱,在内木柱中穿设有柱子纵向钢筋,横向钢筋的内侧端贯穿十字形外木柱而固定连接于钢套筒,横向钢筋的外侧端设置有螺纹,在十字形外木柱的十字面两侧设置有用于连接所述连接组件的第一螺栓孔;
所述的方形木梁具有穿入其内部的数个纵向出挑钢筋,纵向出挑钢筋的外侧端设置有螺纹;在方形木梁的端部两侧面上设置有用于连接所述连接组件的第二螺栓孔;在方形木梁的顶部设置有用于连接所述折叠式木质楼板的第三螺栓孔;
所述的折叠式木质楼板,在相邻两木板之间连接有转轴,在每块木板的边缘拼接处设置有用于连接所述方形木梁、连接组件的第三螺栓孔;
所述的连接组件,包括两端分别连接所述横向钢筋和纵向出挑钢筋的螺纹套筒,以及双环板;
所述的双环板,具有十字形的上环板和下环板,在上环板、下环板临近钢木组合柱的交接处设有角形板,角形板上设置有叠加后进行固定连接的第四螺栓孔;在上环板、下环板邻近十字根部的内侧端设置有用于连接十字形外木柱的第一螺栓孔;在上环板、下环板的外侧端设置有用于连接方形木梁的第二螺栓孔;在上环板、下环板的顶端设置有用于连接方形木梁、折叠式木质楼板的第三螺栓孔。
如以上基本设计构思,本申请相比于传统钢筋混凝土结构而采取钢木组合结构,通过钢结构和木结构相互组合的方式,以最大限度地发挥材料各自的优良性能,对建筑整体的抗震性、防灾性能有着极其重要的作用。
钢木结构并用的折叠式楼板中柱组合节点通过两种材料的结合,实现材料之间的互补,使得木结构强度明显提高,在钢结构中加入木结构可减轻结构自重,有利于提高单位质量结构的强度,同时具有极高的耐久性。模块化结构不仅取材方便且施工速度快。梁、柱连接处采用钢材机械连接,既能提高节点强度,且减少了焊接施工带来的质量问题;在木质柱的结构中加入钢结构,明显地提高了木结构整体的 承载力;组合节点整体具有较高的强度,在一定程度上可减少节点破坏的概率且节点具备可恢复性。
所述的钢木组合柱,钢套筒的强度相比于实心木柱有着极大地改善,且在十字形外木柱中设置的横向钢筋可极大地提高受力性能和抗震性能,与纯木结构相比单位质量上的承载力更高。钢木组合柱的内木柱中,通过其柱子纵向钢筋,增强了木质梁的承压与承拉性能、且在单位质量上的抗震性能较为优越。
所述的方形木梁具有梁内的纵向钢筋,能够较明显地增强梁的承拉性能,使方形木梁在单位质量上的抗震性能较为优越。
所述的折叠式楼板中设有转轴,减少了两块相邻楼板之间的拼接而具有较好的装配性能、相应提高了施工效率和降低工程造价,建筑施工标准化、产品化水平较高。
所述的连接组件,采取螺纹式钢筋套筒结构以将十字形外木柱与方形木梁进行机械连接,连接方式简便易行且无需进行焊接加工,因此对于施工质量与施工效率有着极大地改善;双环板由结构相同的上下环板叠加连接而成,双环板是基于螺纹套筒的二次加强连接、且针对与梁、与柱之间的连接节点处强度较明显地补强,从而较为优越地减少了地震中关于梁、柱节点焊接处的剪切破坏,具有优良的抗震性能。
为进一步地提高连接稳定性与承载负载能力,较为优选的改进方案是,所述双环板的上环板、下环板具有与十字形外木柱外形相同的十字形槽。通过该十字形槽,整体组装完成后的钢木组合柱可贯穿连接组件,最终形成中柱组合节点的基本连接方式。
通过上述双环板对梁、柱的二次连接,在楼板与梁、柱之间形成过渡补强紧固式连接,即在螺纹套筒与梁内钢筋、柱内钢筋的机械连接基础上,可替代现有钢筋焊接工艺,焊接施工质量问题可得以避免。
为提高上环板与下环板之间连接的稳定性能,可在上环板与下环板对接处边缘,对称地设置有用于插接的燕尾凹槽和燕尾凸槽,即通过燕尾槽结构实现两者的插接式稳定连接。
为辅助配合上述连接组件的改进、以及提高楼板组合结构的承载能力和木材利用率,可采取如下优选与改进方案:
所述的折叠式木质楼板,通过转轴连接近柱端楼板和方形楼板,近柱端楼板在近柱端具有与十字形外木柱相契合的W形槽口,相邻4块近柱端楼板的W形槽口构成十字形槽口。
如上述折叠式木质楼板,相邻4块近柱端楼板围绕于钢木组合柱外周,方形楼板则围绕于近柱端楼板的外侧。上述拼接式楼板固定方式,可有效地提高楼板的施工效率,同时有助于进一步改善楼板与梁、与柱之间的相互固定连接,实现可循环发展式建筑。
在应用上述折叠式楼板中柱组合节点结构设计的基础上,本申请同时提出了以下相对应的组装方法:
步骤1),在十字形外木柱中加入钢套筒,焊接固定横向钢筋,填充内木柱并在其中插入柱子纵向钢筋;
步骤2),在方形木梁中插入纵向出挑钢筋并出挑钢筋;
步骤3),将组装好的钢木组合柱和方形木梁的钢筋出挑部分,采用螺纹套筒进行对接;
步骤4),将上环板、下环板通过燕尾槽结构进行插接,在其角形板处进行拼接固定而组装成双环板;
步骤5),十字形外木柱通过十字形槽贯穿套入双环板,通过螺栓将双环板与十字形外木柱、方形木梁分别进行紧固连接;
步骤6),将相邻4块折叠式木质楼板的近柱端楼板围绕于十字形外木柱,通过螺栓实施近柱端楼板、方形楼板与双环板、方形木梁的叠加紧固连接。
如上所述,本申请折叠式楼板中柱组合节点及其组装方法具有的优点是:
1、提出新的装配式钢木组合节点结构,提高了不同建筑材料的利用率,实现了材料之间的优势互补,丰富现代建筑体系。
2、拼接式节点的设计实现了施工生产化,减少施工周期,降低工程造价。
3、构件可提前预制,简化了施工过程,提高了施工效率。
4、采用钢结构机械连接组件连接梁、柱节点,有效避免钢结构焊接所带来的质量问题,钢结构连接组件强度较高,提高节点受力性能。
5、可折叠式楼板实现了楼板的装配式快速施工,简化施工工序,降低施工周期,减少工程造价,具有良好的经济性能。
6、钢木组合结构的设计,提高了结构这整体承载力,加强了构件的抗震性能,破坏时的可修复性能,实现了建筑发展的可循环要求。
附图说明
现结合以下附图进一步地说明本申请。
图1为本申请拼装梁式钢木组合节点的结构示意图;
图2为钢木组合柱的结构与安装过程示意图;
图3为钢木组合柱的剖面示意图;
图4为方形木梁的结构示意图;
图5为螺纹套筒的结构示意图;
图6为螺纹套筒连接钢筋的过程示意图;
图7为使用螺纹套筒连接柱与梁的整体示意图;
图8为上环板的结构示意图;
图9为双环板的连接示意图;
图10为连接双环板后的结构示意图;
图11为折叠式木质楼板的部件分解示意图;
图12为相邻折叠式木质楼板的组装示意图;
图13为折叠式木质楼板组合节点的组装示意图;
图14为本申请折叠式楼板中柱组合节点的整体组装过程示意图;
在图中,钢木组合柱1,方形木梁2,折叠式木质楼板3,连接组件4,十字形外木柱5,柱子纵向钢筋6,横向钢筋7,钢套筒8,螺纹套筒9,纵向出挑钢筋10,双环板11,第一螺栓孔12,第二螺栓孔13,第三螺栓孔14,角形板15,转轴16,近柱端楼板17,方形楼板18,内木柱19,第四螺栓孔20,十字形槽21,十字形槽口22,燕尾凹槽23,燕尾凸槽24,上环板123,下环板456。
具体实施方式
实施例1,下面结合附图对本申请实施例详细地描述。
如图1到图12所示,所述的折叠式楼板中柱组合节点,主要包括有钢木组合柱1、方形木梁2、折叠式木质楼板3和连接组件4。其中,
所述的钢木组合柱1具有一中空的十字形外木柱5,十字形外木柱5内嵌一圆形的钢套筒8,钢套筒8内嵌一圆形的内木柱19,在内木柱19中穿设有柱子纵向钢筋 6,横向钢筋7的内侧端贯穿十字形外木柱5而焊接固定于钢套筒8,横向钢筋7的外侧端设置有锥状螺纹,在十字形外木柱5的十字面两侧设置有用于连接所述连接组件4的第一螺栓孔12;
所述的方形木梁2具有穿入其内部的纵向出挑钢筋10,纵向出挑钢筋10的外侧端设置有锥状螺纹;在方形木梁2的端部两侧面上设置有用于连接所述连接组件4的第二螺栓孔13;在方形木梁2的顶部设置有用于连接所述折叠式木质楼板3的第三螺栓孔14;
所述的折叠式木质楼板3,在相邻两木板之间连接有转轴16,在每块木板的边缘拼接处设置有用于连接所述方形木梁2、连接组件4的第三螺栓孔14;特别地,通过转轴16连接近柱端楼板17和方形楼板18,近柱端楼板17在近柱端具有与十字形外木柱5相契合的W形槽口,相邻4块近柱端楼板17的W形槽口构成十字形槽口22;
所述的连接组件4,包括两端分别连接所述横向钢筋7和纵向出挑钢筋10的锥形螺纹套筒9,以及双环板11;所述的双环板11具有结构相同的、相互对向叠加连接的十字形上环板123和下环板456,通过燕尾凹槽23,燕尾凸槽24进行插接,在上环板123、下环板456交接的十字根部设有角形板15,上环板123、下环板456具有与十字形外木柱5外形相同的十字形槽21;角形板15具有用于上下环板叠加后固定连接的第四螺栓孔20;在上环板123、下环板456邻近十字根部的内侧端设置有用于连接十字形外木柱5的第一螺栓孔12;在上环板123、下环板456的内侧端设置有用于连接方形木梁2的第二螺栓孔13;在上环板123、下环板456的顶端设置有用于连接方形木梁2、折叠式木质楼板3的第三螺栓孔14。
如图13所示,基于上述折叠式楼板中柱组合节点的结构设计,按如下流程实施组合节点的组装方法:
步骤1),在十字形外木柱5中加入钢套筒8,焊接固定横向钢筋7,填充内木柱19并在其中插入柱子纵向钢筋6;
步骤2),在方形木梁2中插入纵向出挑钢筋10并出挑钢筋;
步骤3),将组装好的钢木组合柱1和方形木梁2的钢筋出挑部分,采用螺纹套筒9进行对接;
步骤4),将上环板123、下环板456通过燕尾凹槽23,燕尾凸槽24进行插接, 在其角形板15处进行拼接固定而组装成双环板11;
步骤5),十字形外木柱5通过十字形槽21贯穿套入双环板11,通过螺栓将双环板11与十字形外木柱5、方形木梁2分别进行紧固连接;
步骤6),将相邻4块折叠式木质楼板3的近柱端楼板17围绕于十字形外木柱5,通过螺栓实施近柱端楼板17、方形楼板18与双环板11、方形木梁2的叠加紧固连接。
在申请中,木结构易于加工、轻质高强,且具有良好的抗震性能;钢结构材质均匀,强度、塑性、韧性及其优良,且在结构中可以通过螺栓连接连接梁、柱构件,实现节点部件可替换,提高结构整体寿命;组合节点采用方形木梁,相比工字形梁,抗剪性能优良;且方形木梁中设置钢筋,提高柱子的受力性能;在施工上实现完全的装配式施工,提高施工进度,减少施工周期,减少工程造价;钢木中柱组合节点,在木结构中辅以钢材,增强了木结构抗拉、压、弯的能力,使结构在地震作用时,具有良好的抗震性能。
如上所述,结合附图和描述给出的方案内容,可以衍生出类似的技术方案。但凡是未脱离本发明的结构的方案内容,均仍属于本申请技术方案的权利范围。

Claims (5)

  1. 一种折叠式楼板中柱组合节点,其特征在于:包括钢木组合柱(1)和方形木梁(2)、用于连接钢木组合柱(1)与方形木梁(2)的连接组件(4)、以及由钢木组合柱(1)、方形木梁(2)与连接组件(4)共同连接并承载的折叠式木质楼板(3);
    所述的钢木组合柱(1)具有一中空的十字形外木柱(5),十字形外木柱(5)内嵌钢套筒(8),钢套筒(8)内嵌内木柱(19),在内木柱(19)中穿设有柱子纵向钢筋(6),横向钢筋(7)的内侧端贯穿十字形外木柱(5)而固定连接于钢套筒(8),横向钢筋(7)的外侧端设置有锥形螺纹,在十字形外木柱(5)的十字面两侧设置有用于连接所述连接组件(4)的第一螺栓孔(12);
    所述的方形木梁(2)具有穿入其内部的纵向出挑钢筋(10),纵向出挑钢筋(10)的外侧端设置有螺纹;在方形木梁(2)的端部两侧面上设置有用于连接所述双环板(11)的第二螺栓孔(13);在方形木梁(2)的顶部设置有固定连接所述折叠式木质楼板(3)的第三螺栓孔(14);
    所述的折叠式木质楼板(3),在相邻两木板之间连接有转轴(16),在每块木板的边缘拼接处设置有用于连接所述方形木梁(2)、连接组件(4)的第三螺栓孔(14);
    所述的连接组件(4),包括两端分别连接所述横向钢筋(7)和纵向出挑钢筋(10)的螺纹套筒(9),以及双环板(11);
    所述的双环板(11),具有十字形的上环板(123)和下环板(456),在上环板(123)、下环板(456)连接处的十字根部设置有角形板(15),角形板(15)上设置有叠加后进行固定连接的第四螺栓孔(20);在上环板(123)、下环板(456)邻近十字根部的内侧端设置有用于连接十字形外木柱(5)的第一螺栓孔(12);在上环板(123)、下环板(456)的端部外侧设置有用于连接方形木梁(2)的第二螺栓孔(13);在上环板(123)、下环板(456)的顶端设置有用于连接方形木梁(2)、折叠式木质楼板(3)的第三螺栓孔(14)。
  2. 根据权利要求1所述的折叠式楼板中柱组合节点,其特征在于:所述的双环板(11),其上环板(123)、下环板(456)具有与十字形外木柱(5)外形相同的十字形槽(21)。
  3. 根据权利要求2所述的折叠式楼板中柱组合节点,其特征在于:在上环板(123)与下环板(456)对接处边缘,对称地设置有用于插接的燕尾凹槽(23)、燕尾凸槽(24)。
  4. 根据权利要求2或3所述的折叠式楼板中柱组合节点,其特征在于:所述的折叠式木质楼板(3),通过转轴(16)连接近柱端楼板(17)和方形楼板(18),近柱端楼板(17)在近柱端具有与十字形外木柱(5)相契合的W形槽口,相邻4块近柱端楼板(17)的W形槽口构成十字形槽口(22)。
  5. 如权利要求1至4所述折叠式楼板中柱组合节点的组装方法,其特征在于:包括有以下流程步骤,
    步骤1),在十字形外木柱(5)中加入钢套筒(8),焊接固定横向钢筋(7),填充内木柱(19)并在其中插入柱子纵向钢筋(6);
    步骤2),在方形木梁(2)中插入纵向出挑钢筋(10)并出挑钢筋;
    步骤3),将组装好的钢木组合柱(1)和方形木梁(2)的钢筋出挑部分,采用螺纹套筒(9)进行对接;
    步骤4),将上环板(123)、下环板(456)通过对接处的燕尾槽(23)、(24)进行插接,在其角形板(15)处进行拼接固定而组装成双环板(11);
    步骤5),十字形外木柱(5)通过十字形槽(21)贯穿套入双环板(11),通过螺栓将双环板(11)与十字形外木柱(5)、方形木梁(2)分别进行紧固连接;
    步骤6),将相邻4块折叠式木质楼板(3)围绕于十字形外木柱(5),通过螺栓实施近柱端楼板(17)、方形楼板(18)与双环板(11)、方形木梁(2)的叠加紧固连接。
PCT/CN2020/089293 2019-09-04 2020-05-09 折叠式楼板中柱组合节点及其组装方法 WO2021042757A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20859999.3A EP3865632B8 (en) 2019-09-04 2020-05-09 Central column composite joints for folding floor slab and assembly method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910832774.3 2019-09-04
CN201910832774.3A CN110616807B (zh) 2019-09-04 2019-09-04 折叠式楼板中柱组合节点及其组装方法

Publications (1)

Publication Number Publication Date
WO2021042757A1 true WO2021042757A1 (zh) 2021-03-11

Family

ID=68922510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089293 WO2021042757A1 (zh) 2019-09-04 2020-05-09 折叠式楼板中柱组合节点及其组装方法

Country Status (5)

Country Link
US (1) US10822789B1 (zh)
EP (1) EP3865632B8 (zh)
JP (1) JP6802595B1 (zh)
CN (1) CN110616807B (zh)
WO (1) WO2021042757A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109853739B (zh) * 2019-02-27 2020-06-23 青岛理工大学 装配式钢木组合节点
CN110616807B (zh) * 2019-09-04 2020-07-14 青岛理工大学 折叠式楼板中柱组合节点及其组装方法
CN110616808B (zh) * 2019-09-04 2020-07-14 青岛理工大学 拼装楼板式钢木组合节点及其组装方法
CN110644619B (zh) * 2019-09-21 2020-10-09 青岛理工大学 装配式限位增强钢木磨砂套筒组合节点
CN210828440U (zh) * 2019-09-29 2020-06-23 丰和营造集团股份有限公司 一种建筑物到期前混凝土楼层加固结构
CN111677172B (zh) * 2020-06-03 2021-05-25 苏州科技大学 钢-混凝土组合结构板柱结构体系
CN113356393B (zh) * 2021-05-08 2023-12-05 承德建元科技股份有限公司 一种预制墙体的拼接结构及其拼接方法
CN113565204B (zh) * 2021-08-17 2022-10-25 江苏南通六建建设集团有限公司 一种复合型结构柱就位穿筋法抗震节点构造及施工方法
CN113882512B (zh) * 2021-08-30 2023-03-28 西安建筑科技大学 一种带套环的工字梁-方钢管柱装配式节点
CN114250863A (zh) * 2021-12-24 2022-03-29 常州工学院 一种钢插板连接的焊接空心球节点
CN114197655B (zh) * 2021-12-29 2023-08-18 山东建筑大学工程鉴定加固研究院有限公司 一种竹木结构梁柱节点及方法
CN114197654B (zh) * 2021-12-29 2023-05-02 浙江华策工程设计建设集团有限公司 一种古建筑的木梁与钢结构柱的固定结构
US11702835B1 (en) * 2022-01-17 2023-07-18 Mehmet Baris Batukan Self-aligning modular connector
CN114263296A (zh) * 2022-02-17 2022-04-01 石家庄铁道大学 一种拼装式钢木组合剪力墙结构体系
CN114607083A (zh) * 2022-03-23 2022-06-10 山东佳隆建工集团有限公司 一种用于装配式建筑用骨架板材的承重结构及其安装方法
CN114622657B (zh) * 2022-04-24 2023-12-05 石家庄铁道大学 基于套筒连接的钢木组合连接体系
CN115262832B (zh) * 2022-08-15 2023-10-24 四川大学 一种螺栓连接装配式钢筋混凝土双向肋保温楼盖

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155053A (zh) * 2011-03-25 2011-08-17 扬州市天成建筑安装工程有限公司 一种柱梁连接十字型耗能卡套
CN103603431A (zh) * 2013-10-15 2014-02-26 南京工业大学 装配式木结构梁柱植筋节点
CN106088471A (zh) * 2016-06-12 2016-11-09 广东电白二建集团有限公司 一种新型的仿古建筑梁柱木包钢结构施工方法
CN108978869A (zh) * 2018-08-30 2018-12-11 河北建筑工程学院 一种装配式钢木组合梁柱节点结构及其施工方法
JP2019056202A (ja) * 2017-09-19 2019-04-11 大成建設株式会社 鋼管と木質材の合成柱
CN109853739A (zh) * 2019-02-27 2019-06-07 青岛理工大学 装配式钢木组合节点
CN110616807A (zh) * 2019-09-04 2019-12-27 青岛理工大学 折叠式楼板中柱组合节点及其组装方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828512A (en) * 1972-01-20 1974-08-13 D Johnson Method of forming a multi-unit folding slab construction for use on restricted building site
DE2702310A1 (de) * 1977-01-21 1978-07-27 Otto Kreibaum Aus vorfabrizierten teilen zusammensetzbares haus
CN1114741C (zh) * 1999-03-18 2003-07-16 段梦麟 一种配筋的人造木
JP2002013201A (ja) * 2000-06-29 2002-01-18 Uesuto:Kk 木造建築物の接合構造
US7343713B2 (en) * 2003-03-07 2008-03-18 Morton Buildings Hinged support column
US7100332B2 (en) * 2004-08-26 2006-09-05 Loesch Ivan L Unfolding modular building system
KR100579702B1 (ko) * 2005-07-19 2006-05-15 한진수 건축용 구조부재
US20070062147A1 (en) * 2005-07-27 2007-03-22 Clifford Wright Portable folding floor unit
US7637076B2 (en) * 2006-03-10 2009-12-29 Vaughn Willaim B Moment-resistant building column insert system and method
US9523188B2 (en) * 2007-06-22 2016-12-20 Diversakore Llc Framing structure
KR101157147B1 (ko) * 2008-09-22 2012-06-22 경희대학교 산학협력단 콘크리트 복합 기둥 및 이를 이용한 건축물 시공방법
US20150068138A1 (en) * 2013-09-11 2015-03-12 Aditazz, Inc. Concrete deck for an integrated building system assembly platform
DK2997203T3 (en) * 2014-02-13 2017-03-13 Settimio Castelli Modular structural system
CN204311633U (zh) * 2014-12-02 2015-05-06 何敏娟 钢边梁木规格材预制楼板结构
CN104727439B (zh) 2015-03-09 2017-01-18 沈阳建筑大学 装配式混凝土柱、梁结构及装配连接方法
US11174630B2 (en) * 2015-04-15 2021-11-16 Z-Modular Holding, Inc. Modular building structure
AU2017208154A1 (en) * 2016-01-14 2018-08-30 Andries Auret LOUW A structural element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155053A (zh) * 2011-03-25 2011-08-17 扬州市天成建筑安装工程有限公司 一种柱梁连接十字型耗能卡套
CN103603431A (zh) * 2013-10-15 2014-02-26 南京工业大学 装配式木结构梁柱植筋节点
CN106088471A (zh) * 2016-06-12 2016-11-09 广东电白二建集团有限公司 一种新型的仿古建筑梁柱木包钢结构施工方法
JP2019056202A (ja) * 2017-09-19 2019-04-11 大成建設株式会社 鋼管と木質材の合成柱
CN108978869A (zh) * 2018-08-30 2018-12-11 河北建筑工程学院 一种装配式钢木组合梁柱节点结构及其施工方法
CN109853739A (zh) * 2019-02-27 2019-06-07 青岛理工大学 装配式钢木组合节点
CN110616807A (zh) * 2019-09-04 2019-12-27 青岛理工大学 折叠式楼板中柱组合节点及其组装方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3865632A4

Also Published As

Publication number Publication date
JP2021038639A (ja) 2021-03-11
CN110616807B (zh) 2020-07-14
EP3865632B1 (en) 2022-11-30
EP3865632A1 (en) 2021-08-18
JP6802595B1 (ja) 2020-12-16
US10822789B1 (en) 2020-11-03
CN110616807A (zh) 2019-12-27
EP3865632B8 (en) 2023-01-11
EP3865632A4 (en) 2022-02-23

Similar Documents

Publication Publication Date Title
WO2021042757A1 (zh) 折叠式楼板中柱组合节点及其组装方法
WO2021042756A1 (zh) 拼装楼板式钢木组合节点及其组装方法
JP6912132B2 (ja) 組立式木材鋼材複合節点
CN203452204U (zh) 一种预制中空型钢混凝土柱与钢梁的连接节点
CN103437425A (zh) 一种预制中空型钢混凝土柱与钢梁的连接节点及施工方法
CN112144668B (zh) 榫式插接的装配式钢混组合节点
CN108978856B (zh) 一种装配式蜂窝梁板结构体系
CN111794421B (zh) 一种预制混凝土楼板装配方法
CN114150762A (zh) 一种装配式混凝土柱与钢梁的rcs组合件及其施工方法
CN209941897U (zh) 一种快拼式t型钢混凝土梁柱连接节点
CN108571169B (zh) 工厂预制钢砼叠合剪力墙装配式建筑施工方法
CN113006279B (zh) 无机胶复合竹木结构中梁柱间连接节点、框架结构及方法
CN216865443U (zh) 一种装配式混凝土柱与钢梁的rcs组合件
CN220598918U (zh) 劲性柱节点钢筋连接结构
CN216007260U (zh) 一种钢梁与混凝土柱的刚接节点
CN220565046U (zh) 一种预制空腹式型钢混凝土拼接墩柱
CN220848250U (zh) 一种带肋叠合板
CN215211577U (zh) 一种易于搭建的梁柱节点结构
CN219033791U (zh) 一种预制装配式柱柱连接结构
CN218667900U (zh) 一种新型对穿式梁柱刚接节点
CN220353156U (zh) 墙柱节点结构以及装配式房屋
CN113123455A (zh) 一种装配式双人字型支撑框架结构及施工方法
CN110805186B (zh) 一种装配式轻质楼板连接节点结构
CN213204699U (zh) 一种对房屋结构具有强抗震性的立柱
CN210947140U (zh) 加强型装配式梁柱连接节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859999

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 20859999.3

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020859999

Country of ref document: EP

Effective date: 20210514

NENP Non-entry into the national phase

Ref country code: DE