WO2021042265A1 - 导光基板及其制备方法、对向基板、液晶显示装置 - Google Patents

导光基板及其制备方法、对向基板、液晶显示装置 Download PDF

Info

Publication number
WO2021042265A1
WO2021042265A1 PCT/CN2019/104211 CN2019104211W WO2021042265A1 WO 2021042265 A1 WO2021042265 A1 WO 2021042265A1 CN 2019104211 W CN2019104211 W CN 2019104211W WO 2021042265 A1 WO2021042265 A1 WO 2021042265A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
base substrate
substrate
buffer layer
Prior art date
Application number
PCT/CN2019/104211
Other languages
English (en)
French (fr)
Inventor
谭纪风
孟宪东
赵文卿
陈小川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/044,268 priority Critical patent/US11513277B2/en
Priority to PCT/CN2019/104211 priority patent/WO2021042265A1/zh
Priority to CN201980001596.8A priority patent/CN112771424B/zh
Publication of WO2021042265A1 publication Critical patent/WO2021042265A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a light guide substrate and a preparation method thereof, a counter substrate, and a liquid crystal display device.
  • the liquid crystal display device that uses the diffraction of the liquid crystal grating to realize the display, its working principle is that the liquid crystal layer forms a liquid crystal grating by applying a voltage driving signal to the liquid crystal layer, and the diffraction of the liquid crystal grating is used to make the light emerge, thereby achieving display.
  • the driving voltage signal applied to the liquid crystal layer By changing the driving voltage signal applied to the liquid crystal layer, the diffraction efficiency of the liquid crystal grating is changed to realize the display of different gray scales.
  • the above-mentioned liquid crystal display device does not need to be provided with a polarizing plate, so the light transmittance is relatively high.
  • a method for preparing a light guide substrate including: providing a first base substrate, and forming an interface protection layer on one surface of the first base substrate; the first base substrate includes Multiple light extraction port areas and non-light extraction port areas except for the multiple light extraction port areas; forming a grating structure layer on the side of the first base substrate where the interface protection layer is formed; removing The part of the grating structure layer corresponding to the non-light-extracting port area obtains a plurality of light-extracting grating units corresponding to the plurality of light-exiting port regions one-to-one; removing the interface protection layer corresponding to the non-light-taking The part of the optical port area.
  • the method further includes: patterning the interface protection layer, and removing the interface protection layer corresponding to the Part of the area of multiple light extraction ports.
  • a wet etching process is used to remove the corresponding portion of the interface protection layer.
  • the material of the interface protection layer is metal, metal alloy or metal oxide.
  • the part of the grating structure layer corresponding to the non-light extraction port area is completely removed when the thickness of the portion of the interface protection layer corresponding to the non-light-trapping area that is not covered by the grating structure layer is greater than or equal to zero.
  • an etching process is used to remove the part of the grating structure layer corresponding to the non-light extraction port area; in the removing of the part of the grating structure layer corresponding to the non-light extraction port area
  • the etching selection ratio of etching the material of the grating structure layer to etching the material of the interface protection layer is greater than or equal to 10.
  • a dry etching process is used to remove the corresponding portion of the grating structure layer.
  • the step of removing the part of the grating structure layer corresponding to the non-light-trapping area includes: the part of the grating structure layer corresponding to the light-trapping area is far away from the first A protective glue layer is formed on one side of a base substrate so that the protective glue layer covers the part of the grating structure layer corresponding to the light extraction port area; removing the grating structure layer corresponding to the non-light extraction port area ⁇ ; Remove the protective glue layer.
  • a light guide substrate including: a first base substrate, the first base substrate includes a plurality of light extraction port regions and non-light extraction ports other than the plurality of light extraction port regions Area; a plurality of interface protection structures arranged on one side surface of the first base substrate, the plurality of interface protection structures corresponding to the plurality of light extraction port regions one-to-one; arranged on the plurality of interfaces
  • the protection structure is away from a plurality of light extraction grating units on one side of the first base substrate, and the plurality of light extraction grating units corresponds to the plurality of interface protection structures one to one.
  • the light guide substrate further includes: a flat layer covering the plurality of light extraction grating units; a first buffer layer disposed on a side of the flat layer away from the first base substrate; A second buffer layer disposed on a side of the first buffer layer away from the first base substrate; wherein the material of the first buffer layer is different from the material of the second buffer layer.
  • the refractive index of the first buffer layer is between the refractive index of the flat layer and the refractive index of the second buffer layer.
  • the material of the first buffer layer is oxide
  • the material of the second buffer layer is nitride
  • the material of the first buffer layer and the material of the second buffer layer include the same Elements.
  • the material of the first buffer layer is silicon oxide
  • the material of the second buffer layer is silicon nitride
  • the thickness of the first buffer layer is 0.3 ⁇ m
  • the thickness of the second buffer layer is 0.1 ⁇ m
  • the thickness of the flat layer is 0.825 ⁇ m.
  • the light guide substrate further includes: a pixel driving structure disposed on a side of the second buffer layer away from the first base substrate, the pixel driving structure includes a plurality of thin film transistors; The pixel electrode layer on the side of the pixel driving structure away from the first base substrate; the common electrode layer provided on the side of the pixel electrode layer away from the first base substrate; the second buffer layer The density is higher than the density of the flat layer, and the density of the second buffer layer is higher than the density of the first buffer layer.
  • a liquid crystal display device comprising: the light guide substrate as described in the second aspect; an opposite substrate disposed opposite to the light guide substrate; and disposed on the light guide substrate and the opposite substrate
  • the opposite substrate includes: a second base substrate; a black matrix layer disposed on a side of the second base substrate close to the light guide substrate; wherein, the black matrix The layer has a plurality of openings, and the orthographic projection of the black matrix layer on the first base substrate covers the orthographic projection of the plurality of light extraction grating units on the first base substrate.
  • the liquid crystal layer is configured to, under the action of an electric field, enter the light emitted from the light guide substrate into the black matrix layer; alternatively, the light emitted from the light guide substrate enters the black matrix layer.
  • a light-emitting area formed by a plurality of openings.
  • the counter substrate further includes: an organic transmission layer disposed on a side of the black matrix layer away from the second base substrate; and disposed on the black matrix layer close to the second substrate.
  • the third buffer layer on one side of the base substrate; wherein the direction of the internal stress of the third buffer layer is opposite to the direction of the internal stress of the organic transmission layer.
  • the material of the third buffer layer is silicon nitride.
  • the organic transmission layer has a thickness of 15 ⁇ m to 20 ⁇ m
  • the third buffer layer has a thickness of 0.5 ⁇ m to 1 ⁇ m.
  • the opposite substrate further includes: an adhesive layer disposed between the third buffer layer and the black matrix layer.
  • the material of the adhesive layer is silicon dioxide, and the thickness of the adhesive layer is 0.3 ⁇ m.
  • a light guide substrate including: a first base substrate; a plurality of light extraction grating units arranged on one side of the first base substrate; A flat layer; a first buffer layer disposed on the side of the flat layer away from the first base substrate; a second buffer layer disposed on the side of the first buffer layer away from the first base substrate; wherein The material of the first buffer layer is different from the material of the second buffer layer.
  • the refractive index of the first buffer layer is between the refractive index of the flat layer and the refractive index of the second buffer layer.
  • the material of the first buffer layer is oxide
  • the material of the second buffer layer is nitride
  • the material of the first buffer layer and the material of the second buffer layer contain the same element .
  • the material of the first buffer layer is silicon oxide
  • the material of the second buffer layer is silicon nitride
  • the thickness of the first buffer layer is 0.3 ⁇ m
  • the thickness of the second buffer layer is 0.1 ⁇ m
  • the thickness of the flat layer is 0.825 ⁇ m.
  • the light guide substrate further includes a pixel driving structure disposed on a side of the second buffer layer away from the first base substrate, and the pixel driving structure includes a plurality of thin film transistors;
  • the density of the flat layer is higher than the density of the first buffer layer.
  • a liquid crystal display device including: the light guide substrate according to any one of the third aspects; an opposite substrate disposed opposite to the light guide substrate; The liquid crystal layer between the opposing substrates; wherein the opposing substrate includes: a second base substrate; a black matrix layer disposed on a side of the second base substrate close to the light guide substrate; wherein, The black matrix layer has a plurality of openings, and the orthographic projection of the black matrix layer on the first base substrate covers the orthographic projection of the plurality of light extraction grating units on the first base substrate; wherein The liquid crystal layer is configured to, under the action of an electric field, enter the light emitted from the light guide substrate into the black matrix layer; or, the light emitted from the light guide substrate enters the black matrix layer. Light emitting area formed by two openings.
  • a counter substrate including: a second base substrate; an organic transmissive layer provided on one side of the second base substrate; and an organic transmissive layer provided on the second base substrate and the organic transmissive layer.
  • the third buffer layer between the layers; wherein the direction of the internal stress of the third buffer layer is opposite to the direction of the internal stress of the organic transmission layer.
  • the material of the third buffer layer is silicon nitride.
  • the organic transmission layer has a thickness of 15 ⁇ m to 20 ⁇ m
  • the third buffer layer has a thickness of 0.5 ⁇ m to 1 ⁇ m.
  • the counter substrate further includes: an adhesive layer disposed between the organic transmission layer and the third buffer layer.
  • the material of the adhesive layer is silicon dioxide, and the thickness of the adhesive layer is 0.3 ⁇ m.
  • the counter substrate further includes: a black matrix layer disposed on a side of the organic transmission layer close to the second base substrate, the black matrix layer having a plurality of openings.
  • a liquid crystal display device including: a light guide substrate; the opposite substrate according to the sixth aspect; a liquid crystal layer disposed between the light guide substrate and the opposite substrate;
  • the light guide substrate includes: a first base substrate; a plurality of light extraction grating units arranged on a side of the first base substrate facing the opposite substrate; A flat layer; a pixel drive structure arranged on the side of the flat layer facing away from the first base substrate, the pixel drive structure including a plurality of thin film transistors; arranged on the pixel drive structure away from the first The pixel electrode layer on one side of the base substrate; the common electrode layer disposed on the side of the pixel electrode layer facing away from the first base substrate.
  • the counter substrate is arranged opposite to the light guide substrate; wherein, the orthographic projection of the black matrix layer on the first base substrate covers the plurality of light extraction grating units on the first base substrate Orthographic projection on.
  • the liquid crystal layer is configured to, under the action of an electric field, enter the light emitted from the light guide substrate into the black matrix layer; or, the light emitted from the light guide substrate enters the black matrix layer. Light emitting area formed by multiple openings.
  • FIG. 1A is a schematic diagram of a liquid crystal display device according to the related art
  • FIG. 1B is another schematic diagram of a liquid crystal display device according to the related art
  • FIGS. 2A to 2C are schematic diagrams of a step of a method for preparing a light guide substrate according to the related art
  • FIG. 3A is a flowchart of a method for manufacturing a light guide substrate according to some embodiments of the present disclosure
  • FIG. 3B is another flow chart of the method of manufacturing the light guide substrate according to some embodiments of the present disclosure.
  • FIG. 3C is still another flow chart of the method for manufacturing the light guide substrate according to some embodiments of the present disclosure.
  • 4A to 4H are schematic diagrams of each step of a method for preparing a light guide substrate according to some embodiments of the present disclosure
  • FIG. 5 is another flow chart of a method of manufacturing a light guide substrate according to some embodiments of the present disclosure.
  • 6A to 6I are schematic diagrams of another various steps of a method for preparing a light guide substrate according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram of a light guide substrate according to some embodiments of the present disclosure.
  • 8A is a graph showing the relationship between the thickness of the first buffer layer and the first total reflection light leakage rate in the light guide substrate according to some embodiments of the present disclosure
  • 8B is a graph showing the relationship between the thickness of the second buffer layer and the second total reflection light leakage rate in the light guide substrate according to some embodiments of the present disclosure
  • FIG. 9 is a schematic diagram of a liquid crystal display device according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram of warping of the counter substrate in a liquid crystal display device according to the related art.
  • FIG. 11 is a schematic diagram of a light guide substrate according to some embodiments of the present disclosure.
  • FIG. 12 is another schematic diagram of a liquid crystal display device according to some embodiments of the present disclosure.
  • FIG. 13 is a schematic diagram of a counter substrate according to some embodiments of the present disclosure.
  • FIG. 14 is still another schematic diagram of a liquid crystal display device according to some embodiments of the present disclosure.
  • FIG. 15 is another schematic diagram of a liquid crystal display device according to some embodiments of the present disclosure.
  • the liquid crystal display device 100 includes: a light guide substrate 1 and a counter substrate 2 disposed oppositely, and a liquid crystal layer disposed between the light guide substrate 1 and the counter substrate 2 3.
  • the light guide substrate 1 includes a first base substrate 11, a plurality of light-extracting grating units 12, a flat layer 13, a pixel driving structure 14, a pixel electrode layer 14b, an insulating layer 14d, and a common electrode layer 14c.
  • the plurality of light extraction grating units 12 are arranged on one side surface of the first substrate 11; the flat layer 13 covers the plurality of light extraction grating units 12.
  • the counter substrate 2 includes a second base substrate 21, a black matrix layer 22 and a filter layer 23.
  • the black matrix layer 22 has a plurality of openings
  • the filter layer 23 includes a plurality of color filter resistors 23a
  • the plurality of color filter resistors 23a are respectively disposed in the light exit area formed by the plurality of openings of the black matrix layer 22 .
  • the orthographic projection of the black matrix layer 22 on the first base substrate 11 covers the orthographic projection of the plurality of light extraction grating units 12 on the first base substrate 11.
  • the liquid crystal display device 100 further includes a light source 4 disposed at one end of the first base substrate 11, and the light source 4 provides the liquid crystal display device 100 with light required for display.
  • the light emitted by the light source 4 enters the first base substrate 11, and is totally reflected and propagated in the first base substrate 11.
  • the plurality of light extraction grating units 12 are configured to collimate the light rays totally reflected and propagated in the first base substrate 11 (as shown in FIG. 1A, the light rays emitted by the plurality of light extraction grating units 12 and the normal line
  • the included angle of is within a set range, where the normal line is perpendicular to the surface of the first base substrate 11.
  • the set range is (-5°, 5°), (-7°, 7°), (-10°, 10°) etc.) Take it out.
  • a driving signal is applied to the pixel electrode layer 14b through the pixel driving structure 14, so that a voltage is generated between the pixel electrode layer 14b and the common electrode layer 14c, and the voltage in the liquid crystal layer 3 is driven by the voltage.
  • the liquid crystal molecules are deflected so that the liquid crystal layer 3 forms a liquid crystal grating.
  • the light is projected to the filter layer 23 by the diffraction effect of the liquid crystal grating on the light, and then the light passes through the filter layer 23 and is emitted. At this time, the liquid crystal display device 100 is in a bright state. .
  • the diffraction efficiency of the liquid crystal grating to the light is changed, and then the intensity of the light passing through the filter layer 23 is changed, thereby realizing the display of different gray scales.
  • the pixel driving structure 14 stops applying driving signals to the pixel electrode layer 14b, and the pixel electrode layer 14b and the common electrode layer 14c stop applying voltage to the liquid crystal layer 3.
  • the liquid crystal in the liquid crystal layer 3 The molecules return to their original orientation, and the collimated light rays emitted from the plurality of light extraction grating units 12 are not diffracted by the liquid crystal layer 3, but are directly projected to the black matrix layer 22 and blocked by the black matrix layer 22. At this time, the liquid crystal display The device 100 is in the dark state.
  • the area of the first base substrate 11 corresponding to the plurality of light extraction grating units 12 is the light extraction port area A, and the area other than the light extraction port area A is the non-light extraction port area B .
  • the light that is required to be totally reflected and propagated in the first base substrate 11 passes through the plurality of light extraction grating units 12 to exit from the light extraction port area A, but not from the non-light extraction port area B.
  • the first base substrate 11 includes a plurality of light extraction port areas A and a non-light extraction port area B except for the multiple light extraction port areas A.
  • a grating structure layer 12-2 is formed on one surface of the first base substrate 11.
  • the part of the grating structure layer 11 corresponding to the non-light-trapping area is removed to obtain a plurality of light-trapping grating units 12 corresponding to the plurality of light-trapping regions in a one-to-one manner.
  • an etching process is used to remove the part of the grating structure layer 12-2 corresponding to the non-light-extracting port area B, and the part of the grating structure layer 12-2 corresponding to the non-light-taking port area B is etched.
  • the part of the non-light-extracting port area B on the surface of the first base substrate 11 that is not covered by the grating structure layer 12-2 is simultaneously etched, so that the non-light-extracting port area B of the first base substrate 11 appears more
  • the pits have a grating-shaped structure, so that part of the light will exit through the non-light-extracting port area B of the first base substrate 11, causing serious light leakage and affecting the display effect of the liquid crystal display device.
  • the inventors of the present disclosure have tested the light leakage rate of the area corresponding to the non-light extraction port area B of the light guide substrate 1 prepared by the above-mentioned preparation process (emitted from the area corresponding to the non-light extraction port area B in the light guide substrate 1
  • the ratio of the amount of light to the total amount of light transmitted in the first base substrate 11) is 13%.
  • some embodiments of the present disclosure also provide a method for preparing a light guide substrate. As shown in FIG. 3A, the method for preparing a light guide substrate includes:
  • a first base substrate 11 is provided, and an interface protective layer 16 is formed on one side surface of the first base substrate 11; the first base substrate 11 includes a plurality of light-extracting port regions A and The non-light-take-out area B except for the multiple light-take-out areas A.
  • the first base substrate 11 is a substrate with a light guide function, such as a glass substrate, an acrylic sheet, or the like.
  • a grating structure layer 12-2 is formed on the side of the first base substrate 11 where the interface protection layer 16 is formed.
  • the part of the grating structure layer 12-2 corresponding to the non-light-trapping area is removed to obtain a plurality of light-trapping grating units 12 corresponding to the plurality of light-trapping regions A one-to-one.
  • the interface protection layer 16 is formed on the surface of the first base substrate 11, and then the grating structure layer 12-2 is formed on the side where the interface protection layer 16 is formed, so that the grating structure layer 12 is removed.
  • the interface protective layer 16 since the interface protective layer 16 covers the first base substrate 11, it protects the first base substrate 11, thus avoiding the first base substrate 11
  • the part of the surface of the base substrate 11 corresponding to the non-light-extracting port area B is damaged, so that the part of the surface of the first base substrate 11 corresponding to the non-light-extracting port area B is a smooth interface, thereby reducing the first base substrate 11.
  • the occurrence of light leakage in the non-light extraction port area B causes more light to exit from the multiple light extraction grating units 12 in the multiple light extraction port areas A at a collimated angle, thereby improving the light extraction effect of the light guide substrate.
  • forming S2 of the grating structure layer 12-2 on the side of the first base substrate 11 where the interface protection layer 16 is formed includes:
  • a grating material film 12-1 is formed on the side of the first base substrate 11 where the interface protection layer 16 is formed.
  • a mask layer 17 with a grating pattern is formed on the side of the grating material film 12-1 facing away from the first base substrate 11.
  • the mask layer 17 with a grating pattern is prepared by a nanoimprint process.
  • the mask layer 17 with a grating pattern is used as the required mask layer 17 to be imprinted on the grating material film 12-1. on the surface.
  • the preparation of the mask layer 17 with the grating pattern by the nano-imprinting process has high preparation accuracy, which is beneficial to improve the accuracy of the grating structure layer 12-2 obtained by subsequent preparation.
  • the mask layer 17 with a grating pattern is formed by a photolithography process. In the preparation process, the mask layer 17 with a grating pattern is prepared through the steps of coating photoresist, exposing, and developing.
  • S3 includes:
  • a protective glue layer 17 is formed on the side of the grating structure layer 12-2 that corresponds to the light extraction port area A away from the first base substrate 11, so that the protective glue layer 17 covers the grating structure layer The part in 12-2 that corresponds to the light port area A.
  • a dry etching process is used to remove the corresponding part of the grating structure layer 12-2.
  • Dry etching is used to etch the grating structure layer 12-2.
  • the etching selection ratio of the grating structure layer 12-2 and the interface protection layer 16 it is possible to effectively remove the grating structure layer 12-2. While the part of the light port area B is reduced, the damage caused to the interface protection layer 16 is reduced, thereby effectively protecting the first base substrate 11.
  • the protective adhesive layer 17 can be removed by peeling off the protective adhesive layer 17 from the grating structure layer 12-2, which can reduce the damage to the grating structure layer 12-2 during the operation. The impact.
  • the protective glue layer 17 is formed so that the protective glue layer 17 covers the part of the grating structure layer 12-2 corresponding to the light extraction port area A, and the grating structure layer 12-2 corresponds to the non-light extraction port area B.
  • the protective adhesive layer 17 protects the part of the grating structure layer 12-2 corresponding to the light extraction port area A, so that the part of the grating structure layer 12-2 corresponding to the light extraction port area A will not be affected by
  • the protective glue layer 17 is removed at the end, leaving the part of the grating structure layer 12-2 corresponding to the light extraction port area A to obtain a number of access points corresponding to the multiple light extraction port areas A one-to-one.
  • some embodiments of the present disclosure provide another method for preparing a light guide substrate, including:
  • a first base substrate 11 is provided, and an interface protective layer 16 is formed on one side surface of the first base substrate 11; the first base substrate 11 includes a plurality of light extraction port regions A And the non-light-take-out area B except for the multiple light-take-out area A.
  • the interface protection layer 16 is patterned, and the part of the interface protection layer 16 corresponding to the multiple light extraction port regions is removed.
  • a grating structure layer 12-2 is formed on the side of the first base substrate 11 where the interface protection layer 16 is formed.
  • the part of the interface protective layer 16 corresponding to the multiple light extraction port regions A can be removed to make the grating structure layer 12- 2 is directly formed on the surface of the light extraction port area A of the first base substrate 11 to prevent the interface protection layer 16 from affecting the light output of the light extraction port area A, so that the light output from the plurality of light extraction grating units 12 The light is stronger.
  • the foregoing S3' forming the grating structure layer 12-2 on the side of the first base substrate 11 where the interface protection layer 16 is formed includes:
  • a grating material film 12-1 is formed on the side of the first base substrate 11 where the interface protection layer 16 is formed.
  • a mask layer 17 with a grating pattern is formed on the side of the grating material film 12-1 facing away from the first base substrate 11.
  • the mask layer 17 with a grating pattern is prepared by a nanoimprint process, or is formed by a photolithography process.
  • a nanoimprint process or is formed by a photolithography process.
  • removing the part of the grating structure layer 12-2 that corresponds to the non-light-trapping area to obtain a plurality of light-trapping grating units 12 corresponding to the plurality of light-trapping regions A one-to-one S4' includes:
  • a protective glue layer 17 is formed on the side of the grating structure layer 12-2 that corresponds to the light extraction port area A away from the first base substrate 11, so that the protective glue layer 17 covers the grating The part of the structural layer 12-2 corresponding to the light-exit area A.
  • the protective glue layer 17 is formed so that the protective glue layer 17 covers the part of the grating structure layer 12-2 corresponding to the light extraction port area A, and the grating structure layer 12-2 corresponds to the non-light extraction port area B.
  • the protective adhesive layer 17 protects the part of the grating structure layer 12-2 corresponding to the light extraction port area A, so that the part of the grating structure layer 12-2 corresponding to the light extraction port area A will not be affected by
  • the protective glue layer 17 is removed at the end, leaving the part of the grating structure layer 12-2 corresponding to the light extraction port area A to obtain a number of access points corresponding to the multiple light extraction port areas A one-to-one.
  • the grating structure layer 12-2 corresponds to the non-light extraction port
  • the thickness d of the part of the interface protection layer 16 corresponding to the non-light-extraction port area that is not covered by the grating structure layer is greater than or equal to zero.
  • the part of the interface protective layer 16 corresponding to the non-light-extracting port area B is also removed from the grating structure layer 12
  • the part covered by -2 causes slight etching.
  • the thickness of the part of the interface protection layer 16 that is not covered by the grating structure layer 12-2 d is greater than or equal to 0, that is to say, the non-light-trapping area B on the surface of the first base substrate 11 at this moment is also covered with the interface protection layer 16, which ensures that the surface of the first base substrate 11 will not be etched.
  • an etching process is used to remove the part of the grating structure layer corresponding to the non-light-extracting port area; the part corresponding to the non-light-taking port area in the grating structure layer is removed.
  • the etching selection ratio of etching the material of the grating structure layer to etching the material of the interface protection layer is greater than or equal to 10.
  • the etching selection ratio is the ratio of the etching rate of the material to be etched to the etching rate of another material. Therefore, the material of the grating structure layer 12-1 is etched and the material of the interface protection layer 16 is etched.
  • the value of the etching selection ratio is larger, when the grating structure layer 12-1 and the interface protection layer 16 are etched at the same time, the etching rate difference when the grating structure layer 12-1 and the interface protection layer 16 are etched is greater .
  • etching selection ratio of the material of the grating structure layer 12-1 and the material of the interface protection layer 16 can ensure that the etching rate of the grating structure layer 12-1 is greater than the etching rate of the interface protection layer 16 In this way, when the part of the grating structure layer 12-1 corresponding to the non-light-taking area B is completely removed, the part of the interface protection layer 16 corresponding to the non-light-taking area B is not covered by the grating structure layer 12-1.
  • the thickness of the part is greater than or equal to 0 to ensure the protective effect of the interface protection layer 16 on the surface of the first base substrate 11.
  • a wet etching process is used to treat the interface protection layer The corresponding part of 16 is removed.
  • the corresponding portion of the interface protection layer 16 is removed by a wet etching process.
  • the interface protection layer 16 is removed by a wet etching process, and the interface protection layer 16 needs to be etched with an etching solution.
  • An etching solution that has no effect on the surface of the first base substrate 11 is selected to remove the interface protection layer.
  • the protective layer 16 is used, the surface of the first base substrate 11 will not be etched, and the flatness of the surface of the first base substrate 11 is ensured.
  • the wet etching process is simple and the production efficiency is high.
  • the etching solution for wet etching the interface protective layer 16 is an acid-based etching solution, and the acid-based etching solution will not cause damage to the glass substrate.
  • Chemical etching is an acid-based etching solution, and the acid-based etching solution will not cause damage to the glass substrate.
  • the material of the interface protection layer 16 is metal, metal alloy, metal oxide, or the like.
  • the material of the interface protection layer 16 is metal, such as aluminum, copper, etc.; or, the material of the interface protection layer 16 is a metal alloy, such as AlNd (aluminum neodymium), etc.; or, the material of the interface protection layer 16 is metal.
  • Oxides such as ITO (Indium Tin Oxides), IGZO (Indium Gallium Zinc Oxides, indium gallium zinc oxide), IZO (Indium Zinc Oxides, indium zinc oxide), etc.
  • materials such as metals, metal alloys, or metal oxides are selected as the material of the interface protection layer 16, so that the material of the grating structure layer 12-1 and the material of the interface protection layer 16 have a relatively high etching choice.
  • the degree of etching of the interface protection layer 16 can be reduced, so that the first base substrate 11 can be protected more effectively.
  • the material of the grating structure layer is silicon nitride
  • the material of the interface protection layer is IGZO.
  • the etching selection ratio of silicon nitride to IGZO is about 50:1, which protects the grating structure layer 12-1 and the interface.
  • the interface protection layer 16 will only be slightly etched, which ensures that the surface of the first base substrate 11 will not be etched.
  • the etching solution for wet etching the interface protection layer 16 is an acid-based etching solution.
  • the composition of the acid-based etching solution is: sulfuric acid, nitric acid , Additives and water, the volume ratio of each component is: sulfuric acid: nitric acid: additives: water equal to 8:4.5:2:76.
  • the first base substrate 11 when the corresponding part of the interface protective layer 16 is removed by the acid-based etching solution, the first base substrate 11 will not be chemically etched, and the surface of the obtained first base substrate 11 is correspondingly non-fetched.
  • the flatness of the light port area B is good, thereby effectively reducing light leakage.
  • the inventors of the present disclosure have tested the light leakage rate of the light guide substrate prepared by the method for preparing the light guide substrate provided by the present disclosure corresponding to the non-light extraction port area B (from the light guide substrate 1 corresponding to the non-light extraction port area)
  • the ratio of the amount of light emitted from the area B to the total amount of light transmitted in the first base substrate 11) is 0.8%, which shows that the amount of light leakage of the light guide substrate prepared by the above preparation method is greatly reduced .
  • the light guide substrate 1' includes: a first base substrate 11, a plurality of interface protection structures 16a, and a plurality of light extraction grating units 12 .
  • the first base substrate 11 includes a plurality of light extraction port areas A and a non-light extraction port area B except for the multiple light extraction port areas A.
  • the material of the first base substrate 11 is glass, polymethyl methacrylate, acrylic sheet and other materials that can transmit light and can cause total reflection of light.
  • the plurality of interface protection structures 16a are disposed on one side surface of the first base substrate 11, and the plurality of interface protection structures 16a correspond to the plurality of light extraction port regions A one-to-one.
  • “one-to-one correspondence” means that the number of the plurality of interface protection structures 16a is the same as the number of the plurality of light extraction port regions A, and the plurality of interface protection structures 16a are on the first base substrate 11.
  • the orthographic projection of the first base substrate 11 substantially overlaps the area corresponding to the plurality of light extraction port regions A, where the substantial overlap means that the overlap area is more than 80% of the light extraction port area (for example, 80%, 85%, 90%, 95%, etc.).
  • the plurality of light extraction grating units 12 are arranged on the side of the plurality of interface protection structures 16a facing away from the first base substrate 11, and the plurality of light extraction grating units 12 and the plurality of interface protection structures 16a are one by one. correspond.
  • the plurality of light extraction grating units 12 are configured to couple and emit light rays propagating in the first base substrate 11 at a collimated angle.
  • the “collimation angle” mentioned means that the angle between the light emitted from the plurality of light extraction grating units 12 and the normal is within a set range, wherein the normal is perpendicular to the first substrate
  • the setting range is (-5°, 5°), (-7°, 7°), (-10°, 10°), and the like.
  • the above-mentioned light guide substrate 1' includes a plurality of interface protection structures 16a corresponding to the plurality of light extraction grating units 12 one-to-one, that is, the light guide substrate 1'is prepared by using the method for preparing the light guide substrate provided in the present disclosure
  • the preparation process is to form an interface protection layer 16 on the surface of the first base substrate 11, and remove the portion of the interface protection layer 16 corresponding to the non-light-extracting port region B to obtain a plurality of interface protection structures 16a.
  • the part of the surface of the first base substrate 11 corresponding to the non-light extraction port area B will not be damaged, thereby reducing the light leakage phenomenon of the first base substrate 11 non-light extraction port area B This ensures that more light exits at a collimated angle from the multiple light extraction grating units 12 of the multiple light extraction opening areas A, thereby improving the light extraction effect of the light guide substrate.
  • the light guide substrate 1'further includes a flat layer 13 covering the plurality of light extraction grating units 12.
  • the inventors of the present disclosure have discovered through research that the light rays propagating through the total reflection in the first base substrate 11 are to be emitted from the plurality of light extraction opening areas A through the plurality of light extraction grating units 12, instead of being taken from the non-exit
  • the flat layer 13 covering the non-light port area B has a certain light-locking ability, that is, the flat layer 13 is required to enable light to be at the interface between the first base substrate 11 and the flat layer 13 Total reflection occurs on the surface, and does not emit from the first base substrate 11 toward the surface of the flat layer 13.
  • the refractive index of the flat layer 13 is smaller than the refractive index of the first base substrate 11, and the thickness of the flat layer 13 must reach the set thickness, so that the light is projected in the non-light-extraction area B of the first base substrate 11. At the interface where the first base substrate 11 and the flat layer 13 are in contact, total reflection can be achieved, without emitting from the non-light-extracting port area B of the first base substrate 11.
  • the thickness of the flat layer 13 cannot reach the set thickness due to the limitation of material characteristics, resulting in poor light-locking ability of the flat layer 13 .
  • the refractive index of the first base substrate 11 is 1.5
  • the refractive index of the flat layer 13 is 1.25
  • the light propagating in the first base substrate 11 is projected to the first base substrate 11 and the flat layer 13
  • the incident angle of the light on the contact interface of 13 is 65°
  • the thickness of the flat layer 13 needs to reach 900 nm to effectively prevent the light from exiting.
  • the thickness of the flat layer 13 cannot reach the set thickness when the flat layer 13 is prepared, and the maximum thickness of the flat layer 13 can only reach about 825 nm, which causes the flat layer 13 to lock light.
  • the ability is poor, so that in the non-light extraction port area B of the first base substrate 11, a part of the light will not be totally reflected in the first base substrate 11, but will pass through the non-extraction area of the first base substrate 11.
  • the light port area B and the portion of the flat layer 13 corresponding to the non-light-extraction port area B emit light, causing light leakage in the light-guide substrate 1'corresponding to the non-light-extraction port region B, which affects the liquid crystal display device using the light-guide substrate 1' The display effect.
  • the light guide substrate 1'further includes: a first buffer layer 15a and a second buffer layer 15b, wherein the first buffer layer 15a is disposed on the flat layer 13 away from the first base substrate On the side of 11, the second buffer layer 15b is disposed on the side of the first buffer layer 15a away from the first base substrate 11; the material of the first buffer layer 15a is different from the material of the second buffer layer 15b.
  • the first buffer layer 15a and the second buffer layer 15b of different materials under the joint action of the flat layer 13, the first buffer layer 15a and the second buffer layer 15b, the first base substrate 11
  • the first base substrate 11 When the light propagating in the first base substrate 11 and the flat layer 13 contact the interface, most of the light can be totally reflected and reflected back into the first base substrate 11, and the other part of the light that does not undergo total reflection is transmitted through
  • the over-flat layer 13 is projected to the contact interface between the first buffer layer 15a and the flat layer 13. Under the action of the first buffer layer 15a, most of the light in this part of the light is reflected and reflected back into the first base substrate 11.
  • the two buffer layers 15b form a multilayer reflective film, which can reflect the light emitted from the non-delighting port area B of the first base substrate 11 back into the first base substrate 11 without emitting the light guide substrate 1', Therefore, the amount of light leakage in the region of the light guide substrate 1 ′ corresponding to the non-light extraction port region B is reduced.
  • the light guide substrate 1'provided by the present disclosure is provided with the first buffer layer 15a and the second buffer layer 15b, so that the light propagating in the first base substrate 11, due to the insufficient thickness of the flat layer 13 Part of the light leaking from the non-light-extracting port area B of a base substrate 11 can be reflected multiple times and be reflected back to the first base substrate 11.
  • the laminated structure composed of a buffer layer 15 a and a second buffer layer 15 b has an improved light-locking ability and avoids light leakage in the region of the light guide substrate 1 ′ corresponding to the non-light extraction port region B.
  • the light-locking ability of the laminated structure composed of the first buffer layer 15a and the second buffer layer 15b of the flat layer 13 is improved compared to the simple flat layer 13, the light-locking ability is improved, and more light can pass through the plurality of layers.
  • the light extraction grating unit 12 emits at a collimated angle, and the light utilization rate of the light guide substrate 1'can be improved.
  • the refractive index of the first buffer layer 15a is between the refractive index of the flat layer 13 and the refractive index of the second buffer layer 15b.
  • the material of the first buffer layer 15a is oxide
  • the material of the second buffer layer 15b is nitride
  • the material of the first buffer layer 15a and the material of the second buffer layer 15b contain the same element.
  • the material of the first buffer layer is silicon oxide
  • the material of the second buffer layer is silicon nitride
  • the thickness of the first sub-buffer layer 15a and the thickness of the second buffer layer 15B are set as follows:
  • the first buffer layer 15a prepared on the surface of the flat layer 13 away from the first base substrate 11 and the corresponding relationship data between the thickness and the first light output are obtained, and the first output is selected from the corresponding relationship data.
  • the thickness corresponding to the lowest amount of light is used as the thickness of the first buffer layer 15a in the light guide substrate 1'to be finally prepared.
  • the "first light output” here refers to the light emitted from the non-light-extracting port area B of the first base substrate 11, and passing through the flat layer and the portion of the first buffer layer 15a corresponding to the non-light-extracting area B, from The amount of light emitted from the side of the first buffer layer 15a away from the first base substrate 11 during the measurement process, the incident angle of the light is a fixed value, for example, the incident angle is 65 degrees.
  • the thickness of the first buffer layer 15a is set to 100nm, 200nm, 300nm, 400nm, 500nm..., and the first light output corresponding to the first buffer layer 15a under these thicknesses is tested to obtain multiple groups. Correspondence data between the thickness of the first buffer layer 15a and the first light output amount. Further, the correspondence curve between the thickness of the first buffer layer 15a and the first light output can be obtained by fitting according to the correspondence data, and the thickness corresponding to the case where the first light output is the lowest is selected as the thickness of the first buffer layer 15a.
  • the first buffer layer 15a is prepared on the surface of the flat layer 13 away from the first base substrate 11, and the thickness of the first buffer layer 15a is the thickness corresponding to the selected first light output when the amount of light is the lowest.
  • the second buffer layer 15b prepared on the surface of the first buffer layer 15a away from the first base substrate 11 and the corresponding relationship data between the thickness and the second light output are obtained, and the second is selected from the corresponding relationship data.
  • the thickness corresponding to the lowest light output is the thickness of the second buffer layer 15b in the light guide substrate 1'to be finally prepared.
  • the "second light output” here refers to the light emitted from the non-light-extracting port area B of the first base substrate 11 and passing through the corresponding non-light-extracting ports of the flat layer, the first buffer layer 15a and the second buffer layer 15b In the part of area B, the amount of light emitted from the side of the second buffer layer 15b away from the first base substrate 11, during the measurement process, the incident angle of the light is different from the above-mentioned first buffer layer 15a and the thickness and the first output During the measurement of the corresponding relation data of the light quantity, the incident angle of the light is kept consistent.
  • the second buffer layer 15b is prepared on the surface of the first buffer layer 15a away from the first base substrate 11, and the thickness of the second buffer layer 15b is the thickness corresponding to the selected second light emission amount at the lowest.
  • the light-locking ability of the first buffer layer 15a and the second buffer layer 15b can be better, so that the light leakage amount of the light guide substrate 1'is smaller.
  • the inventor of the present disclosure obtained through simulations that when the material of the first buffer layer 15a is silicon oxide and the material of the second buffer layer 15b is silicon nitride, The corresponding relationship curve between the thickness of the first buffer layer 15a and the first total reflection light leakage rate, and the corresponding relationship curve between the thickness of the second buffer layer 15b and the second total reflection light leakage rate.
  • the "first total reflection light leakage rate” refers to: the first light output and the first base substrate The ratio of the total amount of light transmitted in 11.
  • the thickness of a buffer layer 15a is set to 300 nm.
  • the “second total reflection light leakage rate” refers to the ratio of the second light emission amount to the total light amount transmitted in the first base substrate 11.
  • the thickness of the second buffer layer 15b is set to 100 nm.
  • the second total reflection light leakage rate of the light guide substrate 1' is less than 0.1%, that is, the flatness
  • the light-locking ability of the laminated structure of the layer 13, the first buffer layer 15a and the second buffer layer 15b is controlled to be above 99.9%.
  • the thickness of the flat layer 13 can be reduced on the premise that the light-locking ability of the laminated structure of the flat layer 13 and the first buffer layer 15 and the second buffer layer 15b is not reduced.
  • the thickness of the flat layer 13 is 600 nm to 825 nm, for example, 825 nm. In this way, during the preparation of the flat layer 13, since the thickness of the flat layer 13 to be prepared is reduced, the difficulty of the preparation process of the flat layer 13 can be reduced.
  • the light guide substrate 1'further includes: a pixel driving structure 14, a pixel electrode layer 14b, an insulating layer 14d, and a common electrode layer 14c.
  • the pixel driving structure 14 is disposed on the side of the second buffer layer 15b facing away from the first base substrate 11; the pixel electrode layer 14b is disposed on the side of the pixel driving structure 14 facing away from the first base substrate 11; the insulating layer 14d is disposed on The pixel electrode layer 14b is on the side facing away from the first base substrate 11; the common electrode layer 14c is disposed on the side of the insulating layer 14d facing away from the first base substrate 11.
  • the pixel driving structure 14 includes a plurality of thin film transistors 14a, the pixel electrode layer 14b includes a plurality of pixel electrodes, and the plurality of thin film transistors 14a are configured to apply driving signals to the plurality of pixel electrodes, respectively, so that the pixel electrode layer 14b A voltage is generated between the plurality of pixel electrodes and the common electrode layer 14c.
  • the voltage drives the liquid crystal molecules in the liquid crystal layer of the liquid crystal display device to deflect, so that the liquid crystal display device performs display.
  • the density of the second buffer layer 15b of the light guide substrate 1' is higher than the density of the flat layer 13, and the density of the second buffer layer 15b is higher than The density of the first buffer layer 15a. Since the second buffer layer 15b has a high density and good compactness, it can effectively prevent the hydrogen ion and oxygen ion plasma in the flat layer 13 from penetrating into the plurality of thin film transistors 14a and affecting their performance, thereby ensuring the plurality of thin film transistors 14a. It can work normally without being affected.
  • the silicon nitride material has a high density and good compactness, so that ion penetration can be prevented more effectively, and the normal operation of the plurality of thin film transistors 14a can be ensured.
  • the liquid crystal display device 200 includes: a light guide substrate 1'and an opposite substrate 2'that are arranged oppositely, and are arranged on the light guide substrate 1'and The liquid crystal layer 3 between the opposing substrates 2.
  • the light guide substrate 1' is the light guide substrate 1'provided in the above embodiment of the present disclosure, and the specific structure of the light guide substrate 1'can refer to the relevant description in the above embodiment, and the description will not be repeated here.
  • the opposite substrate 2' includes: a second base substrate 21 and a black matrix layer 22.
  • the black matrix layer 22 is disposed on the side of the second base substrate 21 close to the light guide substrate 1', wherein the black matrix layer 22 has A plurality of openings, the orthographic projection of the black matrix layer 22 on the first base substrate 11 covers the orthographic projection of the plurality of light-extracting grating units 12 on the first base substrate 11.
  • the counter substrate 2'further includes a filter layer 23.
  • the filter layer 23 includes a plurality of color filter resistors 23a, and the plurality of color filter resistors 23a are respectively disposed on the black matrix layer. Light-emitting area formed by two openings
  • the liquid crystal layer 3 is disposed between the light guide substrate 1'and the opposite substrate 2', wherein the liquid crystal layer 3 is configured to enter the black matrix layer 22 under the action of an electric field, the light emitted from the light guide substrate 1'; Alternatively, the light emitted from 1 ′ of the light guide substrate is incident on the light emitting area formed by the plurality of openings of the black matrix layer 22.
  • the liquid crystal layer 3 forms a liquid crystal grating under the action of an electric field, and the light emitted from the light guide substrate 1'is incident on the black matrix layer 22 by using the diffraction effect of the liquid crystal grating.
  • the light emitting area formed by a plurality of openings, so that the liquid crystal display device 200 realizes display.
  • the liquid crystal layer 3 forms one of a liquid crystal prism or a liquid crystal lens under the action of an electric field, and the refraction of the liquid crystal prism or the liquid crystal lens is used to emit light from the light guide substrate 1' The incident light enters the light exit area formed by the multiple openings of the black matrix layer 22, so that the liquid crystal display device 200 realizes display.
  • the light guide substrate 1'provided by the embodiment of the present disclosure is prepared during the preparation process, by providing the interface protection layer 16, the part of the surface of the first base substrate 11 corresponding to the non-light extraction port area B will not be damaged, thereby reducing The light leakage phenomenon in the non-light extraction port area B of the first base substrate 11 occurs, and the non-extraction of the first base substrate 11 due to the laminated structure composed of the flat layer 13, the first buffer layer 15a and the second buffer layer 15b
  • the light-locking ability of the light port area B is relatively strong, so the probability of light exiting from the area of the light guide substrate 1'corresponding to the non-multiple light-extracting grating units 12 is low, the amount of light leakage is low, and the light utilization rate is improved.
  • the liquid crystal display device 200 when the liquid crystal display device 200 is in the bright state, more light from the light guide substrate 1'exits through the liquid crystal layer 3 to the light exit area formed by the multiple openings of the black matrix layer 22, for example, more light It is incident on a plurality of filter color resistors 23a, and the display effect is better.
  • the liquid crystal display device 200 When the liquid crystal display device 200 is in the dark state, light exits from the light guide substrate 1'corresponding to the multiple light extraction grating units 12, and is absorbed by the black matrix layer 22 to achieve the dark state, reducing the light from the light guide substrate 1'
  • the area corresponding to the non-light-extracting port area B leaks out, and is incident on the light-emitting area formed by the multiple openings of the black matrix layer 22, such as the multiple color filter resistors 23a, which causes uneven display in the dark state.
  • the above-mentioned liquid crystal display device 200 uses the liquid crystal layer 3 to change the direction of light emission under the action of an electric field to achieve display, without the need for a polarizer, so that the transmittance of the liquid crystal display device 200 can be improved, and the liquid crystal display device 200 is suitable.
  • the field of transparent display technology that requires high transmittance for example, it can be applied to AR (Augmented Reality) equipment using a transparent display device.
  • the liquid crystal display device 200 further includes a first alignment layer 3a and a second alignment layer 3b disposed on both sides of the liquid crystal layer 3, which are configured to make the liquid crystal layer 3 include a plurality of The liquid crystal molecules are neatly arranged in a preset direction.
  • the liquid crystal display device 200 further includes: a light source 4 disposed at one end of the first base substrate 11 of the light guide substrate 1', and is configured to provide the liquid crystal display device 200 with display requirements. Light.
  • the liquid crystal display device 200 further includes: a collimating lampshade 5 disposed on the end of the first base substrate 11 of the light guide substrate 1'where the light source 4 is disposed, and the collimating lampshade 5 and the glue layer 7 between the first base substrate 11.
  • the collimating lampshade 5 is arranged above or around the light source 4 and is configured to converge the light emitted by the light source 4 and couple the light to the side surface of the first base substrate 11 close to the light source 4.
  • the glue layer 7 is configured to fix the collimating lampshade 5 on the side surface of the first base substrate 11 close to the light source 4.
  • the liquid crystal display device 200 further includes: a first reflective sheet 6a disposed on an end of the first base substrate 11 away from the light source 4, and a first reflective sheet 6a disposed on the side of the light source 4 facing away from the collimating lampshade 5.
  • the first reflective sheet 6a and the second reflective sheet 6b have the function of reflecting light.
  • the first reflective sheet 6a can reflect the light transmitted to the end of the first base substrate away from the light source 4 back into the first base substrate 11.
  • the second reflection sheet 6b can reflect the light emitted by the light source 4 away from the collimating lampshade 5 into the collimating lampshade 5, which can reduce light loss and improve the utilization rate of light.
  • the counter substrate 2'further includes an organic transmission layer 24 and a third buffer layer 25, wherein the organic transmission layer 24 is disposed on the black matrix layer 22 away from On one side of the second base substrate 21, the third buffer layer 25 is disposed on the side of the black matrix layer close to the second base substrate 21.
  • the direction of the internal stress of the third buffer layer 25 is opposite to the direction of the internal stress of the organic transmission layer 24.
  • the liquid crystal layer 3 transmits the light emitted from the light guide substrate 1'through the organic transmission layer 24, and is incident on the light emitting area formed by the multiple openings of the black matrix layer 22, thereby making the liquid crystal display device 200 realizes the display.
  • the inventors of the present disclosure have discovered through research that the greater the distance between the liquid crystal layer 3 and the black matrix layer 22, the greater the light projected to the light-emitting area formed by the multiple openings of the black matrix layer 22 when the liquid crystal layer 3 is subjected to an electric field. If there is more, the display brightness of the liquid crystal display device 200 is higher.
  • the organic transmission layer 24 is arranged between the liquid crystal layer 3 and the black matrix layer 22, which can increase the distance between the liquid crystal layer 3 and the black matrix layer 22, so that more light can be projected to the multiple openings of the black matrix layer. In the light-emitting area, the display brightness of the liquid crystal display device 200 can be enhanced.
  • the organic transmission layer 24 when the thickness of the organic transmission layer 24 is relatively high, the internal stress of the organic transmission layer 24 will increase accordingly.
  • the organic transmission layer 24 is prepared, it is usually carried out in a high temperature environment. After the layer 24 is prepared, the temperature of the organic transmission layer 24 will drop, and the organic transmission layer 24 will shrink severely under the action of internal stress, and since the second base substrate 21 has to closely adhere to the black matrix layer 22 and the organic transmission layer 24 In conclusion, after the organic transmission layer 23 undergoes a relatively large shrinkage, the second base substrate 21 will also be deformed, resulting in warping of the counter substrate 2'.
  • the warpage amount of the counter substrate 2' is 2.5 mm.
  • the amount of warpage refers to the plane M defined by the middle portion of the counter substrate 2', which is parallel to the reference plane O, and the warpage between the two ends of the counter substrate 2'.
  • the thickness of the organic transmission layer 24 is reduced, the improvement of the display brightness of the liquid crystal display device 200 will be weakened.
  • the third buffer layer 25 is provided between the black matrix layer 22 and the second base substrate 21, and the direction of the internal stress of the third buffer layer 25
  • the direction of the internal stress of the organic transmission layer 24 is opposite, so that the force of the third buffer layer 25 on the second base substrate 21 and the black matrix layer 22 will be offset by the force of the organic transmission layer 24 on the black matrix layer 22 Or partially offset, so that the degree of deformation of the second base substrate 21 is reduced, thereby reducing the degree of warpage of the counter substrate 2'.
  • the material of the third buffer layer 25 is silicon nitride.
  • the preparation process of the third buffer layer 25 adopts a chemical vapor deposition process. When the third buffer layer 25 is prepared, the lattice parameters of the material of the third buffer layer 25 are adjusted so that the formed The second buffer layer 25 has an internal stress opposite to the internal stress of the organic transmission layer 24.
  • the material of the second buffer layer 25 is silicon nitride
  • a chemical vapor deposition process is used to prepare the second buffer layer 25.
  • SiH 4 monosilane
  • NH 3 ammonia
  • the thickness of the organic transmissive layer 24 two factors need to be considered for the thickness of the organic transmissive layer 24.
  • the thickness of the organic transmission layer 24 is 15 ⁇ m to 20 ⁇ m.
  • the third buffer layer 25 in order to make the force of the third buffer layer 25 on the second base substrate 21 and the black matrix layer 22 better offset with the force of the organic transmission layer 24 on the black matrix layer 22, thereby effectively To improve the warpage of the counter substrate 2', the third buffer layer 25 needs to have an appropriate thickness.
  • the thickness of the third buffer layer 25 is 0.5 ⁇ m to 1 ⁇ m.
  • the opposite substrate 2'further includes an adhesive layer 26 disposed between the black matrix layer 22 and the third buffer layer 25.
  • Arranging the adhesive layer 26 between the black matrix layer 22 and the third buffer layer 25 can enhance the bonding force between the black matrix layer 22 and the third buffer layer 25, and prevent direct contact between the black matrix layer 22 and the third buffer layer 25 At this time, peeling or peeling of the second buffer layer 25 caused by the instability of the bonding occurs.
  • the material of the bonding layer 26 is silicon dioxide. Silicon dioxide has strong adhesiveness and can enhance the bonding force between the transmission layer 24 and the second buffer layer 25.
  • the inventors of the present disclosure have tested and obtained the counter substrate when the thickness of the organic transmission layer 24 is 22 ⁇ m, the thickness of the third buffer layer 25 is 100 nm, and the thickness of the adhesive layer 26 is 300 nm.
  • the warpage of 2' is less than 0.1 mm. It can be seen that the warpage of the counter substrate 2'can be significantly improved by providing the third buffer layer 25.
  • the liquid crystal display device 200 since the amount of warpage of the counter substrate 2'is small, the overall flatness of the liquid crystal display device 200 is relatively high, and the product quality is improved.
  • some embodiments of the present disclosure also provide a light guide substrate 1".
  • Light guide substrate 1" includes:
  • the first buffer layer 15a disposed on the side of the flat layer 13 away from the first base substrate 11;
  • the second buffer layer 15b disposed on the side of the first buffer layer 15a away from the first base substrate 11;
  • the material of the first buffer layer 15a is different from the material of the second buffer layer 15b.
  • the pixel electrode layer 14b disposed on the side of the pixel driving structure 14 away from the first base substrate 11;
  • the common electrode layer 14c disposed on the side of the pixel electrode layer 14b away from the first base substrate 11;
  • the density of the second buffer layer 15b is higher than the density of the flat layer 13 and higher than the density of the first buffer layer 15a.
  • the light guide substrate 1" further includes an insulating layer 14d disposed between the pixel electrode layer 14b and the common electrode layer 14c.
  • some embodiments of the present disclosure further provide a liquid crystal display device 300, which includes: a light guide substrate 1", an opposite substrate 2 and a liquid crystal layer 3.
  • the light guide substrate 1" is the light guide substrate 1" in the above-mentioned embodiment.
  • the opposite substrate 2 is arranged opposite to the light guide substrate 1", wherein the opposite substrate 2 includes:
  • the black matrix layer 22 disposed on the side of the second base substrate 21 close to the light guide substrate 1";
  • the black matrix layer 22 has a plurality of openings, and the orthographic projection of the black matrix layer 22 on the first base substrate 11 covers the orthographic projection of the plurality of light extraction grating units 12 on the first base substrate 11. projection.
  • the liquid crystal layer is disposed between the light guide substrate 1" and the opposite substrate 2, wherein the liquid crystal layer 3 is configured to enter the black matrix layer 22 under the action of an electric field, the light emitted from the light guide substrate 1"; or, The light emitted from the light guide substrate 1 ′′ is incident on the light emitting area formed by the plurality of openings of the black matrix layer 22.
  • the light guide substrate 1" included in the above-mentioned liquid crystal display device 300 is provided with a first buffer layer 15a and a second buffer layer 15b, so that the flat layer 13, the first buffer layer 15a and the second buffer layer 15b constitute a laminated structure lock
  • the improved light performance makes the light guide substrate 1" low in light leakage and high light utilization. In this way, when the liquid crystal display device 300 is in the dark state, the uneven display in the dark state is reduced, and when the liquid crystal display device 300 is in the bright state, the display brightness is improved.
  • the liquid crystal display device 300 further includes a first alignment layer 3a, a second alignment layer 3b, a light source 4, a collimating lampshade 5, an adhesive layer 7, a first reflective sheet 6a, and a second alignment layer 3a.
  • a first alignment layer 3a a second alignment layer 3b
  • a light source 4 a collimating lampshade 5
  • an adhesive layer 7 a first reflective sheet 6a
  • a second alignment layer 3a for the reflective sheet 6b, for the structure, arrangement and function of the above-mentioned components, please refer to the description of the relevant content in the liquid crystal display device 200.
  • some embodiments of the present disclosure also provide a counter substrate 2'.
  • the organic transmission layer 24 provided on one side of the second base substrate 21;
  • a third buffer layer 25 provided between the second base substrate 21 and the organic transmission layer 24;
  • the direction of the internal stress of the third buffer layer 25 is opposite to the direction of the internal stress of the organic transmission layer 24.
  • the counter substrate 2' accordinging to (1) to (3), the counter substrate 2'further includes: an adhesive layer 26 provided between the organic transmission layer 24 and the third buffer layer 25.
  • the counter substrate 2' accordinging to (1) to (5), the counter substrate 2'further includes: a black matrix layer 22 provided on the side of the organic transmissive layer 24 close to the second base substrate 21,
  • the black matrix layer 22 has a plurality of openings.
  • some embodiments of the present disclosure further include a liquid crystal display device 400, which includes: a light guide substrate 1, an opposite substrate 2', and a liquid crystal layer 3.
  • the light guide substrate 1 includes:
  • a plurality of light extraction grating units 12 arranged on the side of the first base substrate 11 facing the counter substrate 2';
  • a pixel driving structure 14 disposed on the side of the flat layer 13 facing away from the first base substrate 11, the pixel driving structure 14 including a plurality of thin film transistors 14a;
  • the pixel electrode layer 14b disposed on the side of the pixel driving structure 14 facing away from the first base substrate 11;
  • the common electrode layer 14c is disposed on the side of the pixel electrode layer 14b facing away from the first base substrate 11.
  • the opposite substrate 2' is arranged opposite to the light guide substrate 1, wherein the black matrix layer 22 has a plurality of openings, and the orthographic projection of the black matrix layer 22 on the first base substrate 11 covers the plurality of light extraction grating units 12 is an orthographic projection on the first base substrate 11.
  • the liquid crystal layer is disposed between the light guide substrate 1 and the opposite substrate 2', wherein the liquid crystal layer 3 is configured to, under the action of an electric field, incident light emitted from the light guide substrate 1 into the black matrix layer; or The light emitted from the light guide substrate 1 enters the light emitting area formed by the plurality of openings of the black matrix layer 22.
  • the counter substrate 2' since the counter substrate 2'includes the organic transmission layer 24 and the third buffer layer 25, and the direction of the internal stress of the third buffer layer 25 is opposite to the direction of the internal stress of the organic transmission layer 24, The amount of warpage of the counter substrate 2'is reduced, so the overall flatness of the liquid crystal display device 400 is high, and the product quality is better. Moreover, since the counter substrate 2'is provided with the organic transmission layer 24, the liquid crystal layer 3 acts on the electric field. When it is down, more light emitted from the light guide substrate 1 can be incident on the light exit area formed by the multiple openings of the black matrix layer, and the display brightness of the liquid crystal display device 400 is improved.
  • the liquid crystal display device 400 further includes a first alignment layer 3a, a second alignment layer 3b, a light source 4, a collimating lampshade 5, an adhesive layer 7, a first reflective sheet 6a, and a second alignment layer 3a.
  • a first alignment layer 3a for the reflective sheet 6b, for the structure, arrangement and function of the above-mentioned components, please refer to the description of the relevant content in the liquid crystal display device 200.
  • some embodiments of the present disclosure further provide a liquid crystal display device 500, including: a light guide substrate 1", an opposite substrate 2', and a liquid crystal layer 3.
  • the light guide substrate 1" is an embodiment of the present disclosure.
  • the light guide substrate 1" provided in the example, the counter substrate 2' is the counter substrate 2'provided by the embodiment of the disclosure, and the light guide substrate 1" is disposed opposite to the counter substrate 2'.
  • the liquid crystal layer 3 is arranged between the light guide substrate 1" and the opposite substrate 2', wherein the liquid crystal layer 3 is configured to enter the black matrix layer under the action of an electric field, the light emitted from the light guide substrate 1"; or , The light emitted from the light guide substrate 1" is incident on the light emitting area formed by the plurality of openings of the black matrix layer 22.
  • the light guide substrate 1" included in the above-mentioned liquid crystal display device 500 is provided with a first buffer layer 15a and a second buffer layer 15b, so that the flat layer 13, the first buffer layer 15a and the second buffer layer 15b are composed of a laminated structure.
  • the improvement of light ability makes the light leakage of the light guide substrate 1" lower and the light utilization rate is higher. In this way, when the liquid crystal display device 500 is in the dark state, the uneven display in the dark state is reduced, and when the liquid crystal display device 500 is in the bright state, the display brightness is improved.
  • the opposite substrate 2' since the opposite substrate 2'includes the organic transmission layer 24 and the third buffer layer 25, and the direction of the internal stress of the third buffer layer 25 is opposite to the direction of the internal stress of the organic transmission layer 24, the The amount of warpage is reduced, so the overall flatness of the liquid crystal display device 500 is higher, and the product quality is better. Moreover, since the opposite substrate 2'is provided with the organic transmission layer 24, when the liquid crystal layer 3 is subjected to an electric field, it can be improved. More light rays emitted from the light guide substrate 1 are incident on the light emitting area formed by the multiple openings of the black matrix layer 22, which improves the display brightness of the liquid crystal display device 500.
  • the above-mentioned liquid crystal display device 500 further includes a first alignment layer 3a, a second alignment layer 3b, a light source 4, a collimating lampshade 5, an adhesive layer 7, a first reflective sheet 6a, and a second alignment layer 3b.
  • a first alignment layer 3a for the structure, arrangement and function of the above-mentioned components, please refer to the description of the relevant content above, which will not be repeated here.
  • the light guide substrate 1" in the above-mentioned liquid crystal display device 300, the light guide substrate 1 in the liquid crystal display device 400, and the light guide substrate 1" in the liquid crystal display device 500 all adopt the manufacturing method provided in this publication.
  • the interface protection layer 16 covers the first base substrate 11, it protects the first base substrate 11 and avoids the corresponding non-light extraction on the surface of the first base substrate 11.
  • the part of the aperture area B is damaged, so that the part of the surface of the first base substrate 11 corresponding to the non-light-extraction aperture area B is a smooth interface, thereby reducing the light leakage phenomenon of the non-light-extraction aperture area B of the first base substrate 11 Occurs and ensures that more light exits at a collimated angle from the multiple light extraction grating units 12 in the multiple light extraction port areas A, thereby improving the performance of the liquid crystal display device 300, the liquid crystal display device 400, and the liquid crystal display device 500. display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Integrated Circuits (AREA)
  • Planar Illumination Modules (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种导光基板的制备方法,包括:提供第一衬底基板,在所述第一衬底基板的一侧表面上形成界面保护层层;所述第一衬底基板包括多个取光口区域和除所述多个取光口区域之外的非取光口区域;在所述第一衬底基板的形成有所述界面保护层的一侧形成光栅结构层;去除所述光栅结构层中对应所述非取光口区域的部分,得到与所述多个取光口区域一一对应的多个取光光栅单元;去除所述界面保护层中对应所述非取光口区域的部分。

Description

导光基板及其制备方法、对向基板、液晶显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种导光基板及其制备方法、对向基板、液晶显示装置。
背景技术
在液晶显示领域中,利用液晶光栅的衍射实现显示的液晶显示装置,其工作原理为通过对液晶层施加电压驱动信号,使得液晶层形成液晶光栅,利用液晶光栅的衍射,使得光线出射,从而实现显示。通过改变施加在液晶层上的驱动电压信号改变液晶光栅的衍射效率,实现不同灰阶的显示。上述液晶显示装置不需要设置偏振片,因而光线透过率较高。
发明内容
第一方面,提供一种导光基板的制备方法,包括:提供第一衬底基板,在所述第一衬底基板的一侧表面上形成界面保护层层;所述第一衬底基板包括多个取光口区域和除所述多个取光口区域之外的非取光口区域;在所述第一衬底基板的形成有所述界面保护层的一侧形成光栅结构层;去除所述光栅结构层中对应所述非取光口区域的部分,得到与所述多个取光口区域一一对应的多个取光光栅单元;去除所述界面保护层中对应所述非取光口区域的部分。
在一些实施例中,所述在所述第一衬底基板的一侧表面上形成界面保护层的步骤之后,还包括:图案化所述界面保护层,去除所述界面保护层中对应所述多个取光口区域的部分。
在一些实施例中,所述图案化所述界面保护层,去除所述界面保护层中对应所述多个取光口区域的部分的步骤中,以及所述去除所述界面保护层中对应所述非取光口区域的部分的步骤中,采用湿法刻蚀工艺对所述界面保护层的相应部分进行去除。
在一些实施例中,所述界面保护层的材料为金属、金属合金或金属氧化 物。
在一些实施例中,在所述去除所述光栅结构层中对应所述非取光口区域的部分的步骤中,在所述光栅结构层中对应所述非取光口区域的部分被完全去除时,所述界面保护层中对应所述非取光口区域的部分中,未被所述光栅结构层遮盖的部分的厚度大于或等于0。
在一些实施例中,采用刻蚀工艺对所述光栅结构层中对应所述非取光口区域的部分进行去除;在所述去除所述光栅结构层中对应所述非取光口区域的部分的步骤中,对所述光栅结构层的材料进行刻蚀与对所述界面保护层的材料进行刻蚀的刻蚀选择比大于或等于10。
在一些实施例中,所述去除所述光栅结构层中对应所述非取光口区域的部分的步骤中,采用干法刻蚀工艺对所述光栅结构层中的相应部分进行去除。
在一些实施例中,所述去除所述光栅结构层中对应所述非取光口区域的部分的步骤,包括:在所述光栅结构层中对应所述取光口区域的部分远离所述第一衬底基板的一侧形成保护胶层,使所述保护胶层覆盖所述光栅结构层中对应所述取光口区域的部分;去除所述光栅结构层中对应所述非取光口区域的部分;去除所述保护胶层。
第二方面,提供一种导光基板,包括:第一衬底基板,所述第一衬底基板包括多个取光口区域和除所述多个取光口区域之外的非取光口区域;设置在所述第一衬底基板的一侧表面上的多个界面保护结构,所述多个界面保护结构与所述多个取光口区域一一对应;设置于所述多个界面保护结构远离所述第一衬底基板一侧的多个取光光栅单元,所述多个取光光栅单元与所述多个界面保护结构一一对应。
在一些实施例中,导光基板还包括:覆盖在所述多个取光光栅单元上的平坦层;设置于所述平坦层远离所述第一衬底基板的一侧的第一缓冲层;设置于所述第一缓冲层远离所述第一衬底基板的一侧的第二缓冲层;其中,所述第一缓冲层的材料与所述第二缓冲层的材料不同。
在一些实施例中,所述第一缓冲层的折射率介于所述平坦层的折射率与 所述第二缓冲层的折射率之间。
在一些实施例中,所述第一缓冲层的材料为氧化物,所述第二缓冲层的材料为氮化物,且所述第一缓冲层的材料与所述第二缓冲层的材料包含相同的元素。
在一些实施例中,所述第一缓冲层的材料为氧化硅,所述第二缓冲层的材料为氮化硅。
在一些实施例中,所述第一缓冲层的厚度为0.3μm,所述第二缓冲层的厚度为0.1μm,所述平坦层的厚度为0.825μm。
在一些实施例中,导光基板还包括:设置于所述第二缓冲层远离所述第一衬底基板一侧的像素驱动结构,所述像素驱动结构包括多个薄膜晶体管;设置于所述像素驱动结构远离所述第一衬底基板的一侧的像素电极层;设置于所述像素电极层远离所述第一衬底基板的一侧的公共电极层;所述第二缓冲层的致密度高于所述平坦层的致密度,且第二缓冲层的致密度高于所述第一缓冲层的致密度。
第三方面,提供一种液晶显示装置,包括:如第二方面所述的导光基板;与所述导光基板相对设置的对向基板;设置于所述导光基板和所述对向基板之间的液晶层;其中,所述对向基板包括:第二衬底基板;设置于所述第二衬底基板靠近所述导光基板的一侧的黑矩阵层;其中,所述黑矩阵层具有多个开口,所述黑矩阵层在所述第一衬底基板上的正投影覆盖所述多个取光光栅单元在所述第一衬底基板上的正投影。所述液晶层被配置为在电场作用下,将从所述导光基板中出射的光线入射至黑矩阵层;或者,将从所述导光基板中出射的光线入射至所述黑矩阵层所具有的多个开口形成的出光区域。
在一些实施例中,所述对向基板还包括:设置于所述黑矩阵层远离所述第二衬底基板的一侧的有机透射层;设置于所述黑矩阵层靠近所述第二衬底基板的一侧的第三缓冲层;其中,所述第三缓冲层的内应力的方向与所述有机透射层的内应力的方向相反。
在一些实施例中,所述第三缓冲层的材料为氮化硅。
在一些实施例中,所述有机透射层的厚度为15μm~20μm,所述第三缓冲层的厚度为0.5μm~1μm。
在一些实施例中,所述对向基板还包括:设置于所述第三缓冲层与所述黑矩阵层之间的粘接层。
在一些实施例中,所述粘接层的材料为二氧化硅,所述粘接层的厚度为0.3μm。
第四方面,提供一种导光基板,包括:第一衬底基板;设置于所述第一衬底基板一侧的多个取光光栅单元;覆盖在所述多个取光光栅单元上的平坦层;设置于所述平坦层远离所述第一衬底基板一侧的第一缓冲层;设置于所述第一缓冲层远离所述第一衬底基板一侧的第二缓冲层;其中,所述第一缓冲层的材料与所述第二缓冲层的材料不同。
在一些实施例中,所述第一缓冲层的折射率介于所述平坦层的折射率与所述第二缓冲层的折射率之间。
在一些实施例中,所述第一缓冲层的材料为氧化物,所述第二缓冲层的材料为氮化物,且所述第一缓冲层的材料和第二缓冲层的材料包含相同的元素。
在一些实施例中,所述第一缓冲层的材料为氧化硅,所述第二缓冲层的材料为氮化硅。
在一些实施例中,所述第一缓冲层的厚度为0.3μm,所述第二缓冲层的厚度为0.1μm,所述平坦层的厚度为0.825μm。
在一些实施例中,导光基板还包括,设置于所述第二缓冲层远离所述第一衬底基板一侧的像素驱动结构,所述像素驱动结构包括多个薄膜晶体管;设置于所述像素驱动结构远离所述第一衬底基板一侧的像素电极层;设置于所述像素电极层远离所述第一衬底基板一侧的公共电极层;所述第二缓冲层的致密度高于所述平坦层的致密度,且高于所述第一缓冲层的致密度。
第五方面,提供一种液晶显示装置,包括:如第三方面中任一项所述的 导光基板;与所述导光基板相对设置的对向基板;设置于所述导光基板和所述对向基板之间的液晶层;其中,所述对向基板包括:第二衬底基板;设置于所述第二衬底基板靠近所述导光基板的一侧的黑矩阵层;其中,所述黑矩阵层具有多个开口,所述黑矩阵层在所述第一衬底基板上的正投影覆盖所述多个取光光栅单元在第一衬底基板上的正投影;其中,所述液晶层被配置为在电场作用下,将从所述导光基板中出射的光线入射至黑矩阵层;或者,将从所述导光基板中出射的光线入射至黑矩阵层所具有的多个开口形成的出光区域。
第六方面,提供一种对向基板,包括:第二衬底基板;设置于所述第二衬底基板的一侧的有机透射层;设置于所述第二衬底基板和所述有机透射层之间的第三缓冲层;其中,所述第三缓冲层的内应力的方向与所述有机透射层的内应力的方向相反。
在一些实施例中,所述第三缓冲层的材料为氮化硅。
在一些实施例中,所述有机透射层的厚度为15μm~20μm,所述第三缓冲层的厚度为0.5μm~1μm。
在一些实施例中,对向基板还包括:设置于所述有机透射层与所述第三缓冲层之间的粘接层。
在一些实施例中,所述粘接层的材料为二氧化硅,所述粘接层的厚度为0.3μm。
在一些实施例中,对向基板还包括:设置于所述有机透射层靠近所述第二衬底基板的一侧的黑矩阵层,所述黑矩阵层具有多个开口。
第七方面,提供一种液晶显示装置,包括:导光基板;如第六方面所述的对向基板;设置于所述导光基板和所述对向基板之间的液晶层;其中,所述导光基板包括:第一衬底基板;设置于所述第一衬底基板朝向所述对向基板的一侧的多个取光光栅单元;覆盖在所述多个取光光栅单元上的平坦层;设置于所述平坦层背向所述第一衬底基板的一侧的像素驱动结构,所述像素驱动结构包括多个薄膜晶体管;设置于所述像素驱 动结构背向所述第一衬底基板的一侧的像素电极层;设置于所述像素电极层背向所述第一衬底基板的一侧的公共电极层。所述对向基板与所述导光基板相对设置;其中,所述黑矩阵层在所述第一衬底基板上的正投影覆盖所述多个取光光栅单元在所述第一衬底基板上的正投影。所述液晶层被配置为在电场作用下,将从所述导光基板中出射的光线入射至黑矩阵层;或者,将从所述导光基板中出射的光线入射至黑矩阵层所具有的多个开口形成的出光区域。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1A为根据相关技术的一种液晶显示装置的一种示意图;
图1B为根据相关技术的一种液晶显示装置的另一种示意图;
图2A~2C为根据相关技术的导光基板的制备方法的一种步骤示意图;
图3A为根据本公开的一些实施例的导光基板的制备方法的一种流程图;
图3B为根据本公开的一些实施例的导光基板的制备方法的另一种流程图;
图3C为根据本公开的一些实施例的导光基板的制备方法的再一种流程图;
图4A~4H为根据本公开的一些实施例的导光基板的制备方法的一种各步骤示意图;
图5为根据本公开的一些实施例的导光基板的制备方法的又一种流程图;
图6A~6I为根据本公开的一些实施例的导光基板的制备方法的另一 种各步骤示意图;
图7为根据本公开的一些实施例的导光基板的一种示意图;
图8A为根据本公开的一些实施例的导光基板中第一缓冲层的厚度与第一全反射漏光率的关系曲线图;
图8B为根据本公开的一些实施例的导光基板中第二缓冲层的厚度与第二全反射漏光率的关系曲线图;
图9为根据本公开的一些实施例的液晶显示装置的一种示意图;
图10为根据相关技术的一种液晶显示装置中对向基板发生翘曲的示意图;
图11为根据本公开的一些实施例的导光基板的一种示意图;
图12为根据本公开的一些实施例的液晶显示装置的另一种示意图;
图13为根据本公开的一些实施例的对向基板的一种示意图;
图14为根据本公开的一些实施例的液晶显示装置的再一种示意图;
图15为根据本公开的一些实施例的液晶显示装置的又一种示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
在相关技术中,如图1A和图1B所示,液晶显示装置100包括:相对设置的导光基板1和对向基板2,以及设置于导光基板1和对向基板2之间的液晶层3。
其中,导光基板1包括第一衬底基板11、多个取光光栅单元12、平坦层13、像素驱动结构14,像素电极层14b、绝缘层14d和公共电极层14c。其中,所述多个取光光栅单元12设置于第一衬底11的一侧表面上;平坦层13覆盖在所述多个取光光栅单元12上。
对向基板2包括第二衬底基板21、黑矩阵层22和滤光层23。其中,黑 矩阵层22具有多个开口,滤光层23包括多个滤光色阻23a,所述多个滤光色阻23a分别设置于黑矩阵层22具有的多个开口所形成的出光区域。黑矩阵层22在第一衬底基板11上的正投影覆盖与所述多个取光光栅单元12在第一衬底基板11上的正投影。
液晶显示装置100还包括设置于第一衬底基板11的一端的光源4,光源4为液晶显示装置100提供显示所需要的光线。光源4发出的光线入射至第一衬底基板11中,在第一衬底基板11中全反射传播。所述多个取光光栅单元12被配置为将在第一衬底基板11中全反射传播的光线以准直角度(如图1A所示,多个取光光栅单元12出射的光线与法线的夹角在设定范围内,其中,法线垂直于第一衬底基板11的表面,示例性地,设定范围为(-5°,5°)、(-7°,7°)、(-10°,10°)等)取出。
在一些实施例中,如图1B所示,通过像素驱动结构14向像素电极层14b施加驱动信号,使像素电极层14b与公共电极层14c之间产生电压,通过该电压驱动液晶层3中的液晶分子发生偏转,使液晶层3形成液晶光栅,利用液晶光栅对光线的衍射作用,将光线投射至滤光层23,进而光线透过滤光层23射出,此时,液晶显示装置100为亮态。通过控制施加在液晶层3上的电压的大小,使得液晶光栅对光线的衍射效率发生改变,进而改变透过滤光层23的光线的强度,从而实现不同灰阶的显示。
在另一些实施例中,如图1A所示,像素驱动结构14停止向像素电极层14b施加驱动信号,像素电极层14b与公共电极层14c停止对液晶层3施加电压,液晶层3中的液晶分子恢复初始取向,从所述多个取光光栅单元12出射的准直光线经液晶层3不发生衍射,而是直接投射至黑矩阵层22,被黑矩阵层22遮挡,此时,液晶显示装置100为暗态。
上述液晶显示装置100中,第一衬底基板11的对应所述多个取光光栅单元12的区域为取光口区域A,除取光口区域A之外的区域为非取光口区域B。理想情况下,要求在第一衬底基板11中全反射传播的光线经由所述多个取光光栅单元12,从取光口区域A出射,而不从非取光口区域B出射。
在相关技术中,在液晶显示装置100所包括的导光基板1进行制备的过程中,会对第一衬底基板11的设置有所述多个取光光栅单元12的一侧表面造成损伤,导致第一衬底基板11的非取光口区域B的出现漏光现象,请参见图2A~图2C,相关技术中的制备工艺如下:
S1、如图2A所示,提供第一衬底基板11,第一衬底基板11包括多个取光口区域A和除多个取光口区域A之外的非取光口区域B。
S2、如图2B所示,在第一衬底基板11的一侧表面上形成光栅结构层12-2。
S3、如图2C所示,去除光栅结构层11中对应非取光口区域的部分,得到与多个取光口区域一一对应的多个取光光栅单元12。
在S3中,通常采用刻蚀工艺对光栅结构层12-2中对应非取光口区域B的部分进行去除,在对光栅结构层中12-2对应非取光口区域B的部分进行刻蚀的过程中,会同时刻蚀第一衬底基板11表面的非取光口区域B的未被光栅结构层12-2遮盖的部分,使得第一衬底基板11的非取光口区域B出现多个凹坑,具有光栅形状的结构,这样会有部分光线通过第一衬底基板11的非取光口区域B出射,造成严重漏光,影响液晶显示装置的显示效果。
本公开的发明人经过测试,采用上述制备工艺制备得到的导光基板1的对应非取光口区域B的区域的漏光率(从导光基板1中对应非取光口区域B的区域出射的光线的量与在第一衬底基板11中传输的全部的光线的量的比值)为13%。
基于此,本公开的一些实施例还提供一种导光基板的制备方法,如图3A所示,导光基板的制备方法包括:
S1、如图4A所示,提供第一衬底基板11,在第一衬底基板11的一侧表面上形成界面保护层层16;第一衬底基板11包括多个取光口区域A和除多个取光口区域A之外的非取光口区域B。
在上述步骤中,示例性的,第一衬底基板11为玻璃基板、亚克力胶板等具有导光功能的基板。
S2、如图4D所示,在第一衬底基板11的形成有界面保护层16的一侧形 成光栅结构层12-2。
S3、如图4G所示,去除光栅结构层12-2中对应非取光口区域的部分,得到与多个取光口区域A一一对应的多个取光光栅单元12。
S4、如图4H所示,去除界面保护层16中对应所述非取光口区域B的部分。
采用上述导光基板的制备方法,在第一衬底基板11的表面形成界面保护层16,接着在形成有界面保护层16的一侧形成光栅结构层12-2,这样在去除光栅结构层12-2中对应非取光口区域B的部分的过程中,由于界面保护层16覆盖在第一衬底基板11上,对第一衬底基板11起到了保护作用,因此避免了对第一衬底基板11的表面上对应非取光口区域B的部分造成损伤,使得第一衬底基板11的表面上对应非取光口区域B的部分为光滑界面,从而减少了第一衬底基板11非取光口区域B的漏光现象的发生,使得更多光线从多个取光口区域A的多个取光光栅单元12中以准直的角度出射,进而提高了导光基板的出光效果。
在一些实施例中,如图3B所示,在第一衬底基板11的形成有界面保护层16的一侧形成光栅结构层12-2的S2,包括:
S21、如图4B所示,在第一衬底基板11的形成有界面保护层16的一侧形成光栅材料薄膜12-1。
S22、如图4C所示,在光栅材料薄膜12-1背向第一衬底基板11的一侧形成具有光栅图案的掩膜层17。
在一些示例中,具有光栅图案的掩膜层17采用纳米压印工艺制备,在制备过程中,将具有光栅图案的压印胶作为所需要的掩膜层17压印在光栅材料薄膜12-1的表面上。采用纳米压印工艺制备具有光栅图案的掩膜层17制备精度较高,有利于提高后续制备得到的光栅结构层12-2的精度。在另一些示例中,具有光栅图案的掩膜层17采用光刻工艺形成,在制备过程中,通过涂覆光刻胶、曝光、显影的步骤制备得到具有光栅图案的掩膜层17。
S23、如图4D所示,以具有光栅图案的掩膜层17为掩膜,图案化光栅材 料薄膜12-1,使光栅材料薄膜12-1具有光栅图案,形成光栅结构层12-2。
在一些实施例中,如图3C所示,S3包括:
S31、如图4E所示,在光栅结构层12-2中对应取光口区域A的部分背向第一衬底基板11的一侧形成保护胶层17,使保护胶层17覆盖光栅结构层12-2中对应取光口区域A的部分。
S32、如图4F所示,去除光栅结构层12-2对应非取光口区域B的部分。
在一些实施例中,在上述S32中,采用干法刻蚀工艺对光栅结构层12-2中的相应部分进行去除。
采用干法刻蚀对光栅结构层12-2进行刻蚀,通过控制光栅结构层12-2和界面保护层16的刻蚀选择比,可以在有效的去除光栅结构层12-2中对应非取光口区域B的部分的同时,减少对界面保护层16造成的伤害,从而有效保护第一衬底基板11。
S33、如图4G所示,去除保护胶层17。
在S33中,示例性地,去除保护胶层17的方式可采用剥离的方式,将保护胶层17从光栅结构层12-2上剥离,这样可以降低在操作过程对光栅结构层12-2所造成的影响。
上述实施例中,通过形成保护胶层17,使得保护胶层17覆盖光栅结构层12-2中对应取光口区域A的部分,在去除光栅结构层12-2中对应非取光口区域B的部分的过程中,保护胶层17对光栅结构层12-2中对应取光口区域A的部分起到了保护作用,使得光栅结构层12-2中对应取光口区域A的部分不会受到刻蚀等影响,并且,在最后将保护胶层17去除,留下光栅结构层12-2中对应取光口区域A的部分,得到与多个取光口区域A一一对应的多个取光光栅单元12。
在另一些实施例中,如图5所示,本公开的一些实施例提供另一种导光基板的制备方法,包括:
S1’、如图6A所示,提供第一衬底基板11,在第一衬底基板11的一侧表面上形成界面保护层层16;第一衬底基板11包括多个取光口区域A和除 多个取光口区域A之外的非取光口区域B。
S2’、如图6B所示,图案化界面保护层16,去除界面保护层16中对应多个取光口区域的部分。
S3’、如图6E所示,在第一衬底基板11的形成有界面保护层16的一侧形成光栅结构层12-2。
S4’、如图6H所示,去除光栅结构层12-2中对应非取光口区域的部分,得到与多个取光口区域A一一对应的多个取光光栅单元12。
S5’、如图6I所示,去除界面保护层16中对应非取光口区域B的部分。
在上述实施例中,在第一衬底基板11的一侧表面上形成界面保护层16之后,将界面保护层16中对应多个取光口区域A的部分去除,可以使光栅结构层12-2直接形成在第一衬底基板11的取光口区域A的表面上,避免界面保护层16对取光口区域A的出光量造成影响,使得从所述多个取光光栅单元12出射的光线更强。
在一些实施例中,上述在第一衬底基板11的形成有界面保护层16的一侧形成光栅结构层12-2的S3’,包括:
S3’1、如图6C所示,在第一衬底基板11的形成有界面保护层16的一侧形成光栅材料薄膜12-1。
S3’2、如图6D所示,在光栅材料薄膜12-1背向第一衬底基板11的一侧形成具有光栅图案的掩膜层17。
在一些示例中,具有光栅图案的掩膜层17采用纳米压印工艺制备,或者采用光刻工艺形成,具体可参见上面对于S22的描述,此处不再重复。
S3’3、如图6E所示,以具有光栅图案的掩膜层17为掩膜,图案化光栅材料薄膜12-1,使光栅材料薄膜12-1具有光栅图案,形成光栅结构层12-2。
在一些实施例中,去除光栅结构层12-2中对应非取光口区域的部分,得到与多个取光口区域A一一对应的多个取光光栅单元12的S4’包括:
S4’1、如图6F所示,在光栅结构层12-2中对应取光口区域A的部分背向第一衬底基板11的一侧形成保护胶层17,使保护胶层17覆盖光栅结构层 12-2中对应取光口区域A的部分。
S4’2、如图6G所示,去除光栅结构层12-2对应非取光口区域B的部分。
S4’3、如图6H所示,去除保护胶层17。
上述实施例中,通过形成保护胶层17,使得保护胶层17覆盖光栅结构层12-2中对应取光口区域A的部分,在去除光栅结构层12-2中对应非取光口区域B的部分的过程中,保护胶层17对光栅结构层12-2中对应取光口区域A的部分起到了保护作用,使得光栅结构层12-2中对应取光口区域A的部分不会受到刻蚀等影响,并且,在最后将保护胶层17去除,留下光栅结构层12-2中对应取光口区域A的部分,得到与多个取光口区域A一一对应的多个取光光栅单元12。
在一些实施例中,如图4F和图6G所示,在去除光栅结构层12-2中对应非取光口区域B的部分的步骤中,在光栅结构层12-2中对应非取光口区域B的部分被完全去除时,界面保护层中16对应非取光口区域的部分中,未被光栅结构层遮盖的部分的厚度d大于或等于0。
上述步骤中,在对光栅结构层12-2中对应非取光口区域B的部分进行去除时,也会对界面保护层16中对应非取光口区域B的部分中未被光栅结构层12-2遮盖的部分造成轻度刻蚀,在光栅结构层12-2中对应非取光口区域B的部分被完全去除时,界面保护层16未被光栅结构层12-2遮盖的部分的厚度d大于或等于0,也就是说此刻的第一衬底基板11表面的非取光口区域B还覆盖有界面保护层16,确保了第一衬底基板11的表面不会被刻蚀。
在一些实施例中,如图4F和图6G所示,采用刻蚀工艺对光栅结构层中对应非取光口区域的部分进行去除;在去除光栅结构层中对应非取光口区域的部分的步骤中,对光栅结构层的材料进行刻蚀与对界面保护层的材料进行刻蚀的刻蚀选择比大于或等于10。
刻蚀选择比为被刻蚀材料的刻蚀速率与另一种材料的刻蚀速率的比,因此光栅结构层12-1的材料进行刻蚀与对界面保护层16的材料进行刻蚀的刻蚀选择比的值较大时,对光栅结构层12-1和界面保护层16同时进行刻蚀时,对 光栅结构层12-1和界面保护层16进行刻蚀时的刻蚀速率差异越大。将光栅结构层12-1的材料和界面保护层16的材料的刻蚀选择比设置为大于或等于10,可以确保光栅结构层12-1的刻蚀速率大于对界面保护层16的刻蚀速率,这样在光栅结构层12-1中对应非取光口区域B的部分被完全去除时,界面保护层16中对应非取光口区域B的部分中,未被光栅结构层12-1遮盖的部分的厚度大于或等于0,确保界面保护层16对第一衬底基板11表面的保护作用。
在一些实施例中,参见图6B,在图案化界面保护层16,去除界面保护层16中对应所述多个取光口区域A的部分的步骤中,采用湿法刻蚀工艺对界面保护层16的相应部分进行去除。在另一些实施例中,参见图4H和6I,在去除界面保护层16中对应非取光口区域B的部分的步骤中,采用湿法刻蚀工艺对界面保护层16的相应部分进行去除。
上述实施例中,采用湿法刻蚀工艺去除界面保护层16,需要利用刻蚀液对界面保护层16进行腐蚀,选择对第一衬底基板11的表面无影响的刻蚀液,在去除界面保护层16时,第一衬底基板11的表面不会被刻蚀,确保了第一衬底基板11的表面的平整度。并且,采用湿法刻蚀工艺简单,生产效率高。
示例性地,在第一衬底基板11为玻璃基板的情况下,对界面保护层16进行湿法刻蚀的刻蚀液为酸系刻蚀液,酸系刻蚀液不会对玻璃基板产生化学刻蚀。
在一些实施例中,界面保护层16的材料为金属、金属合金或金属氧化物等。示例性地,界面保护层16的材料为金属,例如铝、铜等;或者,界面保护层16的材料为金属合金,例如AlNd(钕化铝)等;或者,界面保护层16的材料为金属氧化物,例如ITO(Indium Tin Oxides,氧化铟锡)、IGZO(Indium Gallium Zinc Oxides,铟镓锌氧化物)、IZO(Indium Zinc Oxides,铟锌氧化物)等。
上述实施例中,选用金属、金属合金或金属氧化物等材料作为界面保护层16的材料,这样光栅结构层12-1的材料与界面保护层16的材料的刻蚀选择比较高,这样在对光栅结构层12-1进行刻蚀时,可以降低对界面保护层16 的刻蚀的程度,从而可以更有效地保护第一衬底基板11。
在一些示例中,光栅结构层的材料为氮化硅,界面保护层的材料为IGZO,氮化硅与IGZO的刻蚀选择比约为50:1,在对光栅结构层12-1和界面保护层16同时进行刻蚀时,界面保护层16仅会受到轻度刻蚀,确保了第一衬底基板11的表面不会被刻蚀。
作为一种可能的设计,在本公开所提供的导光基板的制备方法中,在第一衬底基板11为玻璃基板,界面保护层16的材料为IGZO的情况下,采用湿法刻蚀工艺对界面保护层16的相应部分进行去除时,对界面保护层16进行湿法刻蚀的刻蚀液为酸系刻蚀液,示例性地,该酸系刻蚀液的成分为:硫酸、硝酸、添加剂和水,各成分的体积比为:硫酸:硝酸:添加剂:水等于8:4.5:2:76。这样,在利用该酸系刻蚀液对界面保护层16的相应部分进行去除时,第一衬底基板11不会受到化学刻蚀,所得到的第一衬底基板11的表面上对应非取光口区域B的部分平整度良好,从而有效减少漏光。
本公开的发明人经过测试,采用本公开提供的导光基板的制备方法制备的导光基板的对应非取光口区域B的区域的漏光率(从导光基板1中对应非取光口区域B的区域出射的光线的量与在第一衬底基板11中传输的全部的光线的量的比值)为0.8%,可见采用上述制备方法所制备的导光基板的漏光量得到大幅度的降低。
本公开的一些实施例还提供一种导光基板1’,如图7所示,导光基板1’包括:第一衬底基板11、多个界面保护结构16a和多个取光光栅单元12。
第一衬底基板11包括多个取光口区域A和除多个取光口区域A之外的非取光口区域B。
在上述导光基板1’中,设置于导光基板1’一侧的光源4所发光的光线中,至少一部分光线能够由第一衬底基板11的侧面入射至第一衬底基板11内部,并且能够在第一衬底基板11内部发生全反射,从而光线能够由导光基板1’的近光源端传播至远光源端。在一些实施例中,第一衬底基板11的材料为玻璃、聚甲基丙烯酸甲酯、亚克力板材等能够传导光线且能够使光线发 生全反射的材料中的任一种。
所述多个界面保护结构16a设置在第一衬底基板11的一侧表面上,所述多个界面保护结构16a与所述多个取光口区域A一一对应。此处“一一对应”是指:所述多个界面保护结构16a的数量与所述多个取光口区域A的数量相同,所述多个界面保护结构16a在第一衬底基板11上的正投影与第一衬底基板11的表面上对应所述多个取光口区域A的区域基本重合,其中基本重合是指重叠面积为取光口区域面积的80%以上(例如80%、85%、90%、95%等)。
所述多个取光光栅单元12设置于所述多个界面保护结构16a背向第一衬底基板11一侧,所述多个取光光栅单元12与所述多个界面保护结构16a一一对应。
所述多个取光光栅单元12被配置为将在第一衬底基板11中传播的光线以准直的角度耦合出射。其中,所提及的“准直的角度”是指,从所述多个取光光栅单元12出射的光线与法线的夹角在设定范围内,其中,法线垂直于第一衬底基板11的表面,示例性地,设定范围为(-5°,5°)、(-7°,7°)、(-10°,10°)等。
上述导光基板1’包括与多个取光光栅单元12一一对应的多个界面保护结构16a,也就是说,导光基板1’是采用本公开所提供的导光基板的制备方法制备得到的,制备流程为在第一衬底基板11的表面形成界面保护层16,去除界面保护层16中对应所述非取光口区域B的部分,得到多个界面保护结构16a。在界面保护层16的作用下,第一衬底基板11的表面对应非取光口区域B的部分不会受到损坏,从而减少了第一衬底基板11非取光口区域B的漏光现象的发生,保证了更多光线从所述多个取光口区域A的所述多个取光光栅单元12中以准直的角度出射,进而提高了导光基板的出光效果。
在一些实施例中,如图7所示,导光基板1’还包括覆盖在所述多个取光光栅单元12上的平坦层13。
本公开的发明人经研究发现,要使第一衬底基板11中全反射传播的光线经所述多个取光光栅单元12从所述多个取光口区域A出射,而不从非取光口 区域B出射,就要求覆盖在非取光口区域B上的平坦层13具有一定的锁光能力,即要求平坦层13能够使得光线在第一衬底基板11和平坦层13接触的界面上发生全反射,而不会从第一衬底基板11朝向平坦层13的表面出射。这需要平坦层13的折射率小于第一衬底基板11的折射率,并且平坦层13的厚度要达到设定厚度,以使在第一衬底基板11的非取光口区域B,光线投射到第一衬底基板11和平坦层13接触的界面上能够实现全反射,而不会从第一衬底基板11的非取光口区域B出射。
然而,在相关技术中,在采用折射率较低的材料进行平坦层13的制备时,由于材料特性的限制使得平坦层13的厚度无法达到设定厚度,造成平坦层13的锁光能力较差。示例性地,第一衬底基板11的折射率为1.5,平坦层13的折射率为1.25,在第一衬底基板11中传播的光线中,在投射到第一衬底基板11与平坦层13的接触界面上的光线的入射角为65°的情况下,平坦层13的厚度需要达到900nm,才能有效地阻止光线出射。而由于折射率较低的材料的粘性一般较低,在进行平坦层13的制备时,其厚度无法达到设定厚度,平坦层13的最高厚度只能达到825nm左右,造成平坦层13的锁光能力较差,使得在第一衬底基板11的非取光口区域B,有一部分光线不会在第一衬底基板11内发生全反射,而会透过第一衬底基板11的非取光口区域B及平坦层13中对应非取光口区域B的部分出射,造成导光基板1’的对应非取光口区域B的区域漏光,影响应用该导光基板1’的液晶显示装置的显示效果。
在一些实施例中,如图7所示,导光基板1’还包括:第一缓冲层15a和第二缓冲层15b,其中,第一缓冲层15a设置于平坦层13远离第一衬底基板11的一侧,第二缓冲层15b设置于第一缓冲层15a远离第一衬底基板11的一侧;第一缓冲层15a的材料与第二缓冲层15b的材料不同。
上述实施例中,通过设置不同材料的第一缓冲层15a和第二缓冲层15b,在平坦层13、第一缓冲层15a和第二缓冲层15b的共同作用下,在第一衬底基板11中传播的光线投射到第一衬底基板11与平坦层13接触的界面时,其中的大部分光线能够发生全反射,反射回第一衬底基板11中,另一部分没有 发生全反射的光线透过平坦层13投射至第一缓冲层15a与平坦层13接触的界面,在第一缓冲层15a的作用下,该部分光线中的大部分光线发生反射,反射回第一衬底基板11中,另一部分光线透过第一缓冲层15a投射至第二缓冲层15b与第一缓冲层15a接触的界面,能够被反射回第一衬底基板11,从而平坦层13、第一缓冲层15a和第二缓冲层15b组成了多层反射膜,可以将从第一衬底基板11的非去光口区域B出射的光线反射回第一衬底基板11中,而不会射出导光基板1’,从而降低了导光基板1’的对应非取光口区域B的区域漏光量。
这样,本公开提供的导光基板1’,通过设置第一缓冲层15a和第二缓冲层15b,使得在第一衬底基板11中传播的光线中,因平坦层13的厚度不足而从第一衬底基板11的非取光口区域B漏出的部分光线,能够发生多次反射,被反射回第一衬底基板11。这样就解决了由于平坦层13的厚度不足造成的锁光能力较差的问题,相当于利用第一缓冲层15a和第二缓冲层15b对平坦层13的厚度进行了补偿,平坦层13、第一缓冲层15a和第二缓冲层15b组成的层叠结构相对于单纯的平坦层13,锁光能力提升,避免了导光基板1’的对应非取光口区域B的区域漏光现象的发生。
进一步的,由于平坦层13第一缓冲层15a和第二缓冲层15b组成的层叠结构的锁光能力相对于单纯的平坦层13,锁光能力得以提高,能够使更多光线通过所述多个取光光栅单元12以准直的角度出射,导光基板1’的光线利用率得以提高。
在一些实施例中,第一缓冲层15a的折射率介于平坦层13的折射率与第二缓冲层15b的折射率之间。
在一些实施例中,第一缓冲层15a的材料为氧化物,第二缓冲层15b的材料为氮化物,且第一缓冲层15a的材料和第二缓冲层15b的材料包含相同的元素。
示例性地,第一缓冲层的材料为氧化硅,第二缓冲层的材料为氮化硅。
在一些示例中,对于第一子缓冲层15a的厚度和第二缓冲层15B的厚度 的设定,采用如下方式:
1、首先完成导光基板1’的第一衬底基板11、多个取光光栅单元12和平坦层13的制备。
2、通过测试,得到在平坦层13远离第一衬底基板11的表面上制备的第一缓冲层15a和厚度与第一出光量的对应关系数据,从该对应关系数据中,选取第一出光量最低时所对应的厚度作为最终所要制备得到的导光基板1’中第一缓冲层15a的厚度。此处的“第一出光量”指的是从第一衬底基板11的非取光口区域B出射,并经由平坦层和第一缓冲层15a的对应非取光口区域B的部分,从第一缓冲层15a远离第一衬底基板11的一侧射出的光线的量,在测量过程中,光线的入射角度为固定值,例如入射角度为65度。
示例性地,分别设置第一缓冲层15a的厚度为100nm、200nm、300nm、400nm、500nm……,分别对这些厚度下的第一缓冲层15a所对应的第一出光量进行测试,得到多组第一缓冲层15a的厚度与第一出光量的对应关系数据。进一步地,可以根据对应关系数据拟合得到第一缓冲层15a的厚度与第一出光量的对应关系曲线,选取第一出光量最低的情况下所对应的厚度作为第一缓冲层15a的厚度。
3、在平坦层13远离第一衬底基板11的表面上进行第一缓冲层15a的制备,第一缓冲层15a的厚度为所选取的第一出光量最低时所对应的厚度。
4、通过测试,得到在第一缓冲层15a远离第一衬底基板11的表面上制备的第二缓冲层15b和厚度与第二出光量的对应关系数据,从该对应关系数据中选取第二出光量最低时所对应的厚度作为最终所要制备得到的导光基板1’中第二缓冲层15b的厚度。此处的“第二出光量”指的是从第一衬底基板11的非取光口区域B出射,并经由平坦层、第一缓冲层15a和第二缓冲层15b的对应非取光口区域B的部分,从第二缓冲层15b远离第一衬底基板11的一侧射出的光线的量,在测量过程中,光线的入射角度与上述在第一缓冲层15a和厚度与第一出光量的对应关系数据的测量过程中的光线的入射角度保持一致。
5、在第一缓冲层15a远离第一衬底基板11的表面上进行第二缓冲层15b的制备,第二缓冲层15b的厚度为所选取的第二出光量最低时所对应的厚度。
通过上述设置,可以使得第一缓冲层15a和第二缓冲层15b的锁光能力均更优,使得导光基板1’的漏光量更小。
示例性地,如图8A和图8B所示,本公开的发明人通过仿真,得到了在第一缓冲层15a的材料为氧化硅,第二缓冲层15b的材料为氮化硅的情况下,第一缓冲层15a的厚度与第一全反射漏光率的对应关系曲线,及第二缓冲层15b的厚度与第二全反射漏光率的对应关系曲线。
其中,如图8A所示,对于第一缓冲层15a的厚度与第一全反射漏光率的对应关系曲线,“第一全反射漏光率”是指:第一出光量与在第一衬底基板11中传输的全部的光线的量的比值。
由上述第一缓冲层15a的厚度与第一全反射漏光率的对应关系曲线可以看出,在第一缓冲层15a的厚度为300nm左右时,第一全反射漏光率最低,因此,可以将第一缓冲层15a的厚度设置为300nm。
如图8B所示,在第一缓冲层15a的厚度为300nm的情况下,通过仿真得到第二缓冲层15b的厚度与第二全反射漏光率的对应关系曲线。此处,“第二全反射漏光率”是指,第二出光量与在第一衬底基板11中传输的全部的光线的量的比值。
由上述第二缓冲层15b的厚度与第二全反射漏光率的对应关系曲线可以看出,在第二缓冲层15b的厚度为100nm左右时,第二全反射漏光率最低,因此,可以将第二缓冲层15b的厚度设置为100nm。
经过上述仿真可以得到:在第一缓冲层15a的厚度为300nm,第二缓冲层15b的厚度为100nm的情况下,导光基板1’的第二全反射漏光率小于0.1%,即可以将平坦层13、第一缓冲层15a及第二缓冲层15b三者的层叠结构的锁光能力控制在99.9%以上。
并且,由于导光基板1’中设置有第一缓冲层15a和第二缓冲层15b,使得平坦层13和第一缓冲层15、第二缓冲层15b的层叠结构的锁光能力得以提 升,相当于对平坦层13的厚度进行了补偿,因此在保证平坦层13和第一缓冲层15、第二缓冲层15b的层叠结构的锁光能力不下降的前提下,平坦层13的厚度得以减小。示例性地,平坦层13的厚度为600nm~825nm,例如为825nm。这样,在进行平坦层13的制备时,由于所要制备的平坦层13的厚度减小,因此可以降低平坦层13的制备工艺难度。
在一些实施例中,如图7所示,导光基板1’还包括:像素驱动结构14、像素电极层14b、绝缘层14d及公共电极层14c。像素驱动结构14设置于第二缓冲层15b背向第一衬底基板11的一侧;像素电极层14b设置于像素驱动结构14背向第一衬底基板11的一侧;绝缘层14d设置于像素电极层14b背向第一衬底基板11的一侧;公共电极层14c设置于绝缘层14d背向第一衬底基板11的一侧。
像素驱动结构14包括多个薄膜晶体管14a,像素电极层14b包括多个像素电极,所述多个薄膜晶体管14a被配置为向分别所述多个像素电极施加驱动信号,以使像素电极层14b的多个像素电极与公共电极层14c之间产生电压。通过该电压驱动液晶显示装置的液晶层中的液晶分子发生偏转,以使液晶显示装置进行显示。
基于上述导光基板1’的结构,在一些实施例中,导光基板1’的第二缓冲层15b的致密度高于平坦层13的致密度,且第二缓冲层15b的致密度高于所述第一缓冲层15a的致密度。由于第二缓冲层15b的致密度较高,致密性良好,因此可以有效防止平坦层13中的氢离子、氧离子等离子渗透入多个薄膜晶体管14a而影响其性能,保证了多个薄膜晶体管14a能够不受影响,正常工作。在第一子缓冲层15a的材料为氮化硅的情况下,氮化硅材料的密度高,致密性较好,因而可以更加有效地防止离子渗透,保证多个薄膜晶体管14a的正常工作。
本公开的一些实施例还提供一种液晶显示装置200,如图9所示,液晶显示装置200包括:相对设置的导光基板1’和对向基板2’,设置于导光基板1’和对向基板2之间的液晶层3。
其中,导光基板1’为如本公开上述实施例所提供的导光基板1’,导光基板1’的具体结构可参见上述实施例中的相关描述,此处不再重复叙述。
对向基板2’包括:第二衬底基板21和黑矩阵层22,黑矩阵层22设置于所述第二衬底基板21靠近导光基板1’的一侧,其中,黑矩阵层22具有多个开口,黑矩阵层22在第一衬底基板11上的正投影覆盖所述多个取光光栅单元12在第一衬底基板11上的正投影。
在一些实施例中,对向基板2’还包括滤光层23,滤光层23包括多个滤光色阻23a,所述多个滤光色阻23a分别设置于黑矩阵层所具有的多个开口形成的出光区域
液晶层3设置于导光基板1’和对向基板2’之间,其中,液晶层3被配置为在电场作用下,将从导光基板1’中出射的光线入射至黑矩阵层22;或者,将从导光基板中1’出射的光线入射至所述黑矩阵层22所具有的多个开口形成的出光区域。
在一些实施例中,液晶层3在受到电场作用的情况下,形成液晶光栅,利用液晶光栅的衍射作用,将从导光基板1’中出射的光线入射至所述黑矩阵层22所具有的多个开口形成的出光区域,从而液晶显示装置200实现显示。
在另一些实施例中,液晶层3在受到电场作用的情况下,形成液晶棱镜或者液晶透镜中的一种,利用液晶棱镜或者液晶透镜的折射作用,将从导光基板1’中出射的光线入射至所述黑矩阵层22所具有的多个开口形成的出光区域,从而液晶显示装置200实现显示。
由于本公开实施例所提供的导光基板1’在制备过程中,通过设置界面保护层16,第一衬底基板11的表面对应非取光口区域B的部分不会受到损坏,从而减少了第一衬底基板11非取光口区域B的漏光现象的发生,并且,由于平坦层13、第一缓冲层15a和第二缓冲层15b组成的层叠结构对第一衬底基板11的非取光口区域B的锁光能力较强,因此光线从导光基板1’中对应非多个取光光栅单元12的区域出射的几率较低,漏光量较低,光线利用率得以 提高。
这样,在液晶显示装置200处于亮态时,从导光基板1’中有更多光线通过液晶层3出射至黑矩阵层22所具有的多个开口形成的出光区域,例如,有更多光线入射至多个滤光色阻23a上,显示效果更好。
在液晶显示装置200处于暗态时,光线从导光基板1’中对应多个取光光栅单元12的区域出射,被黑矩阵层22吸收,实现暗态,减轻了光线从导光基板1’中对应非取光口区域B的区域漏出,而入射至黑矩阵层22所具有的多个开口形成的出光区域,例如多个滤光色阻23a上而造成的暗态显示不均现象。
并且,上述液晶显示装置200利用液晶层3在电场作用下对光线出射方向的改变来实现显示,不需要设置偏光片,这样就可以提高液晶显示装置200的透过率,使得液晶显示装置200适用于对透过率要求较高的透明显示技术领域中,例如可以应用在利用透明显示装置的AR(Augmented Reality、增强现实)设备中。
在一些实施例中,如图9所示,液晶显示装置200还包括设置于液晶层3两侧的第一配向层3a和第二配向层3b,被配置为使液晶层3所包括的多个液晶分子按照预设方向整齐排列。
在一些实施例中,如图9所示,液晶显示装置200还包括:设置于导光基板1’的第一衬底基板11一端的光源4,被配置为为液晶显示装置200提供显示所需要的光线。
在一些实施例中,请再次参见9,液晶显示装置200还包括:设置于导光基板1’的第一衬底基板11设置有光源4的一端的准直灯罩5,及设置于准直灯罩5和第一衬底基板11之间的胶合层7。准直灯罩5罩设在光源4的上方或周围,被配置为将光源4发出的光线进行汇聚,并使这些光线耦合至第一衬底基板11的靠近光源4的侧面。胶合层7被配置为将准直灯罩5固定于第一衬底基板11的靠近光源4的侧面。
作为一种可能的设计,液晶显示装置200还包括:设置于第一衬底基板 11的远离光源4的一端的第一反射片6a,以及设置于光源4背向准直灯罩5的一侧的第二反射片6b。第一反射片6a和第二反射片6b具有反射光线的作用,第一反射片6a可以将传播至第一衬底基板的远离光源4的一端的光线反射回第一衬底基板11中,第二反射片6b可以将光源4发出的远离准直灯罩5的光线反射至准直灯罩5中,这样可以减少光线损失,提高光线的利用率。
在一些实施例中,如图9所示,在液晶显示装置200中,对向基板2’还包括有机透射层24和第三缓冲层25,其中,有机透射层24设置于黑矩阵层22远离第二衬底基板21的一侧,第三缓冲层25设置于黑矩阵层靠近第二衬底基板21的一侧的。其中,第三缓冲层25的内应力的方向与有机透射层24的内应力的方向相反。
液晶层3在电场作用下,将从导光基板1’中出射的光线透过有机透射层24,入射至所述黑矩阵层22所具有的多个开口形成的出光区域,从而使得液晶显示装置200实现显示。
本公开的发明人经研究发现,液晶层3与黑矩阵层22的距离越大,在液晶层3受到电场作用时,投射至黑矩阵层22所具有的多个开口形成的出光区域的光线越多,从而液晶显示装置200的显示亮度越高。在液晶层3和黑矩阵层22之间设置有机透射层24,可以增大液晶层3与黑矩阵层22之间的距离,从而使更多光线投射至黑矩阵层所具有的多个开口形成的出光区域,液晶显示装置200的显示亮度得以增强。
然而,在有机透射层24的厚度较高的情况下,有机透射层24的内应力也会随之升高,在进行有机透射层24的制备时,通常在高温环境下进行,在将有机透射层24制备好之后,有机透射层24的温度会下降,在内应力的作用下有机透射层24发生严重收缩,而由于第二衬底基板21要与黑矩阵层22、有机透射层24紧密贴合,在有机透射层23产生较大的收缩后,第二衬底基板21也会随之变形,导致对向基板2’发生翘曲现象。
本公开的发明人经过测试,在对向基板2’中没有设置第三缓冲层25的情况下,得到对向基板2’的翘曲量为2.5mm。此处,如图10所示,翘曲量 是指,对向基板2’的中间部分所确定的平行于参考平面O的平面M,与对向基板2’的两端翘起部分所确定的平行于参考平面O的平面N,之间的垂直距离L;其中,参考平面O为对向基板2’未发生翘曲时所确定的平面。
而如果将有机透射层24的厚度降低,其对液晶显示装置200的显示亮度的提升就会减弱。
因此,本公开提供的显示装置200的对向基板2’中,在黑矩阵层22与第二衬底基板21之间设置第三缓冲层25,,且第三缓冲层25的内应力的方向与有机透射层24的内应力的方向相反,这样第三缓冲层25对于第二衬底基板21和黑矩阵层22的作用力,与有机透射层24对于黑矩阵层22的作用力就会抵消或部分抵消,从而使得第二衬底基板21的变形程度降低,进而使得对向基板2’的翘曲程度减轻。
在一些实施例中,第三缓冲层25的材料为氮化硅。在一些实施例中,第三缓冲层25的制备工艺采用化学气相沉积工艺,在进行第三缓冲层25的制备时,通过对第三缓冲层25的材料的晶格参数进行调整,使得所形成的第二缓冲层25具有与有机透射层24的内应力反向的内应力。
示例性的,在第二缓冲层25的材料为氮化硅的情况下,采用化学气相沉积工艺进行第二缓冲层25的制备,在沉积过程中,向反应腔室内通入SiH 4(甲硅烷)与NH 3(氨气),通过调整SiH 4与NH 3的气体含量,来调整氮化硅材料的晶格参数,形成具有与有机透射层24的内应力反向的内应力的第三缓冲层25。
在一些实施例中,对于有机透射层24的厚度的设置需要考虑两个方面因素:一方面是在液晶显示装置200中时,有机透射层24的厚度越大,液晶层3与黑矩阵层22之间的距离越大,使得有更多光线经由有机透射层24投射至黑矩阵层22所具有的多个开口形成的出光区域,这样可以提高液晶显示装置200的发光强度。另一方面是有机透射层24的厚度越大,其内应力越高,会导致对向基板2’发生翘曲,因此有机透射层24的厚度需要设定在合理范围内。示例性地,有机透射层24的厚度为15μm~20μm。
在一些实施例中,为了使得第三缓冲层25对于第二衬底基板21和黑矩阵层22的作用力,与有机透射层24对于黑矩阵层22的作用力的更好地抵消,从而有效改善对向基板2’的翘曲现象,第三缓冲层25需要具有合适厚度。示例性地,在第三缓冲层25的材料为氮化硅的情况下,第三缓冲层25的厚度为0.5μm~1μm。
在一些实施例中,请再次参见图9,对向基板2’还包括设置于黑矩阵层22与第三缓冲层25之间的粘接层26。
在黑矩阵层22与第三缓冲层25之间设置粘接层26可以增强黑矩阵层22与第三缓冲层25之间的结合力,防止在黑矩阵层22与第三缓冲层25直接接触时,因结合不稳固所导致的第二缓冲层25起皮(peeling)或剥落现象的出现。
在一些示例中,粘接层26的材料为二氧化硅。二氧化硅具有较强的粘接性,可以增强透射层24与第二缓冲层25之间的结合力。
在一些实施例中,本公开的发明人经过测试,在有机透射层24的厚度为22μm,第三缓冲层25的厚度为100nm,粘接层26的厚度为300nm的情况下,得到对向基板2’的翘曲量小于0.1mm,可见,通过设置第三缓冲层25能够显著改善对向基板2’的翘曲现象。
因此,本公开提供的液晶显示装置200中,由于对向基板2’的翘曲量较小,液晶显示装置200的整体的平整性较高,产品质量得以提高。
如图11所示,本公开的一些实施例还提供了一种导光基板1”。
(1)导光基板1”包括:
第一衬底基板11;
设置于第一衬底基板11一侧的多个取光光栅单元12;
覆盖在多个取光光栅单元12上的平坦层13;
设置于平坦层13远离第一衬底基板11一侧的第一缓冲层15a;
设置于第一缓冲层15a远离第一衬底基板11一侧的第二缓冲层15b;
其中,第一缓冲层15a的材料与第二缓冲层15b的材料不同。
(2)根据(1)所述的导光基板1”,其中,第一缓冲层15a的折射率介于平坦层13的折射率与第二缓冲层的折射率之间。
(3)根据(1)所述的导光基板1”,其中,第一缓冲层15a的材料为氧化物,第二缓冲层15b的材料为氮化物,且第一缓冲层15a的材料和第二缓冲层15b的材料包含相同的元素。
(4)根据(3)所述的导光基板1”,其中,第一缓冲层15a的材料为氧化硅,第二缓冲层15b的材料为氮化硅。
(5)根据(4)所述的导光基板1”,其中,第一缓冲层15a的厚度为0.3μm,第二缓冲层15b的厚度为0.1μm,平坦层13的厚度为0.825μm。
(4)根据(1)~(5)所述的导光基板1”,其中,导光基板1”还包括:
设置于第二缓冲层15b远离所述第一衬底基板11一侧的像素驱动结构14,所述像素驱动结构14包括多个薄膜晶体管14a;
设置于像素驱动结构14远离所述第一衬底基板11一侧的像素电极层14b;
设置于像素电极层14b远离第一衬底基板11一侧的公共电极层14c;
第二缓冲层15b的致密度高于平坦层13的致密度,且高于第一缓冲层15a的致密度。
在一些实施例中,导光基板1”还包括:设置于像素电极层14b和公共电极层14c之间的绝缘层14d。
如图12所示,本公开的一些实施例还提供一种液晶显示装置300,包括:导光基板1”、对向基板2和液晶层3。
导光基板1”为如上述实施例中的的导光基板1”。
对向基板2与导光基板1”相对设置,其中,对向基板2包括:
第二衬底基板21;
设置于第二衬底基板21靠近导光基板1”的一侧的黑矩阵层22;
其中,黑矩阵层22具有多个开口,黑矩阵层22在所述第一衬底基板11上的正投影覆盖所述多个取光光栅单元12在所述第一衬底基板11上的正投 影。
液晶层设置于导光基板1”和对向基板2之间,其中,液晶层3被配置为在电场作用下,将从导光基板1”中出射的光线入射至黑矩阵层22;或者,将从导光基板1”中出射的光线入射至黑矩阵层22所具有的多个开口形成的出光区域。
上述液晶显示装置300所包括的导光基板1”中设置有第一缓冲层15a和第二缓冲层15b,从而平坦层13、第一缓冲层15a和第二缓冲层15b组成的层叠结构的锁光能力提高,使得导光基板1”漏光量较低,光线利用率较高。这样在液晶显示装置300处于暗态时,减轻了暗态显示不均现象,在液晶显示装置300处于亮态时,显示亮度得以提升。
在一些实施例中,请再次参见图12,液晶显示装置300还包括第一配向层3a、第二配向层3b、光源4、准直灯罩5、胶合层7、第一反射片6a和第二反射片6b,关于上述各部件的结构、设置方式以及功能可参见对于液晶显示装置200中相关内容的说明。
如图13所示,本公开的一些实施例还提供一种对向基板2’。
(1)对向基板2’包括:
第二衬底基板21;
设置于第二衬底基板21的一侧的有机透射层24;
设置于第二衬底基板21和有机透射层24之间的第三缓冲层25;
其中,第三缓冲层25的内应力的方向与有机透射层24的内应力的方向相反。
(2)根据(1)所述的对向基板2’,其中,第三缓冲层25的材料为氮化硅。
(3)根据(2)所述的对向基板2’,其中,有机透射层24的厚度为15μm~20μm,第三缓冲层25的厚度为0.5μm~1μm。
(4)根据(1)~(3)所述的对向基板2’,对向基板2’还包括:设置于有机透射层24与第三缓冲层25之间的粘接层26。
(5)根据(4)所述的对向基板2’,其中,粘接层26的材料为二氧化硅,粘接层26的厚度为0.3μm。
(6)根据(1)~(5)所述的对向基板2’,对向基板2’还包括:设置于有机透射层24靠近第二衬底基板21的一侧的黑矩阵层22,黑矩阵层22具有多个开口。
如图14所示,本公开的一些实施例还包括一种液晶显示装置400,包括:导光基板1、对向基板2’和液晶层3。
导光基板1包括:
第一衬底基板11;
设置于第一衬底基板11朝向对向基板2’的一侧的多个取光光栅单元12;
覆盖在多个取光光栅单元12上的平坦层13;
设置于平坦层13背向第一衬底基板11的一侧的像素驱动结构14,所述像素驱动结构14包括多个薄膜晶体管14a;
设置于像素驱动结构14背向第一衬底基板11的一侧的像素电极层14b;
设置于像素电极层14b背向第一衬底基板11的一侧的公共电极层14c。
对向基板2’与导光基板1相对设置,其中,黑矩阵层22具有多个开口,所述黑矩阵层22在第一衬底基板11上的正投影覆盖所述多个取光光栅单元12在第一衬底基板11上的正投影。
液晶层设置于导光基板1和对向基板2’之间,其中,液晶层3被配置为在电场作用下,将从导光基板1中出射的光线入射至黑矩阵层;或者,将从导光基板1中出射的光线入射至黑矩阵层22所具有的多个开口形成的出光区域。
在上述液晶显示装置400中,由于对向基板2’包括有机透射层24和第三缓冲层25,且第三缓冲层25的内应力的方向与有机透射层24的内应力的方向相反,使得对向基板2’的翘曲量降低,因此液晶显示装置400的整体的平整性较高,产品质量较好,并且,由于对向基板2’设置有机透射层24,因此液晶层3在电场作用下时,能够将更多从导光基板1中出射的光线入射 至黑矩阵层所具有的多个开口形成的出光区域,提高了液晶显示装置400的显示亮度。
在一些实施例中,请再次参见图14,液晶显示装置400还包括第一配向层3a、第二配向层3b、光源4、准直灯罩5、胶合层7、第一反射片6a和第二反射片6b,关于上述各部件的结构、设置方式以及功能可参见对于液晶显示装置200中相关内容的说明。
如图15所示,本公开的一些实施例还提供一种液晶显示装置500,包括:导光基板1”、对向基板2’和液晶层3。其中,导光基板1”为本公开实施例所提供的导光基板1”,对向基板2’为本公开实施例所提供的对向基板2’,导光基板1”与对向基板2’相对设置。液晶层3设置于导光基板1”和对向基板2’之间,其中,液晶层3被配置为在电场作用下,将从导光基板1”中出射的光线入射至黑矩阵层;或者,将从导光基板1”中出射的光线入射至黑矩阵层22所具有的多个开口形成的出光区域。
上述液晶显示装置500所包括的导光基板1”中设置有第一缓冲层15a和第二缓冲层15b,从而平坦层13、第一缓冲层15a和第二缓冲层15b组成的层叠结构的锁光能力提高,使得导光基板1”漏光量较低,光线利用率较高。这样在液晶显示装置500处于暗态时,减轻了暗态显示不均现象,在液晶显示装置500处于亮态时,显示亮度得以提升。
并且,由于对向基板2’包括有机透射层24和第三缓冲层25,且第三缓冲层25的内应力的方向与有机透射层24的内应力的方向相反,使得对向基板2’的翘曲量降低,因此液晶显示装置500的整体的平整性较高,产品质量较好,并且,由于对向基板2’设置有机透射层24,因此在液晶层3受到电场作用时,能够将更多从导光基板1中出射的光线入射至黑矩阵层22所具有的多个开口形成的出光区域,提高了液晶显示装置500的显示亮度。
在一些实施例中,如图5C所示,上述液晶显示装置500还包括第一配向层3a、第二配向层3b、光源4、准直灯罩5、胶合层7、第一反射片6a和第二反射片6b,关于上述各部件的结构、设置方式以及功能可参见上面相关内 容的说明,此处不再重复。
在一些实施例中,上述液晶显示装置300中的导光基板1”,液晶显示装置400中的导光基板1,以及液晶显示装置500中的导光基板1”均采用本公布提供的制备方法得到,在制备过程中,由于界面保护层16覆盖在第一衬底基板11上,对第一衬底基板11起到了保护作用,避免了对第一衬底基板11的表面上对应非取光口区域B的部分造成损伤,使得第一衬底基板11的表面上对应非取光口区域B的部分为光滑界面,从而减少了第一衬底基板11非取光口区域B的漏光现象的发生,并且保证了更多光线从多个取光口区域A的多个取光光栅单元12中以准直的角度出射,从而提高了液晶显示装置300、液晶显示装置400、液晶显示装置500的显示效果。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种导光基板的制备方法,包括:
    提供第一衬底基板,在所述第一衬底基板的一侧表面上形成界面保护层层;所述第一衬底基板包括多个取光口区域和除所述多个取光口区域之外的非取光口区域;
    在所述第一衬底基板的形成有所述界面保护层的一侧形成光栅结构层;
    去除所述光栅结构层中对应所述非取光口区域的部分,得到与所述多个取光口区域一一对应的多个取光光栅单元;
    去除所述界面保护层中对应所述非取光口区域的部分。
  2. 根据权利要求1所述的导光基板的制备方法,其中,所述在所述第一衬底基板的一侧表面上形成界面保护层的步骤之后,还包括:
    图案化所述界面保护层,去除所述界面保护层中对应所述多个取光口区域的部分。
  3. 根据权利要求2所述的导光基板的制备方法,其中,所述图案化所述界面保护层,去除所述界面保护层中对应所述多个取光口区域的部分的步骤中,以及所述去除所述界面保护层中对应所述非取光口区域的部分的步骤中,采用湿法刻蚀工艺对所述界面保护层的相应部分进行去除。
  4. 根据权利要求1~3任一项所述的导光基板的制备方法,其中,所述界面保护层的材料为金属、金属合金或金属氧化物。
  5. 根据权利要求1~3中任一项所述的导光基板的制备方法,其中,在所述去除所述光栅结构层中对应所述非取光口区域的部分的步骤中,在所述光栅结构层中对应所述非取光口区域的部分被完全去除时,所述界面保护层中对应所述非取光口区域的部分中,未被所述光栅结构层遮盖的部分的厚度大于或等于0。
  6. 根据权利要求5所述的导光基板的制备方法,其中,采用刻蚀工艺对所述光栅结构层中对应所述非取光口区域的部分进行去除;
    在所述去除所述光栅结构层中对应所述非取光口区域的部分的步骤中,对所述光栅结构层的材料进行刻蚀与对所述界面保护层的材料进行刻蚀的刻 蚀选择比大于或等于10。
  7. 根据权利要求5所述的导光基板的制备方法,其中,所述去除所述光栅结构层中对应所述非取光口区域的部分的步骤中,采用干法刻蚀工艺对所述光栅结构层中的相应部分进行去除。
  8. 根据权利要求1所述的导光基板的制备方法,其中,所述去除所述光栅结构层中对应所述非取光口区域的部分的步骤,包括:
    在所述光栅结构层中对应所述取光口区域的部分远离所述第一衬底基板的一侧形成保护胶层,使所述保护胶层覆盖所述光栅结构层中对应所述取光口区域的部分;
    去除所述光栅结构层中对应所述非取光口区域的部分;
    去除所述保护胶层。
  9. 一种导光基板,包括:
    第一衬底基板,所述第一衬底基板包括多个取光口区域和除所述多个取光口区域之外的非取光口区域;
    设置在所述第一衬底基板的一侧表面上的多个界面保护结构,所述多个界面保护结构与所述多个取光口区域一一对应;
    设置于所述多个界面保护结构远离所述第一衬底基板一侧的多个取光光栅单元,所述多个取光光栅单元与所述多个界面保护结构一一对应。
  10. 根据权利要求9所述的导光基板,还包括:
    覆盖在所述多个取光光栅单元上的平坦层;
    设置于所述平坦层远离所述第一衬底基板的一侧的第一缓冲层;
    设置于所述第一缓冲层远离所述第一衬底基板的一侧的第二缓冲层;
    其中,所述第一缓冲层的材料与所述第二缓冲层的材料不同。
  11. 根据权利要求10所述的导光基板,其中,所述第一缓冲层的折射率介于所述平坦层的折射率与所述第二缓冲层的折射率之间。
  12. 根据权利要求10所述的导光基板,其中,所述第一缓冲层的材料为 氧化物,所述第二缓冲层的材料为氮化物,且所述第一缓冲层的材料与所述第二缓冲层的材料包含相同的元素。
  13. 根据权利要求12所述的导光基板,其中,所述第一缓冲层的材料为氧化硅,所述第二缓冲层的材料为氮化硅。
  14. 根据权利要求13所述的导光基板,其中,所述第一缓冲层的厚度为0.3μm,所述第二缓冲层的厚度为0.1μm,所述平坦层的厚度为0.825μm。
  15. 根据权利要求10~14任一项所述的导光基板,还包括,设置于所述第二缓冲层远离所述第一衬底基板一侧的像素驱动结构,所述像素驱动结构包括多个薄膜晶体管;
    设置于所述像素驱动结构远离所述第一衬底基板的一侧的像素电极层;
    设置于所述像素电极层远离所述第一衬底基板的一侧的公共电极层;
    所述第二缓冲层的致密度高于所述平坦层的致密度,且第二缓冲层的致密度高于所述第一缓冲层的致密度。
  16. 一种液晶显示装置,包括:
    如权利要求9~15中任一项所述的导光基板;
    与所述导光基板相对设置的对向基板;
    其中,所述对向基板包括:
    第二衬底基板;
    设置于所述第二衬底基板靠近所述导光基板的一侧的黑矩阵层;
    其中,所述黑矩阵层具有多个开口,所述黑矩阵层在所述第一衬底基板上的正投影覆盖所述多个取光光栅单元在所述第一衬底基板上的正投影;
    设置于所述导光基板和所述对向基板之间的液晶层;
    其中,所述液晶层被配置为在电场作用下,将从所述导光基板中出射的光线入射至黑矩阵层;或者,将从所述导光基板中出射的光线入射至所述黑矩阵层所具有的多个开口形成的出光区域。
  17. 根据权利要求16所述的液晶显示装置,其中,所述对向基板还包括:
    设置于所述黑矩阵层远离所述第二衬底基板的一侧的有机透射层;
    设置于所述黑矩阵层靠近所述第二衬底基板的一侧的第三缓冲层;
    其中,所述第三缓冲层的内应力的方向与所述有机透射层的内应力的方向相反。
  18. 根据权利要求17所述的液晶显示装置,其中,所述第三缓冲层的材料为氮化硅。
  19. 根据权利要求18所述的液晶显示装置,其中,所述有机透射层的厚度为15μm~20μm,所述第三缓冲层的厚度为0.5μm~1μm。
  20. 根据权利要求17~19中任一项所述的液晶显示装置,其中,所述对向基板还包括:
    设置于所述第三缓冲层与所述黑矩阵层之间的粘接层。
  21. 根据权利要求20所述的液晶显示装置,其中,所述粘接层的材料为二氧化硅,所述粘接层的厚度为0.3μm。
PCT/CN2019/104211 2019-09-03 2019-09-03 导光基板及其制备方法、对向基板、液晶显示装置 WO2021042265A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/044,268 US11513277B2 (en) 2019-09-03 2019-09-03 Light guide substrate and method of manufacturing the same, opposite substrate and liquid crystal display apparatus
PCT/CN2019/104211 WO2021042265A1 (zh) 2019-09-03 2019-09-03 导光基板及其制备方法、对向基板、液晶显示装置
CN201980001596.8A CN112771424B (zh) 2019-09-03 2019-09-03 导光基板及其制备方法、对向基板、液晶显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104211 WO2021042265A1 (zh) 2019-09-03 2019-09-03 导光基板及其制备方法、对向基板、液晶显示装置

Publications (1)

Publication Number Publication Date
WO2021042265A1 true WO2021042265A1 (zh) 2021-03-11

Family

ID=74851957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104211 WO2021042265A1 (zh) 2019-09-03 2019-09-03 导光基板及其制备方法、对向基板、液晶显示装置

Country Status (3)

Country Link
US (1) US11513277B2 (zh)
CN (1) CN112771424B (zh)
WO (1) WO2021042265A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011170257A (ja) * 2010-02-22 2011-09-01 Hitachi Displays Ltd 液晶表示装置
CN106856163A (zh) * 2016-11-22 2017-06-16 上海华力微电子有限公司 一种高深宽比图形结构的形成方法
CN109061948A (zh) * 2018-10-30 2018-12-21 京东方科技集团股份有限公司 光学基板和显示装置
CN109212834A (zh) * 2018-11-08 2019-01-15 京东方科技集团股份有限公司 一种显示面板、显示装置及驱动方法
CN110161620A (zh) * 2019-07-09 2019-08-23 京东方科技集团股份有限公司 背光模组及其制作方法、显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225039A (en) * 1991-05-14 1993-07-06 Canon Kabushiki Kaisha Method for producing a diffraction grating
US7554734B1 (en) * 2006-04-28 2009-06-30 Johan Christer Holm Polarization independent grating
JP2014006194A (ja) * 2012-06-26 2014-01-16 Canon Inc 構造体の製造方法
US9632225B2 (en) * 2015-07-14 2017-04-25 Lumentum Operations Llc Zoned optical waveplate
US10241244B2 (en) * 2016-07-29 2019-03-26 Lumentum Operations Llc Thin film total internal reflection diffraction grating for single polarization or dual polarization
CN106959481A (zh) * 2017-04-25 2017-07-18 武汉华星光电技术有限公司 裸眼立体显示光栅及制造方法、显示装置
CN109031496A (zh) * 2018-07-19 2018-12-18 深圳市华星光电技术有限公司 一种纳米金属光栅的制作方法及纳米金属光栅
CN109799656B (zh) * 2018-09-14 2021-03-12 京东方科技集团股份有限公司 一种显示基板、显示面板及显示装置
CN109683230B (zh) * 2019-02-18 2020-06-26 京东方科技集团股份有限公司 导光结构、透明显示装置、导光结构的制造方法
CN109917503B (zh) * 2019-03-18 2021-04-23 京东方科技集团股份有限公司 一种光栅器件及其制造方法、显示装置
CN112014919B (zh) * 2019-05-30 2022-04-29 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011170257A (ja) * 2010-02-22 2011-09-01 Hitachi Displays Ltd 液晶表示装置
CN106856163A (zh) * 2016-11-22 2017-06-16 上海华力微电子有限公司 一种高深宽比图形结构的形成方法
CN109061948A (zh) * 2018-10-30 2018-12-21 京东方科技集团股份有限公司 光学基板和显示装置
CN109212834A (zh) * 2018-11-08 2019-01-15 京东方科技集团股份有限公司 一种显示面板、显示装置及驱动方法
CN110161620A (zh) * 2019-07-09 2019-08-23 京东方科技集团股份有限公司 背光模组及其制作方法、显示装置

Also Published As

Publication number Publication date
CN112771424B (zh) 2023-06-02
US11513277B2 (en) 2022-11-29
CN112771424A (zh) 2021-05-07
US20210165155A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US7973880B2 (en) Illumination device and liquid crystal display device
TWI238674B (en) Optical device and organic EL display
CN109633965B (zh) 彩膜结构、显示基板及其制造方法、显示装置
WO2017071404A1 (zh) 一种光学结构及其制作方法以及显示基板和显示器件
WO2022174611A1 (zh) 显示面板及显示装置
CN109445176B (zh) 液晶显示面板及其制备方法、液晶显示装置
WO2018166154A1 (zh) 一种光源器件及显示装置
JP4402111B2 (ja) 液晶表示パネルおよび液晶表示装置
TW201915982A (zh) 拼接顯示裝置
WO2019134562A1 (zh) 背光源及其制作方法、显示装置
TWI823910B (zh) 顯示設備及其製造方法
JP2020506525A (ja) 光学的操作特徴部を含む導光板アセンブリ
CN106054469B (zh) 超薄型液晶显示器
US11204459B2 (en) Light providing unit, display device including the same, and method of manufacturing display device
WO2020238856A1 (zh) 显示面板、其制作方法及显示装置
WO2019085020A1 (zh) 液晶显示器及其显示模组
KR20020073278A (ko) 디스플레이장치
WO2018148993A1 (zh) 一种轻薄型液晶显示装置及其背光模组与制作方法
WO2021042265A1 (zh) 导光基板及其制备方法、对向基板、液晶显示装置
WO2021109222A1 (zh) 光转换结构及显示装置
TWI236309B (en) Electroluminescence device, manufacturing method thereof, and liquid crystal display device using the electroluminescence device
CN113241364A (zh) 一种光学结构及显示组件
JP2003270445A (ja) 導光板、液晶表示装置およびその製造方法
WO2021097984A1 (zh) 显示装置
CN109445174B (zh) 一种显示面板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943915

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19943915

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19943915

Country of ref document: EP

Kind code of ref document: A1