WO2021042251A1 - 光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法 - Google Patents

光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法 Download PDF

Info

Publication number
WO2021042251A1
WO2021042251A1 PCT/CN2019/104074 CN2019104074W WO2021042251A1 WO 2021042251 A1 WO2021042251 A1 WO 2021042251A1 CN 2019104074 W CN2019104074 W CN 2019104074W WO 2021042251 A1 WO2021042251 A1 WO 2021042251A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosgene
polyisocyanate
tetrachlorobenzophenone
reaction
dichloro
Prior art date
Application number
PCT/CN2019/104074
Other languages
English (en)
French (fr)
Inventor
俞勇
尚永华
李建峰
郭耀允
王腾飞
李文滨
孙烨
王峤
刘德刚
黎源
Original Assignee
万华化学集团股份有限公司
万华化学(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司, 万华化学(宁波)有限公司 filed Critical 万华化学集团股份有限公司
Priority to PCT/CN2019/104074 priority Critical patent/WO2021042251A1/zh
Publication of WO2021042251A1 publication Critical patent/WO2021042251A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic

Definitions

  • the invention belongs to the technical field of waterborne polyurethane resins, and in particular relates to a method for preparing polyisocyanate by photochemical reaction and a method for preparing waterborne polyurethane resin.
  • Polyurethane is one of the synthetic resins with excellent comprehensive properties. Due to its wide variety of synthetic monomers, mild, specific and controllable reaction conditions, large room for formula adjustment and the microstructure characteristics of its polymer materials, it can be widely used in coatings, adhesives, foams, synthetic fibers and elastomers , Has become one of the indispensable materials for people’s clothing, food, housing and transportation; moreover, it itself has formed a multi-variety and multi-series material family, forming a complete polyurethane industrial system, which is the place for other resins. Not available.
  • the chlorine content in polyisocyanate will affect the yellowing resistance of waterborne polyurethane resin, and may even directly cause the yellowing of waterborne polyurethane resin. At the same time, it may adversely affect the reactivity of some systems. . Therefore, the chlorine content in polyisocyanates must be controlled in this field.
  • Patent document US 5364958 discloses a method for preparing isocyanate, which uses hot HCl gas to heat-treat the reaction liquid after removing phosgene to achieve the purpose of reducing the color number of the product.
  • Patent document EP0581100 also proposes a method for preparing light-colored isocyanates, that is, adding a chemical reducing agent after phosgenation and before removing the solvent to obtain light-colored products.
  • the patent document CN 00809301.6 provides a method for controlling the content of bromide and iodide in phosgene to achieve the preparation of light-colored isocyanates.
  • the patent document EP 0561225 also discloses a method for preparing light-colored isocyanates, in which the isocyanate obtained after the phosgenation of the corresponding amine is subjected to hydrogenation treatment at a pressure of 1-150 bar and a temperature of 100-180°C to obtain a light-colored isocyanate.
  • Isocyanate products Patent documents EP 0546398 and EP 0446781 achieve the purpose of reducing the color number of isocyanates produced by the phosgenation reaction by pretreating the raw material amine.
  • the method provided by the former is to acidify the amine before phosgenation, and the method provided by the latter is to pretreat the amine with hydrogen before phosgenation.
  • the amine after acidification or hydrogen pretreatment is then combined with phosgene.
  • the reaction is carried out, and finally a light-colored isocyanate is obtained.
  • the purpose of the present invention is to provide a method for preparing polyisocyanate by phosgenation reaction and a method for preparing waterborne polyurethane resin.
  • a method for preparing polyisocyanate by phosgenation reaction includes the following steps: phosgenation reaction between polyamine and excess phosgene to obtain a crude product containing polyisocyanate, and then The crude product is subjected to post-treatment to obtain the polyisocyanate; the solvent used in the process of preparing the polyisocyanate in the method includes an aromatic solvent (for example, in one or more steps of the method, an aromatic solvent is used).
  • aromatic solvents for example, in one or more steps of the method, an aromatic solvent is used.
  • Family solvents aromatic solvents can be used in the reaction stage or in the post-treatment stage
  • the content of benzophenone impurities in the polyisocyanate is ⁇ 0.045wt% (for example, ⁇ 0.04wt%, ⁇ 0.03wt%, ⁇ 0.02wt%), preferably ⁇ 0.035wt%, more preferably ⁇ 0.025wt%.
  • the process conditions are controlled to limit the content of benzophenone impurities in the polyisocyanate;
  • the controlled process conditions include :Control the contact temperature of aromatic solvent and phosgene ⁇ 180°C,
  • the total contact time is controlled to be ⁇ 4h, preferably ⁇ 2h.
  • the contact time is not limited.
  • the production of benzophenone impurities is very slow when the contact temperature of the aromatic solvent and phosgene is less than 150°C , And the conversion rate is low, the generated benzophenone impurities are not enough to cause the content of benzophenone impurities in the final polyisocyanate product to exceed the specified range; therefore, for the phosgene and aromatic solvents at less than 150°C
  • the contact time is not limited.
  • the method for preparing polyisocyanate by phosgenation reaction specifically includes the following steps:
  • step b) subjecting the crude product obtained in step a) to removal of phosgene and aromatic solvent, and separating the crude polyisocyanate and the aromatic solvent containing phosgene;
  • step c) separating phosgene and aromatic solvent in the phosgene-containing aromatic solvent obtained in step a) and step b), and the separated phosgene and aromatic solvent are all returned to step a) for recycling;
  • step b) Refining the crude polyisocyanate without phosgene obtained in step b) to obtain the polyisocyanate;
  • step a) Control the process conditions of the step of contact between the aromatic solvent and the phosgene phase (for example, in the above step a) to step c)), so that the content of benzophenone impurities in the polyisocyanate is ⁇ 0.045wt% (for example, ⁇ 0.04 wt%, ⁇ 0.03wt%, ⁇ 0.02wt%), preferably ⁇ 0.035wt%, more preferably ⁇ 0.025wt%.
  • step a) may further include: using an aromatic solvent during the post-treatment of the crude product, for example, using an aromatic solvent in the gas phase phosgenation reaction to cool and absorb the gaseous crude product generated by the reaction deal with.
  • the absorption of reaction tail gas is a routine operation in the field.
  • the specific absorption method of the reaction tail gas in step a) with aromatic solvents can be operated in the manner of an absorption tower, and the aromatic solvent used in the tail gas absorption can be the same as the aromatic solvent used in the reaction process.
  • the aromatic solvent used in tail gas absorption can be cooled with a refrigerant before entering the absorption tower. The recommended cooling temperature is 2-20°C higher than the freezing point temperature of the aromatic solvent used.
  • the reaction tail gas can also be cooled before entering the absorption tower, and the phosgene-containing aromatic solvent can be obtained after absorption treatment in the absorption tower; it can also be directly entered into the tail gas absorption tower without cooling, and finally the phosgene-containing aromatic solvent can be obtained .
  • step b) The removal of phosgene and aromatic solvents on the obtained crude product is a conventional operation in the field.
  • the process of removing phosgene and aromatic solvents from the obtained crude product can be carried out by the method disclosed in Chinese patent application CN107652208A; preferably at 50-180°C, more preferably at 60-150 It can be removed at an absolute pressure of 0.01-0.1MPa at °C.
  • the material containing phosgene can be selected under the conditions of 150°C or more and 180°C or less, and the residence time ⁇ 1h.
  • the process of separating phosgene and aromatic solvents is a routine operation in the field.
  • the process of separating phosgene and aromatic solvent in the aromatic solvent containing phosgene in step c) adopts a rectification tower, and phosgene with a purity of ⁇ 97% is obtained at the top of the tower.
  • An aromatic solvent with a phosgene content ⁇ 0.01% is obtained, and the two are returned as raw materials to the system of step a) (recycled).
  • the pressure in the separation process is an absolute pressure of 0.01-0.2 MPa
  • the temperature of the bottom of the tower is 50-180°C, preferably 60-150°C
  • the temperature of the top of the tower is 0-50°C, preferably 5-30°C.
  • the process of refining the crude polyisocyanate is a routine operation in the field.
  • the process of refining the crude polyisocyanate that does not contain phosgene obtained in step b) in step d) can use techniques known in the art to remove solvents, monomers and other small molecules in each step; for example, It can be purified and refined by distillation, distillation, crystallization, etc.
  • the chlorine content in the polyisocyanate product can be ⁇ 0.02%, or even the chlorine content is ⁇ 0.01%, thereby improving the yellowing resistance of the polyisocyanate product and downstream products.
  • the inventors have discovered through research that in the process of preparing polyisocyanates by the phosgenation method, if the solvent used in the preparation process is an aromatic solvent (for example, a benzene ring solvent), then the solvent and phosgene will react and react when in contact with each other. Generates chlorine-containing benzophenones, leading to impurities in the final polyisocyanate product. As the chlorine-containing benzophenones are part of the source of residual chlorine in the polyisocyanate product, the control of its yield is very important. By preventing or reducing the generation probability or yield of chlorine-containing benzophenones during the preparation process of polyisocyanate, the yellowing resistance of the polyisocyanate product can be effectively improved.
  • an aromatic solvent for example, a benzene ring solvent
  • the following reaction occurs when the phosgene contacts with the aromatic solvent:
  • the aromatic solvent can be represented by the chemical structural formula shown in formula (II), namely:
  • R in formula (II) is selected from H, Cl or CH 3 .
  • the chlorine-containing benzophenone impurities obtained after the reaction can be represented by the chemical structural formula shown in formula (I), namely:
  • R in formula (I) is selected from H, Cl or CH 3 .
  • the content of benzophenone impurities in the final polyisocyanate is ⁇ 0.025wt%; when the aromatic solvent When the contact temperature with phosgene is between 150°C and 165°C and the duration of the controlled contact is 2-4h, the content of benzophenone impurities in the finally obtained polyisocyanate is 0.035-0.045wt%; when the contact time is> At 4 hours, the content of benzophenone impurities in the finally obtained polyisocyanate is more than 0.045 wt%.
  • the contact temperature of aromatic solvent and phosgene is less than 150°C, the production of benzophenone impurities is very slow, and the conversion rate is low, and the benzophenone impurities produced are not enough to cause the benzophenone in the final polyisocyanate product.
  • the content of similar impurities exceeds the specified range; therefore, the contact time is not limited.
  • the contact temperature of the aromatic solvent and phosgene ⁇ 180°C, preferably ⁇ 165°C, more preferably ⁇ 150°C.
  • the contact time is controlled to be ⁇ 2h
  • the contact temperature of the aromatic solvent and phosgene is between 150°C and 165°C
  • the contact time is controlled to be ⁇ 4h
  • the contact temperature of the aromatic solvent and phosgene is less than 150°C
  • the contact time is not limited; and, when the contact temperature of the aromatic solvent and phosgene is 150°C-180°C, the total contact time is controlled to be ⁇ 4h, preferably ⁇ 2h.
  • the contact time is controlled to be ⁇ 60s, preferably ⁇ 30s. Under such controlled process conditions, the probability of the production of benzophenones can be effectively prevented or reduced, and the content of chlorine-containing benzophenones impurities in the polyisocyanate product can be effectively reduced.
  • contact time refers to the residence time of the aromatic solvent and phosgene in the equipment and/or pipeline at a specific temperature point or temperature range:
  • the contact time (t) is the residence time at a specific temperature point or temperature range
  • the contact time (t) is the effective volume (V) of the equipment and/or pipeline at a specific temperature point or temperature range and the equipment and/or pipeline contains phosgene and aromatic solvents
  • the ratio of the volume flow (Q) of the stream, the calculation formula is:
  • the total contact time refers to the total sum of the “contact time” controlled at each specific temperature point or within each specific temperature range.
  • the phosgenation reaction of the present invention can be carried out using processes known in the art. According to the method provided by the present invention, in some examples, the phosgenation reaction is selected from a gas-phase phosgenation reaction, a liquid-phase phosgenation reaction, or a salt-forming phosgenation reaction.
  • the phosgenation reaction can be carried out in the gas phase, that is, the gas phase phosgenation reaction.
  • the step of the gas phase phosgenation reaction includes: 1) vaporizing the polyamine to form a polyamine gas stream containing polyamine droplets; 2) removing the polyamine contained in the polyamine gas stream.
  • Amine droplets to obtain a polyamine gas stream substantially free of polyamine droplets 3) the polyamine gas stream substantially free of polyamine droplets and phosgene are subjected to a gas phase phosgenation reaction, and the resulting reaction product is passed through a liquid inert medium (For example, aromatic solvent) and/or the mixture of inert medium and isocyanate is rapidly cooled to 100-140°C in a gas jet absorption device to obtain crude isocyanate.
  • a heater is used to remove the polyamine droplets contained in the polyamine gas stream; for example, the specific structure of the heater used can refer to the corresponding content disclosed in the Chinese patent document CN 105214568A.
  • the temperature of the gas phase phosgenation reaction is, for example, 200-550°C (e.g., 250°C, 300°C, 320°C, 380°C, 420°C, 500°C), preferably 250-400°C; the reaction pressure is 0.01-1MPa( For example, 0.05 MPa, 0.08 MPa, 0.2 MPa, 0.5 MPa, 0.8 MPa), preferably 0.03-0.3 MPa.
  • the mixed gas (reaction product) after the reaction of phosgene and polyamine can be absorbed and cooled by a liquid inert medium (for example, aromatic solvent) and/or a mixture of inert medium and isocyanate.
  • the temperature of the reaction mixture gas after being absorbed and cooled by the liquid inert medium and/or the mixture of the inert medium and isocyanate is required to be ⁇ 180°C, preferably ⁇ 165°C, more preferably ⁇ 150°C.
  • the cooling and absorption process of the reaction mixture gas here can be regarded as the instant completion of the reaction mixture gas contacting the cooling and absorption medium, and the time is extremely short, which is generally considered to be ⁇ 30s in the art. Therefore, in this step of contacting the aromatic solvent and phosgene, the contact temperature of the two can be understood as the temperature after cooling.
  • the contact time is not limited. With the limitation of the process conditions, the production of chlorine-containing benzophenone impurities can be prevented or reduced.
  • the liquid inert medium is selected from all inert liquids suitable for preparing isocyanates, preferably aromatic solvents, more preferably one or more of chlorobenzene, m-dichlorobenzene, o-dichlorobenzene, p-dichlorobenzene and chlorotoluene.
  • the phosgenation reaction can also be carried out in the liquid phase, that is, the liquid phase phosgenation reaction.
  • the liquid phase phosgenation reaction is carried out in two steps: 1) cold reaction, the temperature is 0-100°C, preferably 40-70°C; the pressure is absolute pressure 0.1-1MPa; the polyamine and aromatic solvent (It can be selected from one or more of chlorobenzene, m-dichlorobenzene, o-dichlorobenzene, p-dichlorobenzene and chlorotoluene) after being mixed and prepared into a solution, it reacts with super-stoichiometric phosgene, and the reaction residence time It can be 2-120 minutes, preferably 5-45 minutes.
  • Thermal reaction temperature is 60-180°C, preferably 110-165°C, more preferably 120-150°C; pressure is absolute pressure 0.1-1MPa; with chlorobenzene, m-dichlorobenzene, o-dichlorobenzene, p-dichloro
  • chlorobenzene and chlorotoluene are solvents that react with superstoichiometric phosgene, and the reaction residence time can be 0.5-5h.
  • the contact time is controlled to be ⁇ 2h; when the contact temperature between the two is 150°C-165°C, the contact time is controlled to be ⁇ 4h; when the contact temperature between the two is less than 150°C, the contact time is not limited.
  • the production of chlorine-containing benzophenone impurities can be prevented or reduced.
  • the phosgenation reaction can also be carried out in hydrogen chloride and/or carbon dioxide, that is, the salt-forming phosgenation reaction.
  • the steps of the salt-forming phosgenation reaction are: 1) The salt-forming reaction of hydrogen chloride and/or carbon dioxide and the polyamine in an inert solvent, and the molar equivalent ratio of the hydrogen chloride to the amino group in the polyamine is 1- 2.5:1, preferably 1.2-2:1, the molar equivalent ratio of carbon dioxide to the amino group in the polyamine is 0.5-5:1, preferably 0.6-3:1, and the mass ratio of the inert solvent to the polyamine is 25- 5:1, preferably 20-5:1; the salt-forming reaction temperature is 0-50°C, preferably 5-30°C, the pressure is absolute pressure 0.1-1MPa, preferably absolute pressure 0.2-0.5MPa; reaction residence time It is 1-15 min, preferably 5-10 min.
  • the resulting hydrochloride or carbonate reaction solution enters step 2) for phosgenation reaction with phosgene;
  • the reaction temperature is 100-170°C, preferably 110-165°C, more preferably 120-150°C;
  • the reaction pressure is absolute pressure 0.1-1MPa, preferably absolute pressure 0.2-0.5MPa; for reaction with superstoichiometric phosgene, the reaction residence time can be 1-5h.
  • the inert solvent is selected from one or more of chlorobenzene, m-dichlorobenzene, o-dichlorobenzene, p-dichlorobenzene and chlorotoluene.
  • the contact time is controlled to be ⁇ 2h; when the contact temperature between the two is 150°C-165°C , Control the contact time ⁇ 4h; when the contact temperature of the two is less than 150 °C, the contact time is not limited.
  • the production of chlorine-containing benzophenone impurities can be prevented or reduced.
  • the polyamine is selected from meta-xylylenediamine, p-xylylenediamine, 1,3-cyclohexanedimethylamine, 1,4 -Cyclohexanedimethylamine, 1,4-butanediamine, 1,6-hexanediamine, 1,4-diaminocyclohexane, diaminodicyclohexylmethane (for example, industrial product H 12 MDA, which is Containing 4,4-diaminodicyclohexylmethane, 2,4-diaminodicyclohexylmethane, 2,2-diaminodicyclohexylmethane, etc.), toluene diamine, methylene diphenylamine (for example, 2,2'-methylene dianiline, 4,4'-methylene diphenylamine), isophorone
  • R in formula (II) is selected from H, Cl or CH 3 ;
  • the aromatic solvent is preferably selected from one or more of chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, m-chlorotoluene, o-chlorotoluene and p-chlorotoluene.
  • the aromatic solvent is used as the medium in the phosgenation reaction and/or as the post-treatment In the medium to be used.
  • the reaction product obtained after the reaction of gas phase phosgene and gas phase polyamine is subjected to post-treatment of cooling and absorption by an aromatic solvent.
  • the benzophenone impurity is a chlorine-containing benzophenone substance, and its chemical structural formula is shown in formula (I):
  • R in formula (I) is selected from H, Cl or CH 3 ;
  • the chlorine-containing benzophenone substance is selected from 1,1'-dichlorobenzophenone, 2,2'-dichlorobenzophenone, 3,3'-dichlorobenzophenone, Chlorobenzophenone, 1,2'-dichlorobenzophenone, 2,3'-dichlorobenzophenone, 1,2,1',2'-tetrachlorobenzophenone, 2,3 ,2',3'-tetrachlorobenzophenone, 1,2,2',3'-tetrachlorobenzophenone, 1,3,1',3'-tetrachlorobenzophenone, 2, 4,2',4'-tetrachlorobenzophenone, 1,3,2',4'-tetrachlorobenzophenone, 1,4,1',4'-tetrachlorobenzophenone, 1 ,2'-Dichloro-1,2'-Dimethylbenzophenone, 2,2'-Dichlor
  • the polyisocyanate is prepared by phosgenation reaction, and the solvent used in the process of preparing the polyisocyanate includes an aromatic solvent; the content of benzophenone impurities in the polyisocyanate is ⁇ 0.045wt% (For example, ⁇ 0.04wt%, ⁇ 0.03wt%, ⁇ 0.02wt%), preferably ⁇ 0.035wt%, more preferably ⁇ 0.025wt%.
  • the yellowing resistance of the obtained waterborne polyurethane product can be effectively improved Performance, and can also reduce the dramatic fluctuations in the reaction caused by the polyisocyanate in the downstream application process.
  • the benzophenone impurity is a chlorine-containing benzophenone substance, and its chemical structural formula is as shown in formula (I):
  • R in formula (I) is selected from H, Cl or CH 3 ;
  • the chlorine-containing benzophenones are, for example, selected from 1,1'-dichlorobenzophenone, 2,2'-dichlorobenzophenone, 3,3'- Dichlorobenzophenone, 1,2'-dichlorobenzophenone, 2,3'-dichlorobenzophenone, 1,2,1',2'-tetrachlorobenzophenone, 2, 3,2',3'-tetrachlorobenzophenone, 1,2,2',3'-tetrachlorobenzophenone, 1,3,1',3'-tetrachlorobenzophenone, 2 ,4,2',4'-tetrachlorobenzophenone, 1,3,2',4'-tetrachlorobenzophenone, 1,4,1',4'-tetrachlorobenzophenone, 1,2'-Dichloro-1,2'-Dimethylbenzophenone, 2,2'-Dichloro-3,3'--
  • the polyisocyanate is prepared by the method for preparing polyisocyanate by phosgenation reaction as described above.
  • a catalyst commonly used in the art can be added to accelerate the polymerization.
  • the polymerization reaction may add one or more of organotin, organic bismuth, and naphthenate as a catalyst to promote the polymerization reaction.
  • the oligomer polyol (its relative molecular weight ⁇ 20,000) is selected from polycaprolactone diol (PCL), polyester diol, polycarbonate diol, polytetramethylene ether glycol ( PTMEG), one or more of poly-1,4-butanediol adipate diol, and polyhexylene adipate diol.
  • the polyester diol is preferably 2-methyl-1,3-propanediol (MPD), neopentyl glycol (NPG), 2,2,4-trimethyl-1,3-pentanediol (TMPD) , 2-Ethyl-2-butyl-1,3-propanediol (BEPD), 1,4-cyclohexanedimethanol (1,4-CHDM), adipic acid, hexahydrophthalic anhydride (HHPA), 1, Polyester diol derived from 4-cyclohexanedicarboxylic acid (1,4-CHDA), azelaic acid (AZA) or isophthalic acid (IPA).
  • MPD 2-methyl-1,3-propanediol
  • NPG neopentyl glycol
  • TMPD 2,2,4-trimethyl-1,3-pentanediol
  • BEPD 2-Ethyl-2-butyl-1,3-propanediol
  • the chain extender is a polyfunctional alcohol compound and/or a polyfunctional amine compound (for example, its functionality is 2, 3, 4, 5), and is preferably selected from ethylene glycol, monocondensation Diethylene glycol (diethylene glycol), 1,2-propylene glycol, dipropylene glycol, 1,4-butanediol (1,4-butanediol, BDO), 1,6-hexanediol (HD), three Among methylol propane (TMP), castor oil, ethylene diamine (EDA), hydrazine, hexamethylene diamine, isophorone diamine, methyl pentane diamine, diethylene triamine and triethylene tetramine One or more.
  • TMP methylol propane
  • EDA ethylene diamine
  • hydrazine hexamethylene diamine
  • isophorone diamine methyl pentane diamine
  • diethylene triamine diethylene triamine and triethylene tetramine One or more.
  • the hydrophilic agent is a hydrophilic chain extender, preferably selected from dimethylolpropionic acid (DMPA), dimethylolbutyric acid (DMBA), 1,4-butanediol-2- Sodium sulfonate, diethanolamine, triethanolamine, N-methyldiethanolamine (MDEA), N-ethyldiethanolamine (EDEA), N-propyldiethanolamine (PDEA), N-butyldiethanolamine (BDEA), One or more of dimethylethanolamine, bis(2-hydroxyethyl)aniline (BHBA), bis(2-hydroxypropyl)aniline (BHPA), and N-methyldiethanolamine (MDEA).
  • DMPA dimethylolpropionic acid
  • DMBA dimethylolbutyric acid
  • 1,4-butanediol-2- Sodium sulfonate diethanolamine, triethanolamine, N-methyldiethanolamine (MDEA), N-ethyldiethanolamine (EDEA),
  • a solvent may not be used, but a solvent may also be used.
  • the solvent is selected from one or more of water, acetone, methyl ethyl ketone, N,N-dimethylformamide and N-methylpyrrolidone (NMP).
  • the present invention can control the contact process conditions of phosgene and aromatic solvent to reduce the content of benzophenone impurities in the obtained polyisocyanate product to ⁇ 0.045wt%, which effectively improves the content of polyisocyanate.
  • the yellowing resistance of isocyanate products can stabilize the color number of the obtained polyisocyanate below 15 Hazen.
  • the total chlorine content of the final polyisocyanate product can be ⁇ 200ppm, or even ⁇ 100ppm.
  • it also reduces the violent fluctuations in the reaction caused by the presence of benzophenone impurities in the polyisocyanate during the downstream application process, and may even lead to the failure of downstream products.
  • the yellowing resistance of the water-based polyurethane resin prepared by using the polyisocyanate with low benzophenone impurity content obtained in the present invention as a raw material is also significantly improved.
  • H 12 MDA (4,4'-diaminodicyclohexylmethane): purchased on the market, the brand name is Wanamine H 12 MDA;
  • IPDA Procurement from the market, the trade name is Wanamine IPDA
  • 1,3-BAC Procurement in the market, the manufacturer is Mitsubishi Gas Co., Ltd.;
  • Phosgene self-made, purity ⁇ 95%, refer to patent document CN104415770A;
  • Ortho-dichlorobenzene solution purchased out, in line with industry standard HG/T 3602-2010;
  • Chlorobenzene purchased out, in line with the national standard GB/T 2404-2014;
  • Dibutyltin dilaurate purchased from the market, reagents from Sinopharm, purity ⁇ 95%;
  • NEP N-Ethylpyrrolidone: Purchased from the market, Sinopharm reagent, purity ⁇ 95%;
  • DMPA 2,2-Dimethylolpropionic acid
  • TEA Triethylamine
  • Chromatographic column Agilent HP-5 (specification 30m*0.32mm*0.25mm); inlet temperature: 280°C; split ratio: 30:1; column flow: 1.5ml/min; column temperature: 100°C, retention 0.5 After min, the temperature was increased to 260°C at 15°C/min and kept for 8 minutes; detector temperature: 280°C; H 2 flow rate: 35 ml/min.
  • Example 1 of Chinese patent application CN105214568A the diamine H 12 MDA is vaporized and heated to 355°C. Under the protection of nitrogen, the gaseous phosgene heated to 355°C is separated from each other.
  • the feed pipe of H 12 MDA is continuously added to the reactor for phosgenation reaction; the reaction pressure is 0.05MPa absolute pressure, and the reaction temperature is 360°C; among them, the feed amount of H 12 MDA is 800Kg/h, and the gaseous phosgene
  • the feed rate is 3000Kg/h; the mixed gas obtained after the reaction is quickly cooled to 100°C by the o-dichlorobenzene solution through the gas jet absorption device (the contact time is about 10s), and the product containing H 12 MDI, phosgene and ortho Crude product of dichlorobenzene solution; after the reaction tail gas enters the tail gas absorption tower, it is absorbed by the o-dichlorobenzene solution at -35°C to obtain the o-dichlorobenzene solution containing phosgene.
  • step b) The crude product obtained in step a) is treated to remove phosgene and o-dichlorobenzene solution.
  • the o-dichlorobenzene solution and excess phosgene in the crude product are removed at 168°C and an absolute pressure of 0.1 MPa, and the result is obtained by separation H 12 MDI crude product without phosgene and o-dichlorobenzene solution with phosgene;
  • the retention time of the o-dichlorobenzene solution containing phosgene at 168°C during the control removal process is 1h.
  • Step a) After the reaction tail gas is absorbed, the o-dichlorobenzene solution containing phosgene is obtained, and the o-dichlorobenzene solution containing phosgene obtained after the removal process of step b) enters the rectification tower for phosgene and o-dichlorobenzene.
  • the separation of the solution is carried out under the conditions of absolute pressure 0.125MPa, bottom temperature of 155°C, and top temperature of 15°C to obtain phosgene with a purity of 98% and o-dichloride with a phosgene content of ⁇ 0.001%
  • the benzene solution, the separated phosgene and the o-dichlorobenzene solution are all returned to step a) for recycling;
  • the residence time of the o-dichlorobenzene solution containing phosgene at 155°C was controlled to be 1h.
  • step d) The crude H 12 MDI product obtained in step b) without phosgene is purified by distillation to obtain H 12 MDI (dicyclohexyl methane dicyclohexyl methane) at an absolute pressure of 0.5KPa and a distillation range of 150-160°C. Isocyanate) products.
  • H 12 MDI dicyclohexyl methane dicyclohexyl methane
  • the residence time of the o-dichlorobenzene solution containing phosgene at 150-165°C is 1h, and the residence time at 165-180°C is 1h; and the total residence time between 150°C-180°C is controlled. ⁇ 2h.
  • the phosgenation reaction of step a) adopts a liquid phase phosgenation reaction.
  • reaction tail gas After the reaction tail gas enters the tail gas absorption tower, it is absorbed by the o-dichlorobenzene solution at -30°C to obtain the o-dichlorobenzene solution containing phosgene.
  • step b) The reaction solution obtained in step a) is treated to remove phosgene and o-dichlorobenzene solution.
  • the o-dichlorobenzene solution and excess phosgene in the reaction solution are removed at 155°C and an absolute pressure of 0.05 MPa to obtain H 12 MDI crude product containing phosgene and o-dichlorobenzene solution containing phosgene;
  • the residence time of the o-dichlorobenzene solution containing phosgene at 155°C was controlled to be 1h.
  • step c) After the reaction tail gas is absorbed in step a), the o-dichlorobenzene solution containing phosgene is obtained, and the o-dichlorobenzene solution containing phosgene obtained in the removal process of step b) enters the rectification tower for phosgene and o-dichlorobenzene.
  • the separation process is carried out under the conditions of absolute pressure 0.125MPa, bottom temperature of 145°C, and top temperature of 15°C to obtain phosgene with a purity of 98% and o-dichlorobenzene with a phosgene content of ⁇ 0.001%
  • the solution, the separated phosgene and the o-dichlorobenzene solution are all returned to step a) for recycling.
  • step d) The crude H 12 MDI product obtained in step b) without phosgene is purified by distillation to obtain H 12 MDI (dicyclohexyl methane dicyclohexyl methane) at an absolute pressure of 0.5KPa and a distillation range of 150-160°C. Isocyanate) products.
  • H 12 MDI dicyclohexyl methane dicyclohexyl methane
  • the total residence time is 3h.
  • step a) adopts the salt-forming phosgenation reaction.
  • the tank reactor disclosed in Example 1 of the Chinese patent document CN 105218422B and the following steps are adopted:
  • step 2) Transfer the H 12 MDA hydrochloride slurry obtained in step 1) to the photochemical reactor.
  • the photochemical reactor has a phosgene inlet pipe, gas phase condensation reflux and stirring; the photochemical reactor is heated and turned on at the same time Stir, and pass in phosgene after the temperature reaches 60°C, the phosgene feed rate is 50mol/min, the reaction temperature is 145°C, and the phosgene feed is stopped after the reaction solution is clarified, and the product containing H 12 MDI, phosgene, and phosgene is obtained.
  • Dichlorobenzene salt-forming photochemical reaction solution (crude product);
  • reaction tail gas After the reaction tail gas enters the tail gas absorption tower, it is absorbed by the o-dichlorobenzene solution at -30°C to obtain the o-dichlorobenzene solution containing phosgene.
  • step b) The reaction solution obtained in step a) is treated to remove phosgene and o-dichlorobenzene solution.
  • the o-dichlorobenzene solution and excess phosgene in the reaction solution are removed at 145°C and an absolute pressure of 0.04 MPa to obtain The crude H 12 MDI product containing phosgene and the o-dichlorobenzene solution containing phosgene.
  • step c) The o-dichlorobenzene solution containing phosgene obtained after the reaction tail gas is absorbed in step a) and the o-dichlorobenzene solution containing phosgene obtained in the degassing process of step b) enter the rectification tower for phosgene and o-dichloro
  • the benzene solution, the separated phosgene and the o-dichlorobenzene solution are all returned to step a) for recycling;
  • the residence time of the o-dichlorobenzene solution containing phosgene at 165°C is controlled to be 1h.
  • step d) The crude H 12 MDI product obtained in step b) without phosgene is purified by distillation to obtain H 12 MDI (dicyclohexyl methane dicyclohexyl methane) at an absolute pressure of 0.5KPa and a distillation range of 150-160°C. Isocyanate) products.
  • H 12 MDI dicyclohexyl methane dicyclohexyl methane
  • the residence time of the o-dichlorobenzene solution containing phosgene at 150°C-165°C is 0h, and the residence time at 165°C-180°C is controlled to 1h; and it is controlled at 150°C-180°C
  • the total residence time between is 1h.
  • step a) of preparing polyisocyanate is carried out with reference to the process described in the above preparation of polyisocyanate 1, except that in step a), 1,3-BAC (1,3-cyclohexanedimethylamine) is used to pass through Preparation of HXDI (1,3-cyclohexane dimethyl isocyanate) by salt phosgenation method.
  • 1,3-BAC 1,3-cyclohexanedimethylamine
  • HXDI 1,3-cyclohexane dimethyl isocyanate
  • step 2) Transfer the 1,3-BAC hydrochloride slurry obtained in step 1) to the photochemical reactor, which has a phosgene inlet pipe, gas phase condensation reflux and stirring; the photochemical reactor is heated, At the same time, turn on the stirring.
  • the temperature reaches 60°C, pass in phosgene.
  • the phosgene feed rate is 50mol/min and the reaction temperature is 145°C.
  • the phosgene feed is stopped to obtain the product containing HXDI (dicyclohexyl methane). Diisocyanate), phosgene and chlorobenzene salt-forming photochemical reaction solution (crude product);
  • reaction tail gas After the reaction tail gas enters the tail gas absorption tower, it is absorbed with a chlorobenzene solution at -20°C to obtain a chlorobenzene solution containing phosgene.
  • step b) The reaction solution obtained in step a) is treated to remove phosgene and chlorobenzene solvent.
  • the chlorobenzene and excess phosgene in the reaction solution are removed at 168°C and an absolute pressure of 0.1 MPa to obtain HXDI without phosgene Crude product and chlorobenzene solution containing phosgene;
  • the residence time of the chlorobenzene solution containing phosgene at 168°C was controlled to be 1h.
  • Step a) After the reaction tail gas is absorbed, the chlorobenzene solution containing phosgene is obtained, and the chlorobenzene solution containing phosgene obtained from the removal process of step b) enters the rectification tower to separate the phosgene and the chlorobenzene solution; the separation process is in Under the conditions of absolute pressure 0.125MPa, bottom temperature of 155°C, and top temperature of 15°C, phosgene with a purity of 98% and a chlorobenzene solution with a phosgene content of ⁇ 0.001% are obtained. The separated phosgene and The chlorobenzene solutions are all returned to step a) for recycling;
  • the residence time of the chlorobenzene solution containing phosgene at 155°C is controlled to be 1h.
  • step d) The crude HXDI product obtained in step b) without phosgene is purified by rectification, and the HXDI (dicyclohexylmethane diisocyanate) product is obtained at an absolute pressure of 0.5KPa and a distillation range of 140-150°C. .
  • Example 1 of Chinese patent application CN105214568A the diamine IPDA was vaporized and heated to 355°C. Under the protection of nitrogen, it was heated to 355°C with gaseous phosgene through their respective inlets.
  • the feed pipe is continuously added to the reactor for the phosgenation reaction; the reaction pressure is 0.05MPa absolute, and the reaction temperature is 360°C; among them, the feed rate of IPDA is 800Kg/h, and the feed rate of gaseous phosgene is 3000Kg/h;
  • reaction tail gas After entering the tail gas absorption tower, it is absorbed with a chlorobenzene solution at -25°C to obtain a chlorobenzene solution containing phosgene.
  • step b) The crude product obtained in step a) is processed to remove phosgene and chlorobenzene solvent.
  • the chlorobenzene and excess phosgene in the crude product are removed at 168°C and an absolute pressure of 0.1 MPa to obtain IPDI without phosgene Crude product and chlorobenzene solution containing phosgene;
  • the residence time of the chlorobenzene solution containing phosgene at 168°C was controlled to be 1h.
  • Step a) After the reaction tail gas is absorbed, the chlorobenzene solution containing phosgene is obtained, and the chlorobenzene solution containing phosgene obtained from the removal process of step b) enters the rectification tower to separate the phosgene and the chlorobenzene solution; the separation process is in Under the conditions of absolute pressure 0.125MPa, bottom temperature of 155°C, and top temperature of 15°C, phosgene with a purity of 98% and a chlorobenzene solution with a phosgene content of ⁇ 0.001% are obtained. The separated phosgene and The chlorobenzene solutions are all returned to step a) for recycling;
  • the residence time of the chlorobenzene solution containing phosgene at 155°C is controlled to be 1h.
  • step d) The crude IPDI product obtained in step b) without phosgene is purified by distillation to obtain IPDI (isophorone diisocyanate) product at an absolute pressure of 0.5KPa and a distillation range of 140-150°C .
  • the yield of the obtained IPDI product was 97.5%, and the purity of the product was 99.75%.
  • chlorine-containing benzophenone impurities which are 1,1'-dichlorobenzophenone, 2,2'-dichlorobenzophenone, 3,3'-dichlorobenzophenone, The total content of ketone, 1,2'-dichlorobenzophenone, 2,3'-dichlorobenzophenone) is 0.009wt%.
  • step b) The crude product obtained in step a) is treated to remove phosgene and o-dichlorobenzene solution.
  • the o-dichlorobenzene solution and excess phosgene in the reaction solution are removed at 168°C and an absolute pressure of 0.1 MPa to obtain H 12 MDI crude product containing phosgene and o-dichlorobenzene solution containing phosgene;
  • step b the retention time of the o-dichlorobenzene solution containing phosgene at a temperature of 168° C. is controlled to be 2 h.
  • Step a) After the reaction tail gas is absorbed, the o-dichlorobenzene solution containing phosgene is obtained, and the o-dichlorobenzene solution containing phosgene obtained from the removal process of step b) enters the rectification tower for phosgene and o-dichlorobenzene solution
  • the separation process is carried out under the conditions of absolute pressure 0.125MPa, bottom temperature of 155°C, and top temperature of 15°C to obtain phosgene with a purity of 98% and o-dichlorobenzene with a phosgene content of ⁇ 0.001%
  • the solution, the separated phosgene and o-dichlorobenzene solution are all returned to step a) for recycling;
  • the residence time of the o-dichlorobenzene solution containing phosgene at a temperature of 155°C is controlled to be 3h.
  • the residence time is 5h.
  • chlorine-containing benzophenone impurities are 1,2,1',2'-tetrachlorobenzophenone, 2,3,2',3'-tetrachlorobenzophenone, 1 ,2,2',3'-tetrachlorobenzophenone, the total content of impurities is 0.065wt%.
  • step b) The reaction solution (crude product) obtained in step a) is processed to remove phosgene and the solvent o-dichlorobenzene.
  • the excess phosgene in the reaction solution is removed at 155°C and an absolute pressure of 0.05 MPa to obtain no light H 12 MDI crude product of gas and o-dichlorobenzene containing phosgene;
  • step b the residence time of o-dichlorobenzene containing phosgene at 155°C is controlled to be 3h.
  • the total residence time between 180°C is 5h.
  • chlorine-containing benzophenone impurities are 1,2,1',2'-tetrachlorobenzophenone, 2,3,2',3'-tetrachlorobenzophenone, 1 ,2,2',3'-tetrachlorobenzophenone, the total content of impurities is 0.05wt%.
  • step c) The o-dichlorobenzene solution containing phosgene obtained after the reaction tail gas is absorbed in step a) and the o-dichlorobenzene solution containing phosgene obtained in the degassing process of step b) enter the rectification tower for phosgene and o-dichloro
  • the benzene solution, the separated phosgene and the o-dichlorobenzene solution are all returned to step a) for recycling;
  • the residence time of the o-dichlorobenzene solution containing phosgene at 165° C. is controlled to be 2.5 h.
  • the total residence time between -180°C is 2.5h.
  • chlorine-containing benzophenone impurities are 1,2,1',2'-tetrachlorobenzophenone, 2,3,2',3'-tetrachlorobenzophenone, 1 ,2,2',3'-tetrachlorobenzophenone, the total content of impurities is 0.07wt%.
  • step c) The o-dichlorobenzene solution containing phosgene obtained after the reaction tail gas is absorbed in step a) and the o-dichlorobenzene solution containing phosgene obtained in the degassing process of step b) enter the rectification tower for phosgene and o-dichloro
  • the benzene solution, the separated phosgene and the aromatic solvent are all returned to step a) for recycling;
  • the residence time of the o-dichlorobenzene solution containing phosgene at 185°C is controlled to be 1h.
  • the residence time of the o-dichlorobenzene solution containing phosgene at 150°C-165°C is 0h, and its residence time between 165-180°C is 0h, but its residence time at >180°C
  • the total residence time is 1h.
  • chlorine-containing benzophenone impurities are 1,2,1',2'-tetrachlorobenzophenone, 2,3,2',3'-tetrachlorobenzophenone, 1 ,2,2',3'-tetrachlorobenzophenone, the total content of impurities is 0.085wt%.
  • step b) The crude product obtained in step a) is processed to remove phosgene and chlorobenzene solution.
  • the chlorobenzene solution and excess phosgene in the reaction solution are removed at 168°C and an absolute pressure of 0.1 MPa to obtain a phosgene-free product.
  • step b the residence time of the chlorobenzene solution containing phosgene at 168° C. is controlled to be 2 h.
  • Step a) After the reaction tail gas is absorbed, the chlorobenzene solution containing phosgene is obtained, and the chlorobenzene solution containing phosgene obtained from the removal process of step b) enters the rectification tower to separate the phosgene and the chlorobenzene solution; the separation process is in Under the conditions of absolute pressure 0.125MPa, bottom temperature of 155°C, and top temperature of 15°C, phosgene with a purity of 98% and a chlorobenzene solution with a phosgene content of ⁇ 0.001% are obtained. The separated phosgene and The chlorobenzene solutions are all returned to step a) for recycling;
  • the residence time of the chlorobenzene solution containing phosgene at 155°C was controlled to be 3h.
  • step 5 Use a rotary evaporator to remove acetone from the stable dispersed emulsion obtained in step 4, at an absolute pressure of 5 KPa and a water bath temperature of 35° C., to remove acetone for 1 hour to obtain a pan-blue translucent waterborne polyurethane emulsion.
  • the yellowing resistance test of the obtained water-based polyurethane emulsion product shows that the color difference ⁇ E is 0.3.
  • the preparation process of the water-based polyurethane resin in this example refers to the method described in Example 6 of the water-based polyurethane resin.
  • the difference is that the polyisocyanate raw material used is IPDI (isophore) prepared by the preparation example 5 of polyisocyanate. Ketone diisocyanate).
  • the yellowing resistance test of the obtained water-based polyurethane emulsion products shows that the color difference ⁇ E is 0.2.
  • the preparation process of the water-based polyurethane resin in this comparative example refers to the method described in Example 6 of the water-based polyurethane resin, except that the polyisocyanate raw material used is the H 12 MDI product prepared by the preparation of polyisocyanate in Comparative Example 1 .
  • the yellowing resistance test of the obtained water-based polyurethane emulsion product shows that the color difference ⁇ E is 3.5.
  • the preparation process of the water-based polyurethane resin in this comparative example refers to the method described in Example 6 of the water-based polyurethane resin, except that the polyisocyanate raw material used is the IPDI obtained in Comparative Example 5 for the preparation of polyisocyanate.
  • the yellowing resistance test of the obtained water-based polyurethane emulsion products shows that the color difference ⁇ E is 4.2.
  • the polyisocyanate prepared by the method of this application (the total content of benzophenone impurities ⁇ 0.015wt%) is used as a raw material in the downstream process, and the water-based polyurethane resin prepared The yellowing resistance has also been significantly improved.
  • the prepared water-based polyurethane resin has poor yellowing resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明属于水性聚氨酯树脂的技术领域,尤其涉及一种光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法,制备水性聚氨酯树脂的方法包括如下步骤:将包含多异氰酸酯、低聚物多元醇、扩链剂和亲水剂的原料进行聚合反应,得到水性聚氨酯树脂;其中,所述多异氰酸酯中的苯甲酮类杂质的含量≤0.045wt%。本发明通过控制多异氰酸酯制备过程中苯甲酮类杂质的含量,可有效地改善产品的耐黄变性能,也降低了由于产品中存在这类杂质而导致下游制品不合格的危害。

Description

光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法 技术领域
本发明属于水性聚氨酯树脂的技术领域,尤其涉及一种光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法。
背景技术
聚氨酯是综合性能优秀的合成树脂之一。由于其合成单体品种多、反应条件温和、专一、可控,且配方调整余地大及其高分子材料的微观结构特点,可广泛用于涂料、黏合剂、泡沫塑料、合成纤维以及弹性体,已成为人们衣、食、住、行必不可少的材料之一;而且,其本身就已经形成了一个多品种、多系列的材料家族,形成了完整的聚氨酯工业体系,这是其它树脂所不具备的。
随着人们环保意识以及环保法规的加强,环境友好型水性聚氨酯的研究、开发日益受到重视,其应用已由皮革涂饰剂不断扩展到涂料、黏合剂等领域,正在逐步占领溶剂型聚氨酯的市场。在水性树脂中,水性聚氨酯仍然是优秀树脂的代表,是现代水性树脂研究的热点之一。
根据本领域的研究人员研究,多异氰酸酯中的氯含量会影响水性聚氨酯树脂的耐黄变性能,甚至可能直接导致水性聚氨酯树脂的发黄,同时有可能会对部分体系的反应活性产生不利的影响。因此,在本领域必须要对多异氰酸酯中的氯含量加以控制。
导致多异氰酸酯出现氯含量偏高的原因有很多,需要采用不同的方法来避免。专利文件US 5364958公开了一种制备异氰酸酯方法,用热HCl气体对脱除光气后的反应液进行热处理,以达到降低产品色号的目的。专利文件EP 0581100也提出一种制备浅色异氰酸酯的方法,即在光气化后和去除溶剂前加入其中化学还原剂,得到浅色产品。专利文件CN 00809301.6提供了一种通过控制光气中溴化物、碘化物含量的方法来实现浅色异氰酸酯的制备。专利文件EP 0561225也公开了一种制备浅色异氰酸酯的方法,其中在相应胺的光气化之后所得的异氰酸酯在1-150bar的压力下和100-180℃的温度下进行氢化处理,得到浅色异氰酸酯产品。专利文件EP 0546398和EP 0446781是通过对原料胺进行预处理来达到降低光气化反应制得的异氰酸酯的色号的目的。前者提供的方法是在胺进行光气化前对其酸化,后者提供的方法是在胺进行光气化前用氢气对其进行预处理,经过酸化或氢气预处理后的胺再与光气进行反应,最终得到浅色的异氰酸酯。
以上的现有技术制备多异氰酸酯,虽然提到了诸多降低异氰酸酯色度及氯含量的方法,但是均未能明确是哪一类杂质导致了多异氰酸酯的氯含量偏高或者颜色发黄,这给实际应用过程中带来了一定的不确定性。如果能在明确导致多异氰酸酯发黄或者氯含量偏高的具体杂质种类的基础上,提出解决问题的具体方案,从而实现多异氰酸酯低色号、低氯含量的目的,将会对制备浅色多异氰酸酯具有更多指导意义。
发明内容
本发明的目的在于,提供一种光气化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法,通过控制光气化法制备多异氰酸酯过程中苯甲酮类杂质的含量,可有效地改善产品的耐黄变性能,也降低了由于产品中存在这类杂质而导致下游制品不合格的危害。
为了实现上述目的,本发明的技术方案如下:
在本发明的一个方面,提供一种光气化反应制备多异氰酸酯的方法,包括如下步骤:将多胺与过量的光气进行光气化反应,得到含有多异氰酸酯的粗产物,然后对所述粗产物进行后处理,得到所述多异氰酸酯;所述方法在制备所述多异氰酸酯的过程中使用的溶剂包括芳香族溶剂(例如,在所述方法的一个步骤或多个步骤中,使用了芳香族溶剂;芳香族溶剂的使用可以是在反应阶段,也可以是在后处理阶段),
所述多异氰酸酯中苯甲酮类杂质的含量≤0.045wt%(例如,≤0.04wt%、≤0.03wt%、≤0.02wt%),优选为≤0.035wt%,更优选为≤0.025wt%。
根据本发明提供的方法,优选地,在所述存在芳香族溶剂和光气相接触的步骤中,控制其工艺条件以限制所述多异氰酸酯中苯甲酮类杂质的含量;控制的所述工艺条件包括:控制芳香族溶剂和光气的接触温度≤180℃,
(1)当芳香族溶剂和光气的接触温度为165℃-180℃时,控制接触时长≤2h,优选≤1h;(2)当芳香族溶剂和光气的接触温度为150℃-165℃时,控制接触时长≤4h,优选≤2h;(3)当芳香族溶剂和光气的接触温度小于150℃时,接触时间不受限制;
并且当芳香族溶剂和光气的接触温度为150℃-180℃时,控制接触总时长≤4h,优选≤2h。
本发明中,“当芳香族溶剂和光气的接触温度小于150℃时,接触时间不受限制”是指,由于芳香族溶剂和光气的接触温度小于150℃时 苯甲酮类杂质的产生非常缓慢,而且转换率较低,产生的苯甲酮类杂质还不足以导致最终多异氰酸酯产品中的苯甲酮类杂质含量超过规定的范围;因此,对小于150℃时的光气与芳香族溶剂的接触时间不进行限制。
在一些示例中,光气化反应制备多异氰酸酯的方法具体包括如下步骤:
a)将多胺与过量的光气进行光气化反应,在制备所述多异氰酸酯的过程中(例如,包括反应阶段和/或后处理阶段)使用的溶剂包括芳香族溶剂,得到含有芳香族溶剂、多异氰酸酯及光气的粗产物;反应尾气(主要为光气、氯化氢、少量的芳香族溶剂及极少量的目标产物)用芳香族溶剂进行吸收后得到含光气的芳香族溶剂;
b)将步骤a)得到的粗产物进行脱除光气和芳香族溶剂的处理,分离得到多异氰酸酯粗品和含光气的芳香族溶剂;
c)将步骤a)和步骤b)所得含光气的芳香族溶剂中的光气和芳香族溶剂进行分离,分离出的光气和芳香族溶剂均返回到步骤a)中进行循环使用;
d)将步骤b)中得到的不含有光气的多异氰酸酯粗品进行精制,得到所述多异氰酸酯;
控制存在芳香族溶剂和光气相接触的步骤(例如,上述步骤a)~步骤c)中)的工艺条件,以使所述多异氰酸酯中苯甲酮类杂质的含量≤0.045wt%(例如,≤0.04wt%、≤0.03wt%、≤0.02wt%),优选为≤0.035wt%,更优选为≤0.025wt%。
在一些实施方式中,步骤a)还可包括:在对粗产物进行后处理的过程中使用芳香族溶剂,例如,气相光气化反应中使用芳香族溶剂对反应生成的气态粗产物进行冷却吸收处理。
反应尾气的吸收为本领域的常规操作。在一些具体实施方式中,步骤a)的反应尾气用芳香族溶剂进行吸收的具体吸收方式可以采用吸收塔的方式进行操作,尾气吸收所用的芳香族溶剂可以与反应过程所使用的芳香族溶剂一致。尾气吸收所用的芳香族溶剂在进入吸收塔前可以使用冷媒进行冷却,推荐冷却温度比所使用的芳香族溶剂的凝固点温度高2-20℃。在反应尾气进入吸收塔前也可以对尾气进行冷却,并在吸收塔吸收处理后得到含光气的芳香族溶剂;也可以不进行冷却直接进入尾气吸收塔,最终得到含光气的芳香族溶剂。
对所得粗产物进行光气和芳香族溶剂脱除过程为本领域的常规操作。在一些具体实施方式中,步骤b)将所得粗产物进行光气和芳香族溶剂脱除的过程,可以采用中国专利申请CN107652208A所公开 的方法;优选在50-180℃,更优选为60-150℃,绝对压力0.01-0.1MPa下脱除。例如,整个脱除过程中,含有光气的物料可以选择在大于等于150℃且小于等于180℃的条件下、且停留时间≤1h。
对光气和芳香族溶剂进行分离的过程为本领域的常规操作。在一些具体实施方式中,步骤c)将含光气的芳香族溶剂中的光气和芳香族溶剂进行分离的过程采用精馏塔的方式,塔顶得到纯度≥97%的光气,塔釜得到光气含量≤0.01%的芳香族溶剂,并将两者作为原料返回到步骤a)的体系中(循环使用)。分离过程中的压力为绝对压力0.01-0.2MPa,塔釜温度为50-180℃,优选为60-150℃,塔顶温度为0-50℃,优选为5-30℃。
对多异氰酸酯粗品进行精制的过程为本领域的常规操作。在一些具体实施方式中,步骤d)将步骤b)中所得不含有光气的多异氰酸酯粗品进行精制的过程可采用本领域公知技术脱除各步骤中的溶剂、单体等小分子;例如,可以使用精馏、蒸馏、结晶等方式进行纯化和精制。
对于光气化法制备异氰酸酯的工艺而言,获得的最终产品中难免会有少量的氯存在。残留的氯一方面会导致异氰酸酯单体本身的发黄;另一方面,由于这些含氯杂质的存在,在下游应用过程中导致反应的剧烈波动,甚至有可能会导致下游制品(例如,水性树脂)的不合格。为此,需要对异氰酸酯产品中的氯含量进行控制。
然而,光气化法制备异氰酸酯的工艺中,导致会存在氯杂质的因素很多,残留的氯的来源和种类也会很多。在本领域的常规工艺中,通常是采用不计成本的分离手段(如反复精馏等)除氯,虽然也能实现氯含量及色号的降低,但还总是存在一定的氯无法脱除,这主要是由于其沸点与多异氰酸酯十分接近所致。通过进一步研究后本申请发明人发现,含氯的二苯甲酮类杂质作为产物中残留氯的一部分来源,通过将该类杂质含量控制在一定范围,例如,苯甲酮类杂质的含量≤0.045wt%,可以实现多异氰酸酯产品中的氯含量≤0.02%,甚至氯含量≤0.01%,进而提升多异氰酸酯产品和下游制品的耐黄变性能。
发明人经过研究发现,在光气化法制备多异氰酸酯的过程中,如果制备工艺中使用的溶剂为芳香族溶剂(例如,苯环类溶剂),那么溶剂与光气在接触时会发生反应并生成含氯的苯甲酮类物质,导致最终的多异氰酸酯产品中产生杂质。而含氯的二苯甲酮类物质作为多异氰酸酯产物中残留氯的一部分来源,其产率的控制就显得很重要。通过阻止或降低多异氰酸酯制备过程中含氯的二苯甲酮类物质生成的概率或产率,可以有效提升多异氰酸酯产物的耐黄变性。
一些示例中,在存在芳香族溶剂和光气接触的步骤中,所述光气和芳香族溶剂接触会发生如下反应:
Figure PCTCN2019104074-appb-000001
所述芳香族溶剂可通过式(II)所示的化学结构式来表示,即:
Figure PCTCN2019104074-appb-000002
其中,式(II)中的R选自H、Cl或者CH 3
反应后所得含氯的二苯甲酮类的杂质,可通过式(I)所示的化学结构式来表示,即:
Figure PCTCN2019104074-appb-000003
其中,式(I)中的R选自H、Cl或者CH 3
经过申请人的研究发现,在存在芳香族溶剂和光气接触的步骤中,温度达到150℃及以上的条件下会发生反应产生苯甲酮类杂质。由于产生的苯甲酮类杂质与多异氰酸酯的沸点比较接近,常规的精馏手段无法实现两者的分离。若要实现有效地分离,就需要大量的分离设备和投资,并会带来大量的产品损失。因此,如果在该类杂质的产生阶段对其予以控制,即可避免杂质影响产品性能。
经过本申请人的进一步研究发现,当芳香族溶剂和光气的接触温度在165℃-180℃之间、且控制接触的时长≤1h时,最终得到的多异氰酸酯中苯甲酮类杂质的含量≤0.035wt%;当芳香族溶剂和光气的接触温度在165℃-180℃之间、且控制接触的时长为1-2h时,最终得到的多异氰酸酯中苯甲酮类杂质的含量为0.025-0.045wt%;当芳香族溶剂和光气的接触温度在165℃-180℃之间、且接触的时长>2h时,最终得到的多异氰酸酯中苯甲酮类杂质的含量会在0.045wt%以上。当芳香族溶剂和光气的接触温度在150℃-165℃之间、且控制接触的时长≤2h时,最终得到的多异氰酸酯中苯甲酮类杂质的含量为≤0.025wt%;当芳香族溶剂和光气的接触温度在150℃-165℃之间、且控制接触的时长为2-4h时,最终得到的多异氰酸酯中苯甲酮类杂质的含量为0.035-0.045wt%;当接触的时长>4h时,最终得到的多异氰酸酯内的 苯甲酮类杂质的含量0.045wt%以上。
当芳香族溶剂和光气的接触温度小于150℃时,苯甲酮类杂质的产生非常缓慢,而且转换率较低,产生的苯甲酮类杂质还不足以导致最终多异氰酸酯产品中的苯甲酮类杂质含量超过规定的范围;因此,接触时间不受限。
当芳香族溶剂和光气的接触温度>180℃时,虽然会利于产生苯甲酮类杂质,但是若两者的接触时长极短(如≤60s,优选≤30s),短时间内产生的苯甲酮类杂质还不足以导致最终多异氰酸酯产品中的苯甲酮类杂质含量超过规定的范围。
因此,在光气化反应体系中,优选控制芳香族溶剂和光气的接触温度≤180℃,优选≤165℃,更优选≤150℃。其中,当芳香族溶剂和光气的接触温度在165℃-180℃时,控制接触时长≤2h;当芳香族溶剂和光气的接触温度在150℃-165℃时,控制接触时长≤4h;当芳香族溶剂和光气的接触温度小于150℃时,接触时间不受限制;并且,当芳香族溶剂和光气的接触温度在150℃-180℃时,控制接触总时长≤4h,优选≤2h。当芳香族溶剂和光气的接触温度>180℃时,控制接触时长≤60s,优选≤30s。这样的控制工艺条件下,可有效阻止或降低苯甲酮类物质产生的概率,即可有效降低多异氰酸酯产物中含氯的二苯甲酮类杂质的含量。
本发明中,“接触时长”是指在特定温度点或者温度范围内芳香族溶剂和光气在设备和/或管道中的停留时间:
(1)若该方法为间歇过程,接触时长(t)即为在特定温度点或者温度范围内的停留时间;
(2)若该方法为连续过程,接触时长(t)即为在特定温度点或者温度范围内设备和/或管道的有效体积(V)与设备和/或管道内包含光气和芳香族溶剂的流股的体积流量(Q)之比,计算公式为:
t=V/(Q),其中,Q=Q1+Q2+Q3。
Q1-含光气的芳香族溶剂和/或吸收光气的流股中含光气的芳香族溶剂的体积流量;
Q2-多胺和/或多胺盐的体积流量;
Q3-异氰酸酯的体积流量。
本发明中,“接触总时长”是指各个特定温度点或者各个特定温度范围内控制的“接触时长”的总加和时长。
本发明的光气化反应可以采用本领域已知的工艺种类进行。根据本发明提供的方法,一些示例中,所述光气化反应选自气相光气化反应、液相光气化反应或者成盐光气化反应。
例如,所述的光气化反应可以在气相中进行,即气相光气化反应,具体可参见中国专利申请CN 102260194 A、CN 105214568A。在一些实施方式中,气相光气化反应的步骤包括:1)将多胺气化形成多胺气流,该多胺气流中含有多胺液滴;2)除去所述多胺气流中含有的多胺液滴,得到基本不含多胺液滴的多胺气流;3)将所述基本不含多胺液滴的多胺气流与光气进行气相光气化反应,所得反应产物通过液态惰性介质(例如,芳香族溶剂)和/或惰性介质与异氰酸酯的混合物在气体喷射吸收装置中快速冷却至100-140℃,获得异氰酸酯粗品。同时,采用加热器除去多胺气流中含有的多胺液滴;例如,所用加热器的具体结构可以参见中国专利文件CN 105214568A公开的相应内容。气相光气化反应的温度例如为200-550℃(如,250℃、300℃、320℃、380℃、420℃、500℃),优选为250-400℃;反应的压力为0.01-1MPa(如,0.05MPa、0.08MPa、0.2MPa、0.5MPa、0.8MPa),优选为0.03-0.3MPa。在一些具体的方式中,光气与多胺反应后的混合气体(反应产物)可以用一种液态惰性介质(例如,芳香族溶剂)和/或惰性介质与异氰酸酯的混合物进行吸收冷却。由于反应混合气体温度较高,因此要求反应混合气体被液态惰性介质和/或惰性介质与异氰酸酯的混合物进行吸收冷却后的温度≤180℃,优选≤165℃,更优选≤150℃。这里的反应混合气体的冷却吸收过程可以被看作是反应混合气体与冷却吸收介质接触的瞬间完成,其时间极短,本领域一般认为其为≤30s。因此,在芳香族溶剂和光气接触的该步骤中,两者的接触温度可以理解为是冷却后的温度。当两者的接触温度在165℃-180℃时,控制接触时长≤2h;当两者的接触温度在150℃-165℃时,控制接触时长≤4h;当两者的接触温度小于150℃时,接触时间不受限制。以此工艺条件的限定,来阻止或减少含氯的二苯甲酮类杂质产生。液态惰性介质选用所有适用于制备异氰酸酯的惰性液体,优选为芳香族溶剂,更优选为氯苯、间二氯苯、邻二氯苯、对二氯苯和氯甲苯中的一种或多种。
例如,所述的光气化反应也可以在液相中进行,即,液相光气化反应,具体可参见中国专利文件CN 103319372B。在一些实施方式中,液相光气化反应分两步进行:1)冷反应,温度为0-100℃,优选40-70℃;压力为绝压0.1-1MPa;将多胺与芳香族溶剂(可选自氯苯、间二氯苯、邻二氯苯、对二氯苯和氯甲苯中的一种或多种)混合配制成溶液后与超化学计量的光气进行反应,反应停留时间可以为2-120min,优选5-45min。2)热反应,温度为60-180℃,优选110-165℃,更优选120-150℃;压力为绝压0.1-1MPa;以氯苯、间二氯苯、邻二氯苯、 对二氯苯和氯甲苯中的一种或多种为溶剂,与超化学计量的光气进行反应,反应停留时间可以为0.5-5h。在芳香族溶剂和光气接触的该步骤中,当两者的接触温度在165℃-180℃时,控制接触时长≤2h;当两者的接触温度在150℃-165℃时,控制接触时长≤4h;当两者的接触温度小于150℃时,接触时间不受限制。以此工艺条件的限定,来阻止或减少含氯的二苯甲酮类杂质产生。
例如,所述的光气化反应还可以在氯化氢和/或二氧化碳中进行,即,成盐光气化反应,具体可参见中国专利文件CN 105218422B、CN 107337615A。在一些实施方式中,成盐光气化反应的步骤为:1)氯化氢和/或二氧化碳与多胺在惰性溶剂中进行成盐反应,所述氯化氢与多胺中氨基的摩尔当量比为1-2.5:1,优选为1.2-2:1,所述二氧化碳与多胺中氨基的摩尔当量比为0.5-5:1,优选为0.6-3:1,惰性溶剂与多胺的质量比为25-5:1,优选为20-5:1;成盐反应的温度为0-50℃,优选为5-30℃,压力为绝压0.1-1MPa,优选为绝压0.2-0.5MPa;反应停留时间为1-15min,优选为5-10min。经过步骤1)成盐反应后,所得盐酸盐或碳酸盐的反应液进入步骤2)与光气进行光气化反应;反应温度为100-170℃,优选为110-165℃,更优选120-150℃;反应压力为绝压0.1-1MPa,优选为绝压0.2-0.5MPa;与超化学计量的光气进行反应,其反应停留时间可以为1-5h。其中的惰性溶剂选自氯苯、间二氯苯、邻二氯苯、对二氯苯和氯甲苯中的一种或多种。在惰性溶剂(即芳香族溶剂)和光气接触的该步骤中,当两者的接触温度在165℃-180℃时,控制接触时长≤2h;当两者的接触温度在150℃-165℃时,控制接触时长≤4h;当两者的接触温度小于150℃时,接触时间不受限制。以此工艺条件的限定,来阻止或减少含氯的二苯甲酮类杂质产生。
根据本发明提供的光气化反应制备多异氰酸酯的方法,一些示例中,所述多胺选自间苯二甲胺、对苯二甲胺、1,3-环己二甲胺、1,4-环己二甲胺、1,4-丁二胺、1,6-己二胺、1,4-二氨基环己烷、二氨基二环己基甲烷(例如,工业品H 12MDA,其是包含4,4-二氨基二环己基甲烷、2,4-二氨基二环己基甲烷、2,2-二氨基二环己基甲烷等的混合物)、甲苯二胺、亚甲基二苯胺(例如,2,2'-亚甲基二苯胺、4,4'-亚甲基二苯胺)、异佛尔酮二胺、苯二胺、萘二胺、1,8-辛二胺、1,10-癸二胺、1,12-二氨基十二烷、1,5-戊二胺、环己烷二胺、甲基环己烷二胺、四甲基对苯二胺和二甲基联苯二胺中的一种或多种,优选选自间苯二甲胺、1,3-环己二甲胺、1,4-丁二胺、1,5-戊二胺、1,6-己二胺、二氨基二环己基甲烷、异佛尔酮二胺、甲苯二胺、苯二胺和萘二胺中的一种或多种。
一些示例中,所述芳香族溶剂的化学结构式如式(II)所示:
Figure PCTCN2019104074-appb-000004
其中,式(II)中的R选自H、Cl或者CH 3
所述芳香族溶剂优选选自氯苯、邻二氯苯、间二氯苯、对二氯苯、间氯甲苯、邻氯甲苯和对氯甲苯中的一种或多种。
根据本发明提供的光气化反应制备多异氰酸酯的方法,在具体实施方式中,在所述方法中,所述芳香族溶剂作为所述光气化反应中的介质和/或作为所述后处理中的介质进行使用。例如,采用气相光气化反应制备多异氰酸酯时,气相光气与气相多胺反应后所得反应产物通过芳香族溶剂进行冷却吸收的后处理。
一些示例中,所述苯甲酮类杂质为含氯的二苯甲酮类物质,其化学结构式如式(I)所示:
Figure PCTCN2019104074-appb-000005
其中,式(I)中的R选自H、Cl或者CH 3
在一些具体实施方式中,所述含氯的二苯甲酮类物质选自1,1'-二氯二苯甲酮、2,2'-二氯二苯甲酮、3,3'-二氯二苯甲酮、1,2'-二氯二苯甲酮、2,3'-二氯二苯甲酮、1,2,1',2'-四氯二苯甲酮、2,3,2',3'-四氯二苯甲酮、1,2,2',3'-四氯二苯甲酮、1,3,1',3'-四氯二苯甲酮、2,4,2',4'-四氯二苯甲酮、1,3,2',4'-四氯二苯甲酮、1,4,1',4'-四氯二苯甲酮、1,2'-二氯-1,2'-二甲基二苯甲酮、2,2'-二氯-3,3'-二甲基二苯甲酮、1,2'-二氯-2,3'-二甲基二苯甲酮、1,1'-二氯-3,3'-二甲基二苯甲酮、2,2'-二氯-4,4'-二甲基二苯甲酮、1,2'-二氯-3,4'-二甲基二苯甲酮和1,1'-二氯-4,4'-二甲基二苯甲酮中的一种或多种。
在本发明的第二个方面,提供一种制备水性聚氨酯树脂的方法,包括如下步骤:
将包含多异氰酸酯、低聚物多元醇、扩链剂和亲水剂的原料进行聚合反应,得到水性聚氨酯树脂;
其中,所述多异氰酸酯为经光气化反应制备得到,并且在制备所述多异氰酸酯的过程中使用的溶剂包括芳香族溶剂;所述多异氰酸酯中的苯甲酮类杂质的含量≤0.045wt%(例如,≤0.04wt%、≤0.03wt%、 ≤0.02wt%),优选为≤0.035wt%,更优选为≤0.025wt%。
在制备水性聚氨酯树脂的方法中,如果所用的多异氰酸酯原料是由光气化反应制备得到,则通过控制多异氰酸酯中的苯甲酮类杂质含量,可以有效地改善所得水性聚氨酯产物的耐黄变性能,以及也可降低多异氰酸酯在下游应用过程中导致的反应剧烈波动。
根据本发明提供的方法,一些示例中,所述苯甲酮类杂质为含氯的二苯甲酮类物质,其化学结构式如式(I)所示:
Figure PCTCN2019104074-appb-000006
其中,式(I)中的R选自H、Cl或者CH 3
在一些具体实施方式中,所述含氯的二苯甲酮类物质例如选自1,1'-二氯二苯甲酮、2,2'-二氯二苯甲酮、3,3'-二氯二苯甲酮、1,2'-二氯二苯甲酮、2,3'-二氯二苯甲酮、1,2,1',2'-四氯二苯甲酮、2,3,2',3'-四氯二苯甲酮、1,2,2',3'-四氯二苯甲酮、1,3,1',3'-四氯二苯甲酮、2,4,2',4'-四氯二苯甲酮、1,3,2',4'-四氯二苯甲酮、1,4,1',4'-四氯二苯甲酮、1,2'-二氯-1,2'-二甲基二苯甲酮、2,2'-二氯-3,3'-二甲基二苯甲酮、1,2'-二氯-2,3'-二甲基二苯甲酮、1,1'-二氯-3,3'-二甲基二苯甲酮、2,2'-二氯-4,4'-二甲基二苯甲酮、1,2'-二氯-3,4'-二甲基二苯甲酮和1,1'-二氯-4,4'-二甲基二苯甲酮中的一种或多种。
一些优选实施方式中,所述多异氰酸酯通过如上所述的光气化反应制备多异氰酸酯的方法制备得到。
聚合反应过程中可以加入本领域常用的催化剂加快聚合。一些示例中,所述聚合反应可以添加有机锡类、有机铋类、环烷盐类中的一种或多种作为催化剂来促进其聚合反应。
一些示例中,所述低聚物多元醇(其相对分子量≤20000)选自聚己内酯二醇(PCL)、聚酯二醇、聚碳酸酯二醇、聚四亚甲基醚二醇(PTMEG)、聚己二酸-1,4-丁二醇酯二醇和聚己二酸己二醇酯二醇中的一种或多种。所述聚酯二醇优选为2-甲基-1,3-丙二醇(MPD)、新戊二醇(NPG)、2,2,4-三甲基-1,3-戊二醇(TMPD)、2-乙基-2-丁基-1,3-丙二醇(BEPD)、1,4-环己烷二甲醇(1,4-CHDM)、己二酸、六氢苯酐(HHPA)、1,4-环己烷二甲酸(1,4-CHDA)、壬二酸(AZA)或间苯二甲酸(IPA)衍生的聚酯二醇。
一些示例中,所述扩链剂为多官能度醇类化合物和/或多官能度胺类化合物(例如,其官能度为2、3、4、5),优选选自乙二醇、一缩二 乙二醇(二甘醇)、1,2-丙二醇、一缩二丙二醇、1,4-丁二醇(1,4-butanediol,BDO)、1,6-己二醇(HD)、三羟甲基丙烷(TMP)、蓖麻油、乙二胺(EDA)、肼、己二胺、异佛尔酮二胺、甲基戊二胺、二亚乙基三胺和三乙烯四胺中的一种或多种。
一些示例中,所述亲水剂为亲水性扩链剂,优选选自二羟甲基丙酸(DMPA)、二羟甲基丁酸(DMBA)、1,4-丁二醇-2-磺酸钠、二乙醇胺、三乙醇胺、N-甲基二乙醇胺(MDEA)、N-乙基二乙醇胺(EDEA)、N-丙基二乙醇胺(PDEA)、N-丁基二乙醇胺(BDEA)、二甲基乙醇胺、双(2-羟乙基)苯胺(BHBA)、双(2-羟丙基)苯胺(BHPA)和N-甲基二乙醇胺(MDEA)中的一种或多种。
在制备水性聚氨酯乳液的过程中,可以不使用溶剂,但也可以使用溶剂。所述原料在溶剂中进行聚合反应时,所述溶剂选自水、丙酮、丁酮、N,N-二甲基甲酰胺和N-甲基吡咯烷酮(NMP)中的一种或多种。
在制备水性聚氨酯树脂的方法中,涉及的具体操作步骤和工艺条件为本领域技术人员熟知,这里不再赘述。例如,具体可参考中国专利文件CN 104829811A、CN 107602803A、CN 102875736A等公开的相应内容。
相对于现有技术,本发明技术方案的有益效果在于:
本发明在光气化反应制备多异氰酸酯的方法中通过控制光气与芳香族溶剂的接触工艺条件,可将所得多异氰酸酯产品中苯甲酮类杂质的含量≤0.045wt%,有效地改善了多异氰酸酯产品的耐黄变性能,可使获得的多异氰酸酯的色号稳定在15Hazen以下。同时,也可将最终得到的多异氰酸酯产品的总氯含量≤200ppm,甚至≤100ppm。另外,也降低了由于多异氰酸酯中存在苯甲酮类杂质而在下游应用过程中导致反应的剧烈波动,甚至有可能会导致下游制品的不合格。采用本发明所得低苯甲酮类杂质含量的多异氰酸酯为原料制得的水性聚氨酯树脂的耐黄变性能也得到了显著改善。
具体实施方式
为了能够详细地理解本发明的技术特征和内容,下面将更详细地描述本发明的优选实施方式。虽然实施例中描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。
<原料来源>
H 12MDA(4,4'-二氨基二环己基甲烷):市场采购,商品牌号为Wanamine H 12MDA;
IPDA:市场采购,商品牌号为Wanamine IPDA;
1,3-BAC:市场采购,生产商家为日本三菱瓦斯株式会社;
光气:自制,纯度≥95%,参考专利文件CN104415770A;
邻二氯苯溶液:外购,符合行业标准HG/T 3602-2010;
氯苯:外购,符合国家标准GB/T 2404-2014;
低聚物多元醇,PTEMG(聚四亚甲基醚二醇):市场采购,山西三维基团股份有限公司,商品牌号:PTEMG-1800;
二月桂二丁基锡:市场采购,国药试剂,纯度≥95%;
NEP(N-乙基吡咯烷酮):市场采购,国药试剂,纯度≥95%;
DMPA(2,2-二羟甲基丙酸):市场采购,国药试剂,纯度≥95%;
TEA(三乙胺):市场采购,国药试剂,纯度≥95%;
EDA(二乙胺):市场采购,国药试剂,纯度≥95%。
<检测方法>
本发明各制备例、实施例和对比例中采用如下的测试方法:
(1)多异氰酸酯中苯甲酮类物质做杂质定量分析是在气相色谱上进行的,气相色谱分析条件如下:
色谱柱:安捷伦HP-5(规格为30m*0.32mm*0.25mm);进样口温度:280℃;分流比:30:1;柱流量:1.5ml/min;柱温:100℃,保留0.5min后以15℃/min升高到260℃,保持8min;检测器温度:280℃;H 2流量:35ml/min。
(2)多异氰酸酯中的总氯含量的分析采用国家标准GB/T12009.1-1989所提及的方法。
(3)多异氰酸酯中的色度指标的分析采用国家标准GB/T605-2006所提及的方法。
(4)水性聚氨酯乳液制品的耐黄性能测试:将水性聚氨酯乳液倒入玻璃模具中,室温成膜48h后将膜从玻璃模具上取下,放入80℃烘箱中,烘烤12h,得到干燥的聚氨酯膜。用色差仪(爱丽色X-Rite528型)测试所得聚氨酯膜的色值b,再将聚氨酯膜放入150℃烘箱中烘烤0.5h,用色差仪测试烘烤后树脂膜的色值b并测试色差△E。
多异氰酸酯制备例1
a)采用中国专利申请CN105214568A的实施例1中公开的加热器,将二胺H 12MDA进行气化并加热到355℃,在氮气的保护下,与 被加热到355℃的气态光气经由各自的进料管连续地加入反应器中进行光气化反应;反应的压力为绝压0.05MPa,反应的温度为360℃;其中,H 12MDA的进料量为800Kg/h,气态光气的进料量为3000Kg/h;采用邻二氯苯溶液经过气体喷射吸收装置将反应后所得的混合气体快速(接触时间为10s左右)冷却至100℃,得到含有产物H 12MDI、光气和邻二氯苯溶液的粗产物;反应尾气进入尾气吸收塔后用-35℃的邻二氯苯溶液吸收,得到含光气的邻二氯苯溶液。
b)将步骤a)得到的粗产物进行脱除光气和邻二氯苯溶液的处理,粗产物中邻二氯苯溶液和过量的光气在168℃、绝对压力0.1MPa下去除,分离得到不含有光气的H 12MDI粗产品和含光气的邻二氯苯溶液;
控制脱除过程中含光气的邻二氯苯溶液在168℃下的停留时间为1h。
c)步骤a)反应尾气吸收后得到含光气的邻二氯苯溶液,与步骤b)脱除过程后所得含光气的邻二氯苯溶液进入精馏塔进行光气和邻二氯苯溶液的分离;分离过程在压力为绝压0.125MPa、塔底温度为155℃、塔顶温度为15℃的条件下进行,得到纯度为98%的光气和光气含量<0.001%的邻二氯苯溶液,分离出的光气和邻二氯苯溶液均返回到步骤a)中进行循环使用;
光气和邻二氯苯溶液的分离过程中,控制含光气的邻二氯苯溶液在155℃下的停留时间为1h。
d)将步骤b)中得到的不含有光气的H 12MDI粗产品通过精馏的方式进行提纯,在绝压0.5KPa、150-160℃馏程下得到H 12MDI(二环己基甲烷二异氰酸酯)产品。
整个过程中,含光气的邻二氯苯溶液在150-165℃的停留时间为1h,在165-180℃的停留时间为1h;并且控制其在150℃-180℃之间的总停留时间≤2h。
所得H 12MDI产品的产率为97%,产品的纯度99.5%。所得产品中,产生含氯的二苯甲酮类杂质(其为1,2,1',2'-四氯二苯甲酮、2,3,2',3'-四氯二苯甲酮、1,2,2',3'-四氯二苯甲酮)的总含量为0.01wt%。
多异氰酸酯制备例2
步骤a)的光气化反应采用液相光气化反应,参照中国专利文件CN 103319372B公开的反应釜中采用如下步骤进行:
1)冷反应:将H 12MDA以邻二氯苯为溶剂配置成质量含量为15%的溶液,并预热到40℃,与-5℃的液态光气同时通入到含有邻二氯苯溶液的反应釜中进行液相光气化反应;其中,H 12MDA的进料量为 400Kg/h,冷反应光气的进料量为1500kg/h,冷反应温度控制在60℃,停留时间为5min;
2)热反应:温度控制在155℃、且停留时间为2h,在邻二氯苯溶液和过量光气存在下进行反应,得到含有产物H 12MDI、光气和邻二氯苯溶液的反应液(粗产物);
反应尾气进入尾气吸收塔后用-30℃的邻二氯苯溶液吸收,得到含光气的邻二氯苯溶液。
b)将步骤a)得到的反应液进行脱除光气和邻二氯苯溶液的处理,反应液中邻二氯苯溶液和过量的光气在155℃、绝对压力0.05MPa下去除,得到不含有光气的H 12MDI粗产品和含光气的邻二氯苯溶液;
脱除过程中,控制含光气的邻二氯苯溶液在155℃下的停留时间为1h。
c)步骤a)中反应尾气吸收后得到含光气的邻二氯苯溶液,与步骤b)脱除过程所得含光气的邻二氯苯溶液进入精馏塔进行光气和邻二氯苯的分离;分离过程在压力为绝压0.125MPa、塔底温度为145℃,塔顶温度为15℃的条件下进行,得到纯度为98%的光气和光气含量<0.001%的邻二氯苯溶液,分离出的光气和邻二氯苯溶液均返回到步骤a)中进行循环使用。
d)将步骤b)中得到的不含有光气的H 12MDI粗产品通过精馏的方式进行提纯,在绝压0.5KPa、150-160℃馏程下得到H 12MDI(二环己基甲烷二异氰酸酯)产品。
整个过程中,控制含光气的邻二氯苯溶液在150-165℃的停留时间为3h,在165℃-180℃之间的停留时间为0h;并且控制其在150℃-180℃之间的总停留时间为3h。
所得H 12MDI产品的产率为96%,产品的纯度99.5%。所得产品中,产生含氯的二苯甲酮类杂质(其为1,2,1',2'-四氯二苯甲酮、2,3,2',3'-四氯二苯甲酮、1,2,2',3'-四氯二苯甲酮)的总含量为0.008wt%。
多异氰酸酯制备例3
步骤a)的光气化反应采用成盐光气化反应,参考中国专利文件CN 105218422B的实施例1中公开的釜式反应器中采用如下步骤进行:
1)在成盐反应釜中预先加入1000Kg邻二氯苯作为反应溶剂,开启循环泵及搅拌,氯化氢压缩气体通过预混合器以50mol/min的速度进入反应器,搅拌15min后,将H 12MDA与邻二氯苯的混合液通过原料预热器升温至30℃,以335Kg/h的流速与氯化氢气体充分接触后成 盐反应;采用外循环冷却水进行冷却,移走部分反应热,循环液流量在5m 3/h左右,反应液温度维持在30-45℃,进料3h后,停止H 12MDA与邻二氯苯的混合液进料,继续通入HCl气体30min。
2)将步骤1)得到的H 12MDA盐酸盐浆料转移至光化反应釜中,此光化反应釜具有光气进气管、气相冷凝回流和搅拌;将光化反应釜升温,同时开启搅拌,待温度达到60℃后通入光气,光气进料速度为50mol/min,反应温度145℃,待反应液澄清后停止光气进料,得到含有产物H 12MDI、光气和邻二氯苯的成盐光化反应液(粗产物);
反应尾气进入尾气吸收塔后用-30℃的邻二氯苯溶液吸收,得到含光气的邻二氯苯溶液。
b)将步骤a)得到的反应液进行脱除光气和邻二氯苯溶液的处理,反应液中邻二氯苯溶液和过量的光气在145℃、绝对压力0.04MPa下去除,得到不含有光气的H 12MDI粗产品和含光气的邻二氯苯溶液。
c)步骤a)中反应尾气吸收后所得含光气的邻二氯苯溶液,与步骤b)脱除气过程所得含光气的邻二氯苯溶液进入精馏塔进行光气和邻二氯苯的分离;分离过程在压力为绝压0.125MPa、塔底温度为165℃,塔顶温度为15℃的条件下进行,得到纯度为98%的光气和光气含量<0.001%的邻二氯苯溶液,分离出的光气和邻二氯苯溶液均返回到步骤a)中进行循环使用;
光气和邻二氯苯溶液的分离过程中,控制含光气的邻二氯苯溶液在165℃下的停留时间为1h。
d)将步骤b)中得到的不含有光气的H 12MDI粗产品通过精馏的方式进行提纯,在绝压0.5KPa、150-160℃馏程下得到H 12MDI(二环己基甲烷二异氰酸酯)产品。
整个过程中,含光气的邻二氯苯溶液在150℃-165℃之间的停留时间为0h,控制其在165℃-180℃的停留时间为1h;并且控制其在150℃-180℃之间的总停留时间为1h。
所得H 12MDI产品的产率为96%,产品的纯度99.5%。所得产品中,产生含氯的苯甲酮类杂质(其为1,2,1',2'-四氯二苯甲酮、2,3,2',3'-四氯二苯甲酮、1,2,2',3'-四氯二苯甲酮)的总含量为0.015wt%。
多异氰酸酯制备例4
制备多异氰酸酯的步骤a)参照如上多异氰酸酯制备例1中所述的过程进行,不同之处在于,步骤a)中,使用1,3-BAC(1,3-环己二甲胺)通过成盐光气化法制备HXDI(1,3-环己二甲基异氰酸酯)。步骤a)的过程为:
1)在成盐反应釜中预先加入1000Kg氯苯作为反应溶剂,开启循环泵及搅拌,氯化氢压缩气体通过预混合器以50mol/min的速度进入反应器,搅拌15min后,将1,3-BAC(1,3-环己二甲胺)与氯苯的混合液通过原料预热器升温至30℃,以235Kg/h的流速与氯化氢气体充分接触后成盐反应;采用外循环冷却水进行冷却,移走部分反应热,循环液流量在5m 3/h左右,反应液温度维持在30-45℃,进料3h后,停止1,3-BAC与氯苯的混合液进料,继续通入HCl气体30min。
2)将步骤1)得到的1,3-BAC盐酸盐浆料转移至光化反应釜中,此光化反应釜具有光气进气管、气相冷凝回流和搅拌;将光化反应釜升温,同时开启搅拌,待温度达到60℃后通入光气,光气进料速度为50mol/min,反应温度145℃,待反应液澄清后停止光气进料,得到含有产物HXDI(二环己基甲烷二异氰酸酯)、光气和氯苯的成盐光化反应液(粗产物);
反应尾气进入尾气吸收塔后用-20℃的氯苯溶液吸收,得到含光气的氯苯溶液。
b)将步骤a)得到的反应液进行脱除光气和氯苯溶剂的处理,反应液中氯苯和过量的光气在168℃、绝对压力0.1MPa下去除,得到不含有光气的HXDI粗产品和含光气的氯苯溶液;
脱除过程中,控制含光气的氯苯溶液在168℃下的停留时间为1h。
c)步骤a)反应尾气吸收后得到含光气的氯苯溶液,与步骤b)脱除过程所得含光气的氯苯溶液进入精馏塔进行光气和氯苯溶液的分离;分离过程在压力为绝压0.125MPa、塔底温度为155℃、塔顶温度为15℃的条件下进行,得到纯度为98%的光气和光气含量<0.001%的氯苯溶液,分离出的光气和氯苯溶液均返回到步骤a)中进行循环使用;
光气和氯苯溶液的分离过程中,控制含光气的氯苯溶液在155℃下的停留时间为1h。
d)将步骤b)中得到的不含有光气的HXDI粗产品进行通过精馏的方式进行提纯,在绝压0.5KPa、140-150℃馏程下得到HXDI(二环己基甲烷二异氰酸酯)产品。
整个过程中,控制含光气的氯苯溶液在150-165℃的停留时间为1h,控制其在165-180℃的停留时间为1h;并且控制其在150℃-180℃之间的总停留时间≤2h。
所得HXDI产品的产率为96.5%,产品的纯度99.65%。所得产品中,产生含氯的苯甲酮类杂质(其为1,1'-二氯二苯甲酮、2,2'-二氯二苯甲酮、3,3'-二氯二苯甲酮、1,2'-二氯二苯甲酮、2,3'-二氯二苯甲酮) 的总含量为0.013wt%。
多异氰酸酯制备例5
a)采用中国专利申请CN105214568A的实施例1中公开的加热器,将二胺IPDA进行气化并加热到355℃,在氮气的保护下,与被加热到355℃的气态光气经由各自的进料管连续地加入反应器中进行光气化反应;反应的压力为绝压0.05MPa,反应的温度为360℃;其中,IPDA的进料量为800Kg/h,气态光气的进料量为3000Kg/h;采用氯苯溶液经过气体喷射吸收装置将反应后所得的混合气体快速(接触时间为10s左右)冷却至100℃,得到含有产物IPDI、光气和氯苯溶液的粗产物;反应尾气进入尾气吸收塔后用-25℃的氯苯溶液吸收,得到含光气的氯苯溶液。
b)将步骤a)得到的粗产物进行脱除光气和氯苯溶剂的处理,粗产物中氯苯和过量的光气在168℃、绝对压力0.1MPa下去除,得到不含有光气的IPDI粗产品和含光气的氯苯溶液;
脱除过程中,控制含光气的氯苯溶液在168℃下的停留时间为1h。
c)步骤a)反应尾气吸收后得到含光气的氯苯溶液,与步骤b)脱除过程所得含光气的氯苯溶液进入精馏塔进行光气和氯苯溶液的分离;分离过程在压力为绝压0.125MPa、塔底温度为155℃,塔顶温度为15℃的条件下进行,得到纯度为98%的光气和光气含量<0.001%的氯苯溶液,分离出的光气和氯苯溶液均返回到步骤a)中进行循环使用;
光气和氯苯溶液的分离过程中,控制含光气的氯苯溶液在155℃下的停留时间为1h。
d)将步骤b)中得到的不含有光气的IPDI粗产品进行通过精馏的方式进行提纯,在绝压0.5KPa、140-150℃馏程下得到IPDI(异佛尔酮二异氰酸酯)产品。
整个过程中,控制含光气的氯苯溶液在150-165℃的停留时间为1h,控制其在165-180℃的停留时间为1h;并且控制其在150℃-180℃之间的总停留时间≤2h。
所得IPDI产品的产率为97.5%,产品的纯度99.75%。所得产品中,产生含氯的苯甲酮类杂质(其为1,1'-二氯二苯甲酮、2,2'-二氯二苯甲酮、3,3'-二氯二苯甲酮、1,2'-二氯二苯甲酮、2,3'-二氯二苯甲酮)的总含量为0.009wt%。
多异氰酸酯的制备对比例1
该对比例参照如上多异氰酸酯制备例1所述的过程进行。制备多异氰酸酯的方法中,不同之处在于:
b)将步骤a)得到的粗产物进行脱除光气和邻二氯苯溶液的处理,反应液中邻二氯苯溶液和过量的光气在168℃、绝对压力0.1MPa下去除,得到不含有光气的H 12MDI粗产品和含光气的邻二氯苯溶液;
步骤b)的脱除过程中,控制含光气的邻二氯苯溶液在168℃的温度下停留时间为2h。
c)步骤a)反应尾气吸收后得到含光气的邻二氯苯溶液,与步骤b)脱除过程所得含光气的邻二氯苯溶液进入精馏塔进行光气和邻二氯苯溶液的分离;分离过程在压力为绝压0.125MPa、塔底温度为155℃,塔顶温度为15℃的条件下进行,得到纯度为98%的光气和光气含量<0.001%的邻二氯苯溶液,分离出的光气和邻二氯苯溶液均返回到步骤a)中进行循环使用;
光气和邻二氯苯溶液的分离过程中,控制含光气的邻二氯苯溶液在155℃的温度下停留时间为3h。
整个过程中,控制含光气的邻二氯苯溶液在150-165℃的停留时间为3h,控制其在165-180℃的停留时间为2h;并且控制在150℃-180℃之间的总停留时间为5h。
H 12MDI产品的产率为97%,产品的纯度99.5%。所得产品中,产生含氯的二苯甲酮类杂质为1,2,1',2'-四氯二苯甲酮、2,3,2',3'-四氯二苯甲酮、1,2,2',3'-四氯二苯甲酮,杂质的总含量为0.065wt%。
多异氰酸酯的制备对比例2
该对比例参照如上多异氰酸酯制备例2所述的过程进行。制备多异氰酸酯的方法中,不同之处在于:
b)将步骤a)得到的反应液(粗产物)进行脱除光气和溶剂邻二氯苯的处理,反应液中过量的光气在155℃、绝对压力0.05MPa下去除,得到不含有光气的H 12MDI粗产品和含光气的邻二氯苯;
步骤b)的脱除过程中,控制含光气的邻二氯苯在155℃下停留时间为3h。
整个过程中,控制含光气的邻二氯苯溶液在150-165℃之间的停留时间为5h,控制其在165℃-180℃之间的停留时间为0h;并且控制其在150℃-180℃之间的总停留时间为5h。
H 12MDI产品的产率为96%,产品的纯度99.5%。所得产品中,产生含氯的二苯甲酮类杂质为1,2,1',2'-四氯二苯甲酮、2,3,2',3'-四氯二苯甲酮、1,2,2',3'-四氯二苯甲酮,杂质的总含量为0.05wt%。
多异氰酸酯的制备对比例3
该对比例参照如上多异氰酸酯制备例3所述的过程进行。制备多异氰酸酯的方法中,不同之处在于:
c)步骤a)中反应尾气吸收后所得含光气的邻二氯苯溶液,与步骤b)脱除气过程所得含光气的邻二氯苯溶液进入精馏塔进行光气和邻二氯苯的分离;分离过程在压力为绝压0.125MPa、塔底温度为165℃,塔顶温度为15℃的条件下进行,得到纯度为98%的光气和光气含量<0.001%的邻二氯苯溶液,分离出的光气和邻二氯苯溶液均返回到步骤a)中进行循环使用;
步骤c)的光气和邻二氯苯溶液的分离过程中,控制含光气的邻二氯苯溶液在165℃下停留时间为2.5h。
整个过程中,控制含光气的邻二氯苯溶液在150℃-165℃之间的停留时间为0h,控制其在165-180℃之间的停留时间为2.5h,并且控制其在150℃-180℃之间的总停留时间为2.5h。
H 12MDI产品的产率为96%,产品的纯度99.5%。所得产品中,产生含氯的二苯甲酮类杂质为1,2,1',2'-四氯二苯甲酮、2,3,2',3'-四氯二苯甲酮、1,2,2',3'-四氯二苯甲酮,杂质的总含量为0.07wt%。
多异氰酸酯的制备对比例4
该对比例参照如上多异氰酸酯制备例3所述的过程进行。制备多异氰酸酯的方法中,不同之处在于:
c)步骤a)中反应尾气吸收后所得含光气的邻二氯苯溶液,与步骤b)脱除气过程所得含光气的邻二氯苯溶液进入精馏塔进行光气和邻二氯苯的分离;分离过程在压力为绝压0.15MPa、塔底温度为185℃,塔顶温度为15℃的条件下进行,得到纯度为98%的光气和光气含量<0.001%的邻二氯苯溶液,分离出的光气和芳香族溶剂均返回到步骤a)中进行循环使用;
光气和邻二氯苯溶液的分离过程中,控制含光气的邻二氯苯溶液在185℃下的停留时间为1h。
整个过程中,控制含光气的邻二氯苯溶液在150℃-165℃之间的停留时间为0h,其在165-180℃之间的停留时间为0h,但是其在>180℃下的总停留时间为1h。
H 12MDI产品的产率为96%,产品的纯度99.5%。所得产品中,产生含氯的二苯甲酮类杂质为1,2,1',2'-四氯二苯甲酮、2,3,2',3'-四氯二苯甲酮、1,2,2',3'-四氯二苯甲酮,杂质的总含量为0.085wt%。
多异氰酸酯的制备对比例5
该对比例参照如上多异氰酸酯制备例5所述的过程进行。制备多异氰酸酯的方法中,不同之处在于:
b)将步骤a)得到的粗产物进行脱除光气和氯苯溶液的处理,反应液中氯苯溶液和过量的光气在168℃、绝对压力0.1MPa下去除,得到不含有光气的IPDI粗产品和含光气的邻二氯苯溶液;
步骤b)的脱除过程中,控制含光气的氯苯溶液在168℃下的停留时间为2h。
c)步骤a)反应尾气吸收后得到含光气的氯苯溶液,与步骤b)脱除过程所得含光气的氯苯溶液进入精馏塔进行光气和氯苯溶液的分离;分离过程在压力为绝压0.125MPa、塔底温度为155℃,塔顶温度为15℃的条件下进行,得到纯度为98%的光气和光气含量<0.001%的氯苯溶液,分离出的光气和氯苯溶液均返回到步骤a)中进行循环使用;
光气和氯苯溶液的分离过程中,控制含光气的氯苯溶液在155℃下的停留时间为3h。
整个过程中,控制含光气的氯苯溶液在150-165℃的停留时间为3h,控制其在165-180℃的停留时间为2h;并且控制在150℃-180℃之间的总停留时间为5h。
所得IPDI产品的产率为97.5%,产品的纯度99.75%。所得产品中,产生含氯的二苯甲酮类杂质(其为1,1'-二氯二苯甲酮、2,2'-二氯二苯甲酮、3,3'-二氯二苯甲酮、1,2'-二氯二苯甲酮、2,3'-二氯二苯甲酮)的总含量为0.059wt%。
经检测,上述多异氰酸酯制备例和对比例中各个工艺参数以及多异氰酸酯产品中含氯的二苯甲酮类的总含量、氯的含量、色度的测试结果见下表1。
表1
Figure PCTCN2019104074-appb-000007
Figure PCTCN2019104074-appb-000008
从上表中数据可以看出,在多异氰酸酯的制备过程中,通过控制含光气的芳香族溶剂在高温下(150-180℃)的停留时间,从而达到了控制多异氰酸酯产品中的氯代苯甲酮类杂质的含量,进而有针对性且有效降低了多异氰酸酯产品中的氯含量,有效地改善了产品的耐黄变性能,也会降低由于产品中存在氯代苯甲酮类的杂质而导致下游制品不合格的危害。
水性聚氨酯树脂的实施例6:
1)将多元醇PTEMG 46.45g、由制备例1所制得的多异氰酸酯H 12MDI 95g、有机锡类催化剂二月桂二丁基锡(0.05g,溶于5g丙酮中)加入带有加料口、冷凝管、温度计和搅拌的四口瓶中,设定反应温度85℃,搅拌转速250rpm,反应约40min,至NCO达到理论值8.94%,停止加热。
2)加入30g丙酮,降温至60℃以下,依次顺序加入NEP 10g、DMPA 9.5g,升温至70℃,搅拌转速250rpm,反应约4h,至NCO达到理论值2.41%,加入抗氧剂1010并加入50g丙酮调节体系的粘度。
3)降温至40℃以下,并加入7.1g TEA中和,搅拌10min得到预聚体。
4)将预聚体倒入分散杯中,在1200rpm转速下缓慢倒入275g去离子水分散,体系中的乳液稳定后缓慢加入25g质量分数10%的EDA水溶液,继续分散1min。
5)用旋转蒸发仪对步骤4)所得稳定分散后的乳液进行脱丙酮,绝压5KPa,水浴温度35℃条件下,脱丙酮处理1h,得到泛蓝光半透明水性聚氨酯乳液。对所得水性聚氨酯乳液制品进行耐黄性能测试,其色差△E为0.3。
水性聚氨酯树脂的实施例7:
本实施例中水性聚氨酯树脂的制备过程参照水性聚氨酯树脂的实施例6所述的方法,不同之处在于:所使用的多异氰酸酯原料为通过多异氰酸酯的制备例5制得的IPDI(异佛尔酮二异氰酸酯)。对所得水性聚氨酯乳液制品的耐黄性能测试,其色差△E为0.2。
水性聚氨酯树脂的对比例5:
本对比例中水性聚氨酯树脂的制备过程参照水性聚氨酯树脂的实施例6所述的方法,不同之处在于:所使用的多异氰酸酯原料为通过多异氰酸酯的制备对比例1制得的H 12MDI产品。对所得水性聚氨酯乳液制品的耐黄性能测试,其色差△E为3.5。
水性聚氨酯树脂的对比例6:
本对比例中水性聚氨酯树脂的制备过程参照水性聚氨酯树脂的实施例6所述的方法,不同之处在于:所使用的多异氰酸酯原料为通过多异氰酸酯的制备对比例5所得的IPDI。对所得水性聚氨酯乳液制品的耐黄性能测试,其色差△E为4.2。
通过对水性聚氨酯树脂的耐黄性能测试可知,采用本申请方法制得的多异氰酸酯(其中的苯甲酮类杂质的总含量≤0.015wt%)作为原料应用于下游过程,制得的水性聚氨酯树脂的耐黄变性能也得到了显著改善。而以多异氰酸酯的制备对比例所得产物作为原料应用于下游过程,制得的水性聚氨酯树脂的耐黄变性能较差。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (10)

  1. 一种光气化反应制备多异氰酸酯的方法,包括如下步骤:将多胺与过量的光气进行光气化反应,得到含有多异氰酸酯的粗产物,然后对所述粗产物进行后处理,得到所述多异氰酸酯;所述方法在制备所述多异氰酸酯的过程中使用的溶剂包括芳香族溶剂,其特征在于,
    所述多异氰酸酯中苯甲酮类杂质的含量≤0.045wt%,优选为≤0.035wt%,更优选为≤0.025wt%。
  2. 根据权利要求1所述的方法,其特征在于,在所述存在芳香族溶剂和光气相接触的步骤中,控制其工艺条件以限制所述多异氰酸酯中苯甲酮类杂质的含量;控制的所述工艺条件包括:控制芳香族溶剂和光气的接触温度≤180℃,
    (1)当芳香族溶剂和光气的接触温度为165℃-180℃时,控制接触时长≤2h,优选≤1h;(2)当芳香族溶剂和光气的接触温度为150℃-165℃时,控制接触时长≤4h,优选≤2h;(3)当芳香族溶剂和光气的接触温度小于150℃时,接触时间不受限制;
    并且当芳香族溶剂和光气的接触温度为150℃-180℃时,控制接触总时长≤4h,优选≤2h。
  3. 根据权利要求1或2所述的方法,其特征在于,所述光气化反应选自气相光气化反应、液相光气化反应或者成盐光气化反应。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,
    所述多胺选自间苯二甲胺、对苯二甲胺、1,3-环己二甲胺、1,4-环己二甲胺、1,4-丁二胺、1,6-己二胺、1,4-二氨基环己烷、二氨基二环己基甲烷、甲苯二胺、亚甲基二苯胺、异佛尔酮二胺、苯二胺、萘二胺、1,8-辛二胺、1,10-癸二胺、1,12-二氨基十二烷、1,5-戊二胺、环己烷二胺、甲基环己烷二胺、四甲基对苯二胺和二甲基联苯二胺中的一种或多种,优选选自间苯二甲胺、1,3-环己二甲胺、1,4-丁二胺、1,5-戊二胺、 1,6-己二胺、二氨基二环己基甲烷、异佛尔酮二胺、甲苯二胺、苯二胺和萘二胺中的一种或多种;和/或
    所述芳香族溶剂的化学结构式如式(II)所示:
    Figure PCTCN2019104074-appb-100001
    其中,式(II)中的R选自H、Cl或者CH 3
    所述芳香族溶剂优选选自氯苯、邻二氯苯、间二氯苯、对二氯苯、间氯甲苯、邻氯甲苯和对氯甲苯中的一种或多种;和/或
    所述苯甲酮类杂质为含氯的二苯甲酮类物质,其化学结构式如式(I)所示:
    Figure PCTCN2019104074-appb-100002
    其中,式(I)中的R选自H、Cl或者CH 3
    所述含氯的二苯甲酮类物质例如选自1,1'-二氯二苯甲酮、2,2'-二氯二苯甲酮、3,3'-二氯二苯甲酮、1,2'-二氯二苯甲酮、2,3'-二氯二苯甲酮、1,2,1',2'-四氯二苯甲酮、2,3,2',3'-四氯二苯甲酮、1,2,2',3'-四氯二苯甲酮、1,3,1',3'-四氯二苯甲酮、2,4,2',4'-四氯二苯甲酮、1,3,2',4'-四氯二苯甲酮、1,4,1',4'-四氯二苯甲酮、1,2'-二氯-1,2'-二甲基二苯甲酮、2,2'-二氯-3,3'-二甲基二苯甲酮、1,2'-二氯-2,3'-二甲基二苯甲酮、1,1'-二氯-3,3'-二甲基二苯甲酮、2,2'-二氯-4,4'-二甲基二苯甲酮、1,2'-二氯-3,4'-二甲基二苯甲酮和1,1'-二氯-4,4'-二甲基二苯甲酮中的一种或多种。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,在所述方法中,所述芳香族溶剂作为所述光气化反应中的介质和/或作为所述后处理中的介质进行使用。
  6. 一种制备水性聚氨酯树脂的方法,包括如下步骤:
    将包含多异氰酸酯、低聚物多元醇、扩链剂和亲水剂的原料进行聚合反应,得到水性聚氨酯树脂;其特征在于,
    所述多异氰酸酯为经光气化反应制备得到,并且在制备所述多异氰酸酯的过程中使用的溶剂包括芳香族溶剂;
    所述多异氰酸酯中的苯甲酮类杂质的含量≤0.045wt%,优选为≤0.035wt%,更优选为≤0.025wt%。
  7. 根据权利要求6所述的方法,其特征在于,所述苯甲酮类杂质为含氯的二苯甲酮类物质,其化学结构式如式(I)所示:
    Figure PCTCN2019104074-appb-100003
    其中,式(I)中的R选自H、Cl或者CH 3
    所述含氯的二苯甲酮类物质例如选自1,1'-二氯二苯甲酮、2,2'-二氯二苯甲酮、3,3'-二氯二苯甲酮、1,2'-二氯二苯甲酮、2,3'-二氯二苯甲酮、1,2,1',2'-四氯二苯甲酮、2,3,2',3'-四氯二苯甲酮、1,2,2',3'-四氯二苯甲酮、1,3,1',3'-四氯二苯甲酮、2,4,2',4'-四氯二苯甲酮、1,3,2',4'-四氯二苯甲酮、1,4,1',4'-四氯二苯甲酮、1,2'-二氯-1,2'-二甲基二苯甲酮、2,2'-二氯-3,3'-二甲基二苯甲酮、1,2'-二氯-2,3'-二甲基二苯甲酮、1,1'-二氯-3,3'-二甲基二苯甲酮、2,2'-二氯-4,4'-二甲基二苯甲酮、1,2'-二氯-3,4'-二甲基二苯甲酮和1,1'-二氯-4,4'-二甲基二苯甲酮中的一种或多种。
  8. 根据权利要求6或7所述的方法,其特征在于,所述多异氰酸酯通过如权利要求1-5中任一项所述的方法制备得到。
  9. 根据权利要求6-8中任一项所述的方法,其特征在于,
    所述低聚物多元醇选自聚己内酯二醇、聚酯二醇、聚碳酸酯二醇、聚四亚甲基醚二醇、聚己二酸-1,4-丁二醇酯二醇和聚己二酸己二醇酯二醇中的一种或多种;所述聚酯二醇优选为2-甲基-1,3-丙二醇、新戊二醇、2,2,4-三甲基-1,3-戊二醇、2-乙基-2-丁基-1,3-丙二醇、1,4-环己烷二甲醇、己二酸、六氢苯酐、1,4-环己烷二甲酸、壬二酸或间苯二甲 酸衍生的聚酯二醇;和/或
    所述扩链剂为多官能度醇类化合物和/或多官能度胺类化合物,优选选自乙二醇、一缩二乙二醇、1,2-丙二醇、一缩二丙二醇、1,4-丁二醇、1,6-己二醇、三羟甲基丙烷、蓖麻油、乙二胺、肼、己二胺、异佛尔酮二胺、甲基戊二胺、二亚乙基三胺和三乙烯四胺中的一种或多种;和/或
    所述亲水剂为亲水性扩链剂,优选选自二羟甲基丙酸、二羟甲基丁酸、1,4-丁二醇-2-磺酸钠、二乙醇胺、三乙醇胺、N-甲基二乙醇胺、N-乙基二乙醇胺、N-丙基二乙醇胺、N-丁基二乙醇胺、二甲基乙醇胺、双(2-羟乙基)苯胺、双(2-羟丙基)苯胺和N-甲基二乙醇胺中的一种或多种。
  10. 根据权利要求6-9中任一项所述的方法,其特征在于,所述原料在溶剂中进行所述聚合反应时,所述溶剂选自水、丙酮、丁酮、N,N-二甲基甲酰胺和N-甲基吡咯烷酮中的一种或多种。
PCT/CN2019/104074 2019-09-02 2019-09-02 光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法 WO2021042251A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104074 WO2021042251A1 (zh) 2019-09-02 2019-09-02 光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104074 WO2021042251A1 (zh) 2019-09-02 2019-09-02 光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法

Publications (1)

Publication Number Publication Date
WO2021042251A1 true WO2021042251A1 (zh) 2021-03-11

Family

ID=74852005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104074 WO2021042251A1 (zh) 2019-09-02 2019-09-02 光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法

Country Status (1)

Country Link
WO (1) WO2021042251A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136087A (en) * 1991-05-15 1992-08-04 Miles Inc. Preparation of polymethylene polyphenyl polyisocyanate
WO2009077795A1 (en) * 2007-12-17 2009-06-25 Borsodchem Zrt Process for the preparation of polyisocyanates of the diphenylmethane series
CN101585903A (zh) * 2009-06-23 2009-11-25 丽水市优耐克水性树脂科技有限公司 一种水性聚氨酯及其制备方法
CN101805272A (zh) * 2010-04-21 2010-08-18 烟台万华聚氨酯股份有限公司 一种通过界面光气化反应制备异氰酸酯的方法
CN101811018A (zh) * 2010-04-30 2010-08-25 烟台万华聚氨酯股份有限公司 搅拌桨斜置式反应器、采用该反应器的系统及其方法
CN102070491A (zh) * 2010-11-26 2011-05-25 烟台万华聚氨酯股份有限公司 基于成盐光气化反应制备苯二亚甲基二异氰酸酯的方法
CN103709361A (zh) * 2013-12-19 2014-04-09 孙启龙 一种水性聚氨酯及其制备方法和用途
CN105218422A (zh) * 2015-10-16 2016-01-06 万华化学集团股份有限公司 一种异氰酸酯的制备方法
CN109761855A (zh) * 2018-12-20 2019-05-17 万华化学集团股份有限公司 一种制备异佛尔酮二异氰酸酯的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136087A (en) * 1991-05-15 1992-08-04 Miles Inc. Preparation of polymethylene polyphenyl polyisocyanate
WO2009077795A1 (en) * 2007-12-17 2009-06-25 Borsodchem Zrt Process for the preparation of polyisocyanates of the diphenylmethane series
CN101585903A (zh) * 2009-06-23 2009-11-25 丽水市优耐克水性树脂科技有限公司 一种水性聚氨酯及其制备方法
CN101805272A (zh) * 2010-04-21 2010-08-18 烟台万华聚氨酯股份有限公司 一种通过界面光气化反应制备异氰酸酯的方法
CN101811018A (zh) * 2010-04-30 2010-08-25 烟台万华聚氨酯股份有限公司 搅拌桨斜置式反应器、采用该反应器的系统及其方法
CN102070491A (zh) * 2010-11-26 2011-05-25 烟台万华聚氨酯股份有限公司 基于成盐光气化反应制备苯二亚甲基二异氰酸酯的方法
CN103709361A (zh) * 2013-12-19 2014-04-09 孙启龙 一种水性聚氨酯及其制备方法和用途
CN105218422A (zh) * 2015-10-16 2016-01-06 万华化学集团股份有限公司 一种异氰酸酯的制备方法
CN109761855A (zh) * 2018-12-20 2019-05-17 万华化学集团股份有限公司 一种制备异佛尔酮二异氰酸酯的方法

Similar Documents

Publication Publication Date Title
CN110511163B (zh) 光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法
JP3864209B2 (ja) イソシアネートの製造方法
US4857565A (en) Process for the continuous production of aqueous polyurethane dispersions and their use as a coating composition or as an adhesive
EP2370400B1 (en) Process for manufacturing isocyanates
KR101232431B1 (ko) 디페닐메탄 계열의 폴리이소시아네이트의 제조 방법
KR20070110204A (ko) 이소시아네이트의 제조 방법
CA2475662C (en) Production of mixtures of diisocyanates and polyisocyanates from the diphenylmethane series with high contents of 4,4&#39;-methylenediphenyl diisocyanate and 2,4&#39;-methylenediphenyl diisocyanate
US3097191A (en) Polyisocyanate compositions
JP4114718B2 (ja) Mdi特に2,4’−mdiの調製
EP0304691B2 (en) Polycarbonate production
CN111718282A (zh) 一种基于成盐光气化制备低氯代杂质含量异氰酸酯的方法
MXPA03002071A (es) Procedimiento para la preparacion de poliisocianatos de la serie del difenilmetano con valor colorimetrico reducido.
JPS63227609A (ja) ポリアミンの改良製造法
CN112592457B (zh) 一种多异氰酸酯组合物及其制备方法和应用
US4405527A (en) Process for the preparation of polyisocyanates
WO2021042251A1 (zh) 光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法
KR20070038528A (ko) 폴리이소시아네이트 제조 방법
CN113105364B (zh) 制备异氰酸酯的方法和系统
KR102256867B1 (ko) 폴리이소시아네이트의 품질 개선 방법 및 이를 통해 품질이 개선된 폴리이소시아네이트
US3274225A (en) Method for producing organic polyisocyanates substantially free of sediment
US3277137A (en) Process for the preparation of halogenated isocyanates
WO2022115990A1 (zh) 多异氰酸酯组合物及其制备方法和应用
KR100381878B1 (ko) 이소시아네이트의 제조 방법
JP4427969B2 (ja) 水性ポリウレタンエマルジョンの製造方法
JP4066157B2 (ja) ポリメチレンポリフェニルポリイソシアネートの生産方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944478

Country of ref document: EP

Kind code of ref document: A1