WO2021039132A1 - Pump-type ejection device - Google Patents

Pump-type ejection device Download PDF

Info

Publication number
WO2021039132A1
WO2021039132A1 PCT/JP2020/026443 JP2020026443W WO2021039132A1 WO 2021039132 A1 WO2021039132 A1 WO 2021039132A1 JP 2020026443 W JP2020026443 W JP 2020026443W WO 2021039132 A1 WO2021039132 A1 WO 2021039132A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
space
cylinder
flow path
shaft
Prior art date
Application number
PCT/JP2020/026443
Other languages
French (fr)
Japanese (ja)
Inventor
阿部 和也
悠 矢島
Original Assignee
大和製罐株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大和製罐株式会社 filed Critical 大和製罐株式会社
Priority to CN202080059822.0A priority Critical patent/CN114555485B/en
Publication of WO2021039132A1 publication Critical patent/WO2021039132A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1087Combination of liquid and air pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1001Piston pumps
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45DHAIRDRESSING OR SHAVING EQUIPMENT; EQUIPMENT FOR COSMETICS OR COSMETIC TREATMENTS, e.g. FOR MANICURING OR PEDICURING
    • A45D34/00Containers or accessories specially adapted for handling liquid toiletry or cosmetic substances, e.g. perfumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1097Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle with means for sucking back the liquid or other fluent material in the nozzle after a dispensing stroke
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/14Pumps characterised by muscle-power operation

Definitions

  • the device is a pump former, in which the liquid contents in the liquid cylinder are pushed out by the liquid piston pushed down by the pushing force of the nozzle body, and in the air cylinder by the air piston pushed down by the pushing force mentioned above. It is configured to push out the air.
  • the contents extruded from each cylinder and air are mixed to form bubbles and discharged from the discharge holes of the nozzle body.
  • each piston is pushed up by the elastic force of the spring that returns and moves each piston to the original position, and the internal volume of each cylinder is increased. As a result, a suction force is generated, so that the contents in the container body are sucked up inside the liquid cylinder through the liquid guide tube, and external air is sucked into the inside of the air cylinder.
  • annular seal portion that is in sliding contact with the inner surface of the inner annular peripheral wall.
  • annular seal portion that is in sliding contact with the inner surface of the inner annular peripheral wall.
  • a spring that presses the seal portion against the seat surface to close the flow path is arranged. Therefore, when the cover body is pushed down together with the pressing head, the rod is pushed down in conjunction with it, so that the seal portion is separated from the seat surface and bubbles are discharged from the nozzle.
  • the present invention has been made by paying attention to the above technical problems, and an object of the present invention is to provide a pump-type discharge device capable of suppressing foam dripping and dripping with a simple configuration. ..
  • the present invention has a cylinder attached to the mouth of the container in a state of being communicated with the inside of the container, and the inside of the cylinder so as to be reciprocally fitted in the axial direction of the cylinder.
  • the valve seat portion formed inside the flow path so as to close the flow path in close contact with the valve body and the shaft-shaped member by moving the piston in a direction reducing the volume of the space.
  • a protrusion formed inside the flow path on the side opposite to the valve seat portion with the valve body sandwiched in the axial direction so as to push, and the piston in the direction of pressing the valve seat portion against the valve body. The piston is pushed to separate the valve body from the valve seat portion, and the volume of the space is reduced, so that the contents filled in the space flow.
  • suction from the nozzle is performed by a negative pressure accompanying an increase in the volume of the space due to the piston moving in a direction of increasing the volume of the space by the return mechanism. It is characterized in that an immovable region is set in which the shaft-shaped member that maintains the state in which the valve body and the valve seat portion are separated from each other is stopped with respect to the cylinder so as to cause the above. It is a thing.
  • the movable distance of the axial member in the axial direction may be 20% or more and 80% or less of the movable distance of the piston.
  • the shaft causes suction from the nozzle due to the negative pressure accompanying the increase in the volume of the space due to the movement of the piston in the direction of increasing the volume of the space partitioned by the piston and the cylinder.
  • An immovable zone is set to maintain a state in which the valve body formed at one end of the shaft-shaped member and the valve seat formed in the flow path are separated from each other when the shaped member is stopped with respect to the cylinder. There is. Therefore, in the immovable region, the space and the nozzle are in communication with each other, and the movement of the piston in that state increases the volume of the space.
  • the contents remaining in the nozzle and the flow path are sucked back into the space by the negative pressure accompanying the increase in the volume of the space described above. Therefore, after the contents are discharged, the contents are less likely to remain near the tip of the nozzle, and dripping or foaming of the contents can be suppressed. Further, since the number of parts is not particularly increased, the device as a whole can have a simple configuration, and an increase in member cost and manufacturing cost can be suppressed.
  • the contents filled in the inside of the container are sucked up by pumping the nozzle head in a state of being attached to the mouth of the container and discharged from the nozzle. After discharging the material, the contents remaining in the nozzle are sucked back to the container side to prevent dripping from the nozzle.
  • the above-mentioned contents are preferably liquid contents such as shampoo and face wash, and are configured to discharge the contents in a liquid state or in the form of foam.
  • FIG. 1 is a cross-sectional view showing an example of a pump-type discharge device according to an embodiment of the present invention.
  • the pump-type discharge device shown in FIG. 1 is a so-called pump former 1, in which bubbles are formed by mixing the liquid contents filled inside the container 2 with air, and the bubbles are discharged.
  • the pump former 1 shown in FIG. 1 includes a cap 4 that is detachably attached to the mouth portion 3 of the container 2.
  • the mouth portion 3 is a cylindrical opening formed on the upper end side of the body portion of the container 2, and a male screw is formed on the outer peripheral surface of the mouth portion 3.
  • a female screw that fits the male screw is formed on the cap 4. That is, the mouth portion 3 is screwed into the cap 4.
  • the cap 4 has an outer cylindrical portion 5 having an outer diameter larger than the outer diameter of the mouth portion 3, and an inner cylindrical portion 6 provided concentrically with the outer cylindrical portion 5 inside the outer cylindrical portion 5. And have.
  • the inner cylindrical portion 6 has an outer diameter smaller than the inner diameter of the mouth portion 3 and has a length in the axial direction shorter than that of the outer cylindrical portion 5.
  • the upper end portion of the outer cylindrical portion 5 and the upper end portion of the inner cylindrical portion 6 are connected by an upper surface portion 7 extending in the radial direction. That is, the outer cylindrical portion 5, the inner cylindrical portion 6, and the upper surface portion 7 are integrally formed. Further, the above-mentioned female screw is formed on the inner peripheral surface of the outer cylindrical portion 5.
  • An opening having an inner diameter smaller than the inner diameter of the inner cylindrical portion 6 is formed in the central portion of the upper surface portion 7.
  • a cylindrical guide stem portion 8 extending upward in FIG. 1 is erected on the peripheral edge of the opening.
  • a nozzle body 9 for pumping the pump former 1 is slidably fitted to the guide stem portion 8 in the axial direction (vertical direction in FIG. 1).
  • the nozzle body 9 includes a top surface portion 10 to which a pushing force is applied as a so-called nozzle head, a nozzle 11 for discharging bubbles, and a cylindrical inner cylinder portion 12 in which a flow path P communicating with the nozzle 11 is formed. It has a cylindrical outer cylinder portion 13 having a diameter larger than that of the inner cylinder portion 12 and formed concentrically with the inner cylinder portion 12. A part of the nozzle body 9 has a tubular shape extending outward in the radial direction about the axis of the nozzle body 9, and this portion is the nozzle 11. Each of the tubular portions 12 and 13 extends downward in FIG.
  • the length of the inner tubular portion 12 in the axial direction is set longer than that of the outer tubular portion 13. .
  • the outer diameter of the inner cylinder portion 12 is set to be slightly smaller than the inner diameter of the guide stem portion 8, so that the inner cylinder portion 12 can be inserted into the guide stem portion 8.
  • the inner diameter of the outer cylinder portion 13 is set to be slightly larger than the outer diameter of the guide stem portion 8, so that the guide stem portion 8 can be inserted inside the guide stem portion 8.
  • a net holder 14 that forms a uniform foam is fitted on the inner peripheral surface of the inner cylinder portion 12.
  • the net holder 14 is a tubular member, and nets (not shown) are attached to both ends in the axial direction.
  • the inner diameter of the inner cylinder portion 12 is slightly larger at the portion opposite to the top surface portion 10 with the central portion sandwiched in the axial direction, and the above-mentioned net holder 14 is located at the portion where the inner diameter is larger. It is fitted. Then, as will be described later, the contents foamed by being mixed with air pass through the net holder 14, so that fine and homogeneous bubbles are formed.
  • the cylinder 15 is arranged inside the cap 4. As shown in FIG. 1, the cylinder 15 is fitted to the outer peripheral side of the inner cylindrical portion 6 and integrated with the cap 4, and is below the fitting portion fitted to the inner cylindrical portion 6. The inner diameter of the side part is slightly smaller. Further, a collar 16 extending outward in the radial direction is formed at the upper end portion of the cylinder 15. The outer diameter of the collar 16 is about the outer diameter of the tip of the mouth portion 3 (the outer diameter of the opening of the mouth portion 3) or slightly larger than that. Then, a sealing material 17 is sandwiched between the tip end portion (open end) of the mouth portion 3 and the lower surface of the collar 16 (the lower surface of the collar 16 in FIG. 1) in order to ensure airtightness and liquidtightness. .. The collar 16 and the sealing material 17 are sandwiched between the upper surface portion 7 of the cap 4 and the tip portion of the mouth portion 3 by attaching the cap 4 to the mouth portion 3 with a screw, and seal the mouth portion 3. It is designed to stop.
  • the cylinder 15 shown here includes an air cylinder 18 of an air pump that pushes air into the nozzle body 9, and a liquid cylinder 19 of a liquid pump that pushes the contents into the nozzle body 9.
  • the air cylinder 18 is a large-diameter portion of the cylinder 15 formed below the fitting portion described above in the axial direction, and air is provided inside the container 2 in a part on the upper end side of the air cylinder 18.
  • the first intake hole 20 for taking in the air cylinder 18 is formed so as to penetrate in the plate thickness direction of the air cylinder 18.
  • FIG. 1 shows a state in which the nozzle body 9 is at top dead center.
  • the molded valve 26 includes a cylindrical shaft portion fitted in a recess formed in the piston head 22, and an annular outer valve portion extending outward in the radial direction from an end portion of the shaft portion exposed from the recess. It is provided with an annular inner valve portion extending inward in the radial direction from the end portion of the shaft portion exposed from the recess.
  • the outer valve portion closes the second intake hole 25 when the internal pressure of the air chamber 24 is higher than the external pressure of the container 2, and the second intake hole 25 when the internal pressure of the air chamber 24 is lower than the external pressure of the container 2.
  • the second intake hole 25 is covered from the inside of the air chamber 24 so as to open 25.
  • the inner diameter of one end of the cylindrical portion 29 is formed to be slightly larger than the outer diameter of the lower end portion of the net holder 14. Further, among one end of the cylindrical portion 29, a plurality of protrusions 30 protruding inward in the radial direction are formed on the inner peripheral surface below the portion having a large inner diameter described above.
  • the protrusion 30 defines the position of the net holder 14 in the flow path P, and when the nozzle body 9 is pushed in, it contacts one end of the shaft-shaped member described later and pushes the shaft-shaped member. Is. Further, the protrusion 30 is set to an inner diameter of about the inner diameter of the net holder 14 so that the protrusion 30 does not particularly hinder the flow of the contents in the flow path P.
  • a collar 33 protruding outward in the radial direction is formed on the outer peripheral surface of the liquid piston 31.
  • the collar 33 regulates the lower limit positions of the air piston 21 and the liquid piston 31.
  • the air discharge valve 28 is in contact with the upper surface of the collar 33.
  • the other end of the liquid piston 31 is fitted to the inner peripheral surface of the liquid cylinder 19 so as to maintain a liquidtight state and slide in the axial direction (vertical direction in FIG. 1). Therefore, the liquid pump described above is configured by the liquid cylinder 19 and the liquid piston 31, and the tubular space formed by the liquid cylinder 19 and the liquid piston 31 is the liquid chamber 34.
  • a return mechanism for returning and moving the nozzle body 9 and each piston to the original position when the force for pushing down the nozzle body 9 and each piston toward the container 2 side is released, and a nozzle body.
  • a valve mechanism for communicating the liquid chamber 34 with the inside of the container 2 according to the pumping of 9 and communicating the liquid chamber 34 with the mixing chamber 32 and the flow path P is arranged.
  • the return mechanism will be described.
  • the return mechanism is configured to return and move the nozzle body 9 and the pistons 21 and 31 by a coil spring (hereinafter, simply referred to as a spring) 35. There is.
  • the shaft-shaped member 36 is arranged along the central axis of the liquid cylinder 19.
  • One end of the shaft-shaped member 36 protrudes from one end of the liquid piston 31.
  • a valve body 37 is integrally formed at one end of the shaft-shaped member 36.
  • the valve body 37 is a tapered portion whose outer diameter gradually increases toward one end side of the shaft-shaped member 36.
  • an annular convex portion is formed which is convex inward in the radial direction, that is, toward the center side of the flow path P.
  • the bottom of the liquid cylinder 19 is provided with a check valve that opens when the contents are sucked up and filled into the liquid chamber 34 from the inside of the container 2 and closes when the contents are pushed out from the liquid chamber 34.
  • the check valve is composed of a ball valve 43, and a tapered valve seat portion 44 having an inner diameter gradually increasing on the upper side is formed at the bottom of the liquid cylinder 19.
  • the ball 45 is arranged so as to come into contact with the tapered surface of the valve seat portion 44 from above the valve seat portion 44 in the axial direction.
  • a tube 46 for introducing the contents filled inside the container 2 into the inside of the liquid chamber 34 is connected to the bottom of the liquid cylinder 19. The tip of the tube 46 extends to the vicinity of the bottom of the container 2 (not shown).
  • the operation of the pump former 1 according to the present invention will be described.
  • the nozzle body 9 is at top dead center as shown in FIG.
  • the pistons 21 and 31 are pushed upward (upward in FIG. 1) in the cylinders 18 and 19 by the elastic force of the spring 35. Therefore, the valve seat 38 formed at one end of the liquid piston 31 is pressed against the valve body 37 of the shaft-shaped member 36, and the communication between the liquid chamber 34 and the mixing chamber 32 and the flow path P is blocked. Has been done. Further, the engaging portion 40 of the shaft-shaped member 36 is caught by the hook portion 41 of the locking body 39 and is prevented from coming off from the locking body 39.
  • the ball 45 of the ball valve 43 is in contact with the valve seat portion 44 by the contents in the liquid chamber 34 or by its own weight, and the communication between the liquid chamber 34 and the inside of the container 2 is cut off. Further, the first intake hole 20 formed in the air cylinder 18 is closed by the sliding portion 23 of the air piston 21. Since the volume of the air chamber 24 does not change in particular because the air piston 21 does not move in the axial direction, the second intake hole 25 is maintained in a state of being covered by the air intake valve 27, and the air discharge valve 28 is also covered. Is kept in contact with the collar 33 of the liquid piston 31. That is, both the air intake valve 27 and the air discharge valve 28 are closed.
  • the shaft-shaped member 36 moves relative to the liquid piston 31.
  • the protrusion 30 formed on the inner peripheral surface of the cylindrical portion 29 by further pushing down the air piston 21 is the valve body 37 of the shaft-shaped member 36. That is, until the liquid piston 31 moves to the container 2 side by the amount of the clearance C1 described above.
  • the operating state of sucking back the foamy contents in the flow path P into the liquid chamber 34 is when the nozzle body 9 and the pistons 21 and 31 are returned and moved by the elastic force of the spring 35. It continues until the communication state between the liquid chamber 34 and the flow path P is cut off. Specifically, it occurs until the upper end portion of the valve seat portion 38 and the portion of the tapered surface of the valve body 37 that contacts the upper end portion come into contact with each other in the axial direction. Further, the ball 45 is separated from the valve seat portion 44 by the above negative pressure, and the liquid content filled in the inside of the container 2 is sucked up into the inside of the liquid chamber 34 through the tube 46.
  • the liquid contents filled in the inside of the container 2 by the negative pressure are sucked up into the inside of the liquid chamber 34 through the tube 46. Further, since the communication state between the air chamber 24 and the outside is not cut off, the internal volume continues to increase due to the return movement of the air piston 21, and the negative pressure due to the increase in the internal volume causes the inside of the air chamber 24 to increase. Air is sucked.
  • the shaft-shaped member 36 and the liquid piston 31 are integrated with each other in a state where the valve seat portion 38 of the liquid piston 31 is pressed against the valve body 37 of the shaft-shaped member 36. It moves further upward at 5C.
  • the internal volume of the liquid chamber 34 is further increased, and the contents filled inside the container 2 are sucked up into the inside of the liquid chamber 34 via the ball valve 43 by the negative pressure accompanying the increase in the internal volume. ..
  • the communication state between the air chamber 24 and the outside is not cut off, so that the internal volume continues to increase with the return movement of the air piston 21, and the negative due to the increase in the internal volume. Air is sucked into the air chamber 24 by the pressure.
  • the liquid piston 31 returns and moves in a state where the flow path P and the liquid chamber 34 communicate with each other, and a negative pressure is generated as the internal volume of the liquid chamber 34 increases.
  • a negative pressure is generated as the internal volume of the liquid chamber 34 increases.
  • the contents are less likely to remain in the flow path P, the tip of the nozzle 11, and the like.
  • it is possible to prevent or suppress foam dripping and dripping due to liquefaction of bubbles.
  • the device as a whole can have a simple structure, and the cost related to the member and the manufacturing can be reduced.
  • the pump former 1 by changing the size of the clearance C2 described above, that is, the movable distance of the shaft-shaped member 36 with respect to the movable distance of the pistons 21 and 31 in the axial direction, respectively.
  • the so-called back suction function of sucking the contents remaining in the flow path P back to the liquid chamber 34 in the process of returning the pistons 21 and 31 to their original positions can be changed.
  • pump formers 1 in which the above-mentioned clearance C2 was increased by 0.5 mm from 1 mm to 15 mm were prepared, and the back suction function of the pump former 1 was evaluated. ..
  • the movable distance of the shaft-shaped member 36 with respect to the movable distance of each of the pistons 21 and 31 in the axial direction is shown as a percentage.
  • the number of times of emptying is such that the contents filled in the container 2 are filled in the liquid chamber 34 from the state in which the contents are not filled in the liquid chamber 34 of the pump former 1 attached to the container 2. It is the number of times that the nozzle body 9 is pumped until the contents are discharged from the nozzle 11.
  • the discharge amount is the amount of foamy contents discharged from the nozzle 11. It should be noted that each experiment on the number of empty spaces and the discharge amount was performed a plurality of times, and the arithmetic mean of the number of empty spaces and the discharge amount is shown in Table 1, respectively.
  • the foam dripping from the nozzle 11 was evaluated.
  • the symbol “ ⁇ ” indicates that the foam-like contents are sucked back from the tip of the nozzle 11 toward the inside of the flow path P, and the foam dripping from the tip of the nozzle 11 is prevented or suppressed. It shows that there is.
  • the symbol of "x” the foamy contents are not sucked back from the tip of the nozzle 11 toward the inside of the flow path P, and therefore, the foamy contents are not sucked back to the tip of the nozzle 11 or its vicinity. It shows that it remains and it is difficult to suppress foam dripping.
  • the " ⁇ " symbol indicates that the evaluation result for the bubble dripping does not correspond to either " ⁇ " or " ⁇ ".
  • the pump former 1 is configured in the same manner except that the clearance C2 described above is changed, and the number of times of emptying, the discharge amount of the contents, and bubbles from the nozzle 11 described above are described. Multiple people subjectively evaluated who and so on.
  • the number of empty spaces may be the same, but this is considered to be due to a manufacturing error, and the overall tendency is that the number of empty spaces decreases as the clearance C2 increases.
  • the number of times of emptying in Experimental Example 5 to Experimental Example 23 is 3 to 5 times, which is an index of the number of pumping times (3 times) as the number of pumping times that does not give discomfort or stress to the user. It is within the range of 5 times).
  • the present invention is not limited to the above-described embodiment, and the pump-type discharge device according to the embodiment of the present invention whisks by mixing the liquid content filled inside the container 2 with air.
  • the pump dispenser may be configured to discharge the liquid filled in the container 2 as it is. In short, when the piston is returned and moved, the contents accumulated in the vicinity of the nozzle may be sucked back into the space partitioned by the piston and the cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Closures For Containers (AREA)
  • Reciprocating Pumps (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Fertilizing (AREA)

Abstract

The present invention addresses the problem of providing a pump-type ejection device capable of reducing foam dripping or liquid dripping with a simple configuration. In a pump-type ejection device (1) provided with a cylinder (19), a piston (31), a flow path (P) formed to penetrate the piston (31), a shaft-shaped member (36) inserted into the flow path (P), a valve body (37) formed at one end of the shaft-shaped member (36), a valve seat part (38) formed to adhere to the valve body (37) to close the flow path (P), and a protruding part (30) contacting the valve body (37) when the piston (31) moves in a direction to decrease the volume of a space (34), an immovable region (C2) that maintains a state in which the shaft-shaped member (36) is stopped with respect to the cylinder (19) and the valve body (37) and the valve seat part (38) are isolated is set so that a nozzle (11) is caused to perform suction by a negative pressure as the volume of the space (34) increases when the piston (31) is moved in a direction to increase the volume of the space (34) by a restoration mechanism (35).

Description

ポンプ式吐出装置Pump type discharge device
 この発明は、ノズル体を押し下げて内容積を減じることにより、シリンダから押し出した液体をノズル体の吐出孔から吐出させるポンプ式吐出装置に関するものである。 The present invention relates to a pump-type discharge device that discharges a liquid extruded from a cylinder through a discharge hole of the nozzle body by pushing down the nozzle body to reduce the internal volume.
 この種の装置の一例が特許第4521749号公報に記載されている。その装置はポンプフォーマーであって、ノズル体の押し下げ力を受けて押し下げられる液体ピストンによって液体シリンダ内の液体の内容物を押し出すと共に、上記の押し下げ力を受けて押し下げられる空気ピストンによって空気シリンダ内の空気を押し出すように構成されている。各シリンダから押し出された内容物と空気とは混合されて泡状となってノズル体の吐出孔から吐出される。また、上記の押し下げ力を解除すると、各ピストンを元の位置に復帰移動させるスプリングの弾性力によって各ピストンが押し上げられて各シリンダの内容積が増大させられる。これにより吸引力が生じるので、液体シリンダの内部に容器本体内の内容物が導液管を介して吸い上げられ、また、空気シリンダの内部に外部の空気が吸い込まれる。 An example of this type of device is described in Japanese Patent No. 4521749. The device is a pump former, in which the liquid contents in the liquid cylinder are pushed out by the liquid piston pushed down by the pushing force of the nozzle body, and in the air cylinder by the air piston pushed down by the pushing force mentioned above. It is configured to push out the air. The contents extruded from each cylinder and air are mixed to form bubbles and discharged from the discharge holes of the nozzle body. Further, when the pushing-down force is released, each piston is pushed up by the elastic force of the spring that returns and moves each piston to the original position, and the internal volume of each cylinder is increased. As a result, a suction force is generated, so that the contents in the container body are sucked up inside the liquid cylinder through the liquid guide tube, and external air is sucked into the inside of the air cylinder.
 特許第5214418号公報には、内容物を吐出した後におけるいわゆる泡切れを向上するように構成されたフォーマーディスペンサーが記載されている。そのフォーマーディスペンサーは容器の口部に取り付けられるキャップに保持される液体ポンプと空気ポンプと、それらのポンプを駆動する押圧ヘッドとを有している。押圧ヘッドの天面部に、当該天面部を板厚方向に貫通する貫通孔が形成され、その貫通孔の縁部に軸線方向に延びる筒状の内側環状周壁が形成されている。その内側環状周壁の内部に軸線方向に延びるロッドが配置されている。そのロッドの一方の端部は内側環状周壁の外側に延び出ており、押圧ヘッドの上側に配置されていて押圧ヘッドに対して軸線方向にスライド可能に構成されたカバー体に連結されている。また、ロッドにおける一方の端部側には、内側環状周壁の内面に摺接する環状シール部が設けられている。ロッドの他方の端部には、混合室の出口側開口端に形成された座面の下側に押し付けられることによって、混合室とノズルとを連通する流路を遮断するディスク状のシール部が設けられている。また、混合室には、座面にシール部を押し付けて前記流路を閉じるスプリングが配置されている。したがって、押圧ヘッドと共にカバー体を押し下げると、それに連動してロッドが押し下げられるので、座面からシール部が離隔してノズルから泡が吐出される。押圧ヘッドやカバー体を押し下げる力を解除すると、スプリングの弾性力によってロッドが押し上げられて座面にシール部が押し付けられて流路が閉じられる。また、内側環状周壁内を環状シール部が上方に移動するので、シール部からノズルの先端部に到る流路の内容積が増大させられる。これによりノズルの先端に残存する泡が上述した流路内に引き戻されるので泡切れが向上する、とされている。 Japanese Patent No. 5214418 describes a former dispenser configured to improve so-called foam breakage after discharging the contents. The former dispenser has a liquid pump and an air pump held by a cap attached to the mouth of the container, and a pressing head for driving the pumps. A through hole that penetrates the top surface of the pressing head in the plate thickness direction is formed, and a tubular inner annular peripheral wall that extends in the axial direction is formed at the edge of the through hole. A rod extending in the axial direction is arranged inside the inner annular peripheral wall. One end of the rod extends outward from the inner annular peripheral wall and is connected to a cover that is arranged above the pressing head and is slidable in the axial direction with respect to the pressing head. Further, on one end side of the rod, an annular seal portion that is in sliding contact with the inner surface of the inner annular peripheral wall is provided. At the other end of the rod, there is a disc-shaped seal that blocks the flow path that communicates between the mixing chamber and the nozzle by being pressed against the underside of the seating surface formed at the outlet side opening end of the mixing chamber. It is provided. Further, in the mixing chamber, a spring that presses the seal portion against the seat surface to close the flow path is arranged. Therefore, when the cover body is pushed down together with the pressing head, the rod is pushed down in conjunction with it, so that the seal portion is separated from the seat surface and bubbles are discharged from the nozzle. When the force that pushes down the pressing head or the cover body is released, the rod is pushed up by the elastic force of the spring, the seal portion is pressed against the seat surface, and the flow path is closed. Further, since the annular seal portion moves upward in the inner annular peripheral wall, the internal volume of the flow path from the seal portion to the tip end portion of the nozzle is increased. As a result, the bubbles remaining at the tip of the nozzle are pulled back into the above-mentioned flow path, so that the bubble breakage is improved.
 上記の特許第4521749号公報に記載されたポンプディスペンサーでは、ノズル体を押し下げる押し下げ力を解除した場合に、吐出孔に残留している内容物を容器側に引き戻すいわゆるバックサクション機能が特には生じないので、ノズル体の先端に泡が残留してしまい、泡だれや、泡が液化することによる液だれが生じる可能性がある。一方、特許第5214418号公報に記載されたフォーマーディスペンサーでは、バックサクション機能が生じるため、上述した泡だれや、泡が液化することによる液だれを抑制できる。しかしながら、バックサクション機能を奏するために、カバー体やカバー体と連動して移動するロッドなどの部材が必要となり、それに伴って部品点数や部材コスト、製造コストなどが増大し、また、装置の全体として大型化する可能性がある。 In the pump dispenser described in Japanese Patent No. 4521749, the so-called back suction function of pulling the contents remaining in the discharge hole back to the container side does not particularly occur when the pushing force for pushing down the nozzle body is released. Therefore, bubbles may remain at the tip of the nozzle body, and dripping or dripping due to liquefaction of bubbles may occur. On the other hand, in the former dispenser described in Japanese Patent No. 5214418, since the back suction function is generated, the above-mentioned foam dripping and dripping due to liquefaction of foam can be suppressed. However, in order to perform the back suction function, a member such as a cover body and a rod that moves in conjunction with the cover body is required, and the number of parts, member cost, manufacturing cost, etc. increase accordingly, and the entire device There is a possibility that it will become larger.
 この発明は、上記の技術的課題に着目してなされたものであって、簡易な構成で泡だれや液だれを抑制することのできるポンプ式吐出装置を提供することを目的とするものである。 The present invention has been made by paying attention to the above technical problems, and an object of the present invention is to provide a pump-type discharge device capable of suppressing foam dripping and dripping with a simple configuration. ..
 上記の目的を達成するために、この発明は、容器の内部に連通した状態に前記容器の口部に取り付けられるシリンダと、前記シリンダの内部に前記シリンダの軸線方向に往復動可能に嵌合させられたピストンと、前記ピストンを前記軸線方向に貫通して形成され、一方の開口端がノズルに連通すると共に、他方の開口端が前記シリンダと前記ピストンとによって区画された空間に連通する流路と、前記流路の内部に前記流路の中心軸線に沿って一端部が挿入されると共に前記空間の内部に他端部が配置されていて前記シリンダに対して前記軸線方向に相対移動可能に保持された軸状部材と、前記軸状部材の前記一端部に外径を増大させて形成された弁体と、前記ピストンが前記空間の容積を増大する方向に移動することにより前記弁体に密着して前記流路を閉じるように前記流路の内部に形成された弁座部と、前記ピストンが前記空間の容積を減じる方向に移動することにより前記弁体に接触して前記軸状部材を押すように前記軸線方向で前記弁体を挟んで前記弁座部とは反対側の前記流路の内部に形成された突起部と、前記弁座部を前記弁体に押し付ける方向に前記ピストンを押圧する復帰機構とを備え、前記ピストンが押されて前記弁座部から前記弁体が離隔すると共に前記空間の容積が減じられることにより、前記空間の内部に充填された内容物が前記流路を経て前記ノズルから吐出するポンプ式吐出装置において、前記復帰機構によって前記ピストンが前記空間の容積を増大する方向に移動することによる前記空間の容積の増大に伴う負圧によって前記ノズルからの吸引を生じさせるように、前記弁体と前記弁座部とが離隔している状態を維持する前記軸状部材が前記シリンダに対して停止している不動域が設定されていることを特徴とするものである。 In order to achieve the above object, the present invention has a cylinder attached to the mouth of the container in a state of being communicated with the inside of the container, and the inside of the cylinder so as to be reciprocally fitted in the axial direction of the cylinder. A flow path formed by penetrating the piston and the piston in the axial direction, one open end communicating with the piston and the other open end communicating with the space partitioned by the cylinder and the piston. Then, one end is inserted into the flow path along the central axis of the flow path, and the other end is arranged inside the space so that the other end can move relative to the cylinder in the axial direction. The held shaft-shaped member, the valve body formed by increasing the outer diameter at one end of the shaft-shaped member, and the piston moving in the direction of increasing the volume of the space to form the valve body. The valve seat portion formed inside the flow path so as to close the flow path in close contact with the valve body and the shaft-shaped member by moving the piston in a direction reducing the volume of the space. A protrusion formed inside the flow path on the side opposite to the valve seat portion with the valve body sandwiched in the axial direction so as to push, and the piston in the direction of pressing the valve seat portion against the valve body. The piston is pushed to separate the valve body from the valve seat portion, and the volume of the space is reduced, so that the contents filled in the space flow. In a pump-type discharge device that discharges from the nozzle via a path, suction from the nozzle is performed by a negative pressure accompanying an increase in the volume of the space due to the piston moving in a direction of increasing the volume of the space by the return mechanism. It is characterized in that an immovable region is set in which the shaft-shaped member that maintains the state in which the valve body and the valve seat portion are separated from each other is stopped with respect to the cylinder so as to cause the above. It is a thing.
 この発明では、前記不動域は、前記空間の容積が最も小さい状態から前記空間の容積を増大する方向に前記ピストンが移動する場合に、前記ピストンが前記軸状部材に対して相対移動する前記ピストンの移動長さであり、前記移動長さは、前記空間の容積が最も小さい状態から前記空間の容積を増大する方向に前記ピストンが移動する場合における前記軸線方向で前記弁座部の上端部と前記弁体における前記上端部に接触する部分との間の長さであってよい。 In the present invention, in the immovable region, when the piston moves in a direction of increasing the volume of the space from the state where the volume of the space is the smallest, the piston moves relative to the shaft-shaped member. The moving length is the moving length of the valve seat portion in the axial direction when the piston moves in the direction of increasing the volume of the space from the state where the volume of the space is the smallest. It may be the length between the valve body and the portion in contact with the upper end portion.
 この発明では、前記軸線方向への前記軸状部材の可動距離が前記ピストンの可動距離の20%以上かつ80%以下であってよい。 In the present invention, the movable distance of the axial member in the axial direction may be 20% or more and 80% or less of the movable distance of the piston.
 この発明によれば、ピストンとシリンダとによって区画された空間の容積を増大する方向にピストンが移動することによる前記空間の容積の増大に伴う負圧によってノズルからの吸引を生じさせるように、軸状部材がシリンダに対して停止していて軸状部材の一端部に形成された弁体と、流路に形成された弁座部とが離隔している状態を維持する不動域が設定されている。したがって、不動域では、前記空間とノズルとが連通しており、その状態でピストンが移動することによって前記空間の容積が増大する。つまり、復帰機構によってピストンが元の位置に復帰移動する過程で、上述した空間の容積の増大に伴う負圧によって、ノズルや流路に残留している内容物が前記空間に吸い戻される。そのため、内容物を吐出した後において、ノズルの先端付近に内容物が残留しにくくなり、内容物の液だれや泡だれなどを抑制できる。また、部品点数を特には増大することがないので、装置の全体として簡易な構成とすることができると共に、部材コストや製造コストの増大を抑制できる。 According to the present invention, the shaft causes suction from the nozzle due to the negative pressure accompanying the increase in the volume of the space due to the movement of the piston in the direction of increasing the volume of the space partitioned by the piston and the cylinder. An immovable zone is set to maintain a state in which the valve body formed at one end of the shaft-shaped member and the valve seat formed in the flow path are separated from each other when the shaped member is stopped with respect to the cylinder. There is. Therefore, in the immovable region, the space and the nozzle are in communication with each other, and the movement of the piston in that state increases the volume of the space. That is, in the process of returning and moving the piston to the original position by the return mechanism, the contents remaining in the nozzle and the flow path are sucked back into the space by the negative pressure accompanying the increase in the volume of the space described above. Therefore, after the contents are discharged, the contents are less likely to remain near the tip of the nozzle, and dripping or foaming of the contents can be suppressed. Further, since the number of parts is not particularly increased, the device as a whole can have a simple configuration, and an increase in member cost and manufacturing cost can be suppressed.
この発明の実施形態に係るポンプ式吐出装置の一例を示す断面図である。It is sectional drawing which shows an example of the pump type discharge device which concerns on embodiment of this invention. ノズル体を上死点から容器側に僅かに押し下げた場合におけるポンプ式吐出装置の断面図である。It is sectional drawing of the pump type discharge device when the nozzle body is pushed down slightly from the top dead center toward the container side. ノズル体を上死点から容器側に僅かに押し下げた場合におけるポンプ式吐出装置の部分拡大図である。It is a partially enlarged view of the pump type discharge device when the nozzle body is pushed down slightly from the top dead center toward the container side. 各ピストンが下死点に位置している場合におけるポンプ式吐出装置の断面図である。It is sectional drawing of the pump type discharge device when each piston is located at the bottom dead center. 各ピストンが下死点に位置している場合におけるポンプ式吐出装置の部分拡大図である。It is a partially enlarged view of the pump type discharge device when each piston is located at the bottom dead center. スプリングの弾性力によって各ピストンが容器の口部側に僅かに押し上げられた場合におけるポンプ式吐出装置の部分拡大図である。It is a partially enlarged view of the pump type discharge device when each piston is pushed up slightly toward the mouth side of the container by the elastic force of the spring. スプリングの弾性力によって各ピストンが押し上げられて弁体に弁座部が押し付けられた場合におけるポンプ式吐出装置の部分拡大図である。It is a partially enlarged view of the pump type discharge device in the case where each piston is pushed up by the elastic force of the spring and the valve seat portion is pressed against the valve body.
 この発明の実施形態に係るポンプ式吐出装置は、容器の口部に取り付けられた状態で、ノズルヘッドをポンピングすることによって容器の内部に充填された内容物を吸い上げてノズルから吐出すると共に、内容物の吐出後には、ノズルに残留する内容物を容器側に吸い戻してノズルからの液だれを抑制するように構成されている。上述した内容物はシャンプーや洗顔料などの液状の内容物が好ましく、それらの内容物を液状のまま、もしくは、泡状にして吐出するように構成されている。 In the pump-type discharge device according to the embodiment of the present invention, the contents filled in the inside of the container are sucked up by pumping the nozzle head in a state of being attached to the mouth of the container and discharged from the nozzle. After discharging the material, the contents remaining in the nozzle are sucked back to the container side to prevent dripping from the nozzle. The above-mentioned contents are preferably liquid contents such as shampoo and face wash, and are configured to discharge the contents in a liquid state or in the form of foam.
 図1は、この発明の実施形態に係るポンプ式吐出装置の一例を示す断面図である。図1に示すポンプ式吐出装置は、いわゆるポンプフォーマー1であって、容器2の内部に充填された液状の内容物と、空気とを混合することによって泡を形成し、その泡を吐出するように構成されている。すなわち、図1に示すポンプフォーマー1は容器2の口部3に着脱可能に装着されるキャップ4を備えている。上記の口部3は容器2の胴部の上端側に形成された円筒状の開口部であり、口部3の外周面に雄ねじが形成されている。その雄ねじに嵌まり合う雌ねじがキャップ4に形成されている。つまり、キャップ4に口部3をねじ込むようになっている。 FIG. 1 is a cross-sectional view showing an example of a pump-type discharge device according to an embodiment of the present invention. The pump-type discharge device shown in FIG. 1 is a so-called pump former 1, in which bubbles are formed by mixing the liquid contents filled inside the container 2 with air, and the bubbles are discharged. It is configured as follows. That is, the pump former 1 shown in FIG. 1 includes a cap 4 that is detachably attached to the mouth portion 3 of the container 2. The mouth portion 3 is a cylindrical opening formed on the upper end side of the body portion of the container 2, and a male screw is formed on the outer peripheral surface of the mouth portion 3. A female screw that fits the male screw is formed on the cap 4. That is, the mouth portion 3 is screwed into the cap 4.
 キャップ4は、図1に示すように、口部3の外径より大きい外径の外円筒部5と、外円筒部5の内側に外円筒部5と同心円上に設けられた内円筒部6とを備えている。内円筒部6は口部3の内径より小さい外径であってかつ軸線方向における長さが外円筒部5より短く設定されている。それらの外円筒部5の上端部と内円筒部6の上端部とは半径方向に延びる上面部7によって連結されている。すなわち、外円筒部5と内円筒部6と上面部7とは一体に形成されている。また、外円筒部5の内周面に上述した雌ねじが形成されている。上面部7の中心部には、内円筒部6の内径より小さい内径の開口部が形成されている。その開口部の周縁部に、図1の上方に延びる円筒状のガイドステム部8が立設されている。そのガイドステム部8にポンプフォーマー1をポンピングするノズル体9が軸線方向(図1では上下方向)に摺動可能に嵌合している。 As shown in FIG. 1, the cap 4 has an outer cylindrical portion 5 having an outer diameter larger than the outer diameter of the mouth portion 3, and an inner cylindrical portion 6 provided concentrically with the outer cylindrical portion 5 inside the outer cylindrical portion 5. And have. The inner cylindrical portion 6 has an outer diameter smaller than the inner diameter of the mouth portion 3 and has a length in the axial direction shorter than that of the outer cylindrical portion 5. The upper end portion of the outer cylindrical portion 5 and the upper end portion of the inner cylindrical portion 6 are connected by an upper surface portion 7 extending in the radial direction. That is, the outer cylindrical portion 5, the inner cylindrical portion 6, and the upper surface portion 7 are integrally formed. Further, the above-mentioned female screw is formed on the inner peripheral surface of the outer cylindrical portion 5. An opening having an inner diameter smaller than the inner diameter of the inner cylindrical portion 6 is formed in the central portion of the upper surface portion 7. A cylindrical guide stem portion 8 extending upward in FIG. 1 is erected on the peripheral edge of the opening. A nozzle body 9 for pumping the pump former 1 is slidably fitted to the guide stem portion 8 in the axial direction (vertical direction in FIG. 1).
 ノズル体9は、いわゆるノズルヘッドとして押し下げ力が加えられる天面部10と、泡を吐出するノズル11と、当該ノズル11に連通する流路Pが形成されている円筒状の内筒部12と、内筒部12より大径であってかつ内筒部12と同心円上に形成された円筒状の外筒部13とを有している。ノズル体9の一部はノズル体9の軸心を中心とした半径方向で外側に延び出た筒状になっており、この部分がノズル11となっている。各筒部12,13は、軸線方向でノズル体9の天面部10から図1での下方に延びており、軸線方向における内筒部12の長さは外筒部13より長く設定されている。また、内筒部12の外径はガイドステム部8の内径より僅かに小さく設定されており、したがって、ガイドステム部8の内部に挿入できるようになっている。また、外筒部13の内径はガイドステム部8の外径より僅かに大きく設定されており、その内側にガイドステム部8を挿入できるようになっている。つまり、半径方向で内筒部12と外筒部13との間にガイドステム部8を挿入することにより、ノズル体9はガイドステム部8と各筒部12,13とによって案内されて軸線方向に移動するようになっている。また、内筒部12の外周面とガイドステム部8の内周面との間、および、ガイドステム部8の外周面と外筒部13の内周面との間には、僅かな隙間が形成されており、それらの隙間がそれぞれ空気流路となっている。それらの空気流路を介して後述する空気シリンダ内に空気が導入されるようになっている。 The nozzle body 9 includes a top surface portion 10 to which a pushing force is applied as a so-called nozzle head, a nozzle 11 for discharging bubbles, and a cylindrical inner cylinder portion 12 in which a flow path P communicating with the nozzle 11 is formed. It has a cylindrical outer cylinder portion 13 having a diameter larger than that of the inner cylinder portion 12 and formed concentrically with the inner cylinder portion 12. A part of the nozzle body 9 has a tubular shape extending outward in the radial direction about the axis of the nozzle body 9, and this portion is the nozzle 11. Each of the tubular portions 12 and 13 extends downward in FIG. 1 from the top surface portion 10 of the nozzle body 9 in the axial direction, and the length of the inner tubular portion 12 in the axial direction is set longer than that of the outer tubular portion 13. .. Further, the outer diameter of the inner cylinder portion 12 is set to be slightly smaller than the inner diameter of the guide stem portion 8, so that the inner cylinder portion 12 can be inserted into the guide stem portion 8. Further, the inner diameter of the outer cylinder portion 13 is set to be slightly larger than the outer diameter of the guide stem portion 8, so that the guide stem portion 8 can be inserted inside the guide stem portion 8. That is, by inserting the guide stem portion 8 between the inner cylinder portion 12 and the outer cylinder portion 13 in the radial direction, the nozzle body 9 is guided by the guide stem portion 8 and the cylinder portions 12 and 13 in the axial direction. It is designed to move to. Further, there are slight gaps between the outer peripheral surface of the inner cylinder portion 12 and the inner peripheral surface of the guide stem portion 8 and between the outer peripheral surface of the guide stem portion 8 and the inner peripheral surface of the outer cylinder portion 13. It is formed, and each of these gaps serves as an air flow path. Air is introduced into the air cylinder described later through these air flow paths.
 図1に示す例では、内筒部12の内周面に、均質な泡を形成するネットホルダ14が嵌合されている。具体的には、ネットホルダ14は筒状の部材であって、軸線方向での両端部に図示しないネットがそれぞれ取り付けられている。また、内筒部12の内径は、軸線方向で中央部分を挟んで天面部10とは反対側の部分で僅かに大きくなっており、この内径が大きくなっている部分に上記のネットホルダ14が嵌合されている。そして、後述するように、空気と混合されることによって泡立てられた内容物がネットホルダ14を通過することによって、きめ細かく均質な泡が形成されるようになっている。 In the example shown in FIG. 1, a net holder 14 that forms a uniform foam is fitted on the inner peripheral surface of the inner cylinder portion 12. Specifically, the net holder 14 is a tubular member, and nets (not shown) are attached to both ends in the axial direction. Further, the inner diameter of the inner cylinder portion 12 is slightly larger at the portion opposite to the top surface portion 10 with the central portion sandwiched in the axial direction, and the above-mentioned net holder 14 is located at the portion where the inner diameter is larger. It is fitted. Then, as will be described later, the contents foamed by being mixed with air pass through the net holder 14, so that fine and homogeneous bubbles are formed.
 キャップ4の内部にシリンダ15が配置されている。シリンダ15は、図1に示すように、内円筒部6の外周側に嵌合してキャップ4に一体化されており、内円筒部6に嵌合している嵌合部に対してその下側の部分の内径が僅かに小さくなっている。また、シリンダ15の上端部には、半径方向で外側に延びる鍔16が形成されている。鍔16の外径は口部3の先端部の外径(口部3の開口部の外径)程度もしくはそれより僅かに大きい程度の外径である。そして、口部3の先端部(開口端)と鍔16の下面(図1で鍔16の下面)との間に、気密性および液密性を担保するためにシール材17が挟み込まれている。これら鍔16とシール材17とは、口部3にキャップ4をネジによって取り付けることにより、キャップ4における上面部7と口部3の先端部との間に挟み付けられて、口部3を封止するようになっている。 The cylinder 15 is arranged inside the cap 4. As shown in FIG. 1, the cylinder 15 is fitted to the outer peripheral side of the inner cylindrical portion 6 and integrated with the cap 4, and is below the fitting portion fitted to the inner cylindrical portion 6. The inner diameter of the side part is slightly smaller. Further, a collar 16 extending outward in the radial direction is formed at the upper end portion of the cylinder 15. The outer diameter of the collar 16 is about the outer diameter of the tip of the mouth portion 3 (the outer diameter of the opening of the mouth portion 3) or slightly larger than that. Then, a sealing material 17 is sandwiched between the tip end portion (open end) of the mouth portion 3 and the lower surface of the collar 16 (the lower surface of the collar 16 in FIG. 1) in order to ensure airtightness and liquidtightness. .. The collar 16 and the sealing material 17 are sandwiched between the upper surface portion 7 of the cap 4 and the tip portion of the mouth portion 3 by attaching the cap 4 to the mouth portion 3 with a screw, and seal the mouth portion 3. It is designed to stop.
 シリンダ15の構成についてより具体的に説明すると、ここに示すシリンダ15には、空気をノズル体9に押し出す空気ポンプの空気シリンダ18と、内容物をノズル体9に押し出す液体ポンプの液体シリンダ19とが一体に形成されている。空気シリンダ18は、シリンダ15のうち、軸線方向で上述した嵌合部の下側に形成された大径の部分であって、空気シリンダ18の上端側の一部に、容器2の内部に空気を取り入れるための第1吸気孔20が空気シリンダ18の板厚方向に貫通して形成されている。液体シリンダ19は、空気シリンダ18より小径の筒状に形成されており、かつ、空気シリンダ18と同心円上に形成されている。また、図1に示すように、液体シリンダ19の一部は半径方向で空気シリンダ18の内側に形成されている。つまり、液体シリンダ19と空気シリンダ18とは軸線方向に僅かにずれて形成されており、それらの少なくとも一部が半径方向に互いに重なっている。なお、ここに示す例では、液体シリンダ19は空気シリンダ18に連続して形成されている。それらのシリンダ18,19の境界部分は、図1に示すように、空気シリンダ18の底部を図1での上方に突出するように湾曲して形成した凸曲面状の部分であり、その境界部分に後述する液体ピストンの鍔が接触することによって、ノズル体9および各ピストンのそれ以上の移動(押し込み)が阻止される。この位置が各ピストンを容器2側に押し込んだ場合におけるノズル体9および各ピストンのストロークエンドすなわち下死点である。なお、図1に示す例は、ノズル体9が上死点にある状態を示している。 More specifically, the configuration of the cylinder 15 will be described above. The cylinder 15 shown here includes an air cylinder 18 of an air pump that pushes air into the nozzle body 9, and a liquid cylinder 19 of a liquid pump that pushes the contents into the nozzle body 9. Are integrally formed. The air cylinder 18 is a large-diameter portion of the cylinder 15 formed below the fitting portion described above in the axial direction, and air is provided inside the container 2 in a part on the upper end side of the air cylinder 18. The first intake hole 20 for taking in the air cylinder 18 is formed so as to penetrate in the plate thickness direction of the air cylinder 18. The liquid cylinder 19 is formed in a tubular shape having a diameter smaller than that of the air cylinder 18, and is formed concentrically with the air cylinder 18. Further, as shown in FIG. 1, a part of the liquid cylinder 19 is formed inside the air cylinder 18 in the radial direction. That is, the liquid cylinder 19 and the air cylinder 18 are formed so as to be slightly offset in the axial direction, and at least a part of them overlap each other in the radial direction. In the example shown here, the liquid cylinder 19 is continuously formed on the air cylinder 18. As shown in FIG. 1, the boundary portion between the cylinders 18 and 19 is a convex curved surface portion formed by bending the bottom portion of the air cylinder 18 so as to project upward in FIG. 1, and the boundary portion thereof. Further movement (pushing) of the nozzle body 9 and each piston is prevented by contact with the collar of the liquid piston described later. This position is the stroke end, that is, bottom dead center of the nozzle body 9 and each piston when each piston is pushed toward the container 2. The example shown in FIG. 1 shows a state in which the nozzle body 9 is at top dead center.
 上記の空気シリンダ18の内周面に気密状態を維持して軸線方向(図1での上下方向)に摺動する空気ピストン21が嵌合されている。これらの空気シリンダ18と空気ピストン21とによって上述した空気ポンプが構成されている。その空気ピストン21は空気シリンダ18の内部を図1での上下に区画するピストンヘッド22と、ピストンヘッド22と一体となっていて空気シリンダ18の内周面に接触する摺動部23とを有している。ピストンヘッド22によって区画された2つの内部のうち、図1でピストンヘッド22の下側の内部が空気室24となっている。摺動部23は、図1に示す例では、円筒状に形成されており、その円筒状部分の上下二箇所で空気シリンダ18の内周面に気密性を維持して摺動可能に接触するように構成されている。そして、摺動部23は軸線方向に往復動することによって上述した第1吸気孔20を開閉するようになっている。 An air piston 21 that slides in the axial direction (vertical direction in FIG. 1) while maintaining an airtight state is fitted to the inner peripheral surface of the air cylinder 18. The air pump described above is composed of the air cylinder 18 and the air piston 21. The air piston 21 has a piston head 22 that divides the inside of the air cylinder 18 into upper and lower parts in FIG. 1, and a sliding portion 23 that is integrated with the piston head 22 and comes into contact with the inner peripheral surface of the air cylinder 18. doing. Of the two interiors partitioned by the piston head 22, the interior below the piston head 22 in FIG. 1 is the air chamber 24. In the example shown in FIG. 1, the sliding portion 23 is formed in a cylindrical shape, and the sliding portion 23 is slidably contacted with the inner peripheral surface of the air cylinder 18 at two points above and below the cylindrical portion while maintaining airtightness. It is configured as follows. The sliding portion 23 reciprocates in the axial direction to open and close the first intake hole 20 described above.
 半径方向でピストンヘッド22における所定の半径位置には、ピストンヘッド22を板厚方向に貫通して形成され、空気室24の内部に空気を導入する第2吸気孔25が形成されている。また、半径方向でピストンヘッド22の第2吸気孔25より内側部分には、空気室24の内圧に応じて空気室24と容器2の外部とを連通し、また、空気室24と後述する混合室とを連通する成形弁26が取り付けられている。 At a predetermined radial position in the piston head 22 in the radial direction, a second intake hole 25 is formed so as to penetrate the piston head 22 in the plate thickness direction and introduce air into the air chamber 24. Further, in the radial direction, the air chamber 24 and the outside of the container 2 communicate with each other in the portion inside the second intake hole 25 of the piston head 22 according to the internal pressure of the air chamber 24, and the air chamber 24 and the mixture described later are mixed. A molded valve 26 that communicates with the chamber is attached.
 上記の成形弁26は、ピストンヘッド22に形成された凹部に嵌め込まれる円筒状の軸部と、凹部から露出している軸部の端部から半径方向で外側に延びる環状の外側弁部と、凹部から露出している軸部の端部から半径方向で内側に延びる環状の内側弁部とを備えている。外側弁部は空気室24の内圧が容器2の外部の圧力より増大した場合に第2吸気孔25を閉じ、空気室24の内圧が容器2の外部の圧力より低減した場合に第2吸気孔25を開くように、空気室24の内側から第2吸気孔25を覆っている。つまり、この外側弁部によって空気室24に対して外気を導入したり遮断したりする空気吸入弁27が構成されている。内側弁部は前記内圧が容器2の外部の圧力より高い場合に空気室24と混合室とを連通し、前記内圧が容器2の外部の圧力より低下した場合に空気室24と混合室との連通状態を遮断するように、後述する液体ピストンの鍔に接触している。つまり、その内側弁部によって混合室に対して空気室24の空気を供給し、あるいは押し出す空気排出弁28が構成されている。 The molded valve 26 includes a cylindrical shaft portion fitted in a recess formed in the piston head 22, and an annular outer valve portion extending outward in the radial direction from an end portion of the shaft portion exposed from the recess. It is provided with an annular inner valve portion extending inward in the radial direction from the end portion of the shaft portion exposed from the recess. The outer valve portion closes the second intake hole 25 when the internal pressure of the air chamber 24 is higher than the external pressure of the container 2, and the second intake hole 25 when the internal pressure of the air chamber 24 is lower than the external pressure of the container 2. The second intake hole 25 is covered from the inside of the air chamber 24 so as to open 25. That is, the outer valve portion constitutes an air suction valve 27 that introduces or shuts off the outside air into the air chamber 24. The inner valve portion communicates the air chamber 24 and the mixing chamber when the internal pressure is higher than the external pressure of the container 2, and connects the air chamber 24 and the mixing chamber when the internal pressure is lower than the external pressure of the container 2. It is in contact with the collar of the liquid piston, which will be described later, so as to cut off the communication state. That is, the air discharge valve 28 that supplies or pushes out the air of the air chamber 24 to the mixing chamber is configured by the inner valve portion.
 また、半径方向でピストンヘッド22の中心部には、容器2とは反対側(図1での上側)に延びている円筒部29が一体に形成されている。円筒部29の一方の端部(図1での上端部)に、前述したノズル体9に形成されている内筒部12が嵌合すると共に、ネットホルダ14の下端部が嵌合している。図1に示す例では、円筒部29の一方の端部の外周面に凸条部が形成されると共に、内筒部12の内周面に凸条部に嵌まり合う凹溝部が形成されている。これら凸条部と凹溝部との嵌め合いにより、円筒部29と内筒部12とが強固に連結されている。なお、円筒部29と内筒部12とは、ネジ嵌合やとまり嵌めなどの手段で連結してもよい。 Further, a cylindrical portion 29 extending to the opposite side (upper side in FIG. 1) from the container 2 is integrally formed at the central portion of the piston head 22 in the radial direction. The inner cylinder portion 12 formed in the nozzle body 9 described above is fitted to one end of the cylindrical portion 29 (the upper end in FIG. 1), and the lower end of the net holder 14 is fitted. .. In the example shown in FIG. 1, a ridge portion is formed on the outer peripheral surface of one end of the cylindrical portion 29, and a concave groove portion that fits into the ridge portion is formed on the inner peripheral surface of the inner cylinder portion 12. There is. The cylindrical portion 29 and the inner cylinder portion 12 are firmly connected by the fitting of the convex portion and the concave groove portion. The cylindrical portion 29 and the inner cylinder portion 12 may be connected by means such as screw fitting or clasp fitting.
 円筒部29の一方の端部の内径は、ネットホルダ14の下端部の外径より僅かに大きく形成されている。また、円筒部29の一方の端部のうち、上述した内径の大きい部分の下側の内周面に、半径方向で内側に突出した突起部30が複数、形成されている。その突起部30は流路P内でのネットホルダ14の位置を規定すると共に、ノズル体9が押し込まれた場合に後述する軸状部材の一端部に接触して軸状部材を押し動かするものである。更に、突起部30は流路P内での内容物の流動を特には阻害しないために、その内径はネットホルダ14の内径程度の内径に設定されている。そして、図1に示すように、ノズル体9が上死点位置にある場合に、後述する軸状部材の弁体の上端部と当該上端部に接触する突起部30の側面との間にクリアランスC1が設定されている。ネットホルダ14の下端部は上述した円筒部29の一方の端部のうち、内径の大きい部分と突起部30とによって形成された嵌合部に嵌まり合うようになっている。こうして空気ピストン21とノズル体9とは一体化され、それらの間の流路P内にネットホルダ14が保持されている。したがって、ノズル体9における天面部10を容器2側に押圧してノズル体9を押し下げると、空気ピストン21はノズル体9と共に容器2側に移動し、空気シリンダ18と空気ピストン21とによって区画された空気室24の容積あるいは空気室24の実質的な内容積が減少させられる。そして、空気室24の内部が加圧され、空気室24の内部の空気が空気室24から押し出される。また、突起部30は、空気ピストン21が上述したクリアランスC1の分、容器2側に押し下げられた場合に、軸状部材の弁体の上端部に接触して容器2側に軸状部材を押し下げるようになっている。 The inner diameter of one end of the cylindrical portion 29 is formed to be slightly larger than the outer diameter of the lower end portion of the net holder 14. Further, among one end of the cylindrical portion 29, a plurality of protrusions 30 protruding inward in the radial direction are formed on the inner peripheral surface below the portion having a large inner diameter described above. The protrusion 30 defines the position of the net holder 14 in the flow path P, and when the nozzle body 9 is pushed in, it contacts one end of the shaft-shaped member described later and pushes the shaft-shaped member. Is. Further, the protrusion 30 is set to an inner diameter of about the inner diameter of the net holder 14 so that the protrusion 30 does not particularly hinder the flow of the contents in the flow path P. Then, as shown in FIG. 1, when the nozzle body 9 is at the top dead center position, a clearance is provided between the upper end portion of the valve body of the shaft-shaped member described later and the side surface of the protrusion 30 that contacts the upper end portion. C1 is set. The lower end portion of the net holder 14 is adapted to fit into the fitting portion formed by the portion having a large inner diameter and the protrusion portion 30 of one end portion of the cylindrical portion 29 described above. In this way, the air piston 21 and the nozzle body 9 are integrated, and the net holder 14 is held in the flow path P between them. Therefore, when the top surface portion 10 of the nozzle body 9 is pressed toward the container 2 side and the nozzle body 9 is pushed down, the air piston 21 moves to the container 2 side together with the nozzle body 9 and is partitioned by the air cylinder 18 and the air piston 21. The volume of the air chamber 24 or the substantial internal volume of the air chamber 24 is reduced. Then, the inside of the air chamber 24 is pressurized, and the air inside the air chamber 24 is pushed out from the air chamber 24. Further, when the air piston 21 is pushed down toward the container 2 by the clearance C1 described above, the protrusion 30 contacts the upper end of the valve body of the shaft-shaped member and pushes down the shaft-shaped member toward the container 2. It has become like.
 円筒部29の他方の端部(図1での下端部)に、液体ポンプの液体ピストン31が嵌合されている。液体ピストン31は図1に示すように、軸線方向に延びる筒状に形成されており、その一方の端部(図1での上端部)が円筒部29の他方の端部に嵌合されている。具体的には、円筒部29の他方の端部に液体ピストン31の一方の端部が嵌まり合う軸線方向に窪んだ凹部が形成されている。その凹部の内径は液体ピストン31の一方の端部が嵌まり合う程度の内径に設定されている。また、それらの凹部と液体ピストン31の一方の端部との間には、図示しない空気流路が形成されている。軸線方向で円筒部29の他方の端部と液体ピストン31との嵌合部と、円筒部29の内部に嵌合されたネットホルダ14との間の空間が、空気と液状の内容物とが混合される混合室32となっている。上述した空気流路の一方の端部は上述した円筒部29内の流路Pに連通し、他方の端部は液体ピストン31と空気ピストン21とによって区画された空間に連通している。 The liquid piston 31 of the liquid pump is fitted to the other end of the cylindrical portion 29 (the lower end in FIG. 1). As shown in FIG. 1, the liquid piston 31 is formed in a tubular shape extending in the axial direction, and one end portion (upper end portion in FIG. 1) is fitted to the other end portion of the cylindrical portion 29. There is. Specifically, the other end of the cylindrical portion 29 is formed with a recess recessed in the axial direction into which one end of the liquid piston 31 fits. The inner diameter of the recess is set to such an inner diameter that one end of the liquid piston 31 fits. Further, an air flow path (not shown) is formed between these recesses and one end of the liquid piston 31. The space between the fitting portion between the other end of the cylindrical portion 29 and the liquid piston 31 in the axial direction and the net holder 14 fitted inside the cylindrical portion 29 is filled with air and liquid contents. It is a mixing chamber 32 to be mixed. One end of the air flow path described above communicates with the flow path P in the cylindrical portion 29 described above, and the other end communicates with the space partitioned by the liquid piston 31 and the air piston 21.
 液体ピストン31の外周面には、半径方向で外側に突出する鍔33が形成されている。その鍔33は上述したように、空気ピストン21および液体ピストン31の下限位置を規制する。また、図1に示すように、ノズル体9が上死点にある状態では、鍔33の上面に空気排出弁28が接触している。液体ピストン31の他方の端部は、液密状態を維持して軸線方向(図1での上下方向)に摺動するように、液体シリンダ19の内周面に嵌合されている。したがって、液体シリンダ19と液体ピストン31とによって上述した液体ポンプが構成され、液体シリンダ19と液体ピストン31とによって形成される筒状の空間が液体室34となっている。上述したように、ノズル体9における天面部10を容器2側に押圧してノズル体9を押し下げると、液体ピストン31は空気ピストン21と共に容器2側に移動し、上記の液体室34の容積あるいは液体室34の実質的な内容積が減少させられる。そして、液体室34の内部が加圧され、液体室34の内部の液体が液体室34から押し出されるようになっている。 A collar 33 protruding outward in the radial direction is formed on the outer peripheral surface of the liquid piston 31. As described above, the collar 33 regulates the lower limit positions of the air piston 21 and the liquid piston 31. Further, as shown in FIG. 1, when the nozzle body 9 is at the top dead center, the air discharge valve 28 is in contact with the upper surface of the collar 33. The other end of the liquid piston 31 is fitted to the inner peripheral surface of the liquid cylinder 19 so as to maintain a liquidtight state and slide in the axial direction (vertical direction in FIG. 1). Therefore, the liquid pump described above is configured by the liquid cylinder 19 and the liquid piston 31, and the tubular space formed by the liquid cylinder 19 and the liquid piston 31 is the liquid chamber 34. As described above, when the top surface portion 10 of the nozzle body 9 is pressed toward the container 2 side and the nozzle body 9 is pushed down, the liquid piston 31 moves to the container 2 side together with the air piston 21, and the volume of the liquid chamber 34 described above or The substantial internal volume of the liquid chamber 34 is reduced. Then, the inside of the liquid chamber 34 is pressurized, and the liquid inside the liquid chamber 34 is pushed out from the liquid chamber 34.
 また、液体室34の内部には、ノズル体9および各ピストンを容器2側に押し下げる力を解除した場合に、これらノズル体9および各ピストンを元の位置に復帰移動させる復帰機構と、ノズル体9のポンピングに応じて液体室34を容器2の内部に連通し、また、液体室34を混合室32および流路Pに連通する弁機構とが配置されている。先ず、復帰機構について説明すると、復帰機構は、ここに示す実施形態では、コイルスプリング(以下、単にスプリングと記す。)35によってノズル体9および各ピストン21,31を復帰移動させるように構成されている。前述した液体ピストン31の他方の端部にスプリング35の一端部を嵌合させるばね受け部が形成され、これと同様のばね受け部が液体シリンダ19の底部内周部に設けられている。スプリング35は、これらのばね受け部の間に圧縮した状態で配置されている。したがって液体ピストン31には、容器2側とは反対側(図1の上側)に押し上げる弾性力が常時作用している。 Further, inside the liquid chamber 34, a return mechanism for returning and moving the nozzle body 9 and each piston to the original position when the force for pushing down the nozzle body 9 and each piston toward the container 2 side is released, and a nozzle body. A valve mechanism for communicating the liquid chamber 34 with the inside of the container 2 according to the pumping of 9 and communicating the liquid chamber 34 with the mixing chamber 32 and the flow path P is arranged. First, the return mechanism will be described. In the embodiment shown here, the return mechanism is configured to return and move the nozzle body 9 and the pistons 21 and 31 by a coil spring (hereinafter, simply referred to as a spring) 35. There is. A spring receiving portion for fitting one end of the spring 35 is formed at the other end of the liquid piston 31 described above, and a similar spring receiving portion is provided on the inner peripheral portion of the bottom of the liquid cylinder 19. The spring 35 is arranged in a compressed state between these spring receiving portions. Therefore, an elastic force that pushes up the liquid piston 31 to the side opposite to the container 2 side (upper side in FIG. 1) is constantly acting.
 上述した弁機構について説明すると、液体シリンダ19の中心軸線に沿って軸状部材36が配置されている。軸状部材36の一端部(図1での上端部)は、液体ピストン31の一方の端部から突出している。その軸状部材36の一端部には弁体37が一体に形成されている。この弁体37は、軸状部材36の一端部側に向けて外径が次第に増大するテーパー状の部分である。これに対して、液体ピストン31の一方の端部には、半径方向で内側に向けてつまり流路Pの中心側に向けて凸となった環状凸部が形成されている。その環状凸部は、弁体37よりも容器2側に位置しており、その最小内径は、弁体37の外径より小さいことにより弁体37のテーパー面に係合するように設定されている。また環状凸部の上面(弁体37のテーパー面を向く面)は、内径が上側で次第に大きくなるテーパー状に形成されている。したがって、この環状凸部は、弁体37に図1の下側から接触して流路Pおよび液体室34を液密状態に閉じるように構成されている。すなわち、その環状凸部が弁座部38となっている。 Explaining the valve mechanism described above, the shaft-shaped member 36 is arranged along the central axis of the liquid cylinder 19. One end of the shaft-shaped member 36 (the upper end in FIG. 1) protrudes from one end of the liquid piston 31. A valve body 37 is integrally formed at one end of the shaft-shaped member 36. The valve body 37 is a tapered portion whose outer diameter gradually increases toward one end side of the shaft-shaped member 36. On the other hand, at one end of the liquid piston 31, an annular convex portion is formed which is convex inward in the radial direction, that is, toward the center side of the flow path P. The annular convex portion is located closer to the container 2 than the valve body 37, and its minimum inner diameter is set to engage with the tapered surface of the valve body 37 by being smaller than the outer diameter of the valve body 37. There is. Further, the upper surface of the annular convex portion (the surface of the valve body 37 facing the tapered surface) is formed in a tapered shape in which the inner diameter gradually increases on the upper side. Therefore, this annular convex portion is configured to come into contact with the valve body 37 from the lower side of FIG. 1 to close the flow path P and the liquid chamber 34 in a liquidtight state. That is, the annular convex portion is the valve seat portion 38.
 軸状部材36の弁体37とは反対側の他方の端部(図1での下端部)は、図1に示す例では、下向きの矢じり形状もしくは断面三角形状になっている。当該他方の端部は液体シリンダ19の底部に設けられている筒状の係止体39の内部に挿入され、また、係止体39の内周面に接触し、かつ、その状態で係止体39の内周面を摺動するようになっている。より具体的には、軸状部材36の下端部の外径は、係止体39の内周面の内径より僅かに大きく設定されており、その外径を小さくするように弾性変形させられて係止体39の内部に挿入されている。つまり、軸状部材36の他方の端部では、その外周面を係止体39の内周面に接触させるように弾性力が生じており、軸状部材36を軸線方向に移動させる荷重が軸状部材36に特には作用していない状態では、その弾性力や係止体39の内周面と軸状部材36の他方の端部との間の摩擦力によって軸線方向への移動が阻止されている。つまり、軸状部材36の他方の端部が係止体39に対する係合部40となっている。 The other end (lower end in FIG. 1) of the shaft-shaped member 36 opposite to the valve body 37 has a downward arrowhead shape or a triangular cross section in the example shown in FIG. The other end is inserted into the tubular locking body 39 provided at the bottom of the liquid cylinder 19, and is in contact with the inner peripheral surface of the locking body 39 and is locked in that state. It is designed to slide on the inner peripheral surface of the body 39. More specifically, the outer diameter of the lower end portion of the shaft-shaped member 36 is set to be slightly larger than the inner diameter of the inner peripheral surface of the locking body 39, and is elastically deformed so as to reduce the outer diameter. It is inserted inside the locking body 39. That is, at the other end of the shaft-shaped member 36, an elastic force is generated so that the outer peripheral surface thereof comes into contact with the inner peripheral surface of the locking body 39, and the load for moving the shaft-shaped member 36 in the axial direction is the shaft. When the shape member 36 is not particularly acting, the movement in the axial direction is prevented by its elastic force or the frictional force between the inner peripheral surface of the locking body 39 and the other end of the shaft-shaped member 36. ing. That is, the other end of the shaft-shaped member 36 is the engaging portion 40 with respect to the locking body 39.
 係止体39の一端部(図1での上端部)の内周部は、上記の矢じり形状あるいは断面三角形状に形成されており、軸状部材36の係合部40に生じている顎の部分に引っ掛かる鉤部41となっている。これにより、係止体39に対して軸状部材36が抜け止めされ、ノズル体9および各ピストン21,31のそれ以上の移動が阻止される。この位置が、各ピストン21,31が元の位置に復帰移動させられた場合におけるノズル体9および各ピストン21,31のストロークエンドすなわち上死点である。軸線方向で係止体39の下側の側面には、液状の内容物の流路となる開口溝42が円周方向に一定の間隔で複数形成されている。係止体39の内側は以下に説明するように容器2の内部に連通しているため、係止体39の内側から開口溝42を介してその外側の液体室34に内容物が流動するようになっている。 The inner peripheral portion of one end (upper end in FIG. 1) of the locking body 39 is formed in the above-mentioned arrowhead shape or triangular cross section, and is formed in the engaging portion 40 of the shaft-shaped member 36. It is a hook portion 41 that is caught in the portion. As a result, the shaft-shaped member 36 is prevented from coming off with respect to the locking body 39, and further movement of the nozzle body 9 and the pistons 21 and 31 is prevented. This position is the stroke end, that is, top dead center of the nozzle body 9 and the pistons 21 and 31 when the pistons 21 and 31 are returned to their original positions. A plurality of opening grooves 42, which serve as flow paths for the liquid contents, are formed on the lower side surface of the locking body 39 in the axial direction at regular intervals in the circumferential direction. Since the inside of the locking body 39 communicates with the inside of the container 2 as described below, the contents flow from the inside of the locking body 39 to the liquid chamber 34 outside the locking body 39 through the opening groove 42. It has become.
 液体用シリンダ19の底部には、容器2の内部から液体室34の内部に内容物を吸い上げて充填する場合に開となり、液体室34から内容物を押し出す場合に閉となる逆止弁が設けられている。上記の逆止弁は、ここに示す例では、ボール弁43によって構成されており、液体用シリンダ19の底部に、内径が上側で次第に大きくなるテーパー状の弁座部44が形成されている。その弁座部44のテーパー面に対して軸線方向で弁座部44の上側から接触するようにボール45が配置されている。さらに、液体用シリンダ19の底部には、容器2の内部に充填されている内容物を液体室34の内部に導入するためのチューブ46が連結されている。そのチューブ46の先端部は容器2の図示しない底部付近にまで延びている。 The bottom of the liquid cylinder 19 is provided with a check valve that opens when the contents are sucked up and filled into the liquid chamber 34 from the inside of the container 2 and closes when the contents are pushed out from the liquid chamber 34. Has been done. In the example shown here, the check valve is composed of a ball valve 43, and a tapered valve seat portion 44 having an inner diameter gradually increasing on the upper side is formed at the bottom of the liquid cylinder 19. The ball 45 is arranged so as to come into contact with the tapered surface of the valve seat portion 44 from above the valve seat portion 44 in the axial direction. Further, a tube 46 for introducing the contents filled inside the container 2 into the inside of the liquid chamber 34 is connected to the bottom of the liquid cylinder 19. The tip of the tube 46 extends to the vicinity of the bottom of the container 2 (not shown).
 次に、この発明に係るポンプフォーマー1の作用について説明する。ノズル体9に対して、当該ノズル体9を押し下げる力が特には作用していない場合には、図1に示すように、ノズル体9は上死点にある。図1に示す状態では、各ピストン21,31はスプリング35の弾性力によって各シリンダ18,19内の上方(図1での上方)に押し上げられている。そのため、軸状部材36の弁体37に液体ピストン31の一方の端部に形成された弁座部38が押し付けられており、液体室34と、混合室32および流路Pとの連通は遮断されている。また、軸状部材36の係合部40は係止体39の鉤部41に引っ掛かって係止体39に対して抜け止めされている。ボール弁43のボール45は液体室34内の内容物によってあるいは自重によって弁座部44に接触しており、液体室34と容器2の内部との連通は遮断されている。更に、空気シリンダ18に形成されている第1吸気孔20は空気ピストン21の摺動部23によって閉じられている。そして、空気ピストン21が軸線方向に移動しないことにより、空気室24の容積は特には変化しないので、空気吸入弁27によって第2吸気孔25は覆った状態に維持され、また、空気排出弁28は液体ピストン31の鍔33に接触した状態に維持される。つまり、空気吸入弁27および空気排出弁28は共に閉じている。 Next, the operation of the pump former 1 according to the present invention will be described. When the force for pushing down the nozzle body 9 does not particularly act on the nozzle body 9, the nozzle body 9 is at top dead center as shown in FIG. In the state shown in FIG. 1, the pistons 21 and 31 are pushed upward (upward in FIG. 1) in the cylinders 18 and 19 by the elastic force of the spring 35. Therefore, the valve seat 38 formed at one end of the liquid piston 31 is pressed against the valve body 37 of the shaft-shaped member 36, and the communication between the liquid chamber 34 and the mixing chamber 32 and the flow path P is blocked. Has been done. Further, the engaging portion 40 of the shaft-shaped member 36 is caught by the hook portion 41 of the locking body 39 and is prevented from coming off from the locking body 39. The ball 45 of the ball valve 43 is in contact with the valve seat portion 44 by the contents in the liquid chamber 34 or by its own weight, and the communication between the liquid chamber 34 and the inside of the container 2 is cut off. Further, the first intake hole 20 formed in the air cylinder 18 is closed by the sliding portion 23 of the air piston 21. Since the volume of the air chamber 24 does not change in particular because the air piston 21 does not move in the axial direction, the second intake hole 25 is maintained in a state of being covered by the air intake valve 27, and the air discharge valve 28 is also covered. Is kept in contact with the collar 33 of the liquid piston 31. That is, both the air intake valve 27 and the air discharge valve 28 are closed.
 図1に示す状態からノズル体9を僅かに押し下げると、その押し下げ力を受けて各ピストン21,31が容器2側に押し下げられる。図2に、ノズル体9を容器2側に僅かに押し下げた状態を示してある。図2に示すように、軸状部材36の係合部40は係止体39の内周面に上述した弾性力や摩擦力などによって押し付けられている。また、その時点では、上記の弾性力や摩擦力以外の力は軸状部材36に対して特には作用していない。そのため、図2に示す状態では、軸状部材36は係止体39に固定され、軸状部材36は各シリンダ18,19に対して停止した状態を維持する。また、軸状部材36は液体ピストン31に対しては相対移動する。このように軸状部材36と液体ピストン31とが相対移動する状態は、空気ピストン21が更に押し下げられて円筒部29の内周面に形成された突起部30が軸状部材36の弁体37に接触するまで、つまり上述したクリアランスC1の分、液体ピストン31が容器2側に移動するまで生じる。 When the nozzle body 9 is slightly pushed down from the state shown in FIG. 1, the pistons 21 and 31 are pushed down toward the container 2 by receiving the pushing force. FIG. 2 shows a state in which the nozzle body 9 is slightly pushed down toward the container 2. As shown in FIG. 2, the engaging portion 40 of the shaft-shaped member 36 is pressed against the inner peripheral surface of the locking body 39 by the above-mentioned elastic force, frictional force, or the like. Further, at that time, a force other than the elastic force and the frictional force described above does not particularly act on the shaft-shaped member 36. Therefore, in the state shown in FIG. 2, the shaft-shaped member 36 is fixed to the locking body 39, and the shaft-shaped member 36 maintains a stopped state with respect to the cylinders 18 and 19. Further, the shaft-shaped member 36 moves relative to the liquid piston 31. In the state where the shaft-shaped member 36 and the liquid piston 31 move relative to each other in this way, the protrusion 30 formed on the inner peripheral surface of the cylindrical portion 29 by further pushing down the air piston 21 is the valve body 37 of the shaft-shaped member 36. That is, until the liquid piston 31 moves to the container 2 side by the amount of the clearance C1 described above.
 また、図3に、ノズル体9を僅かに押し下げた場合におけるポンプフォーマー1の部分拡大図を示してある。上述したように液体ピストン31が押し下げられると、図3に示すように、軸状部材36の弁体37から液体ピストン31の弁座部38が離隔する。これにより軸状部材36と弁座部38との間に隙間が生じて液体室34と混合室32とが連通する。液体ピストン31が押し下げられた分、スプリング35が収縮すると共に、液体室34の内容積が減少し、それによって液体室34の内圧が増大する。そして、ボール弁43のボール45が弁座部44に更に押し付けられ、液体室34と容器2の内部との連通は遮断された状態を維持し、液体室34の内部に充填されている内容物が軸状部材36と弁座部38との間の隙間を流動して混合室32に更に押し出される。 Further, FIG. 3 shows a partially enlarged view of the pump former 1 when the nozzle body 9 is slightly pushed down. When the liquid piston 31 is pushed down as described above, as shown in FIG. 3, the valve seat portion 38 of the liquid piston 31 is separated from the valve body 37 of the shaft-shaped member 36. As a result, a gap is created between the shaft-shaped member 36 and the valve seat portion 38, and the liquid chamber 34 and the mixing chamber 32 communicate with each other. As the liquid piston 31 is pushed down, the spring 35 contracts and the internal volume of the liquid chamber 34 decreases, whereby the internal pressure of the liquid chamber 34 increases. Then, the ball 45 of the ball valve 43 is further pressed against the valve seat portion 44, the communication between the liquid chamber 34 and the inside of the container 2 is maintained in a blocked state, and the contents filled in the inside of the liquid chamber 34. Flows through the gap between the shaft-shaped member 36 and the valve seat 38 and is further pushed into the mixing chamber 32.
 容器2側に空気ピストン21が押し下げられると、摺動部23が第1吸気孔20の下側に移動し、ピストンヘッド22の上側の空間が第1吸気孔20を介して容器2の外部に連通する。また、各ピストン21,31が押し下げられた分、空気室24の内容積が減少する。これにより空気室24の内圧が増大するため、第2吸気孔25に空気吸入弁27が押し付けられる。一方、空気排出弁28は液体ピストン31の鍔33から離隔させられる。その結果、空気室24の内部の空気が空気排出弁28から流出し、また、円筒部29と液体ピストン31との嵌合部に形成された空気流路を流動して混合室32に押し出される。 When the air piston 21 is pushed down toward the container 2, the sliding portion 23 moves to the lower side of the first intake hole 20, and the space above the piston head 22 moves to the outside of the container 2 via the first intake hole 20. Communicate. Further, the internal volume of the air chamber 24 is reduced by the amount that the pistons 21 and 31 are pushed down. As a result, the internal pressure of the air chamber 24 increases, so that the air suction valve 27 is pressed against the second intake hole 25. On the other hand, the air discharge valve 28 is separated from the collar 33 of the liquid piston 31. As a result, the air inside the air chamber 24 flows out from the air discharge valve 28, and also flows through the air flow path formed in the fitting portion between the cylindrical portion 29 and the liquid piston 31 and is pushed out to the mixing chamber 32. ..
 ところで、液体室34内の内容物は軸状部材36の軸状部分と弁座部38との隙間、および、円筒部29と弁体37との間の隙間が狭いことにより流速が増大された状態で混合室32に供給される。空気室24から押し出された空気は、上述した空気流路が狭いことにより流速が増大された状態で混合室32に供給される。したがって、混合室32では、空気と液状の内容物とが撹拌された状態となって泡が形成される。 By the way, the flow velocity of the contents in the liquid chamber 34 is increased due to the narrow gap between the shaft-shaped portion of the shaft-shaped member 36 and the valve seat portion 38 and the gap between the cylindrical portion 29 and the valve body 37. It is supplied to the mixing chamber 32 in a state. The air extruded from the air chamber 24 is supplied to the mixing chamber 32 in a state where the flow velocity is increased due to the narrow air flow path described above. Therefore, in the mixing chamber 32, air and liquid contents are agitated to form bubbles.
 図2や図3に示す状態からノズル体9を更に押し下げると、軸状部材36の弁体37に突起部30が接触する。そして、弁体37に突起部30が接触している状態で、更にノズル体9を押し下げると、各ピストン21,31によって軸状部材36が容器2側に押し下げられる。つまり、各ピストン21,31と一体となって軸状部材36が移動する。なお、この状態では、軸状部材36は各シリンダ18,19に対して相対移動する。軸状部材36の係合部40は係止体39の内周面に押し付けられた状態で容器2側に摺動する。こうして、空気室24の内容積は更に減少し、その内部に充填されていた空気は空気室24から混合室32に押し出される。これと同様に、液体室34の内部の内容物は液体室34から混合室32に押し出される。混合室32では、上述したように空気と内容物とが撹拌されて泡が形成され、その泡は空気室24および液体室34から押し出されてくる空気および内容物によって混合室32からネットホルダ14に向かって押し出される。そして、上述した泡はネットホルダ14を通過することによって、きめ細かく均質にされ、その状態で流路Pを流動してノズル11から外部に吐出される。 When the nozzle body 9 is further pushed down from the state shown in FIGS. 2 and 3, the protrusion 30 comes into contact with the valve body 37 of the shaft-shaped member 36. Then, when the nozzle body 9 is further pushed down while the protrusion 30 is in contact with the valve body 37, the shaft-shaped member 36 is pushed down toward the container 2 by the pistons 21 and 31. That is, the shaft-shaped member 36 moves integrally with the pistons 21 and 31. In this state, the shaft-shaped member 36 moves relative to each of the cylinders 18 and 19. The engaging portion 40 of the shaft-shaped member 36 slides toward the container 2 in a state of being pressed against the inner peripheral surface of the locking body 39. In this way, the internal volume of the air chamber 24 is further reduced, and the air filled in the air chamber 24 is pushed out from the air chamber 24 to the mixing chamber 32. Similarly, the contents inside the liquid chamber 34 are extruded from the liquid chamber 34 into the mixing chamber 32. In the mixing chamber 32, as described above, the air and the contents are agitated to form bubbles, and the bubbles are pushed out from the air chamber 24 and the liquid chamber 34 by the air and the contents pushed out from the mixing chamber 32 to the net holder 14. Pushed towards. Then, the above-mentioned bubbles pass through the net holder 14 to be finely homogenized, and in that state, flow through the flow path P and are discharged from the nozzle 11 to the outside.
 上記のようにして各ピストン21,31が容器2側に移動して空気シリンダ18と液体シリンダ19の境界部分に液体ピストン31の鍔33が接触すると、ノズル体9および各ピストン21,31のそれ以上の移動(押し込み)が阻止される。この位置がノズル体9および各ピストン21,31の下死点側のストロークエンドであり、この状態を図4に示してある。そして内容物が吐出されて空気室24および液体室34の内部の圧力が下がり、外部の圧力と平衡になると、内容物の吐出が止まる。 When the pistons 21 and 31 move to the container 2 side as described above and the collar 33 of the liquid piston 31 comes into contact with the boundary portion between the air cylinder 18 and the liquid cylinder 19, it of the nozzle body 9 and the pistons 21 and 31. The above movement (pushing) is prevented. This position is the stroke end on the bottom dead center side of the nozzle body 9 and the pistons 21 and 31, and this state is shown in FIG. Then, when the contents are discharged and the pressure inside the air chamber 24 and the liquid chamber 34 drops and becomes in equilibrium with the external pressure, the discharge of the contents stops.
 図5A~図5Cは、ノズル体9および各ピストン21,31が下死点から上死点に復帰移動する過程を模式的に示す図であり、図5Aは各ピストン21,31が下死点に位置している状態を示す部分拡大図であり、図5Bはスプリング35の弾性力によって各ピストン21,31が容器2の口部3側に僅かに押し上げられた状態を示す部分拡大図であり、図5Cはスプリング35の弾性力によって各ピストン21,31が押し上げられて弁体37に弁座部38が押し付けられた状態を示す部分拡大図である。各ピストン21,31が下死点に位置している場合には、図5Aに示すように、軸状部材36の弁体37と液体ピストン31の弁座部38とは離隔している。 5A to 5C are diagrams schematically showing the process of the nozzle body 9 and the pistons 21 and 31 returning from the bottom dead center to the top dead center, and FIG. 5A shows the process in which the pistons 21 and 31 return to the top dead center. FIG. 5B is a partially enlarged view showing a state in which the pistons 21 and 31 are slightly pushed up toward the mouth 3 side of the container 2 by the elastic force of the spring 35. FIG. 5C is a partially enlarged view showing a state in which the pistons 21 and 31 are pushed up by the elastic force of the spring 35 and the valve seat portion 38 is pressed against the valve body 37. When the pistons 21 and 31 are located at the bottom dead center, as shown in FIG. 5A, the valve body 37 of the shaft-shaped member 36 and the valve seat 38 of the liquid piston 31 are separated from each other.
 図5Aに示す状態からノズル体9に対する押し下げ力を解除すると、スプリング35の弾性力によってノズル体9および各ピストン21,31が容器2の口部3側に復帰移動を開始する。また、スプリング35の弾性力によって各ピストン21,31が復帰移動を開始した時点では、軸状部材36に対しては、上記の弾性力や摩擦力以外の力は特には作用していない。そのため、軸状部材36は係止体39に保持されて固定された状態つまり、各シリンダ18,19に対しては停止した状態となっている。軸状部材36は液体ピストン31に対しては相対移動する。そのため、図5Bに示すように、軸状部材36の一端部に形成された弁体37に対して液体ピストン31の一方の端部に形成された弁座部38が接近する。 When the pushing force on the nozzle body 9 is released from the state shown in FIG. 5A, the nozzle body 9 and the pistons 21 and 31 start returning to the mouth 3 side of the container 2 due to the elastic force of the spring 35. Further, at the time when the pistons 21 and 31 start to return and move due to the elastic force of the spring 35, no force other than the above elastic force and frictional force is particularly acting on the shaft-shaped member 36. Therefore, the shaft-shaped member 36 is held and fixed to the locking body 39, that is, the cylinders 18 and 19 are stopped. The shaft-shaped member 36 moves relative to the liquid piston 31. Therefore, as shown in FIG. 5B, the valve seat portion 38 formed at one end of the liquid piston 31 approaches the valve body 37 formed at one end of the shaft-shaped member 36.
 こうして液体ピストン31が容器2の口部3側に復帰移動すると、液体室34の内容積が増大するので、その内部の圧力が大気圧よりも低い、負圧になる。図5Bに示す状態では、軸状部材36の弁体37に対して液体ピストン31の弁座部38が未だ接触していないので、軸状部材36と弁座部38との間に隙間が生じている。したがって、液体室34は上記の隙間を介して混合室32および流路Pに連通し、またノズル11に連通している。そのため、上述した負圧に起因する吸引力によってノズル11から液体室34に到る流路P内に残留している泡状の内容物の少なくとも一部が液体室34の内部に吸い戻される。このような、液体室34の内部に流路P内の泡状の内容物を吸い戻す動作状態は、スプリング35の弾性力によってノズル体9および各ピストン21,31が復帰移動している場合であってかつ液体室34と流路Pとの連通状態が遮断されるまで継続して生じる。具体的には、軸線方向で弁座部38の上端部と、弁体37のテーパー面のうち、前記上端部に接触する部分とが互いに接触するまで生じる。また、上記の負圧によって弁座部44からボール45が離隔して容器2の内部に充填されている液状の内容物がチューブ46を介して液体室34の内部に吸い上げられる。なお、泡状の内容物は液状の内容物と比較して軽いため、上述した負圧によって液体室34の内部に吸い戻されやすく、そのため、液体室34の内部に吸い戻される泡状の内容物の量は液状の内容物と比較して多くなる。なお、下死点から上死点に向かって液体ピストン31が復帰移動する場合における、上述した軸線方向で弁座部38の上端部と、弁体37のテーパー面のうち、前記上端部に接触する部分との間のクリアランスC2がこの発明の実施形態における不動域、および、ピストンの移動長さに相当している。また、クリアランスC2は上述したクリアランスC1と同じ長さになっている。 When the liquid piston 31 returns to the mouth 3 side of the container 2 in this way, the internal volume of the liquid chamber 34 increases, so that the pressure inside the liquid chamber 34 becomes a negative pressure lower than the atmospheric pressure. In the state shown in FIG. 5B, since the valve seat 38 of the liquid piston 31 has not yet come into contact with the valve body 37 of the shaft member 36, a gap is generated between the shaft member 36 and the valve seat 38. ing. Therefore, the liquid chamber 34 communicates with the mixing chamber 32 and the flow path P through the above gap, and also communicates with the nozzle 11. Therefore, at least a part of the foamy contents remaining in the flow path P from the nozzle 11 to the liquid chamber 34 is sucked back into the liquid chamber 34 by the suction force caused by the negative pressure described above. The operating state of sucking back the foamy contents in the flow path P into the liquid chamber 34 is when the nozzle body 9 and the pistons 21 and 31 are returned and moved by the elastic force of the spring 35. It continues until the communication state between the liquid chamber 34 and the flow path P is cut off. Specifically, it occurs until the upper end portion of the valve seat portion 38 and the portion of the tapered surface of the valve body 37 that contacts the upper end portion come into contact with each other in the axial direction. Further, the ball 45 is separated from the valve seat portion 44 by the above negative pressure, and the liquid content filled in the inside of the container 2 is sucked up into the inside of the liquid chamber 34 through the tube 46. Since the foamy content is lighter than the liquid content, it is easily sucked back into the liquid chamber 34 by the above-mentioned negative pressure, and therefore, the foamy content sucked back into the liquid chamber 34. The amount of material is larger than that of the liquid content. When the liquid piston 31 returns and moves from the bottom dead center to the top dead center, the upper end portion of the valve seat portion 38 and the upper end portion of the tapered surface of the valve body 37 are in contact with each other in the axial direction described above. The clearance C2 between the parts and the moving portion corresponds to the immovable region in the embodiment of the present invention and the moving length of the piston. Further, the clearance C2 has the same length as the clearance C1 described above.
 また、スプリング35の弾性力によって空気ピストン21が容器2の口部3側に復帰移動すると、それに伴って空気室24の内容積が増大するので、その内部の圧力が低下する。これにより、空気室24の内圧が大気圧よりも低い負圧になる。その負圧によって空気排出弁28は液体ピストン31の鍔33に押し付けられる。一方、空気吸入弁27は負圧によって空気室24側に変位して第2吸気孔25から離隔する。したがって、上記の負圧によって容器2の外部の空気は、ガイドステム部8と外筒部13との間の空気流路、および、ガイドステム部8と内筒部12との間の空気流路などを介してピストンヘッド22の上側の空間に至り、その空間から第2吸気孔25を介して空気室24に吸引される。 Further, when the air piston 21 returns to the mouth 3 side of the container 2 due to the elastic force of the spring 35, the internal volume of the air chamber 24 increases accordingly, so that the pressure inside the air chamber 24 decreases. As a result, the internal pressure of the air chamber 24 becomes a negative pressure lower than the atmospheric pressure. The negative pressure causes the air discharge valve 28 to be pressed against the collar 33 of the liquid piston 31. On the other hand, the air suction valve 27 is displaced toward the air chamber 24 by negative pressure and is separated from the second intake hole 25. Therefore, due to the above negative pressure, the air outside the container 2 is allowed to flow through the air flow path between the guide stem portion 8 and the outer cylinder portion 13 and between the guide stem portion 8 and the inner cylinder portion 12. It reaches the space above the piston head 22 via such means, and is sucked into the air chamber 24 from that space through the second intake hole 25.
 スプリング35の弾性力によってノズル体9および各ピストン21,31が容器2の口部3側に更に復帰移動すると、具体的には、上述したクリアランスC2と同じ長さ、容器2の口部3側に各ピストン21,31が押し上げられると、軸状部材36の弁体37に液体ピストン31の弁座部38が接触する。この状態を図5Cに示してある。図5Cに示す状態では、液体室34と流路Pとの連通が遮断されるため、上述した負圧によるノズル11側からの吸引は停止する。一方、ボール弁43を介した液体室34と容器2の内部との連通状態は遮断されない。そのため、前記負圧によって容器2の内部に充填されている液状の内容物はチューブ46を介して液体室34の内部に吸い上げられる。また、空気室24と外部との連通状態は遮断されないので、空気ピストン21の復帰移動に伴う内容積の増大が継続して生じ、その内容積の増大に伴う負圧によって空気室24の内部に空気が吸引される。 When the nozzle body 9 and the pistons 21 and 31 are further returned and moved to the mouth portion 3 side of the container 2 by the elastic force of the spring 35, specifically, the same length as the clearance C2 described above, the mouth portion 3 side of the container 2 When the pistons 21 and 31 are pushed up, the valve seat portion 38 of the liquid piston 31 comes into contact with the valve body 37 of the shaft-shaped member 36. This state is shown in FIG. 5C. In the state shown in FIG. 5C, since the communication between the liquid chamber 34 and the flow path P is cut off, the suction from the nozzle 11 side due to the above-mentioned negative pressure is stopped. On the other hand, the communication state between the liquid chamber 34 and the inside of the container 2 via the ball valve 43 is not blocked. Therefore, the liquid contents filled in the inside of the container 2 by the negative pressure are sucked up into the inside of the liquid chamber 34 through the tube 46. Further, since the communication state between the air chamber 24 and the outside is not cut off, the internal volume continues to increase due to the return movement of the air piston 21, and the negative pressure due to the increase in the internal volume causes the inside of the air chamber 24 to increase. Air is sucked.
 各ピストン21,31が更に復帰移動すると、軸状部材36の弁体37に液体ピストン31の弁座部38が押し付けられた状態で、軸状部材36と液体ピストン31とが一体となって図5Cでの上方に更に移動する。これにより液体室34の内容積が更に増大し、その内容積の増大に伴う負圧によって、容器2の内部に充填されている内容物がボール弁43を介して液体室34の内部に吸い上げられる。空気室24では、上述したように、空気室24と外部との連通状態は遮断されないので、空気ピストン21の復帰移動に伴う内容積の増大が継続して生じ、その内容積の増大に伴う負圧によって空気室24の内部に空気が吸引される。 When the pistons 21 and 31 are further returned and moved, the shaft-shaped member 36 and the liquid piston 31 are integrated with each other in a state where the valve seat portion 38 of the liquid piston 31 is pressed against the valve body 37 of the shaft-shaped member 36. It moves further upward at 5C. As a result, the internal volume of the liquid chamber 34 is further increased, and the contents filled inside the container 2 are sucked up into the inside of the liquid chamber 34 via the ball valve 43 by the negative pressure accompanying the increase in the internal volume. .. In the air chamber 24, as described above, the communication state between the air chamber 24 and the outside is not cut off, so that the internal volume continues to increase with the return movement of the air piston 21, and the negative due to the increase in the internal volume. Air is sucked into the air chamber 24 by the pressure.
 そして更に、スプリング35の弾性力によって各ピストン21,31が容器2の口部3側に復帰移動すると、ついには鉤部41に軸状部材36の係合部40が引っ掛かって、ノズル体9および各ピストン21,31の復帰移動が停止する。そして、液体室34の内部の圧力と、容器2の内部の圧力とが平衡になると、容器2の内部に充填された内容物の吸い上げが止まる。同様に、空気室24の内部の圧力と、大気圧とが平衡になると、空気の吸引が止まる。また、摺動部23によって第1吸気孔20が塞がれる。これにより、容器2の内部と外部との連通が遮断され、容器2の内部への異物の侵入が防止もしくは抑制される。すなわち、ポンプフォーマー1は、図1に示す状態となる。 Further, when the pistons 21 and 31 are returned to the mouth portion 3 side of the container 2 by the elastic force of the spring 35, the engaging portion 40 of the shaft-shaped member 36 is finally caught by the hook portion 41, and the nozzle body 9 and The return movement of the pistons 21 and 31 is stopped. Then, when the pressure inside the liquid chamber 34 and the pressure inside the container 2 are in equilibrium, the suction of the contents filled inside the container 2 is stopped. Similarly, when the pressure inside the air chamber 24 and the atmospheric pressure are in equilibrium, the suction of air stops. Further, the sliding portion 23 closes the first intake hole 20. As a result, the communication between the inside and the outside of the container 2 is cut off, and the invasion of foreign matter into the inside of the container 2 is prevented or suppressed. That is, the pump former 1 is in the state shown in FIG.
 このように上述した構成のポンプフォーマー1では、ノズル体9および各ピストン21,31が下死点から上死点に向かって復帰移動を開始したときに、軸状部材36に形成された弁体37と液体ピストン31に形成された弁座部38とが離隔した状態を維持するように、各シリンダ18,19に対して軸状部材36が停止した不動域が設定されている。つまり、液体ピストン31が復帰移動を開始してから予め定めた長さ移動している間は、あるいは、予め定めた時間が経過するまでは、液体室34と流路Pとの間の連通状態が維持されるようになっている。そのため、上記の不動域では、流路Pと液体室34とが連通している状態で、液体ピストン31が復帰移動し、液体室34の内容積の増大に伴う負圧が生じる。その結果、上記の負圧によって、液体室34からノズル11に到る流路Pに残留している泡状の内容物の少なくとも一部が液体室34の内部に吸い戻される。これにより、流路Pやノズル11の先端部などに内容物が残留しにくくなる。そして、泡だれや、泡が液化することによる液だれを防止もしくは抑制できる。また、上述した泡だれや液だれを抑制するための構成を特には設けないので、装置の全体として簡易な構成とすることができ、部材や製造に係るコストを低減できる。 In the pump former 1 having the above-described configuration, the valve formed on the shaft-shaped member 36 when the nozzle body 9 and the pistons 21 and 31 start the return movement from the bottom dead center to the top dead center. An immovable region in which the shaft-shaped member 36 is stopped is set for each of the cylinders 18 and 19 so that the body 37 and the valve seat portion 38 formed on the liquid piston 31 are maintained in a separated state. That is, the state of communication between the liquid chamber 34 and the flow path P while the liquid piston 31 is moving by a predetermined length after starting the return movement or until a predetermined time elapses. Is to be maintained. Therefore, in the above-mentioned immovable region, the liquid piston 31 returns and moves in a state where the flow path P and the liquid chamber 34 communicate with each other, and a negative pressure is generated as the internal volume of the liquid chamber 34 increases. As a result, at least a part of the foamy contents remaining in the flow path P from the liquid chamber 34 to the nozzle 11 is sucked back into the liquid chamber 34 by the above negative pressure. As a result, the contents are less likely to remain in the flow path P, the tip of the nozzle 11, and the like. Then, it is possible to prevent or suppress foam dripping and dripping due to liquefaction of bubbles. Further, since the above-mentioned structure for suppressing foam dripping and dripping is not particularly provided, the device as a whole can have a simple structure, and the cost related to the member and the manufacturing can be reduced.
 この発明の実施形態に係るポンプフォーマー1では、上述したクリアランスC2の大きさ、つまり、軸線方向への各ピストン21,31の可動距離に対する軸状部材36の可動距離を変更することによって、各ピストン21,31を元の位置に戻す復帰移動の過程で流路P内に残留している内容物を液体室34に吸い戻すいわゆるバックサクション機能を変化させることができる。以下に説明する実験例では、上述したクリアランスC2を1mmから15mmまで、0.5mmずつ増大させたポンプフォーマー1をそれぞれ作成し、それらのポンプフォーマー1のバックサクション機能についての評価を行った。すなわち、実験例1では、クリアランスC2を1mmに設定したポンプフォーマー1を作成し、実験例29では、クリアランスC2を15mmに設定したポンプフォーマー1を作成し、それらのバックサクション機能について評価を行った。実験例1ないし実験例29の各バックサクション機能の評価結果を下記の表1にまとめて記載してある。各ピストン21,31の全ストロークの長さは15mmに設定してある。 In the pump former 1 according to the embodiment of the present invention, by changing the size of the clearance C2 described above, that is, the movable distance of the shaft-shaped member 36 with respect to the movable distance of the pistons 21 and 31 in the axial direction, respectively. The so-called back suction function of sucking the contents remaining in the flow path P back to the liquid chamber 34 in the process of returning the pistons 21 and 31 to their original positions can be changed. In the experimental example described below, pump formers 1 in which the above-mentioned clearance C2 was increased by 0.5 mm from 1 mm to 15 mm were prepared, and the back suction function of the pump former 1 was evaluated. .. That is, in Experimental Example 1, a pump former 1 having a clearance C2 set to 1 mm was created, and in Experimental Example 29, a pump former 1 having a clearance C2 set to 15 mm was created, and their backsuction functions were evaluated. went. The evaluation results of each back suction function of Experimental Example 1 to Experimental Example 29 are summarized in Table 1 below. The total stroke length of each piston 21 and 31 is set to 15 mm.
 また、表1では、軸線方向への各ピストン21,31の可動距離に対する軸状部材36の可動距離を百分率で記載してある。また、空うち回数は、容器2に取り付けたポンプフォーマー1の液体室34の内部に内容物が充填されていない状態から、容器2の内部に充填されている内容物を液体室34の内部に吸い上げて充填し、その内容物がノズル11から吐出されるまでにノズル体9をポンピングした回数である。吐出量はノズル11から吐出された泡状の内容物の量である。なお、空うち回数および吐出量についての各実験をそれぞれ複数回行って、それらの空うち回数および吐出量の算術平均を表1にそれぞれ記載してある。そして、ノズル11からの泡だれを評価した。表中における「○」のシンボルはノズル11の先端部から流路Pの内部に向かって泡状の内容物が吸い戻されており、ノズル11の先端部からの泡だれが防止もしくは抑制されていることを示している。「×」のシンボルはノズル11の先端部から流路Pの内部に向かって泡状の内容物が吸い戻されておらず、したがって、ノズル11の先端部あるいはその付近に泡状の内容物が残留していて泡だれを抑制しにくいことを示している。「△」のシンボルは泡だれについての評価結果が「○」と「×」とのうちのいずれにも当てはまらないことを示している。例えば、ノズル11の先端部から流路Pの内部に向かって泡状の内容物が吸い戻されているものの、その程度が小さいことにより、気温や内容物の種類、あるいは振動などによって、泡だれを生じる可能性があることを示している。なお、表中の実験例1ないし実験例29は上述したクリアランスC2を変更した以外は、ポンプフォーマー1を同様に構成し、上述した空うち回数、内容物の吐出量やノズル11からの泡だれなどについて、複数人が主観的に評価した。
Figure JPOXMLDOC01-appb-T000001
Further, in Table 1, the movable distance of the shaft-shaped member 36 with respect to the movable distance of each of the pistons 21 and 31 in the axial direction is shown as a percentage. Further, the number of times of emptying is such that the contents filled in the container 2 are filled in the liquid chamber 34 from the state in which the contents are not filled in the liquid chamber 34 of the pump former 1 attached to the container 2. It is the number of times that the nozzle body 9 is pumped until the contents are discharged from the nozzle 11. The discharge amount is the amount of foamy contents discharged from the nozzle 11. It should be noted that each experiment on the number of empty spaces and the discharge amount was performed a plurality of times, and the arithmetic mean of the number of empty spaces and the discharge amount is shown in Table 1, respectively. Then, the foam dripping from the nozzle 11 was evaluated. In the table, the symbol "○" indicates that the foam-like contents are sucked back from the tip of the nozzle 11 toward the inside of the flow path P, and the foam dripping from the tip of the nozzle 11 is prevented or suppressed. It shows that there is. In the symbol of "x", the foamy contents are not sucked back from the tip of the nozzle 11 toward the inside of the flow path P, and therefore, the foamy contents are not sucked back to the tip of the nozzle 11 or its vicinity. It shows that it remains and it is difficult to suppress foam dripping. The "△" symbol indicates that the evaluation result for the bubble dripping does not correspond to either "○" or "×". For example, although the foam-like contents are sucked back from the tip of the nozzle 11 toward the inside of the flow path P, the degree of the foam-like contents is small, so that the foam drips due to the temperature, the type of the contents, the vibration, or the like. It shows that it may occur. In Experimental Examples 1 to 29 in the table, the pump former 1 is configured in the same manner except that the clearance C2 described above is changed, and the number of times of emptying, the discharge amount of the contents, and bubbles from the nozzle 11 described above are described. Multiple people subjectively evaluated who and so on.
Figure JPOXMLDOC01-appb-T000001
 (総合評価)
 実験例1から実験例3のポンプフォーマー1では、表1に示すように、吐出量は実験例4から実験例29と比較して多いものの、泡だれの評価結果は「×」であった。これは、クリアランスC2が短いことが要因となって、上述した復帰移動の過程で弁体37と弁座部38とが離隔している時間が短くなり、そのために、流路Pの内部に残留している内容物を液体室34の内部に吸い戻しにくくなったためであると推察される。
(Comprehensive evaluation)
In the pump former 1 of Experimental Example 1 to Experimental Example 3, as shown in Table 1, the discharge amount was larger than that of Experimental Example 4 to Experimental Example 29, but the evaluation result of foam dripping was “x”. .. This is due to the short clearance C2, which shortens the time that the valve body 37 and the valve seat 38 are separated from each other in the process of the return movement described above, and therefore remains inside the flow path P. It is presumed that this is because it became difficult to suck the contents back into the liquid chamber 34.
 実験例4では、上述した実験例1から実験例3と比較してクリアランスC2が増大するので、その分、復帰移動の過程で弁体37と弁座部38とが離隔している時間が長くなり、泡だれの評価結果が「△」になったと推察される。すなわち、実験例4では、バックサクション機能が生じたと言うことができる。一方で、流路Pの内部に残留している泡状の内容物が液体室34の内部に吸い戻されるので、容器2の内部から液体室34の内部に吸い上げられる液状の内容物の量が減少してしまう。これが要因となって、実験例1から実験例3の吐出量と比較して実験例4のポンプフォーマー1での吐出量が減少し、また、空うち回数が増大したと推察される。 In Experimental Example 4, the clearance C2 is increased as compared with Experimental Example 1 to Experimental Example 3 described above, so that the valve body 37 and the valve seat 38 are separated from each other for a longer time in the process of return movement. Therefore, it is inferred that the evaluation result of the bubble dripping became "△". That is, in Experimental Example 4, it can be said that the back suction function has occurred. On the other hand, since the foamy contents remaining inside the flow path P are sucked back into the liquid chamber 34, the amount of the liquid contents sucked up from the inside of the container 2 into the liquid chamber 34 increases. It will decrease. It is presumed that this is a factor that causes the discharge amount of the pump former 1 of Experimental Example 4 to decrease and the number of empty spaces to increase as compared with the discharge amounts of Experimental Examples 1 to 3.
 実験例5ないし実験例23では、実験例4と比較してクリアランスC2が増大するので、泡だれの評価結果が「○」になったと推察される。つまり、軸線方向への各ピストン21,31の可動距離に対する軸状部材36の可動距離が20%を超えると、バックサクション機能が良好に生じると言うことができる。また、実験例5ないし実験例23の各ポンプフォーマー1において、クリアランスC2の増大に伴って吐出量が減少し、また、空うち回数が増大することが認められた。これは上述したように、クリアランスC2の増大に伴ってノズル11から液体室34の内部に吸い戻される内容物の量は増大するので、容器2の内部から液体室34の内部に吸い上げられる液状の内容物の量が減少するためであると推察される。なお、実験例5ないし実験例23において、空うち回数が同じ回数の場合があるが、これは製造誤差によると思われ、全体的な傾向としてクリアランスC2の増大に伴って空うち回数が減少することが認められた。また、実験例5ないし実験例23の空うち回数は3回から5回であり、これは、使用者に対して違和感やストレスを与えにくいポンピング回数として、指標とされているポンピング回数(3回から5回)の範囲に収まっている。 In Experimental Example 5 to Experimental Example 23, the clearance C2 was increased as compared with Experimental Example 4, so it is presumed that the evaluation result of the bubble dripping was “○”. That is, it can be said that the back suction function is satisfactorily generated when the movable distance of the shaft-shaped member 36 exceeds 20% with respect to the movable distance of the pistons 21 and 31 in the axial direction. Further, in each of the pump formers 1 of Experimental Example 5 to Experimental Example 23, it was found that the discharge amount decreased and the number of empty spaces increased as the clearance C2 increased. This is because, as described above, as the clearance C2 increases, the amount of the contents sucked back from the nozzle 11 into the liquid chamber 34 increases, so that the liquid sucked up from the inside of the container 2 into the liquid chamber 34. It is presumed that this is because the amount of contents is reduced. In Experimental Example 5 to Experimental Example 23, the number of empty spaces may be the same, but this is considered to be due to a manufacturing error, and the overall tendency is that the number of empty spaces decreases as the clearance C2 increases. Was recognized. In addition, the number of times of emptying in Experimental Example 5 to Experimental Example 23 is 3 to 5 times, which is an index of the number of pumping times (3 times) as the number of pumping times that does not give discomfort or stress to the user. It is within the range of 5 times).
 そして、実験例24ないし実験例29では、クリアランスC2が十分に大きいことにより、上述した各実験例よりもバックサクション機能が更に良好に生じて泡だれの評価結果が「○」になったと推察される。一方で、液体室34の内部に吸い戻される泡状の内容物の量が、実験例15ないし実験例23よりも増大するために、吐出量が更に減少し、また、空うち回数が更に増大したと推察される。特に、空うち回数については顕著な増大が認められ、使用者が内容物を吐出して使用するまでの時間が長くなり、違和感やストレスを与える可能性がある。したがって、軸線方向への軸状部材36の可動距離をつまりストローク量を各ピストン21,31の全ストローク量の20%以上かつ80%以下に設定することが好ましい。 Then, in Experimental Example 24 to Experimental Example 29, it is presumed that the clearance C2 was sufficiently large, so that the backsuction function was further improved as compared with each of the above-mentioned Experimental Examples, and the evaluation result of foam dripping was "○". To. On the other hand, since the amount of foamy contents sucked back into the liquid chamber 34 is larger than that of Experimental Example 15 to Experimental Example 23, the discharge amount is further reduced and the number of empty spaces is further increased. It is presumed that it was done. In particular, a remarkable increase in the number of empty spaces is observed, and it takes a long time for the user to discharge and use the contents, which may cause discomfort and stress. Therefore, it is preferable to set the movable distance of the shaft-shaped member 36 in the axial direction, that is, the stroke amount to 20% or more and 80% or less of the total stroke amount of each of the pistons 21 and 31.
 なお、この発明は、上述した実施形態に限定されないのであって、この発明の実施形態に係るポンプ式吐出装置は、容器2の内部に充填された液状の内容物を空気と混合することによって泡立てて吐出するいわゆるポンプフォーマー1に替えて、容器2の内部に充填された液体をそのまま吐出するように構成されたポンプディスペンサーであってもよい。要は、ピストンを復帰移動させる場合に、ノズルの近傍に溜まっている内容物をピストンとシリンダとによって区画された空間の内部に吸い戻すように構成されていればよい。 The present invention is not limited to the above-described embodiment, and the pump-type discharge device according to the embodiment of the present invention whisks by mixing the liquid content filled inside the container 2 with air. Instead of the so-called pump former 1 that discharges the liquid, the pump dispenser may be configured to discharge the liquid filled in the container 2 as it is. In short, when the piston is returned and moved, the contents accumulated in the vicinity of the nozzle may be sucked back into the space partitioned by the piston and the cylinder.

Claims (3)

  1.  容器の内部に連通した状態に前記容器の口部に取り付けられるシリンダと、前記シリンダの内部に前記シリンダの軸線方向に往復動可能に嵌合させられたピストンと、前記ピストンを前記軸線方向に貫通して形成され、一方の開口端がノズルに連通すると共に、他方の開口端が前記シリンダと前記ピストンとによって区画された空間に連通する流路と、前記流路の内部に前記流路の中心軸線に沿って一端部が挿入されると共に前記空間の内部に他端部が配置されていて前記シリンダに対して前記軸線方向に相対移動可能に保持された軸状部材と、前記軸状部材の前記一端部に外径を増大させて形成された弁体と、前記ピストンが前記空間の容積を増大する方向に移動することにより前記弁体に密着して前記流路を閉じるように前記流路の内部に形成された弁座部と、前記ピストンが前記空間の容積を減じる方向に移動することにより前記弁体に接触して前記軸状部材を押すように前記軸線方向で前記弁体を挟んで前記弁座部とは反対側の前記流路の内部に形成された突起部と、前記弁座部を前記弁体に押し付ける方向に前記ピストンを押圧する復帰機構とを備え、前記ピストンが押されて前記弁座部から前記弁体が離隔すると共に前記空間の容積が減じられることにより、前記空間の内部に充填された内容物が前記流路を経て前記ノズルから吐出するポンプ式吐出装置において、
     前記復帰機構によって前記ピストンが前記空間の容積を増大する方向に移動することによる前記空間の容積の増大に伴う負圧によって前記ノズルからの吸引を生じさせるように、前記軸状部材が前記シリンダに対して停止していて前記弁体と前記弁座部とが離隔している状態を維持する不動域が設定されている
    ことを特徴とするポンプ式吐出装置。
    A cylinder attached to the mouth of the container in a state of communicating with the inside of the container, a piston fitted inside the cylinder so as to be reciprocally reciprocating in the axial direction of the cylinder, and a piston penetrating the piston in the axial direction. A flow path in which one open end communicates with the nozzle and the other open end communicates with the space partitioned by the cylinder and the piston, and the center of the flow path inside the flow path. A shaft-shaped member in which one end is inserted along the axis and the other end is arranged inside the space so as to be movable relative to the cylinder in the axial direction, and the shaft-shaped member. The valve body formed by increasing the outer diameter at one end thereof, and the flow path so that the piston moves in the direction of increasing the volume of the space so as to be in close contact with the valve body and close the flow path. The valve seat portion formed inside the valve seat and the piston move in the direction of reducing the volume of the space to contact the valve body and push the shaft-shaped member so as to sandwich the valve body in the axial direction. The piston is provided with a protrusion formed inside the flow path on the side opposite to the valve seat portion and a return mechanism for pressing the piston in the direction of pressing the valve seat portion against the valve body. In the pump-type discharge device, the contents filled in the space are discharged from the nozzle through the flow path by separating the valve body from the valve seat portion and reducing the volume of the space. ,
    The shaft-shaped member is attached to the cylinder so that suction from the nozzle is generated by the negative pressure accompanying the increase in the volume of the space due to the piston moving in the direction of increasing the volume of the space by the return mechanism. A pump-type discharge device characterized in that an immovable region is set to maintain a state in which the valve body and the valve seat portion are separated from each other while stopped.
  2.  請求項1に記載のポンプ式吐出装置において、
     前記不動域は、前記空間の容積が最も小さい状態から前記空間の容積を増大する方向に前記ピストンが移動する場合に、前記ピストンが前記軸状部材に対して相対移動する前記ピストンの移動長さであり、
     前記移動長さは、前記空間の容積が最も小さい状態から前記空間の容積を増大する方向に前記ピストンが移動する場合における前記軸線方向で前記弁座部の上端部と前記弁体における前記上端部に接触する部分との間の長さである
    ことを特徴とするポンプ式吐出装置。
    In the pump type discharge device according to claim 1,
    The immovable region is the moving length of the piston in which the piston moves relative to the shaft-shaped member when the piston moves in a direction of increasing the volume of the space from the state where the volume of the space is the smallest. And
    The moving length is the upper end portion of the valve seat portion and the upper end portion of the valve body in the axial direction when the piston moves in the direction of increasing the volume of the space from the state where the volume of the space is the smallest. A pump-type discharge device characterized by having a length between the portion in contact with the pump.
  3.  請求項1または2に記載のポンプ式吐出装置において、
     前記軸線方向への前記軸状部材の可動距離が前記ピストンの可動距離の20%以上かつ80%以下である
    ことを特徴とするポンプ式吐出装置。
    In the pump type discharge device according to claim 1 or 2.
    A pump-type discharge device characterized in that the movable distance of the axial member in the axial direction is 20% or more and 80% or less of the movable distance of the piston.
PCT/JP2020/026443 2019-08-29 2020-07-06 Pump-type ejection device WO2021039132A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080059822.0A CN114555485B (en) 2019-08-29 2020-07-06 Pump type discharge device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019156550A JP7289758B2 (en) 2019-08-29 2019-08-29 pump discharge device
JP2019-156550 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021039132A1 true WO2021039132A1 (en) 2021-03-04

Family

ID=74675158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026443 WO2021039132A1 (en) 2019-08-29 2020-07-06 Pump-type ejection device

Country Status (4)

Country Link
JP (1) JP7289758B2 (en)
CN (1) CN114555485B (en)
TW (1) TWI770594B (en)
WO (1) WO2021039132A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7493201B2 (en) 2020-08-26 2024-05-31 東京ライト工業株式会社 Pump dispenser
JP2023010355A (en) * 2021-07-09 2023-01-20 大和製罐株式会社 Pump type discharge device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567351U (en) * 1992-02-21 1993-09-07 株式会社資生堂 dispenser
JPH10236507A (en) * 1997-02-27 1998-09-08 Yoshino Kogyosho Co Ltd Liquid-pouring pump
JPH1179264A (en) * 1997-09-08 1999-03-23 Yoshida Kogyo Kk <Ykk> Liquid ejecting pump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM285546U (en) * 2005-06-15 2006-01-11 Living Fountain Plastic Ind Co Auxiliary anti-leakage device for press lid of liquid container
JP5873247B2 (en) * 2011-03-22 2016-03-01 大和製罐株式会社 Pump type foam discharge container
WO2013118816A1 (en) * 2012-02-09 2013-08-15 大和製罐株式会社 Pump-type discharge container
US9724714B2 (en) * 2013-01-31 2017-08-08 Yoshino Kogyosho Co., Ltd. Foam discharge device
JP6595751B2 (en) * 2014-09-22 2019-10-23 キャニヨン株式会社 Push type pump dispenser
CN207566107U (en) * 2017-12-01 2018-07-03 中山市巨隆塑料包装制品有限公司 Emulsion pumps and lotion pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567351U (en) * 1992-02-21 1993-09-07 株式会社資生堂 dispenser
JPH10236507A (en) * 1997-02-27 1998-09-08 Yoshino Kogyosho Co Ltd Liquid-pouring pump
JPH1179264A (en) * 1997-09-08 1999-03-23 Yoshida Kogyo Kk <Ykk> Liquid ejecting pump

Also Published As

Publication number Publication date
JP7289758B2 (en) 2023-06-12
CN114555485A (en) 2022-05-27
CN114555485B (en) 2023-10-03
TWI770594B (en) 2022-07-11
JP2021031155A (en) 2021-03-01
TW202108472A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
WO2021039132A1 (en) Pump-type ejection device
US10150127B2 (en) Foam dispensing assembly
US8591207B2 (en) Pump with side inlet valve for improved functioning in an inverted container
US6729505B2 (en) Dispensing pump
JP3996194B2 (en) Manual fluid dispensing pump
JPH10263444A (en) Pump mechanism for liqiud injection
KR20190042264A (en) Dispenser pump
US6913169B2 (en) Low profile, fine mist, finger-operated, precompression-type spray pump
JP2008142608A (en) Foam discharge container
JP4381689B2 (en) Liquid jet pump
WO2022092104A1 (en) Discharge device
JP2009195847A (en) Foam injector
KR20200052204A (en) Pumping device for liquid container having waterproof function
JP6893745B2 (en) Former dispenser
JP6138613B2 (en) Former dispenser and container with former dispenser
JP2014201316A (en) Pump container
WO2023282142A1 (en) Pump-type discharge device
WO2024106439A1 (en) Pump dispenser, ejection container, and ejection container with contents
EP4317010A1 (en) Discharge container
JP6689532B2 (en) Foam dispenser
JPH0715558U (en) Foam jet pump
JP2022129640A (en) Pump type discharge device
JP2015178364A (en) pump container
JP6338981B2 (en) Pump dispenser
JP2024034172A (en) Adapter for both erecting and inverted posture use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859487

Country of ref document: EP

Kind code of ref document: A1