WO2021038899A1 - Scintillator panel and radiation detector - Google Patents

Scintillator panel and radiation detector Download PDF

Info

Publication number
WO2021038899A1
WO2021038899A1 PCT/JP2020/000150 JP2020000150W WO2021038899A1 WO 2021038899 A1 WO2021038899 A1 WO 2021038899A1 JP 2020000150 W JP2020000150 W JP 2020000150W WO 2021038899 A1 WO2021038899 A1 WO 2021038899A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
scintillator
layer
peripheral edge
protective layer
Prior art date
Application number
PCT/JP2020/000150
Other languages
French (fr)
Japanese (ja)
Inventor
槙子 紺野
篤也 吉田
中山 剛士
Original Assignee
キヤノン電子管デバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン電子管デバイス株式会社 filed Critical キヤノン電子管デバイス株式会社
Publication of WO2021038899A1 publication Critical patent/WO2021038899A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Definitions

  • An embodiment of the present invention relates to a scintillator panel and a radiation detector.
  • the scintillator panel that converts incident radiation (for example, X-rays) into fluorescence (visible light).
  • the scintillator panel is provided with a substrate, a reflective layer provided on one surface of the substrate, a protective layer covering the reflective layer, and a scintillator provided on the protective layer to convert incident radiation into fluorescence. Has been done.
  • the radiation detector is provided with a scintillator panel and an array substrate having a plurality of photoelectric conversion units.
  • the side where the fluorescence of the scintillator panel is emitted is bonded on the region of the array substrate where a plurality of photoelectric conversion portions are provided.
  • the reflective layer is provided so as to cover one surface of the substrate.
  • the reflective layer is formed of a metal having a high reflectance to fluorescence, for example, aluminum.
  • the metal contained in the reflective layer reacts with the halogen contained in the scintillator, and the reflective layer is corroded. May be done.
  • the reflective layer is corroded, the gloss of the surface is reduced, which may lead to a decrease in reflection performance, a decrease in sensitivity characteristics, and a decrease in resolution characteristics. Therefore, a reflective layer is provided over the entire surface of one surface of the substrate, and a protective layer is provided to cover the reflective layer. Then, a scintillator is provided on the protective layer.
  • the scintillator is formed by using a vacuum vapor deposition method or the like. Therefore, if the protective layer is provided over the entire surface of one surface of the substrate, the jig or mask used for forming the scintillator comes into contact with the protective layer provided above the peripheral region of the substrate. In this case, when the scintillator is deposited, the jig and the substrate are heated, but since the coefficient of thermal expansion of the jig and the like is different from the coefficient of thermal expansion of the substrate and the like, the respective thermal expansion amounts are different. It becomes. Therefore, rubbing may occur between the jig and the protective layer, and the protective layer may be scratched or peeled off.
  • the scintillator Since the scintillator is provided on the protective layer, the scintillator may be peeled off starting from scratches or peeling of the protective layer. When the scintillator is peeled off, the sensitivity characteristics and the resolution characteristics may be deteriorated or changed. Therefore, it has been desired to develop a technique capable of suppressing damage to the protective layer when forming the scintillator.
  • An object to be solved by the present invention is to provide a scintillator panel capable of suppressing damage to the protective layer when forming a scintillator, and a radiation detector.
  • the scintillator panel according to the embodiment has at least one prepreg having a plurality of carbon fibers, a substrate capable of transmitting radiation, a scintillator provided on one surface side of the substrate, the substrate, and the scintillator.
  • a reflective layer provided between the two, and capable of reflecting the fluorescence generated in the scintillator, and a protective layer provided between the reflective layer and the scintillator are provided.
  • the peripheral edge of the protective layer is provided between the peripheral edge of the scintillator and the peripheral edge of the substrate.
  • the radiation detector according to the embodiment of the present invention can be applied to various types of radiation such as ⁇ -rays in addition to X-rays.
  • ⁇ -rays in addition to X-rays.
  • X-rays as a typical example of radiation will be described as an example. Therefore, by replacing "X-ray" in the following embodiment with "other radiation”, it can be applied to other radiation.
  • the X-ray detector 1 illustrated below can be an X-ray plane sensor that detects an X-ray image which is a radiation image.
  • the X-ray detector 1 can be used, for example, in general medical care. However, the use of the X-ray detector 1 is not limited to general medical care.
  • FIG. 1 is a schematic perspective view for exemplifying the scintillator panel 10 and the X-ray detector 1 according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view of the scintillator panel 10 and the X-ray detector 1.
  • the control line 2c1, the data line 2c2, the circuit board 3, the image configuration unit 4, and the like are omitted.
  • FIG. 3 is a schematic cross-sectional view of the scintillator panel 10.
  • the X-ray detector 1 may be provided with an array substrate 2, a circuit board 3, an image component 4, a scintillator panel 10, and a junction 20.
  • the array substrate 2 can convert the fluorescence converted from X-rays by the scintillator panel 10 into electric charges.
  • the array substrate 2 may be provided with a substrate 2a, a photoelectric conversion unit 2b, a control line (or gate line) 2c1, a data line (or signal line) 2c2, an insulating layer 2f, and the like.
  • the numbers of the photoelectric conversion unit 2b, the control line 2c1, the data line 2c2, and the like are not limited to those illustrated.
  • the substrate 2a has a plate shape and is formed of a translucent material such as non-alkali glass.
  • the planar shape of the substrate 2a can be, for example, a quadrangle.
  • a plurality of photoelectric conversion units 2b may be provided on one surface of the substrate 2a.
  • the photoelectric conversion unit 2b has a rectangular shape and can be provided in a region defined by the control line 2c1 and the data line 2c2.
  • the plurality of photoelectric conversion units 2b can be provided side by side in a matrix.
  • One photoelectric conversion unit 2b corresponds to one pixel of the X-ray image.
  • a photoelectric conversion element 2b1 and a thin film transistor (TFT) 2b2, which is a switching element, can be provided in each of the plurality of photoelectric conversion units 2b. Further, a storage capacitor 2b3 for accumulating the electric charge converted by the photoelectric conversion element 2b1 can be provided.
  • the storage capacitor 2b3 has, for example, a rectangular flat plate shape, and can be provided under each thin film transistor 2b2. However, depending on the capacity of the photoelectric conversion element 2b1, the photoelectric conversion element 2b1 can also serve as the storage capacitor 2b3.
  • the photoelectric conversion element 2b1 can be, for example, a photodiode or the like.
  • the thin film transistor 2b2 can switch the accumulation and emission of electric charges in the storage capacitor 2b3.
  • the thin film transistor 2b2 can have a gate electrode, a drain electrode, and a source electrode.
  • the gate electrode of the thin film transistor 2b2 can be electrically connected to the corresponding control line 2c1.
  • the drain electrode of the thin film transistor 2b2 can be electrically connected to the corresponding data line 2c2.
  • the source electrode of the thin film transistor 2b2 can be electrically connected to the corresponding photoelectric conversion element 2b1 and the storage capacitor 2b3. Further, the anode side of the photoelectric conversion element 2b1 and the storage capacitor 2b3 can be connected to the ground.
  • a plurality of control lines 2c1 can be provided in parallel with each other at predetermined intervals.
  • the control line 2c1 may extend in the row direction, for example.
  • One control line 2c1 can be electrically connected to one of a plurality of wiring pads provided near the peripheral edge of the substrate 2a.
  • One of a plurality of wirings provided on the flexible printed circuit board 2e1 can be electrically connected to one wiring pad.
  • the other ends of the plurality of wirings provided on the flexible printed circuit board 2e1 can be electrically connected to the readout circuit provided on the circuit board 3, respectively.
  • a plurality of data lines 2c2 may be provided in parallel with each other at predetermined intervals.
  • the data line 2c2 can, for example, extend in the column direction orthogonal to the row direction.
  • One data line 2c2 can be electrically connected to one of a plurality of wiring pads provided near the periphery of the substrate 2a.
  • One of a plurality of wirings provided on the flexible printed circuit board 2e2 can be electrically connected to one wiring pad.
  • the other ends of the plurality of wirings provided on the flexible printed circuit board 2e2 can be electrically connected to the signal detection circuit provided on the circuit board 3, respectively.
  • the control line 2c1 and the data line 2c2 can be formed by using a low resistance metal such as aluminum or chromium.
  • the insulating layer 2f can cover the photoelectric conversion unit 2b, the control line 2c1, the data line 2c2, and the like.
  • the insulating layer 2f can include, for example, at least one of an oxide insulating material, a nitride insulating material, an oxynitride insulating material, and a resin.
  • the circuit board 3 can be provided on the side of the array board 2 opposite to the side on which the scintillator panel 10 is provided.
  • a read circuit and a signal detection circuit can be provided on the circuit board 3. It should be noted that these circuits can be provided on one board, or these circuits can be provided separately on a plurality of boards.
  • the readout circuit can switch between the on state and the off state of the thin film transistor 2b2. For example, the readout circuit can sequentially input the control signal S1 for each control line 2c1 via the flexible printed circuit board 2e1. The control signal S1 input to the control line 2c1 turns on the thin film transistor 2b2, and the electric charge (image data signal S2) from the storage capacitor 2b3 can be received.
  • the signal detection circuit can have a plurality of integrating amplifiers, a plurality of selection circuits, and a plurality of AD converters.
  • One integrating amplifier can be electrically connected to one data line 2c2.
  • the integrating amplifier can sequentially receive the image data signal S2 from the photoelectric conversion unit 2b. Then, the integrating amplifier can integrate the current flowing within a fixed time and output the voltage corresponding to the integrated value to the selection circuit. In this way, it is possible to convert the value (charge amount) of the current flowing through the data line 2c2 into a voltage value within a predetermined time. That is, the integrating amplifier can convert the image data information corresponding to the intensity distribution of fluorescence generated in the scintillator panel 10 (scintillator 14) into potential information.
  • the selection circuit can select an integrating amplifier to be read out and sequentially read out the image data signal S2 converted into potential information.
  • the AD converter can sequentially convert the read image data signal S2 into a digital signal.
  • the image data signal S2 converted into a digital signal can be input to the image configuration unit 4.
  • the image configuration unit 4 can be electrically connected to the readout circuit (AD converter) of the circuit board 3 via the wiring 4a. Data communication between the image configuration unit 4 and the circuit board 3 can also be performed wirelessly. Further, the image component 4 and the circuit board 3 may be integrated.
  • the image configuration unit 4 can configure an X-ray image based on the image data signal S2 converted into a digital signal by a plurality of AD converters. The configured X-ray image data can be output from the image configuration unit 4 to an external device.
  • the scintillator panel 10 can be provided with a substrate 11, a reflective layer 12, a protective layer 13, a scintillator 14, a relaxation layer 15, and a moisture-proof portion 16.
  • the substrate 11 has a plate shape and can be formed of a material that transmits X-rays.
  • the substrate 11 can be formed from, for example, carbon-Fiber-Reinforced Plastic (CFRP).
  • CFRP carbon-Fiber-Reinforced Plastic
  • the substrate 11 can have, for example, at least one prepreg having a plurality of carbon fibers.
  • the substrate 11 can have a plurality of types of prepregs in which the plurality of carbon fibers 111 extend in different directions (see FIG. 5). A plurality of types of prepregs can be laminated in the thickness direction.
  • the planar shape of the prepreg, and thus the planar shape of the substrate 11, can be, for example, a quadrangle.
  • the prepreg has a plate shape, and for example, carbon fibers arranged in a desired direction may be impregnated with a thermosetting resin.
  • the thickness of the prepreg can be, for example, about 0.1 mm.
  • the substrate 11 can be formed, for example, by laminating a plurality of prepregs and subjecting them to heat treatment under pressure.
  • the rigidity of the substrate 11 when the rigidity of the substrate 11 is low, the rigidity of the substrate 11 is highly anisotropic, or the warp generated in the substrate 11 is large, the positional relationship between the array substrate 2 and the scintillator panel 10 is determined.
  • the quality of the X-ray image may deteriorate due to deviation from a predetermined position (predetermined image plane).
  • the rigidity of the substrate 11 can be increased, the anisotropy of the rigidity of the substrate 11 can be reduced, and the warp generated in the substrate 11 can be reduced.
  • simply increasing the number of prepregs will increase the manufacturing cost of the substrate 11.
  • the rigidity of the prepreg changes depending on the direction in which the carbon fibers 111 in the prepreg extend. That is, the rigidity of the prepreg is anisotropy depending on the direction in which the carbon fibers 111 in the prepreg are stretched.
  • FIG. 4 is a schematic perspective view for exemplifying the relationship between the extending direction of the carbon fiber 111 and the rigidity.
  • the bending strength B in the direction orthogonal to the direction A in which the carbon fibers 111 extend is the bending in the direction parallel to the direction A in which the carbon fibers 111 extend. It becomes smaller than the strength C.
  • the bending strength B on the short side is larger than the bending strength C on the long side. Therefore, in order to reduce the anisotropy of rigidity, it is preferable to set the direction A in which the carbon fiber 111 extends in consideration of the planar shape of the prepreg. For example, as shown in FIG. 4, when the planar shape of the prepreg is rectangular, the direction A in which the carbon fibers 111 extend is preferably a direction parallel to the long side (longitudinal direction).
  • FIG. 5 is a schematic exploded view for exemplifying the configuration of the substrate 11.
  • the rigidity of the prepreg 11a provided on the surface (both ends in the thickness direction) of the substrate 11 at the position farthest from the line 110 passing through the center in the thickness direction of the substrate 11 contributes most to the rigidity of the substrate 11. Therefore, it is preferable to set the direction A in which the carbon fiber 111 extends in consideration of the planar shape of the prepreg 11a.
  • the types of prepregs provided on the substrate 11 are increased, the anisotropy of rigidity in the substrate 11 can be reduced.
  • the number of prepregs becomes too large, the manufacturing cost of the substrate 11 increases, and the rigidity of the substrate 11 becomes too high, so that the joining work between the array substrate 2 and the scintillator panel 10 is performed. May become difficult.
  • the X-ray detector 1 when used for general medical treatment or the like, it is preferable to provide two each of four types of prepregs 11a to 11d as shown in FIG. Further, it is preferable that the carbon fibers 111 in the prepreg provided at a position line-symmetrical with respect to the line 110 passing through the center in the thickness direction of the substrate 11 extend in substantially the same direction. Further, it is preferable that the angles between the extending directions of the carbon fibers 111 are substantially equal.
  • the prepreg 11a can be provided at a position farthest from the line 110 passing through the center in the thickness direction of the substrate 11, that is, on the surface (front and back) of the substrate 11.
  • the direction in which the carbon fibers 111 in the prepreg 11a, which most contributes to the rigidity of the substrate 11, is extended can be a direction substantially parallel to the long side of the prepreg 11a (board 11).
  • the prepreg 11b can be provided on the central surface of the substrate 11 of the prepreg 11a.
  • the direction in which the carbon fibers 111 in the prepreg 11b extend can have an angle of 45 ° with respect to the direction parallel to the long side of the prepreg 11b (board 11).
  • the prepreg 11c can be provided on the central surface of the substrate 11 of the prepreg 11b.
  • the direction in which the carbon fibers 111 in the prepreg 11c extend can have an angle of 90 ° with respect to the direction parallel to the long side of the prepreg 11c (substrate 11).
  • the prepreg 11d can be provided on the central surface of the substrate 11 of the prepreg 11c.
  • the direction in which the carbon fibers 111 in the prepreg 11d extend can have an angle of 135 ° with respect to the direction parallel to the long side of the prepreg 11d (substrate 11).
  • the planar shape of the substrate 11 (prepregs 11a to 11d) is rectangular has been illustrated, but a part of the substrate 11 may be chamfered to form a polygon, or an R portion or C may be formed at a corner portion of the substrate 11. It can also be chamfered.
  • the substrate 11 has the above configuration, it is possible to suppress the occurrence of distortion and reduce the anisotropy of the rigidity of the substrate 11. Further, it is possible to suppress the occurrence of warpage when the reflective layer 12, the protective layer 13, the scintillator 14, the relaxation layer 15, and the moisture-proof portion 16 are formed on the substrate 11.
  • the reflective layer 12 can be provided on one surface of the substrate 11.
  • the reflective layer 12 can be provided so as to cover the entire area of one surface of the substrate 11.
  • the reflective layer 12 is provided to increase the utilization efficiency of fluorescence and improve the sensitivity characteristics. That is, the reflective layer 12 reflects the light generated in the scintillator 14 toward the side opposite to the side where the photoelectric conversion unit 2b is provided so as to be directed toward the photoelectric conversion unit 2b. That is, the reflective layer 12 is provided between the substrate 11 and the scintillator 14, and can reflect the fluorescence generated in the scintillator 14.
  • the reflective layer 12 can be formed of a material that transmits X-rays and has a high reflectance for fluorescence.
  • the reflective layer 12 may contain aluminum, silver, or the like.
  • the substrate 11 is made of carbon fiber reinforced plastic. Therefore, it is difficult to directly form a film containing aluminum, silver, or the like on the surface of the substrate 11 or directly attach it to the surface of the substrate 11. Therefore, the reflective layer 12 can be a laminated structure including the resin layer 12a and the metal layer 12b.
  • FIG. 6 is a schematic cross-sectional view for illustrating the reflective layer 12, the protective layer 13, the scintillator 14, and the relaxation layer 15.
  • the reflective layer 12 includes a resin layer 12a bonded to the surface of the substrate 11 and a metal layer 12b provided on the surface of the resin layer 12a opposite to the substrate 11 side. Can be done.
  • the reflective layer 12 can be formed by integrating the sheet-shaped resin layer 12a and the sheet-shaped metal layer 12b (for example, aluminum foil or the like) by, for example, an autoclave molding method.
  • the resin layer 12a can be easily bonded to the substrate 11 formed of carbon fiber reinforced plastic. Therefore, the resin layer 12a side of the reflective layer 12 can be bonded to the surface of the substrate 11. The resin layer 12a side of the reflective layer 12 can be adhered to the substrate 11, for example.
  • the resin layer 12a can be formed from, for example, polyethylene terephthalate (PET) or the like.
  • the metal layer 12b may contain, for example, a metal such as aluminum or silver.
  • the metal layer 12b can be formed of, for example, an aluminum foil, a silver foil, or the like.
  • the thickness of the resin layer 12a can be, for example, 50 ⁇ m or more and 190 ⁇ m or less.
  • the thickness of the metal layer 12b is preferably 25 ⁇ m or more and 50 ⁇ m or less, for example.
  • the thickness of the reflective layer 12 (the total thickness of the resin layer 12a and the metal layer 12b) can be, for example, 75 ⁇ m or more and 240 ⁇ m or less.
  • the resin layer 12a If the resin layer 12a is provided, it is easy to imitate the unevenness of the surface of the substrate 11, and the impact from the outside is alleviated to prevent damage to the metal layer 12b. Can be done. Therefore, it becomes easy to maintain the barrier performance and the reflection performance of the reflection layer 12. Further, if the resin layer 12a is provided, the thermal stress generated between the substrate 11 having a small coefficient of thermal expansion and the metal layer 12b having a large coefficient of thermal expansion when a temperature change such as a thermal cycle or a thermal shock occurs. It is also possible to relax.
  • the metal layer 12b is exposed on the surface of the reflective layer 12 opposite to the substrate 11 side. Further, the scintillator 14 is provided on the side of the reflective layer 12 opposite to the substrate 11 side. In this case, when the metal layer 12b and the scintillator 14 come into direct contact with each other, the highly reducing metal contained in the metal layer 12b, the highly oxidizing iodine contained in the scintillator 14, and the highly oxidizing iodine contained in the scintillator 14 are contained in the air. There is a risk that the metal layer 12b will be corroded due to a redox reaction caused by the slight amount of water vapor. When the metal layer 12b is corroded, the gloss of the metal layer 12b is reduced, which may lead to a decrease in reflection performance, a decrease in sensitivity characteristics, and a decrease in resolution characteristics.
  • the scintillator panel 10 is provided with the protective layer 13.
  • the protective layer 13 can be provided on the surface of the reflective layer 12 opposite to the substrate 11 side. That is, the protective layer 13 can be provided between the reflective layer 12 (metal layer 12b) and the scintillator 14.
  • the protective layer 13 can contain, for example, a resin such as a polyparaxylylene resin.
  • the thickness of the protective layer 13 can be, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the protective layer 13 can be formed by, for example, a thermal CVD (thermal chemical vapor deposition) method or the like.
  • FIG. 7 is a schematic view for exemplifying a case where the scintillator 14 is formed on the protective layer 113 according to the comparative example.
  • the reflective layer 12 is provided over the entire surface of one surface of the substrate 11.
  • the protective layer 113 according to the comparative example covers the entire area of the reflective layer 12. That is, the protective layer 113 is also provided above the peripheral region of the substrate 11.
  • the thickness and material of the protective layer 113 can be the same as the thickness and material of the protective layer 13 according to the present embodiment.
  • a positioning jig 200, a mask for film formation, or the like is used.
  • the positioning jig 200 or the like holds or supports the peripheral region of the substrate 11. Therefore, if the protective layer 113 is also provided above the peripheral region of the substrate 11, the positioning jig 200 or the like comes into contact with the protective layer 113.
  • the positioning jig 200, the substrate 11, the protective layer 113, and the like are heated, but since the respective thermal expansion coefficients are different, the respective thermal expansion amounts are different.
  • the protective layer 113 may be scratched or peeled off. Since the scintillator 14 is provided on the protective layer 113, if the protective layer 113 is scratched or peeled off, the scintillator 14 may be peeled off starting from the scratch or peeling. If the scintillator 14 is peeled off, the sensitivity characteristics and the resolution characteristics may be lowered or changed.
  • FIG. 8 is a schematic view for exemplifying a case where the scintillator 14 is formed on the protective layer 13 according to the present embodiment.
  • the protective layer 13 according to the present embodiment is provided in the central region of the substrate 11 and not in the peripheral region of the substrate 11.
  • the protective layer 13 is provided to prevent the scintillator 14 from being formed directly on the reflective layer 12. Therefore, the protective layer 13 may be provided in the region where the scintillator 14 of the reflective layer 12 is formed.
  • the distance L1 between the peripheral edge of the protective layer 13 and the peripheral edge of the scintillator 14 is increased, the allowable range of the positional deviation of the scintillator 14 can be increased. Therefore, the scintillator 14 can be easily manufactured. Further, in order to suppress the interference between the positioning jig 200 and the like described above and the protective layer 13, it is preferable that the distance L2 between the peripheral edge of the protective layer 13 and the peripheral edge of the substrate 11 is set to a predetermined size.
  • the distance L1 when the distance L1 is increased, the distance L3 between the peripheral edge of the substrate 11 and the peripheral edge of the scintillator 14 is increased. In recent years, it has been desired to reduce the size of the X-ray detector 1 and the scintillator panel 10. Therefore, if the distance L1 is made too large, the distance L3 becomes too large, and it becomes difficult to reduce the size of the scintillator panel 10.
  • the distance L1 is 1 mm or more and 5 mm or less, interference between the positioning jig 200 or the like and the protective layer 13 can be suppressed, so that when the scintillator 14 is formed, , It becomes easy to suppress the occurrence of damage to the protective layer 13. Further, since the scintillator 14 can be displaced, the scintillator 14 can be easily manufactured. Further, the scintillator panel 10 can be downsized, and the X-ray detector 1 can be downsized.
  • the scintillator 14 can be provided on the reflective layer 12 via the protective layer 13.
  • the scintillator 14 can convert the incident X-rays into fluorescence (visible light).
  • the scintillator 14 can be formed using, for example, cesium iodide (CsI): thallium (Tl), sodium iodide (NaI): thallium (Tl), or the like.
  • the thickness of the scintillator 14 can be, for example, about 600 ⁇ m.
  • the scintillator 14 can be formed by, for example, a vacuum vapor deposition method or the like.
  • the scintillator 14 is formed by using a vacuum vapor deposition method or the like, the scintillator 14 composed of an aggregate of columnar crystals is formed.
  • the thickness of the columnar crystal (pillar) can be about 8 ⁇ m to 12 ⁇ m on the outermost surface.
  • a reflective layer 12, a protective layer 13, and a scintillator 14 are provided on one surface of the substrate 11. Further, when the protective layer 13 and the scintillator 14 are formed, the substrate 11 and the reflective layer 12 and the like are heated. Since the coefficients of thermal expansion of the substrate 11, the reflective layer 12, the protective layer 13, and the scintillator 14 are different, the amount of thermal expansion of each is different. Therefore, distortion or the like may occur during the manufacture of the scintillator panel 10, and the substrate 11 may be warped or the like. Therefore, the scintillator panel 10 is provided with a relaxation layer 15 in order to suppress the occurrence of warpage or the like on the substrate 11.
  • the relaxation layer 15 can be provided on the surface of the substrate 11 opposite to the reflection layer 12 side.
  • the relaxation layer 15 can contain, for example, a metal such as aluminum or silver.
  • the relaxation layer 15 may have, for example, an aluminum foil, a silver foil, or the like.
  • the relaxation layer 15 having the metal layer 15b and the resin layer 15a can be formed in consideration of the bondability with the substrate 11 formed of the carbon fiber reinforced plastic. ..
  • the metal layer 15b can be the same as the metal layer 12b of the reflection layer 12.
  • the resin layer 15a can be the same as the resin layer 12a of the reflective layer 12.
  • the relaxation layer 15 can be provided over the entire surface of the substrate 11, or can be provided in a predetermined region of the surface of the substrate 11.
  • the metal layer 15b mainly has a function of suppressing warpage or the like generated on the substrate 11. Therefore, it is preferable to appropriately change the material, thickness, size, arrangement position, and the like of the metal layer 15b according to the warp generated on the substrate 11.
  • the material, thickness, size, arrangement position, etc. of the metal layer 15b can be appropriately determined by conducting experiments, simulations, and the like.
  • the thickness of the metal layer 15b can be, for example, 25 ⁇ m or more and 250 ⁇ m or less.
  • the reflective layer 12 can also be provided on the surface of the substrate 11 opposite to the reflective layer 12 side to serve as the relaxation layer 15. By doing so, it is possible to simplify the manufacturing process and reduce the manufacturing cost.
  • the moisture-proof portion 16 can be provided in order to suppress deterioration of the characteristics of the scintillator 14 due to water vapor contained in the air.
  • the moisture-proof portion 16 has a film shape and can be provided so as to cover the exposed portions of the substrate 11, the reflective layer 12, the protective layer 13, the scintillator 14, and the relaxation layer 15.
  • the moisture-proof portion 16 can be formed of a material having a light-transmitting property and a small moisture-permeable coefficient.
  • the moisture-proof portion 16 can be formed from, for example, polyparaxylylene, polymonochloroparaxylylene, polyfluoroparaxylylene, polydimethylparaxylylene, polydiethylparaxylylene and the like.
  • the moisture-proof portion 16 can be formed by, for example, a thermal CVD method or the like.
  • the moisture-proof portion 16 When the scintillator 14 is an aggregate of columnar crystals, if the moisture-proof portion 16 is formed by using the thermal CVD method, the moisture-proof portion 16 can be penetrated to some extent into the gap between the columnar crystals. Therefore, even if the surface of the scintillator 14 has irregularities due to columnar crystals, the moisture-proof portion 16 having a substantially uniform film thickness can be formed.
  • the portion where the reflective layer 12 (resin layer 12a) and the moisture-proof portion 16 are in contact with each other is formed. , It has a high deterrent effect against the invasion of water. Therefore, the scintillator panel 10 having high moisture-proof performance can be obtained.
  • the joint portion 20 can be provided between the array substrate 2 and the scintillator panel 10.
  • the joining portion 20 has translucency, and can join the array substrate 2 and the scintillator panel 10.
  • the scintillator 14 of the scintillator panel 10 can be bonded onto the region of the array substrate 2 provided with the plurality of photoelectric conversion units 2b.
  • the joint portion 20 can be, for example, an optical double-sided tape (OCA tape (Optical Clear Adhesive Tape)) or the like. Further, the joint portion 20 may be formed by curing, for example, an optical adhesive or an optical gel. In this case, the joint portion 20 can be cured by irradiation with ultraviolet rays.
  • OCA tape Optical Clear Adhesive Tape
  • FIG. 9 is a schematic cross-sectional view for exemplifying the scintillator panel 30 according to another embodiment.
  • the scintillator panel 30 can be provided with a substrate 31, a protective layer 13, a scintillator 14, and a moisture-proof portion 16.
  • the substrate 31 has a plate shape and can be formed of a material that transmits X-rays and reflects the fluorescence generated in the scintillator 14.
  • the substrate 31 may contain, for example, a metal such as aluminum or silver.
  • the thickness of the substrate 31 can be, for example, 0.6 mm or more and 1.2 mm or less.
  • the substrate 31 is made of metal, it can reflect fluorescence, so it is not necessary to provide the reflection layer 12 as in the scintillator panel 10 described above. Further, since the substrate 31 made of metal has high rigidity, warpage and the like are unlikely to occur. Therefore, unlike the scintillator panel 10 described above, it is not necessary to provide the relaxation layer 15.
  • the scintillator panel 30 can be provided with the protective layer 13 in the same manner as the scintillator panel 10 described above.
  • the protective layer 13 can be provided between the substrate 31 and the scintillator 14.
  • the material, thickness, arrangement position, and the like of the protective layer 13 can be the same as those of the protective layer 13 provided on the scintillator panel 10.
  • the scintillator panel 30 is used, the configuration is simplified and the manufacturing cost can be reduced.
  • the scintillator panel 30 can be joined to the array substrate 2 via the joining portion 20.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A scintillator panel according to an embodiment is provided with: a substrate that can transmit radiation and that has at least one prepreg having a plurality of carbon fibers; a scintillator provided on one side of the substrate; a reflective layer that is provided between the substrate and the scintillator and that can reflect fluorescence generated at the scintillator; and a protective layer provided between the reflective layer and the scintillator. In a view from a direction perpendicular to a surface of the substrate, a peripheral edge of the protective layer is provided between a peripheral edge of the scintillator and a peripheral edge of the substrate.

Description

シンチレータパネル、および放射線検出器Scintillator panel and radiation detector
 本発明の実施形態は、シンチレータパネル、および放射線検出器に関する。 An embodiment of the present invention relates to a scintillator panel and a radiation detector.
 入射した放射線(例えば、X線)を蛍光(可視光)に変換するシンチレータパネルがある。シンチレータパネルには、基板と、基板の一方の面に設けられた反射層と、反射層を覆う保護層と、保護層の上に設けられ、入射した放射線を蛍光に変換するシンチレータと、が設けられている。 There is a scintillator panel that converts incident radiation (for example, X-rays) into fluorescence (visible light). The scintillator panel is provided with a substrate, a reflective layer provided on one surface of the substrate, a protective layer covering the reflective layer, and a scintillator provided on the protective layer to convert incident radiation into fluorescence. Has been done.
 また、放射線検出器には、シンチレータパネルと、複数の光電変換部を有するアレイ基板とが設けられている。シンチレータパネルの蛍光が出射する側は、アレイ基板の、複数の光電変換部が設けられた領域の上に接合されている。 Further, the radiation detector is provided with a scintillator panel and an array substrate having a plurality of photoelectric conversion units. The side where the fluorescence of the scintillator panel is emitted is bonded on the region of the array substrate where a plurality of photoelectric conversion portions are provided.
 一般に、反射層は、基板の一方の面を覆う様に設けられている。また、反射層は、蛍光に対する反射率の高い金属、例えば、アルミニウムなどから形成されている。この場合、アルミニウムなどの金属から形成された反射層の上に、シンチレータを直接形成すると、反射層に含まれている金属と、シンチレータに含まれているハロゲンとが反応して、反射層が腐食する場合がある。反射層が腐食すると表面の光沢が減少して反射性能の低下、ひいては感度特性の低下、および解像度特性の低下が生じるおそれがある。そのため、基板の一方の面の全域に反射層を設け、反射層を覆う保護層を設けるようにしている。そして、保護層の上にシンチレータを設けるようにしている。 Generally, the reflective layer is provided so as to cover one surface of the substrate. Further, the reflective layer is formed of a metal having a high reflectance to fluorescence, for example, aluminum. In this case, when the scintillator is directly formed on the reflective layer formed of a metal such as aluminum, the metal contained in the reflective layer reacts with the halogen contained in the scintillator, and the reflective layer is corroded. May be done. When the reflective layer is corroded, the gloss of the surface is reduced, which may lead to a decrease in reflection performance, a decrease in sensitivity characteristics, and a decrease in resolution characteristics. Therefore, a reflective layer is provided over the entire surface of one surface of the substrate, and a protective layer is provided to cover the reflective layer. Then, a scintillator is provided on the protective layer.
 ここで、シンチレータは真空蒸着法などを用いて形成される。そのため、基板の一方の面の全域に保護層を設けると、シンチレータの形成の際に用いられる治具やマスクが、基板の周縁領域の上方に設けられた保護層に接触することになる。この場合、シンチレータを蒸着する際には、治具や基板などが加熱されるが、治具などの熱膨張係数と、基板などの熱膨張係数とは異なるので、それぞれの熱膨張量が異なるものとなる。そのため、治具などと保護層との間に擦れが発生し、保護層に傷や剥がれが発生する場合がある。保護層の上にはシンチレータが設けられているので、保護層の傷や剥がれを起点としてシンチレータの剥がれが発生するおそれがある。シンチレータの剥がれが発生すると、感度特性や解像度特性が低下したり変化したりするおそれがある。 
 そこで、シンチレータを形成する際に、保護層に損傷が発生するのを抑制することができる技術の開発が望まれていた。
Here, the scintillator is formed by using a vacuum vapor deposition method or the like. Therefore, if the protective layer is provided over the entire surface of one surface of the substrate, the jig or mask used for forming the scintillator comes into contact with the protective layer provided above the peripheral region of the substrate. In this case, when the scintillator is deposited, the jig and the substrate are heated, but since the coefficient of thermal expansion of the jig and the like is different from the coefficient of thermal expansion of the substrate and the like, the respective thermal expansion amounts are different. It becomes. Therefore, rubbing may occur between the jig and the protective layer, and the protective layer may be scratched or peeled off. Since the scintillator is provided on the protective layer, the scintillator may be peeled off starting from scratches or peeling of the protective layer. When the scintillator is peeled off, the sensitivity characteristics and the resolution characteristics may be deteriorated or changed.
Therefore, it has been desired to develop a technique capable of suppressing damage to the protective layer when forming the scintillator.
特開2004-95820号公報Japanese Unexamined Patent Publication No. 2004-95820
 本発明が解決しようとする課題は、シンチレータを形成する際に、保護層に損傷が発生するのを抑制することができるシンチレータパネル、および放射線検出器を提供することである。 An object to be solved by the present invention is to provide a scintillator panel capable of suppressing damage to the protective layer when forming a scintillator, and a radiation detector.
 実施形態に係るシンチレータパネルは、複数の炭素繊維を有するプリプレグを少なくとも1つ有し、放射線を透過可能な基板と、前記基板の一方の面側に設けられたシンチレータと、前記基板と、前記シンチレータと、の間に設けられ、前記シンチレータにおいて発生した蛍光を反射可能な反射層と、前記反射層と、前記シンチレータと、の間に設けられた保護層と、を備えている。前記基板の面に垂直な方向から見た場合に、前記保護層の周縁が、前記シンチレータの周縁と、前記基板の周縁との間に設けられている。 The scintillator panel according to the embodiment has at least one prepreg having a plurality of carbon fibers, a substrate capable of transmitting radiation, a scintillator provided on one surface side of the substrate, the substrate, and the scintillator. A reflective layer provided between the two, and capable of reflecting the fluorescence generated in the scintillator, and a protective layer provided between the reflective layer and the scintillator are provided. When viewed from a direction perpendicular to the surface of the substrate, the peripheral edge of the protective layer is provided between the peripheral edge of the scintillator and the peripheral edge of the substrate.
本実施の形態に係るシンチレータパネルおよびX線検出器を例示するための模式斜視図である。It is a schematic perspective view for exemplifying the scintillator panel and the X-ray detector which concerns on this embodiment. シンチレータパネルおよびX線検出器の模式断面図である。It is a schematic cross-sectional view of a scintillator panel and an X-ray detector. シンチレータパネルの模式断面図である。It is a schematic cross-sectional view of a scintillator panel. 炭素繊維が伸びる方向と剛性との関係を例示するための模式斜視図である。It is a schematic perspective view for exemplifying the relationship between the direction in which carbon fibers extend and the rigidity. 基板の構成を例示するための模式分解図である。It is a schematic exploded view for exemplifying the structure of a substrate. 反射層、保護層、シンチレータ、および緩和層を例示するための模式断面図である。It is a schematic cross-sectional view for exemplifying a reflective layer, a protective layer, a scintillator, and a relaxation layer. 比較例に係る保護層の上にシンチレータを形成する場合を例示するための模式図である。It is a schematic diagram for exemplifying the case where the scintillator is formed on the protective layer which concerns on a comparative example. 本実施の形態に係る保護層の上にシンチレータを形成する場合を例示するための模式図である。It is a schematic diagram for exemplifying the case where the scintillator is formed on the protective layer which concerns on this embodiment. 他の実施形態に係るシンチレータパネルを例示するための模式断面図である。It is a schematic cross-sectional view for exemplifying the scintillator panel which concerns on another embodiment.
 以下、図面を参照しつつ、実施の形態について例示をする。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。 
 本発明の実施形態に係る放射線検出器は、X線のほかにもγ線などの各種放射線に適用させることができる。ここでは、一例として、放射線の中の代表的なものとしてX線に係る場合を例にとり説明をする。したがって、以下の実施形態の「X線」を「他の放射線」に置き換えることにより、他の放射線にも適用させることができる。
Hereinafter, embodiments will be illustrated with reference to the drawings. In each drawing, similar components are designated by the same reference numerals and detailed description thereof will be omitted as appropriate.
The radiation detector according to the embodiment of the present invention can be applied to various types of radiation such as γ-rays in addition to X-rays. Here, as an example, the case of X-rays as a typical example of radiation will be described as an example. Therefore, by replacing "X-ray" in the following embodiment with "other radiation", it can be applied to other radiation.
 また、以下に例示をするX線検出器1は、放射線画像であるX線画像を検出するX線平面センサとすることができる。X線検出器1は、例えば、一般医療などに用いることができる。ただし、X線検出器1の用途は、一般医療に限定されるわけではない。 Further, the X-ray detector 1 illustrated below can be an X-ray plane sensor that detects an X-ray image which is a radiation image. The X-ray detector 1 can be used, for example, in general medical care. However, the use of the X-ray detector 1 is not limited to general medical care.
 図1は、本実施の形態に係るシンチレータパネル10およびX線検出器1を例示するための模式斜視図である。 
 図2は、シンチレータパネル10およびX線検出器1の模式断面図である。 
 なお、煩雑となるのを避けるために、図2においては、制御ライン2c1、データライン2c2、回路基板3、画像構成部4などを省いて描いている。 
 図3は、シンチレータパネル10の模式断面図である。 
 図1および図2に示すように、X線検出器1には、アレイ基板2、回路基板3、画像構成部4、シンチレータパネル10、および接合部20を設けることができる。 
 アレイ基板2は、シンチレータパネル10によりX線から変換された蛍光を電荷に変換することができる。 
 アレイ基板2には、基板2a、光電変換部2b、制御ライン(又はゲートライン)2c1、データライン(又はシグナルライン)2c2、および絶縁層2fなどを設けることができる。なお、光電変換部2b、制御ライン2c1、およびデータライン2c2などの数は例示をしたものに限定されるわけではない。
FIG. 1 is a schematic perspective view for exemplifying the scintillator panel 10 and the X-ray detector 1 according to the present embodiment.
FIG. 2 is a schematic cross-sectional view of the scintillator panel 10 and the X-ray detector 1.
In addition, in order to avoid complication, in FIG. 2, the control line 2c1, the data line 2c2, the circuit board 3, the image configuration unit 4, and the like are omitted.
FIG. 3 is a schematic cross-sectional view of the scintillator panel 10.
As shown in FIGS. 1 and 2, the X-ray detector 1 may be provided with an array substrate 2, a circuit board 3, an image component 4, a scintillator panel 10, and a junction 20.
The array substrate 2 can convert the fluorescence converted from X-rays by the scintillator panel 10 into electric charges.
The array substrate 2 may be provided with a substrate 2a, a photoelectric conversion unit 2b, a control line (or gate line) 2c1, a data line (or signal line) 2c2, an insulating layer 2f, and the like. The numbers of the photoelectric conversion unit 2b, the control line 2c1, the data line 2c2, and the like are not limited to those illustrated.
 基板2aは、板状を呈し、例えば、無アルカリガラスなどの透光性材料から形成されている。基板2aの平面形状は、例えば、四角形とすることができる。 
 光電変換部2bは、基板2aの一方の面に複数設けることができる。光電変換部2bは、矩形状を呈し、制御ライン2c1とデータライン2c2とにより画された領域に設けることができる。複数の光電変換部2bは、マトリクス状に並べて設けることができる。なお、1つの光電変換部2bは、X線画像の1つの画素(pixel)に対応する。
The substrate 2a has a plate shape and is formed of a translucent material such as non-alkali glass. The planar shape of the substrate 2a can be, for example, a quadrangle.
A plurality of photoelectric conversion units 2b may be provided on one surface of the substrate 2a. The photoelectric conversion unit 2b has a rectangular shape and can be provided in a region defined by the control line 2c1 and the data line 2c2. The plurality of photoelectric conversion units 2b can be provided side by side in a matrix. One photoelectric conversion unit 2b corresponds to one pixel of the X-ray image.
 複数の光電変換部2bのそれぞれには、光電変換素子2b1と、スイッチング素子である薄膜トランジスタ(TFT;Thin Film Transistor)2b2を設けることができる。 
 また、光電変換素子2b1において変換した電荷を蓄積する蓄積キャパシタ2b3を設けることができる。蓄積キャパシタ2b3は、例えば、矩形平板状を呈し、各薄膜トランジスタ2b2の下に設けることができる。ただし、光電変換素子2b1の容量によっては、光電変換素子2b1が蓄積キャパシタ2b3を兼ねることができる。
A photoelectric conversion element 2b1 and a thin film transistor (TFT) 2b2, which is a switching element, can be provided in each of the plurality of photoelectric conversion units 2b.
Further, a storage capacitor 2b3 for accumulating the electric charge converted by the photoelectric conversion element 2b1 can be provided. The storage capacitor 2b3 has, for example, a rectangular flat plate shape, and can be provided under each thin film transistor 2b2. However, depending on the capacity of the photoelectric conversion element 2b1, the photoelectric conversion element 2b1 can also serve as the storage capacitor 2b3.
 光電変換素子2b1は、例えば、フォトダイオードなどとすることができる。 
 薄膜トランジスタ2b2は、蓄積キャパシタ2b3への電荷の蓄積および放出のスイッチングを行うことができる。薄膜トランジスタ2b2は、ゲート電極、ドレイン電極及びソース電極を有することができる。薄膜トランジスタ2b2のゲート電極は、対応する制御ライン2c1と電気的に接続することができる。薄膜トランジスタ2b2のドレイン電極は、対応するデータライン2c2と電気的に接続することができる。薄膜トランジスタ2b2のソース電極は、対応する光電変換素子2b1と蓄積キャパシタ2b3とに電気的に接続することができる。また、光電変換素子2b1のアノード側と蓄積キャパシタ2b3は、グランドに接続することができる。
The photoelectric conversion element 2b1 can be, for example, a photodiode or the like.
The thin film transistor 2b2 can switch the accumulation and emission of electric charges in the storage capacitor 2b3. The thin film transistor 2b2 can have a gate electrode, a drain electrode, and a source electrode. The gate electrode of the thin film transistor 2b2 can be electrically connected to the corresponding control line 2c1. The drain electrode of the thin film transistor 2b2 can be electrically connected to the corresponding data line 2c2. The source electrode of the thin film transistor 2b2 can be electrically connected to the corresponding photoelectric conversion element 2b1 and the storage capacitor 2b3. Further, the anode side of the photoelectric conversion element 2b1 and the storage capacitor 2b3 can be connected to the ground.
 制御ライン2c1は、所定の間隔をあけて互いに平行に複数設けることができる。制御ライン2c1は、例えば、行方向に延びるものとすることができる。1つの制御ライン2c1は、基板2aの周縁近傍に設けられた複数の配線パッドのうちの1つと電気的に接続することができる。1つの配線パッドには、フレキシブルプリント基板2e1に設けられた複数の配線のうちの1つを電気的に接続することができる。フレキシブルプリント基板2e1に設けられた複数の配線の他端は、回路基板3に設けられた読み出し回路とそれぞれ電気的に接続することができる。 A plurality of control lines 2c1 can be provided in parallel with each other at predetermined intervals. The control line 2c1 may extend in the row direction, for example. One control line 2c1 can be electrically connected to one of a plurality of wiring pads provided near the peripheral edge of the substrate 2a. One of a plurality of wirings provided on the flexible printed circuit board 2e1 can be electrically connected to one wiring pad. The other ends of the plurality of wirings provided on the flexible printed circuit board 2e1 can be electrically connected to the readout circuit provided on the circuit board 3, respectively.
 データライン2c2は、所定の間隔をあけて互いに平行に複数設けることができる。データライン2c2は、例えば、行方向に直交する列方向に延びるものとすることができる。1つのデータライン2c2は、基板2aの周縁近傍に設けられた複数の配線パッドのうちの1つと電気的に接続することができる。1つの配線パッドには、フレキシブルプリント基板2e2に設けられた複数の配線のうちの1つを電気的に接続することができる。フレキシブルプリント基板2e2に設けられた複数の配線の他端は、回路基板3に設けられた信号検出回路とそれぞれ電気的に接続することができる。 
 制御ライン2c1、およびデータライン2c2は、例えば、アルミニウムやクロムなどの低抵抗金属を用いて形成することができる。
A plurality of data lines 2c2 may be provided in parallel with each other at predetermined intervals. The data line 2c2 can, for example, extend in the column direction orthogonal to the row direction. One data line 2c2 can be electrically connected to one of a plurality of wiring pads provided near the periphery of the substrate 2a. One of a plurality of wirings provided on the flexible printed circuit board 2e2 can be electrically connected to one wiring pad. The other ends of the plurality of wirings provided on the flexible printed circuit board 2e2 can be electrically connected to the signal detection circuit provided on the circuit board 3, respectively.
The control line 2c1 and the data line 2c2 can be formed by using a low resistance metal such as aluminum or chromium.
 絶縁層2fは、光電変換部2b、制御ライン2c1、およびデータライン2c2などを覆うことができる。絶縁層2fは、例えば、酸化物絶縁材料、窒化物絶縁材料、酸窒化物絶縁材料、および樹脂の少なくとも1種を含むことができる。 The insulating layer 2f can cover the photoelectric conversion unit 2b, the control line 2c1, the data line 2c2, and the like. The insulating layer 2f can include, for example, at least one of an oxide insulating material, a nitride insulating material, an oxynitride insulating material, and a resin.
 回路基板3は、アレイ基板2の、シンチレータパネル10が設けられる側とは反対側に設けることができる。回路基板3には、読み出し回路、および信号検出回路を設けることができる。なお、これらの回路を1つの基板に設けることもできるし、これらの回路を複数の基板に分けて設けることもできる。 The circuit board 3 can be provided on the side of the array board 2 opposite to the side on which the scintillator panel 10 is provided. A read circuit and a signal detection circuit can be provided on the circuit board 3. It should be noted that these circuits can be provided on one board, or these circuits can be provided separately on a plurality of boards.
 読み出し回路は、薄膜トランジスタ2b2のオン状態とオフ状態を切り替えることができる。例えば、読み出し回路は、フレキシブルプリント基板2e1を介して、制御信号S1を各制御ライン2c1毎に順次入力することができる。制御ライン2c1に入力された制御信号S1により薄膜トランジスタ2b2がオン状態となり、蓄積キャパシタ2b3からの電荷(画像データ信号S2)が受信できるようになる。 The readout circuit can switch between the on state and the off state of the thin film transistor 2b2. For example, the readout circuit can sequentially input the control signal S1 for each control line 2c1 via the flexible printed circuit board 2e1. The control signal S1 input to the control line 2c1 turns on the thin film transistor 2b2, and the electric charge (image data signal S2) from the storage capacitor 2b3 can be received.
 信号検出回路は、複数の積分アンプ、複数の選択回路、および複数のADコンバータを有することができる。 
 1つの積分アンプは、1つのデータライン2c2と電気的に接続することができる。積分アンプは、光電変換部2bからの画像データ信号S2を順次受信することができる。そして、積分アンプは、一定時間内に流れる電流を積分し、その積分値に対応した電圧を選択回路へ出力することができる。この様にすれば、所定の時間内にデータライン2c2を流れる電流の値(電荷量)を電圧値に変換することが可能となる。すなわち、積分アンプは、シンチレータパネル10(シンチレータ14)において発生した蛍光の強弱分布に対応した画像データ情報を、電位情報へと変換することができる。
The signal detection circuit can have a plurality of integrating amplifiers, a plurality of selection circuits, and a plurality of AD converters.
One integrating amplifier can be electrically connected to one data line 2c2. The integrating amplifier can sequentially receive the image data signal S2 from the photoelectric conversion unit 2b. Then, the integrating amplifier can integrate the current flowing within a fixed time and output the voltage corresponding to the integrated value to the selection circuit. In this way, it is possible to convert the value (charge amount) of the current flowing through the data line 2c2 into a voltage value within a predetermined time. That is, the integrating amplifier can convert the image data information corresponding to the intensity distribution of fluorescence generated in the scintillator panel 10 (scintillator 14) into potential information.
 選択回路は、読み出しを行う積分アンプを選択し、電位情報へと変換された画像データ信号S2を順次読み出すことができる。 
 ADコンバータは、読み出された画像データ信号S2をデジタル信号に順次変換することができる。デジタル信号に変換された画像データ信号S2は、画像構成部4に入力することができる。
The selection circuit can select an integrating amplifier to be read out and sequentially read out the image data signal S2 converted into potential information.
The AD converter can sequentially convert the read image data signal S2 into a digital signal. The image data signal S2 converted into a digital signal can be input to the image configuration unit 4.
 画像構成部4は、配線4aを介して、回路基板3の読み出し回路(ADコンバータ)と電気的に接続することができる。なお、画像構成部4と回路基板3との間のデータ通信は、無線により行うこともできる。また、画像構成部4と回路基板3とを一体化してもよい。画像構成部4は、複数のADコンバータによりデジタル信号に変換された画像データ信号S2に基づいて、X線画像を構成することができる。構成されたX線画像のデータは、画像構成部4から外部の機器に向けて出力することができる。 The image configuration unit 4 can be electrically connected to the readout circuit (AD converter) of the circuit board 3 via the wiring 4a. Data communication between the image configuration unit 4 and the circuit board 3 can also be performed wirelessly. Further, the image component 4 and the circuit board 3 may be integrated. The image configuration unit 4 can configure an X-ray image based on the image data signal S2 converted into a digital signal by a plurality of AD converters. The configured X-ray image data can be output from the image configuration unit 4 to an external device.
 図2および図3に示すように、シンチレータパネル10には、基板11、反射層12、保護層13、シンチレータ14、緩和層15、および防湿部16を設けることができる。
 基板11は、板状を呈し、X線を透過する材料から形成することができる。基板11は、例えば、炭素繊維強化プラスチック(CFRP;Carbon-Fiber-Reinforced Plastic)から形成することができる。基板11は、例えば、複数の炭素繊維を有するプリプレグを少なくとも1つ有することができる。この場合、基板11は、複数の炭素繊維111が伸びる方向が異なる複数種類のプリプレグを有することができる(図5を参照)。複数種類のプリプレグは、厚み方向に積層することができる。プリプレグの平面形状、ひいては、基板11の平面形状は、例えば、四角形とすることができる。プリプレグは、板状を呈し、例えば、炭素繊維を所望の方向に並べたものに熱硬化性樹脂を含浸させたものとすることができる。プリプレグの厚みは、例えば、0.1mm程度とすることができる。基板11は、例えば、プリプレグを複数積層し、これを加圧加熱処理することにより形成することができる。
As shown in FIGS. 2 and 3, the scintillator panel 10 can be provided with a substrate 11, a reflective layer 12, a protective layer 13, a scintillator 14, a relaxation layer 15, and a moisture-proof portion 16.
The substrate 11 has a plate shape and can be formed of a material that transmits X-rays. The substrate 11 can be formed from, for example, carbon-Fiber-Reinforced Plastic (CFRP). The substrate 11 can have, for example, at least one prepreg having a plurality of carbon fibers. In this case, the substrate 11 can have a plurality of types of prepregs in which the plurality of carbon fibers 111 extend in different directions (see FIG. 5). A plurality of types of prepregs can be laminated in the thickness direction. The planar shape of the prepreg, and thus the planar shape of the substrate 11, can be, for example, a quadrangle. The prepreg has a plate shape, and for example, carbon fibers arranged in a desired direction may be impregnated with a thermosetting resin. The thickness of the prepreg can be, for example, about 0.1 mm. The substrate 11 can be formed, for example, by laminating a plurality of prepregs and subjecting them to heat treatment under pressure.
 ここで、基板11の剛性が低かったり、基板11の剛性の異方性が大きかったり、基板11に発生した反りが大きかったりした場合には、アレイ基板2とシンチレータパネル10との位置関係が、所定の位置(所定のイメージ面)からずれてX線画像の品質が低下するおそれがある。 Here, when the rigidity of the substrate 11 is low, the rigidity of the substrate 11 is highly anisotropic, or the warp generated in the substrate 11 is large, the positional relationship between the array substrate 2 and the scintillator panel 10 is determined. The quality of the X-ray image may deteriorate due to deviation from a predetermined position (predetermined image plane).
 この場合、プリプレグの数を増やせば、基板11の剛性を高くしたり、基板11の剛性の異方性を小さくしたり、基板11に発生した反りを小さくすることができる。ところが、単に、プリプレグの数を増やせば、基板11の製造コストが増大することになる。また、プリプレグにおける炭素繊維111が伸びる方向により、プリプレグの剛性が変化する。すなわち、プリプレグにおける炭素繊維111が伸びる方向により、プリプレグに剛性の異方性が生じる。 In this case, if the number of prepregs is increased, the rigidity of the substrate 11 can be increased, the anisotropy of the rigidity of the substrate 11 can be reduced, and the warp generated in the substrate 11 can be reduced. However, simply increasing the number of prepregs will increase the manufacturing cost of the substrate 11. Further, the rigidity of the prepreg changes depending on the direction in which the carbon fibers 111 in the prepreg extend. That is, the rigidity of the prepreg is anisotropy depending on the direction in which the carbon fibers 111 in the prepreg are stretched.
 図4は、炭素繊維111が伸びる方向と剛性との関係を例示するための模式斜視図である。 
 プリプレグの平面形状を考慮せずに炭素繊維111が伸びる方向のみを考慮すると、炭素繊維111が伸びる方向Aに直交する方向における曲げ強度Bは、炭素繊維111が伸びる方向Aに平行な方向における曲げ強度Cよりも小さくなる。
FIG. 4 is a schematic perspective view for exemplifying the relationship between the extending direction of the carbon fiber 111 and the rigidity.
Considering only the direction in which the carbon fibers 111 extend without considering the planar shape of the prepreg, the bending strength B in the direction orthogonal to the direction A in which the carbon fibers 111 extend is the bending in the direction parallel to the direction A in which the carbon fibers 111 extend. It becomes smaller than the strength C.
 一方、プリプレグの平面形状のみを考慮すると、短辺側における曲げ強度Bは、長辺側における曲げ強度Cよりも大きくなる。 
 そのため、剛性の異方性を小さくするためには、プリプレグの平面形状を考慮して、炭素繊維111が伸びる方向Aを設定することが好ましい。例えば、図4に示すように、プリプレグの平面形状が矩形の場合には、炭素繊維111が伸びる方向Aは、長辺に平行な方向(長手方向)とすることが好ましい。
On the other hand, considering only the planar shape of the prepreg, the bending strength B on the short side is larger than the bending strength C on the long side.
Therefore, in order to reduce the anisotropy of rigidity, it is preferable to set the direction A in which the carbon fiber 111 extends in consideration of the planar shape of the prepreg. For example, as shown in FIG. 4, when the planar shape of the prepreg is rectangular, the direction A in which the carbon fibers 111 extend is preferably a direction parallel to the long side (longitudinal direction).
 図5は、基板11の構成を例示するための模式分解図である。 
 基板11の厚み方向の中心を通る線110から最も離れた位置、すなわち、基板11の表面(厚み方向の両端)に設けられているプリプレグ11aの剛性が、基板11の剛性に最も寄与する。そのため、プリプレグ11aの平面形状を考慮して、炭素繊維111が伸びる方向Aを設定することが好ましい。
FIG. 5 is a schematic exploded view for exemplifying the configuration of the substrate 11.
The rigidity of the prepreg 11a provided on the surface (both ends in the thickness direction) of the substrate 11 at the position farthest from the line 110 passing through the center in the thickness direction of the substrate 11 contributes most to the rigidity of the substrate 11. Therefore, it is preferable to set the direction A in which the carbon fiber 111 extends in consideration of the planar shape of the prepreg 11a.
 また、基板11に設けられるプリプレグの種類(炭素繊維が伸びる方向の種類)を多くすれば、基板11における剛性の異方性を小さくすることができる。しかしながら、プリプレグの種類を多くしすぎると、プリプレグの数が多くなりすぎて、基板11の製造コストが増大したり、基板11の剛性が高くなりすぎてアレイ基板2とシンチレータパネル10との接合作業が困難となったりするおそれがある。 Further, if the types of prepregs provided on the substrate 11 (types in the direction in which the carbon fibers are stretched) are increased, the anisotropy of rigidity in the substrate 11 can be reduced. However, if there are too many types of prepregs, the number of prepregs becomes too large, the manufacturing cost of the substrate 11 increases, and the rigidity of the substrate 11 becomes too high, so that the joining work between the array substrate 2 and the scintillator panel 10 is performed. May become difficult.
 例えば、X線検出器1が一般医療などに用いられるものの場合には、図5に示すように、4種類のプリプレグ11a~11dをそれぞれ2つずつ設けることが好ましい。また、基板11の厚み方向の中心を通る線110に対して線対称となる位置に設けられたプリプレグにおける炭素繊維111が伸びる方向は、略同じとなるようにすることが好ましい。また、炭素繊維111が伸びる方向同士の間の角度が略等しくなるようにすることが好ましい。 For example, when the X-ray detector 1 is used for general medical treatment or the like, it is preferable to provide two each of four types of prepregs 11a to 11d as shown in FIG. Further, it is preferable that the carbon fibers 111 in the prepreg provided at a position line-symmetrical with respect to the line 110 passing through the center in the thickness direction of the substrate 11 extend in substantially the same direction. Further, it is preferable that the angles between the extending directions of the carbon fibers 111 are substantially equal.
 図5に示すように、プリプレグ11aは、基板11の厚み方向の中心を通る線110から最も離れた位置、すなわち、基板11の表面(表裏)に設けることができる。基板11の剛性に最も寄与するプリプレグ11aにおける炭素繊維111が伸びる方向は、プリプレグ11a(基板11)の長辺に略平行な方向とすることができる。 As shown in FIG. 5, the prepreg 11a can be provided at a position farthest from the line 110 passing through the center in the thickness direction of the substrate 11, that is, on the surface (front and back) of the substrate 11. The direction in which the carbon fibers 111 in the prepreg 11a, which most contributes to the rigidity of the substrate 11, is extended can be a direction substantially parallel to the long side of the prepreg 11a (board 11).
 プリプレグ11bは、プリプレグ11aの、基板11の中心側の面に設けることができる。プリプレグ11bにおける炭素繊維111が伸びる方向は、プリプレグ11b(基板11)の長辺に平行な方向に対して45°の角度を有することができる。 The prepreg 11b can be provided on the central surface of the substrate 11 of the prepreg 11a. The direction in which the carbon fibers 111 in the prepreg 11b extend can have an angle of 45 ° with respect to the direction parallel to the long side of the prepreg 11b (board 11).
 プリプレグ11cは、プリプレグ11bの、基板11の中心側の面に設けることができる。プリプレグ11cにおける炭素繊維111が伸びる方向は、プリプレグ11c(基板11)の長辺に平行な方向に対して90°の角度を有することができる。 The prepreg 11c can be provided on the central surface of the substrate 11 of the prepreg 11b. The direction in which the carbon fibers 111 in the prepreg 11c extend can have an angle of 90 ° with respect to the direction parallel to the long side of the prepreg 11c (substrate 11).
 プリプレグ11dは、プリプレグ11cの、基板11の中心側の面に設けることができる。プリプレグ11dにおける炭素繊維111が伸びる方向は、プリプレグ11d(基板11)の長辺に平行な方向に対して135°の角度を有することができる。 The prepreg 11d can be provided on the central surface of the substrate 11 of the prepreg 11c. The direction in which the carbon fibers 111 in the prepreg 11d extend can have an angle of 135 ° with respect to the direction parallel to the long side of the prepreg 11d (substrate 11).
 なお、以上においては、基板11(プリプレグ11a~11d)の平面形状が矩形の場合を例示したが、基板11の一部を面取りして多角形としたり、基板11の角部にR部やC面取りを付けたりすることもできる。 In the above, the case where the planar shape of the substrate 11 (prepregs 11a to 11d) is rectangular has been illustrated, but a part of the substrate 11 may be chamfered to form a polygon, or an R portion or C may be formed at a corner portion of the substrate 11. It can also be chamfered.
 以上のような構成を有する基板11とすれば、歪みの発生の抑制や、基板11の剛性の異方性の低減などを図ることができる。また、基板11の上に、反射層12、保護層13、シンチレータ14、緩和層15、および防湿部16を形成する際に反りが発生するのを抑制することができる。 If the substrate 11 has the above configuration, it is possible to suppress the occurrence of distortion and reduce the anisotropy of the rigidity of the substrate 11. Further, it is possible to suppress the occurrence of warpage when the reflective layer 12, the protective layer 13, the scintillator 14, the relaxation layer 15, and the moisture-proof portion 16 are formed on the substrate 11.
 図2および図3に示すように、反射層12は、基板11の一方の面に設けることができる。反射層12は、基板11の一方の面の全域を覆うように設けることができる。反射層12は、蛍光の利用効率を高めて感度特性を改善するために設けられている。すなわち、反射層12は、シンチレータ14において生じた蛍光のうち、光電変換部2bが設けられた側とは反対側に向かう光を反射させて、光電変換部2bに向かうようにする。すなわち、反射層12は、基板11と、シンチレータ14と、の間に設けられ、シンチレータ14において発生した蛍光を反射可能とすることができる。 As shown in FIGS. 2 and 3, the reflective layer 12 can be provided on one surface of the substrate 11. The reflective layer 12 can be provided so as to cover the entire area of one surface of the substrate 11. The reflective layer 12 is provided to increase the utilization efficiency of fluorescence and improve the sensitivity characteristics. That is, the reflective layer 12 reflects the light generated in the scintillator 14 toward the side opposite to the side where the photoelectric conversion unit 2b is provided so as to be directed toward the photoelectric conversion unit 2b. That is, the reflective layer 12 is provided between the substrate 11 and the scintillator 14, and can reflect the fluorescence generated in the scintillator 14.
 また、シンチレータ14の反射層12が設けられる側にはX線が入射する。そのため、反射層12は、X線を透過し、且つ、蛍光に対する反射率が高い材料から形成することができる。例えば、反射層12は、アルミニウムや銀などを含むものとすることができる。ところが、基板11は炭素繊維強化プラスチックから形成されている。そのため、アルミニウムや銀などを含む膜を基板11の表面に直接形成したり、基板11の表面に直接貼り付けたりすることが難しい。そこで、反射層12は、樹脂層12aと金属層12bを含む積層構造体とすることができる。 Further, X-rays are incident on the side of the scintillator 14 where the reflection layer 12 is provided. Therefore, the reflective layer 12 can be formed of a material that transmits X-rays and has a high reflectance for fluorescence. For example, the reflective layer 12 may contain aluminum, silver, or the like. However, the substrate 11 is made of carbon fiber reinforced plastic. Therefore, it is difficult to directly form a film containing aluminum, silver, or the like on the surface of the substrate 11 or directly attach it to the surface of the substrate 11. Therefore, the reflective layer 12 can be a laminated structure including the resin layer 12a and the metal layer 12b.
 図6は、反射層12、保護層13、シンチレータ14、および緩和層15を例示するための模式断面図である。 
 なお、煩雑となるのを避けるために、図6においては、基板11を構成する一部のプリプレグを省略して描いている。 
 図6に示すように、反射層12は、基板11の表面に接合される樹脂層12aと、樹脂層12aの、基板11側とは反対側の面に設けられた金属層12bとを備えることができる。反射層12は、例えば、オートクレーブ成形法により、シート状の樹脂層12aと、シート状の金属層12b(例えば、アルミニウム箔など)とを一体化することで形成することができる。
FIG. 6 is a schematic cross-sectional view for illustrating the reflective layer 12, the protective layer 13, the scintillator 14, and the relaxation layer 15.
In addition, in order to avoid complication, in FIG. 6, some prepregs constituting the substrate 11 are omitted.
As shown in FIG. 6, the reflective layer 12 includes a resin layer 12a bonded to the surface of the substrate 11 and a metal layer 12b provided on the surface of the resin layer 12a opposite to the substrate 11 side. Can be done. The reflective layer 12 can be formed by integrating the sheet-shaped resin layer 12a and the sheet-shaped metal layer 12b (for example, aluminum foil or the like) by, for example, an autoclave molding method.
 樹脂層12aは、炭素繊維強化プラスチックから形成された基板11に接合することが容易である。そのため、反射層12の樹脂層12a側を基板11の表面に接合することができる。反射層12の樹脂層12a側は、例えば、基板11に接着することができる。 The resin layer 12a can be easily bonded to the substrate 11 formed of carbon fiber reinforced plastic. Therefore, the resin layer 12a side of the reflective layer 12 can be bonded to the surface of the substrate 11. The resin layer 12a side of the reflective layer 12 can be adhered to the substrate 11, for example.
 樹脂層12aは、例えば、ポリエチレンテレフタレート(PET)などから形成することができる。 
 金属層12bは、例えば、アルミニウムや銀などの金属を含むものとすることができる。金属層12bは、例えば、アルミニウム箔や、銀箔などから形成することができる。 
 樹脂層12aの厚みは、例えば、50μm以上、190μm以下とすることができる。
The resin layer 12a can be formed from, for example, polyethylene terephthalate (PET) or the like.
The metal layer 12b may contain, for example, a metal such as aluminum or silver. The metal layer 12b can be formed of, for example, an aluminum foil, a silver foil, or the like.
The thickness of the resin layer 12a can be, for example, 50 μm or more and 190 μm or less.
 ここで、金属層12bの厚みを薄くし過ぎるとピンホールが発生したり、反射率が低下したりするおそれがある。一方、金属層12bの厚みを厚くし過ぎると、シンチレータ14を形成する際の熱により発生する熱応力が大きくなり、基板11に反りなどが発生するおそれがある。そのため、金属層12bの厚みは、例えば、25μm以上、50μm以下とすることが好ましい。 
 反射層12の厚み(樹脂層12aと金属層12bの合計の厚み)は、例えば、75μm以上、240μm以下とすることができる。
Here, if the thickness of the metal layer 12b is made too thin, pinholes may occur or the reflectance may decrease. On the other hand, if the thickness of the metal layer 12b is made too thick, the thermal stress generated by the heat when forming the scintillator 14 becomes large, and the substrate 11 may be warped or the like. Therefore, the thickness of the metal layer 12b is preferably 25 μm or more and 50 μm or less, for example.
The thickness of the reflective layer 12 (the total thickness of the resin layer 12a and the metal layer 12b) can be, for example, 75 μm or more and 240 μm or less.
 樹脂層12aが設けられていれば、基板11の表面の凹凸に倣わせるのが容易となったり、外部からの衝撃を緩和させて金属層12bに損傷が発生するのを抑制したりすることができる。そのため、反射層12が有するバリア性能及び反射性能を維持することが容易となる。また、樹脂層12aが設けられていれば、冷熱サイクルや熱衝撃などの温度変化が生じた際に、熱膨張率が小さい基板11と熱膨張率が大きい金属層12bとの間に生じる熱応力を緩和させることも可能となる。 If the resin layer 12a is provided, it is easy to imitate the unevenness of the surface of the substrate 11, and the impact from the outside is alleviated to prevent damage to the metal layer 12b. Can be done. Therefore, it becomes easy to maintain the barrier performance and the reflection performance of the reflection layer 12. Further, if the resin layer 12a is provided, the thermal stress generated between the substrate 11 having a small coefficient of thermal expansion and the metal layer 12b having a large coefficient of thermal expansion when a temperature change such as a thermal cycle or a thermal shock occurs. It is also possible to relax.
 反射層12の、基板11側とは反対側の面には、金属層12bが露出している。また、シンチレータ14は、反射層12の、基板11側とは反対側に設けられる。この場合、金属層12bとシンチレータ14とが直接接触すると、金属層12bに含まれている還元性の高い金属と、シンチレータ14に含まれている酸化力の強いヨウ素と、空気中に含まれている僅かな水蒸気とにより酸化還元反応が生じて、金属層12bに腐食が発生するおそれがある。金属層12bに腐食が発生すると、金属層12bの光沢が減少し反射性能の低下、ひいては感度特性の低下、および解像度特性の低下が生じるおそれがある。 The metal layer 12b is exposed on the surface of the reflective layer 12 opposite to the substrate 11 side. Further, the scintillator 14 is provided on the side of the reflective layer 12 opposite to the substrate 11 side. In this case, when the metal layer 12b and the scintillator 14 come into direct contact with each other, the highly reducing metal contained in the metal layer 12b, the highly oxidizing iodine contained in the scintillator 14, and the highly oxidizing iodine contained in the scintillator 14 are contained in the air. There is a risk that the metal layer 12b will be corroded due to a redox reaction caused by the slight amount of water vapor. When the metal layer 12b is corroded, the gloss of the metal layer 12b is reduced, which may lead to a decrease in reflection performance, a decrease in sensitivity characteristics, and a decrease in resolution characteristics.
 そこで、本実施の形態に係るシンチレータパネル10には、保護層13が設けられている。保護層13は、反射層12の、基板11側とは反対側の面に設けることができる。すなわち、保護層13は、反射層12(金属層12b)と、シンチレータ14との間に設けることができる。保護層13は、例えば、ポリパラキシリレン樹脂などの樹脂を含むことができる。保護層13の厚みは、例えば、5μm以上、20μm以下とすることができる。保護層13は、例えば、熱CVD(thermal chemical vapor deposition)法などにより形成することができる。 Therefore, the scintillator panel 10 according to the present embodiment is provided with the protective layer 13. The protective layer 13 can be provided on the surface of the reflective layer 12 opposite to the substrate 11 side. That is, the protective layer 13 can be provided between the reflective layer 12 (metal layer 12b) and the scintillator 14. The protective layer 13 can contain, for example, a resin such as a polyparaxylylene resin. The thickness of the protective layer 13 can be, for example, 5 μm or more and 20 μm or less. The protective layer 13 can be formed by, for example, a thermal CVD (thermal chemical vapor deposition) method or the like.
 ここで、シンチレータ14は、真空蒸着法などを用いて保護層13の上に形成することができる。 
 図7は、比較例に係る保護層113の上にシンチレータ14を形成する場合を例示するための模式図である。 
 図7に示すように、反射層12は、基板11の一方の面の全域に設けられている。比較例に係る保護層113は、反射層12の全域を覆っている。すなわち、保護層113は、基板11の周縁領域の上方にも設けられている。保護層113の厚みや材料は、本実施の形態に係る保護層13の厚みや材料と同様とすることができる。
Here, the scintillator 14 can be formed on the protective layer 13 by using a vacuum deposition method or the like.
FIG. 7 is a schematic view for exemplifying a case where the scintillator 14 is formed on the protective layer 113 according to the comparative example.
As shown in FIG. 7, the reflective layer 12 is provided over the entire surface of one surface of the substrate 11. The protective layer 113 according to the comparative example covers the entire area of the reflective layer 12. That is, the protective layer 113 is also provided above the peripheral region of the substrate 11. The thickness and material of the protective layer 113 can be the same as the thickness and material of the protective layer 13 according to the present embodiment.
 図7に示すように、真空蒸着法などを用いてシンチレータ14を形成する際には、位置決め治具200や成膜用のマスクなどが用いられる。位置決め治具200などは、基板11の周縁領域を保持したり、支持したりする。そのため、保護層113が基板11の周縁領域の上方にも設けられていると、位置決め治具200などが、保護層113に接触することになる。シンチレータ14を蒸着する際には、位置決め治具200、基板11、保護層113などが加熱されるが、それぞれの熱膨張係数が異なるため、それぞれの熱膨張量が異なるものとなる。そのため、位置決め治具200などと保護層113との間に擦れが発生し、保護層113に傷や剥がれが発生する場合がある。保護層113の上にはシンチレータ14が設けられているので、保護層113に傷や剥がれが発生すると、傷や剥がれを起点としてシンチレータ14が剥がれるおそれがある。シンチレータ14が剥がれると、感度特性や解像度特性が低下したり変化したりするおそれがある。 As shown in FIG. 7, when the scintillator 14 is formed by a vacuum vapor deposition method or the like, a positioning jig 200, a mask for film formation, or the like is used. The positioning jig 200 or the like holds or supports the peripheral region of the substrate 11. Therefore, if the protective layer 113 is also provided above the peripheral region of the substrate 11, the positioning jig 200 or the like comes into contact with the protective layer 113. When the scintillator 14 is vapor-deposited, the positioning jig 200, the substrate 11, the protective layer 113, and the like are heated, but since the respective thermal expansion coefficients are different, the respective thermal expansion amounts are different. Therefore, rubbing may occur between the positioning jig 200 and the protective layer 113, and the protective layer 113 may be scratched or peeled off. Since the scintillator 14 is provided on the protective layer 113, if the protective layer 113 is scratched or peeled off, the scintillator 14 may be peeled off starting from the scratch or peeling. If the scintillator 14 is peeled off, the sensitivity characteristics and the resolution characteristics may be lowered or changed.
 図8は、本実施の形態に係る保護層13の上にシンチレータ14を形成する場合を例示するための模式図である。 
 図8に示すように、本実施の形態に係る保護層13は、基板11の中央領域に設けられ、基板11の周縁領域には設けられていない。前述したように、保護層13は、シンチレータ14が反射層12の上に直接形成されないようにするために設けられている。そのため、保護層13は、反射層12のシンチレータ14が形成される領域に設けられていればよい。しかしながら、シンチレータ14の形成位置には製造上のズレ(成膜の誤差)がある。そのため、シンチレータパネル10を基板11の面に垂直な方向から見た場合に、保護層13の周縁が、シンチレータ14の周縁と、基板11の周縁との間に設けられているようにすることが好ましい。
FIG. 8 is a schematic view for exemplifying a case where the scintillator 14 is formed on the protective layer 13 according to the present embodiment.
As shown in FIG. 8, the protective layer 13 according to the present embodiment is provided in the central region of the substrate 11 and not in the peripheral region of the substrate 11. As described above, the protective layer 13 is provided to prevent the scintillator 14 from being formed directly on the reflective layer 12. Therefore, the protective layer 13 may be provided in the region where the scintillator 14 of the reflective layer 12 is formed. However, there is a manufacturing deviation (error in film formation) at the formation position of the scintillator 14. Therefore, when the scintillator panel 10 is viewed from the direction perpendicular to the surface of the substrate 11, the peripheral edge of the protective layer 13 may be provided between the peripheral edge of the scintillator 14 and the peripheral edge of the substrate 11. preferable.
 この場合、保護層13の周縁とシンチレータ14の周縁との間の距離L1を大きくすれば、シンチレータ14の位置ズレの許容範囲を大きくすることができる。そのため、シンチレータ14の製造が容易となる。また、前述した位置決め治具200などと保護層13との干渉を抑制するためには、保護層13の周縁と基板11の周縁との間の距離L2を所定の大きさにすることが好ましい。 In this case, if the distance L1 between the peripheral edge of the protective layer 13 and the peripheral edge of the scintillator 14 is increased, the allowable range of the positional deviation of the scintillator 14 can be increased. Therefore, the scintillator 14 can be easily manufactured. Further, in order to suppress the interference between the positioning jig 200 and the like described above and the protective layer 13, it is preferable that the distance L2 between the peripheral edge of the protective layer 13 and the peripheral edge of the substrate 11 is set to a predetermined size.
 ところが、距離L1を大きくすると、基板11の周縁とシンチレータ14の周縁との間の距離L3が大きくなることになる。近年においては、X線検出器1の小型化、ひいてはシンチレータパネル10の小型化が望まれている。そのため、距離L1を大きくし過ぎると、距離L3が大きくなり過ぎて、シンチレータパネル10の小型化が困難となる。 However, when the distance L1 is increased, the distance L3 between the peripheral edge of the substrate 11 and the peripheral edge of the scintillator 14 is increased. In recent years, it has been desired to reduce the size of the X-ray detector 1 and the scintillator panel 10. Therefore, if the distance L1 is made too large, the distance L3 becomes too large, and it becomes difficult to reduce the size of the scintillator panel 10.
 本発明者の得た知見によれば、距離L1を1mm以上、5mm以下とすれば、位置決め治具200などと保護層13との干渉を抑制することができるので、シンチレータ14を形成する際に、保護層13に損傷が発生するのを抑制することが容易となる。また、シンチレータ14の位置ズレを許容できるのでシンチレータ14の製造が容易となる。また、シンチレータパネル10の小型化、ひいてはX線検出器1の小型化を図ることができる。 According to the knowledge obtained by the present inventor, if the distance L1 is 1 mm or more and 5 mm or less, interference between the positioning jig 200 or the like and the protective layer 13 can be suppressed, so that when the scintillator 14 is formed, , It becomes easy to suppress the occurrence of damage to the protective layer 13. Further, since the scintillator 14 can be displaced, the scintillator 14 can be easily manufactured. Further, the scintillator panel 10 can be downsized, and the X-ray detector 1 can be downsized.
 次に、図2および図3に戻って、シンチレータ14、緩和層15、および防湿部16について説明する。 
 図2および図3に示すように、シンチレータ14は、保護層13を介して、反射層12の上に設けることができる。シンチレータ14は、入射したX線を蛍光(可視光)に変換することができる。シンチレータ14は、例えば、ヨウ化セシウム(CsI):タリウム(Tl)、あるいはヨウ化ナトリウム(NaI):タリウム(Tl)などを用いて形成することができる。シンチレータ14の厚みは、例えば、600μm程度とすることができる。シンチレータ14は、例えば、真空蒸着法などを用いて形成することができる。真空蒸着法などを用いて、シンチレータ14を形成すれば、柱状結晶の集合体からなるシンチレータ14が形成される。この場合、柱状結晶(柱(ピラー))の太さは、最表面で8μm~12μm程度とすることができる。
Next, returning to FIGS. 2 and 3, the scintillator 14, the relaxation layer 15, and the moisture-proof portion 16 will be described.
As shown in FIGS. 2 and 3, the scintillator 14 can be provided on the reflective layer 12 via the protective layer 13. The scintillator 14 can convert the incident X-rays into fluorescence (visible light). The scintillator 14 can be formed using, for example, cesium iodide (CsI): thallium (Tl), sodium iodide (NaI): thallium (Tl), or the like. The thickness of the scintillator 14 can be, for example, about 600 μm. The scintillator 14 can be formed by, for example, a vacuum vapor deposition method or the like. When the scintillator 14 is formed by using a vacuum vapor deposition method or the like, the scintillator 14 composed of an aggregate of columnar crystals is formed. In this case, the thickness of the columnar crystal (pillar) can be about 8 μm to 12 μm on the outermost surface.
 ここで、基板11の一方の面には、反射層12、保護層13、およびシンチレータ14が設けられる。また、保護層13およびシンチレータ14を形成する際には、基板11および反射層12などが加熱されることになる。基板11、反射層12、保護層13、およびシンチレータ14のそれぞれの熱膨張係数が異なるため、それぞれの熱膨張量が異なるものとなる。そのため、シンチレータパネル10の製造中に歪みなどが生じて、基板11に反りなどが発生するおそれがある。そこで、シンチレータパネル10には、基板11に反りなどが発生するのを抑制するために緩和層15を設けている。 Here, a reflective layer 12, a protective layer 13, and a scintillator 14 are provided on one surface of the substrate 11. Further, when the protective layer 13 and the scintillator 14 are formed, the substrate 11 and the reflective layer 12 and the like are heated. Since the coefficients of thermal expansion of the substrate 11, the reflective layer 12, the protective layer 13, and the scintillator 14 are different, the amount of thermal expansion of each is different. Therefore, distortion or the like may occur during the manufacture of the scintillator panel 10, and the substrate 11 may be warped or the like. Therefore, the scintillator panel 10 is provided with a relaxation layer 15 in order to suppress the occurrence of warpage or the like on the substrate 11.
 緩和層15は、基板11の、反射層12側とは反対側の面に設けることができる。緩和層15は、例えば、アルミニウムや銀などの金属を含むことができる。緩和層15は、例えば、アルミニウム箔や、銀箔などを有することができる。また、前述した反射層12の場合と同様に、炭素繊維強化プラスチックから形成された基板11との接合性を考慮して、金属層15bと樹脂層15aとを有する緩和層15とすることもできる。この場合、金属層15bは、反射層12の金属層12bと同様とすることができる。樹脂層15aは、反射層12の樹脂層12aと同様とすることができる。 
 緩和層15は、基板11の面の全域に設けることもできるし、基板11の面の所定の領域に設けることもできる。
The relaxation layer 15 can be provided on the surface of the substrate 11 opposite to the reflection layer 12 side. The relaxation layer 15 can contain, for example, a metal such as aluminum or silver. The relaxation layer 15 may have, for example, an aluminum foil, a silver foil, or the like. Further, as in the case of the reflective layer 12 described above, the relaxation layer 15 having the metal layer 15b and the resin layer 15a can be formed in consideration of the bondability with the substrate 11 formed of the carbon fiber reinforced plastic. .. In this case, the metal layer 15b can be the same as the metal layer 12b of the reflection layer 12. The resin layer 15a can be the same as the resin layer 12a of the reflective layer 12.
The relaxation layer 15 can be provided over the entire surface of the substrate 11, or can be provided in a predetermined region of the surface of the substrate 11.
 この場合、基板11に発生する反りなどを抑制する機能は、主に、金属層15bが有している。そのため、基板11に発生する反りなどに応じて、金属層15bの材料、厚み、大きさ、配設位置などを適宜変更することが好ましい。例えば、金属層15bの材料、厚み、大きさ、配設位置などは、実験やシミュレーションなどを行うことで適宜決定することができる。この場合、金属層15bの厚みは、例えば、25μm以上、250μm以下とすることができる。 In this case, the metal layer 15b mainly has a function of suppressing warpage or the like generated on the substrate 11. Therefore, it is preferable to appropriately change the material, thickness, size, arrangement position, and the like of the metal layer 15b according to the warp generated on the substrate 11. For example, the material, thickness, size, arrangement position, etc. of the metal layer 15b can be appropriately determined by conducting experiments, simulations, and the like. In this case, the thickness of the metal layer 15b can be, for example, 25 μm or more and 250 μm or less.
 なお、基板11の、反射層12側とは反対側の面にも反射層12を設けて緩和層15とすることもできる。この様にすれば、製造工程の簡素化、ひいては製造コストの低減を図ることができる。 It should be noted that the reflective layer 12 can also be provided on the surface of the substrate 11 opposite to the reflective layer 12 side to serve as the relaxation layer 15. By doing so, it is possible to simplify the manufacturing process and reduce the manufacturing cost.
 防湿部16は、空気中に含まれる水蒸気により、シンチレータ14の特性が劣化するのを抑制するために設けることができる。防湿部16は、膜状を呈し、基板11、反射層12、保護層13、シンチレータ14、および緩和層15の露出部分を覆うように設けることができる。防湿部16は、透光性を有し、透湿係数の小さい材料から形成することができる。防湿部16は、例えば、ポリパラキシリレン、ポリモノクロロパラキシリレン、ポリフルオロパラキシリレン、ポリジメチルパラキシリレン、ポリジエチルパラキシリレンなどから形成することができる。防湿部16は、例えば、熱CVD法などを用いて形成することができる。 The moisture-proof portion 16 can be provided in order to suppress deterioration of the characteristics of the scintillator 14 due to water vapor contained in the air. The moisture-proof portion 16 has a film shape and can be provided so as to cover the exposed portions of the substrate 11, the reflective layer 12, the protective layer 13, the scintillator 14, and the relaxation layer 15. The moisture-proof portion 16 can be formed of a material having a light-transmitting property and a small moisture-permeable coefficient. The moisture-proof portion 16 can be formed from, for example, polyparaxylylene, polymonochloroparaxylylene, polyfluoroparaxylylene, polydimethylparaxylylene, polydiethylparaxylylene and the like. The moisture-proof portion 16 can be formed by, for example, a thermal CVD method or the like.
 シンチレータ14が柱状結晶の集合体となっている場合に、熱CVD法を用いて防湿部16を形成すれば、柱状結晶同士の間の隙間に、防湿部16をある程度侵入させることができる。そのため、シンチレータ14の表面に、柱状結晶による凹凸があったとしても、ほぼ均一な膜厚を有する防湿部16を形成することができる。 When the scintillator 14 is an aggregate of columnar crystals, if the moisture-proof portion 16 is formed by using the thermal CVD method, the moisture-proof portion 16 can be penetrated to some extent into the gap between the columnar crystals. Therefore, even if the surface of the scintillator 14 has irregularities due to columnar crystals, the moisture-proof portion 16 having a substantially uniform film thickness can be formed.
 また、反射層12がポリエチレンテレフタレートを含み、防湿部16が熱CVD法により形成されたポリパラキシリレンなどを含む場合には、反射層12(樹脂層12a)と防湿部16とが接する部分が、水分の侵入に対して高い抑止効果を有するものとなる。そのため、高い防湿性能を有するシンチレータパネル10とすることができる。 Further, when the reflective layer 12 contains polyethylene terephthalate and the moisture-proof portion 16 contains polyparaxylylene or the like formed by the thermal CVD method, the portion where the reflective layer 12 (resin layer 12a) and the moisture-proof portion 16 are in contact with each other is formed. , It has a high deterrent effect against the invasion of water. Therefore, the scintillator panel 10 having high moisture-proof performance can be obtained.
 接合部20は、アレイ基板2とシンチレータパネル10との間に設けることができる。接合部20は、透光性を有し、アレイ基板2とシンチレータパネル10とを接合することができる。この場合、シンチレータパネル10のシンチレータ14を、アレイ基板2の複数の光電変換部2bが設けられた領域の上に接合することができる。 The joint portion 20 can be provided between the array substrate 2 and the scintillator panel 10. The joining portion 20 has translucency, and can join the array substrate 2 and the scintillator panel 10. In this case, the scintillator 14 of the scintillator panel 10 can be bonded onto the region of the array substrate 2 provided with the plurality of photoelectric conversion units 2b.
 接合部20は、例えば、光学両面テープ(OCAテープ(Optical Clear Adhesive Tape))などとすることができる。また、接合部20は、例えば、光学接着剤や光学ジェルなどを硬化させることで形成されたものとすることもできる。この場合、接合部20は、紫外線の照射により硬化するものとすることができる。 The joint portion 20 can be, for example, an optical double-sided tape (OCA tape (Optical Clear Adhesive Tape)) or the like. Further, the joint portion 20 may be formed by curing, for example, an optical adhesive or an optical gel. In this case, the joint portion 20 can be cured by irradiation with ultraviolet rays.
 次に、他の実施形態に係るシンチレータパネル30について例示する。 
 図9は、他の実施形態に係るシンチレータパネル30を例示するための模式断面図である。 
 図9に示すように、シンチレータパネル30には、基板31、保護層13、シンチレータ14、および防湿部16を設けることができる。
Next, the scintillator panel 30 according to another embodiment will be illustrated.
FIG. 9 is a schematic cross-sectional view for exemplifying the scintillator panel 30 according to another embodiment.
As shown in FIG. 9, the scintillator panel 30 can be provided with a substrate 31, a protective layer 13, a scintillator 14, and a moisture-proof portion 16.
 基板31は、板状を呈し、X線を透過するとともに、シンチレータ14において発生した蛍光を反射する材料から形成することができる。基板31は、例えば、アルミニウムや銀などの金属を含むものとすることができる。基板31の厚みは、例えば、0.6mm以上、1.2mm以下とすることができる。 The substrate 31 has a plate shape and can be formed of a material that transmits X-rays and reflects the fluorescence generated in the scintillator 14. The substrate 31 may contain, for example, a metal such as aluminum or silver. The thickness of the substrate 31 can be, for example, 0.6 mm or more and 1.2 mm or less.
 基板31が金属から形成されていれば蛍光を反射することができるので、前述したシンチレータパネル10の様に反射層12を設ける必要がない。また、金属から形成された基板31は、剛性が高いので反りなどが発生しにくい。そのため、前述したシンチレータパネル10の様に緩和層15を設ける必要がない。 If the substrate 31 is made of metal, it can reflect fluorescence, so it is not necessary to provide the reflection layer 12 as in the scintillator panel 10 described above. Further, since the substrate 31 made of metal has high rigidity, warpage and the like are unlikely to occur. Therefore, unlike the scintillator panel 10 described above, it is not necessary to provide the relaxation layer 15.
 ただし、金属から形成された基板31の上にシンチレータ14を直接設けると、基板31の表面が腐食して、反射性能の低下、ひいては感度特性の低下、および解像度特性の低下が生じるおそれがある。そのため、シンチレータパネル30には、前述したシンチレータパネル10と同様に保護層13を設けることができる。保護層13は、基板31と、シンチレータ14との間に設けることができる。保護層13の材料、厚み、配設位置などは、シンチレータパネル10に設けられた保護層13と同様とすることができる。 However, if the scintillator 14 is directly provided on the substrate 31 made of metal, the surface of the substrate 31 may be corroded, resulting in a decrease in reflection performance, a decrease in sensitivity characteristics, and a decrease in resolution characteristics. Therefore, the scintillator panel 30 can be provided with the protective layer 13 in the same manner as the scintillator panel 10 described above. The protective layer 13 can be provided between the substrate 31 and the scintillator 14. The material, thickness, arrangement position, and the like of the protective layer 13 can be the same as those of the protective layer 13 provided on the scintillator panel 10.
 シンチレータパネル30とすれば、構成が簡素化されるので製造コストの低減を図ることができる。 If the scintillator panel 30 is used, the configuration is simplified and the manufacturing cost can be reduced.
 なお、シンチレータパネル10の場合と同様に、シンチレータパネル30は接合部20を介してアレイ基板2に接合することができる。 As in the case of the scintillator panel 10, the scintillator panel 30 can be joined to the array substrate 2 via the joining portion 20.
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。 Although some embodiments of the present invention have been illustrated above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, changes, etc. can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof. In addition, the above-described embodiments can be implemented in combination with each other.

Claims (10)

  1.  複数の炭素繊維を有するプリプレグを少なくとも1つ有し、放射線を透過可能な基板と、
     前記基板の一方の面側に設けられたシンチレータと、
     前記基板と、前記シンチレータと、の間に設けられ、前記シンチレータにおいて発生した蛍光を反射可能な反射層と、
     前記反射層と、前記シンチレータと、の間に設けられた保護層と、
     を備え、
     前記基板の面に垂直な方向から見た場合に、前記保護層の周縁が、前記シンチレータの周縁と、前記基板の周縁との間に設けられているシンチレータパネル。
    A substrate having at least one prepreg having a plurality of carbon fibers and capable of transmitting radiation,
    A scintillator provided on one surface side of the substrate and
    A reflective layer provided between the substrate and the scintillator and capable of reflecting the fluorescence generated in the scintillator.
    A protective layer provided between the reflective layer and the scintillator,
    With
    A scintillator panel in which the peripheral edge of the protective layer is provided between the peripheral edge of the scintillator and the peripheral edge of the substrate when viewed from a direction perpendicular to the surface of the substrate.
  2.  前記基板の、前記反射層側とは反対側の面に設けられ、金属を含む緩和層をさらに備えた請求項1記載のシンチレータパネル。 The scintillator panel according to claim 1, which is provided on the surface of the substrate opposite to the reflective layer side and further includes a relaxation layer containing metal.
  3.  前記反射層は、前記基板に接合される樹脂層と、前記樹脂層の、前記基板側とは反対側の面に設けられた金属層と、を有する請求項1または2に記載のシンチレータパネル。 The scintillator panel according to claim 1 or 2, wherein the reflective layer has a resin layer bonded to the substrate and a metal layer of the resin layer provided on a surface opposite to the substrate side.
  4.  前記樹脂層は、ポリエチレンテレフタレートを含み、
     前記金属層は、アルミニウム、および銀の少なくともいずれかを含む請求項3記載のシンチレータパネル。
    The resin layer contains polyethylene terephthalate and contains
    The scintillator panel according to claim 3, wherein the metal layer contains at least one of aluminum and silver.
  5.  前記金属層は、アルミニウム箔、および銀箔の少なくともいずれかを含む請求項3または4に記載のシンチレータパネル。 The scintillator panel according to claim 3 or 4, wherein the metal layer includes at least one of aluminum foil and silver foil.
  6.  前記保護層の周縁と、前記シンチレータの周縁と、の間の距離は、1mm以上、5mm以下である請求項1~5のいずれか1つに記載のシンチレータパネル。 The scintillator panel according to any one of claims 1 to 5, wherein the distance between the peripheral edge of the protective layer and the peripheral edge of the scintillator is 1 mm or more and 5 mm or less.
  7.  前記基板は、前記複数の炭素繊維が伸びる方向が異なる複数種類の前記プリプレグを有し、
     前記複数種類のプリプレグは積層され、
     前記基板の厚み方向の中心部に対して、前記厚み方向に対称となる位置に設けられたプリプレグは、前記複数の炭素繊維が伸びる方向が略同じであり、
     前記厚み方向の両端に設けられたプリプレグは、前記複数の炭素繊維が伸びる方向が前記基板の長手方向と略平行であり、
     前記基板の前記長手方向の曲げ強度が、前記基体の短手方向の曲げ強度より大きい請求項1~6のいずれか1つに記載のシンチレータパネル。
    The substrate has a plurality of types of the prepreg in which the plurality of carbon fibers extend in different directions.
    The plurality of types of prepregs are laminated and
    The prepreg provided at a position symmetrical with respect to the central portion in the thickness direction of the substrate has substantially the same direction in which the plurality of carbon fibers extend.
    In the prepregs provided at both ends in the thickness direction, the direction in which the plurality of carbon fibers extend is substantially parallel to the longitudinal direction of the substrate.
    The scintillator panel according to any one of claims 1 to 6, wherein the bending strength in the longitudinal direction of the substrate is larger than the bending strength in the lateral direction of the substrate.
  8.  板状を呈し、金属を含み、放射線を透過可能な基板と、
     前記基板の一方の面側に設けられたシンチレータと、
     前記基板と、前記シンチレータと、の間に設けられた保護層と、
     を備え、
     前記基板の面に垂直な方向から見た場合に、前記保護層の周縁が、前記シンチレータの周縁と、前記基板の周縁との間に設けられているシンチレータパネル。
    A plate-like substrate that contains metal and is permeable to radiation,
    A scintillator provided on one surface side of the substrate and
    A protective layer provided between the substrate and the scintillator,
    With
    A scintillator panel in which the peripheral edge of the protective layer is provided between the peripheral edge of the scintillator and the peripheral edge of the substrate when viewed from a direction perpendicular to the surface of the substrate.
  9.  前記保護層の周縁と、前記シンチレータの周縁と、の間の距離は、1mm以上、5mm以下である請求項8記載のシンチレータパネル。 The scintillator panel according to claim 8, wherein the distance between the peripheral edge of the protective layer and the peripheral edge of the scintillator is 1 mm or more and 5 mm or less.
  10.  複数の光電変換部を有するアレイ基板と、
     前記複数の光電変換部の上に設けられた請求項1~9のいずれか1つに記載のシンチレータパネルと、
     を備えた放射線検出器。
    An array board having multiple photoelectric conversion units and
    The scintillator panel according to any one of claims 1 to 9 provided on the plurality of photoelectric conversion units.
    Radiation detector equipped with.
PCT/JP2020/000150 2019-08-28 2020-01-07 Scintillator panel and radiation detector WO2021038899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-155911 2019-08-28
JP2019155911A JP2021032817A (en) 2019-08-28 2019-08-28 Scintillator panel and radiation detector

Publications (1)

Publication Number Publication Date
WO2021038899A1 true WO2021038899A1 (en) 2021-03-04

Family

ID=74678461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000150 WO2021038899A1 (en) 2019-08-28 2020-01-07 Scintillator panel and radiation detector

Country Status (2)

Country Link
JP (1) JP2021032817A (en)
WO (1) WO2021038899A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113119243A (en) * 2021-04-12 2021-07-16 东北林业大学 Carbon fiber reinforced panel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356679A (en) * 1999-04-16 2000-12-26 Hamamatsu Photonics Kk Scintillator panel and radiation image sensor
JP2007271504A (en) * 2006-03-31 2007-10-18 Toshiba Corp Scintillator panel, planar detector and imaging apparatus
JP2007279051A (en) * 2001-01-30 2007-10-25 Hamamatsu Photonics Kk Scintillator panel and radiation image sensor
JP2008309770A (en) * 2007-06-15 2008-12-25 Hamamatsu Photonics Kk Radiation image conversion panel and radiation image sensor
JP2011033466A (en) * 2009-07-31 2011-02-17 Hamamatsu Photonics Kk Scintillator panel
JP2012141242A (en) * 2011-01-05 2012-07-26 Fujifilm Corp Electronic cassette for radiograph
JP2015219208A (en) * 2014-05-21 2015-12-07 株式会社東芝 Scintillator panel and radiation detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356679A (en) * 1999-04-16 2000-12-26 Hamamatsu Photonics Kk Scintillator panel and radiation image sensor
JP2007279051A (en) * 2001-01-30 2007-10-25 Hamamatsu Photonics Kk Scintillator panel and radiation image sensor
JP2007271504A (en) * 2006-03-31 2007-10-18 Toshiba Corp Scintillator panel, planar detector and imaging apparatus
JP2008309770A (en) * 2007-06-15 2008-12-25 Hamamatsu Photonics Kk Radiation image conversion panel and radiation image sensor
JP2011033466A (en) * 2009-07-31 2011-02-17 Hamamatsu Photonics Kk Scintillator panel
JP2012141242A (en) * 2011-01-05 2012-07-26 Fujifilm Corp Electronic cassette for radiograph
JP2015219208A (en) * 2014-05-21 2015-12-07 株式会社東芝 Scintillator panel and radiation detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113119243A (en) * 2021-04-12 2021-07-16 东北林业大学 Carbon fiber reinforced panel

Also Published As

Publication number Publication date
JP2021032817A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
US9568614B2 (en) Radiation detection apparatus, method of manufacturing the same, and imaging system
US10838082B2 (en) Radiation detector and radiographic imaging apparatus
JP7376636B2 (en) Radiation detector, radiation imaging device, and method for manufacturing radiation detector
US10261197B2 (en) Radiation detector and radiographic imaging apparatus
WO2021038899A1 (en) Scintillator panel and radiation detector
US20140091209A1 (en) Radiation detecting apparatus and radiation detecting system
US10317540B2 (en) Radiation detector and radiographic imaging apparatus
JP2007057428A (en) Radiation detecting device and radiation imaging system
JP6948815B2 (en) Radiation detector
US20190298282A1 (en) Radiation detector and radiographic imaging apparatus
JP2015219208A (en) Scintillator panel and radiation detector
JP2012037454A (en) Radiation detector and manufacturing method thereof
US10989818B2 (en) Radiation detector and radiographic imaging apparatus
JP6373624B2 (en) Array substrate, radiation detector, and method of manufacturing radiation detector
JP2021018135A (en) Scintillator panel and radiation detector
WO2019167648A1 (en) Radiation detector, radiographic imaging device, and method for manufacturing radiation detector
WO2019176137A1 (en) Radiation detection panel, radiation detector, and method for manufacturing radiation detection panel
JP2016128764A (en) Radiation detector module and radiation detector
JP6968668B2 (en) Radiation detection module and radiation detector
JP7490951B2 (en) Radiation detection panel and radiation image detector
US11802980B2 (en) Radiation detector, radiographic imaging apparatus, and manufacturing method
WO2021070406A1 (en) Radiation detection module, radiation detector, and method for manufacturing radiation detection module
JP2021162506A (en) Scintillator panel, method for manufacturing scintillator panel, and radiation detector
JP2021056035A (en) Radiation detection module, radiation detector, and method of manufacturing radiation detection module
JP2024063272A (en) Radiation image detector and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857286

Country of ref document: EP

Kind code of ref document: A1