WO2021037272A1 - 一种三元交联水凝胶电解质、制备方法及其应用 - Google Patents

一种三元交联水凝胶电解质、制备方法及其应用 Download PDF

Info

Publication number
WO2021037272A1
WO2021037272A1 PCT/CN2020/112682 CN2020112682W WO2021037272A1 WO 2021037272 A1 WO2021037272 A1 WO 2021037272A1 CN 2020112682 W CN2020112682 W CN 2020112682W WO 2021037272 A1 WO2021037272 A1 WO 2021037272A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
polyvinyl alcohol
boric acid
ternary
cross
Prior art date
Application number
PCT/CN2020/112682
Other languages
English (en)
French (fr)
Inventor
袁丛辉
黄俊文
戴李宗
柳君
蔡其鹏
杨羽歆
彭超华
王迎珠
陈国荣
Original Assignee
厦门大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门大学 filed Critical 厦门大学
Publication of WO2021037272A1 publication Critical patent/WO2021037272A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates

Definitions

  • the invention belongs to the field of functional polymers, and specifically relates to a ternary cross-linked hydrogel electrolyte, a preparation method and an application thereof.
  • Conductive hydrogel combines the advantages of electrolyte solution and hydrogel, and has huge application prospects in many fields. After the traditional hydrogel is traumatized, its various properties tend to drop a lot. Moreover, due to the existence of cracks, the internal structure of the hydrogel will be gradually destroyed, which will cause the loss of the function and the life of the hydrogel.
  • a hydrogel with self-healing function can repair internal cracks spontaneously or under external stimuli to restore structure and function when it is damaged, thereby prolonging its service life. This self-repairing conductive hydrogel has broad application prospects in the fields of artificial ligaments, flexible electronic devices, surface response materials, wall climbing robots, reversible coatings, and automotive smart sensors.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, provide a ternary cross-linked hydrogel electrolyte, preparation method and application thereof, and solve the problems of poor self-repair performance and insufficient preparation method in the above background art.
  • the ternary cross-linked hydrogel electrolyte of the present invention uses polyvinyl alcohol as the polymer skeleton, and macromolecules containing borate bonds (DB macromolecules) as cross-linking agents to synthesize a dynamic covalent cross-linking and physical cross-linking Linked structure hydrogel, the hydrogel has rapid self-repair, ductility and good electrical conductivity, and the hydrogel can produce viscosity and lose viscosity under electrical stimulation, and the viscosity response can be adjusted by adjusting the electrical stimulation time. The size of the voltage and changing the sample size can be adjusted.
  • One of the technical solutions adopted by the present invention to solve its technical problems is to provide a ternary cross-linked hydrogel electrolyte, which is composed of polyvinyl alcohol (PVA), dicatechol derivatives, boric acid, and hydroxide Biscatechol-boric acid-polyvinyl alcohol ternary cross-linked hydrogel system composed of potassium and water;
  • PVA polyvinyl alcohol
  • dicatechol derivatives dicatechol derivatives
  • boric acid boric acid
  • hydroxide Biscatechol-boric acid-polyvinyl alcohol ternary cross-linked hydrogel system composed of potassium and water
  • the degree of polymerization of the polyvinyl alcohol is 1000 to 2000, and the mass percentage in the hydrogel system is 1 to 15%;
  • the dicatechol derivatives are 5,5',6,6' -At least one of tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spiral bisindane, nordihydroguaiaretic acid, rosmarinic acid
  • the mass percentage in the gel system is 1-15%; the mass percentage of the boric acid in the hydrogel system is 0.01-10%; the mass percentage of the potassium hydroxide in the hydrogel system is 0.01-12%;
  • the balance is water.
  • Boric acid or borate can form a borate bond with a hydroxyl group.
  • the borate bond is reversible, it will break under the action of external stimulus, and it will recover when the conditions are changed.
  • boric acid or borate is used as a cross-linking agent to form a cross-linked polymer with the ortho hydroxyl group of polyvinyl alcohol, the polymer has good self-repairing properties due to the reversibility of the borate bond.
  • the stability of the formed cross-linked polymer network is closely related to the corresponding metal ions. If potassium hydroxide is used to create an alkaline environment, it is more effective than sodium hydroxide.
  • the present invention is based on the condensation reaction of boric acid with the ortho-hydroxyl group in dicatechol under alkaline conditions to form a macromolecular crosslinking agent (D-B) containing a borate bond. Then use D-B cross-linked polyvinyl alcohol to obtain a gel.
  • D-B macromolecular crosslinking agent
  • the second technical solution adopted by the present invention to solve its technical problems is: a method for preparing a ternary cross-linked hydrogel electrolyte is provided, which combines boric acid with the ortho-hydroxyl group in dicatechol derivatives under alkaline conditions. Condensation reaction to form a macromolecular crosslinking agent containing borate bonds, and then use the macromolecular crosslinking agent containing borate bonds to crosslink polyvinyl alcohol to obtain biscatechol-boric acid-polyvinyl alcohol ternary crosslinking The hydrogel system.
  • the D-B crosslinking agent can act as a plasticizer, the hydrogel system has better ductility.
  • the system has ionic conductivity. Utilizing its conductivity, the D-B cross-linking agent can release catechol groups under electrical stimulation, making the gel sticky. When reverse electrical stimulation, the catechol groups are protected and the gel loses its viscosity.
  • the synthetic route is shown in Figure 1, including the following steps:
  • dicatechol derivatives 1,1-10 parts of boric acid, and 0.01-12 potassium hydroxide to dissolve in 20-30 parts of decanter. Disperse in ionized water or distilled water with ultrasonic for 30min-60min to obtain a dispersion;
  • the dicatechol derivatives are 5,5',6,6'-tetrahydroxy-3,3,3',3'- At least one of tetramethyl-1,1'-helical bisindan, nordihydroguaiaretic acid, and rosmarinic acid;
  • step (3) Add a polyvinyl alcohol aqueous solution to the heated dispersion in step (2), wherein the mass parts of the solute polyvinyl alcohol in the hydrogel system are 1-15 parts, and the water is 18-77.98 parts;
  • the third technical solution adopted by the present invention to solve its technical problems is to provide an application of a ternary cross-linked hydrogel electrolyte in polymer materials, including soft robots, artificial ligaments, flexible electronic devices, and surface response materials. , Wall-climbing robots, controllable coatings, applications in automotive smart sensors.
  • the hydrogel synthesized by the invention can be adjusted to different mechanical properties, self-repairing, and electrical conductivity according to the amount and proportion of the feed, the temperature and time of the reaction.
  • the hydrogel can produce viscosity and lose viscosity under electrical stimulation, and the viscosity response can be regulated by adjusting the electrical stimulation time and voltage.
  • the whole synthesis process has simple technology, easy operation, 100% raw material utilization rate, environmental protection and safety, and is environmentally friendly.
  • Polyvinyl alcohol is a commonly used medical polymer, non-toxic; and the main component of the system is water, which has little irritation to the human body, so it has good biocompatibility.
  • Figure 1 is the synthetic route of the ternary crosslinked hydrogel electrolyte of the present invention.
  • Figure 2 shows the stress-strain curves of the hydrogel of Example 3 under different repair times.
  • Figure 3 shows the self-healing behavior of the hydrogel of Example 3 at a self-healing time of 60 seconds.
  • Figure 4 shows the impedance spectra of the hydrogels with different mass fractions of dicatechol derivatives (1%, 3%, 4%, 6%) in Examples 1-4.
  • Figure 5 shows the conductivity and self-healing properties of the hydrogel of Example 3.
  • Figure 6 shows the adhesion ability test of the hydrogel in Example 3.
  • the side of the hydrogel in contact with the anode becomes sticky, and the side in contact with the cathode becomes non-sticky.
  • the same side of the hydrogel can be sticky. Transform with non-stick.
  • the materials of the cathode and anode are not limited to stainless steel. Materials with a conductivity of 0.1mS/cm or higher can also produce electro-adhesive and electro-adhesive properties).
  • Figure 7 shows the hydrogel of Example 3 (a) under 3V voltage stimulation, the effect of different stimulation time on the adhesion strength; (b) under the same stimulation time (10s), different stimulation voltages on the adhesion of the hydrogel Impact. (c) Adhesion strength of the hydrogel after different cycles (in each cycle, the forward current is applied for 5 s (adhesion), and the reverse current is applied for 20 s (debonding)).
  • Fig. 8 is a schematic diagram of Example 3 hydrogel adhesion induced by electrification and debonding by reverse electrification.
  • hydrogels with different mechanical strength, self-repair efficiency and electrical conductivity can be obtained by adjusting the amount of TTS. Details are shown in Table 1.
  • hydrogels with different mechanical strength, self-repair efficiency and electrical conductivity can be obtained by adjusting the reaction time of TTS with boric acid and hydroxide. Details are shown in Table 2.
  • TTS 5,5',6,6'-tetrahydroxy-3,3,3',3'-tetramethyl-1,1'-spiral bisindane
  • boric acid 1g
  • hydroxide Potassium is dissolved in 25 g of distilled water and dispersed by ultrasonic for 30 minutes.
  • hydrogels with different mechanical strength, self-repair efficiency and electrical conductivity can be obtained by adjusting the amount of boric acid added. Details are shown in Table 3.
  • hydrogels with different mechanical strength, self-repair efficiency and electrical conductivity can be obtained by adjusting the amount of PVA added. Details are shown in Table 4.
  • hydrogels with different mechanical strength, self-repair efficiency and electrical conductivity can be obtained by adjusting the reaction temperature of TTS, boric acid and potassium hydroxide. Details are shown in Table 5.
  • Example 12/13 hydrogels with different mechanical strength, self-repair efficiency and electrical conductivity can be obtained by adjusting and changing the type of biscatechol derivatives. Details are shown in Table 6.
  • the invention discloses a ternary cross-linked hydrogel electrolyte, a preparation method and an application thereof.
  • the macromolecular crosslinking agent DB is obtained by means of the condensation reaction between boric acid and the ortho hydroxyl group in dicatechol, It is then used to cross-link polyvinyl alcohol to form a cross-linked network structure to obtain a rapid self-healing hydrogel.
  • the synthesis method is simple in process, mild in conditions, easy to operate, and the product does not require post-treatment.
  • the self-repairing ability, mechanical strength, and different conductivity of the hydrogel electrolyte can be obtained, and the hydrogel can produce viscosity and lose viscosity under electrical stimulation, and the viscosity response can be adjusted by The electrical stimulation time and voltage can be adjusted.
  • the self-healing hydrogel has important applications in soft robots, artificial ligaments, flexible devices, surface response materials, wall-climbing robots, controllable coatings, automotive smart sensors, etc., and has industrial practicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种三元交联水凝胶电解质、制备方法及其应用。采用聚乙烯醇、双邻苯二酚类衍生物、硼酸、氢氧化钾和水为原料,借助硼酸与双邻苯二酚中的邻羟基之间的缩合反应,获得大分子交联剂D-B,再将其用于交联聚乙烯醇形成交联网络结构得到快速自修复水凝胶。合成方法工艺简单,条件温和,易于操作,产物无需后处理。通过改变聚乙烯醇、交联剂的用量获得自修复能力、力学强度,电导率不同的水凝胶电解质,并且该水凝胶能够在电刺激下产生粘性和失去粘性,粘性响应性能够通过调节电刺激时间,电压大小来进行调控。该自修复水凝胶在软体机器人、人工韧带,柔性器件,表面响应材料,爬墙机器人,可控涂层,汽车智能传感器等方面有重要的应用。

Description

一种三元交联水凝胶电解质、制备方法及其应用 技术领域
本发明属于功能聚合物领域,具体涉及一种三元交联水凝胶电解质、制备方法及其应用。
背景技术
导电水凝胶结合了电解质溶液与水凝胶的优点,在许多领域有巨大的应用前景。传统水凝胶在受到创伤后,其各种性能往往会下降很多。并且由于裂纹的存在,水凝胶内部结构会逐渐被破坏,进而造成水凝胶的功能损失与寿命减少。具有自修复功能的水凝胶,在其受到损伤时,能够自发的或者在外界的刺激下修复内部裂纹以恢复结构与功能,从而延长其使用寿命。这种自修复导电水凝胶在人工韧带,柔性电子器件,表面响应材料,爬墙机器人,可逆涂层,汽车智能传感器等领域具有广阔的应用前景。
形成自修复水凝胶的机理多种多样,制备方法也多种多样,大部分的自修复性导电水凝胶还存在一些难以忽视的问题,比如机械强度不够高、自修复性能差、制备方法不够简便等。
发明内容
本发明的目的在于克服现有技术的不足之处,提供了一种三元交联水凝胶电解质、制备方法及其应用,解决了上述背景技术中自修复性能差、制备方法不够简便等问题。本发明的三元交联水凝胶电解质采用聚乙烯醇作为高分子骨架,含有硼酸酯键的大分子(D-B大分子)作为交联剂,合成一种具有动态共价交联以及物理交联结构水凝胶,该水凝胶具有快速的自修复,延展性以及良好的导电性能,并且该水凝胶能够在电刺激下产生粘性和失去粘性,粘性响应性能够通过调节电刺激时间,电压大小以及改变样品尺寸来进行调控。
本发明解决其技术问题所采用的技术方案之一是:提供了一种三元交联水凝胶电 解质,为由聚乙烯醇(PVA)、双邻苯二酚类衍生物、硼酸、氢氧化钾以及水组成的双邻苯二酚-硼酸-聚乙烯醇三元交联的水凝胶体系;
其中,所述聚乙烯醇的聚合度为1000~2000,在水凝胶体系中的质量百分比为1~15%;所述双邻苯二酚类衍生物为5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满、去甲二氢愈创木酸、迷迭香酸中的至少一种,在水凝胶体系中的质量百分比为1~15%;所述硼酸在水凝胶体系中的质量百分比为0.01~10%;所述氢氧化钾在水凝胶体系中的质量百分比为0.01~12%;余量为水。
硼酸或硼酸盐能够与羟基形成硼酸酯键。硼酸酯键具有可逆性,在外界刺激作用下会断裂,改变条件又会重新恢复。当由硼酸或硼酸盐作为交联剂与聚乙烯醇的邻羟基形成交联聚合物时,由于硼酸酯键的可逆性,聚合物便具有很好的自修复性能。另外,形成的交联聚合物网络的稳定性与相应的金属离子密切相关。如使用氢氧化钾比使用氢氧化钠制造碱性环境有更好效果,这主要是因为钾离子体积大,稳定电荷的能力更强,能够降低已形成的高分子电解质之间的静电排斥作用,从而提高高分子之间的交联反应效率。本发明基于硼酸在碱性条件下与双邻苯二酚中邻羟基的缩合反应形成含有硼酸酯键的大分子交联剂(D-B)。再利用D-B交联聚乙烯醇获得凝胶。
本发明解决其技术问题所采用的技术方案之二是:提供了一种三元交联水凝胶电解质的制备方法,由硼酸在碱性条件下与双邻苯二酚类衍生物中邻羟基的缩合反应形成含有硼酸酯键的大分子交联剂,再利用含有硼酸酯键的大分子交联剂交联聚乙烯醇获得双邻苯二酚-硼酸-聚乙烯醇三元交联的水凝胶体系。由于硼酸酯键具有可逆性,体系中D-B交联剂内以及交联剂与聚乙烯醇分子间存在大量硼酸酯键,且交联网络中存在大量的氢键作用使得水凝胶具有快速自修复功能。并且,由于D-B交联剂能够起到 塑化剂的作用,使得水凝胶体系有较好的延展性。同时,由于体系中存在大量硼酸根负离子以及钾离子,体系具有离子导电性。利用其导电性能够使D-B交联剂在电刺激下释放出邻苯二酚基团,使得凝胶产生粘性,反向电刺激时,邻苯二酚基团被保护起来,凝胶失去粘性。其合成路线如图1所示,包括如下步骤:
(1)按在水凝胶体系中的质量份取1~15份的双邻苯二酚类衍生物、0.01~10份的硼酸、0.01~12的氢氧化钾溶于20~30份的去离子水或蒸馏水中,超声分散30min~60min,得到分散液;所述双邻苯二酚类衍生物为5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满、去甲二氢愈创木酸、迷迭香酸中的至少一种;
(2)将步骤(1)制备的分散液在50~100℃下加热1~5h;
(3)向步骤(2)加热后的分散液中加入聚乙烯醇水溶液,其中溶质聚乙烯醇在水凝胶体系中的质量份为1~15份,水为18~77.98份;
(4)在90~100℃的油浴中搅拌反应2~5h,将样品冷却,得到浅棕色到棕色的双邻苯二酚-硼酸-聚乙烯醇三元交联的水凝胶体系即为三元交联水凝胶电解质。
本发明解决其技术问题所采用的技术方案之三是:提供了一种三元交联水凝胶电解质在高分子材料中的应用,包括在软体机器人、人工韧带、柔性电子器件、表面响应材料,爬墙机器人,可控涂层,汽车智能传感器中的应用。
本技术方案与背景技术相比,它具有如下优点:
本发明所合成的水凝胶可根据加料的量以及配比、反应的温度和时间不同,调整不同力学性能以及自修复,导电能力。并且该水凝胶能够在电刺激下产生粘性和失去粘性,粘性响应性能够通过调节电刺激时间,电压大小来进行调控。整个合成过程工艺简单,易于操作,原料利用率百分百,环保安全,属于环境友好型。聚乙烯醇为常用的医用高分子,无毒性;且体系主要成分为水,对人体刺激小,故具有良好的生物相容性。
附图说明
图1为本发明三元交联水凝胶电解质合成路线。
图2为实施例3水凝胶在不同修复时间下的应力应变曲线。
图3为实施例3水凝胶在60秒自修复时间下的自修复行为展示。
图4为实施例1-4不同双邻苯二酚衍生物质量分数(1%,3%,4%,6%)水凝胶的阻抗谱图。
图5为实施例3水凝胶的导电性与自修复性能展示。
图6为实施例3水凝胶的粘附能力测试,水凝胶与阳极接触一侧变粘,与阴极接触一侧变不粘当阳极与阴极相互转化时,水凝胶同一侧可在粘与不粘转化。(阴极与阳极材料不局限于不锈钢材料,电导率在0.1mS/cm以上的材料亦可产生电致粘性与电致失粘性能)。
图7为实施例3水凝胶(a)在3V电压刺激下,不同刺激时间对粘附强度的影响;(b)在相同刺激时间(10s)下,不同刺激电压对水凝胶粘附性的影响。(c)在不同次数循环后的水凝胶粘附强度(在每个循环里,正向通电5s(致黏),反向通电20s(脱粘))。
图8为实施例3水凝胶通电致黏与反向通电脱粘示意图。
具体实施方式
下面结合实施例对本发明作进一步描述,但本发明并不限于以下实施例。
实施例1
(1)将1g 5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满(TTS)、1g硼酸、1g氢氧化钾溶于25g蒸馏水中,超声分散30分钟。
(2)将上述溶液在90℃下加热反应2h,得到粉红色分散液。
(3)在98℃油浴下将10g PVA溶于63g水中。
(4)在90℃下,将上述分散液缓慢加入聚乙烯醇水溶液。
(5)在90℃温度的油浴中搅拌反应1小时。将样品冷却,可得到浅棕色的水凝胶。
实施例2
(1)将3g 5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满(TTS)、1g硼酸、1g氢氧化钾溶于25g蒸馏水中,超声分散30分钟。
(2)将上述溶液在90℃下加热反应2h,得到粉红色分散液。
(3)在98℃油浴下将10g PVA溶于60g水中。
(4)在90℃下,将上述分散液缓慢加入聚乙烯醇水溶液。
(5)在90℃温度的油浴中搅拌反应1小时。将样品冷却,可得到浅棕色的水凝胶。
实施例3
(1)将4g 5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满(TTS)、1g硼酸、1g氢氧化钾溶于25g蒸馏水中,超声分散30分钟。
(2)将上述溶液在90℃下加热反应2h,得到粉红色分散液。
(3)在98℃油浴下将10g PVA溶于59g水中。
(4)在90℃下,将上述分散液缓慢加入聚乙烯醇水溶液。
(5)在90℃温度的油浴中搅拌反应1小时。将样品冷却,可得到浅棕色的水凝胶。
实施例4
(1)将6g 5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满(TTS)、1g硼酸、1g氢氧化钾溶于25g蒸馏水中,超声分散30分钟。
(2)将上述溶液在90℃下加热反应2h,得到粉红色分散液。
(3)在98℃油浴下将10g PVA溶于57g水中。
(4)在90℃下,将上述分散液缓慢加入聚乙烯醇水溶液。
(5)在90℃温度的油浴中搅拌反应1小时。将样品冷却,可得到浅棕色的水凝胶。
在实施例1-4中,通过调整TTS的量可以获得不同力学强度,自修复效率和电导率的水凝胶。具体如表1。
表1
Figure PCTCN2020112682-appb-000001
实施例5
1)将4g 5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满(TTS)、1g硼酸、1g氢氧化钾溶于25g蒸馏水中,超声分散30分钟。
(2)将上述溶液在90℃下加热反应1h,得到粉红色分散液。
(3)在98℃油浴下将10g PVA溶于59g水中。
(4)在90℃下,将上述分散液缓慢加入聚乙烯醇水溶液。
(5)在90℃温度的油浴中搅拌反应1小时。将样品冷却,可得到浅棕色的水凝胶。
实施例6
(1)将4g 5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满(TTS)、1g硼酸、1g氢氧化钾溶于25g蒸馏水中,超声分散30分钟。
(2)将上述溶液在90℃下加热反应3h,得到粉红色分散液。
(3)在98℃油浴下将10g PVA溶于59g水中。
(4)在90℃下,将上述分散液缓慢加入聚乙烯醇水溶液。
(5)在90℃温度的油浴中搅拌反应1小时。将样品冷却,可得到浅棕色的水凝胶。
在实施例3、5、6中,通过调整TTS与硼酸和氢氧化剂的反应时间可以获得不同力学强度,自修复效率和电导率的水凝胶。具体如表2。
表2
Figure PCTCN2020112682-appb-000002
实施例7
(1)将4g 5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满(TTS)、2g硼酸、1g氢氧化钾溶于25g蒸馏水中,超声分散30分钟。
(2)将上述溶液在90℃下加热反应2h,得到粉红色分散液。
(3)在98℃油浴下将10g PVA溶于58g水中。
(4)在90℃下,将上述分散液缓慢加入聚乙烯醇水溶液。
(5)在90℃温度的油浴中搅拌反应1小时。将样品冷却,可得到浅棕色的水凝胶。
实施例8
1)将4g 5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满(TTS)、3g硼酸、1g氢氧化钾溶于25g蒸馏水中,超声分散30分钟。
(2)将上述溶液在90℃下加热反应2h,得到粉红色分散液。
(3)在98℃油浴下将10g PVA溶于57g水中。
(4)在90℃下,将上述分散液缓慢加入聚乙烯醇水溶液。
(5)在90℃温度的油浴中搅拌反应1小时。将样品冷却,可得到浅棕色的水凝胶。
在实施例3、7、8中,通过调整硼酸的添加量可以获得不同力学强度,自修复效率和电导率的水凝胶。具体如表3。
表3
Figure PCTCN2020112682-appb-000003
实施例9
1)将4g 5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满(TTS)、1g硼酸、1g氢氧化钾溶于25g蒸馏水中,超声分散30分钟。
(2)将上述溶液在90℃下加热反应2h,得到粉红色分散液。
(3)在98℃油浴下将12g PVA溶于57g水中。
(4)在90℃下,将上述分散液缓慢加入聚乙烯醇水溶液。
(5)在90℃温度的油浴中搅拌反应1小时。将样品冷却,可得到浅棕色的水凝胶。
在实施例3和9中,通过调整PVA添加量可以获得不同力学强度,自修复效率和电导率的水凝胶。具体如表4。
表4
实施例 拉伸强度(kPa) 60s自修复效率 电导率(mS/cm)
3 37 92 12.5
9 45 85 11
实施例10
1)将4g 5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满(TTS)、1g硼酸、1g氢氧化钾溶于25g蒸馏水中,超声分散30分钟。
(2)将上述溶液在50℃下加热反应2h,得到粉红色分散液。
(3)在98℃油浴下将10g PVA溶于59g水中。
(4)在90℃下,将上述分散液缓慢加入聚乙烯醇水溶液。
(5)在90℃温度的油浴中搅拌反应1小时。将样品冷却,可得到浅棕色的水凝胶。
实施例11
1)将4g 5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满(TTS)、1g硼酸、1g氢氧化钾溶于25g蒸馏水中,超声分散30分钟。
(2)将上述溶液在70℃下加热反应2h,得到粉红色分散液。
(3)在98℃油浴下将10g PVA溶于59g水中。
(4)在90℃下,将上述分散液缓慢加入聚乙烯醇水溶液。
(5)在90℃温度的油浴中搅拌反应1小时。将样品冷却,可得到浅棕色的水凝胶。
在实施例3、10、11中,通过调整TTS与硼酸和氢氧化钾的反应温度可以获得不同力学强度,自修复效率和电导率的水凝胶。具体如表5。
表5
实施例 拉伸强度(kPa) 60s自修复效率 电导率(mS/cm)
3 37 92 12.5
10 32 86 11
11 26 85 11.5
实施例12
(1)将4g去甲二氢愈创木酸、1g硼酸、1g氢氧化钾溶于25g蒸馏水中,超声分散30分钟。
(2)将上述溶液在90℃下加热反应2h,得到灰色分散液。
(3)在98℃油浴下将10g PVA溶于59g水中。
(4)在90℃下,将上述分散液缓慢加入聚乙烯醇水溶液。
(5)在90℃温度的油浴中搅拌反应1小时。将样品冷却,可得到灰白色的水凝胶。
实施例13
(1)将4g迷迭香酸、1g硼酸、1g氢氧化钾溶于25g蒸馏水中,超声分散30分钟。
(2)将上述溶液在90℃下加热反应2h,得到红棕色分散液。
(3)在98℃油浴下将10g PVA溶于59g水中。
(4)在90℃下,将上述分散液缓慢加入聚乙烯醇水溶液。
(5)在90℃温度的油浴中搅拌反应1小时。将样品冷却,可得到棕色色的水凝胶。
在实施例12/13中,通过调整改变双邻苯二酚衍生物种类可以获得不同力学强度,自修复效率和电导率的水凝胶。具体如表6。
表6
实施例 拉伸强度(kPa) 60s自修复效率 电导率(mS/cm)
12 40 89 15.7
13 50 93 13.2
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
工业实用性
本发明公开了一种三元交联水凝胶电解质、制备方法及其应用。采用聚乙烯醇、 双邻苯二酚类衍生物、硼酸、氢氧化钾和水为原料,借助硼酸与双邻苯二酚中的邻羟基之间的缩合反应,获得大分子交联剂D-B,再将其用于交联聚乙烯醇形成交联网络结构得到快速自修复水凝胶。合成方法工艺简单,条件温和,易于操作,产物无需后处理。通过改变聚乙烯醇、交联剂的用量获得自修复能力、力学强度,电导率不同的水凝胶电解质,并且该水凝胶能够在电刺激下产生粘性和失去粘性,粘性响应性能够通过调节电刺激时间,电压大小来进行调控。该自修复水凝胶在软体机器人、人工韧带,柔性器件,表面响应材料,爬墙机器人,可控涂层,汽车智能传感器等方面有重要的应用,具有工业实用性。

Claims (10)

  1. 一种三元交联水凝胶电解质,其特征在于:为由聚乙烯醇、双邻苯二酚类衍生物、硼酸、氢氧化钾以及水组成的双邻苯二酚-硼酸-聚乙烯醇三元交联的水凝胶体系;
    其中,所述聚乙烯醇的聚合度为1000~2000,在水凝胶体系中的质量百分比为1~15%;所述双邻苯二酚类衍生物为5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满、去甲二氢愈创木酸、迷迭香酸中的至少一种,在水凝胶体系中的质量百分比为1~15%;所述硼酸在水凝胶体系中的质量百分比为0.01~10%;所述氢氧化钾在水凝胶体系中的质量百分比为0.01~12%;余量为水。
  2. 根据权利要求1所述的一种三元交联水凝胶电解质,其特征在于:所述水凝胶体系中含有交联剂、硼酸根负离子以及钾离子,所述交联剂为硼酸和双邻苯二酚类衍生物缩合反应形成的含有硼酸酯键的大分子。
  3. 根据权利要求1所述的一种三元交联水凝胶电解质,其特征在于:所述水凝胶体系具有自修复功能、延展性和导电性以及可控粘附性;所述自修复功能在30s内自修复效率达60~99%,拉伸强度达50kPa,断裂伸长率达1100%,导电率达13.5mS/cm。
  4. 一种三元交联水凝胶电解质的制备方法,其特征在于:由硼酸在碱性条件下与双邻苯二酚类衍生物中邻羟基的缩合反应形成含有硼酸酯键的大分子交联剂,再利用含有硼酸酯键的大分子交联剂交联聚乙烯醇获得双邻苯二酚-硼酸-聚乙烯醇三元交联的水凝胶体系。
  5. 根据权利要求4所述的一种三元交联水凝胶电解质的制备方法,其特征在于,合成路线如下:
    Figure PCTCN2020112682-appb-100001
    双邻苯二酚-硼酸-聚乙烯醇三元交联的水凝胶体系。
  6. 根据权利要求4所述的一种三元交联水凝胶电解质的制备方法,其特征在于,包括如下步骤:
    (1)按在水凝胶体系中的质量份取1~15份的双邻苯二酚类衍生物、0.01~10份的硼酸、0.01~12份的氢氧化钾溶于20~30份的去离子水或蒸馏水中,超声分散30min~60min,得到分散液;
    (2)将步骤(1)制备的分散液在50~100℃下加热1~5h;
    (3)向步骤(2)加热后的分散液中加入聚乙烯醇水溶液,其中溶质聚乙烯醇在水凝胶体系中的质量份为1~15份,水为18~77.98份;
    (4)在90~100℃的油浴中搅拌反应2~5h,将样品冷却,得到浅棕色到棕色的双邻苯二酚-硼酸-聚乙烯醇三元交联的水凝胶体系即为三元交联水凝胶电解质。
  7. 根据权利要求4所述的一种三元交联水凝胶电解质的制备方法,其特征在于:所述步骤(1)中的双邻苯二酚类衍生物为5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺旋双茚满、去甲二氢愈创木酸、迷迭香酸中的至少一种。
  8. 如权利要求1~3任一项所述的一种三元交联水凝胶电解质在高分子材料中的应用。
  9. 根据权利要求8所述的应用,其特征在于:在软体机器人、人工韧带、柔性电子器件、表面响应材料、汽车智能传感器、爬墙机器人中的应用。
  10. 根据权利要求8所述的应用,其特征在于:通过调节电刺激时间和电压大小实现含有三元交联水凝胶电解质的高分子材料的可控粘附性。
PCT/CN2020/112682 2019-08-30 2020-08-31 一种三元交联水凝胶电解质、制备方法及其应用 WO2021037272A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910816365.4 2019-08-30
CN201910816365.4A CN110628044B (zh) 2019-08-30 2019-08-30 一种三元交联水凝胶电解质、制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2021037272A1 true WO2021037272A1 (zh) 2021-03-04

Family

ID=68969653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112682 WO2021037272A1 (zh) 2019-08-30 2020-08-31 一种三元交联水凝胶电解质、制备方法及其应用

Country Status (2)

Country Link
CN (1) CN110628044B (zh)
WO (1) WO2021037272A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110628044B (zh) * 2019-08-30 2020-08-25 厦门大学 一种三元交联水凝胶电解质、制备方法及其应用
CN111430790A (zh) * 2020-03-03 2020-07-17 蜂巢能源科技有限公司 半固态电解质及其制备方法和应用
CN112457501A (zh) * 2020-11-11 2021-03-09 厦门大学 一种电致可逆的皮肤粘附性水凝胶及其制备方法和应用
CN113511858A (zh) * 2021-05-14 2021-10-19 广东汇强外加剂有限公司 一种透水混凝土的制备及施工方法
CN113311628A (zh) * 2021-05-18 2021-08-27 电子科技大学 一种用于智能隐身的自修复一体化电致变色仿生树叶
CA3224828A1 (en) * 2021-07-09 2023-01-12 Srinivasa Raghavan Reversible electroadhesion of hydrogels to animal tissues for sutureless repair of cuts or tears
CN113583257B (zh) * 2021-07-21 2022-06-07 厦门大学 一种电致黏附水凝胶及其制备方法
CN114213789B (zh) * 2021-12-17 2022-11-22 厦门大学 一种硼酸酯聚合物/离子液体复合导电凝胶及其制备方法和应用
CN114891461B (zh) * 2022-05-19 2023-08-11 厦门大学 一种潮湿环境下电致可控粘附水凝胶及其制备方法和应用
CN116355338A (zh) * 2023-04-07 2023-06-30 厦门大学 一种自黏附柔性复合膜及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB525085A (en) * 1939-02-14 1940-08-21 Kodak Ltd Improvements in or relating to coating solutions and the like and to the production of coatings, films and similar products from such solutions
JPS61236866A (ja) * 1985-04-15 1986-10-22 Kurita Water Ind Ltd 野積石炭堆積物のコーティング剤
JPH09291477A (ja) * 1996-04-19 1997-11-11 Kuraray Co Ltd 柔軟性に優れるホ−ス補強用ポリビニルアルコ−ル系繊維
CN109721744A (zh) * 2018-12-26 2019-05-07 清华大学 一种基于硼酸酯键的自修复抗菌水凝胶
CN109880266A (zh) * 2019-01-17 2019-06-14 中南林业科技大学 磁响应自修复智能水凝胶的制备方法
CN110078896A (zh) * 2019-05-14 2019-08-02 中国科学院大学 一种本征型自修复环氧弹性体材料及其制备方法
CN110628044A (zh) * 2019-08-30 2019-12-31 厦门大学 一种三元交联水凝胶电解质、制备方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104341882A (zh) * 2013-07-27 2015-02-11 安徽顺彤包装材料有限公司 一种聚乙烯醇高阻隔涂布液
CN109575315B (zh) * 2017-09-29 2021-12-24 中国科学院大学 一种pva超分子水凝胶及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB525085A (en) * 1939-02-14 1940-08-21 Kodak Ltd Improvements in or relating to coating solutions and the like and to the production of coatings, films and similar products from such solutions
JPS61236866A (ja) * 1985-04-15 1986-10-22 Kurita Water Ind Ltd 野積石炭堆積物のコーティング剤
JPH09291477A (ja) * 1996-04-19 1997-11-11 Kuraray Co Ltd 柔軟性に優れるホ−ス補強用ポリビニルアルコ−ル系繊維
CN109721744A (zh) * 2018-12-26 2019-05-07 清华大学 一种基于硼酸酯键的自修复抗菌水凝胶
CN109880266A (zh) * 2019-01-17 2019-06-14 中南林业科技大学 磁响应自修复智能水凝胶的制备方法
CN110078896A (zh) * 2019-05-14 2019-08-02 中国科学院大学 一种本征型自修复环氧弹性体材料及其制备方法
CN110628044A (zh) * 2019-08-30 2019-12-31 厦门大学 一种三元交联水凝胶电解质、制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHIKUI WANG; TAO FENG; PAN QINMIN: "A self-healable polyvinyl alcohol-based hydrogel electrolyte for smart electrochemical capacitors", JOURNAL OF MATERIALS CHEMISTRY A, vol. 4, no. 45, 30 December 2016 (2016-12-30), pages 17732 - 17739, XP055411138, DOI: 10.1039/C6TA08018A *

Also Published As

Publication number Publication date
CN110628044B (zh) 2020-08-25
CN110628044A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2021037272A1 (zh) 一种三元交联水凝胶电解质、制备方法及其应用
Li et al. Recent Progress on Self‐Healable Conducting Polymers
Wang et al. Self-healing and highly stretchable gelatin hydrogel for self-powered strain sensor
WO2021037269A1 (zh) 一种具有自愈合性能的聚乙烯亚胺-聚乙烯醇水凝胶的制备方法
Chen et al. Improvement of mechanical strength and fatigue resistance of double network hydrogels by ionic coordination interactions
CN110628053B (zh) 一种聚乙烯醇-单宁酸-硼酸三元交联水凝胶、制备方法及应用
US11515059B2 (en) All-weather self-healing stretchable conductive material and preparation method thereof
CN109125813B (zh) 一种用于组织修复的导电粘附水凝胶制备方法及应用
Heidarian et al. A 3D printable dynamic nanocellulose/nanochitin self-healing hydrogel and soft strain sensor
US10472500B2 (en) Chitosan biopolymer and chitosan biopolymer based triboelectric nanogenerators
WO2018218970A1 (zh) 医用导电水凝胶及其制备方法与应用
CN110028681A (zh) 三重形状记忆聚两性电解质水凝胶的制备方法和使用方法
CN111040197A (zh) 一种高强度多功能化离子导电水凝胶及其制备方法和应用
Deng et al. Chondroitin sulfate hydrogels based on electrostatic interactions with enhanced adhesive properties: exploring the bulk and interfacial contributions
Wang et al. Zinc-ion engineered Plant-based multifunctional hydrogels for flexible wearable strain Sensors, Bio-electrodes and Zinc-ion hybrid capacitors
Deng et al. Supramolecular network-based self-healing polymer materials
CN113583257B (zh) 一种电致黏附水凝胶及其制备方法
CN110591188B (zh) 一种含有杜仲橡胶的形状记忆高分子材料及其制备方法
Zhu et al. Tough polyion complex hydrogel films of natural polysaccharides
Wan et al. Strong, self-healing, shape memory PAA-PANI/PVA/PDA/AOP conductive hydrogels with interpenetrating network and hydrogen bond interaction
Yang et al. Energy‐Dissipative and Soften Resistant Hydrogels Based on Chitosan Physical Network: From Construction to Application
Zhang et al. Metal-coordinated amino acid hydrogels with ultra-stretchability, adhesion, and self-healing properties for wound healing
CN111019159A (zh) 一种低温水凝胶电解质及其制备方法
Ghosh et al. Designing dynamic metal-coordinated hydrophobically associated mechanically robust and stretchable hydrogels for versatile, multifunctional applications in strain sensing, actuation and flexible supercapacitors
CN109880346B (zh) 一种有机-无机复合导电凝胶的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858177

Country of ref document: EP

Kind code of ref document: A1