WO2021037156A1 - 一种致癌性融合激酶抑制剂的晶型及其应用 - Google Patents

一种致癌性融合激酶抑制剂的晶型及其应用 Download PDF

Info

Publication number
WO2021037156A1
WO2021037156A1 PCT/CN2020/111795 CN2020111795W WO2021037156A1 WO 2021037156 A1 WO2021037156 A1 WO 2021037156A1 CN 2020111795 W CN2020111795 W CN 2020111795W WO 2021037156 A1 WO2021037156 A1 WO 2021037156A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal form
compound
formula
solvent
whose
Prior art date
Application number
PCT/CN2020/111795
Other languages
English (en)
French (fr)
Inventor
王建非
孙继奎
杨广文
张杨
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to EP20856096.1A priority Critical patent/EP4023648A4/en
Priority to US17/638,358 priority patent/US20220289765A1/en
Priority to CN202080058668.5A priority patent/CN114258394B/zh
Publication of WO2021037156A1 publication Critical patent/WO2021037156A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/22Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/22Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the invention relates to a crystal form of a carcinogenic fusion kinase inhibitor and a preparation method thereof, and its application in the preparation of a medicine for treating solid tumor-related diseases.
  • Protein kinases are closely related to cell proliferation, differentiation, metabolism, and apoptosis. The oncogenic forms of protein kinases are abundantly expressed in many different human tumor types and are highly responsive to some specific kinase inhibitors. Among them, Anaplastic Lymphoma Kinase (ALK) is a receptor tyrosine kinase (RTK) belonging to the insulin receptor superfamily. It is mainly expressed in the central and peripheral nervous system and is involved in the normal development of the nervous system. It plays a role in the function and has been extensively studied in a large number of preclinical and clinical studies.
  • ALK Anaplastic Lymphoma Kinase
  • RTK receptor tyrosine kinase
  • ALK was first discovered in a type of anaplastic large cell lymphoma (ALCL) as a continuously activated carcinogenic form due to chromosomal translocation. It is derived from the normally expressed protein nuclear phosphate NPM The fusion protein NPM-ALK is formed by fusion between the N-terminus and ALK kinase domain.
  • ALK fusion proteins have been identified and are considered to be powerful oncogenic drivers of some tumors (such as inflammatory myofibroblastoma). Therefore, ALK fusion proteins have also become important targets for cancer treatment intervention.
  • a variety of ALK inhibitors have entered clinical trials and have been approved for marketing.
  • Crizotinib (crizotinib) was approved in 2011 for the treatment of ALK-positive non-small cell lung cancer (NSCLC) patients.
  • Ceritinib was approved for the treatment of ALK-positive metastatic NSCLC patients.
  • ALK inhibitors have been proven effective in the initial clinical practice, relapses and ALK-acquired resistance mutations have always been observed in treated patients.
  • the emergence of brain metastases is an obvious cause of disease recurrence in patients treated with crizotinib.
  • Tropomyosin-related kinase is a type of nerve growth factor receptor (NGF), which is highly expressed in nerve cells.
  • the Trk family is composed of highly homologous tropomyosin-related kinase A (TrkA), tropomyosin-related kinase B (TrkB), and tropomyosin-related kinase C (TrkC), which encode respectively NTRK1, NTRK2, and NTRK3, involving 4 ligands including NGF, BDNF, NT-4 and NT-3, are widely involved in cell development by regulating the main signal pathways such as PI3K-AKT, RAS-RAF-ERK, and PLC ⁇ -PKC.
  • Trk Oncogenic Trk gene fusion does not require ligand activation to promote cancer cell proliferation and affect cancer-related downstream signaling pathways, such as ERK and AKT.
  • Drugs targeting TRK gene fusion such as Entrectinib (RXDX-101) and Larotrectinib (LOXO-101), have also been proven effective in the initial clinical trials. However, under sustained action, acquired resistance mutations were also produced in the treated patients. New drugs that target TRK gene fusion, such as TPX-0005 and LOXO-195, partially solve the problem of resistance mutations.
  • Ros1 kinase is a type of receptor tyrosine kinase, which has an important effect on normal physiological functions.
  • the continuously activated oncogenic form of Ros1 fusion protein has also been found in a variety of human cancers, including glioblastoma, non-small cell lung cancer, and colorectal cancer.
  • a variety of drugs targeting Ros1 fusion protein, such as crizotinib, have been clinically proven effective, but after continuous administration, acquired resistance mutations have also been found in patients.
  • the present invention provides crystal form A of the compound of formula (I),
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction peaks at the following 2 ⁇ angles: 10.12 ⁇ 0.20°, 17.74 ⁇ 0.20°, 18.18 ⁇ 0.20°, 19.03 ⁇ 0.20°, 19.74 ⁇ 0.20°, 20.75 ⁇ 0.20°, 24.60 ⁇ 0.20°, 28.21 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form A has characteristic diffraction at the following 2 ⁇ angles: 10.115°, 17.740°, 18.178°, 19.033°, 19.738°, 20.749°, 21.609°, 22.411° , 23.345°, 24.160°, 24.597°, 25.787°, 28.211°, 30.613°, 31.133°, 36.782°.
  • the XRPD pattern of the above-mentioned crystal form A is shown in FIG. 1.
  • the XRPD pattern analysis data of the above-mentioned crystal form A is shown in Table 1:
  • the differential scanning calorimetry curve of the above crystal form A has an onset of an endothermic peak at 171.4 ⁇ 3.0°C, and another onset of an endothermic peak at 221.1 ⁇ 3.0°C; at 179.9 There is an exothermic peak at ⁇ 3.0°C.
  • the DSC spectrum of the above-mentioned crystal form A is shown in FIG. 2.
  • thermogravimetric analysis curve of the above-mentioned crystal form A has a weight loss of 2.26% at 200.0°C ⁇ 3.0°C.
  • the TGA pattern of the above-mentioned crystal form A is shown in FIG. 3.
  • the present invention also provides a method for preparing crystal form A of the compound of formula (I), comprising:
  • the present invention also provides the B crystal form of the compound of formula (I),
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction peaks at the following 2 ⁇ angles: 10.10 ⁇ 0.20°, 14.04 ⁇ 0.20°, 17.48 ⁇ 0.20°, 18.20 ⁇ 0.20°, 20.42 ⁇ 0.20°, 22.21 ⁇ 0.20°, 23.83 ⁇ 0.20°, 27.49 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above-mentioned crystal form B has characteristic diffraction at the following 2 ⁇ angles: 6.694°, 8.689°, 10.103°, 11.085°, 13.418°, 14.041°, 16.607°, 17.483° , 17.676°, 18.200°, 18.861°, 19.671°, 20.419°, 20.865°, 22.207°, 23.422°, 23.833°, 24.327°, 25.017°, 25.421°, 26.310°, 26.947°, 27.489°, 28.202°, 28.544 °, 29.351°, 30.204°, 30.573°, 31.245°, 31.617°, 32.244°, 33.505°, 34.046°, 36.059°, 37.310°, 38.534°.
  • the XRPD pattern of the above-mentioned crystal form B is shown in FIG. 4.
  • the XRPD pattern analysis data of the above-mentioned crystal form B is shown in Table 2:
  • the differential scanning calorimetry curve of the above-mentioned crystal form B has an endothermic peak at 220.9 ⁇ 3.0°C.
  • the DSC spectrum of the above-mentioned crystal form B is shown in FIG. 5.
  • thermogravimetric analysis curve of the above-mentioned crystal form B has a weight loss of 1.16% at 200.0°C ⁇ 3.0°C.
  • the TGA pattern of the above-mentioned crystal form B is shown in FIG. 6.
  • the present invention also provides crystal form C of the compound of formula (I),
  • the X-ray powder diffraction pattern of the above crystal form C has characteristic diffraction peaks at the following 2 ⁇ angles: 8.89 ⁇ 0.20°, 12.86 ⁇ 0.20°, 13.37 ⁇ 0.20°, 14.71 ⁇ 0.20°, 18.58 ⁇ 0.20°, 20.98 ⁇ 0.20°, 21.85 ⁇ 0.20°, 26.85 ⁇ 0.20°.
  • the X-ray powder diffraction pattern of the above crystal form C has characteristic diffraction at the following 2 ⁇ angles: 8.889°, 12.862°, 13.373°, 14.706°, 17.376°, 17.950°, 18.584°, 20.146° , 20.640°, 20.977°, 21.497°, 21.847°, 22.912°, 25.959°, 26.853°.
  • the XRPD pattern of the above-mentioned crystal form C is shown in FIG. 7.
  • the XRPD pattern analysis data of the above-mentioned crystal form C is shown in Table 3:
  • the differential scanning calorimetry curve of the above-mentioned crystal form C has an onset of an endothermic peak at 215.8 ⁇ 3.0°C.
  • the DSC spectrum of the above-mentioned crystal form C is shown in FIG. 8.
  • thermogravimetric analysis curve of the above-mentioned crystal form C has a weight loss of 0.94% at 200.0°C ⁇ 3.0°C.
  • the TGA pattern of the above-mentioned crystal form C is shown in FIG. 9.
  • the present invention also provides a method for preparing the crystal form of compound C of formula (I), which includes a gas-solid permeation method, a suspension stirring method and a slow cooling method.
  • the above gas-solid permeation method includes:
  • the solvent is methanol, ethyl acetate or acetone.
  • the above-mentioned suspension stirring method includes:
  • the solvent is methanol/water (v/v, 1:3), 1,4-dioxane/n-heptane (v/v, 1:4), dichloromethane/methyl tert-butyl ether ( v/v, 1:9), anisole, isopropanol, isopropanol/water (v/v, 98:2), isopropanol/water (v/v, 94:6), isopropanol /Water (v/v, 85:15), isopropyl acetate, ethanol/water (v/v, 1:3), methyl isobutyl ketone/n-heptane (v/v, 1:4), Ethyl acetate/n-pentanol (v/v, 1:3), acetonitrile/methyl tert-butyl ether (v/v, 1:5), tetrahydrofuran/pure water (v/v, 1:9), chloroform
  • the beating time is 2 hours to 144 hours.
  • the aforementioned slow cooling method includes:
  • the solvent is isopropyl acetate.
  • the present invention also provides the application of the above crystal form A or B crystal form or C crystal form or the crystal form prepared according to the above method in the preparation of a solid tumor medicine.
  • Each crystal form of the compound of the present invention is stable, is less affected by light, heat and humidity, has a good drug effect for in vivo administration, and has broad prospects for preparation of medicines.
  • the compound of formula (I) of the present invention exhibits high kinase inhibitory activity in a variety of kinases and their mutants, and exhibits gatekeeper mutations (gatekeeper), solvent front mutations and solvent front mutations in a variety of kinases and their mutants. Strong suppression of mutations in the DFG region.
  • the compound of formula (I) of the present invention has better pharmacokinetic properties in mice.
  • the total system exposure, peak concentration and bioavailability of the compound of the present invention after oral administration are significantly better than Larotrectinib (LOXO-101) and LOXO-195, showing excellent pharmacokinetic properties.
  • the compound of formula (I) of the present invention has a significant anti-tumor effect.
  • the intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art.
  • the single crystal X-ray diffraction method uses the Bruker D8 venture diffractometer to collect the diffraction intensity data of the cultured single crystal.
  • the light source is CuK ⁇ radiation
  • the scanning method After scanning and collecting relevant data, the direct method (Shelxs97) is further used to analyze the crystal structure to confirm the absolute configuration.
  • the solvent used in the present invention is commercially available.
  • the present invention uses the following acronyms: EtOH stands for ethanol; MeOH stands for methanol; TFA stands for trifluoroacetic acid; TsOH stands for p-toluenesulfonic acid; mp stands for melting point; EtSO 3 H stands for ethanesulfonic acid; MeSO 3 H stands for methanesulfonic acid; THF stands for tetrahydrofuran; EtOAc stands for ethyl acetate.
  • Test method Approximately 10 mg of sample is used for XRPD detection.
  • Light tube voltage 45kV
  • light tube current 40mA
  • Step size 0.0167 degrees
  • Test method Approximately 10 mg of sample is used for XRPD detection.
  • Light tube voltage 45kV
  • light tube current 40mA
  • Test method Take a sample (1-10mg) and place it in a DSC aluminum pan for testing. Under the condition of 50mL/min and N2, at a heating rate of 10°C/min, heat the sample from room temperature to 300°C.
  • TGA Thermal Gravimetric Analyzer
  • Test method Take a sample (2-15mg) and place it in a TGA aluminum pan for testing. Under 50mL/min N2 conditions, at a heating rate of 10°C/min, heat the sample from room temperature to 350°C.
  • Figure 1 is an XRPD spectrum of Cu-K ⁇ radiation of the crystal form of compound A of formula (I);
  • Figure 2 is a DSC spectrum of the crystal form of compound A of formula (I);
  • FIG. 3 is a TGA spectrum of the crystal form of compound A of formula (I);
  • Figure 4 is an XRPD spectrum of Cu-K ⁇ radiation of the crystal form of compound B of formula (I);
  • Figure 5 is a DSC spectrum of the crystal form of compound B of formula (I);
  • Figure 6 is a TGA spectrum of the crystal form of compound B of formula (I);
  • Fig. 7 is an XRPD spectrum of Cu-K ⁇ radiation of the crystal form C of compound of formula (I);
  • Fig. 8 is a DSC chart of the crystal form of compound C of formula (I);
  • Figure 9 is a TGA spectrum of the crystal form of compound C of formula (I);
  • Figure 10 is an ellipsoid diagram of the three-dimensional structure of the compound of formula (I);
  • Figure 11 is a unit cell packing diagram of the compound of formula (I) along the a-axis direction;
  • Figure 12 shows the results of in vivo efficacy of the compound of formula (I) on human colon cancer cell line KM12 cell subcutaneous xenograft tumor in BALB/c mouse model;
  • Figure 13 shows the in vivo efficacy results of the compound of formula (I) on human lung cancer LU-01-0414 subcutaneous xenograft tumor in BALB/c mouse model.
  • the organic phase was dried with anhydrous sodium sulfate, filtered to remove the desiccant, and the filtrate was decompressed to remove the solvent to obtain a crude product.
  • the organic phase was separated and washed once with 20 mL of saturated brine, then dried over anhydrous sodium sulfate, filtered to remove the desiccant, and the filtrate was decompressed to remove the solvent to obtain a crude product.
  • Single crystal culture process Take about 5 mg of sample, place it in a 2 ml brown sample bottle, add 400 ⁇ l of acetone, fully dissolve it, and let it stand at room temperature. After 15 days, small colorless crystals appear. Collect the crystals and use the Bruker D8 venture diffractometer to collect the diffraction intensity data. Through the single crystal data of the compound of formula (I), its absolute configuration can be determined.
  • the ellipsoid diagram of the three-dimensional structure of the compound of formula (I) is shown in FIG. 10; the unit cell packing diagram of the compound of formula (I) along the b-axis direction is shown in FIG. 11.
  • the crystal structure data and parameters of the compound of formula (I) are shown in Tables 4, 5, 6, 7 and 8.
  • the compound of formula (I) has good stability under high temperature, high humidity and accelerated conditions, and is easy to be formulated into medicine.
  • the radioactivity of the reactant is detected by the method of filtration-combination.
  • the final kinase activity is expressed as the ratio of the remaining kinase activity in the test sample to the kinase activity of the DMSO control group.
  • the dose-response curve was fitted by GraphPad software and the IC50 was calculated. The results are shown in Table 11:
  • the compound of formula (I) of the present invention exhibits high kinase inhibitory activity in a variety of kinases and their mutants, and exhibits gatekeeper and solvent front mutations in a variety of kinases. ) And strong suppression of mutations in the DFG region.
  • Adenosine Tri-Phosphate is an energy carrier shared by various life activities in nature, and is the smallest unit of energy storage and transfer.
  • the CellTiter-Glo TM live cell detection kit uses luciferase as the detection substance, and luciferase needs ATP to participate in the process of luminescence.
  • the light signal is proportional to the amount of ATP in the system, and ATP is positively correlated with the number of living cells. Therefore, by using the CellTiter-Glo kit to detect ATP content, cell proliferation can be detected.
  • the cell line is Ba/F3 LMNA-NTRK1-WT stably transfected cell line with 5000 cells/well.
  • the compound of formula (I) of the present invention exhibits high cell proliferation inhibitory activity against Ba/F3 LMNA-NTRK1-WT stable transduction cell line.
  • Ba/F3 LMNA-NTRK1-F589L for Ba/F3 LMNA-NTRK1-F589L, Ba/F3 LMNA-NTRK1-G595R, BaF3 ETV6-NTRK3-G623R, Ba/F3 SLC34A2-ROS1-WT and Ba/F3 SLC34A2-ROS1-G2032R stable cell lines show Has a higher cell proliferation inhibitory activity.
  • mice Using 7-9 weeks of male CD-1 mice as the test animals, the LC/MS/MS method was used to determine the single intravenous (IV) and intragastric (PO) cassette administration of the compound of formula (I), TPX0005, After Entrectinib (RXDX-101) and Larotrectinib (LOXO-101), the drug concentration of the compound of formula (I), TPX0005, Entrectinib (RXDX-101) and Larotrectinib (LOXO-101) in plasma and specific tissues at different times was studied. The pharmacokinetic behavior of the compound in mice was evaluated for its pharmacokinetic characteristics.
  • composition compound of formula (I), TPX0005, Entrectinib (RXDX-101) and Larotrectinib (LOXO-101) are prepared into a clear solution with 5% DMSO + 10% solutol + 85% water as a solvent for IV (intravenous injection) ) And PO (gavage) groups.
  • the dosage of each compound is: IV 1 mg/kg, the dosage volume is 2 mL/kg; the PO dosage is 3 mg/kg, and the dosage volume is 3 mL/kg.
  • the compound of formula (I) of the present invention has better pharmacokinetic properties in mice. Compared with TPX0005, Entrectinib (RXDX-101) and Larotrectinib (LOXO-101), at the same dosage, the total system exposure of the compound of formula (I) of the present invention after oral administration, 0.5h and 2h after administration, the The exposure of the compound of formula (I) in the brain and CSF of the cerebrospinal fluid is significantly higher than the corresponding exposure of TPX0005, Entrectinib (RXDX-101) and Larotrectinib (LOXO-101).
  • composition The compounds are all formulated into clear solutions with 5% DMSO + 10% solutol + 85% water as a solvent for administration in IV (intravenous) and PO (gavage) groups.
  • the dosage of each compound is: IV 3mg/kg; PO dosage is 10mg/kg.
  • test drugs such as the compound of formula (I) in human colon cancer cell line KM12 cell subcutaneous xenograft tumor in BALB/c mouse model.
  • composition The compounds are all formulated into clear solutions with 5% DMSO + 10% solutol + 85% water as a solvent for administration in the PO (gavage) group.
  • Tumor measurement Measure the diameter of the tumor with a vernier caliper twice a week.
  • the anti-tumor efficacy of the compound was evaluated by TGI (%).
  • TGI (%) reflects the tumor growth inhibition rate.
  • TGI(%) [(1-(Average tumor volume at the end of a certain treatment group-average tumor volume at the beginning of the treatment group))/(Average tumor volume at the end of treatment in the solvent control group-start treatment in the solvent control group Average tumor volume at time)] ⁇ 100%.
  • the results are shown in Figure 12.
  • the statistical analysis is based on the relative tumor volume and tumor weight at the end of the experiment using SPSS software.
  • One-way ANOVA is used to analyze the comparison between multiple groups. If the variance is uniform (the F value is not significantly different), the Tukey's method is used for analysis, and if the variance is not uniform (the F value is significantly different), the Games-Howell method is used to test . P ⁇ 0.05 considered a significant difference.
  • test compound of formula (I) has a significant anti-tumor effect at a dose as low as 3 mg/kg, and the anti-tumor effect is dose-dependent.
  • Trend high-dose group compared with low-dose group p ⁇ 0.05.
  • test drugs such as compounds of formula (I) on human lung cancer LU-01-0414 subcutaneous xenograft tumor in BALB/c mouse model.
  • composition The compounds are all formulated into clear solutions with 5% DMSO + 10% solutol + 85% water as a solvent for administration in the PO (gavage) group.
  • Tumor measurement Use vernier calipers to measure tumor diameter twice a week.
  • the anti-tumor efficacy of the compound was evaluated by TGI (%).
  • TGI (%) reflects the tumor growth inhibition rate.
  • TGI(%) [(1-(Average tumor volume at the end of a certain treatment group-average tumor volume at the beginning of the treatment group))/(Average tumor volume at the end of treatment in the solvent control group-start treatment in the solvent control group Average tumor volume at time)] ⁇ 100%.
  • the results are shown in Figure 13.
  • the statistical analysis is based on the relative tumor volume and tumor weight at the end of the experiment using SPSS software.
  • One-way ANOVA is used to analyze the comparison between multiple groups. If the variance is uniform (the F value is not significantly different), the Tukey's method is used for analysis, and if the variance is not uniform (the F value is significantly different), the Games-Howell method is used to test . P ⁇ 0.05 considered a significant difference.
  • the compound of formula (I) has a significant anti-tumor effect at a dose as low as 3 mg/kg, and the compound of formula (I) has a significant anti-tumor effect at a dose of 3 mg/kg.
  • the anti-tumor effect of Crizotinib at a dose of 30 mg/kg is comparable (p>0.05).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种致癌性融合激酶抑制剂的晶型及其制备方法,并公开了其在制备治疗实体瘤相关疾病的药物中的应用。

Description

一种致癌性融合激酶抑制剂的晶型及其应用
本申请主张如下优先权
CN201910804019.4,申请日2019-08-28;
CN201910883622.6,申请日2019-09-18。
技术领域
本发明涉及一种致癌性融合激酶抑制剂的晶型及其制备方法,及其在制备治疗实体瘤相关疾病的药物中的应用。
背景技术
蛋白激酶与细胞的增殖、分化、代谢、凋亡等密切相关。蛋白激酶的致癌形式在多种不同的人类肿瘤类型中大量表达,并且对一些特定的激酶抑制剂产生高度响应。其中,间变性淋巴瘤激酶(Anaplastic lymphoma kinase,ALK)是属于胰岛素受体超家族的一种受体酪氨酸激酶(RTK),主要表达于中枢和周边神经系统中,在神经系统的正常发育和功能中发挥作用,在大量临床前和临床研究中得到了广泛研究。ALK是在一类间变性大细胞淋巴瘤(Anaplastic large cell lymphoma,ALCL)中作为一种由于染色体易位而导致的持续活化的致癌形式被首先发现的,其是由正常表达的蛋白核磷酸NPM的N端与ALK激酶结构域发生融合而形成的融合蛋白NPM-ALK。目前,多种ALK融合蛋白已被鉴定,并被认为是一些肿瘤(如炎症性肌纤维母细胞瘤)的强力致癌驱动因子,因此ALK融合蛋白也成为癌症治疗干预的重要靶标。目前已经有多种ALK抑制剂已经进入了临床试验并获准上市。其中,Crizotinib(克唑替尼)已于2011年获得批准,用于ALK阳性非小细胞肺癌(NSCLC)患者的治疗。2014年,Ceritinib(赛立替尼)已被批准用于治疗ALK阳性的转移性NSCLC患者。尽管ALK抑制剂在最初的临床中被证明有效,但在治疗的患者中总是观察到复发,出现了ALK获得性耐药突变。其中,脑转移瘤的出现是克唑替尼治疗患者疾病复发的一个明显原因。
原肌球蛋白相关激酶(tropomyosin—related kinase,Trk)是一类神经生长因子受体(NGF),高度表达于神经细胞中。Trk家族由高度同源性的原肌球蛋白相关激酶A(tropomyosin—related kinase A,TrkA)、原肌球蛋白相关激酶B(TrkB)、原肌球蛋白相关激酶C(TrkC)组成,分别编码NTRK1、NTRK2和NTRK3,共涉及NGF、BDNF、NT-4和NT-3等4个配体,通过调节PI3K-AKT、RAS-RAF-ERK、PLCγ-PKC等主要信号通路,广泛参与了细胞的增殖、分化、存活以及神经元生长等重要生理活动。持续活化的致癌形式的Trk最早是做为致癌融合基因(TPM3-NTRK1)从结直肠癌中被首先发现的。致癌Trk基因融合不需要配体激活就可以促进癌细胞增殖、影响癌症相关的下游信号通路,如:ERK和AKT等。靶向TRK基因融合的药物如Entrectinib(RXDX-101)和Larotrectinib(LOXO-101),在最初的临床中也被证明有效。但是,在持续作用下,治疗的患者中也产生了获得性耐药突变。新的靶向TRK基因融合的药物如TPX-0005和LOXO-195部分解决了耐药突变问题。
Ros1激酶是一类受体酪氨酸激酶,其对正常的生理功能具有重要的影响。持续活化的致癌形式的Ros1融合蛋白在多种人类癌症中也被发现,其中包括胶质母细胞瘤、非小细胞肺癌、结直肠癌等。靶向Ros1融合蛋白的多种药物,如克唑替尼,以及在临床上被证实有效,但是持续给药后,也在患者中发现了获得性耐药突变。
因此,对于一些癌症的临床治疗,迫切需要一类针对多种致癌性融合激酶及其突变具有抑制作用的化合物。
Figure PCTCN2020111795-appb-000001
发明内容
本发明提供了式(I)化合物的A晶型,
Figure PCTCN2020111795-appb-000002
其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.12°±0.20°,19.03°±0.20°,19.74°±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.12±0.20°,17.74±0.20°,18.18±0.20°,19.03±0.20°,19.74±0.20°,20.75±0.20°,24.60±0.20°,28.21±0.20°。
在本发明的一些方案中,上述A晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射:10.115°,17.740°,18.178°,19.033°,19.738°,20.749°,21.609°,22.411°,23.345°,24.160°,24.597°,25.787°,28.211°,30.613°,31.133°,36.782°。
在本发明的一些方案中,上述A晶型,其XRPD图谱如图1所示。
在本发明的一些方案中,上述A晶型的XRPD图谱解析数据如表1所示:
表1.式(I)化合物A晶型的XRPD图谱解析数据
Figure PCTCN2020111795-appb-000003
在本发明的一些方案中,上述A晶型的差示扫描量热曲线在171.4±3.0℃有一个吸热峰的起始点,在221.1±3.0℃有另一个吸热峰的起始点;在179.9±3.0℃有一个放热峰的峰值。
在本发明的一些方案中,上述A晶型的DSC图谱如图2所示。
在本发明的一些方案中,上述A晶型的热重分析曲线在200.0℃±3.0℃时失重达2.26%。
在本发明的一些方案中,上述A晶型的TGA图谱如图3所示。
本发明还提供式(I)化合物的A晶型的制备方法,包含:
1)向式(I)化合物中加入纯水,得到悬浊液;
2)在室温下搅拌6天,过滤。
本发明还提供式(I)化合物的B晶型,
Figure PCTCN2020111795-appb-000004
其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.10±0.20°,20.42±0.20°,22.21±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.10±0.20°,14.04±0.20°,17.48±0.20°,18.20±0.20°,20.42±0.20°,22.21±0.20°,23.83±0.20°,27.49±0.20°。
在本发明的一些方案中,上述B晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射:6.694°,8.689°,10.103°,11.085°,13.418°,14.041°,16.607°,17.483°,17.676°,18.200°,18.861°,19.671°,20.419°,20.865°,22.207°,23.422°,23.833°,24.327°,25.017°,25.421°,26.310°,26.947°,27.489°,28.202°,28.544°,29.351°,30.204°,30.573°,31.245°,31.617°,32.244°,33.505°,34.046°,36.059°,37.310°,38.534°。
在本发明的一些方案中,上述B晶型,其XRPD图谱如图4所示。
在本发明的一些方案中,上述B晶型的XRPD图谱解析数据如表2所示:
表2.式(I)化合物B晶型的XRPD图谱解析数据
Figure PCTCN2020111795-appb-000005
在本发明的一些方案中,上述B晶型,其差示扫描量热曲线在220.9±3.0℃有一个吸热峰的起始点。
在本发明的一些方案中,上述B晶型的DSC图谱如图5所示。
在本发明的一些方案中,上述B晶型,其热重分析曲线在200.0℃±3.0℃时失重达1.16%。
在本发明的一些方案中,上述B晶型的TGA图谱如图6所示。
本发明还提供式(I)化合物的C晶型,
Figure PCTCN2020111795-appb-000006
其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.89°±0.20°,13.37°±0.20°,20.98°±0.20°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.89±0.20°,12.86±0.20°,13.37±0.20°,14.71±0.20°,18.58±0.20°,20.98±0.20°,21.85±0.20°,26.85±0.20°。
在本发明的一些方案中,上述C晶型的X射线粉末衍射图谱在下列2θ角处具有特征衍射:8.889°,12.862°,13.373°,14.706°,17.376°,17.950°,18.584°,20.146°,20.640°,20.977°,21.497°,21.847°,22.912°,25.959°,26.853°。
在本发明的一些方案中,上述C晶型,其XRPD图谱如图7所示。
在本发明的一些方案中,上述C晶型的XRPD图谱解析数据如表3所示:
表3.式(I)化合物C晶型的XRPD图谱解析数据
Figure PCTCN2020111795-appb-000007
在本发明的一些方案中,上述C晶型,其差示扫描量热曲线在215.8±3.0℃有一个吸热峰的起始点。
在本发明的一些方案中,上述C晶型的DSC图谱如图8所示。
在本发明的一些方案中,上述C晶型,其热重分析曲线在200.0℃±3.0℃时失重达0.94%。
在本发明的一些方案中,上述C晶型的TGA图谱如图9所示。
本发明还提供式(I)化合物C晶型的制备方法,包含气固渗透法、悬浮搅拌法和缓慢降温法。
在本发明的一些方案中,上述气固渗透法包含:
1)将式(I)化合物置于玻璃小瓶中;
2)把玻璃小瓶放置于溶剂的氛围后密封,让溶剂与固体诱导析晶;
其中,
所述溶剂为甲醇、乙酸乙酯或丙酮。
在本发明的一些方案中,上述悬浮搅拌法包含:
1)式(I)化合物在溶剂中配制成悬浊液;
2)将悬浊液在室温或50℃打浆;
其中,
所述溶剂为甲醇/水(v/v,1:3),1,4-二氧六环/正庚烷(v/v,1:4),二氯甲烷/甲基叔丁基醚(v/v,1:9),苯甲醚,异丙醇,异丙醇/水(v/v,98:2),异丙醇/水(v/v,94:6),异丙醇/水(v/v,85:15),乙酸异丙酯,乙醇/水(v/v,1:3),甲基异丁基酮/正庚烷(v/v,1:4),乙酸乙酯/正戊醇(v/v,1:3),乙腈/甲基叔丁基醚(v/v,1:5),四氢呋喃/纯水(v/v,1:9),氯仿/正庚烷(v/v,1:5),甲基乙基酮/甲基叔丁基醚(v/v,1:2);
所述打浆时间为2小时~144小时。
在本发明的一些方案中,上述缓慢降温法包含:
1)50℃下,式(I)化合物在溶剂中配制成悬浊液;
2)将悬浊液搅拌2小时后,过滤,收集澄清滤液;
3)澄清溶液以0.1℃/分钟从50℃降温至5℃;
其中,
所述溶剂为乙酸异丙酯。
本发明还提供上述A晶型或B晶型或C晶型或根据上述方法制备得到的晶型在制备治疗实体瘤药物中的应用。
技术效果
本发明化合物各晶型稳定、受光热湿度影响小且具有良好的体内给药药效,成药前景广阔。本发明式(I)化合物在多种激酶及其突变体中展现了较高的激酶抑制活性,展现了对多种激酶守门基团区突变(gatekeeper),溶剂前沿区突变(solvent front mutation)和DFG区突变的强烈抑制。本发明式(I)化合物在小鼠中药代动力学性质较好。相同给药剂量下,本发明化合物口服给药后的系统总暴露量、达峰浓度和生物利用度显著优于Larotrectinib(LOXO-101)和LOXO-195,展现优异的药代动力学特性。本发明式(I)化合物具有显著抗肿瘤作用。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2020111795-appb-000008
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:EtOH代表乙醇;MeOH代表甲醇;TFA代表三氟乙酸;TsOH代表对甲苯磺酸;mp代表熔点;EtSO 3H代表乙磺酸;MeSO 3H代表甲磺酸;THF代表四氢呋喃;EtOAc代表乙酸乙酯。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2020111795-appb-000009
软件命名,市售化合物采用供应商目录名称。
本发明粉末X-射线衍射(X-ray powder diffractometer,XRPD)方法
仪器型号:PANalytical Empyrean型X射线粉末衍射仪
测试方法:大约10mg样品用于XRPD检测。
详细的XRPD参数如下:
射线源:Cu,kα(
Figure PCTCN2020111795-appb-000010
Kα2/Kα1强度比例:0.5)
光管电压:45kV,光管电流:40mA
发散狭缝:自动
扫描模式:连续
扫描角度范围:3-40deg
每步扫描时间:17.780秒
步长:0.0167度
仪器型号:PANalytical X'Pert 3型X射线粉末衍射仪
测试方法:大约10mg样品用于XRPD检测。
详细的XRPD参数如下:
射线源:Cu,kα(
Figure PCTCN2020111795-appb-000011
Kα2/Kα1强度比例:0.5)
光管电压:45kV,光管电流:40mA
发散狭缝:1/16度
扫描模式:连续
扫描角度范围:3-40deg
每步扫描时间:46.665秒
步长:0.0263度
本发明差热分析(Differential Scanning Calorimeter,DSC)方法
仪器型号:TA Instruments Q200/Discovery DSC 2500差示扫描量热仪
测试方法:取样品(1~10mg)置于DSC铝盘内进行测试,在50mL/min N2条件下,以10℃/min的升温速率,加热样品从室温到300℃。
本发明热重分析(Thermal Gravimetric Analyzer,TGA)方法
仪器型号:TA Instruments Q5000/Discovery TGA 5500热重分析仪
测试方法:取样品(2~15mg)置于TGA铝盘内进行测试,在50mL/min N2条件下,以10℃/min的升温速率,加热样品从室温到350℃。
附图说明
图1为式(I)化合物A晶型的Cu-Kα辐射的XRPD谱图;
图2为式(I)化合物A晶型的DSC谱图;
图3为式(I)化合物A晶型的TGA谱图;
图4为式(I)化合物B晶型的Cu-Kα辐射的XRPD谱图;
图5为式(I)化合物B晶型的DSC谱图;
图6为式(I)化合物B晶型的TGA谱图;
图7为式(I)化合物C晶型的Cu-Kα辐射的XRPD谱图;
图8为式(I)化合物C晶型的DSC谱图;
图9为式(I)化合物C晶型的TGA谱图;
图10为式(I)化合物立体结构椭球图;
图11为式(I)化合物沿a轴方向的晶胞堆积图;
图12为式(I)化合物在人结肠癌细胞系KM12细胞皮下异种移植瘤在BALB/c小鼠模型上的体内药效结果;
图13为式(I)化合物在人肺癌LU-01-0414皮下异种移植瘤在BALB/c小鼠模型上的体内药效结果。
具体实施方式
为了更好的理解本发明的内容,下面结合具体实施例来做进一步的说明,但具体的实施方式并不是对本发明的内容所做的限制。
实施例1:式(I)化合物的制备
Figure PCTCN2020111795-appb-000012
步骤1:化合物1-2的合成
将化合物1-1(15g,96.70mmol,1eq)溶于乙酸乙酯(300mL)中,再加入丙二酸亚异丙酯(13.94g,96.70mmol,1eq),三乙烯二胺(1.08g,9.67mmol,1.06mL,0.1eq)和N-羟基氨基甲酸叔丁酯(12.87g,96.70mmol,1eq),所得反应液在25℃下搅拌16小时。将反应液用水洗涤两次,每次200mL,再用饱和食盐水100mL洗涤一次。有机相用无水硫酸钠干燥,过滤除去干燥剂,滤液减压除去溶剂得粗品。粗品过柱纯化(石油醚:乙酸乙酯=3:1),得到化合物1-2。 1H NMR(400MHz,CDCl 3)δ:7.98(d,J=2.8Hz,1H),7.52-7.48(m,1H),5.65(dd,J=3.6,10.0Hz,1H),3.95(s,3H),3.33(dd,J=9.6,18.0Hz,1H),2.74(dd,J=3.6,16.0Hz,1H),1.50(s,9H).LCMS m/z=313.3[M+H] +
步骤2:化合物1-3的合成
将化合物1-2(21.40g,68.53mmol,1eq)溶于四氢呋喃(300mL)中,缓慢的加入硼氢化锂(4.48g,205.58mmol,3eq),在25℃下搅拌0.1小时。向反应液中加入水200mL,然后用乙酸乙酯萃取两次,每次50mL。合并有机相用饱和食盐水100mL洗涤,然后用无水硫酸钠干燥,过滤除去干燥剂,滤液旋干得粗品化合物1-3。 1H NMR(400MHz,CDCl 3)δ:7.88(d,J=3.2Hz,1H),7.67-7.64(dd,J=2.8,8.8Hz,1H),5.46-5.42(m,1H),3.91(s,3H),3.86-3.71(m,2H),2.24-2.14(m,1H),2.08-2.00(m,1H),1.41(s,9H).LCMS m/z=317.3[M+H] +
步骤3:化合物1-4的合成
将化合物1-3(14.52g,45.90mmol,1eq)和三苯基膦(30.10g,114.76mmol,2.5eq)溶于四氢呋喃(150mL)中,所得反应液用冰水浴冷却到5℃,然后滴加偶氮二甲酸二异丙酯(27.85g,137.71mmol,26.77mL,3eq),滴加完后,撤去冰浴,在25℃下搅拌0.1小时。将反应液旋干,残留物过柱纯化(石油醚:乙酸乙酯=50:1~30:1~10:1~5:1)得到化合物1-4。 1H NMR(400MHz,CDCl 3)δ:7.88(d,J=3.2Hz,1H),7.52-7.50(m,1H),5.38-5.35(m,1H),4.13-4.03(m,1H),3.94(s,3H),3.89-3.82(m,1H),2.84-2.76(m,1H),2.12-2.03(m,1H),1.50(s,9H).LCMS m/z=299.3[M+H] +
步骤4:化合物1-5的合成
将化合物1-4(3.00g,10.06mmol,1eq)溶于氯化氢甲醇溶液(4M,12.57mL,5eq)中,在25℃下搅拌3小时。将反应液旋干,得到化合物1-5。 1H NMR(400MHz,CD 3OD)δ:8.17(d,J=2.8Hz,1H),7.81-7.79(m,1H),5.21(t,J=8.0Hz,1H),4.60-4.54(m,1H),4.40-4.32(m,1H),4.04(s,3H),2.96-2.80(m,2H).LCMS m/z=199.3[M+H] +
步骤5:化合物1-6的合成
在长管中依次加入5-氯吡唑并[1,5-a]嘧啶-3-羧酸乙酯(1.92g,8.52mmol,1eq),化合物1-5(2.20g,9.38mmol,1.1eq)和正丁醇(5mL),再加入N,N-二异丙基乙胺(6.61g,51.14mmol,8.91mL,6eq),所得反应液90℃搅拌3.5小时。将反应液浓缩,加入水30mL,然后用乙酸乙酯30mL萃取。分出有机相并用饱和食盐水20mL洗涤一次,然后用无水硫酸钠干燥,过滤除去干燥剂,滤液减压除去溶剂得粗品。粗品过柱纯化(石油醚:乙酸乙酯=100:0~10:1~5:1~2:3),得到化合物1-6。 1H NMR(400MHz,CDCl 3)δ:8.48(d,J=7.6Hz,1H),8.39(s,1H),7.92(d,J=3.2Hz,1H),7.58-7.55(m,1H),7.03(d,J=7.6Hz,1H),6.06(dd,J=5.2,8.8Hz,1H),4.33-4.24(m,2H),4.22-4.18(m,1H),4.01(s,3H),3.93-3.87(m,1H),2.94-2.90(m,1H),2.36-2.30(m,1H),1.27(t,J=6.8Hz,3H).LCMS m/z=388.3[M+H] +
步骤6:化合物1-7的合成
将化合物1-6(3.9g,10.07mmol,1eq)溶于乙腈(100mL)中,加入碘化钠(4.53g,30.20mmol,3eq),搅拌下滴加三甲基氯硅烷(3.28g,30.20mmol,3.83mL,3eq)。滴加完后,所得反应液在氮气保护下75℃搅 拌回流0.5小时。向反应液中加入水50mL析出固体,过滤,滤饼40℃真空干燥得到化合物1-7。 1H NMR(400MHz,CD 3OD)δ:8.69(d,J=7.6Hz,1H),8.30(s,1H),7.63-7.60(m,1H),7.38(t,J=3.2Hz,1H),7.10(d,J=5.6,1H),5.79-5.75(m,1H),4.26-4.19(m,2H),2.98–2.90(m,1H),2.35-2.29(m,1H),1.25(t,J=7.2Hz,3H).LCMS m/z=374.3[M+H] +
步骤7:化合物1-8的合成
将化合物1-7溶于甲醇(30mL)中,再加入配置好的氢氧化钠(385.68mg,9.64mmol,4eq)的水(3mL)溶液,所得反应液在60℃氮气保护下搅拌反应16小时。将反应液冷却到室温,用2M的盐酸溶液调节pH值约等于7,然后直接旋干得到化合物1-8,直接用于下一步。LCMS m/z=346.2[M+H] +
步骤8:化合物1-9的合成
将化合物1-8溶解于N,N-二甲基甲酰胺(8mL)中,然后加入N,N-二异丙基乙胺(449.36mg,3.48mmol,605.60μL,3.5eq)和O-(7-氮杂苯并三氮唑-1-基)-N,N,N,N-四甲基脲六氟膦盐(453.26mg,1.19mmol,1.2eq)搅拌0.5小时,然后加入(1-(羟甲基)环丙基氨基盐酸盐(159.59mg,1.29mmol,1.3eq,HCl),所得反应液在25℃反应3小时。将反应液倒入到80mL饱和氯化铵水溶液中,然后用二氯甲烷(60mL*3)萃取,合并有机相后用饱和食盐水(60mL*3)洗涤。有机相用适量无水硫酸钠干燥,过滤除去干燥剂,滤液浓缩得到粗品。粗品中加入2mL水,然后冻干得到化合物1-9,直接用于下一步反应。LCMS m/z=415.3[M+H] +
步骤9:化合物式(I)化合物和WX002B的合成
将化合物1-9(200mg,482.64μmol,1eq)溶解于四氢呋喃(2mL),然后加入三正丁基膦(195.29mg,965.28μmol,238.16μL,2eq),所得反应液冷却到0℃,然后加入偶氮二甲酰二哌啶(243.55mg,965.28μmol,2eq),所得反应液在25℃反应4小时。将反应液直接拉干。残留物依次用快速硅胶柱(石油醚/乙酸乙酯=0~90%)和薄层色谱硅胶板(乙酸乙酯:甲醇=10:1)进行纯化,得到化合物WX002。WX002经过SFC进行拆分(色谱柱:DAICEL CHIRALCEL OD-H(250mm*30mm,5μm);流动相:A(CO 2)和B(甲醇,含0.1%氨水);梯度:B%=32%-32%,7.5min,得到式(I)化合物和WX002B。
式(I)化合物: 1H NMR(400MHz,CDCl 3)δ:9.27(s,1H),8.42(d,J=7.6Hz,1H),8.30(s,1H),7.97(d,J=2.8Hz,1H),7.59-7.57(m,1H),6.79(d,J=8.0Hz,1H),6.11(t,J=8.4Hz,1H),4.88(d,J=10.8Hz,1H),4.53(t,J=8.0Hz,1H),.33.97-3.90(m,1H),3.84(d,J=10.8Hz,1H),3.08-3.01(m,1H),2.60-2.46(m,1H),2.39-2.33(m,1H),1.48-1.42(m,1H),0.95-0.90(m,1H),0.87-0.81(m,1H).LCMS m/z=397.3[M+H] +
SFC(色谱柱:Chiralcel OD-3,3μm,0.46cm id×10cm L;流动相:A(CO2)和B(MeOH,含0.05%异丙胺);梯度:B%=5~40%,5min;流速:4.0mL/min;波长:220nm;压力:100bar,Rt=2.14min,手性异构体过量100%。
WX002B:1H NMR(400MHz,CDCl 3)δ:9.27(s,1H),8.41(d,J=7.6Hz,1H),8.30(s,1H),7.97(d,J=2.8Hz,1H),7.59-7.56(m,1H),6.79(d,J=7.6Hz,1H),6.13-6.09(m,,1H),4.88(dd,J=10.8,1.6Hz,1H),4.53(t,J=8.0Hz,1H),3.97-3.90(m,1H),3.84(d,J=10.8Hz,1H),3.08–3.01(m,1H),2.60-2.49(m,1H),2.39-2.33(m,1H),1.48-1.42(m,1H),0.96-0.90(m,1H),0.87-0.81(m,1H).LCMS m/z=397.3[M+H]+.
SFC(色谱柱:Chiralcel OD-3,3μm,0.46cm id×10cm L;流动相:A(CO2)和B(MeOH,含0.05%异丙胺);梯度:B%=5~40%,5min;流速:4.0mL/min;波长:220nm;压力:100bar,Rt=2.49min,手性异构体过量100%。
实施例2:式(I)化合物A晶型的制备
方法1:反溶剂添加法
分别称取约15毫克的式(I)化合物置于5毫升的玻璃小瓶中,加入相应体积的正溶剂以得到澄清溶液。在磁力搅拌(转速约为1000转每分钟)下向其中逐滴加入相应反溶剂,如有固体析出,则离心分离所得固体。若加入约4毫升反溶剂后仍无固体析出,则停止滴加反溶剂,将样品转移至-20℃环境下磁力搅拌或转移至室温条件下敞口挥发,直至有固体析出。将得到的固体分离干燥后测试XRPD。实验结果如下所示:
Figure PCTCN2020111795-appb-000013
方法2:反向反溶剂添加法
分别称取约15毫克的式(I)化合物置于3毫升的玻璃小瓶中,加入相应体积的正溶剂以得到澄清溶液。在5毫升的玻璃小瓶中加入相应反溶剂并磁力搅拌(转速约为1000转每分钟),随后向其中逐滴加入样品溶液,滴加完成后无固体析出。将样品转移至室温条件下敞口挥发约两天后,固体析出。将得到的固体分离干燥后测试XRPD。实验结果如下所示:
试验编号 固体质量(mg) 正溶剂/体积(mL) 反溶剂/体积(mL) 晶型
1 15.1 二甲基甲酰胺/0.1 甲基叔丁基醚/4.0 A晶型
2 14.7 丙酮/0.4 2-丁醇/正庚烷(v/v,3:1)/2.0 A晶型
方法3:气液渗透法
分别称取约15毫克的式(I)化合物置于3毫升的玻璃小瓶中,加入相应体积的正溶剂以溶解样品,使用0.45微米孔径的聚四氟乙烯滤膜将样品溶液过滤至新的3毫升玻璃小瓶中,敞口置于预盛有4毫升相应反溶剂的20毫升玻璃瓶中。封口后置于室温条件下气液渗透至有固体析出,若六天后溶液依旧澄清,则将样品转移至室温条件下敞口挥发,直至有固体析出。将得到的固体分离干燥后测试XRPD。实验结果如下所示:
Figure PCTCN2020111795-appb-000014
方法4:缓慢挥发法
分别称取约15毫克的式(I)化合物置于3毫升的玻璃小瓶中,加入相应体积的溶剂以溶解固体,使用0.45微米孔径的聚四氟乙烯滤膜将样品溶液过滤至新的3毫升玻璃小瓶中,使用封口膜封口后于其上扎4个针孔,而后置于室温条件下缓慢挥发约三天后,固体析出。将得到的固体分离干燥后测试XRPD。实验结果如下所示:
试验编号 固体质量(mg) 溶剂/体积(mL) 晶型
1 15.5 乙酸乙酯/1.5 A晶型
2 14.9 二氯甲烷/正己烷(v/v,2:1)/1.5 A晶型
方法5:气固渗透法
分别称取约10毫克的式(I)化合物置于3毫升的玻璃小瓶中,敞口置于预盛有4毫升相应溶剂的20毫升玻璃瓶中,封口后置于室温条件下气固渗透约五天时间。若固体溶解完全,则将样品转移至室温条件下敞口挥发,直至有固体重新析出。将得到的固体分离干燥后测试XRPD。实验结果如下所示:
试验编号 固体质量(mg) 溶剂 现象 晶型
1 9.7 氯仿 室温敞口挥发约两天后固体重新析出 A晶型
2 9.6 甲苯 / A晶型
3 10.4 纯水 / A晶型
方法6:缓慢降温法
分别称取约15毫克的式(I)化合物置于1.5毫升的玻璃小瓶中,加入0.4毫升相应溶剂得到悬浊液。将该悬浊液在50℃条件下磁力搅拌(转速约为1000转每分钟)约两小时后,使用0.45微米孔径的聚四氟乙烯滤膜将样品溶液趁热过滤至新的1.5毫升玻璃小瓶中,封口后以0.1℃每分钟的速率从50℃降温至5℃,而后于5℃恒温约两天时间后无固体析出。将样品转移至室温条件下敞口挥发直至固体析出。将得到的固体分离干燥后测试XRPD。实验结果如下所示:
Figure PCTCN2020111795-appb-000015
方法7:悬浮搅拌法
称取约15.7毫克的式(I)化合物置于1.5毫升的玻璃小瓶中,加入0.4毫升混合溶剂氯仿/正庚烷(v/v,1:2),得到悬浊液。将该悬浊液在50℃条件下磁力搅拌(转速约为1000转每分钟)约两小时时间,离心分离得到固体。将得到的固体分离干燥后测试XRPD,为A晶型。
称取15.1毫克的式(I)化合物置于1.5毫升的玻璃小瓶中,加入0.4毫升纯水,得到悬浊液,在室温条件下磁力搅拌(转速约为1000转每分钟)六天。将悬浊液离心,固体置于30℃真空干燥箱中干燥过夜,得到式(I)化合物A晶型。
实施例3:式(I)化合物B晶型的制备
取适量式(I)化合物A晶型样品置于加盖的铝坩埚内,以10℃/min的升温速度在50mL/min干燥氮气的保护下将固体从室温升至180℃,而后降温至室温,得到式(I)化合物B晶型。
实施例4:式(I)化合物C晶型的制备
方法1:气固渗透法
分别称取约10毫克的式(I)化合物置于3毫升的玻璃小瓶中,敞口置于预盛有4毫升相应溶剂的20毫升玻璃瓶中,封口后置于室温条件下气固渗透约五天时间。将得到的固体分离干燥后测试XRPD。
实验结果如下所示:
试验编号 固体质量(mg) 溶剂 晶型
1 9.8 甲醇 C晶型
2 9.8 乙酸乙酯 C晶型
3 9.7 丙酮 C晶型
方法2:悬浮搅拌法
称取适量的式(I)化合物置于1.5毫升的玻璃小瓶中,加入0.4毫升相应溶剂得到悬浊液。将该悬浊液在相应温度条件下磁力搅拌(转速约为1000转每分钟)一段时间,离心分离得到固体。将得到的固体分离干燥后测试XRPD。实验结果如下所示:
试验编号 固体质量(mg) 溶剂 温度 搅拌时间 晶型
1 15.3 甲醇/水(v/v,1:3) 室温 六天 C晶型
2 14.9 1,4-二氧六环/正庚烷(v/v,1:4) 室温 六天 C晶型
3 15.4 二氯甲烷/甲基叔丁基醚(v/v,1:9) 室温 六天 C晶型
4 69.9 苯甲醚 室温 六天 C晶型
5 15.7 异丙醇 室温 六天 C晶型
6 15.1 异丙醇/水(v/v,98:2) 室温 六天 C晶型
7 14.9 异丙醇/水(v/v,94:6) 室温 六天 C晶型
8 38.4 异丙醇/水(v/v,85:15) 室温 六天 C晶型
9 15.1 乙酸异丙酯 室温 六天 C晶型
10 15.8 乙醇/水(v/v,1:3) 50℃ 三天 C晶型
11 15.3 甲基异丁基酮/正庚烷(v/v,1:4) 50℃ 三天 C晶型
12 41.3 乙酸乙酯/正戊醇(v/v,1:3) 50℃ 六天 C晶型
13 14.7 乙腈/甲基叔丁基醚(v/v,1:5) 50℃ 三天 C晶型
14 14.8 四氢呋喃/纯水(v/v,1:9) 50℃ 三天 C晶型
15 15.5 氯仿/正庚烷(v/v,1:5) 50℃ 三天 C晶型
16 16.1 甲基乙基酮/甲基叔丁基醚(v/v,1:2) 50℃ 两小时 C晶型
方法3:缓慢降温法
分别称取约15.2毫克的式(I)化合物置于1.5毫升的玻璃小瓶中,加入0.4毫升乙酸异丙酯得到悬浊液。将该悬浊液在50℃条件下磁力搅拌(转速约为1000转每分钟)约两小时后,使用0.45微米孔径的聚四氟乙烯滤膜将样品溶液趁热过滤至新的1.5毫升玻璃小瓶中,封口后以0.1℃每分钟的速率从50℃降温至5℃,而后于5℃恒温约两天时间后无固体析出。将样品转移至室温条件下敞口挥发约两天后固体析出。将得到的固体分离干燥后测试XRPD,为C晶型。
实施例5:式(I)化合物单晶X射线衍射检测分析
单晶培养过程:取约5mg样品,置于2毫升棕色样品瓶中,加入丙酮400微升,充分溶解后,室温静置,15天后,出现小块状无色晶体。收集晶体,用Bruker D8 venture衍射仪收集衍射强度数据。通过式(I)化合物的单晶数据,可以确定其绝对构型。式(I)化合物立体结构椭球图见附图10;式(I)化合物沿b轴方向的晶胞堆积图见附图11。式(I)化合物晶体结构数据和参数见表4、5、6、7和8。
表4式(I)化合物的晶体数据和结构细化
Figure PCTCN2020111795-appb-000016
表5式(I)化合物晶体的原子坐标(×10 4)和等价各向同性移位参数
Figure PCTCN2020111795-appb-000017
Figure PCTCN2020111795-appb-000018
Figure PCTCN2020111795-appb-000019
表6式(I)化合物的键长
Figure PCTCN2020111795-appb-000020
和键角[deg]
Figure PCTCN2020111795-appb-000021
Figure PCTCN2020111795-appb-000022
表7式(I)化合物的扭转角度[deg].
Figure PCTCN2020111795-appb-000023
Figure PCTCN2020111795-appb-000024
表8式(I)化合物的氢键[A和deg].
Figure PCTCN2020111795-appb-000025
实施例6:式(I)化合物C晶型固体稳定性试验
称取式(I)化合物C晶型置于玻璃样品瓶的底部,摊成薄薄一层。高温条件下放置的样品密封静置于60℃稳定性试验箱中,10天后取样测试固体纯度及晶型;高湿条件下放置的样品静置于室温92.5%RH湿度条件下(样品瓶口包裹一层封口膜,并于封口膜上均匀扎15~20个小洞),分别于5天/10天后取样测试固体纯度及晶型。试验结果见下表9所示:
表9式(I)化合物C晶型影响因素评估试验结果汇总
Figure PCTCN2020111795-appb-000026
注:未对面积小于0.05%的峰进行积分;*表示相对纯度=稳定性样品纯度/起始样品纯度×100%
称取式(I)化合物C晶型静置于40℃/75%RH及60℃/75%RH稳定性试验箱中(样品瓶口包裹一层封口膜, 并于封口膜上均匀扎15~20个小洞),于1个月、2个月、3个月时间点分别取样测试固体化学纯度(HPLC面积纯度)及晶型。试验结果见下表10所示:
表10:加速稳定性评估试验小结
Figure PCTCN2020111795-appb-000027
Area reject:0.05%
结论:式(I)化合物在高温高湿及加速条件下均具有较好的稳定性,易于成药。
实验例1:化合物对TrkA,TrkC,ALK,Ros1等激酶的抑制活性
化合物对TrkA,TrkC,ALK,Ros1等激酶的抑制活性测试在Reaction Biology Corp.公司完成。在反应缓冲液(20mM Hepes(pH 7.5),10mM MgCl2,1mM EGTA,0.02%Brij35,0.02mg/ml BSA,0.1mM Na3VO4,2mM DTT,1%DMSO)中依次加入一定浓度的底物、辅酶因子、激酶和测试化合物(10个剂量,3倍连续稀释液,2%DMSO最终浓度)并混匀,将混合物在室温下孵育20分钟,向反应混合液中加入一定浓度的33P-ATP开始反应,随后室温孵育120分钟。最后通过过滤-结合的方法来检测反应物的放射性。最终的激酶活性以测试样品中剩余的激酶活性占DMSO对照组的激酶活性的比例来表示。通过GraphPad软件拟合量效关系曲线并计算IC50。结果如表11:
表11:激酶半数抑制浓度IC 50(nM)
Figure PCTCN2020111795-appb-000028
“/”表示未检测。
结论:本发明式(I)化合物在多种激酶及其突变体中展现了较高的激酶抑制活性,展现了对多种激酶守门基团区突变(gatekeeper),溶剂前沿区突变(solvent front mutation)和DFG区突变的强烈抑制。
实验例2:化合物对细胞增殖的抑制活性
三磷酸腺苷(Adenosine Tri-Phosphate,ATP)是自然界中各种生命活动中共用的能量载体,是能量储存和转移的最小单位。CellTiter-Glo TM活细胞检测试剂盒采用萤光素酶作检测物,发光过程中萤光素酶需要ATP的参与。向细胞培养基中加入CellTiter-Glo TM试剂,测量发光值,光信号和体系中ATP量成正比,而ATP又和活细胞数正相关。因此通过使用CellTiter-Glo试剂盒检测ATP含量,可以检测出细胞的增殖情况。本 测试中,细胞系为Ba/F3 LMNA-NTRK1-WT稳转细胞株,5000细胞数量/孔。
IC 50测定过程:
1细胞培养和接种
a)收获处于对数生长期的细胞并采用血小板计数器进行细胞计数。用台盼蓝排斥法检测细胞活力,确保细胞活力在90%以上。
b)调整细胞浓度;分别添加90μL细胞悬液至96孔板中。
c)将96孔板中的细胞置于37℃、5%CO 2、95%湿度条件下培养过夜。
2药物稀释和加药
a)配制10倍药物溶液,最高浓度为10μM,9个浓度,3倍稀释(参考附录I),在接种有细胞的96孔板中每孔加入10μL药物溶液,每个药物浓度设置三个复孔。
b)将已加药的96孔板中的细胞置于37℃、5%CO 2、95%湿度条件下继续培养72小时,之后进行CTG(细胞增殖情况)分析。
3终点读板
a)融化CellTiter-Glo TM试剂并平衡细胞板至室温30分钟。
b)每孔加入等体积的CellTiter-Glo TM试剂。
c)在定轨摇床上振动5分钟使细胞裂解。
d)将细胞板放置于室温20分钟以稳定冷光信号。
e)读取冷光值。
4数据处理
使用GraphPad Prism 5.0软件分析数据,利用非线性S曲线回归来拟合数据得出剂量-效应曲线,并由此计算IC 50值,数据见表12。
表12细胞半数抑制浓度IC 50(nM)
Figure PCTCN2020111795-appb-000029
结论:本发明式(I)化合物对Ba/F3 LMNA-NTRK1-WT稳转细胞株展现了较高的细胞增殖抑制活性。同时,对于Ba/F3 LMNA-NTRK1-F589L,Ba/F3 LMNA-NTRK1-G595R,BaF3 ETV6-NTRK3-G623R,Ba/F3 SLC34A2-ROS1-WT和Ba/F3 SLC34A2-ROS1-G2032R稳转细胞株展现了较高的细胞增殖抑制活性。
实验例3:化合物在小鼠体内的cassette药代动力学测试
实验目的:以7-9周雄性CD-1小鼠为受试动物,应用LC/MS/MS法测定单次静脉注射(IV)及灌胃(PO) cassette给予式(I)化合物,TPX0005,Entrectinib(RXDX-101)和Larotrectinib(LOXO-101)后,不同时刻血浆和特定组织中式(I)化合物,TPX0005,Entrectinib(RXDX-101)和Larotrectinib(LOXO-101)的药物浓度,研究本发明的化合物在小鼠体内的药代动力学行为,评价其药动学特征。
药物配制:式(I)化合物,TPX0005,Entrectinib(RXDX-101)和Larotrectinib(LOXO-101)均以5%DMSO+10%solutol+85%水为溶媒配成澄清溶液,用于IV(静注)和PO(灌胃)组给药。每个化合物的给药剂量为:IV 1mg/kg,给药体积为2mL/kg;PO剂量为3mg/kg,给药体积为3mL/kg。
药代动力学参数结果见表11:
表11小鼠体内cassette药代动力学测试结果
Figure PCTCN2020111795-appb-000030
“ND”表示未检测到。
结论:本发明式(I)化合物在小鼠中药代动力学性质较好。相比TPX0005,Entrectinib(RXDX-101)和Larotrectinib(LOXO-101),相同给药剂量下,口服给药后本发明式(I)化合物的系统总暴露量,给药0.5h和2h后,本发明式(I)化合物在脑中和脑脊液CSF中的暴露量均显著高于TPX0005,Entrectinib(RXDX-101)和Larotrectinib(LOXO-101)的相应暴露量。
实验例4:化合物在小鼠体内的药代动力学测试
实验目的:以7-9周雄性CD-1小鼠为受试动物,应用LC/MS/MS法测定单次静脉注射(IV)及灌胃(PO)给予化合物后,不同时刻血浆中化合物的药物浓度,研究本发明的化合物在小鼠体内的药代动力学行为,评价其药动学特征。
药物配制:化合物均以5%DMSO+10%solutol+85%水为溶媒配成澄清溶液,用于IV(静注)和PO(灌胃) 组给药。每个化合物的给药剂量为:IV 3mg/kg;PO剂量为10mg/kg。
药代动力学参数结果见表12。
表12小鼠体内药代动力学测试结果
Figure PCTCN2020111795-appb-000031
结论:相同给药剂量下,本发明化合物口服给药后的系统总暴露量、达峰浓度和生物利用度显著优于Larotrectinib(LOXO-101)和LOXO-195,展现优异的药代动力学特性。
实验例5:化合物在小鼠体内的药效测试
实验目的:评价式(I)化合物等受试药在人结肠癌细胞系KM12细胞皮下异种移植瘤在BALB/c小鼠模型上的体内药效。
药物配制:化合物均以5%DMSO+10%solutol+85%水为溶媒配成澄清溶液,用于PO(灌胃)组给药。
肿瘤测量:每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5×a×b 2,a和b分别表示肿瘤的长径和短径。化合物的抑瘤疗效用TGI(%)评价。TGI(%),反映肿瘤生长抑制率。TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积))/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。结果见图12。
统计分析:统计分析基于试验结束时相对肿瘤体积和肿瘤重量运用SPSS软件进行分析。多组间比较用one-way ANOVA进行分析,如果方差齐(F值无显著性差异),应用Tukey’s法进行分析,如果方差不齐(F值有显著性差异),应用Games-Howell法进行检验。P<0.05认为有显著性差异。
实验结果:在人结肠癌KM12裸鼠移植瘤模型中,受试物式(I)化合物在低至3mg/kg的给药剂量下即具有显著抗肿瘤作用,并且抗肿瘤作用具有量效依赖的趋势(高剂量组与低剂量组相比p<0.05)。式(I)化合物在3mg/kg给药剂量下的抗肿瘤效果(T/C=33.18%,TGI=71.23%)与化合物LOXO-101的高剂量组(60mg/kg)抗肿瘤效果(T/C=34.20%,TGI=69.73%)相当(P>0.05)。式(I)化合物在15mg/kg给药剂量下的抗肿瘤效果(T/C=15.63%,TGI=88.61%)优于LOXO-101高剂量组(60mg/kg)(T/C=34.20%,TGI=69.73%),和在研化合物TPX-0005的高剂量组(3mg/kg)的抗肿瘤效果(T/C=16.80%,TGI=87.46%)相当(P>0.05)。
实验例6:化合物在小鼠体内的药效测试
实验目的:评价式(I)化合物等受试药在人肺癌LU-01-0414皮下异种移植瘤在BALB/c小鼠模型上的体 内药效。
药物配制:化合物均以5%DMSO+10%solutol+85%水为溶媒配成澄清溶液,用于PO(灌胃)组给药。
肿瘤测量:每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5×a×b 2,a和b分别表示肿瘤的长径和短径。化合物的抑瘤疗效用TGI(%)评价。TGI(%),反映肿瘤生长抑制率。TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积))/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。结果见图13。
统计分析:统计分析基于试验结束时相对肿瘤体积和肿瘤重量运用SPSS软件进行分析。多组间比较用one-way ANOVA进行分析,如果方差齐(F值无显著性差异),应用Tukey’s法进行分析,如果方差不齐(F值有显著性差异),应用Games-Howell法进行检验。P<0.05认为有显著性差异。
实验结果:在人肺癌LU-01-0414皮下异种移植瘤上给药14天时,式(I)化合物在3、15和30mg/kg BID三个浓度下均有明显的抑制肿瘤生长的作用,T/C分别为9.57%、3.07%和1.87%,TGI分别为118.02%、126.88%和128.36%,且与溶剂对照组相比均为P<0.0001。Crizotinib在30、50mg/kg QD剂量组T/C=10.32%、4.89%,TGI=117.67%、124.09%,与溶剂对照相比p<0.0001,同样具有显著的抑瘤作用。上述结果提示在人LU-01-0414肺癌裸鼠移植瘤模型中,式(I)化合物在低至3mg/kg的剂量即具有显著抗肿瘤作用,并且式(I)化合物在3mg/kg剂量下与Crizotinib在30mg/kg剂量的抗肿瘤作用相当(p>0.05)。

Claims (29)

  1. 式(I)化合物的A晶型,
    Figure PCTCN2020111795-appb-100001
    其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.12°±0.20°,19.03°±0.20°,19.74°±0.20°。
  2. 根据权利要求1所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.12±0.20°,17.74±0.20°,18.18±0.20°,19.03±0.20°,19.74±0.20°,20.75±0.20°,24.60±0.20°,28.21±0.20°。
  3. 根据权利要求2所述的A晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射:10.115°,17.740°,18.178°,19.033°,19.738°,20.749°,21.609°,22.411°,23.345°,24.160°,24.597°,25.787°,28.211°,30.613°,31.133°,36.782°。
  4. 根据权利要求3所述的A晶型,其XRPD图谱如图1所示。
  5. 根据权利要求1~4任意一项所述的A晶型,其差示扫描量热曲线在171.4±3.0℃有一个吸热峰的起始点,在221.1±3.0℃有另一个吸热峰的起始点;在179.9±3.0℃有一个放热峰的峰值。
  6. 根据权利要求5所述的A晶型,其DSC图谱如图2所示。
  7. 根据权利要求1~4任意一项所述的A晶型,其热重分析曲线在200.0℃±3.0℃时失重达2.26%。
  8. 根据权利要求7所述的A晶型,其TGA图谱如图3所示。
  9. 式(I)化合物的B晶型,
    Figure PCTCN2020111795-appb-100002
    其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.10±0.20°,20.42±0.20°,22.21±0.20°。
  10. 根据权利要求9所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:10.10±0.20°,14.04±0.20°,17.48±0.20°,18.20±0.20°,20.42±0.20°,22.21±0.20°,23.83±0.20°,27.49±0.20°。
  11. 根据权利要求10所述的B晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射:6.694°,8.689°,10.103°,11.085°,13.418°,14.041°,16.607°,17.483°,17.676°,18.200°,18.861°,19.671°,20.419°,20.865°, 22.207°,23.422°,23.833°,24.327°,25.017°,25.421°,26.310°,26.947°,27.489°,28.202°,28.544°,29.351°,30.204°,30.573°,31.245°,31.617°,32.244°,33.505°,34.046°,36.059°,37.310°,38.534°。
  12. 根据权利要求11所述的B晶型,其XRPD图谱如图4所示。
  13. 根据权利要求9~12任意一项所述的B晶型,其差示扫描量热曲线在220.9±3.0℃有一个吸热峰的起始点。
  14. 根据权利要求13所述的B晶型,其DSC图谱如图5所示。
  15. 根据权利要求9~12任意一项所述的B晶型,其热重分析曲线在200.0℃±3.0℃时失重达1.16%。
  16. 根据权利要求15所述的B晶型,其TGA图谱如图6所示。
  17. 式(I)化合物的C晶型,
    Figure PCTCN2020111795-appb-100003
    其特征在于其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.89°±0.20°,13.37°±0.20°,20.98°±0.20°。
  18. 根据权利要求17所述的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射峰:8.89±0.20°,12.86±0.20°,13.37±0.20°,14.71±0.20°,18.58±0.20°,20.98±0.20°,21.85±0.20°,26.85±0.20°。
  19. 根据权利要求18所述的C晶型,其X射线粉末衍射图谱在下列2θ角处具有特征衍射:8.889°,12.862°,13.373°,14.706°,17.376°,17.950°,18.584°,20.146°,20.640°,20.977°,21.497°,21.847°,22.912°,25.959°,26.853°。
  20. 根据权利要求19所述的C晶型,其XRPD图谱如图7所示。
  21. 根据权利要求17~20任意一项所述的C晶型,其差示扫描量热曲线在215.8±3.0℃有一个吸热峰的起始点。
  22. 根据权利要求21所述的C晶型,其DSC图谱如图8所示。
  23. 根据权利要求17~20任意一项所述的C晶型,其热重分析曲线在200.0℃±3.0℃时失重达0.94%。
  24. 根据权利要求23所述的C晶型,其TGA图谱如图9所示。
  25. 式(Ⅰ)化合物C晶型的制备方法,包含气固渗透法、悬浮搅拌法和缓慢降温法。
  26. 根据权利要求25所述的制备方法,其中,气固渗透法包含:
    1)将式(I)化合物置于玻璃小瓶中;
    2)把玻璃小瓶放置于溶剂的氛围后密封,让溶剂与固体诱导析晶,
    其中,
    溶剂为甲醇、乙酸乙酯或丙酮。
  27. 根据权利要求25所述的制备方法,其中,悬浮搅拌法包含:
    1)式(I)化合物在溶剂中配制成悬浊液;
    2)将悬浊液在室温或50℃打浆;
    其中,
    溶剂为甲醇/水(v/v,1:3),1,4-二氧六环/正庚烷(v/v,1:4),二氯甲烷/甲基叔丁基醚(v/v,1:9),苯甲醚,异丙醇,异丙醇/水(v/v,98:2),异丙醇/水(v/v,94:6),异丙醇/水(v/v,85:15),乙酸异丙酯,乙醇/水(v/v,1:3),甲基异丁基酮/正庚烷(v/v,1:4),乙酸乙酯/正戊醇(v/v,1:3),乙腈/甲基叔丁基醚(v/v,1:5),四氢呋喃/纯水(v/v,1:9),氯仿/正庚烷(v/v,1:5),甲基乙基酮/甲基叔丁基醚(v/v,1:2);
    打浆时间为2小时~144小时。
  28. 根据权利要求25所述的制备方法,其中,缓慢降温法包含:
    1)50℃下,式(I)化合物在溶剂中配制成悬浊液;
    2)将悬浊液搅拌2小时后,过滤,收集澄清滤液;
    3)澄清溶液以0.1℃/分钟从50℃降温至5℃;
    其中,
    溶剂为乙酸异丙酯。
  29. 根据权利要求1~8任意一项所述A晶型或权利要求9~16任意一项所述B晶型或权利要求17~24任意一项所述C晶型或根据权利要求25~28的方法制备得到的晶型在制备治疗实体瘤药物中的应用。
PCT/CN2020/111795 2019-08-28 2020-08-27 一种致癌性融合激酶抑制剂的晶型及其应用 WO2021037156A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20856096.1A EP4023648A4 (en) 2019-08-28 2020-08-27 CARCINOGENIC FUSIONED KINASE HIBITOR CRYSTAL AND APPLICATIONS THEREOF
US17/638,358 US20220289765A1 (en) 2019-08-28 2020-08-27 Crystal of carcinogenic fused kinase inhibitor and applications thereof
CN202080058668.5A CN114258394B (zh) 2019-08-28 2020-08-27 一种致癌性融合激酶抑制剂的晶型及其应用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910804019 2019-08-28
CN201910804019.4 2019-08-28
CN201910883622 2019-09-18
CN201910883622.6 2019-09-18

Publications (1)

Publication Number Publication Date
WO2021037156A1 true WO2021037156A1 (zh) 2021-03-04

Family

ID=74684639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111795 WO2021037156A1 (zh) 2019-08-28 2020-08-27 一种致癌性融合激酶抑制剂的晶型及其应用

Country Status (4)

Country Link
US (1) US20220289765A1 (zh)
EP (1) EP4023648A4 (zh)
CN (1) CN114258394B (zh)
WO (1) WO2021037156A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101679429A (zh) * 2007-04-18 2010-03-24 阿斯利康(瑞典)有限公司 5-氨基吡唑-3-基-3h-咪唑并[4,5-b]吡啶衍生物及其治疗癌的用途
CN102971322A (zh) * 2010-05-20 2013-03-13 阵列生物制药公司 作为trk激酶抑制剂的大环化合物
CN107207514A (zh) * 2014-12-15 2017-09-26 康联制药有限公司 稠环杂芳基化合物及其作为trk抑制剂的用途
WO2019165967A1 (zh) * 2018-02-28 2019-09-06 南京明德新药研发有限公司 吡唑并嘧啶衍生物及其用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101679429A (zh) * 2007-04-18 2010-03-24 阿斯利康(瑞典)有限公司 5-氨基吡唑-3-基-3h-咪唑并[4,5-b]吡啶衍生物及其治疗癌的用途
CN102971322A (zh) * 2010-05-20 2013-03-13 阵列生物制药公司 作为trk激酶抑制剂的大环化合物
CN107207514A (zh) * 2014-12-15 2017-09-26 康联制药有限公司 稠环杂芳基化合物及其作为trk抑制剂的用途
WO2019165967A1 (zh) * 2018-02-28 2019-09-06 南京明德新药研发有限公司 吡唑并嘧啶衍生物及其用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4023648A4

Also Published As

Publication number Publication date
EP4023648A1 (en) 2022-07-06
US20220289765A1 (en) 2022-09-15
CN114258394B (zh) 2024-04-23
CN114258394A (zh) 2022-03-29
EP4023648A4 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
ES2502941T3 (es) Método de preparación de compuestos de amida de dihidroindeno, las composiciones farmacéuticas que contienen dichos compuestos y el uso como inhibidor de proteína quinasas
CN109516999B (zh) 用作蛋白质激酶调节剂的化合物及其应用
CN108558835B (zh) 一种氘代azd9291的晶型、制备方法及用途
JP2021517902A (ja) 置換ピロロトリアジン系化合物およびその医薬組成物並びにそれらの使用
TW201534601A (zh) 替匹拉希(Tipiracil)鹽酸鹽之穩定形結晶及其結晶化方法
WO2016090257A1 (en) Salts and crystalline forms of 6-acetyl-8-cyclopentyl-5-methyl-2((5-(piperazin-1-yl)pyridin-2-yl)amino)pyrido[2,3-d] pyrimidin-7(8h)-one (palbociclib)
WO2019228171A1 (zh) 一种稠环嘧啶类化合物的盐、晶型及其制备方法和应用
BR112020026052A2 (pt) forma de cristal do composto para a inibição da atividade de cdk4/6 e seu uso
CN109593102A (zh) 一种氘代二苯氨基嘧啶类化合物的制备方法及其晶型
WO2021129841A1 (zh) 用作ret激酶抑制剂的化合物及其应用
WO2021037156A1 (zh) 一种致癌性融合激酶抑制剂的晶型及其应用
CN117247382A (zh) 吡啶并嘧啶酮化合物的晶型
WO2022171117A1 (zh) 含氮稠杂环化合物的盐、晶型及其制备方法、药物组合物和用途
EP3941472B1 (en) Crystalline and amorphous forms of-(5-((4-ethylpiperazin-1-yl)methyl)pyridine-2-yl)-5-fluoro-4-(3-isopropyl-2-methyl-2 &lt;ns1:i&gt;h&lt;/ns1:i&gt;?-indazol-5-yl)pyrimidin-2-amine and its salts, and preparation methods and therapeutic uses thereof
EP3954693A1 (en) Crystal form of egfr inhibitor and preparation method therefor
TWI535724B (zh) 埃克替尼磷酸鹽的新晶型及其用途
WO2019149090A1 (zh) 一种尿酸转运体1抑制剂的晶体及其制备方法和用途
CN112480109A (zh) 吡啶并[2,3-b]吡嗪-3(4H)-酮类衍生物及其用途
WO2020221358A1 (zh) Wee1抑制剂化合物的晶型及其应用
WO2017152858A1 (zh) 色瑞替尼的晶型及其制备方法
TWI812259B (zh) Raf激酶抑制劑的晶型及其製備方法
WO2022242688A1 (zh) 一种含氰基取代的大环类化合物的晶型及其制备方法
WO2022247772A1 (zh) 一种含氧杂环化合物的晶型、其制备方法及应用
CN114075135B (zh) 含邻氨基吡啶炔基的化合物的盐及其制备方法和应用
WO2024094016A1 (zh) 一种二噁烷并喹啉类化合物的盐、其晶型以及它们的制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020856096

Country of ref document: EP

Effective date: 20220328