WO2021036880A1 - 跳频频点的共享方法、回收方法、控制器、基站系统及计算机可读存储介质 - Google Patents

跳频频点的共享方法、回收方法、控制器、基站系统及计算机可读存储介质 Download PDF

Info

Publication number
WO2021036880A1
WO2021036880A1 PCT/CN2020/109991 CN2020109991W WO2021036880A1 WO 2021036880 A1 WO2021036880 A1 WO 2021036880A1 CN 2020109991 W CN2020109991 W CN 2020109991W WO 2021036880 A1 WO2021036880 A1 WO 2021036880A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
frequency hopping
shared
carrier frequency
points
Prior art date
Application number
PCT/CN2020/109991
Other languages
English (en)
French (fr)
Inventor
杨以琴
赵峰丽
李富艳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to ES20858955T priority Critical patent/ES2953873T3/es
Priority to EP20858955.6A priority patent/EP3863183B1/en
Publication of WO2021036880A1 publication Critical patent/WO2021036880A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]

Definitions

  • the embodiments of the present application relate to, but are not limited to, the field of communication technology, and in particular to a method for sharing frequency hopping frequency points, a recovery method, a controller, a base station system, and a computer-readable storage medium.
  • Spectrum resources are key resources for GSM (Global System for Mobile Communication) networks and LTE (Long Term Evolution) networks.
  • GSM Global System for Mobile Communication
  • LTE Long Term Evolution
  • Some frequency points of the GSM network are configured within the carrier transmission bandwidth of the LTE network, which overlap with the spectrum resource block of the LTE network.
  • the system allows only one system to be used simultaneously within a certain area according to actual use needs. Utilizing the tidal effect of traffic, the LTE network and the GSM network can share overlapping frequency bands, but not use them at the same time, which can improve the utilization of spectrum resources.
  • Frequency hopping technology can improve the anti-interference and anti-fading performance of the GSM network, greatly improve the call quality, enhance the network capability of tight multiplexing, and increase the system capacity. Therefore, it is widely used in GSM networks.
  • the existing spectrum sharing technology cannot well support the frequency hopping function.
  • the frequency hopping carrier frequency uses the frequency points belonging to the shared spectrum, due to the complexity of the frequency hopping system, these frequency hopping frequency points cannot be shared with LTE. Being fixedly occupied by GSM will greatly reduce the number of frequency points that can be shared, resulting in a significant drop in the utilization of spectrum resources.
  • the embodiments of the present application provide a method for sharing frequency hopping frequency points, a recovery method, a controller, a base station system, and a computer-readable storage medium.
  • the embodiment of the present application provides a method for sharing frequency hopping frequency points, which includes: prioritizing the shared frequency points in the frequency hopping system from low to high according to the distance from the center frequency point of the LTE network from near to far; The shared frequency point is allocated to the carrier frequency in the frequency hopping system; when it is detected that there is an idle carrier frequency in the frequency hopping system, the shared frequency points with lower priority than the shared frequency point in the idle carrier frequency are shared conditions Next, the shared frequency points in the idle carrier frequency are shared for use by the LTE network.
  • the embodiment of the present application provides a method for recovering frequency hopping frequency points, which includes: in the case that the frequency hopping system has shared the shared frequency points to the LTE network, recovering the shared frequency points and reclaiming the shared frequency points according to the situation of service occupancy. The shared frequency point is added to the frequency hopping system again.
  • an embodiment of the present application provides a controller, including: a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the computer program is executed when the frequency hopping point is shared. Method; or the recovery method of the frequency hopping frequency point.
  • an embodiment of the present application provides a base station system.
  • the base station system and the controller exchange information, including: receiving frequency hopping attribute setting information sent by the controller;
  • the attribute setting information is to set a new frequency hopping attribute for the carrier frequency under the base station system; and the response information that the frequency hopping attribute setting is effective is sent to the controller.
  • an embodiment of the present application provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to: execute the frequency hopping frequency point sharing method; or execute the frequency hopping frequency point sharing method; Point of recycling method.
  • Figure 1 is a diagram of a typical GSM network and LTE network spectrum resource sharing configuration scenario
  • FIG. 2 is a flowchart of a method for sharing frequency hopping frequency points provided by an embodiment of the present application
  • FIG. 3 is a flowchart of a method for sharing frequency hopping frequency points provided by another embodiment of the present application.
  • Fig. 4 is a schematic diagram of a frequency hopping system provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of the method of not modifying the frequency hopping system in the sharing method provided by an embodiment of the present application
  • FIG. 6 is a flowchart of modifying the frequency hopping system mode in the sharing method provided by another embodiment of the present application.
  • FIG. 7 is a flowchart of modifying carrier frequency hopping attributes in a sharing method provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of modifying carrier frequency hopping attributes in a sharing method provided by another embodiment of the present application.
  • FIG. 9 is a flowchart of transferring or releasing a service on a time slot p of a non-idle carrier frequency in a sharing method provided by another embodiment of the present application.
  • FIG. 10 is a flowchart of a method for recovering frequency hopping frequency points according to an embodiment of the present application.
  • FIG. 11 is a flowchart of a method for recovering frequency hopping frequency points according to another embodiment of the present application.
  • FIG. 12 is a flowchart of modifying carrier frequency hopping attributes in the recovery method provided by an embodiment of the present application.
  • FIG. 13 is a flowchart of modifying carrier frequency hopping attributes in a recovery method provided by another embodiment of the present application.
  • FIG. 14 is a flowchart of transferring or releasing services on timeslot p of each carrier frequency in the recovery method provided by an embodiment of the present application;
  • FIG. 15 is a schematic diagram of a controller provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a connection between a base station system and a controller provided by an embodiment of the present application.
  • Some frequency points of the GSM network are configured within the carrier transmission bandwidth of the LTE network, which overlaps with the spectrum resource block of the LTE network.
  • the system allows only one system to be used simultaneously within a certain area according to actual use needs. Utilizing the tidal effect of traffic, the LTE network and the GSM network can share overlapping frequency bands, but cannot use them at the same time, which can improve the utilization of spectrum resources.
  • FIG. 1 is a diagram of a typical GSM network and LTE network spectrum resource sharing configuration scenario.
  • the proprietary spectrum of the LTE network is in the middle, and the proprietary spectrum of the GSM network is set on both sides, and the overlapping part is shared spectrum.
  • Both GSM and LTE networks can be scheduled for use, and the GSM network is used first.
  • the LTE network can only be used when the GSM network continuously does not use the overlapping part of the frequency point from the center frequency point of the LTE network.
  • the existing spectrum sharing technology is to modify the wireless resource allocation method of the GSM network, giving priority to the exclusive spectrum of the GSM network, followed by the shared spectrum, and the shared spectrum is selected in the order of distance from the center frequency of the LTE network from far to near. Frequency points are allocated for resource allocation, so as to vacate as many shared frequency points as possible for use by the LTE network, so as to improve the utilization of spectrum resources.
  • Frequency hopping technology can improve the anti-interference and anti-fading performance of the GSM network, greatly improve the call quality, enhance the network capability of tight multiplexing, and increase the system capacity. Therefore, it is widely used in GSM networks.
  • the existing spectrum sharing technology cannot well support the frequency hopping function.
  • the frequency hopping carrier frequency uses the frequency points belonging to the shared spectrum, due to the complexity of the frequency hopping system, these frequency hopping frequency points cannot be shared with LTE. Being fixedly occupied by GSM will greatly reduce the number of frequency points that can be shared, resulting in a significant drop in the utilization of spectrum resources.
  • the embodiments of the present application provide a method for sharing frequency hopping frequency points, a recovery method, a controller, a base station system, and a storage medium.
  • the shared frequency points in the frequency hopping system Priorities are arranged from low to high; the shared frequency points are allocated to the carrier frequencies in the frequency hopping system; when there is an idle carrier frequency that meets the sharing conditions, the shared frequency point of the idle carrier frequency has priority
  • the low-level shared frequency points have been shared, and the shared frequency points of the idle carrier frequency are shared for use by the LTE network; the shared frequency points shared by the LTE network are recovered to the frequency hopping system according to the service occupation.
  • the shared frequency points in the frequency hopping system can be shared for use by the LTE network, and the shared frequency points can be recovered when the GSM network business is busy, which not only ensures the function of the frequency hopping system, but also improves This improves the utilization of spectrum resources.
  • An embodiment of the present application provides a method for sharing frequency hopping frequency points.
  • One of the embodiments includes but is not limited to the following steps:
  • Step S1000 Prioritize the shared frequency points in the frequency hopping system from low to high according to the distance from the center frequency point of the LTE network from near to far.
  • the dedicated spectrum of the LTE network is located in the middle, the dedicated spectrum of the GSM network is located on both sides, and the overlapping part is the shared spectrum.
  • the center frequency of the LTE network will be farther away.
  • the frequency point is set to a higher priority, and the purpose is to give priority to the use of shared frequency points with high priority through the frequency hopping system of the GSM network, so as to release the shared frequency points close to the exclusive spectrum of the LTE network as much as possible for supply
  • the LTE network is used to improve the utilization of spectrum resources.
  • step S2000 the shared frequency point is allocated to the carrier frequency in the frequency hopping system.
  • allocating the shared frequency points to the carrier frequencies in the frequency hopping system includes: the shared frequency points are assigned to the mobile allocation offset MAIO in descending order of priority from low to high. Carrier frequency. MAIO (mobile Allocation Indication Offset) is used to determine the starting frequency point. The purpose of using MAIO is to prevent multiple channels from competing for the same frequency point at the same time. Therefore, for this purpose, under the same frequency hopping system, The MAIO used by each carrier frequency must be different.
  • the shared frequency points are shared in the order from near to far away from the center frequency point of the LTE network, after the frequency points are allocated according to the above rules, the carrier frequency in the frequency hopping system will increase according to the corresponding MAIO.
  • the sequence is vacant to ensure stable operation after modifying the frequency hopping system in the subsequent steps.
  • FIG. 4 is a frequency hopping system with 3 carrier frequencies allocated with 3 shared frequency points f1, f2, and f3.
  • the three carrier frequencies in the frequency hopping system-carrier frequency 1, carrier frequency 2, and carrier frequency 3, the corresponding MAIO used are 0, 1, 2.
  • the priority of the three shared frequency points is f3, f2, f1, the shared frequency point f1 is allocated to carrier frequency 1, the shared frequency point f2 is allocated to carrier frequency 2, and the shared frequency point f3 is allocated to carrier frequency 3.
  • Step S3000 When it is detected that there is an idle carrier frequency in the frequency hopping system, and if the frequency points with a lower priority than the shared frequency points in the idle carrier frequency are all shared, the shared frequency points in the idle carrier frequency are shared. Point sharing for LTE network use.
  • step S3000 when it is detected that there is an idle carrier frequency in the frequency hopping system, and the shared frequency points with a lower priority than the shared frequency points of the idle carrier frequency have been shared, the shared frequency points in the idle carrier frequency are shared.
  • Point sharing is used by the LTE network. The purpose of this setting is that the LTE network can use a continuous frequency band.
  • step S3000 when an idle carrier frequency is detected in the frequency hopping system, the frequency points with a lower priority than the shared frequency points in the idle carrier frequency are all shared , And when the service load of the remaining non-idle carrier frequency is less than the preset service load threshold, the shared frequency point in the idle carrier frequency is shared for use by the LTE network.
  • This setting ensures that the frequency bands that can be used by the LTE network are continuous on the one hand, and on the other hand, frequency sharing is performed only when the frequency hopping system is sufficient to cope with the current traffic sharing conditions to ensure the stable service performance of the GSM network.
  • step S3000 in actual operation, a method of not modifying the frequency hopping system or modifying the frequency hopping system can be selected according to the actual application scenario, so as to realize the sharing of the frequency points of the idle carrier frequency to the LTE network.
  • Step S3110 waiting for all services on all carrier frequencies in the frequency hopping system to be released;
  • step S3120 all the shared frequency points in the frequency hopping system are released for use by the LTE network.
  • This method is simple to implement, the frequency hopping frequency points can be shared, and there is little modification to the existing system, but the sharing speed is slow, and the frequency hopping spectrum sharing benefit is low.
  • Step S3210 modifying the frequency hopping attribute of the carrier frequency in the frequency hopping system
  • step S3220 the shared frequency point of the currently idle carrier frequency is released for use by the LTE network.
  • step S3210 includes the following sub-steps:
  • Step S3211 set the initial value of p to 0;
  • Step S3212 block the time slot p of the non-idle carrier frequency
  • Step S3213 transfer or release the service on the time slot p of the non-idle carrier frequency
  • Step S3214 Set the frequency hopping attribute of the time slot p of the current idle carrier frequency to no frequency hopping;
  • Step S3215 setting the frequency hopping attribute of the time slot p of the non-idle carrier frequency to use the remaining frequency hopping frequency points except for the shared frequency point to be released for the current idle carrier frequency for frequency hopping;
  • Step S3216 unblock the time slot p of the non-idle carrier frequency
  • Step S3217, p p+1.
  • Service data transfer or release the service on time slot 0 of non-idle carrier frequency; set time slot 0 of carrier frequency 3 to no frequency hopping; set time slot 0 of carrier frequency 1 and carrier frequency 2 to use except carrier frequency 3
  • Frequency hopping frequency points other than the shared frequency point f3 to be released that is, use frequency points f1 and f2; unblock the time slot 0 of carrier frequency 1 and carrier frequency 2, and make the time slot of carrier frequency 1 and carrier frequency 2.
  • 0 is activated again; thus, the frequency hopping attributes of time slot 0 of carrier frequency 1, carrier frequency 2, and carrier frequency 3 in the frequency hopping system are modified, and the carrier frequency 1, carrier frequency 2, and carrier frequency are sequentially adjusted based on the foregoing steps.
  • the frequency hopping attributes of time slot 1 to time slot 7 in carrier frequency 3 are modified.
  • step S3210 further includes:
  • Step 3218 Send frequency hopping attribute setting information to the base station system
  • Step 3219 Receive response information sent by the base station system that the frequency hopping attribute setting is effective.
  • the base station controller will initiate data synchronization to the base station system and continuously send multiple frequency hopping attribute settings to the base station system Information, after the base station system receives the frequency hopping attribute setting information sent by the base station controller, it sets a new frequency hopping attribute for the time slot corresponding to the carrier frequency under it, and returns response information that the frequency hopping attribute setting is effective to the base station controller; The base station controller receives the response information sent by the base station system that the frequency hopping attribute setting is effective, and then unblocks the time slot p of the non-idle carrier frequency.
  • the base station controller initiates data synchronization to the base station system, and the base station system performs a one-time data synchronization.
  • transferring or releasing the service on the time slot p of the non-idle carrier frequency includes:
  • Step S32131 triggering the transfer of the service on the time slot p of the non-idle carrier frequency
  • step S32132 a delay timer is set, and when the delay timer expires, services that have not been transferred in the non-idle carrier frequency are released.
  • the delay timer is used to limit the service transfer time on the time slot p of the non-idle carrier frequency.
  • the delay timer expires and there are still uncompleted service transfers, the service is forced to be released. Ensure that frequency hopping sharing can proceed smoothly.
  • the modification process when an abnormality occurs during the modification process or there are configuration changes related to frequency hopping attributes and sharing, the modification process is terminated and the attributes of the frequency hopping system before modification are restored to ensure normal service functions of the frequency hopping system.
  • terminating the modification process and restoring the unmodified attributes of the frequency hopping system further includes marking the shared frequency point to be released by the current idle carrier frequency as being occupied by the GSM network, and waiting for subsequent re-initiation of sharing.
  • the modification process is terminated to ensure that the service function of the frequency hopping system is normal.
  • the embodiments of the present application provide a method for recovering frequency hopping frequency points.
  • the frequency hopping system has shared the shared frequency points to the LTE network through the aforementioned sharing method, the shared frequency points are recovered according to the situation of service occupancy. And re-add the recovered shared frequency points to the frequency hopping system.
  • the shared frequency points shared to the LTE network are recovered to the frequency hopping system through the following steps:
  • Step S5000 informing the LTE network that all shared frequency points need to be recovered
  • Step S5100 recover all shared frequency points to the frequency hopping system
  • Step S5200 Reallocate the recovered shared frequency points to the carrier frequency use of the frequency hopping system.
  • the shared frequency points shared to the LTE network are recovered to the frequency hopping system through the following steps:
  • step S5300 the LTE network is notified of the shared frequency points that need to be recycled.
  • Step S5400 recover some or all of the shared frequency points to the frequency hopping system
  • Step S5500 Modify the frequency hopping attribute of the carrier frequency in the frequency hopping system, and reallocate the recovered shared frequency points to the carrier frequency use of the frequency hopping system.
  • step S5500 may include the following steps:
  • Step S5510 set the initial value of p to 0;
  • Step S5520 block the time slot p of each carrier frequency
  • Step S5530 transfer or release the service on the time slot p of each carrier frequency
  • Step S5540 adding the recovered shared frequency point to the time slot p of each carrier frequency in the frequency hopping system
  • Step S5550 unblock the time slot p of each carrier frequency
  • the method before unblocking the timeslot p of each carrier frequency, the method further includes:
  • Step S5570 sending frequency hopping attribute setting information to the base station system
  • Step S5580 Receive response information sent by the base station system that the frequency hopping attribute setting is effective.
  • the base station controller in each cycle, after completing the modification and setting of the frequency hopping attribute of the time slot p corresponding to each carrier frequency in the frequency hopping system, the base station controller will initiate data synchronization to the base station system and continuously send multiple records to the base station system.
  • Frequency hopping attribute setting information After the base station system receives the frequency hopping attribute setting information sent by the base station controller, it sets a new frequency hopping attribute for the time slot of the corresponding carrier frequency, modifies the frequency parameter of the corresponding time slot, and returns the hopping attribute.
  • the response information that the frequency attribute setting is effective is sent to the base station controller; the base station controller receives the response information that the frequency hopping attribute setting is effective sent by the base station system, and then unblocks the time slot p of the non-idle carrier frequency.
  • the base station controller initiates data synchronization to the base station system, and the base station system performs a one-time data synchronization.
  • step 5530 can be implemented through the following steps:
  • Step S5531 triggering the transfer of the service on the time slot p of each carrier frequency
  • step S5532 a delay timer is set. After the delay timer expires, the untransferred services in the frequency hopping system are released when the carrier frequency has not completed service transfer.
  • the service on the time slot p of each carrier frequency is transferred or released. If the service has been released before the delay timer expires, the frequency hopping attribute of the time slot p of each carrier frequency in the frequency hopping system is terminated. Make modifications and re-share the shared frequency points for LTE use.
  • an embodiment of the present application provides a controller 100, and the controller 100 may be a base station controller or a server.
  • the controller 100 includes a memory 120, a processor 110, and a computer program stored on the memory 120 and running on the processor 110, and the computer program executes when it is running:
  • the processor 110 and the memory 120 may be connected by a bus or in other ways.
  • the memory 120 can be used to store non-transitory software programs and non-transitory computer-executable programs, such as the frequency hopping frequency point sharing method or the first embodiment in the first aspect of the present application.
  • the frequency hopping frequency point recovery method in the embodiment.
  • the processor 110 executes the non-transient software programs and instructions stored in the memory 120 to implement the frequency hopping frequency point sharing method in the first aspect embodiment or the frequency hopping frequency point recovery method in the second aspect embodiment.
  • the memory 120 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store the sharing of the frequency hopping frequency point in the embodiment of the first aspect described above.
  • the memory 120 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 120 may optionally include memories remotely provided with respect to the processor 110, and these remote memories may be connected to the terminal through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transitory software programs and instructions required to implement the frequency hopping frequency point sharing method in the embodiment of the first aspect or the frequency hopping frequency point recovery method in the second aspect embodiment are stored in the memory 120, when one or more When each processor 110 executes, it executes the frequency hopping frequency point sharing method in the embodiment of the first aspect or the frequency hopping frequency point recovery method in the embodiment of the second aspect, for example, steps S1000 to S3000 of the method described in FIG. 2 are executed, The method steps S1000 to S3000 described in Fig. 3; the method steps S3110 to S3120 described in Fig. 5; the method steps S3210 to S3220 described in Fig. 6; the method steps S3211 to S3217 described in Fig. 7; the method described in Fig.
  • an embodiment of the present application provides a base station system 200.
  • the base station system 200 can exchange information with the controller 100 provided in the embodiment of the third aspect, including:
  • a new frequency hopping attribute is set for the carrier frequency under the base station system 200;
  • the response message that the frequency hopping attribute setting is effective is sent to the controller 100.
  • the base station system 200 is connected to the controller 100 through an ABIS interface and performs information exchange.
  • the base station controller 100 sends several pieces of frequency hopping attribute setting information on the ABIS interface to the base station system 200, and the base station system 200 sets the frequency hopping attribute for the corresponding carrier frequency and time slot according to the received frequency hopping attribute setting information, and the setting is completed After that, the response message that the frequency hopping attribute setting is effective is sent to the base station controller 100, indicating that the configuration of modifying the carrier frequency is completed.
  • the embodiments of the present application provide a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to:
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors 110, for example, by one of the controllers 100 in the embodiment of the third aspect.
  • the processor 110 executes the above one or more processors 110 to execute the frequency hopping frequency point sharing method in the embodiment of the first aspect or the frequency hopping frequency point recovery method in the embodiment of the second aspect, for example, execute the above description
  • the embodiments of the application include: prioritizing the shared frequency points in the frequency hopping system from low to high according to the distance from the center frequency point of the LTE network from near to far; and assigning the shared frequency points to the carrier frequency in the frequency hopping system ;
  • the shared frequency point of the idle carrier frequency is shared to LTE under the sharing condition that the frequency points with lower priority than the shared frequency point in the idle carrier frequency have been shared
  • the GSM side can recycle the shared frequency points shared to the LTE network to the frequency hopping system according to the business occupancy.
  • the shared frequency points in the frequency hopping system can be shared for use by the LTE network, and the shared frequency points can be recovered when the GSM network business is busy, which not only ensures the function of the frequency hopping system, but also improves The utilization rate of spectrum resources is improved.
  • the device embodiments described above are merely illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • computer storage medium includes volatile and non-volatile data implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
  • Information such as computer-readable instructions, data structures, program modules, or other data.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media. .

Abstract

一种跳频频点的共享方法、回收方法、控制器、基站系统及计算机可读存储介质。其中,共享方法包括按照相距LTE网络中心频点由近至远的距离,对跳频系统中的共享频点由低至高地排列优先级(S1000);将共享频点分配给跳频系统中的载频(S2000);当检测到跳频系统中存在空闲载频,在比所述空闲载频中的共享频点优先级低的频点均已共享的情况下,将所述空闲载频中的共享频点共享给LTE网络使用(S3000)。回收方法包括根据业务占用的情况,回收共享频点并将回收的共享频点重新加入到跳频系统中。

Description

跳频频点的共享方法、回收方法、控制器、基站系统及计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为201910792417.9、申请日为2019年8月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于通信技术领域,尤其涉及一种跳频频点的共享方法、回收方法、控制器、基站系统及计算机可读存储介质。
背景技术
频谱资源是GSM(全球移动通信系统,Global System for Mobile Communicationn)网络和LTE(长期演进,Long Term Evolution)网络的关键资源,为了减少干扰,GSM网络和LTE网络一般情况下使用各自的专有频谱资源。然而,随着LTE终端用户的不断增加,迫切需要扩充LTE带宽,而提高频谱资源利用率能有效提升系统容量和性能。
GSM网络有部分频点配置在LTE网络的载波发射带宽内,跟LTE网络的频谱资源块交叠,但是系统根据实际的使用需要,在一定区域范围内只允许一种制式同时使用。利用话务的潮汐效应,LTE网络和GSM网络可以共享交叠的频段,但不同时使用,这样可以提高频谱资源的利用率。
跳频技术能够提高GSM网络的抗干扰、抗衰落性能,大大提高通话质量,增强紧密复用的组网能力,增加系统容量,因此在GSM网络中应用广泛。然而现有的频谱共享技术不能很好的支持跳频功能,当跳频载频使用属于共享频谱的频点时,由于跳频系统的复杂性,导致这些跳频频点无法共享给LTE,只能被GSM固定占用,这会使得可共享的频点数大幅减少,导致频谱资源的利用率大幅下降。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
一方面,本申请实施例提供了跳频频点的共享方法、回收方法、控制器、基站系统及计算机可读存储介质。
另一方面,本申请实施例提供了跳频频点的共享方法,包括:按照相距LTE网络中心频点由近至远的距离,对跳频系统中的共享频点由低至高地排列优先级;将共享频点分配给跳频系统中的载频;当检测到跳频系统中存在空闲载频,在比所述空闲载频中的共享频点优先级低的频点均已共享的共享条件下,将所述空闲载频中的共享频点共享给LTE网络使用。
另一方面,本申请实施例提供了跳频频点的回收方法,包括:在跳频系统已将共享频点共享给LTE网络的情况下,根据业务占用的情况,回收共享频点并将回收的共享频点重新加入到跳频系统中。
另一方面,本申请实施例提供了控制器,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序时执行:所述的跳频频点的共享方法;或者所述的跳频频点的回收方法。
另一方面,本申请实施例提供了基站系统,所述基站系统与所述控制器进行信息交互,包括:接收所述控制器发送的跳频属性设置信息;根据所述控制器发送的跳频属性设置信息,为所述基站系统下的载频设置新的跳频属性;向控制器发送跳频属性设置生效的应答信息。
再一方面,本申请实施例提供了计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于:执行所述的跳频频点的共享方法;或者执行所述的跳频频点的回收方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是一种典型的GSM网络和LTE网络的频谱资源共享配置场景图;
图2是本申请一个实施例提供的一种跳频频点的共享方法的流程图;
图3是本申请另一个实施例提供的一种跳频频点的共享方法的流程图;
图4是本申请一个实施例提供的跳频系统的示意图;
图5是本申请一个实施例提供的共享方法中不修改跳频系统方式的流程图;
图6是本申请另一个实施例提供的共享方法中修改跳频系统方式的流程图;
图7是本申请一个实施例提供的共享方法中修改载频跳频属性的流程图;
图8是本申请另一个实施例提供的共享方法中修改载频跳频属性的流程图;
图9是本申请另一个实施例提供的共享方法中转移或者释放非空闲载频的时隙p上业务的流程图;
图10是本申请一个实施例提供的一种跳频频点的回收方法的流程图;
图11是本申请另一个实施例提供的一种跳频频点的回收方法的流程图;
图12是本申请一个实施例提供的回收方法中修改载频跳频属性的流程图;
图13是本申请另一个实施例提供的回收方法中修改载频跳频属性的流程图;
图14是本申请一个实施例提供的回收方法中转移或者释放各载频的时隙p上业务的流程图;
图15是本申请一个实施例提供的控制器的示意图;
图16是本申请一个实施例提供的基站系统与控制器的连接示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
GSM网络有部分频点配置在LTE网络的载波发射带宽内,跟LTE网络的频谱资源块 交叠,但是系统根据实际的使用需要,在一定区域范围内只允许一种制式同时使用。利用话务的潮汐效应,LTE网络和GSM网络可以共享交叠的频段,但不能同时使用,这样可以提高频谱资源的利用率。
请参照图1,图1为一种典型的GSM网络和LTE网络的频谱资源共享配置场景图。LTE网络的专有频谱在中间,GSM网络的专有频谱设置在两侧,重叠部分为共享频谱,GSM和LTE网络均可调度使用,GSM网络优先使用。同时规定只有当GSM网络从靠近LTE网络中心频点开始连续不使用重叠部分频点的时候,LTE网络才能使用。现有的频谱共享技术,是对GSM网络的无线资源分配方式进行修改,优先分配GSM网络的专有频谱,其次是共享频谱,共享频谱内部按照距离LTE网络中心频点由远到近的顺序选频点进行资源分配,从而尽可能空出更多的共享频点,供给LTE网络使用,以提高频谱资源的利用率。
跳频技术能够提高GSM网络的抗干扰、抗衰落性能,大大提高通话质量,增强紧密复用的组网能力,增加系统容量,因此在GSM网络中应用广泛。然而现有的频谱共享技术不能很好的支持跳频功能,当跳频载频使用属于共享频谱的频点时,由于跳频系统的复杂性,导致这些跳频频点无法共享给LTE,只能被GSM固定占用,这会使得可共享的频点数大幅减少,导致频谱资源的利用率大幅下降。
基于此,本申请实施例提供了跳频频点的共享方法、回收方法、控制器、基站系统及存储介质,按照相距LTE网络中心频点由近至远的距离,对跳频系统中的共享频点由低至高地排列优先级;将共享频点分配给跳频系统中的载频;在存在所述符合共享条件的空闲载频的情况下,即比所述空闲载频的共享频点优先级低的共享频点均已共享,将空闲载频的共享频点共享给LTE网络使用;根据业务占用的情况,将共享给LTE网络的共享频点回收至跳频系统。根据本申请实施例提供的方案,可实现将跳频系统中的共享频点共享给LTE网络使用,并能在GSM网络业务繁忙时回收共享频点,既保证了跳频系统的功能,又提高了频谱资源的利用率。
下面结合附图,对本申请实施例作进一步阐述。
第一方面,请参照图2,本申请的一个实施例提供了一种跳频频点的共享方法,其中的一种实施例包括但不限于以下步骤:
步骤S1000,按照相距LTE网络中心频点由近至远的距离,对跳频系统中的共享频点由低至高地排列优先级。
基于GSM网络和LTE网络的频谱资源共享方案中,LTE网络的专有频谱位于中间,GSM网络的专有频谱位于两侧,重叠部分为共享频谱,步骤S1000中将距离LTE网络中心频点较远的频点设置为较高的优先级,目的是通过GSM网络的跳频系统优先使用优先级高的共享频点,由此尽可能将靠近LTE网络专有频谱的共享频点释放出来,以供给LTE网络使用,从而实现提高频谱资源的利用率。
步骤S2000,将共享频点分配给跳频系统中的载频。
在步骤S2000的一实施例中,将共享频点分配给跳频系统中的载频包括:共享频点按照由低至高的优先级顺序,对应分配给移动分配偏移量MAIO由大到小的载频。MAIO(移动分配偏移量,mobile Allocation Indication Offset)用于确定起跳频点,使用MAIO目的是为了防止多个信道在同一时间争抢同一频点,因此为达该目的,同一跳频系统下,各个载频使用的MAIO必须不同。本实施例中,由于共享频点是按照距离LTE网络中心频点由近到远的顺序共享的,按照上述规则分配频点后,跳频系统中的载频就按照对应的MAIO由 大到小的顺序空出,这样可以保证后续步骤中修改跳频系统后仍能稳定运转。
例如,请参照图4,图4为具有3个载频的跳频系统分配有3个共享频点f1、f2和f3。跳频系统中的3个载频——载频1、载频2、载频3,对应使用的MAIO为0、1、2。3个共享频点的优先级由低至高排序依次为f3、f2、f1,将共享频点f1分配给载频1,将共享频点f2分配给载频2,将共享频点f3分配给载频3。
步骤S3000,当检测到跳频系统中存在空闲载频,在比所述空闲载频中的共享频点优先级低的频点均已共享的情况下,将所述空闲载频中的共享频点共享给LTE网络使用。
在步骤S3000的一些实施例中,当检测到跳频系统中存在空闲载频,且比空闲载频的共享频点优先级低的共享频点均已共享,才将空闲载频中的共享频点共享给LTE网络使用,这样设置的目的是LTE网络能够使用连续的频段。
如图3所示,在步骤S3000的另一些实施例中,当检测到跳频系统中存在空闲载频后,在比所述空闲载频中的共享频点优先级低的频点均已共享、及剩余非空闲载频的业务负荷小于预设的业务负荷门限的情况下,将空闲载频中的共享频点共享给LTE网络使用。这样设置,一方面保证LTE网络能够使用的频段是连续的,另一方面,在确保跳频系统足以应对当前业务量的共享条件下,才进行频点共享,以保障GSM网络的服务性能稳定。
步骤S3000在实际操作中,可根据实际应用场景选择不修改跳频系统或者修改跳频系统的方式,实现空闲载频的共享频点共享给LTE网络使用。
如图5所示,对于不修改跳频系统的实施方式,可通过以下步骤实现:
步骤S3110,等待跳频系统中所有载频上的业务全部释放;
步骤S3120,将跳频系统中的共享频点全部释放给LTE网络使用。
该种方式实现简单,跳频频点可共享,对现有系统改动小,但是共享速度慢,跳频频谱共享收益低。
如图6所示,对于修改跳频系统的实施方式,可通过以下步骤实现:
步骤S3210,修改跳频系统中的载频的跳频属性;
步骤S3220,将当前空闲载频的共享频点释放给LTE网络使用。
如图7所示,在一实施例中,步骤S3210包括如下子步骤:
步骤S3211,设置p的初始值为0;
循环执行以下步骤直至满足退出条件p>7;
步骤S3212,闭塞非空闲载频的时隙p;
步骤S3213,转移或者释放非空闲载频的时隙p上的业务;
步骤S3214,将当前空闲载频的时隙p的跳频属性设置为不跳频;
步骤S3215,将非空闲载频的时隙p的跳频属性设置为使用除当前空闲载频将要释放的共享频点外的其余跳频频点进行跳频;
步骤S3216,解闭塞非空闲载频的时隙p;
步骤S3217,p=p+1。
以图4所示的跳频系统为例,当检测到载频3当前处于空闲状态,并且符合共享条件,即比频点f3优先级低的频点均已共享,同时该跳频系统支持修改,则可以通过如下步骤修改跳频系统中的载频的跳频属性:先闭塞非空闲的载频1、载频2的时隙0,停止向载频1、载频2的时隙0传送业务数据;转移或者释放非空闲载频的时隙0上的业务;将载频3的时隙0设置为不跳频;将载频1、载频2的时隙0设置为使用除载频3将要释放的共享频 点f3外的其它跳频频点,即使用频点f1、f2;解闭塞载频1、载频2的的时隙0,使载频1、载频2的的时隙0重新被激活;由此实现对跳频系统中的载频1、载频2和载频3的0时隙的跳频属性进行修改,并基于前述步骤依次对载频1、载频2和载频3中的时隙1至时隙7的跳频属性进行修改。
如图8所示,在一些实施例中,步骤S3210还包括:
步骤3218,向基站系统发送跳频属性设置信息;
步骤3219,接收基站系统发送的跳频属性设置生效的应答信息。
在每一次循环过程中,完成跳频系统中各载频对应的时隙p跳频属性修改设置后,基站控制器便会向基站系统发起数据同步,向基站系统连续发送多条跳频属性设置信息,基站系统接收到基站控制器发送的跳频属性设置信息后,对其下对应的载频的时隙设置新的跳频属性,并返回跳频属性设置生效的应答信息给基站控制器;基站控制器接收基站系统发送的跳频属性设置生效的应答信息,然后解闭塞非空闲载频的时隙p。
在另一些实施例中,也可以是在跳频系统中所有载频的所有时隙的跳频属性均完成修改设置后,基站控制器再向基站系统发起数据同步,基站系统一次性地对其下所有载频的所有时隙设置新的跳频属性,并返回跳频属性设置生效的应答信息给基站控制器;基站控制器接收基站系统发送的跳频属性设置生效的应答信息,然后解闭塞各个非空闲载频的时隙。
参照图9,步骤S3213的一实施例中,转移或者释放非空闲载频的时隙p上的业务,包括:
步骤S32131,触发非空闲载频的时隙p上的业务进行转移;
步骤S32132,设置延时定时器,当延时定时器超时后,将非空闲载频中未转移的业务释放。
本实施例中,通过延时定时器限定非空闲载频的时隙p上的业务转移的时间,当延时定时器超时后,仍存在未完成的业务转移,则采取强制释放业务的措施,保证跳频共享能够顺利进行。
在一些实施例中,当修改过程中出现异常或者有跳频属性及共享相关的配置更改,终止修改过程,恢复跳频系统未修改前的属性,用于确保跳频系统的业务功能正常。
在一些实施例中,终止修改过程,恢复跳频系统未修改前的属性之后还包括将当前空闲载频将要释放的共享频点标记为被GSM网络占用,等待后续重新发起共享。
在一些实施例中,当修改跳频系统中的载频的跳频属性过程中存在大量业务接入,终止修改过程,确保跳频系统的业务功能正常。
第二方面,本申请实施例提供了一种跳频频点的回收方法,在跳频系统已通过前述的共享方法将共享频点共享给LTE网络的情况下,根据业务占用的情况,回收共享频点并将回收的共享频点重新加入到跳频系统中。
参照图10,在一实施例中,针对不修改跳频系统的情况,通过以下步骤将共享给LTE网络的共享频点回收至跳频系统:
步骤S5000,通知LTE网络需要回收全部的共享频点;
步骤S5100,回收全部共享频点至跳频系统中;
步骤S5200,将回收的共享频点重新分配给跳频系统的载频使用。
当属于某个跳频系统的所有共享频点都被共享之后,如果GSM侧有业务占用信道时, 判断负荷升高,需要占用跳频系统中的一个载频时,如果不支持修改跳频系统,则会将该跳频系统中的所有共享频点全部收回。向LTE发送消息,回收跳频系统中的所有共享频点。
参照图11,在另一实施例中,针对需修改跳频系统的情况,通过以下步骤将共享给LTE网络的共享频点回收至跳频系统:
步骤S5300,通知LTE网络需要回收的共享频点。
步骤S5400,回收部分或者全部共享频点至跳频系统中;
步骤S5500,修改跳频系统中的载频的跳频属性,将回收的共享频点重新分配给跳频系统的载频使用。
其中,参照图12,步骤S5500可以包括以下步骤:
步骤S5510,设置p的初始值为0;
循环执行以下步骤直至满足退出条件p>7;
步骤S5520,闭塞各个载频的时隙p;
步骤S5530,转移或者释放各个载频的时隙p上的业务;
步骤S5540,为跳频系统中的各个载频的时隙p加入回收的共享频点;
步骤S5550,解闭塞各个载频的时隙p;
步骤S5560,设置p=p+1。
参照图13,在一实施例中,解闭各个载频的时隙p之前还包括:
步骤S5570,向基站系统发送跳频属性设置信息;
步骤S5580,接收基站系统发送的跳频属性设置生效的应答信息。
本实施例,在每一次循环过程中,完成跳频系统中各载频对应的时隙p跳频属性修改设置后,基站控制器便会向基站系统发起数据同步,向基站系统连续发送多条跳频属性设置信息,基站系统接收到基站控制器发送的跳频属性设置信息后,对其下对应的载频的时隙设置新的跳频属性,修改相应时隙的频率参数,并返回跳频属性设置生效的应答信息给基站控制器;基站控制器接收基站系统发送的跳频属性设置生效的应答信息,然后解闭塞非空闲载频的时隙p。
在另一些实施例中,也可以是在跳频系统中所有载频的所有时隙的跳频属性均完成修改设置后,基站控制器再向基站系统发起数据同步,基站系统一次性地对其下所有载频的所有时隙设置新的跳频属性,并返回跳频属性设置生效的应答信息给基站控制器;基站控制器接收基站系统发送的跳频属性设置生效的应答信息,解闭塞各个非空闲载频的时隙。
参照图14,步骤5530可通过以下步骤实现:
步骤S5531,触发各载频的时隙p上的业务进行转移;
步骤S5532,设置延时定时器,延时定时器超时后,在存在载频未完成业务转移的情况下,将跳频系统中未转移的业务释放。
在一些实施例中,转移或者释放各个载频的时隙p上的业务,若延时定时器超时前,业务已经释放,则终止对跳频系统中各个载频的时隙p的跳频属性进行修改,将共享频点重新共享给LTE使用。
第三方面,参照图15,本申请实施例提供了控制器100,控制器100可以是基站控制器或者服务器。
控制器100包括:存储器120、处理器110及存储在存储器120上并可在处理器110上运行的计算机程序,计算机程序运行时执行:
上述的跳频频点的共享方法;或者
上述的跳频频点的回收方法。
处理器110和存储器120可以通过总线或者其他方式连接。
存储器120作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请第一方面实施例中的跳频频点的共享方法或第二方面实施例中的跳频频点的回收方法。处理器110通过运行存储在存储器120中的非暂态软件程序以及指令,从而实现上述第一方面实施例中的跳频频点的共享方法或第二方面实施例中的跳频频点的回收方法。
存储器120可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述第一方面实施例中的跳频频点的共享方法或第二方面实施例中的跳频频点的回收方法。此外,存储器120可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器120可选包括相对于处理器110远程设置的存储器,这些远程存储器可以通过网络连接至该终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述第一方面实施例中的跳频频点的共享方法或第二方面实施例中的跳频频点的回收方法所需的非暂态软件程序以及指令存储在存储器120中,当被一个或者多个处理器110执行时,执行上述第一方面实施例中的跳频频点的共享方法或第二方面实施例中的跳频频点的回收方法,例如执行图2中描述的方法步骤S1000至S3000,图3中描述的方法步骤S1000至S3000;图5中描述的方法步骤S3110至S3120;图6中描述的方法步骤S3210至S3220;图7中描述的方法步骤S3211至S3217;图8中描述的方法步骤S3211至S3219;图9中描述的方法步骤S32131至S32132;图10中描述的方法步骤S5000至步骤S5200;图11中描述的方法步骤S5300至S5500;图12中描述的方法步骤S5510至S5560;图13中描述的方法步骤S5510至S5580;图14中描述的方法步骤S5531至S5532。
第四方面,参照图16,本申请实施例提供了基站系统200,基站系统200能够与第三方面实施例提供的控制器100进行信息交互,包括:
接收所述控制器100发送的跳频属性设置信息;
根据所述控制器100发送的跳频属性设置信息,为所述基站系统200下的载频设置新的跳频属性;
向控制器100发送跳频属性设置生效的应答信息。
在一实施例中,基站系统200通过ABIS接口与控制器100连接并进行信息交互。例如,基站控制器100向基站系统200在ABIS接口上发送若干条跳频属性设置信息,基站系统200根据接收的跳频属性设置信息,为相应的载频以及时隙设置跳频属性,设置完毕后,向基站控制器100发送跳频属性设置生效的应答信息,表明修改载频的配置完成。
第五方面,本申请实施例提供了计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于:
执行上述的跳频频点的共享方法;或者
执行上述的跳频频点的回收方法。
在一实施例中,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器110执行,例如,被第三方面实施例的控制器100中的一个处 理器110执行,可使得上述一个或多个处理器110执行上述第一方面实施例中的跳频频点的共享方法或第二方面实施例中的跳频频点的回收方法,例如,执行以上描述的图2中的方法步骤S1000至S3000,图3中的方法步骤S1000至S3000;图5中的方法步骤S3110至S3120;图6中的方法步骤S3210至S3220;图7中的方法步骤S3211至S3217;图8中的方法步骤S3211至S3219;图9中的方法步骤S32131至S32132;图10中的方法步骤S5000至步骤S5200;图11中的方法步骤S5300至S5500;图12中的方法步骤S5510至S5560;图13中的方法步骤S5510至S5580;图14中的方法步骤S5531至S5532。
本申请实施例包括:按照相距LTE网络中心频点由近至远的距离,对跳频系统中的共享频点由低至高地排列优先级;将共享频点分配给跳频系统中的载频;当检测到跳频系统中存在空闲载频,在比所述空闲载频中的共享频点优先级低的频点均已共享的共享条件下,将空闲载频的共享频点共享给LTE网络使用;GSM侧根据业务占用的情况,可以将共享给LTE网络的共享频点回收至跳频系统。根据本申请实施例提供的方案,可实现将跳频系统中的共享频点共享给LTE网络使用,并能在GSM网络业务繁忙时回收共享频点,既保证了跳频系统的功能,又提高了频谱资源的利用率。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的共享条件下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (19)

  1. 一种跳频频点的共享方法,包括:
    按照相距LTE网络中心频点由近至远的距离,对跳频系统中的共享频点由低至高地排列优先级;
    将共享频点分配给跳频系统中的载频;
    当检测到跳频系统中存在空闲载频,在比所述空闲载频中的共享频点优先级低的频点均已共享的情况下,将所述空闲载频中的共享频点共享给LTE网络使用。
  2. 根据权利要求1所述的共享方法,其中,所述将共享频点分配给跳频系统中的载频,包括:
    共享频点按照由低至高的优先级顺序,对应分配给移动分配偏移量MAIO由大到小的载频。
  3. 根据权利要求1所述的共享方法,其中,所述将所述空闲载频中的共享频点共享给LTE网络使用之前还包括:
    在剩余非空闲载频的业务负荷小于预设的业务负荷门限的情况下,才将所述空闲载频中的共享频点共享给LTE网络使用。
  4. 根据权利要求1所述的共享方法,其中,所述将所述空闲载频中的共享频点共享给LTE网络使用,包括:
    等待跳频系统中所有载频上的业务全部释放后,将跳频系统中的共享频点全部释放给LTE网络使用;
    或者
    修改跳频系统中的载频的跳频属性,将当前空闲载频的共享频点释放给LTE网络使用。
  5. 根据权利要求4所述的共享方法,其中,所述修改跳频系统中的载频的跳频属性,包括:
    循环执行如下过程直至满足退出条件,其中,所述退出条件为P>7;
    设置p的初始值为0,所述循环执行的过程包括:
    闭塞非空闲载频的时隙p;
    转移或者释放非空闲载频的时隙p上的业务;
    将当前空闲载频的时隙p的跳频属性设置为不跳频;
    将非空闲载频的时隙p的跳频属性设置为使用除当前空闲载频将要释放的共享频点外的其余跳频频点进行跳频;
    解闭塞非空闲载频的时隙p;
    设置p=p+1。
  6. 根据权利要求5所述的共享方法,其中,所述转移或者释放非空闲载频的时隙p上的业务,包括:
    触发非空闲载频的时隙p上的业务进行转移;
    设置延时定时器,当延时定时器超时后,将非空闲载频中未转移的业务释放。
  7. 根据权利要求4所述的共享方法,其中,所述修改跳频系统中的载频的跳频属性,还包括:
    向基站系统发送跳频属性设置信息;
    接收基站系统发送的跳频属性设置生效的应答信息。
  8. 根据权利要求4所述的共享方法,其中,所述修改跳频系统中的载频的跳频属性,还包括:
    当修改过程中出现异常或者有跳频属性及共享相关的配置更改时,终止修改过程,恢复跳频系统未修改前的跳频属性。
  9. 根据权利要求8所述的共享方法,其中,所述恢复跳频系统未修改前的属性之后还包括:
    将当前空闲载频将要释放的共享频点标记为被GSM网络占用,等待后续重新发起共享。
  10. 根据权利要求4所述的共享方法,其中,所述修改跳频系统中的载频的跳频属性,还包括:
    当修改过程中存在大量业务接入,终止修改过程。
  11. 一种跳频频点的回收方法,包括:
    在跳频系统已通过权利要求1-10任一所述的共享方法将共享频点共享给LTE网络的情况下,根据业务占用的情况,回收共享频点并将回收的共享频点重新加入到跳频系统中。
  12. 根据权利要求11所述的回收方法,其中,所述回收共享频点并将回收的共享频点重新加入到跳频系统中,包括:
    通知LTE网络需要回收的共享频点;
    将回收的共享频点重新分配给跳频系统中的载频使用。
  13. 根据权利要求12所述的回收方法,其中,所述将回收的共享频点重新分配给跳频系统中的载频使用,包括:
    修改跳频系统中的载频的跳频属性,包括:
    循环执行如下过程直至满足退出条件,其中,所述退出条件为p>7;
    设置p的初始值为0,所述循环执行的过程包括:
    闭塞各个载频的时隙p;
    转移或者释放各个载频的时隙p上的业务;
    为跳频系统中的各个载频的时隙p加入回收的共享频点;
    解闭塞各个载频的时隙p;
    设置p=p+1。
  14. 根据权利要求13所述的回收方法,其中,所述转移或者释放各个载频的时隙p上的业务,包括:
    设置延时定时器,当延时定时器超时后,将跳频系统中各个载频未转移的业务释放。
  15. 根据权利要求14所述的回收方法,其中,所述转移或者释放各个载频的时隙p上的业务,还包括:
    若延时定时器超时前,业务已经释放,则终止所述修改跳频系统中的载频的跳频属性,将共享频点重新共享给LTE使用。
  16. 根据权利要求13所述的回收方法,其中,所述修改跳频系统中的载频的跳频属性还包括:
    向基站系统发送跳频属性设置信息;
    接收基站系统发送的跳频属性设置生效的应答信息。
  17. 一种控制器,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计 算机程序,其中,所述计算机程序时执行:
    权利要求1至10中任一项所述的共享方法;
    或者
    权利要求11至16中任一项所述的回收方法。
  18. 一种基站系统,用于与如权利要求17所述的控制器进行信息交互,包括:
    接收所述控制器发送的跳频属性设置信息;
    根据所述控制器发送的跳频属性设置信息,为所述基站系统下的载频设置新的跳频属性;
    向控制器发送跳频属性设置生效的应答信息。
  19. 计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于:
    执行权利要求1至10中任一项所述的共享方法;或者
    执行权利要求11至16中任一项所述的回收方法。
PCT/CN2020/109991 2019-08-26 2020-08-19 跳频频点的共享方法、回收方法、控制器、基站系统及计算机可读存储介质 WO2021036880A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES20858955T ES2953873T3 (es) 2019-08-26 2020-08-19 Método de compartición de punto de frecuencia de salto de frecuencia, método de recuperación, controlador, sistema de estación base y medio de almacenamiento legible por ordenador
EP20858955.6A EP3863183B1 (en) 2019-08-26 2020-08-19 Frequency-hopping frequency point sharing method, recovery method, controller, base station system and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910792417.9 2019-08-26
CN201910792417.9A CN112436864B (zh) 2019-08-26 2019-08-26 跳频频点的共享方法、回收方法、控制器和基站系统

Publications (1)

Publication Number Publication Date
WO2021036880A1 true WO2021036880A1 (zh) 2021-03-04

Family

ID=74685132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109991 WO2021036880A1 (zh) 2019-08-26 2020-08-19 跳频频点的共享方法、回收方法、控制器、基站系统及计算机可读存储介质

Country Status (4)

Country Link
EP (1) EP3863183B1 (zh)
CN (1) CN112436864B (zh)
ES (1) ES2953873T3 (zh)
WO (1) WO2021036880A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547721A (zh) * 2009-08-25 2012-07-04 华为技术有限公司 共享频谱资源的方法、设备及系统
CN102612041A (zh) * 2011-01-20 2012-07-25 华为技术有限公司 Ofdm小基站和异系统网络频谱共享方法及网络设备
CN103096324A (zh) * 2011-10-31 2013-05-08 中兴通讯股份有限公司 一种小区动态频率规划方法
CN108271163A (zh) * 2017-01-03 2018-07-10 中兴通讯股份有限公司 一种频谱资源的共享方法和装置
US20180302118A1 (en) * 2017-04-18 2018-10-18 Ajou University Industry-Academic Cooperation Foun Dation Method of sharing spectrum by frequency hopping and communication system using the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110077015A1 (en) * 2006-12-29 2011-03-31 Nokia Corporation Methods, Computer Program Products And Apparatus Providing Shared Spectrum Allocation
WO2010091713A1 (en) * 2009-02-10 2010-08-19 Nokia Siemens Networks Oy Radio resource allocation for geran-lte co-existence and co-location
CN101662790B (zh) * 2009-09-17 2012-12-19 中兴通讯股份有限公司 自动处理载频故障的方法和系统
CN102118887B (zh) * 2010-01-05 2015-04-01 中兴通讯股份有限公司 一种动态管理小区数据的方法、装置及系统
CN102387589B (zh) * 2010-08-31 2014-04-09 电信科学技术研究院 一种资源分配方法及装置
CN101938750B (zh) * 2010-09-09 2014-04-02 华为技术有限公司 移动台无线频率序号集合的转换方法和基站上层控制节点
CN102118758B (zh) * 2011-01-28 2015-06-03 中兴通讯股份有限公司 一种gsm系统和lte系统共享频谱的方法及其系统
CN103841564B (zh) * 2012-11-23 2017-12-05 华为技术有限公司 一种频谱共享方法和网络中心控制实体
US9237453B2 (en) * 2013-03-14 2016-01-12 Blackberry Limited Spectrum channel sharing system
ES2532518B1 (es) * 2013-09-27 2016-01-19 Vodafone España, S.A.U. Elemento de red y procedimiento para coordinar el uso de recursos radio entre redes de acceso radio
US11297510B2 (en) * 2015-01-19 2022-04-05 Qualcomm Incorporated Medium access for shared or unlicensed spectrum
WO2016195751A1 (en) * 2015-05-29 2016-12-08 Intel Corporation Evolved node-b, spectrum access system (sas) controller and method for communication in shared spectrum
CN106332088B (zh) * 2015-06-28 2020-01-17 上海无线通信研究中心 不同运营商间基于用户公平性的频谱共享方法
CN106941675A (zh) * 2016-01-05 2017-07-11 中兴通讯股份有限公司 一种分配频谱资源的方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102547721A (zh) * 2009-08-25 2012-07-04 华为技术有限公司 共享频谱资源的方法、设备及系统
CN102612041A (zh) * 2011-01-20 2012-07-25 华为技术有限公司 Ofdm小基站和异系统网络频谱共享方法及网络设备
CN103096324A (zh) * 2011-10-31 2013-05-08 中兴通讯股份有限公司 一种小区动态频率规划方法
CN108271163A (zh) * 2017-01-03 2018-07-10 中兴通讯股份有限公司 一种频谱资源的共享方法和装置
US20180302118A1 (en) * 2017-04-18 2018-10-18 Ajou University Industry-Academic Cooperation Foun Dation Method of sharing spectrum by frequency hopping and communication system using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3863183A4 *

Also Published As

Publication number Publication date
CN112436864A (zh) 2021-03-02
EP3863183B1 (en) 2023-08-02
ES2953873T3 (es) 2023-11-16
EP3863183A1 (en) 2021-08-11
EP3863183A4 (en) 2022-01-19
CN112436864B (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
JP3816334B2 (ja) 無線リソース割当方法及び基地局
WO2021057389A1 (zh) 一种双连接管理方法和通信装置
JP6399328B2 (ja) バッファ状態報告を報告するための方法および装置
WO2018171681A1 (zh) 一种下行同步信号发送方法和接收方法及设备
CN106465283B (zh) 一种功率分配方法及装置
WO2020094025A1 (zh) 一种上行控制信息的传输方法及装置
CN111095856A (zh) 数据处理方法及装置、通信设备
US20180368156A1 (en) Method and apparatus for performing scheduling request to support plurality of services efficiently
JP2020534760A (ja) Rbg分割方法およびユーザ端末
WO2014094310A1 (zh) 资源调度的方法和装置
WO2020143773A1 (zh) 传输资源选择方法及装置
TWI692269B (zh) 處理用於邏輯通道的排程請求的裝置及方法
JP7453422B2 (ja) 無線通信方法及び装置、端末及び記憶媒体
WO2017118053A1 (zh) 一种信道占用的判决方法及判决装置
KR102578177B1 (ko) 리소스 구성 및 데이터 전송을 위한 방법 및 장치
CN107548070B (zh) 数据传输方法、装置及系统
CN111148225B (zh) 资源调度方法、装置及设备
JP7080882B2 (ja) スケジューリング方法、端末および基地局
WO2021036880A1 (zh) 跳频频点的共享方法、回收方法、控制器、基站系统及计算机可读存储介质
JP2023505642A (ja) 情報伝送方法及び関連製品
CN112188637B (zh) 无线通信方法、用户设备和网络设备
EP4346303A1 (en) Resource reselection method and apparatus, device, and storage medium
CN112567858A (zh) 带宽部分的共享资源配置
WO2020113939A1 (zh) 非竞争随机接入资源分配的方法、基站及存储介质
KR20190118639A (ko) 데이터 전송 방법, 단말기 디바이스 및 네트워크 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020858955

Country of ref document: EP

Effective date: 20210505

WWE Wipo information: entry into national phase

Ref document number: 2101003098

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE