WO2021036826A1 - 多晶硅还原炉及其启炉方法 - Google Patents

多晶硅还原炉及其启炉方法 Download PDF

Info

Publication number
WO2021036826A1
WO2021036826A1 PCT/CN2020/109236 CN2020109236W WO2021036826A1 WO 2021036826 A1 WO2021036826 A1 WO 2021036826A1 CN 2020109236 W CN2020109236 W CN 2020109236W WO 2021036826 A1 WO2021036826 A1 WO 2021036826A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reduction furnace
silicon core
outlet
resistance silicon
Prior art date
Application number
PCT/CN2020/109236
Other languages
English (en)
French (fr)
Inventor
陈辉
万烨
严大洲
孙强
张晓伟
张邦洁
王浩
张征
Original Assignee
中国恩菲工程技术有限公司
洛阳中硅高科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910790996.3A external-priority patent/CN110451511A/zh
Priority claimed from CN201921396516.7U external-priority patent/CN210825442U/zh
Application filed by 中国恩菲工程技术有限公司, 洛阳中硅高科技有限公司 filed Critical 中国恩菲工程技术有限公司
Publication of WO2021036826A1 publication Critical patent/WO2021036826A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the embodiments of the present application relate to the technical field of polysilicon production, and in particular, to a polysilicon reduction furnace and a method for starting the polysilicon reduction furnace.
  • the manufacturers of high-purity electronic grade polysilicon basically all use the traditional heating method of built-in quartz lamp to heat the silicon core.
  • this method is relatively cumbersome and requires multiple replacements of the gas in the reduction furnace.
  • other impurities may fall into the reduction furnace.
  • the reduction furnace still needs to be operated with electricity, which poses a safety hazard and is not conducive to the improvement of the purity of electronic grade polysilicon.
  • one purpose of the embodiments of the present application is to provide a polysilicon reduction furnace, which is easy to operate, safe and reliable.
  • Another purpose of the embodiments of the present application is to provide a furnace starting method for a polysilicon reduction furnace, which is beneficial for realizing the furnace starting of a high-resistance silicon core.
  • the polysilicon reduction furnace includes: a chassis with an intake pipe and an outlet pipe; a high-resistance silicon core, the high-resistance silicon core is arranged on the chassis; a reduction furnace cylinder body , The reduction furnace barrel body is suitable for being arranged on the chassis, the reduction furnace barrel body defines a cavity; a gas heater, the gas heater is formed with a gas inlet and a gas outlet; the material system heat exchange A material system inlet and a material system outlet are formed on the material system heat exchanger; a gas pipe is configured to communicate with one of the gas outlet and the material system outlet; wherein The gas heated by the gas heater is suitable for entering the cavity through the gas pipe and the gas inlet pipe to heat the high-resistance silicon core.
  • the gas is heated by a gas heater, and the high resistance silicon core in the reduction furnace is preheated by the hot gas.
  • the entire system is a closed system, while the gas purity can be guaranteed, and the operation is simple , Safe and reliable, which can solve the problem that high resistance silicon cores are difficult to start in related technologies, improve the purity stability of electronic grade polysilicon, reduce the introduction of system impurities, and produce high-purity electronic grade polysilicon products.
  • the polysilicon reduction furnace according to the above-mentioned embodiments of the present application also has the following additional technical features:
  • the gas is a high-purity inert gas.
  • the high-purity inert gas is nitrogen.
  • the gas is high-purity hydrogen.
  • a first on-off valve is provided at the gas outlet
  • a second on-off valve is provided at the outlet of the material system, one of the first on-off valve and the second on-off valve Closed and another open.
  • a temperature detecting element is provided on the gas pipe to detect the temperature of the gas entering the cavity through the air inlet pipe.
  • a pressure detecting element is provided on the gas pipe to detect the pressure of the gas entering the cavity through the air inlet pipe.
  • the resistivity of the high-resistance silicon core is not less than 1000 ⁇ cm.
  • the method for starting a polysilicon reduction furnace includes: installing a high-resistance silicon core on the bottom plate of the polysilicon reduction furnace, and covering the bottom plate with a reduction furnace cylinder;
  • the gas for a first predetermined time is introduced into the reduction furnace at a first predetermined flow rate to replace the air in the reduction furnace;
  • the gas heater is turned on, the gas is heated to a predetermined temperature, and the heated gas is used for the second
  • the flow enters the reduction furnace for a second predetermined time; the gas heater is turned off, the air intake into the reduction furnace is stopped, and the pressure in the reduction furnace is maintained at a predetermined pressure; the heated gas is processed
  • the high-resistance silicon core is subjected to breakdown treatment.
  • the first predetermined time is 0.25h-0.5h; and/or the second predetermined time is 1.5h-2.0h; and/or the predetermined temperature is 250°C-300°C; and/or the The first flow rate is 150 Nm3; and/or the second flow rate is 150 Nm3; and/or the predetermined pressure is 0.05 mpa.
  • Fig. 1 is a schematic diagram of a polysilicon reduction furnace according to an embodiment of the present application, in which the arrow in the figure indicates the flow direction of the gas.
  • Chassis 1 inlet pipe 11, outlet pipe 12,
  • the gas heater 4 the gas inlet 41, the gas outlet 42, the first on-off valve 421,
  • Material system heat exchanger 5 material system inlet 51, material system outlet 52,
  • Gas pipeline 6 temperature detection part 61, pressure detection part 62.
  • polysilicon materials are electronic materials that are industrial silicon as raw materials and purified to a certain purity after a series of physical and chemical reactions. They are an extremely important intermediate product in the silicon product industry chain. They are used to manufacture silicon polished wafers and solar cells.
  • the main raw material for high-purity silicon products is the most basic raw material for the information industry and new energy industry.
  • Electronic grade silicon Generally, the content of Si>99.9999% is required, and the ultra-high purity reaches 99.9999999% to 99.999999999% (9 to 11 9s). Its electrical conductivity is between 10-4-1010 ohm cm. Electronic grade high-purity polysilicon is preferably above 9N.
  • the production enterprises that prepare high-purity electronic grade polysilicon basically all use the traditional heating method of built-in quartz lamp to heat the silicon core.
  • a flange hole with a diameter of about ⁇ 300mm is opened on the top of the reduction furnace, and the quartz lamp is placed in the reduction furnace when it is started.
  • the silicon core is heated internally. After the high resistance silicon core is heated, the resistivity decreases rapidly, and then the silicon core is activated through the high and low voltage electrical control system. After the silicon core is broken down, the quartz lamp is taken out from the top, and the quartz lamp is removed and restored at the same time
  • the furnace cannot be powered off, and the silicon core should be kept energized to avoid the problem that the temperature of the silicon core decreases after the power is turned off and it is difficult to start again.
  • the above-mentioned silicon core heating method mainly uses quartz lamps to heat the silicon core.
  • This heating method requires an opening on the top of the reduction furnace, which will cause difficulty in processing the top of the equipment and investment costs. Leakage of the weld on the top of the equipment.
  • this heating method uses a built-in quartz lamp, which requires disassembly and assembly of the top quartz lamp. There is a risk that outside air or other objects will fall into the reduction furnace. Once this problem occurs, the reduction furnace needs to be disassembled and removed again, which is extremely complicated and inconvenient.
  • the top hole should be sealed with a blind plate. After the sealing is completed, the sealing surface needs to be sealed. For leak detection, there is a risk of secondary leakage treatment on the sealing surface.
  • the quartz lamp heating device is disassembled, the silicon rods in the reduction furnace are still energized and running. If the silicon rods touch the furnace tube against the wall, there is a risk of electric shock for the operators.
  • the quartz lamp is a consumable, which can be switched back and forth between high and low temperatures. The internal heating element has a short service life and high cost.
  • the polysilicon reduction furnace 100 can solve the problem that the high resistance silicon core is difficult to start the furnace, improve the purity stability of electronic grade polysilicon, reduce the introduction of system impurities, and produce high-purity electronic grade polysilicon products.
  • the polysilicon reduction furnace 100 includes: a chassis 1, a high-resistance silicon core 2, a reduction furnace cylinder 3, a gas heater 4, a material system heat exchanger 5 and a gas pipeline 6.
  • an inlet pipe 11 and an outlet pipe 12 may be provided on the chassis 1; gas (for example, high-purity gas) may enter the reduction furnace through the inlet pipe 11, and then be further discharged through the outlet pipe 12.
  • gas for example, high-purity gas
  • the high-resistance silicon core 2 can be provided on the chassis 1.
  • the high-resistance silicon core 2 may include multiple high-resistance silicon cores 2, and the multiple high-resistance silicon cores 2 may be spaced apart on the chassis 1.
  • "plurality" means two or more.
  • the reduction furnace barrel 3 is suitable for being arranged on the chassis 1, and a cavity 30 is defined in the reduction furnace barrel 3.
  • the reduction furnace cylinder 3 can be covered on the chassis 1, so as to facilitate the further formation of a closed system between the chassis 1 and the reduction furnace cylinder 3.
  • the gas heater 4 may be formed with a gas inlet 41 and a gas outlet 42.
  • the heating temperature of the gas heater 4 can be adjusted adaptively as required. Among them, when the gas heater 4 is turned on, gas can enter the gas heater 4 through the gas inlet 41, and the gas heated by the gas heater 4 can be discharged through the gas outlet 42, so that the heated gas can be delivered into the reduction furnace. Therefore, the high-resistance silicon core 2 can be preheated by the hot gas.
  • a material system inlet 51 and a material system outlet 52 may be formed on the material system heat exchanger 5.
  • the material gas can enter the material system heat exchanger 5 through the material system inlet 51, and then be further transported into the reduction furnace through the material system outlet 52.
  • the gas pipe 6 is configured to communicate with one of the gas outlet 42 and the material system outlet 52.
  • the gas outlet 42 is adapted to communicate with the cavity 30 through the gas pipe 6 and the inlet pipe 11
  • the material system outlet 52 is adapted to communicate with the cavity 30 through the gas pipe 6 and the inlet pipe 11.
  • the gas pipe 6 can only communicate with one of the gas outlet 42 and the material system outlet 52.
  • the gas pipe 6 and the material system outlet 52 are not connected; when the gas pipe When 6 is connected to the outlet 52 of the material system, the gas pipe 6 and the gas outlet 42 are not connected.
  • the heating method realizes the preheating of the high resistance silicon core 2.
  • the gas heated by the gas heater 4 (for example, high-purity gas) is suitable for entering the cavity 30 through the gas pipe 6 and the gas inlet pipe 11 to heat the high-resistance silicon core 2. Therefore, the high-resistance silicon core 2 in the reduction furnace can be preheated by the hot gas.
  • the entire system is a closed system. At the same time, the gas purity can be guaranteed, the operation is simple, and it is safe and reliable, which can solve the problem of high-resistance silicon cores in related technologies. It is difficult to start the furnace, improve the purity stability of electronic grade polysilicon, reduce the introduction of system impurities, and produce high-purity electronic grade polysilicon products.
  • the high-purity hot nitrogen gas can be directly sent into the reduction furnace through the gas pipe 6, which can avoid the use of quartz lamps, halogen lamps and carbon rods in the related technology to directly extend into the reduction furnace.
  • the polysilicon reduction furnace 100 of the present application does not require disassembly and assembly and multiple replacements of the opening on the top of the reduction furnace, and the operation mode is simpler and the temperature is adjustable.
  • the gas is heated by the gas heater 4, and the high resistance silicon core 2 in the reduction furnace is preheated by the hot gas.
  • the entire system is a closed system, and the gas purity can be guaranteed. , It is easy to operate, safe and reliable, which can solve the problem of high resistance silicon cores in related technologies that it is difficult to start the furnace, improve the purity stability of electronic grade polysilicon, reduce the introduction of system impurities, and produce high-purity electronic grade polysilicon products.
  • the gas may be a high-purity inert gas.
  • the high-purity inert gas may be, for example, nitrogen or the like. Therefore, by using 9N high-purity gas as the gas, no heating medium can be placed in the reduction furnace, which greatly reduces the risk of introducing external impurities and ensures the stability of product quality.
  • the present application is not limited to this.
  • the gas may also be, for example, high-purity hydrogen.
  • the gas outlet 42 may be provided with a first on-off valve 421, and the material system outlet 52 may be provided with a second on-off valve 521, a first on-off valve 421 and a second on-off valve 521. One of them is closed and the other is open. For example, when the first on-off valve 421 is opened, the second on-off valve 521 is closed; when the second on-off valve 521 is opened, the first on-off valve 421 is closed.
  • the gas can enter the reduction furnace through the gas outlet 42, the gas passage 5, and the air inlet pipe 11.
  • the second switch valve 521 is opened and the first switch valve 421 is closed, the gas can enter the reduction furnace through the material system outlet 52, the gas channel 5, and the air inlet pipe 11.
  • a temperature detecting member 61 may be provided on the gas pipe 6 to detect the temperature of the gas entering the cavity 30 (for example, the reduction furnace) through the air inlet pipe 11.
  • the temperature detecting element 61 may be, for example, a thermometer, etc.
  • the temperature detecting member 61 may also be of other types, etc., which is not specifically limited in the present application.
  • the gas pipe 6 is provided with a pressure detecting member 62 to detect the pressure of the gas entering the cavity 30 (for example, in the reduction furnace) through the air inlet pipe 11.
  • the pressure detecting element 62 may be, for example, a pressure gauge.
  • the pressure detecting member 62 may also be of other types, etc., which is not specifically limited in the present application.
  • the outlet pipe 12 may also be provided with a corresponding temperature detection component to detect the temperature of the gas, and the outlet pipe 12 may also be provided with a corresponding pressure detection component to detect the pressure of the gas.
  • the resistivity of the high-resistance silicon core 2 is not less than 1000 ⁇ cm.
  • the resistivity of the high-resistance silicon core 2 may be greater than or equal to 1000 ⁇ cm.
  • the resistivity of the high-resistance silicon core 2 may be a silicon core rod not lower than 1000 ⁇ cm or the like.
  • the polysilicon reduction furnace 100 includes: a chassis 1, a high-resistance silicon core 2, a reduction furnace cylinder 3, a gas heater 4, a material system heat exchanger 5 and a gas pipeline 6.
  • an inlet pipe 11 and an outlet pipe 12 may be provided on the chassis 1; gas (for example, high-purity gas) may enter the reduction furnace through the inlet pipe 11, and then be further discharged through the outlet pipe 12.
  • gas for example, high-purity gas
  • the high-resistance silicon core 2 can be provided on the chassis 1.
  • the high-resistance silicon core 2 may include multiple high-resistance silicon cores 2, and the multiple high-resistance silicon cores 2 may be spaced apart on the chassis 1.
  • "plurality" means two or more.
  • the reduction furnace barrel 3 is suitable for being arranged on the chassis 1, and a cavity 30 is defined in the reduction furnace barrel 3.
  • the reduction furnace cylinder 3 can be covered on the chassis 1, so as to facilitate the further formation of a closed system between the chassis 1 and the reduction furnace cylinder 3.
  • the gas heater 4 may be formed with a gas inlet 41 and a gas outlet 42.
  • the heating temperature of the gas heater 4 can be adjusted adaptively as required. Among them, when the gas heater 4 is turned on, gas can enter the gas heater 4 through the gas inlet 41, and the gas heated by the gas heater 4 can be discharged through the gas outlet 42, so that the heated gas can be delivered into the reduction furnace. Therefore, the high-resistance silicon core 2 can be preheated by the hot gas.
  • a material system inlet 51 and a material system outlet 52 may be formed on the material system heat exchanger 5.
  • the material gas can enter the material system heat exchanger 5 through the material system inlet 51, and then be further transported into the reduction furnace through the material system outlet 52.
  • the gas pipe 6 is configured to communicate with one of the gas outlet 42 and the material system outlet 52.
  • the gas outlet 42 is adapted to communicate with the cavity 30 through the gas pipe 6 and the inlet pipe 11
  • the material system outlet 52 is adapted to communicate with the cavity 30 through the gas pipe 6 and the inlet pipe 11.
  • the gas pipe 6 can only communicate with one of the gas outlet 42 and the material system outlet 52.
  • the gas pipe 6 and the material system outlet 52 are not connected; when the gas pipe When 6 is connected to the outlet 52 of the material system, the gas pipe 6 and the gas outlet 42 are not connected.
  • the heating method realizes the preheating of the high resistance silicon core 2.
  • the gas heated by the gas heater 4 (for example, high-purity gas) is suitable for entering the cavity 30 through the gas pipe 6 and the gas inlet pipe 11 to heat the high-resistance silicon core 2.
  • the high-resistance silicon core 2 in the reduction furnace can be preheated by hot gas.
  • the entire system is a closed system.
  • the gas purity can be guaranteed, the operation is simple, and it is safe and reliable, which can solve the problem of high-resistance silicon cores in related technologies. It is difficult to start the furnace, improve the purity stability of electronic grade polysilicon, reduce the introduction of system impurities, and produce high-purity electronic grade polysilicon products.
  • the high-purity hot nitrogen gas can be directly sent into the reduction furnace through the gas pipe 6, which can avoid the use of quartz lamps, halogen lamps and carbon rods in the related technology to directly extend into the reduction furnace.
  • the polysilicon reduction furnace 100 of the present application does not require disassembly and assembly and multiple replacements of the opening on the top of the reduction furnace, and the operation mode is simpler and the temperature is adjustable.
  • the gas is heated by the gas heater 4, and the high resistance silicon core 2 in the reduction furnace is preheated by the hot gas.
  • the entire system is a closed system, and the gas purity can be guaranteed. , It is easy to operate, safe and reliable, which can solve the problem of high resistance silicon cores in related technologies that it is difficult to start the furnace, improve the purity stability of electronic grade polysilicon, reduce the introduction of system impurities, and produce high-purity electronic grade polysilicon products.
  • the gas may be a high-purity inert gas.
  • the high-purity inert gas may be, for example, nitrogen or the like. Therefore, by using 9N high-purity gas as the gas, no heating medium can be placed in the reduction furnace, which greatly reduces the risk of introducing external impurities and ensures the stability of product quality.
  • the gas outlet 42 may be provided with a first on-off valve 421, and the material system outlet 52 may be provided with a second on-off valve 521, a first on-off valve 421 and a second on-off valve 521. One of them is closed and the other is open. For example, when the first on-off valve 421 is opened, the second on-off valve 521 is closed; when the second on-off valve 521 is opened, the first on-off valve 421 is closed.
  • the gas can enter the reduction furnace through the gas outlet 42, the gas passage 5, and the air inlet pipe 11.
  • the second switch valve 521 is opened and the first switch valve 421 is closed, the gas can enter the reduction furnace through the material system outlet 52, the gas channel 5, and the air inlet pipe 11.
  • a temperature detecting member 61 may be provided on the gas pipe 6 to detect the temperature of the gas entering the cavity 30 (for example, the reduction furnace) through the air inlet pipe 11.
  • the temperature detecting element 61 may be, for example, a thermometer, etc.
  • the gas pipe 6 is provided with a pressure detecting member 62 to detect the pressure of the gas entering the cavity 30 (for example, in the reduction furnace) through the air inlet pipe 11.
  • the pressure detecting element 62 may be, for example, a pressure gauge.
  • the outlet pipe 12 may also be provided with a corresponding temperature detection component to detect the temperature of the gas, and the outlet pipe 12 may also be provided with a corresponding pressure detection component to detect the pressure of the gas.
  • the resistivity of the high-resistance silicon core 2 is not less than 1000 ⁇ cm.
  • the resistivity of the high-resistance silicon core 2 may be greater than or equal to 1000 ⁇ cm.
  • the resistivity of the high-resistance silicon core 2 may be a silicon core rod not lower than 1000 ⁇ cm or the like.
  • the polysilicon reduction furnace 100 of the embodiment of the present application by setting the gas heater 4, 9N nitrogen gas is used to enter the gas heater 4, and the heated gas is passed into the reduction furnace to preheat the high resistance silicon core 2.
  • the thermal resistivity of the silicon core 2 will rapidly decrease, and then the high-resistance silicon core 2 will be activated through the power supply system to solve the problem that the high-resistivity and high-voltage electrical appliances are difficult to break down the silicon core.
  • the high-resistance silicon core 2 in the reduction furnace is preheated by hot gas.
  • the entire system is a closed system.
  • the gas purity can be guaranteed, the operation is simple, and it is safe and reliable, which can solve the problem of high-resistance silicon cores in related technologies.
  • the furnace problem improves the purity stability of electronic-grade polysilicon, reduces the introduction of system impurities, and produces high-purity electronic-grade polysilicon products.
  • the polysilicon reduction furnace has the following advantages: First, the present application can solve the problem of openings on the top of the reduction furnace, reduce the processing and manufacturing cost of the reduction furnace device, and provide equipment safety at the same time. Secondly, this application can guarantee the success rate of high-resistance silicon core breakdown, and ensure the stable operation of the system.
  • the reduction furnace silicon core is completely in a closed system, free from external secondary pollution, and greatly improves product quality stability. Thirdly, heating the silicon core by gas makes all parts of the silicon core more evenly heated, avoiding temperature gradients in the silicon core, and improving production efficiency. At the same time, the operation is simple, the investment cost is low, and the maintenance is convenient.
  • the method for starting a polysilicon reduction furnace includes: installing a high-resistance silicon core on the bottom plate of the polysilicon reduction furnace, and covering the bottom plate with a reduction furnace cylinder;
  • the gas for a first predetermined time is introduced into the reduction furnace at a first predetermined flow rate to replace the air in the reduction furnace;
  • the gas heater is turned on, the gas is heated to a predetermined temperature, and the heated gas is used for the second
  • the flow enters the reduction furnace for a second predetermined time; the gas heater is turned off, the air intake into the reduction furnace is stopped, and the pressure in the reduction furnace is maintained at a predetermined pressure; the heated gas is processed
  • the high-resistance silicon core is subjected to breakdown treatment.
  • the method for starting the polysilicon reduction furnace according to the embodiment of the second aspect of the present application facilitates the starting of the high-resistance silicon core.
  • 9N nitrogen gas is introduced into the gas heater for heating, and then the high-temperature gas and the high-resistance silicon core are preheated, thereby reducing the start-up resistivity of the high-resistance silicon core .
  • the gas heater can heat the nitrogen gas into the reduction furnace when the reduction furnace is shut down to avoid the rapid cooling of the surface of the hot silicon rod caused by the cold gas introduced in the later period, which will cause the silicon rod to burst.
  • the method for starting the polysilicon reduction furnace according to the embodiment of the present application can solve the problems of high resistivity, difficult breakdown of high-voltage electrical appliances, and the occurrence of silicon rods bursting when the temperature of the subsequent shutdown gas is low.
  • the first predetermined time is 0.25-0.5h; for example, the first predetermined time may be 0.25h, 0.35h, 0.45h, 0.5h, or the like.
  • the second predetermined time is 1.5h-2.0h; for example, the second predetermined time may be 1.5h, 1.75h, 2.0h, or the like.
  • the predetermined temperature is 250°C-300°C; for example, the predetermined temperature may be, for example, 250°C, 265°C, 275°C, 290°C, or 300°C.
  • the predetermined temperature of the heating gas is set to 250°C. °C-300°C, it is helpful to shorten the heating time of high resistance silicon core and improve efficiency.
  • Nm3 refers to the gas volume at 0 degrees Celsius and 1 standard atmosphere
  • N represents the standard condition (Normal Condition), that is, the air condition is: one standard atmosphere, temperature of 0°C, and relative humidity of 0%
  • m3 refers to the volume of gas under actual working conditions.
  • the predetermined pressure is 0.05 mpa. In this way, it is convenient to further use high-voltage electrical appliances to break down the high-resistance silicon core, and switch to normal operation after the start-up is completed.
  • the method for starting the polysilicon reduction furnace according to the embodiment of the second aspect of the present application further includes the step of depositing polysilicon on the silicon core after the breakdown treatment.
  • the step of depositing polycrystalline silicon may include: passing materials into the polycrystalline silicon reduction furnace, and controlling the current of the polycrystalline silicon reduction furnace to make the materials react to form polycrystalline silicon.
  • the type of material can be set according to the existing technology, for example, the material can include trichlorosilane and hydrogen.
  • the reduction furnace barrel is buckled, high-purity nitrogen is introduced into the reduction furnace for replacement, and the air in the reduction furnace is driven away.
  • the replacement time is 0.5h; after the replacement is completed , Turn on the gas heater (such as high-purity nitrogen heater) to heat the nitrogen, and then pass it into the reduction furnace, control the flow of nitrogen to be about 150Nm3, and the outlet temperature of nitrogen to 200°C. Pass the hot nitrogen and high resistance silicon core Heating, due to the thermal conductivity of the high-resistance silicon core itself, the resistivity drops rapidly after heating, which is convenient for high-pressure breakdown.
  • the replacement time is about 2h. Turn off the gas heater and stop the air intake. The pressure in the reduction furnace is maintained at 0.05mpa, and then used The high-voltage electrical apparatus breaks down the silicon core and transfers to normal operation after the start-up is completed.
  • the 9N high-purity gas completely used in this application does not require any heating medium to be placed in the reduction furnace, which greatly reduces the risk of introducing external impurities and ensures the stability of product quality.

Abstract

提供一种多晶硅还原炉及其启炉方法,该多晶硅还原炉包括:底盘(1),底盘上设有进气管(11)和出气管(12);高阻值硅芯(2),设在底盘上;还原炉筒体(3),适于罩设在底盘上,还原炉筒体内限定有空腔;气体加热器(4),其上形成有气体进口(41)和气体出口(42);物料系统换热器(5),其上形成有物料系统进口(51)和物料系统出口(52);气体管道(6),其被构造成与气体出口和物料系统出口中的其中一个连通;经气体加热器加热后的气体适于经由气体管道和进气管进入空腔内以加热高阻值硅芯。该启炉方法包括:向还原炉内以第一预定流量通入第一预定时间的气体以置换还原炉内的空气;开启气体加热器,将气体加热至预定温度并将加热后的气体以第二流量通入还原炉内第二预定时间;关闭气体加热器,停止向还原炉内进气,并将还原炉内的压力维持在预定压力;将经加热气体处理后的高阻值硅芯进行击穿处理。该多晶硅还原炉通过气体加热器对气体进行加热,热态气体将还原炉内的高阻值硅芯预热,使整个系统密闭,能够保证气体纯度,操作简便,安全可靠。

Description

多晶硅还原炉及其启炉方法
相关申请的交叉引用
本申请要求申请号为201910790996.3和201921396516.7、申请日为2019年8月26日的中国专利申请的优先权和权益,上述中国专利申请的全部内容在此通过引用并入本申请。
技术领域
本申请的实施例涉及多晶硅制作技术领域,尤其是涉及一种多晶硅还原炉及多晶硅还原炉的启炉方法。
背景技术
相关技术中,制备高纯电子级多晶硅的生产企业基本上全部采用传统的内置石英灯的加热方式给硅芯加热,然而,此种方式较为繁琐,需要对还原炉内气体多次置换,在拆装过程中有可能其他杂质落入还原炉内,操作过程中还原炉仍需带电作业存在安全隐患,也不利于电子级多晶硅纯度提高。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的实施例的一个目的在于提出一种多晶硅还原炉,所述多晶硅还原炉操作简便且安全可靠。
本申请的实施例的另一个目的在于提出一种多晶硅还原炉的启炉方法,所述启炉方法有利于实现高阻值硅芯的启炉。
根据本申请实施例的多晶硅还原炉,包括:底盘,所述底盘上设有进气管和出气管;高阻值硅芯,所述高阻值硅芯设在所述底盘上;还原炉筒体,所述还原炉筒体适于罩设在所述底盘上,所述还原炉筒体内限定有空腔;气体加热器,所述气体加热器上形成有气体进口和气体出口;物料系统换热器,所述物料系统换热器上形成有物料系统进口和物料系统出口;气体管道,所述气体管道被构造成与所述气体出口和所述物料系统出口中的其中一个连通;其中,经所述气体加热器加热后的气体适于经由所述气体管道和所述进气管进入所述空腔内以加热所述高阻值硅芯。
根据本申请实施例的多晶硅还原炉,通过气体加热器对气体进行加热,通过热态气 体将还原炉内的高阻值硅芯预热,整个系统属于密闭系统,同时气体纯度能够保证,操作简便,安全可靠,从而可以解决相关技术中高阻值硅芯难以启炉的问题,提高电子级多晶硅纯度稳定性,减少系统杂质的引入,生产高纯电子级多晶硅产品。
另外,根据本申请上述实施例的多晶硅还原炉还具有如下附加的技术特征:
根据本申请的一些实施例,所述气体为高纯惰性气体。
进一步地,所述高纯惰性气体为氮气。
在本申请的一些实施例中,所述气体为高纯氢气。
根据本申请的一些实施例,所述气体出口处设有第一开关阀,所述物料系统出口处设有第二开关阀,所述第一开关阀和所述第二开关阀中的其中一个关闭且另一个打开。
在本申请的一些实施例中,所述气体管道上设有温度检测件以检测经所述进气管进入所述空腔内的气体的温度。
根据本申请的一些实施例,所述气体管道上设有压力检测件以检测经所述进气管进入所述空腔内的气体的压力。
根据本申请的一些实施例,所述高阻值硅芯的电阻率不低于1000Ω·cm。
根据本申请第二方面实施例的多晶硅还原炉的启炉方法,包括:将高阻值硅芯安装至所述多晶硅还原炉的底盘上,并在所述底盘上罩设还原炉筒体;向所述还原炉内以第一预定流量通入第一预定时间的气体以置换所述还原炉内的空气;开启气体加热器,将所述气体加热至预定温度并将加热后的气体以第二流量通入所述还原炉内第二预定时间;关闭所述气体加热器,停止向所述还原炉内进气,并将所述还原炉内的压力维持在预定压力;将经加热气体处理后的高阻值硅芯进行击穿处理。
进一步,所述第一预定时间为0.25h-0.5h;和/或所述第二预定时间为1.5h-2.0h;和/或所述预定温度为250℃-300℃;和/或所述第一流量为150Nm3;和/或所述第二流量为150Nm3;和/或所述预定压力为0.05mpa。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的多晶硅还原炉的一个示意图,其中,图中的箭头指向代表气体的流向。
附图标记:
多晶硅还原炉100,
底盘1,进气管11,出气管12,
高阻值硅芯2,
还原炉筒体3,空腔30,
气体加热器4,气体进口41,气体出口42,第一开关阀421,
物料系统换热器5,物料系统进口51,物料系统出口52,
气体管道6,温度检测件61,压力检测件62。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
相关技术中,多晶硅材料是以工业硅为原料经一系列的物理化学反应提纯后达到一定纯度的电子材料,是硅产品产业链中的一个极为重要的中间产品,是制造硅抛光片、太阳能电池及高纯硅制品的主要原料,是信息产业和新能源产业最基础的原材料。
电子级硅(EG):一般要求含Si>99.9999%以上,超高纯达到99.9999999%~99.999999999%(9~11个9)。其导电性介于10-4–1010欧厘米。电子级高纯多晶硅以9N以上为宜。
目前制备高纯电子级多晶硅的生产企业基本上全部采用传统的内置石英灯的加热方式给硅芯加热,在还原炉顶部开设直径约φ300mm的法兰孔,需要启动时将石英灯放置在还原炉内给硅芯加热,高阻硅芯被加热之后电阻率迅速降低,然后通过高低压电器控制系统启动硅芯,硅芯被击穿之后将石英灯从顶部再取出,拆取石英灯的同时还原炉不能断电,还要保持硅芯通电运行,避免断电后硅芯温度降低,再次难以启动的问题。
然而,上述的硅芯加热方式,主要是利用石英灯具给硅芯加热,存在的缺点如下:其一,此加热方式需要在还原炉顶部开设洞口,将会造成设备顶部加工难度及投资费用,存在设备顶部焊缝泄漏问题。其二,该加热方式采用内置石英灯,需要拆装顶部石英灯具,存在外界气体或其他物件落入还原炉内部风险,一旦出现此问题就需要重新对还原炉拆装取出,操作极为复杂不便。其三,拆卸石英灯加热装置时,还原炉内需要保持正压防止外界气体进入炉内,待顶部石英灯完全抽出后再用盲板将顶部洞口封堵,在封堵完毕后需要对密封面进行检漏,存在密封面二次泄漏处理风险。其四,拆卸石英灯加热装置时,还原炉内硅棒仍通电运行,若硅棒靠壁碰到炉筒瞬间存在作业人员触电风险。其五,石英灯为耗材,往复高低温切 换,内部发热体使用寿命较短,成本较高。
下面参考附图描述根据本申请实施例的多晶硅还原炉100。所述多晶硅还原炉100可以解决高阻值硅芯难以启炉的问题,提高电子级多晶硅纯度稳定性,减少系统杂质的引入,生产高纯电子级多晶硅产品。
参照图1,根据本申请实施例的多晶硅还原炉100,包括:底盘1、高阻值硅芯2、还原炉筒体3、气体加热器4、物料系统换热器5以及气体管道6。
具体而言,底盘1上可以设有进气管11和出气管12;气体(例如高纯气体)可以经由进气管11进入还原炉内,再进一步经由出气管12排出。
高阻值硅芯2可以设在底盘1上。高阻值硅芯2可以包括多个,多个高阻值硅芯2可以在底盘1上间隔开设置。在本申请的描述中,“多个”的含义是两个或两个以上。
还原炉筒体3适于罩设在底盘1上,还原炉筒体3内限定有空腔30。当将高阻值硅芯2安装在底盘1上时,可以在底盘1上罩设还原炉筒体3,从而便于进一步在底盘1和还原炉筒体3之间形成密闭系统。
气体加热器4上可以形成有气体进口41和气体出口42。气体加热器4的加热温度可以根据需要适应性调整。其中,当开启气体加热器4时,气体可以经由气体进口41进入气体加热器4,经气体加热器4加热后的气体可以经由气体出口42排出,这样可以向还原炉内输送加热后的气体,从而可以通过热态气体实现对高阻值硅芯2的预热。
物料系统换热器5上可以形成有物料系统进口51和物料系统出口52。物料气体可以经由物料系统进口51进入物料系统换热器5,再经由物料系统出口52进一步输送至还原炉内。
气体管道6被构造成与气体出口42和物料系统出口52中的其中一个连通。气体出口42适于通过气体管道6、进气管11与空腔30连通,物料系统出口52适于通过气体管道6、进气管11与空腔30连通。
例如,在同一时刻,气体管道6只可以连通气体出口42和物料系统出口52中的其中一个,当气体管道6与气体出口42连通时,气体管道6和物料系统出口52不连通;当气体管道6与物料系统出口52连通时,气体管道6和气体出口42不连通。
根据本申请实施例的多晶硅还原炉100,可以采用对9N(其中,N个9代表气体的纯度。99.9%=3N,99.99%=4N,9越多表示气体的纯度越高)的高纯气体进行加热的方式实现对高阻值硅芯2的预热。
其中,经气体加热器4加热后的气体(例如高纯气体)适于经由气体管道6和进气管11进入空腔30内以加热高阻值硅芯2。由此,通过热态气体可以将还原炉内的高阻值硅芯2预热,整个系统属于密闭系统,同时气体纯度能够保证,操作简便,安全可靠, 从而可以解决相关技术中高阻值硅芯难以启炉的问题,提高电子级多晶硅纯度稳定性,减少系统杂质的引入,生产高纯电子级多晶硅产品。
根据本申请实施例的多晶硅还原炉100,充分的利用了高纯热态氮气通过气体管道6直接送入还原炉即可,可避免相关技术中采用石英灯、卤素灯及碳棒直接伸入还原炉内,本申请的多晶硅还原炉100,无需对还原炉顶部洞口进行拆装和多次置换,操作方式更加简单、温度可调。
根据本申请实施例的多晶硅还原炉100,通过气体加热器4对气体进行加热,通过热态气体将还原炉内的高阻值硅芯2预热,整个系统属于密闭系统,同时气体纯度能够保证,操作简便,安全可靠,从而可以解决相关技术中高阻值硅芯难以启炉的问题,提高电子级多晶硅纯度稳定性,减少系统杂质的引入,生产高纯电子级多晶硅产品。
根据本申请的一些实施例,所述气体可以为高纯惰性气体。进一步地,高纯惰性气体可以为例如氮气等。由此,通过将所述气体采用9N的高纯气体,还原炉内可以不用再放置任何加热介质,大大降低了外在杂质引入风险,保证了产品质量的稳定性。
当然,本申请不限于此,在本申请的一些可选的实施例中,所述气体也可以为例如高纯氢气等。
参照图1,根据本申请的一些实施例,气体出口42处可以设有第一开关阀421,物料系统出口52处可以设有第二开关阀521,第一开关阀421和第二开关阀521中的其中一个关闭且另一个打开。例如,当第一开关阀421打开时,第二开关阀521关闭;当第二开关阀521打开时,第一开关阀421关闭。
具体地,当第一开关阀421打开,第二开关阀521关闭时,所述气体可以经由气体出口42、气体通道5、进气管11进入还原炉内。当第二开关阀521打开,第一开关阀421关闭时,所述气体可以经由物料系统出口52、气体通道5、进气管11进入还原炉内。
结合图1,在本申请的一些实施例中,气体管道6上可以设有温度检测件61以检测经进气管11进入空腔30内(例如还原炉内)的气体的温度。温度检测件61可以为例如温度表等,通过在气体管道6上设置温度检测件61,便于通过温度检测件61直观地观察进气的温度。
当然,在本申请的其他实施例中,温度检测件61也可以为其他的类型等,本申请对此不作具体限定。
根据本申请的一些实施例,气体管道6上设有压力检测件62以检测经进气管11进入空腔30内(例如还原炉内)的气体的压力。压力检测件62可以为例如压力表等,通过在气体管道6上设置压力检测件62,便于通过压力检测件62直观地观察进气的压力。
当然,在本申请的其他实施例中,压力检测件62也可以为其他的类型等,本申请对 此不作具体限定。
在本申请的一些具体实施例中,出气管12处也可以设有对应的温度检测件以检测出气的温度,出气管12处也可以设有对应的压力检测件以检测出气的压力。
根据本申请的一些实施例,高阻值硅芯2的电阻率不低于1000Ω·cm。例如,在本申请的一些具体实施例中,高阻值硅芯2的电阻率可以大于或者等于1000Ω·cm。在本申请的一些可选的实施例中,高阻值硅芯2的电阻率可以为不低于1000Ω·cm的硅芯棒等。
下面结合附图描述根据本申请多晶硅还原炉100的具体实施例。
参照图1,根据本申请实施例的多晶硅还原炉100,包括:底盘1、高阻值硅芯2、还原炉筒体3、气体加热器4、物料系统换热器5以及气体管道6。
具体而言,底盘1上可以设有进气管11和出气管12;气体(例如高纯气体)可以经由进气管11进入还原炉内,再进一步经由出气管12排出。
高阻值硅芯2可以设在底盘1上。高阻值硅芯2可以包括多个,多个高阻值硅芯2可以在底盘1上间隔开设置。在本申请的描述中,“多个”的含义是两个或两个以上。
还原炉筒体3适于罩设在底盘1上,还原炉筒体3内限定有空腔30。当将高阻值硅芯2安装在底盘1上时,可以在底盘1上罩设还原炉筒体3,从而便于进一步在底盘1和还原炉筒体3之间形成密闭系统。
气体加热器4上可以形成有气体进口41和气体出口42。气体加热器4的加热温度可以根据需要适应性调整。其中,当开启气体加热器4时,气体可以经由气体进口41进入气体加热器4,经气体加热器4加热后的气体可以经由气体出口42排出,这样可以向还原炉内输送加热后的气体,从而可以通过热态气体实现对高阻值硅芯2的预热。
物料系统换热器5上可以形成有物料系统进口51和物料系统出口52。物料气体可以经由物料系统进口51进入物料系统换热器5,再经由物料系统出口52进一步输送至还原炉内。
气体管道6被构造成与气体出口42和物料系统出口52中的其中一个连通。气体出口42适于通过气体管道6、进气管11与空腔30连通,物料系统出口52适于通过气体管道6、进气管11与空腔30连通。
例如,在同一时刻,气体管道6只可以连通气体出口42和物料系统出口52中的其中一个,当气体管道6与气体出口42连通时,气体管道6和物料系统出口52不连通;当气体管道6与物料系统出口52连通时,气体管道6和气体出口42不连通。
根据本申请实施例的多晶硅还原炉100,可以采用对9N(其中,N个9代表气体的 纯度。99.9%=3N,99.99%=4N,9越多表示气体的纯度越高)的高纯气体进行加热的方式实现对高阻值硅芯2的预热。
其中,经气体加热器4加热后的气体(例如高纯气体)适于经由气体管道6和进气管11进入空腔30内以加热高阻值硅芯2。由此,通过热态气体可以将还原炉内的高阻值硅芯2预热,整个系统属于密闭系统,同时气体纯度能够保证,操作简便,安全可靠,从而可以解决相关技术中高阻值硅芯难以启炉的问题,提高电子级多晶硅纯度稳定性,减少系统杂质的引入,生产高纯电子级多晶硅产品。
根据本申请实施例的多晶硅还原炉100,充分的利用了高纯热态氮气通过气体管道6直接送入还原炉即可,可避免相关技术中采用石英灯、卤素灯及碳棒直接伸入还原炉内,本申请的多晶硅还原炉100,无需对还原炉顶部洞口进行拆装和多次置换,操作方式更加简单、温度可调。
根据本申请实施例的多晶硅还原炉100,通过气体加热器4对气体进行加热,通过热态气体将还原炉内的高阻值硅芯2预热,整个系统属于密闭系统,同时气体纯度能够保证,操作简便,安全可靠,从而可以解决相关技术中高阻值硅芯难以启炉的问题,提高电子级多晶硅纯度稳定性,减少系统杂质的引入,生产高纯电子级多晶硅产品。
根据本申请的一些实施例,所述气体可以为高纯惰性气体。进一步地,高纯惰性气体可以为例如氮气等。由此,通过将所述气体采用9N的高纯气体,还原炉内可以不用再放置任何加热介质,大大降低了外在杂质引入风险,保证了产品质量的稳定性。
参照图1,根据本申请的一些实施例,气体出口42处可以设有第一开关阀421,物料系统出口52处可以设有第二开关阀521,第一开关阀421和第二开关阀521中的其中一个关闭且另一个打开。例如,当第一开关阀421打开时,第二开关阀521关闭;当第二开关阀521打开时,第一开关阀421关闭。
具体地,当第一开关阀421打开,第二开关阀521关闭时,所述气体可以经由气体出口42、气体通道5、进气管11进入还原炉内。当第二开关阀521打开,第一开关阀421关闭时,所述气体可以经由物料系统出口52、气体通道5、进气管11进入还原炉内。
结合图1,在本申请的一些实施例中,气体管道6上可以设有温度检测件61以检测经进气管11进入空腔30内(例如还原炉内)的气体的温度。温度检测件61可以为例如温度表等,通过在气体管道6上设置温度检测件61,便于通过温度检测件61直观地观察进气的温度。
根据本申请的一些实施例,气体管道6上设有压力检测件62以检测经进气管11进入空腔30内(例如还原炉内)的气体的压力。压力检测件62可以为例如压力表等,通过在气体管道6上设置压力检测件62,便于通过压力检测件62直观地观察进气的压力。
在本申请的一些具体实施例中,出气管12处也可以设有对应的温度检测件以检测出气的温度,出气管12处也可以设有对应的压力检测件以检测出气的压力。
根据本申请的一些实施例,高阻值硅芯2的电阻率不低于1000Ω·cm。例如,在本申请的一些具体实施例中,高阻值硅芯2的电阻率可以大于或者等于1000Ω·cm。在本申请的一些可选的实施例中,高阻值硅芯2的电阻率可以为不低于1000Ω·cm的硅芯棒等。
由于多晶硅的半导体物理特性,温度越高则电阻率越低,高温氮气给高阻值硅芯2加热后电阻率迅速降低,可解决高阻硅芯不能击穿的问题。根据本申请实施例的多晶硅还原炉100,通过设置气体加热器4,采用9N氮气进入气体加热器4,被加热的气体通入还原炉内给高阻值硅芯2预热,由于高阻值硅芯2受热电阻率将迅速降低,然后再通过供电系统启动高阻值硅芯2,以此来解决电阻率高高压电器难以击穿硅芯的问题。
根据本申请实施例的多晶硅还原炉100,通过对9N(其中,N个9代表气体的纯度。99.9%=3N,99.99%=4N,9越多表示气体的纯度越高)的高纯气体进行加热,通过热态气体给还原炉内的高阻值硅芯2预热,整个系统属于密闭系统,同时气体纯度能够保证,操作简便,安全可靠,从而可以解决相关技术中高阻值硅芯难以启炉的问题,提高电子级多晶硅纯度稳定性,减少系统杂质的引入,生产高纯电子级多晶硅产品。
根据本申请实施例的多晶硅还原炉具有以下优点:其一,本申请可解决还原炉顶部开洞问题,降低还原炉装置的加工制造成本,同时提供设备安全性。其二,本申请可保证高阻硅芯击穿成功率,确保系统稳定运行,还原炉硅芯完全处于密闭系统,不受外界二次污染,大大提供产品质量稳定性。其三,通过气体给硅芯加热使得硅芯各部位受热更加均匀,避免硅芯出现温度梯度,可提供生产效率,同时操作简单,投资费用较低,维护便捷。
根据本申请第二方面实施例的多晶硅还原炉的启炉方法,包括:将高阻值硅芯安装至所述多晶硅还原炉的底盘上,并在所述底盘上罩设还原炉筒体;向所述还原炉内以第一预定流量通入第一预定时间的气体以置换所述还原炉内的空气;开启气体加热器,将所述气体加热至预定温度并将加热后的气体以第二流量通入所述还原炉内第二预定时间;关闭所述气体加热器,停止向所述还原炉内进气,并将所述还原炉内的压力维持在预定压力;将经加热气体处理后的高阻值硅芯进行击穿处理。
根据本申请第二方面实施例的多晶硅还原炉的启炉方法,便于实现高阻值硅芯的启炉。
根据本申请实施例的多晶硅还原炉的启炉方法,通过通入9N氮气进入气体加热器中进 行加热,然后高温气体与高阻值硅芯进行预热,从而降低高阻值硅芯启动电阻率。同样该气体加热器还能在还原炉运行结束停炉时将氮气加热通入还原炉,避免后期通入冷态的气体对热态硅棒表面造成急速冷却,造成硅棒炸裂情况。
根据本申请实施例的多晶硅还原炉的启炉方法,可以解决电阻率高,高压电器难以击穿的问题,以及后续停炉气体温度较低情况而致时硅棒出现炸裂情况。
进一步,所述第一预定时间为0.25-0.5h;例如,所述第一预定时间可以为0.25h、0.35h、0.45h或0.5h等。和/或所述第二预定时间为1.5h-2.0h;例如,所述第二预定时间可以为1.5h、1.75h或2.0h等。
和/或所述预定温度为250℃-300℃;例如,所述预定温度可以为例如250℃、265℃、275℃、290℃或300℃等,这样通过将加热气体的预定温度设置为250℃-300℃,有利于缩短高阻值硅芯的加热时间,提高效率。
和/或所述第一流量为150Nm3和/或所述第二流量为150Nm3。其中,Nm3,是指在0摄氏度1个标准大气压下的气体体积;N代表标准条件(Normal Condition),即空气的条件为:一个标准大气压,温度为0℃,相对湿度为0%。m3,是指实际工作状态下气体体积。
和/或所述预定压力为0.05mpa。这样便于进一步采用高压电器对高阻值硅芯进行击穿,完成启动工作后转入正常操作。
根据本申请第二方面实施例的多晶硅还原炉的启炉方法,还包括在击穿处理后的硅芯上沉积多晶硅的步骤。其中,沉积多晶硅的步骤可以包括:向多晶硅还原炉中通入物料,并控制多晶硅还原炉的电流以使得物料反应形成多晶硅。物料的种类可以根据现有技术进行设定,例如物料可以包括三氯氢硅和氢气。
下面描述根据本申请的多晶硅还原炉的启炉方法的一个具体实施例。
具体而言,还原炉内高阻值硅芯安装完毕后,扣上还原炉筒,向还原炉内通入高纯氮气进行置换,赶走还原炉内空气,置换时间为0.5h;置换完毕后,将气体加热器(例如高纯氮气加热器)打开给氮气加热,然后再通入还原炉内,控制氮气的流量约150Nm3,氮气的出口温度200℃,通过热态氮气与高阻值硅芯加热,由于高阻值硅芯自身的热传导性,受热后电阻率迅速降低,便于高压击穿,置换时间约2h,关闭气体加热器,停止进气,还原炉内压力维持为0.05mpa,然后采用高压电器对硅芯进行击穿,完成启动工作后转入正常操作。
本申请完全采用的9N的高纯气体,还原炉内不用再放置任何加热介质,大大降低了外在杂质引入风险,保证了产品质量的稳定性。
本申请已在实际生产中得到实际的应用,运行过程稳定可靠,确保启炉成功率,缩短启炉时间和还原炉置换时间,操作简单可靠,可保证电子级多晶硅产品质量稳定性。
根据本申请实施例的多晶硅还原炉及其启炉方法的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种多晶硅还原炉,其特征在于,包括:
    底盘,所述底盘上设有进气管和出气管;
    高阻值硅芯,所述高阻值硅芯设在所述底盘上;
    还原炉筒体,所述还原炉筒体适于罩设在所述底盘上,所述还原炉筒体内限定有空腔;
    气体加热器,所述气体加热器上形成有气体进口和气体出口;
    物料系统换热器,所述物料系统换热器上形成有物料系统进口和物料系统出口;
    气体管道,所述气体管道被构造成与所述气体出口和所述物料系统出口中的其中一个连通;
    其中,经所述气体加热器加热后的气体适于经由所述气体管道和所述进气管进入所述空腔内以加热所述高阻值硅芯。
  2. 根据权利要求1所述的多晶硅还原炉,其特征在于,所述气体为高纯惰性气体。
  3. 根据权利要求2所述的多晶硅还原炉,其特征在于,所述高纯惰性气体为氮气。
  4. 根据权利要求1所述的多晶硅还原炉,其特征在于,所述气体为高纯氢气。
  5. 根据权利要求1-4中任一项所述的多晶硅还原炉,其特征在于,所述气体出口处设有第一开关阀,所述物料系统出口处设有第二开关阀,所述第一开关阀和所述第二开关阀中的其中一个关闭且另一个打开。
  6. 根据权利要求1-5中任一项所述的多晶硅还原炉,其特征在于,所述气体管道上设有温度检测件以检测经所述进气管进入所述空腔内的气体的温度。
  7. 根据权利要求1-6中任一项所述的多晶硅还原炉,其特征在于,所述气体管道上设有压力检测件以检测经所述进气管进入所述空腔内的气体的压力。
  8. 根据权利要求1-7中任一项所述的多晶硅还原炉,其特征在于,所述高阻值硅芯的电阻率不低于1000Ω·cm。
  9. 一种根据权利要求1-8中任一项所述的多晶硅还原炉的启炉方法,其特征在于,将高阻值硅芯安装至所述多晶硅还原炉的底盘上,并在所述底盘上罩设还原炉筒体;
    向所述还原炉内以第一预定流量通入第一预定时间的气体以置换所述还原炉内的空气;
    开启气体加热器,将所述气体加热至预定温度并将加热后的气体以第二流量通入所述还原炉内第二预定时间;
    关闭所述气体加热器,停止向所述还原炉内进气,并将所述还原炉内的压力维持在 预定压力;
    将经加热气体处理后的高阻值硅芯进行击穿处理。
  10. 根据权利要求9所述的多晶硅还原炉的启炉方法,其特征在于,
    所述第一预定时间为0.25h-0.5h;和/或
    所述第二预定时间为1.5h-2.0h;和/或
    所述预定温度为250℃-300℃;和/或
    所述第一流量为150Nm3;和/或
    所述第二流量为150Nm3;和/或
    所述预定压力为0.05mpa。
PCT/CN2020/109236 2019-08-26 2020-08-14 多晶硅还原炉及其启炉方法 WO2021036826A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910790996.3 2019-08-26
CN201921396516.7 2019-08-26
CN201910790996.3A CN110451511A (zh) 2019-08-26 2019-08-26 多晶硅还原炉及其启炉方法
CN201921396516.7U CN210825442U (zh) 2019-08-26 2019-08-26 多晶硅还原炉

Publications (1)

Publication Number Publication Date
WO2021036826A1 true WO2021036826A1 (zh) 2021-03-04

Family

ID=74685056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109236 WO2021036826A1 (zh) 2019-08-26 2020-08-14 多晶硅还原炉及其启炉方法

Country Status (1)

Country Link
WO (1) WO2021036826A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102874814A (zh) * 2012-09-19 2013-01-16 特变电工新疆硅业有限公司 一种多晶硅还原生产工艺及装置
CN104129788A (zh) * 2014-08-11 2014-11-05 重庆大全泰来电气有限公司 一种多晶硅还原炉的启动系统
CN109292777A (zh) * 2017-07-24 2019-02-01 新特能源股份有限公司 多晶硅还原炉启炉的硅芯击穿方法、启炉方法、生产多晶硅的方法及装置
CN110451511A (zh) * 2019-08-26 2019-11-15 洛阳中硅高科技有限公司 多晶硅还原炉及其启炉方法
CN210825442U (zh) * 2019-08-26 2020-06-23 洛阳中硅高科技有限公司 多晶硅还原炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102874814A (zh) * 2012-09-19 2013-01-16 特变电工新疆硅业有限公司 一种多晶硅还原生产工艺及装置
CN104129788A (zh) * 2014-08-11 2014-11-05 重庆大全泰来电气有限公司 一种多晶硅还原炉的启动系统
CN109292777A (zh) * 2017-07-24 2019-02-01 新特能源股份有限公司 多晶硅还原炉启炉的硅芯击穿方法、启炉方法、生产多晶硅的方法及装置
CN110451511A (zh) * 2019-08-26 2019-11-15 洛阳中硅高科技有限公司 多晶硅还原炉及其启炉方法
CN210825442U (zh) * 2019-08-26 2020-06-23 洛阳中硅高科技有限公司 多晶硅还原炉

Similar Documents

Publication Publication Date Title
CN102897995B (zh) 一种石英管、石英棒连熔炉
CN201187942Y (zh) 冷顶保护可控气氛高温升降炉
CN102896391B (zh) 一种链式真空炉
CN106705649A (zh) 一种工业用真空冶炼炉
CN210825442U (zh) 多晶硅还原炉
CN105688778A (zh) 一种闭路循环高温气流反应装置
CN102297583A (zh) 一种蒸汽氧化井式炉
WO2021036826A1 (zh) 多晶硅还原炉及其启炉方法
CN102534128A (zh) 箱式保护气氛退火炉
CN204550074U (zh) 一种工业硅熔体精炼用感应吹炼炉
CN203855414U (zh) 管式石墨化炉
CN103172381B (zh) 冷壁流化床的制备方法及其应用
CN110451511A (zh) 多晶硅还原炉及其启炉方法
CN105627746A (zh) 一种工业熔炼电炉
CN110512281B (zh) 快速制备碳化硅的方法
CN201169598Y (zh) 一种镍铁软磁合金磁化热处理装置
CN206247876U (zh) 一种硅碳棒生产保护装置
CN101830634B (zh) 太阳能真空管高频电封离装置及其封离方法
CN213327748U (zh) 热镀锌连续退火炉rtf高温辐射计冷却装置
CN103908848A (zh) 气体除尘净化方法及系统
CN110499532B (zh) 快速制备碳化硅的装置
CN101520096A (zh) 高温阀门
CN207344934U (zh) 轮胎生产用气囊加热系统
CN202129442U (zh) 一种金属或金属氧化物粉体材料的焙烧装置
CN205537108U (zh) 一种工业熔炼电炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858941

Country of ref document: EP

Kind code of ref document: A1