WO2021036794A1 - 一种控制方法和控制器 - Google Patents

一种控制方法和控制器 Download PDF

Info

Publication number
WO2021036794A1
WO2021036794A1 PCT/CN2020/108812 CN2020108812W WO2021036794A1 WO 2021036794 A1 WO2021036794 A1 WO 2021036794A1 CN 2020108812 W CN2020108812 W CN 2020108812W WO 2021036794 A1 WO2021036794 A1 WO 2021036794A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
value
rotor position
bus current
real
Prior art date
Application number
PCT/CN2020/108812
Other languages
English (en)
French (fr)
Inventor
王倩男
阿勒普 加纳
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP20858002.7A priority Critical patent/EP4007158A4/en
Publication of WO2021036794A1 publication Critical patent/WO2021036794A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0025Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control implementing a off line learning phase to determine and store useful data for on-line control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Definitions

  • the present invention relates to the technical field of motors, in particular to a control method and a controller.
  • the power of pure electric vehicles mainly comes from motors, while permanent magnet synchronous motors have been widely used due to their high power density and high efficiency.
  • the bus current is required to monitor the state of the current controller, so the bus current of the current controller needs to be obtained.
  • ta1/T, tb1/T, and tc1/T are the PWM (Pulse Width Modulation) duty ratios of the three bridge arms, respectively.
  • PWM Pulse Width Modulation
  • this method actually compensates for the PWM duty ratio.
  • the maximum compensation value can only be one cycle before and after.
  • this method is easy to be restricted and not flexible enough, so that engineers cannot grasp the bus current value at any time, which makes it more difficult to control the motor.
  • the present invention proposes a control method to solve the problem that the existing bus current estimation control method is easily restricted by working conditions, which leads to increased difficulty in controlling the motor.
  • a control method applied to a controller of a permanent magnet synchronous motor comprising:
  • Low-pass filtering is performed on the estimated value of the bus current to obtain the target bus current value.
  • the permanent magnet synchronous motor is controlled according to the target bus current value.
  • the rotor position is a rotor rotation angle
  • the use of the motor speed to compensate the rotor position to obtain the real-time rotor position includes:
  • the preset rotor position information compensation table records the motor speed and the rotor Correspondence of rotation angle compensation value
  • the rotor position is compensated to obtain the real-time rotor position.
  • the preset rotor position information compensation table is obtained through the following steps:
  • the preset rotor position information compensation table is determined according to the actual value of the bus current and the test value of the bus current.
  • the determining the preset rotor position information compensation table according to the actual bus current value and the test bus current value includes:
  • the compensation value of the test rotor position corresponding to the rotation speed of each test motor is determined according to the difference.
  • the converting the quadrature-axis current and the direct-axis current into real-time three-phase current according to the real-time rotor position includes:
  • the static two-phase current relative to the stator is transformed into a real-time three-phase current.
  • the determining the estimated value of the bus current according to the real-time three-phase current and the pulse width modulation duty ratio of the three-way bridge arm includes:
  • control method of the present invention has the following advantages:
  • the control method of the present invention compensates the rotor position according to the motor speed by collecting the rotor position, motor speed, quadrature axis current, direct axis current and the pulse width modulation duty ratio of the three-way bridge arm of the permanent magnet synchronous motor, and then Calculate the three-phase current according to the compensated rotor position information, and finally use the three-phase current and the PWM value as the calculation input of the bus current to determine the estimated value of the bus current. After low-pass filtering the bus current, the target bus current value is obtained. The target bus current value controls the permanent magnet synchronous motor.
  • the above method can compensate the three-phase current at any position. In all working conditions, no matter the motor speed is high or low speed, there is a high estimation accuracy. This allows engineers to grasp the bus current at any time, and then realize the permanent magnet Precise control of synchronous motors.
  • Another object of the present invention is to provide a controller to solve the problem that the existing bus current estimation method is easily restricted by working conditions, which causes the difficulty of controlling the motor to increase.
  • a controller includes:
  • the acquisition module is used to acquire the rotor position, the motor speed, the quadrature axis current, the direct axis current and the pulse width modulation duty cycle of the three-way bridge arm of the permanent magnet synchronous motor;
  • a real-time rotor position acquisition module configured to use the motor speed to compensate the rotor position to obtain the real-time rotor position
  • a real-time three-phase current conversion module configured to convert the quadrature-axis current and the direct-axis current into real-time three-phase current according to the real-time rotor position;
  • a bus current estimation module configured to determine the estimated value of the bus current according to the real-time three-phase current and the pulse width modulation duty cycle of the three-way bridge arm;
  • the low-pass filtering module is used to perform low-pass filtering on the estimated value of the bus current to obtain the target bus current value.
  • the control module is used to control the permanent magnet synchronous motor according to the target bus current value.
  • the rotor position is a rotor rotation angle
  • the real-time rotor position acquiring module includes:
  • the query sub-module is configured to use the motor speed to query the rotor rotation angle compensation value corresponding to the motor speed from a preset rotor position information compensation table; the preset rotor position information compensation table records the The corresponding relationship between the motor speed and the rotor rotation angle compensation value;
  • the compensation sub-module is used to compensate the rotor position according to the rotor rotation angle compensation value to obtain the real-time rotor position.
  • controller further includes:
  • a rotation speed selection module for selecting a plurality of test motor rotation speeds within the rotation speed range of the permanent magnet synchronous motor
  • the bus current determination module is used to determine the actual bus current value and the bus current test value corresponding to the test motor speed for each test motor speed;
  • a compensation value determining module configured to determine a corresponding rotor rotation angle compensation value according to the actual value of the bus current corresponding to the rotation speed of the test motor and the test value of the bus current;
  • the adding module is used to add the rotor rotation angle compensation value and the test motor speed according to the corresponding relationship to the rotor position information compensation table.
  • the compensation value determining module includes:
  • the difference calculation sub-module is used to calculate the difference between the actual bus current value and the bus current test value corresponding to the rotation speed of each test motor;
  • the compensation value determining sub-module is used to determine the compensation value of the test rotor position corresponding to the rotation speed of each test motor according to the difference value.
  • the real-time three-phase current conversion module includes:
  • the first transformation sub-module is configured to transform the quadrature axis current and the direct axis current into two-phase currents that are stationary relative to the stator according to the real-time rotor position;
  • the second transformation sub-module is used to transform the stationary two-phase current relative to the stator into a real-time three-phase current.
  • bus current estimation module includes:
  • a product calculation sub-module for calculating the product of the current corresponding to the bridge arm and the pulse width modulation duty cycle corresponding to the bridge arm in the real-time three-phase current for each bridge arm;
  • the bus current estimation sub-module is used to calculate the sum of the products corresponding to the three bridge arms to obtain the estimated bus current value.
  • controller and the above-mentioned control method have the same advantages over the prior art, and will not be repeated here.
  • Fig. 1 shows one of the flowcharts of the control method described in the embodiment of the present invention
  • Figure 2 shows the second flow chart of the control method described in the embodiment of the present invention
  • Fig. 3 shows a schematic diagram of the three-phase full-bridge inverter circuit described in the embodiment of the present invention
  • FIG. 4 shows a schematic diagram of the voltage space vector relationship described in the embodiment of the present invention.
  • FIG. 5 shows one of the structural block diagrams of the controller described in the embodiment of the present invention.
  • Figure 6 shows the second structural block diagram of the controller described in the embodiment of the present invention.
  • Fig. 7 schematically shows a block diagram of a computing processing device for executing the method according to the present invention.
  • Fig. 8 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present invention.
  • Fig. 1 shows one of the flowcharts of the control method described in the embodiment of the present invention, and the method may include:
  • Step 101 Collect the rotor position, motor speed, quadrature axis current, direct axis current, and pulse width modulation duty cycle of the three-way bridge arm of the permanent magnet synchronous motor.
  • the permanent magnet synchronous motor is a synchronous motor that is excited by permanent magnets to generate a synchronous rotating magnetic field.
  • the permanent magnet acts as a rotor to generate a rotating magnetic field.
  • the three-phase stator winding reacts through the armature under the action of the rotating magnetic field to induce three-phase symmetry. Current.
  • the kinetic energy of the rotor is converted into electrical energy, and the permanent magnet synchronous motor is used as a generator; in addition, when three-phase symmetrical current is applied to the stator side, since the three-phase stator is 120 degrees in space, the three-phase stator current is generated in the space In the rotating magnetic field, the rotor is moved by electromagnetic force in the rotating magnetic field. At this time, electrical energy is converted into kinetic energy, and the permanent magnet synchronous motor is used as a motor.
  • the field-oriented coordinates decompose the stator current of the three-phase AC motor into the excitation current component and the torque current component, and make these two components mutually interact.
  • Vertical, independent of each other that is, quadrature axis current and direct axis current.
  • the quadrature axis is also called the q axis
  • the direct axis is also called the d axis. They are actually coordinate axes, not actual axes.
  • a coordinate system is established on the motor rotor. This coordinate system rotates synchronously with the rotor.
  • the direction of the rotor magnetic field is taken as the d axis and the direction perpendicular to the rotor magnetic field is taken as q-axis.
  • the quadrature axis current and the direct axis current can be directly read by the measuring tool during the working process of the motor.
  • the rotor position information can be obtained through a resolver coaxial with the rotor;
  • the motor speed information can be obtained by the Hall switch detection method, that is, a magnet is fixed on the rotating part of the motor, and a Hall switch is set on the outer edge of the magnet's movement track.
  • the Hall switch When the motor rotates, the Hall switch periodically induces the magnetic lines of force to generate pulse voltages, and count the pulses within a certain period of time to calculate the motor speed.
  • Pulse width modulation duty cycle the pulse width inside is the time of outputting high level in one cycle, pulse width modulation duty cycle is the proportion of the whole cycle of high level in one pulse cycle.
  • the pulse width modulation duty cycle of the three-way bridge arm can be obtained by the detector collecting the high level action time and comparing it with the current period.
  • Step 102 Use the motor speed to compensate the rotor position to obtain a real-time rotor position.
  • the read rotor position information is not the true position of the rotor at the moment. Since the motor speed is calculated by counting the pulse voltage, there is no delay. Therefore, according to the corresponding relationship between the motor speed and the rotor position, the rotor position can be compensated to obtain real-time rotor position information.
  • Step 103 Convert the quadrature-axis current and the direct-axis current into real-time three-phase currents according to the real-time rotor position.
  • the quadrature axis current and the direct axis current are obtained.
  • the quadrature-axis current and the direct-axis current can be converted into real-time three-phase currents according to the real-time rotor position. Since the real-time rotor position is compensated according to the motor speed, the real-time rotor position is converted to obtain the real-time three-phase current, which also indirectly realizes the compensation for the three-phase current.
  • This compensation method has nothing to do with the current cycle. It can compensate the three-phase current at any position. In all working conditions, it can be compensated regardless of whether the motor speed is high or low speed.
  • Step 104 Determine an estimated value of the bus current according to the real-time three-phase current and the pulse width modulation duty ratio of the three bridge arms.
  • the permanent magnet synchronous motor controller adopting vector control
  • three PWM waves control the action of the switch tubes of the three bridge walls, and the pulse width modulation duty cycle and the three-phase current of each bridge wall are shared.
  • the sum of the products of is the current bus current. Therefore, according to the real-time three-phase current and the pulse width modulation duty cycle of the three-way bridge arms obtained in the foregoing steps, the estimated value of the bus current can be determined.
  • Step 105 Perform low-pass filtering on the estimated bus current value to obtain a target bus current value.
  • low-pass filter is a signal filtering method, and the rule is that low-frequency signals can pass normally, while high-frequency signals exceeding a set threshold are blocked and attenuated.
  • the magnitude of blocking and attenuation will vary according to different frequencies and different filtering purposes. Since there are many high-frequency points in the estimated bus current value, there are many burrs from the waveform, and the normal bus current is relatively stable and smooth, so after low-pass filtering the estimated bus current, the target obtained The bus current value has a higher degree of fit with the actual bus current value.
  • Step 106 Control the permanent magnet synchronous motor according to the target bus current value.
  • the bus current can monitor the controller of the permanent magnet synchronous motor drive, so as to realize the control of the permanent magnet synchronous motor.
  • the control method collects the rotor position, motor speed, quadrature axis current, direct axis current and the pulse width modulation duty cycle of the three-way bridge arm of the permanent magnet synchronous motor, and compares it according to the motor speed.
  • the rotor position is compensated, and the three-phase current is calculated according to the compensated rotor position information.
  • the three-phase current and PWM value are used as the calculation input of the bus current to determine the estimated value of the bus current, and after low-pass filtering the bus current, the target
  • the bus current value is used to control the permanent magnet synchronous motor according to the target bus current value.
  • the above method can compensate the three-phase current at any position. In all working conditions, no matter the motor speed is high or low speed, there is a high estimation accuracy. This allows engineers to grasp the bus current at any time, which is convenient for permanent magnets. Synchronous motor control.
  • Fig. 2 shows the second flow chart of the control method described in the embodiment of the present invention, and the method may include:
  • Step 201 Collect the rotor position, the motor speed, the quadrature axis current, the direct axis current and the pulse width modulation duty ratio of the three bridge arms of the permanent magnet synchronous motor.
  • the quadrature axis current and the direct axis current can be directly read by the measuring tool during the working process of the motor, and the rotor position information can be obtained by the resolver coaxial with the rotor; the motor speed information can be obtained by the Hall Obtained by the switch detection method; the pulse width modulation duty cycle of the three-way bridge arm can be obtained by the detector collecting the high level action time and comparing it with the current period.
  • Step 202 Using the motor speed, query the rotor rotation angle compensation value corresponding to the motor speed from a preset rotor position information compensation table; the preset rotor position information compensation table records the motor speed and The corresponding relationship of the rotor rotation angle compensation value.
  • the read rotor position information is not the true position of the rotor at the moment.
  • the motor speed is calculated by counting the pulse voltage, there is no delay, so according to the corresponding relationship between the motor speed and the rotor position, the rotor position can be compensated to obtain real-time rotor position information.
  • the rotor rotation angle compensation value corresponding to the motor rotation speed can be queried from the preset rotor position information compensation table according to the obtained motor rotation speed value.
  • the preset rotor position information compensation table is obtained through the following steps A1-step A3:
  • Step A1 Select a plurality of test motor speeds within the speed range of the permanent magnet synchronous motor.
  • a plurality of rotation speed points ⁇ W 1 , W 2 , W 3 ... W n ⁇ can be uniformly selected in the entire rotation speed range of the permanent magnet synchronous motor as the test motor rotation speed.
  • Step A2 Determine the actual value of the bus current and the test value of the bus current corresponding to the speed of each test motor for each test motor speed.
  • the actual bus current can be collected by the hardware current sensor, and the estimated value of the bus current can be obtained according to the preset bus current estimation formula.
  • the bus current estimation formula can be obtained by the following calculation:
  • Fig. 3 shows a schematic diagram of the three-phase full-bridge inverter circuit described in the embodiment of the present invention.
  • the three-phase full-bridge inverter circuit corresponds to three bridge walls A, B, and C.
  • the circuit has a total of 6 switches corresponding to a total of 8 switching states.
  • PMSM is a permanent magnet synchronous motor
  • U dc Is the bus voltage applied to the permanent magnet synchronous motor.
  • Fig. 4 shows a schematic diagram of the voltage space vector relationship described in the embodiment of the present invention.
  • the 8 switch states of the circuit are: U 1 (001), U 2 (010), U 3 (011), U 4 (100), U 5 (101), U 6 (110) ), U 7 (111), U 0 (000), there are a total of 6 vector spaces corresponding to 6 sectors.
  • U 7 (111) and U 0 (000) are zero vectors, and the rest are non-zero vectors.
  • an arbitrary voltage vector U s is obtained by combining two adjacent voltage vectors and a zero vector.
  • Table 1 the corresponding relationship between the phase current of each switching tube state and the bus current I dc is shown in Table 1 below:
  • Phase B Phase C U 4 (100) I dc -0.5*I dc -0.5*I dc U 6 (110) 0.5*I dc 0.5*I dc -I dc U 2 (010) -0.5*I dc I dc -0.5*I dc U 3 (011) -I dc 0.5*I dc 0.5*I dc U 1 (001) -0.5*I dc -0.5*I dc I dc U 5 (101) 0.5*I dc -I dc 0.5*I dc
  • the bus current Idc flows into the motor through IGBT (Insulated Gate Bipolar Transistor) V1, and then flows back to the power supply through IGBT V6 and IGBT V2, so in this state,
  • the A-phase current is: I dc
  • the B-phase current is: -0.5*I dc
  • the C-phase current is: -0.5*I dc .
  • Table 2 shows the action schedule of the adjacent voltage vectors corresponding to the six sectors. as follows:
  • I a , I b , and I c respectively represent the currents of the three bridge arms
  • T a , T b , and T c are respectively the action time of I a , I b , and I c in the bus bar.
  • I dc (T a -T b )*I a +(T b -T c )*(-I c ) (1)
  • the formula (3) is the estimation formula of the bus current.
  • d A , d B , d C are the pulse width modulation duty ratios of each bridge arm respectively
  • I A , I B , and I C are the three-phase current values of each bridge arm respectively. If d A , d B , d C or I A , I B , and I C are the compensated values, the real-time bus current value can be obtained. In this step A2, since d A , d B , d C or I A , I B , and I C are not compensated, the bus current value obtained according to formula (3) is not real-time.
  • Step A3 Determine the preset rotor position information compensation table according to the actual value of the bus current and the test value of the bus current.
  • the rotor position compensation value is adjusted according to the bus current value estimated in step A3 and the actual bus current value collected by the hardware current sensor in step A2; and the position compensation parameters are adjusted within the full speed range of the motor, Obtain a table of position compensation values corresponding to different speeds, that is, a preset rotor position information compensation table.
  • step A3 includes:
  • Step A31 Calculate the difference between the actual value of the bus current corresponding to the rotation speed of each test motor and the test value of the bus current.
  • the bus current test value ⁇ M 1 , M 2 , M 3 ??M n ⁇ , and the actual value of the bus current ⁇ N 1 , N 2 , N 3 ??N n ⁇ is collected through the hardware current sensor, and the corresponding M n and N are calculated under each test motor speed W n The difference of n.
  • Step A32 Determine the compensation value of the test rotor position corresponding to the rotation speed of each test motor according to the difference.
  • Step A33 Generate a rotor position information compensation table according to the compensation value and the rotation speed of the test motor.
  • the position compensation parameter is debugged within the entire speed range of the permanent magnet synchronous motor to obtain a table of position compensation values corresponding to different speeds, that is, a preset rotor position information compensation table.
  • Step 203 Compensate the rotor position according to the rotor rotation angle compensation value to obtain the real-time rotor position.
  • the rotor position is the rotation angle of the rotor
  • the compensation of the rotor position is the compensation for the rotation angle of the rotor.
  • the rotor position information compensation table check the corresponding compensation value. If the rotor rotation angle is ⁇ 1 , the compensation value is added to the ⁇ 1 to obtain the real-time rotor position ⁇ 2 .
  • Step 204 According to the real-time rotor position, transform the quadrature-axis current and the direct-axis current into two-phase currents that are stationary relative to the stator.
  • the transformation from the two phases at rest relative to the rotor to the two phases at rest relative to the stator can adopt the reverse Park transformation method.
  • the inverse Park transformation is to transform the currents I d and I q in the rotating coordinate system to the currents I ⁇ and I ⁇ in the stationary coordinate system.
  • the inverse Park transformation formula is:
  • I d and I q in the formula (4) are the quadrature-axis current and the direct-axis current collected in step 201, and I ⁇ and I ⁇ are the two-phase currents relative to the stator that are converted in the step, because the real-time The rotor position ⁇ 2 is the compensated angle value, so the converted I ⁇ and I ⁇ are the compensated two-phase currents.
  • Step 205 Convert the static two-phase current relative to the stator into a real-time three-phase current.
  • the inverse clark transformation may be used to transform the static two-phase current relative to the stator into the real-time three-phase current.
  • the inverse Clark transformation is to transform the current I ⁇ I ⁇ in the two-phase coordinate system to the currents I A , I B , and I C in the three-phase coordinate system.
  • the inverse Clark transformation formula is:
  • I A ', I B ', I C ' are the three-phase currents obtained by transformation, because I ⁇ and I ⁇ are the two-phase currents after compensation, the three-phase currents I A ', I B obtained in this step ', I C' is the compensated phase current, i.e., real-time three-phase current.
  • Step 206 For each bridge arm, calculate the product of the current corresponding to the bridge arm and the pulse width modulation duty cycle corresponding to the bridge arm in the real-time three-phase current.
  • the three-phase current value calculated in step 205 is split to obtain the currents I A ', I B ', and I C 'corresponding to each of the three bridge arms, and the current corresponding to each bridge arm is I A ', I B ', I C 'and the pulse width modulation duty ratios d A , d B , d C of the corresponding bridge arms collected in step 201 are multiplied to obtain d A *I A ', d B * I B ', d C *I C '.
  • Step 207 Calculate the sum of the products corresponding to the three bridge arms to obtain an estimated bus current value.
  • the three products in step 206 are added together to obtain the estimated bus current value, namely:
  • Step 208 Perform low-pass filtering on the estimated bus current value to obtain a target bus current value.
  • low-pass filter is a signal filtering method.
  • the rule is that low-frequency signals can pass normally, while high-frequency signals exceeding a set threshold are blocked and weakened.
  • the amplitude of blocking and attenuation will vary according to different frequencies and different filtering purposes. Since the estimated bus current value has more high-frequency points and more burrs on the waveform, and the normal bus current is relatively stable and smooth, after low-pass filtering the estimated bus current, the target bus current is obtained The value has a higher degree of fit with the actual bus current value.
  • Step 209 Control the permanent magnet synchronous motor according to the target bus current value.
  • the bus current can monitor the controller of the permanent magnet synchronous motor drive, so as to realize the control of the permanent magnet synchronous motor.
  • the control method collects the rotor position, motor speed, quadrature axis current, direct axis current and the pulse width modulation duty cycle of the three-way bridge arm of the permanent magnet synchronous motor, and compares it according to the motor speed.
  • the rotor position is compensated, and then the three-phase current is calculated according to the compensated rotor position information.
  • the three-phase current and pulse width modulation duty cycle are used as the calculation input of the bus current to determine the estimated value of the bus current, and the bus current is low-pass filtered
  • the target bus current value is obtained, and the permanent magnet synchronous motor is controlled according to the target bus current value.
  • the above method can compensate the three-phase current at any position. In all working conditions, no matter the motor speed is high or low speed, there is a high estimation accuracy. This allows engineers to grasp the bus current at any time, and then realize the permanent magnet Precise control of synchronous motors.
  • the embodiment of the present invention selects multiple test motor speeds within the motor speed range, calculates the actual value of the bus current and the estimated value of the bus current corresponding to each test motor speed, and determines the preset rotor position according to the difference between the two.
  • the compensation table can then compensate the rotor position through the preset rotor position compensation table to obtain the real-time rotor position, and then convert the quadrature-axis current and the direct-axis current into three-phase currents according to the real-time rotor position, thereby realizing the three-phase current
  • the bus current value with higher accuracy can be estimated based on the compensated three-phase current.
  • the above method is simple and easy to implement, and only needs to calibrate the compensation angle according to the speed, which is convenient for calibration and saves time.
  • Fig. 5 shows one of the structural block diagrams of the controller described in the embodiment of the present invention.
  • the controller includes:
  • the acquisition module 501 is configured to acquire the rotor position, motor speed, quadrature axis current, direct axis current, and pulse width modulation duty cycle of the three-way bridge arm of the permanent magnet synchronous motor;
  • the real-time rotor position acquisition module 502 is configured to use the motor speed to compensate the rotor position to obtain the real-time rotor position;
  • the real-time three-phase current conversion module 503 is configured to convert the quadrature-axis current and the direct-axis current into real-time three-phase current according to the real-time rotor position;
  • the bus current estimation module 504 is configured to determine the estimated value of the bus current according to the real-time three-phase current and the pulse width modulation duty cycle of the three bridge arms;
  • the low-pass filtering module 505 is configured to perform low-pass filtering on the estimated bus current value to obtain a target bus current value.
  • the control module 506 is configured to control the permanent magnet synchronous motor according to the target bus current value.
  • the controller provided by the embodiment of the present invention compensates the rotor position according to the motor speed by collecting the rotor position, motor speed, quadrature axis current, direct axis current, and pulse width modulation duty cycle of the three-way bridge arm of the permanent magnet synchronous motor, Then calculate the three-phase current according to the compensated rotor position information, and finally use the three-phase current and the pulse width modulation duty cycle as the calculation input of the bus current to determine the estimated value of the bus current, and after low-pass filtering the bus current, the target bus is obtained The current value, so as to control the permanent magnet synchronous motor according to the target bus current value.
  • the above method can compensate the three-phase current at any position. In all working conditions, no matter the motor speed is high or low speed, there is a high estimation accuracy. This allows engineers to grasp the bus current at any time, and then realize the permanent magnet Precise control of synchronous motors.
  • Fig. 6 shows the second structural block diagram of the controller described in the embodiment of the present invention.
  • the controller 600 includes:
  • the acquisition module 601 is used to acquire the rotor position, the motor speed, the quadrature axis current, the direct axis current and the pulse width modulation duty cycle of the three-way bridge arm of the permanent magnet synchronous motor;
  • the real-time rotor position acquisition module 602 is configured to use the motor speed to compensate the rotor position to obtain the real-time rotor position;
  • the real-time three-phase current conversion module 603 is configured to convert the quadrature-axis current and the direct-axis current into real-time three-phase current according to the real-time rotor position;
  • the bus current estimation module 604 is configured to determine the estimated value of the bus current according to the real-time three-phase current and the pulse width modulation duty cycle of the three bridge arms;
  • the low-pass filtering module 605 is configured to perform low-pass filtering on the estimated bus current value to obtain a target bus current value.
  • the control module 606 is configured to control the permanent magnet synchronous motor according to the target bus current value.
  • the rotor position is a rotor rotation angle
  • the real-time rotor position acquiring module 602 includes:
  • the query submodule 6021 is configured to use the motor speed to query the rotor rotation angle compensation value corresponding to the motor speed from the preset rotor position information compensation table; the preset rotor position information compensation table records The corresponding relationship between the motor speed and the rotor rotation angle compensation value;
  • the compensation sub-module 6022 is used to compensate the rotor position according to the rotor rotation angle compensation value to obtain the real-time rotor position.
  • controller 600 further includes:
  • the rotation speed selection module 607 is used to select a plurality of test motor rotation speeds within the rotation speed range of the permanent magnet synchronous motor;
  • the bus current determination module 608 is configured to determine the actual bus current value and the bus current test value corresponding to the test motor speed for each test motor speed;
  • the compensation value determining module 609 is configured to determine a corresponding rotor rotation angle compensation value according to the actual value of the bus current corresponding to the rotation speed of the test motor and the test value of the bus current;
  • the adding module 610 is configured to add the rotor rotation angle compensation value and the test motor speed according to the corresponding relationship to the rotor position information compensation table.
  • the compensation value determining module 609 includes:
  • the difference calculation sub-module is used to calculate the difference between the actual bus current value and the bus current test value corresponding to the rotation speed of each test motor;
  • a compensation value determining sub-module configured to determine the compensation value of the test rotor position corresponding to the rotation speed of each test motor according to the difference;
  • the real-time three-phase current conversion module 603 includes:
  • the first transformation sub-module 6031 is configured to transform the quadrature-axis current and the direct-axis current into two-phase currents that are stationary relative to the stator according to the real-time rotor position;
  • the second transformation sub-module 6032 is used to transform the stationary two-phase current relative to the stator into a real-time three-phase current.
  • bus current estimation module 604 includes:
  • the product calculation sub-module 6041 is configured to calculate, for each bridge arm, the product of the current corresponding to the bridge arm and the pulse width modulation duty ratio corresponding to the bridge arm in the real-time three-phase current;
  • the bus current estimation sub-module 6042 is used to calculate the sum of the products corresponding to the three bridge arms to obtain the estimated bus current value.
  • the controller collects the rotor position, motor speed, quadrature axis current, direct axis current and the pulse width modulation duty cycle of the three-way bridge arm of the permanent magnet synchronous motor, and compares it according to the motor speed.
  • the rotor position is compensated, and then the three-phase current is calculated according to the compensated rotor position information.
  • the three-phase current and pulse width modulation duty cycle are used as the calculation input of the bus current to determine the estimated value of the bus current, and the bus current is low-pass filtered
  • the target bus current value is obtained, and the permanent magnet synchronous motor is controlled according to the target bus current value.
  • the above method can compensate the three-phase current at any position. In all working conditions, no matter the motor speed is high or low speed, there is a high estimation accuracy. This allows engineers to grasp the bus current at any time, and then realize the permanent magnet Precise control of synchronous motors.
  • the controller of the embodiment of the present invention selects multiple test motor speeds within the motor speed range, and calculates the actual value of the bus current and the estimated value of the bus current corresponding to the speed of each test motor, and determines the forecast based on the difference between the two.
  • Set the rotor position compensation table, and then the rotor position can be compensated by the preset rotor position compensation table, so as to obtain the real-time rotor position, and then according to the real-time rotor position, the quadrature axis current and the direct axis current are converted into three-phase current, thereby achieving
  • the bus current value with higher accuracy can be estimated based on the compensated three-phase current.
  • the above method is simple and easy to implement, only need to calibrate the compensation angle according to the speed, which is convenient for calibration and saves time.
  • the device embodiments described above are merely illustrative, where the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement without creative work.
  • the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the computing processing device according to the embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
  • FIG. 7 shows a computing processing device that can implement the method according to the present invention.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing the program code 1031 of any method step in the above method.
  • the storage space 1030 for program codes may include various program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards, or floppy disks. Such computer program products are usually portable or fixed storage units as described with reference to FIG. 8.
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 7.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable codes 1031', that is, codes that can be read by, for example, a processor such as 1010. These codes, when run by a computing processing device, cause the computing processing device to execute the method described above. The various steps.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the invention can be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In the unit claims that list several devices, several of these devices may be embodied in the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明提供了一种控制方法和控制器,所述方法包括:通过采集永磁同步电机的转子位置、电机转速、交轴电流、直轴电流和三路桥臂的脉宽调制占空比,根据电机转速对转子位置进行补偿,进而根据补偿后的转子位置信息计算三相电流,最终使用三相电流和PWM值作为母线电流的计算输入,确定母线电流估计值,对母线电流估计值进行低通滤波后,得到目标母线电流值,从而根据目标母线电流值对永磁同步电机进行控制。本发明所述的控制方法可对三相电流进行任意位置的补偿,在全工况内,无论电机转速为高速和低速,都有较高的估算精度,这使得工程人员可以随时掌握母线电流,进而实现对永磁同步电机精准的控制。

Description

一种控制方法和控制器
本申请要求在2019年08月30日提交中国专利局、申请号为201910818960.1、发明名称为“一种控制方法和控制器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电机技术领域,特别涉及一种控制方法和控制器。
背景技术
近年来清洁能源汽车越来越受到大家的关注,其中纯电动汽车的动力主要来源于电机,而永磁同步电机因功率密度大、效率高等特点得到广泛应用。对于永磁同步电机驱动控制器,需要母线电流对当前控制器的状态进行监控,故需要得到当前控制器的母线电流。
通过软件去估算母线电流,可以节省成本提高系统可靠性。目前通过软件去估算母线电流的方法是:在一个开关周期T内,用调整系数λ对三相电流ia,ib,ic在母线中的作用时间ta,tb,tc进行调整,得到ta1=λta((k-1)T)+(1-λ)ta(kT);tb1=λtb((k-1)T)+(1-λ)tb(kT);tc1=λtc((k-1)T)+(1-λ)tc(kT),进而估算的母线电流为:(ta1*ia+tb1*ib+tc1*ic)与周期T的比值。因为ta1/T、tb1/T、tc1/T分别为三路桥臂的PWM(Pulse Width Modulation,脉宽调制)占空比,故该方法实际是对PWM占空比进行补偿。根据该方法,补偿值最大只能是前后一个周期,对于某些工况,该方法容易受到限制,不够灵活,使工程人员不能随时掌握母线电流值,进而导致对电机的控制难度加大。
发明内容
本发明提出一种控制方法,以解决现有的母线电流估算控制方法容易受工况限制,导致对电机的控制难度加大的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种控制方法,所述方法应用于永磁同步电机的控制器,所述方法包括:
采集所述永磁同步电机的转子位置、电机转速、交轴电流、直轴电流和三路桥臂的脉宽调制占空比;
采用所述电机转速,对所述转子位置进行补偿,得到实时转子位置;
根据所述实时转子位置,将所述交轴电流和直轴电流转换为实时三相电流;
根据所述实时三相电流、所述三路桥臂的脉宽调制占空比,确定母线电流估计值;
对所述母线电流估计值进行低通滤波,得到目标母线电流值。
根据所述目标母线电流值对所述永磁同步电机进行控制。
进一步的,所述转子位置为转子旋转角度,所述采用所述电机转速,对所述转子位置进行补偿,得到实时转子位置,包括:
采用所述电机转速,从预设的转子位置信息补偿表中查询所述电机转速对应的转子旋转角度补偿值;所述预设的转子位置信息补偿表中记录有所述电机转速与所述转子旋转角度补偿值的对应关系;
根据所述转子旋转角度补偿值,对所述转子位置进行补偿,得到实时转子位置。
进一步的,所述预设转子位置信息补偿表通过以下步骤获得:
在所述永磁同步电机的转速范围内选取多个测试电机转速;
针对每个测试电机转速,确定所述测试电机转速对应的母线电流实际值和母线电流测试值;
根据所述母线电流实际值和母线电流测试值确定所述预设转子位置信息补偿表。
进一步的,所述根据所述实际母线电流值和所述测试母线电流值确定所述预设转子位置信息补偿表,包括:
计算每个测试电机转速对应的所述母线电流实际值和母线电流测试值的差值;
根据所述差值确定每个测试电机转速对应的所述测试转子位置的补偿值。
进一步的,所述根据所述实时转子位置,将所述交轴电流和直轴电流转换为实时三相电流,包括:
根据所述实时转子位置,将所述交轴电流和所述直轴电流变换为相对定子静止的两相电流;
将所述相对定子静止的两相电流变换为实时三相电流。
进一步的,所述根据所述实时三相电流、所述三路桥臂的脉宽调制占空比,确定母线电流估计值,包括:
对于每路桥臂,计算所述实时三相电流中所述桥臂对应的电流、所述桥臂对应的脉宽调制占空比的乘积;
计算所述三路桥臂对应的所述乘积之和,得到估算的母线电流值。
相对于现有技术,本发明所述的控制方法具有以下优势:
本发明所述的控制方法,通过采集永磁同步电机的转子位置、电机转速、交轴电流、直轴电流和三路桥臂的脉宽调制占空比,根据电机转速对转子位置进行补偿,进而根据补偿后的转子位置信息计算三相电流,最终使用三相电流和PWM值作为母线电流的计算输入,确定母线电流估计值,对母线电流进行低通滤波后,得到目标母线电流值,从而根据目标母线电流值对永磁同步电机进行控制。上述方法可对三相电流进行任意位置的补偿,在全工况内,无论电机转速为高速和低速,都有较高的估算精度,这使得工程人员可以随时掌握母线电流,进而实现对永磁同步电机精准的控制。
本发明的另一目的在于提出控制器,以解决现有的母线电流估算方法容易受工况限制,导致对电机的控制难度加大的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种控制器,所述控制器包括:
采集模块,用于采集所述永磁同步电机的转子位置、电机转速、交轴电流、直轴电流和三路桥臂的脉宽调制占空比;
实时转子位置获取模块,用于采用所述电机转速对所述转子位置进行补偿,得到实时转子位置;
实时三相电流变换模块,用于根据所述实时转子位置,将所述交轴电流和直轴电流转换为实时三相电流;
母线电流估算模块,用于根据所述实时三相电流、所述三路桥臂的脉宽调制占空比,确定母线电流估计值;
低通滤波模块,用于对所述母线电流估计值进行低通滤波,得到目标母线电流值。
控制模块,用于根据所述目标母线电流值对所述永磁同步电机进行控制。
进一步的,所述转子位置为转子旋转角度,所述实时转子位置获取模块, 包括:
查询子模块,用于采用所述电机转速,从预设的转子位置信息补偿表中查询所述电机转速对应的转子旋转角度补偿值;所述预设的转子位置信息补偿表中记录有所述电机转速与所述转子旋转角度补偿值的对应关系;
补偿子模块,用于根据所述转子旋转角度补偿值,对所述转子位置进行补偿,得到实时转子位置。
进一步的,所述控制器还包括:
转速选取模块,用于在所述永磁同步电机的转速范围内选取多个测试电机转速;
母线电流确定模块,用于针对每个测试电机转速,确定所述测试电机转速对应的母线电流实际值和母线电流测试值;
补偿值确定模块,用于根据所述测试电机转速对应的所述母线电流实际值和所述母线电流测试值确定对应的转子旋转角度补偿值;
添加模块,用于将所述转子旋转角度补偿值与所述测试电机转速按照对应关系添加至转子位置信息补偿表中。
进一步的,所述补偿值确定模块,包括:
差值计算子模块,用于计算每个测试电机转速对应的所述母线电流实际值和母线电流测试值的差值;
补偿值确定子模块,用于根据所述差值确定每个测试电机转速对应的所述测试转子位置的补偿值。
进一步的,所述实时三相电流变换模块,包括:
第一变换子模块,用于根据所述实时转子位置,将所述交轴电流和所述直轴电流变换为相对定子静止的两相电流;
第二变换子模块,用于将所述相对定子静止的两相电流变换为实时三相电流。
进一步的,所述母线电流估算模块,包括:
乘积计算子模块,用于对于每路桥臂,计算所述实时三相电流中所述桥臂对应的电流、所述桥臂对应的脉宽调制占空比的乘积;
母线电流估算子模块,用于计算所述三路桥臂对应的所述乘积之和,得到估算的母线电流值。
所述控制器与上述控制方法相对于现有技术所具有的优势相同,在此不再赘述。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明实施例中所述的控制方法的流程图之一;
图2示出了本发明实施例中所述的控制方法的流程图之二;
图3示出了本发明实施例中所述的三相全桥逆变器电路的示意图;
图4示出了本发明实施例中所述的电压空间矢量关系示意图;
图5示出了本发明实施例中所述的控制器的结构框图之一;
图6示出了本发明实施例中所述的控制器的结构框图之二;
图7示意性地示出了用于执行根据本发明的方法的计算处理设备的框图;以及
图8示意性地示出了用于保持或者携带实现根据本发明的方法的程序代码的存储单元。
具体实施例
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本发明。
图1示出了本发明实施例中所述的控制方法的流程图之一,该方法可以包括:
步骤101、采集所述永磁同步电机的转子位置、电机转速、交轴电流、 直轴电流和三路桥臂的脉宽调制占空比。
在本发明实施例中,永磁同步电机是由永磁体励磁产生同步旋转磁场的同步电机,永磁体作为转子产生旋转磁场,三相定子绕组在旋转磁场作用下通过电枢反应,感应三相对称电流。此时转子动能转化为电能,永磁同步电机作发电机用;此外,当定子侧通入三相对称电流,由于三相定子在空间位置上相差120度,所以三相定子电流在空间中产生旋转磁场,转子旋转磁场中受到电磁力作用运动,此时电能转化为动能,永磁同步电机作电动机用。
在普通的三相交流电动机上模拟直流电机转矩的控制规律,磁场定向坐标通过矢量变换,将三相交流电动机的定子电流分解成励磁电流分量和转矩电流分量,并使这两个分量相互垂直,彼此独立,也就是交轴电流和直轴电流。交轴也叫q轴,直轴也叫d轴,他们实际上是坐标轴,而不是实际的轴。在永磁同步电机控制中,为了能够得到类似直流电机的控制特性,在电机转子上建立了一个坐标系,此坐标系与转子同步转动,取转子磁场方向为d轴,垂直于转子磁场方向为q轴。交轴电流和直轴电流可以通过测量工具在电机工作过程中直接读取。
此外,还可以读取当前电机的转子位置、电机转速信息、脉宽调制占空比。转子位置信息可以通过与转子同轴的旋转变压器得到现;电机转速信息则可以通过霍尔开关检测法获取,即在电机转动部分固定一块磁铁,在磁铁运动轨迹的圆周外缘设一霍尔开关,电机转动时霍尔开关周期性感应磁力线,产生脉冲电压,在一定时间内对脉冲进行计数,就可以换算出电机转速。脉宽调制占空比,这里面的脉冲宽度即在一个周期内输出高电平的时间,脉宽调制占空比就是一个脉冲周期内高电平的所整个周期占的比例。三路桥臂的脉宽调制占空比可通过检测器采集高电平作用时间并与电流周期作比得到。
步骤102、采用所述电机转速对所述转子位置进行补偿,得到实时转子位置。
在本发明实施例中,从位置传感器检测到转子位置信息到采集和读取,存在一定的延时,也就是说,读取到的转子位置信息并不是此刻转子的真实位置。而电机转速因为是对脉冲电压进行计数换算的,其不存在延时,所以 根据电机转速与转子位置的对应关系,可以对转子位置进行补偿,从而得到实时的转子位置信息。
步骤103、根据所述实时转子位置,将所述交轴电流和直轴电流转换为实时三相电流。
在本发明实施例中,由于是将三相交流电动机的定子电流分解成励磁电流分量和转矩电流分量,并使这两个分量相互垂直,彼此独立,得到交轴电流和直轴电流,那么,以相反的方法,可以根据实时转子位置,将交轴电流和直轴电流转换为实时三相电流。由于实时转子位置是根据电机转速补偿得到的,所以根据实时转子位置,转换得到实时三相电流,也间接实现了对三相电流的补偿。该补偿的实质是因为实际电机控制中存在延时,导致发出脉宽调制信号要过一定周期才能反映到三相电流信号中,所以需要对三相电流信号进行相位补偿。该补偿方式与电流周期没有关系,可对三相电流进行任意位置的补偿,在全工况内,无论电机转速为高速和低速,均可进行补偿。
步骤104、根据所述实时三相电流、所述三路桥臂的脉宽调制占空比,确定母线电流估计值。
在本发明实施例中,对于采取矢量控制的永磁同步电机控制器,三路PWM波控制三个桥壁的开关管动作,分摊在每个桥壁的脉宽调制占空比与三相电流的乘积之和就是当前的母线电流大小。所以,根据前述步骤得到的实时三相电流、三路桥臂的脉宽调制占空比,可以确定母线电流估计值。
步骤105、对所述母线电流估计值进行低通滤波,得到目标母线电流值。
在本发明实施例中,低通滤波(Low-pass filter)是一种信号过滤方式,规则为低频信号能正常通过,而超过设定临界值的高频信号则被阻隔、减弱。但是阻隔、减弱的幅度则会依据不同的频率以及不同的滤波目的而改变。由于估算得到的母线电流值高频点较多,从波形上看,毛刺较多,而正常的母线电流是较为稳定和平滑的,所以在对估算的母线电流进行低通滤波后,得到的目标母线电流值与实际的母线电流值拟合度更高。
步骤106、根据所述目标母线电流值对所述永磁同步电机进行控制。
在本发明实施例中,母线电流可对永磁同步电机驱动的控制器进行监控,从而可以实现对永磁同步电机的控制。估算的母线电流准确度越高,则 控制性能越好。
综上所述,本发明实施例提供的控制方法,通过采集永磁同步电机的转子位置、电机转速、交轴电流、直轴电流和三路桥臂的脉宽调制占空比,根据电机转速对转子位置进行补偿,进而根据补偿后的转子位置信息计算三相电流,最终使用三相电流和PWM值作为母线电流的计算输入,确定母线电流估计值,对母线电流进行低通滤波后,得到目标母线电流值,从而根据目标母线电流值对永磁同步电机进行控制。上述方法可对三相电流进行任意位置的补偿,在全工况内,无论电机转速为高速和低速,都有较高的估算精度,这使得工程人员可以随时掌握母线电流,方便了对永磁同步电机进行控制。
图2示出了本发明实施例中所述的控制方法的流程图之二,该方法可以包括:
步骤201、采集所述永磁同步电机的转子位置、电机转速、交轴电流、直轴电流和三路桥臂的脉宽调制占空比。
在本发明实施例中,交轴电流和直轴电流可以通过测量工具在电机工作过程中直接读取,而转子位置信息可以通过与转子同轴的旋转变压器得到;电机转速信息则可以通过霍尔开关检测法获取;三路桥臂的脉宽调制占空比可通过检测器采集高电平作用时间并与电流周期作比得到。
步骤202、采用所述电机转速,从预设的转子位置信息补偿表中查询所述电机转速对应的转子旋转角度补偿值;所述预设的转子位置信息补偿表中记录有所述电机转速与所述转子旋转角度补偿值的对应关系。
在本发明实施例中,从位置传感器检测到转子位置信息到采集和读取,存在一定的延时,也就是说,读取到的转子位置信息并不是此刻转子的真实位置。而电机转速因为是对脉冲电压进行计数换算的,其不存在延时,所以根据电机转速与转子位置的对应关系,可以对转子位置进行补偿,从而得到实时的转子位置信息。具体地,可以从根据获取到的电机转速值,从预设的转子位置信息补偿表中查询该电机转速对应的转子旋转角度补偿值。
进一步的,所述预设转子位置信息补偿表通过下述步骤A1-步骤A3获得:
步骤A1、在所述永磁同步电机的转速范围内选取多个测试电机转速。
具体地,可以在永磁同步电机的全部转速范围内均匀选取多个转速点{W 1,W 2,W 3……W n},作为测试电机转速。
步骤A2、针对每个测试电机转速,确定所述测试电机转速对应的母线电流实际值和母线电流测试值。
在具体实现中,可以通过硬件电流传感器采集实际母线电流,并根据预设的母线电流估算公式得到母线电流估计值。具体地,母线电流估算公式可以通过以下推导演算得到:
图3示出了本发明实施例中所述的三相全桥逆变器电路的示意图。
如图3所示,该三相全桥逆变器电路对应三个桥壁A、B、C,该电路总共有6个开关,总共对应8种开关状态,PMSM为永磁同步电机,U dc为施加到永磁同步电机的母线电压。
图4示出了本发明实施例中所述的电压空间矢量关系示意图。
如图4所示,该电路的8种开关状态分别为:U 1(001)、U 2(010)、U 3(011)、U 4(100)、U 5(101)、U 6(110)、U 7(111)、U 0(000),共对应有6种矢量空间,即6个扇区。其中U 7(111)、U 0(000)为零矢量,其余为非零矢量。图4中,任意的电压矢量U s由相邻的两个电压矢量和零矢量合成得到。对于六种非零的开关管状态,每种开关管状态相电流与母线电流I dc对应关系如下表1所示:
表1
  A相 B相 C相
U 4(100) I dc -0.5*I dc -0.5*I dc
U 6(110) 0.5*I dc 0.5*I dc -I dc
U 2(010) -0.5*I dc I dc -0.5*I dc
U 3(011) -I dc 0.5*I dc 0.5*I dc
U 1(001) -0.5*I dc -0.5*I dc I dc
U 5(101) 0.5*I dc -I dc 0.5*I dc
例如:对于开关管状态U 4(100),母线电流Idc经过IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)V1流入电机,然后经过IGBT V6 和IGBT V2流回电源,所以此状态下,A相电流为:I dc,B相电流为:-0.5*I dc,C相电流为:-0.5*I dc
表2示出了六个扇区所对应的相邻电压矢量作用时间表。如下:
表2
Figure PCTCN2020108812-appb-000001
表2中,I a,I b,I c分别表示三路桥臂的电流,T a,T b,T c分别为I a,I b,I c在母线中的作用时间。以第一扇区Ⅰ为例,当合成电压矢量位于此扇区时,U 4(100)作用时间为:T 4=T a-T b,此状态母线电流I dc=I a,U 6(110)作用时间为:T 6=T b-T c,此状态母线电流I dc=-I c,那么此扇区内母线电流I dc为:
I dc=(T a-T b)*I a+(T b-T c)*(-I c)               (1)
由于I a+I b+I c=0,化简(1)式可得:
I dc=T a*I a+T b*I b+T c*I c                     (2)
同理可以得出其他扇区内,母线电流与三相电流关系为:
I dc=d A*I A+d B*I B+d C*I C              (3)
因此可得出,式(3)为母线电流的估算公式。其中,d A、d B、d C分别为每路桥臂的脉宽调制占空比,I A、I B、I C分别为每路桥臂的三相电流值。若d A、d B、d C或I A、I B、I C为补偿后的值,则可得到实时的母线电流值。而在本步骤A2中,因未对d A、d B、d C或I A、I B、I C进行补偿,则根据式(3)得到的母线电流值不是实时的。
步骤A3、根据所述母线电流实际值和母线电流测试值确定所述预设转子位置信息补偿表。
在本发明实施例中,根据步骤A3中估算的母线电流值与步骤A2中硬件电流传感器采集到的实际母线电流值,调整转子位置补偿值;并在电机的全部转速范围内调试位置补偿参数,得到不同转速对应的位置补偿值的表格,即预设转子位置信息补偿表。
进一步的,所述步骤A3包括:
步骤A31、计算每个测试电机转速对应的所述母线电流实际值和母线电流测试值的差值。
在本发明实施例中,在每个测试电机转速{W 1,W 2,W 3……W n}下,根据公式(3)对应计算出了母线电流测试值{M 1,M 2,M 3……M n},并通过硬件电流传感器采集到了母线电流实际值{N 1,N 2,N 3……N n},计算在每个测试电机转速W n下,对应的M n与N n的差值。
步骤A32、根据所述差值确定每个测试电机转速对应的所述测试转子位置的补偿值。
在本发明实施例中,在不同的测试电机转速下,给定不同的扭矩指令,根据母线电流实际值和母线电流测试值的差值,调整转子旋转角度补偿值。在电机的转速范围内调试旋转角度补偿值,得到不同测试电机转速对应的测试转子位置的补偿值。
步骤A33、根据所述补偿值与所述测试电机转速生成转子位置信息补偿表。
在本发明实施例中,在永磁同步电机的全部转速范围内,调试位置补偿参数,得到不同转速对应的位置补偿值的表格,即预设转子位置信息补偿表。
步骤203、根据所述转子旋转角度补偿值,对所述转子位置进行补偿, 得到实时转子位置。
在本发明实施例中,所述转子位置即为转子旋转角度,对转子位置进行补偿,就是对转子的旋转角度进行补偿。根据转子位置信息补偿表,查得对应的补偿值,若转子旋转角度为θ 1,则将该补偿值加到该θ 1上,得到实时转子位置θ 2
步骤204、根据所述实时转子位置,将所述交轴电流和所述直轴电流变换为相对定子静止的两相电流。
在本发明实施例中,从相对转子静止两相到相对定子静止的两相的变换可以采用反Park变换的方法。反Park变换是将旋转坐标系下的电流I d、I q,变换到静止坐标系下的电流I α、I β,反Park变换公式为:
Figure PCTCN2020108812-appb-000002
其中,公式(4)中的I d、I q为步骤201中采集到的交轴电流和直轴电流,I α、I β为本步骤中转换得到的相对定子静止的两相电流,因为实时转子位置θ 2是补偿后的角度值,所以转换得到的I α、I β为补偿后的两相电流。
步骤205、将所述相对定子静止的两相电流变换为实时三相电流。
在本发明实施例中,将所述相对定子静止的两相电流变换为实时三相电流可以采用反clark变换。反Clark变换是将两相坐标系下的电流I αI β,变换到三相坐标系下的电流I A、I B、I C,反Clark变换公式为:
Figure PCTCN2020108812-appb-000003
其中,I A'、I B'、I C'为变换得到的三相电流,因为I α、I β为补偿后的两相电流,则本步骤中得到的三相电流I A'、I B'、I C'为补偿后的三相电流,即实时三相电流。
步骤206、对于每路桥臂,计算所述实时三相电流中所述桥臂对应的电流、所述桥臂对应的脉宽调制占空比的乘积。
在本发明实施例中,将步骤205中计算得到的三相电流值拆分得到三路 桥臂中每路桥臂对应的电流I A'、I B'、I C',将每路桥臂对应的电流I A'、I B'、I C'和步骤201中采集到的对应桥臂的脉宽调制占空比d A,d B,d C相乘,得到d A*I A',d B*I B',d C*I C'。
步骤207、计算所述三路桥臂对应的所述乘积之和,得到估算的母线电流值。
在本发明实施例中,将步骤206中的三个乘积相加,得到估算的母线电流值,即:
I=d A*I A'+d B*I B'+d C*I C'             (6)
步骤208、对所述母线电流估计值进行低通滤波,得到目标母线电流值。
在本发明实施例中,低通滤波(Low-pass filter)是一种信号过滤方式,规则为低频信号能正常通过,而超过设定临界值的高频信号则被阻隔、减弱。但是阻隔、减弱的幅度则会依据不同的频率以及不同的滤波目的而改变。由于估算得到的母线电流值高频点较多,波形上的毛刺较多,而正常的母线电流是较为稳定和平滑的,所以在对估算的母线电流进行低通滤波后,得到的目标母线电流值与实际的母线电流值拟合度更高。
步骤209、根据所述目标母线电流值对所述永磁同步电机进行控制。
在本发明实施例中,母线电流可对永磁同步电机驱动的控制器进行监控,从而可以实现对永磁同步电机的控制。估算的母线电流准确度越高,则控制性能越好。
综上所述,本发明实施例提供的控制方法,通过采集永磁同步电机的转子位置、电机转速、交轴电流、直轴电流和三路桥臂的脉宽调制占空比,根据电机转速对转子位置进行补偿,进而根据补偿后的转子位置信息计算三相电流,最终使用三相电流和脉宽调制占空比作为母线电流的计算输入,确定母线电流估计值,对母线电流进行低通滤波后,得到目标母线电流值,从而根据目标母线电流值对永磁同步电机进行控制。上述方法可对三相电流进行任意位置的补偿,在全工况内,无论电机转速为高速和低速,都有较高的估算精度,这使得工程人员可以随时掌握母线电流,进而实现对永磁同步电机精准的控制。
此外,本发明实施例通过在电机的转速范围内选取多个测试电机转速, 并计算每个测试电机转速对应的母线电流实际值和母线电流估计值,根据两者的差值确定预设转子位置补偿表,进而可以通过该预设转子位置补偿表对转子位置进行补偿,从而得到实时转子位置,再根据实时转子位置将交轴电流和直轴电流转换为三相电流,从而实现了对三相电流的补偿,再根据补偿后的三相电流可以估算得到精准度较高的母线电流值。采用上述方法简单易行,只需要根据转速标定补偿的角度即可,方便标定,节省时间。
图5示出了本发明实施例中所述的控制器的结构框图之一。所述控制器包括:
采集模块501,用于采集所述永磁同步电机的转子位置、电机转速、交轴电流、直轴电流和三路桥臂的脉宽调制占空比;
实时转子位置获取模块502,用于采用所述电机转速对所述转子位置进行补偿,得到实时转子位置;
实时三相电流变换模块503,用于根据所述实时转子位置,将所述交轴电流和所述直轴电流转换为实时三相电流;
母线电流估算模块504,用于根据所述实时三相电流、所述三路桥臂的脉宽调制占空比,确定母线电流估计值;
低通滤波模块505,用于对所述母线电流估计值进行低通滤波,得到目标母线电流值。
控制模块506,用于根据所述目标母线电流值对所述永磁同步电机进行控制。
本发明实施例提供的控制器,通过采集永磁同步电机的转子位置、电机转速、交轴电流、直轴电流和三路桥臂的脉宽调制占空比,根据电机转速对转子位置进行补偿,进而根据补偿后的转子位置信息计算三相电流,最终使用三相电流和脉宽调制占空比作为母线电流的计算输入,确定母线电流估计值,对母线电流进行低通滤波后,得到目标母线电流值,从而根据目标母线电流值对永磁同步电机进行控制。上述方法可对三相电流进行任意位置的补偿,在全工况内,无论电机转速为高速和低速,都有较高的估算精度,这使得工程人员可以随时掌握母线电流,进而实现对永磁同步电机精准的控制。
在图5的基础上,图6示出了本发明实施例中所述的控制器的结构框图之二。所述控制器600包括:
采集模块601,用于采集所述永磁同步电机的转子位置、电机转速、交轴电流、直轴电流和三路桥臂的脉宽调制占空比;
实时转子位置获取模块602,用于采用所述电机转速对所述转子位置进行补偿,得到实时转子位置;
实时三相电流变换模块603,用于根据所述实时转子位置,将所述交轴电流和所述直轴电流转换为实时三相电流;
母线电流估算模块604,用于根据所述实时三相电流、所述三路桥臂的脉宽调制占空比,确定母线电流估计值;
低通滤波模块605,用于对所述母线电流估计值进行低通滤波,得到目标母线电流值。
控制模块606,用于根据所述目标母线电流值对所述永磁同步电机进行控制。
进一步的,所述转子位置为转子旋转角度,所述实时转子位置获取模块602,包括:
查询子模块6021,用于采用所述电机转速,从预设的转子位置信息补偿表中查询所述电机转速对应的转子旋转角度补偿值;所述预设的转子位置信息补偿表中记录有所述电机转速与所述转子旋转角度补偿值的对应关系;
补偿子模块6022,用于根据所述转子旋转角度补偿值,对所述转子位置进行补偿,得到实时转子位置。
进一步的,所述控制器600还包括:
转速选取模块607,用于在所述永磁同步电机的转速范围内选取多个测试电机转速;
母线电流确定模块608,用于针对每个所述测试电机转速,确定所述测试电机转速对应的母线电流实际值和母线电流测试值;
补偿值确定模块609,用于根据所述测试电机转速对应的所述母线电流实际值和所述母线电流测试值确定对应的转子旋转角度补偿值;
添加模块610,用于将所述转子旋转角度补偿值与所述测试电机转速按 照对应关系添加至转子位置信息补偿表中。
进一步的,所述补偿值确定模块609,包括:
差值计算子模块,用于计算每个测试电机转速对应的所述母线电流实际值和母线电流测试值的差值;
补偿值确定子模块,用于根据所述差值确定每个测试电机转速对应的所述测试转子位置的补偿值;
进一步的,所述实时三相电流变换模块603,包括:
第一变换子模块6031,用于根据所述实时转子位置,将所述交轴电流和所述直轴电流变换为相对定子静止的两相电流;
第二变换子模块6032,用于将所述相对定子静止的两相电流变换为实时三相电流。
进一步的,所述母线电流估算模块604,包括:
乘积计算子模块6041,用于对于每路桥臂,计算所述实时三相电流中所述桥臂对应的电流、所述桥臂对应的脉宽调制占空比的乘积;
母线电流估算子模块6042,用于计算所述三路桥臂对应的所述乘积之和,得到估算的母线电流值。
综上所述,本发明实施例提供的控制器,通过采集永磁同步电机的转子位置、电机转速、交轴电流、直轴电流和三路桥臂的脉宽调制占空比,根据电机转速对转子位置进行补偿,进而根据补偿后的转子位置信息计算三相电流,最终使用三相电流和脉宽调制占空比作为母线电流的计算输入,确定母线电流估计值,对母线电流进行低通滤波后,得到目标母线电流值,从而根据目标母线电流值对永磁同步电机进行控制。上述方法可对三相电流进行任意位置的补偿,在全工况内,无论电机转速为高速和低速,都有较高的估算精度,这使得工程人员可以随时掌握母线电流,进而实现对永磁同步电机精准的控制。
此外,本发明实施例的控制器通过在电机的转速范围内选取多个测试电机转速,并计算每个测试电机转速对应的母线电流实际值和母线电流估计值,根据两者的差值确定预设转子位置补偿表,进而可以通过该预设转子位置补偿表对转子位置进行补偿,从而得到实时转子位置,再根据实时转子位 置将交轴电流和直轴电流转换为三相电流,从而实现了对三相电流的补偿,再根据补偿后的三相电流可以估算得到精准度较高的母线电流值。采用上述方法简单易行,只需要根据转速标定补偿的角度即可,方便标定,节省时间。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图7示出了可以实现根据本发明的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图8所述的便携式或者固 定存储单元。该存储单元可以具有与图7的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本发明的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (14)

  1. 一种控制方法,其特征在于,所述方法应用于永磁同步电机的控制器,所述方法包括:
    采集所述永磁同步电机的转子位置、电机转速、交轴电流、直轴电流和三路桥臂的脉宽调制占空比;
    采用所述电机转速,对所述转子位置进行补偿,得到实时转子位置;
    根据所述实时转子位置,将所述交轴电流和所述直轴电流转换为实时三相电流;
    根据所述实时三相电流、所述三路桥臂的脉宽调制占空比,确定母线电流估计值;
    对所述母线电流估计值进行低通滤波,得到目标母线电流值;
    根据所述目标母线电流值对所述永磁同步电机进行控制。
  2. 根据权利要求1所述的方法,其特征在于,所述转子位置为转子旋转角度,所述采用所述电机转速,对所述转子位置进行补偿,得到实时转子位置,包括:
    采用所述电机转速,从预设的转子位置信息补偿表中查询所述电机转速对应的转子旋转角度补偿值;所述预设的转子位置信息补偿表中记录有所述电机转速与所述转子旋转角度补偿值的对应关系;
    根据所述转子旋转角度补偿值,对所述转子位置进行补偿,得到所述实时转子位置。
  3. 根据权利要求2所述的方法,其特征在于,所述预设的转子位置信息补偿表通过以下步骤获得:
    在所述永磁同步电机的转速范围内选取多个测试电机转速;
    针对每个所述测试电机转速,确定所述测试电机转速对应的母线电流实际值和母线电流测试值;
    根据所述测试电机转速对应的所述母线电流实际值和所述母线电流测试值确定对应的转子旋转角度补偿值;
    将所述转子旋转角度补偿值与所述测试电机转速按照对应关系添加至转子位置信息补偿表中。
  4. 根据权利要求3所述的方法,其特征在于,根据所述测试电机转速对应的所述母线电流实际值和所述母线电流测试值确定对应的转子旋转角度补偿值,包括:
    计算每个所述测试电机转速对应的所述母线电流实际值和所述母线电流测试值的差值;
    根据所述差值确定每个所述测试电机转速对应的所述转子旋转角度补偿值。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述实时转子位置,将所述交轴电流和所述直轴电流转换为实时三相电流,包括:
    根据所述实时转子位置,将所述交轴电流和所述直轴电流变换为相对定子静止的两相电流;
    将所述相对定子静止的两相电流变换为所述实时三相电流。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述实时三相电流、所述三路桥臂的脉宽调制占空比,确定母线电流估计值,包括:
    对于每路桥臂,计算所述实时三相电流中所述桥臂对应的电流、所述桥臂对应的脉宽调制占空比的乘积;
    计算所述三路桥臂对应的所述乘积之和,得到所述母线电流估计值。
  7. 一种控制器,其特征在于,所述控制器包括:
    采集模块,用于采集所述永磁同步电机的转子位置、电机转速、交轴电流、直轴电流和三路桥臂的脉宽调制占空比;
    实时转子位置获取模块,用于采用所述电机转速,对所述转子位置进行补偿,得到实时转子位置;
    实时三相电流变换模块,用于根据所述实时转子位置,将所述交轴电流和所述直轴电流转换为实时三相电流;
    母线电流估算模块,用于根据所述实时三相电流、所述三路桥臂的脉宽调制占空比,确定母线电流估计值;
    低通滤波模块,用于对所述母线电流估计值进行低通滤波,得到目标母线电流值;
    控制模块,用于根据所述目标母线电流值对所述永磁同步电机进行控制。
  8. 根据权利要求7所述的控制器,其特征在于,所述转子位置为转子旋转角度,所述实时转子位置获取模块,包括:
    查询子模块,用于采用所述电机转速,从预设的转子位置信息补偿表中查询所述电机转速对应的转子旋转角度补偿值;所述预设的转子位置信息补偿表中记录有所述电机转速与所述转子旋转角度补偿值的对应关系;
    补偿子模块,用于根据所述转子旋转角度补偿值,对所述转子位置进行补偿,得到所述实时转子位置。
  9. 根据权利要求8所述的控制器,其特征在于,所述控制器还包括:
    转速选取模块,用于在所述永磁同步电机的转速范围内选取多个测试电机转速;
    母线电流确定模块,用于针对每个所述测试电机转速,确定所述测试电机转速对应的母线电流实际值和母线电流测试值;
    补偿值确定模块,用于根据所述测试电机转速对应的所述母线电流实际值和所述母线电流测试值确定对应的转子旋转角度补偿值;
    添加模块,用于将所述转子旋转角度补偿值与所述测试电机转速按照对应关系添加至转子位置信息补偿表中。
  10. 根据权利要求9所述的控制器,其特征在于,所述补偿值确定模块,包括:
    差值计算子模块,用于计算每个所述测试电机转速对应的所述母线电流实际值和所述母线电流测试值的差值;
    补偿值确定子模块,用于根据所述差值确定每个所述测试电机转速对应的所述转子旋转角度补偿值。
  11. 根据权利要求7所述的控制器,其特征在于,所述实时三相电流变换模块,包括:
    第一变换子模块,用于根据所述实时转子位置,将所述交轴电流和所述直轴电流变换为相对定子静止的两相电流;
    第二变换子模块,用于将所述相对定子静止的两相电流变换为所述实时三相电流。
  12. 根据权利要求7所述的控制器,其特征在于,所述母线电流估算模块,包括:
    乘积计算子模块,用于对于每路桥臂,计算所述实时三相电流中所述桥臂对应的电流、所述桥臂对应的脉宽调制占空比的乘积;
    母线电流估算子模块,用于计算所述三路桥臂对应的所述乘积之和,得到所述母线电流估计值。
  13. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-6中的任一个所述的控制方法。
  14. 一种计算机可读介质,其中存储了如权利要求13所述的计算机程序。
PCT/CN2020/108812 2019-08-30 2020-08-13 一种控制方法和控制器 WO2021036794A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20858002.7A EP4007158A4 (en) 2019-08-30 2020-08-13 CONTROL PROCEDURES AND CONTROL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910818960.1 2019-08-30
CN201910818960.1A CN111614288B (zh) 2019-08-30 2019-08-30 一种控制方法和控制器

Publications (1)

Publication Number Publication Date
WO2021036794A1 true WO2021036794A1 (zh) 2021-03-04

Family

ID=72203121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108812 WO2021036794A1 (zh) 2019-08-30 2020-08-13 一种控制方法和控制器

Country Status (3)

Country Link
EP (1) EP4007158A4 (zh)
CN (1) CN111614288B (zh)
WO (1) WO2021036794A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276265A1 (ja) * 2021-07-01 2023-01-05 日立Astemo株式会社 インバータ制御装置、計算方法
WO2024093801A1 (zh) * 2022-10-31 2024-05-10 比亚迪股份有限公司 能量转换装置及车辆

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037158B (zh) * 2021-03-01 2023-04-18 潍柴动力股份有限公司 永磁同步电机电驱系统的交直轴解耦控制方法、装置
CN113193801B (zh) * 2021-04-20 2022-04-01 华中科技大学 一种高速电机模拟器控制系统和高速电机模拟器
CN113872479A (zh) * 2021-09-24 2021-12-31 东风商用车有限公司 一种具有母线电流估测功能的永磁同步电机控制器及驾驶设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060022628A1 (en) * 2004-07-29 2006-02-02 Japan Servo Co., Ltd. Motor control system
CN102593841A (zh) * 2011-12-31 2012-07-18 泰州师范高等专科学校 一种基于电流分离补偿的级联型h桥型dstatcom装置及分离补偿的方法
CN106788072A (zh) * 2017-03-27 2017-05-31 安徽江淮汽车集团股份有限公司 永磁同步电机转子初始角度修正方法及修正系统
CN107919828A (zh) * 2017-11-30 2018-04-17 华中科技大学 一种永磁同步电机的控制装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3755582B2 (ja) * 2001-02-08 2006-03-15 三菱電機株式会社 電動機制御装置
US8106618B2 (en) * 2009-04-02 2012-01-31 Daimler Ag Method and device for calibrating a position sensor placed on a shaft of a permanent magnet synchronous motor
CN101924510A (zh) * 2010-07-06 2010-12-22 奇瑞汽车股份有限公司 一种永磁电机转子位置角度的补偿方法
CN102811013B (zh) * 2012-07-31 2014-12-17 株洲南车时代电气股份有限公司 交流传动控制系统和方法及其逆变器电压误差测量方法
CN105492871B (zh) * 2013-08-26 2018-02-09 三菱电机株式会社 位置检测器的角度误差校正装置以及角度误差校正方法
US20160294314A1 (en) * 2015-03-31 2016-10-06 Texas Instruments Incorporated Fractional Delay Adjustment in a Field-Oriented Control Architecture
CN106788048A (zh) * 2017-03-23 2017-05-31 南京航空航天大学 基于无电解电容逆变器的无刷直流电机控制系统及控制方法
CN109039199B (zh) * 2018-08-06 2020-06-12 新乡艾迪威汽车科技有限公司 一种用于eps控制器母线电流估算方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060022628A1 (en) * 2004-07-29 2006-02-02 Japan Servo Co., Ltd. Motor control system
CN102593841A (zh) * 2011-12-31 2012-07-18 泰州师范高等专科学校 一种基于电流分离补偿的级联型h桥型dstatcom装置及分离补偿的方法
CN106788072A (zh) * 2017-03-27 2017-05-31 安徽江淮汽车集团股份有限公司 永磁同步电机转子初始角度修正方法及修正系统
CN107919828A (zh) * 2017-11-30 2018-04-17 华中科技大学 一种永磁同步电机的控制装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4007158A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276265A1 (ja) * 2021-07-01 2023-01-05 日立Astemo株式会社 インバータ制御装置、計算方法
WO2024093801A1 (zh) * 2022-10-31 2024-05-10 比亚迪股份有限公司 能量转换装置及车辆

Also Published As

Publication number Publication date
EP4007158A4 (en) 2022-09-28
EP4007158A1 (en) 2022-06-01
CN111614288B (zh) 2021-12-10
CN111614288A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2021036794A1 (zh) 一种控制方法和控制器
Fang et al. Self-compensation of the commutation angle based on DC-link current for high-speed brushless DC motors with low inductance
CN102420561B (zh) 基于级联高压变频器无速度传感器矢量控制方法
CN101917158B (zh) 一种用于电压源逆变器的死区补偿方法
CN112260601B (zh) 一种低速运行单电阻采样永磁同步电机相电流重构方法
CN108631678B (zh) 永磁同步电机矢量控制死区补偿方法及系统
CN104079217A (zh) 电机控制装置和磁极位置估计方法
EP2258043B1 (en) Sensorless control of salient-pole machines
WO2022127167A1 (zh) 一种抑制单电阻采样永磁同步电机低速噪音的方法
CN111193448B (zh) 基于扩展卡尔曼滤波器的永磁同步电机负载转矩观测方法
CN110391770A (zh) 电机装置、电机驱动电路及驱动方法
CN109039199B (zh) 一种用于eps控制器母线电流估算方法及系统
CN112104272A (zh) 一种无位置传感器无刷直流电机位置检测方法
JP6953763B2 (ja) モータ制御装置
CN113872484B (zh) 三相电流重构方法、装置、设备和存储介质
CN113644856B (zh) 一种高频变频器的驱动控制方法
Tsotoulidis et al. A sensorless commutation technique of a brushless DC motor drive system using two terminal voltages in respect to a virtual neutral potential
JP6116538B2 (ja) モータ制御装置
Czerwinski et al. Examination of electromagnetic noises and practical operations of a PMSM motor driven by a DSP and controlled by means of field oriented control
CN110768605B (zh) 一种svpwm调制方法、装置及系统
Chern et al. Sensorless speed control of BLDC motor using six step square wave and rotor position detection
Stănică et al. A brief review of sensorless motors position control
Vanchinathan et al. A study of sensorless BLDC motor drives and future trends
CN113872486B (zh) 三相电流重构方法、装置、设备和存储介质
Yao et al. Rapid estimation and compensation method of commutation error caused by Hall sensor installation error for BLDC motors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858002

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 20 858 002.7

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020858002

Country of ref document: EP

Effective date: 20220225