WO2021036758A1 - 一种体声波谐振器 - Google Patents

一种体声波谐振器 Download PDF

Info

Publication number
WO2021036758A1
WO2021036758A1 PCT/CN2020/107912 CN2020107912W WO2021036758A1 WO 2021036758 A1 WO2021036758 A1 WO 2021036758A1 CN 2020107912 W CN2020107912 W CN 2020107912W WO 2021036758 A1 WO2021036758 A1 WO 2021036758A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
acoustic wave
slit
bulk acoustic
piezoelectric layer
Prior art date
Application number
PCT/CN2020/107912
Other languages
English (en)
French (fr)
Inventor
缪建民
张瑞珍
Original Assignee
迈感微电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 迈感微电子(上海)有限公司 filed Critical 迈感微电子(上海)有限公司
Priority to US17/438,879 priority Critical patent/US20220158605A1/en
Publication of WO2021036758A1 publication Critical patent/WO2021036758A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/0211Means for compensation or elimination of undesirable effects of reflections
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02118Means for compensation or elimination of undesirable effects of lateral leakage between adjacent resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02047Treatment of substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material

Definitions

  • the embodiment of the present invention relates to resonance technology, in particular to a bulk acoustic wave resonator.
  • FBAR filters Film Bulk Acoustic Resonator (FBAR) filters are the largest category of products in the Micro-Electro-Mechanical System (MEMS) products on the market. They are widely used in radio frequency data communication products such as mobile phones, especially 5G communication products.
  • MEMS Micro-Electro-Mechanical System
  • the ideal bulk acoustic wave resonator for radio frequency FBAR filters is an acoustic stack composed of an upper electrode, a piezoelectric layer and a lower electrode.
  • the resonator has the advantages of small size, good performance, and suitable for mass production of integrated circuit wafers.
  • the bulk acoustic wave resonator excites the longitudinal mode in the thickness direction, and the longitudinal mode is the main parameter that determines the resonator frequency and quality factors.
  • the existing bulk acoustic wave resonator will also generate a transverse mode during the working process, forming noise, and affecting the performance of the bulk acoustic wave resonator. Therefore, reducing noise has become an urgent problem to be solved in the field of bulk acoustic wave resonators.
  • the invention provides a bulk acoustic wave resonator to reduce the generation of transverse standing waves, thereby reducing noise and improving the performance of the bulk acoustic wave resonator.
  • the embodiment of the present invention provides a bulk acoustic wave resonator, including:
  • the piezoelectric layer is provided with at least one slit along the direction in which the first electrode points to the second electrode, and the slit penetrates at least the piezoelectric layer.
  • the slit penetrates the first electrode and the second electrode.
  • the vertical projection of the slit on the first electrode is not parallel to any side of the vertical projection of the piezoelectric layer on the first electrode.
  • the shape of the vertical projection of the slit on the first electrode includes a rectangle, an ellipse, or a trapezoid.
  • the width of the vertical projection of the slit on the first electrode ranges from 5 ⁇ m to 15 ⁇ m.
  • the piezoelectric layer is provided with at least two slits.
  • the at least two slits are not parallel to each other.
  • the at least two slits are asymmetrical.
  • the shape of the vertical projection of the resonator on the first electrode is a circle, a square or a rectangle.
  • At least one slit is provided in the piezoelectric layer, and along the direction of the first electrode pointing to the second electrode, the slit penetrates at least the piezoelectric layer, and the slit can have a certain reflection effect on the transverse sound wave, and can reduce The generation of small transverse standing waves reduces noise and improves the performance of the bulk acoustic wave resonator.
  • FIG. 1 is a schematic top view of a bulk acoustic wave resonator provided by an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of the bulk acoustic wave resonator in FIG. 1 along the section line AA;
  • FIG. 3 is a schematic cross-sectional view of another bulk acoustic wave resonator provided by an embodiment of the present invention.
  • FIG. 4 is a schematic top view of another bulk acoustic wave resonator provided by an embodiment of the present invention.
  • FIG. 5 is a schematic top view of another bulk acoustic wave resonator provided by an embodiment of the present invention.
  • Fig. 6 is a graph of resonance characteristics of a resonator provided by an embodiment of the present invention.
  • FIG. 1 is a schematic top view of a bulk acoustic wave resonator provided by an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the bulk acoustic wave resonator in FIG. Figure 1 and Figure 2, the bulk acoustic wave resonator includes:
  • the first electrode 10, the piezoelectric layer 20 and the second electrode 30, the piezoelectric layer 20 is disposed between the first electrode 10 and the second electrode 30;
  • the piezoelectric layer 20 is provided with at least one slit 21 along the direction where the first electrode 10 points to the second electrode 30, and the slit 21 penetrates at least the piezoelectric layer 20.
  • the direction of the first electrode 10 pointing to the second electrode 30 is the thickness direction of the piezoelectric layer 20.
  • the first electrode 10 and the second electrode 30 are conductive layers, and the piezoelectric layer 20 is made of piezoelectric material.
  • the piezoelectric layer 20 is deformed to generate a longitudinal (thickness direction) acoustic wave signal, that is, a desired signal.
  • the piezoelectric layer 20 when the piezoelectric layer 20 generates a longitudinal acoustic wave signal, it also generates a transverse acoustic wave signal, which affects the performance of the resonator.
  • At least one slit 21 is provided in the piezoelectric layer 20, and along the direction of the first electrode 10 pointing to the second electrode 30, the slit 21 at least penetrates the piezoelectric layer 20, and the slit 21 can play a role in the transverse acoustic signal.
  • a certain reflection effect can reduce the generation of transverse standing waves, thereby reducing noise and improving the performance of the bulk acoustic wave resonator.
  • FIG. 3 is a schematic cross-sectional view of another bulk acoustic wave resonator provided by an embodiment of the present invention.
  • the slit 21 penetrates the first electrode 10 and The second electrode 30.
  • the transverse wave can be reflected to the greatest extent along the thickness direction of the resonator (the thickness direction of the piezoelectric layer 20) at the position where the slit 21 is located, further reducing the formation of transverse standing waves and reducing noise.
  • the vertical projection of the slit 21 on the first electrode 10 is not parallel to any side of the vertical projection of the piezoelectric layer 20 on the first electrode 10.
  • the vertical projection of the slit 21 on the first electrode 10 is not parallel to any side of the vertical projection of the piezoelectric layer 20 on the first electrode 10, that is, the slit 21 is not parallel to any side surface of the piezoelectric layer 20. Not parallel.
  • the vertical projection of the slit 21 on the first electrode 10 When the vertical projection of the slit 21 on the first electrode 10 is parallel to a side of the vertical projection of the piezoelectric layer 20 on the first electrode 10, transverse waves may be reflected between the side and the slit 21.
  • the case of standing waves By setting the slit 21 and any side of the vertical projection of the piezoelectric layer 20 on the first electrode 10 to be non-parallel, the slit 21 and the side surface of the piezoelectric layer 20 are arranged crosswise at a set angle, and the transverse waves are in the slit.
  • the slit 21 and the side surface of the piezoelectric layer 20 are not parallel to the direction of wave reflection, which can further reduce the formation of transverse standing waves, further reduce noise, and improve the resonator performance.
  • Fig. 4 is a schematic top view of another bulk acoustic wave resonator provided by an embodiment of the present invention.
  • the shape of the vertical projection of the slit 21 on the first electrode includes a rectangle, an ellipse, or Trapezoid.
  • the vertical projection shape of the slit 21 on the first electrode is rectangular, elliptical, or trapezoidal, which ensures that noise is reduced and the performance of the resonator is improved. At the same time, the process difficulty is reduced.
  • the shape of the vertical projection of the slit 21 on the first electrode is not limited to a rectangle, an ellipse, and a trapezoid, and may also be other shapes.
  • the width of the vertical projection of the slit 21 on the first electrode 10 ranges from 5 ⁇ m to 15 ⁇ m.
  • the width of the slit 21 is the size of the short side of the slit 21.
  • the width is small, the processing of the slit 21 is more difficult.
  • the width is large, the area occupied by the slit 21 is too large, which is easy to affect The structural strength of the bulk acoustic wave resonator.
  • the piezoelectric layer 20 is provided with at least two slits 21.
  • the transverse waves are reflected between the plurality of slits 21 and the sides of the bulk acoustic wave resonator, which can further reduce the formation of standing waves.
  • Fig. 5 is a schematic top view of another bulk acoustic wave resonator provided by an embodiment of the present invention.
  • the size of at least two slits 21 may be the same or different. This embodiment is not specifically limited. The specific size of the slit 21 can be determined according to the shape and size of the resonator, as long as the noise can be reduced to a greater extent, and this embodiment does not specifically limit it.
  • At least two slits 21 are not parallel to each other.
  • each slit 21 is not parallel.
  • Parallel to the side surface of the piezoelectric layer each slit 21 is not parallel to the side surface of the resonator, which further ensures that the direction of reflection of the transverse wave between the slit 21 and each side surface of the bulk acoustic wave resonator is different, and it is not easy to form Standing wave, thereby further reducing noise and improving the performance of the resonator.
  • At least two slits 21 are asymmetrical.
  • This arrangement makes the arrangement of the slits 21 more messy, and further ensures that the transverse waves propagate in different directions when they propagate between the slit 21 and the side surface of the resonator, further reducing the formation of standing waves and further reducing noise.
  • the shape of the vertical projection of the resonator on the first electrode is a square or a rectangle.
  • the solution of this embodiment can effectively avoid the formation of transverse standing waves by providing slits in the piezoelectric layer, so that the resonator can adopt a regular shape such as a square or a rectangle.
  • the manufacturing process of a regular-shaped resonator is simple, and The structural strength of the resonator is better, so the solution of this embodiment reduces the difficulty of the manufacturing process of the resonator and improves the structural strength of the resonator.
  • FIG. 6 is a graph of the resonance characteristics of a resonator provided by an embodiment of the present invention.
  • FIG. 6 shows a simulation analysis diagram of the resonance characteristics of the structure shown in FIG. 5. Referring to FIG. 6, when the resonator shown in FIG. 5 is used When structured, noise can be significantly reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

一种体声波谐振器,其包括:第一电极(10)、压电层(20)以及第二电极(30),所述压电层(20)设置于所述第一电极(10)和所述第二电极(30)之间;所述压电层(20)设置有至少一个开缝(21),沿所述第一电极(10)指向所述第二电极(30)的方向,所述开缝(21)至少贯穿所述压电层(20)。该开缝(21)减少了横向驻波的产生,从而降低了噪声,提升了体声波谐振器的性能。

Description

一种体声波谐振器 技术领域
本发明实施例涉及谐振技术,尤其涉及一种体声波谐振器。
背景技术
薄膜腔声谐振(Film Bulk Acoustic Resonator,FBAR)滤波器是微机电系统(Micro-Electro-Mechanical System,MEMS)产品中市场最大的一类产品,广泛应用于手机等射频数据通讯产品中,特别是5G通讯产品中。用于射频FBAR滤波器的理想体声波谐振器是由上电极、压电层和下电极组成的声学堆,该谐振器具有小尺寸、性能好、适用于集成电路晶圆大批量生产等优点。
体声波谐振器激发厚度方向的纵向模,该纵向模态是决定谐振器频率、品质因素等主要参数。然而现有的体声波谐振器在工作过程中还会产生横向模,形成噪声,影响体声波谐振器的性能。因此减少噪声成为目前体声波谐振器领域亟待解决的问题。
发明内容
本发明提供一种体声波谐振器,以减少横向驻波的产生,从而降低噪声,提升体声波谐振器的性能。
本发明实施例提供了一种体声波谐振器,包括:
第一电极、压电层以及第二电极,所述压电层设置于所述第一电极和所述第二电极之间;
所述压电层设置有至少一个开缝,沿所述第一电极指向所述第二电极的方向,所述开缝至少贯穿所述压电层。
可选的,沿所述第一电极指向所述第二电极的方向,所述开缝贯穿所述第一电极和所述第二电极。
可选的,所述开缝在所述第一电极上的垂直投影与所述压电层在所述第一电极上的垂直投影的任意边均不平行。
可选的,所述开缝在所述第一电极上的垂直投影的形状包括矩形、椭圆形或梯形。
可选的,所述开缝在所述第一电极的垂直投影的宽度的取值范围为5微米-15微米。
可选的,所述压电层设置有至少两个开缝。可选的,所述至少两个开缝互相不平行。
可选的,所述至少两个开缝不对称。
可选的,所述谐振器在所述第一电极的垂直投影的形状为圆形、正方形或长方形。
本发明实施例通过在压电层设置至少一个开缝,且沿第一电极指向第二电极的方向,开缝至少贯穿压电层,开缝可以对横向声波起到一定的反射作用,可以减小横向驻波的产生,从而降低噪声,提升体声波谐振器的性能。
附图说明
图1是本发明实施例提供的一种体声波谐振器的俯视示意图;
图2是图1中体声波谐振器沿剖面线AA的剖面示意图;
图3是本发明实施例提供的另一种体声波谐振器的剖面示意图;
图4是本发明实施例提供的另一种体声波谐振器的俯视示意图;
图5是本发明实施例提供的另一种体声波谐振器的俯视示意图;
图6是本发明实施例提供的一种谐振器的谐振特性的曲线图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
本实施例提供了一种体声波谐振器,图1是本发明实施例提供的一种体声波谐振器的俯视示意图,图2是图1中体声波谐振器沿剖面线AA的剖面示意图,参考图1和图2,该体声波谐振器包括:
第一电极10、压电层20以及第二电极30,压电层20设置于第一电极10和第二电极30之间;
压电层20设置有至少一个开缝21,沿第一电极10指向第二电极30的方向,开缝21至少贯穿压电层20。
其中,第一电极10指向第二电极30的方向即压电层20的厚度方向。第一电极10和第二电极30为导电层,压电层20采用压电材料。当第一电极10和第二电极30上施加具有一定频率的交流信号时,压电层20发生形变,产生纵向(厚度方向)的声波信号,即需要的信号。然而压电层20在产生纵向声波信号的同时,还会产生横向声波信号,影响谐振器的性能。本实施例通过在压电层20设置至少一个开缝21,且沿第一电极10指向第二电极30的方向,开缝21至少贯穿压电层20,开缝21可以对横向声波信号起到一定的反射作用,可以减小横向驻波的产生,从而降低噪声,提升体声波谐振器的性能。
图3是本发明实施例提供的另一种体声波谐振器的剖面示意图,可选的,参考图3,沿 第一电极10指向第二电极30的方向,开缝21贯穿第一电极10和第二电极30。
这样设置,在开缝21所在位置沿谐振器的厚度方向(压电层20的厚度方向)可以最大限度的对横向波进行反射,进一步减少横向驻波的形成,降低噪声。
可选的,开缝21在第一电极10上的垂直投影与压电层20在第一电极10上的垂直投影的任意边均不平行。
具体的,开缝21在第一电极10上的垂直投影与压电层20在第一电极10上的垂直投影的任意边均不平行,即开缝21与压电层20的任意侧表面均不平行。
当开缝21在第一电极10上的垂直投影与压电层20在第一电极10上的垂直投影的某一边平行时,可能会出现横向波在该边与开缝21之间相互反射形成驻波的情况。通过设置开缝21与压电层20在第一电极10上的垂直投影的任意边均不平行,使得开缝21与压电层20的侧表面呈设定角度交叉排列,横向波在开缝21与压电层20的侧表面之间反射,且开缝21与压电层20的侧表面对波的反射方向不平行,可进一步减少横向驻波的形成,进一步降低噪声,提升谐振器的性能。
图4是本发明实施例提供的另一种体声波谐振器的俯视示意图,可选的,参考图1和图4,开缝21在第一电极上的垂直投影的形状包括矩形、椭圆形或梯形。
具体的,由于矩形或椭圆形的缝隙工艺上较易制作,通过设置开缝21在第一电极上的垂直投影的形状为矩形、椭圆形或梯形,在保证降低噪声,提升谐振器的性能的同时,降低了工艺难度。
需要说明的是,开缝21在第一电极上的垂直投影的形状并不限于矩形、椭圆形和梯形,还可以为其他图形。
可选的,开缝21在第一电极10的垂直投影的宽度的取值范围为5微米-15微米。
具体的,开缝21的宽度即开缝21的短边的尺寸,当宽度较小时,开缝21的加工难度较大,当宽度较大时,使得开缝21占用的面积过大,容易影响体声波谐振器的结构强度。通过设置开缝21在第一电极10的垂直投影的宽度的取值范围为5微米-15微米,在降低工艺难度的同时,保证了体声波谐振器具有较高的结构强度,避免由于外力冲击造成谐振器出现裂缝等。
可选的,压电层20设置有至少两个开缝21。
具体的,通过设置多个开缝21,横向波在多个开缝21与体声波谐振器的各侧边之间相互反射,可进一步减少驻波的形成。
图5是本发明实施例提供的另一种体声波谐振器的俯视示意图,参考图1-5,至少两个 开缝21的尺寸可以相同也可以不同,本实施例并不做具体限定,开缝21的具体尺寸可以根据谐振器的形状以及尺寸等确定,只要能够保证较大程度的降低噪声即可,本实施例并不做具体限定。
可选的,至少两个开缝21互相不平行。
具体的,由于开缝21在第一电极的垂直投影与压电层在第一电极的垂直投影的各边均不平行,且至少两个开缝21互相不平行,则各个开缝21均不与压电层的侧表面平行,各个开缝21均不与谐振器的侧表面平行,进一步保证横向波在开缝21与体声波谐振器的各侧表面之间相互反射的方向不同,不易形成驻波,从而进一步降低噪声,提升谐振器的性能。
可选的,至少两个开缝21不对称。
这样设置使得各个开缝21的排布方式更加杂乱,进一步保证横向波在开缝21与谐振器的侧表面之间传播时传播方向各异,进一步减少驻波的形成,进一步降低噪声。
可选的,谐振器在第一电极的垂直投影的形状为正方形或长方形。
具体的,本实施例的方案通过在压电层设置开缝,可有效避免横向驻波的形成,使得谐振器可以采用正方形或长方形等规则形状,由于规则形状的谐振器其制作工艺简单,且谐振器的结构强度较好,因此本实施例的方案降低了谐振器的制作工艺难度,提升了谐振器的结构强度。
图6是本发明实施例提供的一种谐振器的谐振特性的曲线图,图6示出了对图5所示结构的谐振特性的仿真分析图,参考图6,当采用图5所示的结构时,可明显减少噪声。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互结合和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (9)

  1. 一种体声波谐振器,其特征在于,包括:
    第一电极、压电层以及第二电极,所述压电层设置于所述第一电极和所述第二电极之间;
    所述压电层设置有至少一个开缝,沿所述第一电极指向所述第二电极的方向,所述开缝至少贯穿所述压电层。
  2. 根据权利要求1所述的体声波谐振器,其特征在于:
    沿所述第一电极指向所述第二电极的方向,所述开缝贯穿所述第一电极和所述第二电极。
  3. 根据权利要求1或2所述的体声波谐振器,其特征在于:
    所述开缝在所述第一电极上的垂直投影与所述压电层在所述第一电极上的垂直投影的任意边均不平行。
  4. 根据权利要求3所述的体声波谐振器,其特征在于:
    所述开缝在所述第一电极上的垂直投影的形状包括矩形、椭圆形或梯形。
  5. 根据权利要求3所述的体声波谐振器,其特征在于:
    所述开缝在所述第一电极的垂直投影的宽度的取值范围为5微米-15微米。
  6. 根据权利要求3所述的体声波谐振器,其特征在于:
    所述压电层设置有至少两个开缝。
  7. 根据权利要求6所述的体声波谐振器,其特征在于:
    所述至少两个开缝互相不平行。
  8. 根据权利要求6所述的体声波谐振器,其特征在于:
    所述至少两个开缝不对称。
  9. 根据权利要求1所述的体声波谐振器,其特征在于:
    所述谐振器在所述第一电极的垂直投影的形状为圆形、正方形或长方形。
PCT/CN2020/107912 2019-08-30 2020-08-07 一种体声波谐振器 WO2021036758A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/438,879 US20220158605A1 (en) 2019-08-30 2020-08-07 Bulk acoustic wave resonator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910818904.8A CN110417375A (zh) 2019-08-30 2019-08-30 一种体声波谐振器
CN201910818904.8 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021036758A1 true WO2021036758A1 (zh) 2021-03-04

Family

ID=68369514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107912 WO2021036758A1 (zh) 2019-08-30 2020-08-07 一种体声波谐振器

Country Status (3)

Country Link
US (1) US20220158605A1 (zh)
CN (1) CN110417375A (zh)
WO (1) WO2021036758A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417375A (zh) * 2019-08-30 2019-11-05 迈感微电子(上海)有限公司 一种体声波谐振器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030034639A (ko) * 2001-10-26 2003-05-09 엘지이노텍 주식회사 박막용적 탄성공진기 필터의 수평 방향 탄성파 차단 구조
JP2007208728A (ja) * 2006-02-02 2007-08-16 Fujitsu Media Device Kk 圧電薄膜共振器、フィルタおよびその製造方法
CN104202010A (zh) * 2014-08-28 2014-12-10 中国工程物理研究院电子工程研究所 一种镂空空腔型薄膜体声波谐振器及其制作方法
CN108566174A (zh) * 2018-04-17 2018-09-21 武汉大学 预设空腔防护墙型薄膜体声波谐振器及制备方法
CN108649916A (zh) * 2018-04-20 2018-10-12 华南理工大学 一种薄膜体声波谐振器及其背电极的引出方法
CN109474252A (zh) * 2018-10-29 2019-03-15 武汉大学 可提高q值的空腔薄膜体声波谐振器及其制备方法
CN110417375A (zh) * 2019-08-30 2019-11-05 迈感微电子(上海)有限公司 一种体声波谐振器
CN210157156U (zh) * 2019-08-30 2020-03-17 迈感微电子(上海)有限公司 一种体声波谐振器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014112372B3 (de) * 2014-08-28 2016-02-25 Epcos Ag Filterchip und Verfahren zur Herstellung eines Filterchips
KR102418744B1 (ko) * 2017-09-25 2022-07-08 (주)와이솔 에어갭형 fbar 및 이의 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030034639A (ko) * 2001-10-26 2003-05-09 엘지이노텍 주식회사 박막용적 탄성공진기 필터의 수평 방향 탄성파 차단 구조
JP2007208728A (ja) * 2006-02-02 2007-08-16 Fujitsu Media Device Kk 圧電薄膜共振器、フィルタおよびその製造方法
CN104202010A (zh) * 2014-08-28 2014-12-10 中国工程物理研究院电子工程研究所 一种镂空空腔型薄膜体声波谐振器及其制作方法
CN108566174A (zh) * 2018-04-17 2018-09-21 武汉大学 预设空腔防护墙型薄膜体声波谐振器及制备方法
CN108649916A (zh) * 2018-04-20 2018-10-12 华南理工大学 一种薄膜体声波谐振器及其背电极的引出方法
CN109474252A (zh) * 2018-10-29 2019-03-15 武汉大学 可提高q值的空腔薄膜体声波谐振器及其制备方法
CN110417375A (zh) * 2019-08-30 2019-11-05 迈感微电子(上海)有限公司 一种体声波谐振器
CN210157156U (zh) * 2019-08-30 2020-03-17 迈感微电子(上海)有限公司 一种体声波谐振器

Also Published As

Publication number Publication date
US20220158605A1 (en) 2022-05-19
CN110417375A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
JP6333319B2 (ja) バルク音響波共振器及び製造方法
KR102642910B1 (ko) 음향 공진기 및 그 제조 방법
JP4680235B2 (ja) 圧電式共振子構造および電気フィルタ
JP4324182B2 (ja) 薄膜バルク音響共振器および表面音響波共振器が集積された集積フィルタおよびその製造方法
JP2003017974A (ja) 幅方向波動を抑制する薄膜共振器
WO2020258334A1 (zh) 谐振器及其制备方法
WO2021093630A1 (zh) 体声波谐振器
JP2013539946A (ja) 広帯域音響結合薄膜bawフィルタ
JP6505152B2 (ja) 質量調整構造付きバルク音波共振器およびバルク音波フィルター
US11456716B2 (en) Elastic wave device and manufacturing method thereof
JP2006020277A (ja) 薄膜バルク音響共振器及びその製造方法
JP6200001B2 (ja) マイクロアコースティック部品および製造方法
WO2021036758A1 (zh) 一种体声波谐振器
CN111884617A (zh) 谐振器及其制备方法
CN210157156U (zh) 一种体声波谐振器
WO2020125353A1 (zh) 带沟槽的体声波谐振器、滤波器和电子设备
US20230231537A1 (en) Resonator and Manufacturing Method Thereof, Filter, and Electronic Device
JP4802714B2 (ja) バルク音波共振器
JP2010103621A (ja) 弾性波装置
TWI710149B (zh) 晶體振子
CN209659252U (zh) 谐振器及半导体器件
JP2008172638A (ja) 薄膜圧電共振器
CN111010125B (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN113852897A (zh) 压电mems扬声器及其设计方法、电子设备
JP2021508999A (ja) 薄膜圧電共振器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857748

Country of ref document: EP

Kind code of ref document: A1