WO2021036560A1 - 无线耳机 - Google Patents

无线耳机 Download PDF

Info

Publication number
WO2021036560A1
WO2021036560A1 PCT/CN2020/102242 CN2020102242W WO2021036560A1 WO 2021036560 A1 WO2021036560 A1 WO 2021036560A1 CN 2020102242 W CN2020102242 W CN 2020102242W WO 2021036560 A1 WO2021036560 A1 WO 2021036560A1
Authority
WO
WIPO (PCT)
Prior art keywords
earphone
charging
sound inlet
microphone
bottom shell
Prior art date
Application number
PCT/CN2020/102242
Other languages
English (en)
French (fr)
Inventor
李芳庆
皮世佳
鹿麟
刁国飞
王忠华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20858428.4A priority Critical patent/EP4013065A4/en
Priority to US17/638,361 priority patent/US20220295187A1/en
Publication of WO2021036560A1 publication Critical patent/WO2021036560A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1025Accumulators or arrangements for charging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/10Details of earpieces, attachments therefor, earphones or monophonic headphones covered by H04R1/10 but not provided for in any of its subgroups
    • H04R2201/105Manufacture of mono- or stereophonic headphone components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/10Details of earpieces, attachments therefor, earphones or monophonic headphones covered by H04R1/10 but not provided for in any of its subgroups
    • H04R2201/107Monophonic and stereophonic headphones with microphone for two-way hands free communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/07Mechanical or electrical reduction of wind noise generated by wind passing a microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones

Definitions

  • the present application relates to the field of earphone technology, in particular, to a wireless earphone.
  • Wireless headsets can use wireless communication technologies (such as Bluetooth technology, infrared radio frequency technology, 2.4G wireless technology, etc.) to communicate with terminal devices. Compared with wired headsets, wireless headsets are more convenient to use because they get rid of the shackles of physical wires. With rapid development, the left and right earphones of wireless earphones can also be connected via Bluetooth.
  • wireless communication technologies such as Bluetooth technology, infrared radio frequency technology, 2.4G wireless technology, etc.
  • Wireless earphones are generally equipped with a separate charging box. When the wireless earphones need to be charged, the wireless earphones are put into the charging box, and the charging contacts set on the wireless earphones contact the contacts in the charging box to charge the wireless earphones.
  • the microphones of current wireless headsets may also pick up wind signals with strong energy, resulting in serious wind noise.
  • the technical solution of the present application provides a wireless headset, which can reduce wind noise and improve the call experience.
  • a wireless headset including: a headset housing and a headset assembly housed in the headset housing, wherein the headset assembly includes a microphone; the headset housing includes a bottom shell, and the bottom shell includes A first bottom shell part and a second bottom shell part separated by an insulating material, the first bottom shell part is a charging positive electrode, and the second bottom shell part is a charging negative electrode; the bottom shell is provided with a plurality of sound inlets The plurality of sound inlet holes form a microphone sound inlet channel that communicates with each other.
  • a plurality of sound inlet holes are provided on the bottom shell of the earphone, and the plurality of sound inlet holes form mutually connected microphone sound inlet channels.
  • the wind signal inside the headset is shunted and attenuated to achieve the effect of reducing wind noise, which can further enhance the call experience.
  • the bottom shell of the earphone is used as the charging positive electrode and the charging negative electrode, and there is no need to separately provide charging contacts, so that the space utilization rate of the cavity inside the earphone can be increased.
  • the earphone bottom shell of the wireless earphone provided by the technical solution of the present application can not only suppress wind noise, improve the product call experience, but also realize the function of on-charging, thereby simplifying the structure design, reducing the structure complexity, reducing the process difficulty, and increasing Space utilization.
  • the "microphone sound channel” in the embodiments of the present application is a channel used for normal voice signals to be picked up by the microphone inside the earphone, but when the wind sound signal enters the earphone, the wind sound signal can also be picked up by the microphone sound channel. Microphone pickup.
  • the multiple sound inlet holes provided on the bottom shell form mutually connected microphone sound inlet channels, which can reduce the wind sound signal picked up by the microphone and thus reduce wind noise. That is, part of the wind sound signal entering the earphone may not be received by the microphone. Pick up, and flow out of the earphones through the microphones that are connected to each other into the sound channel.
  • the "microphone inlet channel” in the embodiment of the present application can be used for normal voice signals to be picked up by the microphone, and also used for wind sound signals to directly flow out of the headset without being picked up by the microphone.
  • the multiple sound inlet holes are uniformly arranged on the bottom shell.
  • the bottom shell of the wireless earphone is provided with a plurality of sound inlet holes evenly distributed, and the plurality of sound inlet holes are connected to each other, so that voice signals in all directions can be picked up by the wireless earphone, and the call experience is improved.
  • the multiple sound inlet holes are provided in the insulating material.
  • the provision of multiple sound inlet holes in the insulating material does not affect the structural design of the first bottom shell part and the second bottom shell part as the charging positive electrode and the charging negative electrode, which can simplify the structure complexity and reduce the process difficulty.
  • the multiple sound inlet holes include two sound inlet holes, and the axes of the two sound inlet holes coincide.
  • the wind is generally directional, when the axes of the two sound inlet holes coincide, the wind sound signal is allowed to enter the earphone from one sound inlet hole and then flow out from the other sound inlet hole, which has a better attenuation effect on the wind sound signal.
  • the wind noise reduction effect is better.
  • the cross section of the microphone sound inlet channel has at least one of the following shapes: circular, elliptical, polygonal, and wavy.
  • the microphone sound inlet channel includes a first sound inlet channel and a second sound inlet channel that are connected to each other, the first sound inlet channel and the second sound inlet channel The microphone is connected through a common sound channel.
  • the first sound inlet channel and the second sound inlet channel that are connected to each other allow the wind sound signal to enter from the first sound inlet channel and then flow out from the second sound inlet channel, which has a better attenuation effect on the wind sound signal and a better wind noise reduction effect.
  • the first sound channel and the second sound channel are connected to the microphone through the common sound channel, which does not affect the normal voice signal pickup.
  • the outer wall of the bottom shell is arc-shaped.
  • the outer wall of the bottom shell is arranged in a circular arc shape, which can be conveniently contacted with the charging electrode in the manner of point contact, line contact or surface contact, and is suitable for charging electrodes of various forms at the same time.
  • the earphone assembly further includes a flexible circuit board and a battery electrically connected to the flexible circuit board, the first bottom shell part and the second bottom shell part Are electrically connected to the flexible circuit board respectively.
  • the first bottom shell part is used as the positive electrode for charging
  • the second bottom shell part is used as the negative electrode for charging
  • the first bottom shell part and the second bottom shell part are electrically connected to the flexible circuit board
  • the battery is also electrically connected to the flexible circuit board to form a battery
  • the charging circuit can charge the wireless headset.
  • the flexible circuit board is provided with a first bending portion close to the bottom case, the microphone is provided at the first bending portion, and the microphone is connected to the The flexible circuit board is electrically connected.
  • the microphone is arranged close to the bottom case, which can easily pick up sound signals.
  • the flexible circuit board is provided with a second bending portion at the ear-in-ear end of the earphone housing, and the second bending portion is provided with a speaker.
  • a wireless headset including: a headset housing and a headset assembly housed in the headset housing, wherein the headset assembly includes a microphone; the headset housing includes a bottom shell, and the bottom shell is One of the charging positive and negative electrodes, and the other of the charging positive and negative electrodes are arranged separately from the bottom shell; the bottom shell is provided with a plurality of sound inlet holes, and the plurality of sound inlet holes form a mutual The connected microphone enters the sound channel.
  • a plurality of sound inlet holes are provided on the bottom shell of the earphone, and the plurality of sound inlet holes form mutually connected microphone sound inlet channels.
  • the wind signal inside the earphone is shunted and attenuated to achieve the effect of reducing wind noise and improve the call experience.
  • the bottom shell of the earphone is used as one of the charging positive and negative electrodes, and there is no need to separately provide charging contacts, so that the space utilization rate of the cavity inside the earphone can be increased.
  • the bottom case is provided with a charging positive electrode or a charging negative electrode, and the other is separated from the bottom case, so that the bottom case is used as one of the charging positive and negative electrodes, so that the design of the bottom case, such as material and structure design, is more improved. For flexibility.
  • the earphone bottom shell of the wireless earphone provided by the technical solution of the present application can not only suppress wind noise, improve the product call experience, but also realize the function of on-charging, thereby simplifying the structure design, reducing the structure complexity, and reducing the process difficulty. Increase space utilization.
  • the earphone housing includes a front housing, a rear housing, and an earphone handle, the front housing is connected to the rear housing, and the rear housing faces The earphone handle is extended downward to form the earphone handle, the bottom shell is located at one end of the earphone handle, and the other of the charging positive and negative electrodes is arranged on the rear housing.
  • the multiple sound inlet holes are uniformly arranged on the bottom shell.
  • the bottom shell of the wireless earphone is provided with a plurality of sound inlet holes evenly distributed, and the plurality of sound inlet holes are connected to each other, so that voice signals in all directions can be picked up by the wireless earphone, and the call experience is improved.
  • the multiple sound inlet holes include two sound inlet holes, and the axes of the two sound inlet holes coincide.
  • the wind is generally directional, when the axes of the two sound inlet holes coincide, the wind sound signal is allowed to enter the earphone from one sound inlet hole and then flow out from the other sound inlet hole, which has a better attenuation effect on the wind sound signal. , The wind noise reduction effect is better.
  • the cross section of the microphone sound inlet channel has at least one of the following shapes: circular, elliptical, polygonal, and wavy.
  • the microphone sound inlet channel includes a first sound inlet channel and a second sound inlet channel that are connected to each other, the first sound inlet channel and the second sound inlet channel The microphone is connected through a common sound channel.
  • the first sound inlet channel and the second sound inlet channel that are connected to each other allow the wind sound signal to enter from the first sound inlet channel and then flow out from the second sound inlet channel, which has a better attenuation effect on the wind sound signal and a better wind noise reduction effect.
  • the first sound channel and the second sound channel are connected to the microphone through the common sound channel, which does not affect the normal voice signal pickup.
  • the outer wall of the bottom shell is arc-shaped.
  • the outer wall of the bottom shell is arranged in a circular arc shape, which can be conveniently contacted with the charging electrode in the manner of point contact, line contact or surface contact, and is suitable for charging electrodes of various forms at the same time.
  • the earphone assembly further includes a flexible circuit board and a battery electrically connected to the flexible circuit board, one end of the flexible circuit board is electrically connected to the bottom case, The other end of the flexible circuit board is electrically connected to the other of the charging positive and negative electrodes.
  • the bottom case is electrically connected to the flexible circuit board as one of the charging positive and negative electrodes, and the other of the charging positive and negative electrodes is also electrically connected to the flexible circuit board.
  • the battery is electrically connected to the flexible circuit board to form a battery charging circuit. , So as to be able to charge the wireless headset.
  • the flexible circuit board is provided with a first bending portion close to the bottom case, the microphone is provided at the first bending portion, and the microphone is connected to the The flexible circuit board is electrically connected.
  • the microphone is arranged close to the bottom case, which can easily pick up sound signals.
  • the flexible circuit board is provided with a second bending portion at the ear-in-ear end of the earphone housing, and the second bending portion is provided with a speaker.
  • a terminal including a wireless earphone and a charging box for accommodating the wireless earphone, wherein the wireless earphone includes an earphone housing and an earphone assembly housed in the earphone housing, wherein the The earphone assembly includes a microphone, the earphone housing includes a bottom case, the bottom case includes a first bottom case part and a second bottom case part separated by an insulating material, the first bottom case part is a charging positive electrode, and the first bottom case part is a positive electrode for charging.
  • the second bottom shell part is the negative electrode for charging, the bottom shell is provided with a plurality of sound inlet holes, and the plurality of sound inlet holes form a microphone sound inlet channel that communicates with each other;
  • the charging box includes a charging box main body and a charging box cover, An accommodating space is provided on the main body of the charging box, and the accommodating control is used for accommodating the earphone.
  • the charging box cover can be used to cover the accommodating space, wherein the accommodating space includes a bottom accommodating portion provided with charging electrodes corresponding to the first bottom shell portion and the second bottom shell portion respectively.
  • the groove is used for accommodating the bottom shell of the wireless earphone.
  • the terminal provided by the technical solution of the present application includes a wireless headset and a charging box.
  • the bottom shell of the wireless headset can not only suppress wind noise, improve the product call experience, but also realize the function of on-charging, thereby simplifying the structural design and reducing the structural complexity.
  • the process difficulty can be reduced, and the space utilization rate can be increased;
  • the charging box is used for accommodating the wireless earphones, and can be used as a power source to charge the wireless earphones.
  • the charging electrode is any one of a charging contact, a charging spring, a charging block, or a charging surface.
  • the charging box main body and the charging box cover are rotatably connected.
  • a terminal including a wireless earphone and a charging box for accommodating the wireless earphone, wherein the wireless earphone includes an earphone housing and an earphone assembly housed in the earphone housing, wherein the The earphone assembly includes a microphone, the earphone housing includes a bottom case, the bottom case is one of the charging positive and negative electrodes, the other of the charging positive and negative electrodes is arranged separately from the bottom case, and the bottom A plurality of sound inlet holes are provided on the shell, and the plurality of sound inlet holes form a microphone sound inlet channel communicated with each other; the charging box includes a charging box main body and a charging box cover, and a receiving space is provided on the charging box main body, The charging box cover is used to cover the accommodating space, wherein the accommodating space includes a bottom accommodating groove provided with a charging electrode corresponding to the bottom case, for accommodating the bottom case of the wireless earphone, and The other corresponding charging electrode of the charging positive and negative electrodes is not in the
  • the terminal provided by the technical solution of the present application includes a wireless headset and a charging box.
  • the bottom shell of the wireless headset can not only suppress wind noise, improve the product call experience, but also realize the function of on-charging, thereby simplifying the structural design and reducing the structural complexity. Reduce process difficulty and increase space utilization; the charging box is used to accommodate wireless earphones, and at the same time can be used as a power source to charge the wireless earphones.
  • the earphone housing further includes a front housing, a rear housing, and an earphone handle, the front housing is connected to the rear housing, and the rear housing Extends downward to form the earphone handle, the bottom shell is located at one end of the earphone handle, the other one of the charging positive and negative electrodes is arranged on the rear housing, and the other of the charging positive and negative electrodes A corresponding charging electrode is arranged at a position corresponding to the rear housing.
  • the charging electrode is any one of a charging contact, a charging spring, a charging block, or a charging surface.
  • the charging box main body and the charging box cover are rotatably connected.
  • FIG. 1 is a schematic structural diagram of a wireless headset provided by an embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of the wireless headset of FIG. 1;
  • Figure 3 is a schematic diagram of the working principle of a microphone
  • Fig. 4 is an exploded schematic diagram of the earphone assembly in Fig. 2;
  • FIG. 5 is a schematic structural diagram of a wireless headset provided by another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a wireless headset provided by an embodiment of the present application.
  • FIG. 7 is an exploded schematic diagram of a wireless headset provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the connection relationship of earphone components provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a wireless headset provided by another embodiment of the present application.
  • FIG. 10 is an exploded schematic diagram of a wireless headset provided by another embodiment of the present application.
  • FIG. 11 is an exploded schematic diagram of a wireless headset provided by another embodiment of the present application.
  • FIG. 12 is a schematic diagram of the connection relationship of earphone components provided by another embodiment of the present application.
  • Fig. 13 is an exploded schematic diagram of a wireless earphone provided in an embodiment of the present application placed in a charging box;
  • Fig. 14 is a schematic diagram of a wireless headset placed in a charging box according to an embodiment of the present application.
  • FIG. 15 is a schematic perspective view of a wireless headset placed in a charging box according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a bottom shell of a wireless headset provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a bottom shell of a wireless headset provided by an embodiment of the present application.
  • FIG. 18 is a partial schematic exploded view of a wireless headset provided by an embodiment of the present application.
  • FIG. 19 is a partial schematic cross-sectional view of a wireless headset provided by an embodiment of the present application.
  • the embodiment of the application provides a wireless headset, which can be used as an accessory of a terminal device in a call scenario, where the terminal device includes but is not limited to a handheld device, a vehicle-mounted device, a wearable device, a computing device, or other processing devices connected to a wireless modem.
  • Terminal devices can include cellular phones, smart phones, personal digital assistants (PDAs), tablet computers, laptop computers, in-vehicle computers, and smart watches. watch), smart wristband (smart wristband), pedometer (pedometer) and other terminal devices with call function.
  • the terminal device in the embodiment of the present application may also be referred to as a terminal.
  • Call scenes include, but are not limited to, indoor call scenes, outdoor call scenes, and car call scenes.
  • Call scenes can include quiet call scenes, noisy call scenes (such as streets, shopping malls, airports, stations, construction sites, in the rain, watching games, concerts, etc.), cycling call scenes, outdoor windy call scenes, and single-ear call scenes , Binaural call scenarios and other scenarios where calls can be made.
  • noisy call scenes such as streets, shopping malls, airports, stations, construction sites, in the rain, watching games, concerts, etc.
  • cycling call scenes outdoor windy call scenes
  • single-ear call scenes Binaural call scenarios and other scenarios where calls can be made.
  • Earphone also known as headphone, head-set, earpiece
  • headphone head-set, earpiece
  • earpiece can be a pair of conversion units, which are used to receive the electrical signal from the media player or receiver, and use the speaker close to the ear to convert it into audible sound waves .
  • Headphones can generally be divided into wired headsets (wired headsets or wired headsets) and wireless headsets (wireless headsets).
  • the wired earphone has two earphones and a connecting cable, and the left and right earphones are connected by the connecting cable.
  • Wired earphones may be inconvenient to wear and need to be connected to the terminal device through the earphone jack, which consumes the power of the terminal device during operation.
  • wireless headsets can use wireless communication technologies (such as Bluetooth technology, infrared radio frequency technology, 2.4G wireless technology, ultrasonic, etc.) to communicate with terminal devices. Compared with wired headsets, wireless headsets are more useful because they get rid of the shackles of physical wires. Convenience and rapid development. Among them, the left earphone of the wireless earphone can be connected to the right earphone via Bluetooth.
  • Bluetooth is a low-cost and large-capacity short-interval wireless communication standard.
  • the Bluetooth standard uses microwave frequency band operation.
  • the transmission rate can be 1M bytes per second, the maximum transmission interval can be 10 meters, and the transmission power can reach 100 meters.
  • TWS headsets are also called true wireless stereo (TWS) headsets.
  • TWS headsets completely abandon the wire connection method and include two headsets (such as a master headset and a slave headset).
  • a terminal device also called a transmitting device, such as a mobile phone, a tablet, a music player with Bluetooth output, etc.
  • the master headset connects to the slave headset via Bluetooth wirelessly, which can realize true Bluetooth
  • the left and right channels are used separately for wireless.
  • the left and right earphones of the TWS headset can form a stereo system through Bluetooth, and the performance of listening to music, talking, and wearing are all improved. In addition, either of the two earphones can also work independently.
  • the master earphone when the master earphone is not connected to the slave earphone, the master earphone can return to mono sound quality. Because the left and right earphones of TWS earphones have no physical connection characteristics, almost all TWS earphones are equipped with charging boxes that have both charging and storage functions.
  • the charging box can provide power and storage functions for the wireless earphones. When there is no power, just put the earphones in the box, the earphones can be automatically disconnected, and the charging box will charge the earphones.
  • Fig. 1 shows a schematic structural diagram of a wireless headset according to an embodiment of the present application.
  • the wireless earphone 100 may include an earphone housing 1 and an earphone assembly (not shown in the figure) accommodated in an internal cavity formed by the earphone housing 1.
  • the earphone assembly will be described below in conjunction with FIG. 2 , I will not go into details here.
  • the earphone housing 1 may include a front housing 11, a rear housing 12, an earphone handle 13, and a bottom housing 14.
  • the front housing 11 is the housing on the side of the wireless earphone facing the human ear when in use, and the rear housing
  • the body 12 is the casing of the wireless earphone that faces away from the human ear when in use.
  • the front casing 11 is connected to the rear casing 12, and the rear casing 12 extends downward to form the earphone handle 13, and the bottom casing 14 is located at one end of the earphone handle 13.
  • the front housing 11 is approximately in the shape of a hood, and is connected to one end of the rear housing 12 in the form of a hood.
  • the earphone handle 13 is approximately in the shape of a cylinder and is connected to the other end of the rear housing 12, wherein the extension lines at both ends of the rear housing 12 At an angle, such as 90°.
  • the front housing 11 and the rear housing 12 may be snap-fitted connection or integrally connected.
  • the back shell 12 and the earphone handle 13 may be snap-fit connection or an integral connection.
  • the bottom shell 14 is located at the bottom of the earphone handle 13 and can be connected to the earphone handle 13 by snap-fitting or integral connection.
  • the bottom shell 14 is provided with a sound inlet 141 for connecting the outside of the earphone with the inner cavity of the earphone, so that external sound signals enter the earphone through the sound inlet 141 and are picked up by the microphone inside the earphone cavity.
  • the bottom shell 14 is also provided with an opening 142 for exposing the charging contacts.
  • the charging contacts of the wireless earphone 100 extend from the inside of the earphone cavity through the opening 142 so as to contact the charging box when the wireless earphone 100 is charged. Touch to charge.
  • the front shell 11 is provided with a sound hole (not directly shown in the perspective of the wireless earphone in FIG. 1), which is used to connect the outside of the earphone with the inner cavity of the earphone, so that the sound from the speaker unit in the inner cavity of the earphone can be generated.
  • the signal enters the human ear through the sound hole.
  • a pressure relief hole 111 may also be provided on the front housing 11 to facilitate the inflow and outflow of air, balance the pressure inside and outside the earphone, and make the built-in speaker unit vibrate more freely and smoothly, thereby bringing more Good auditory effect.
  • an opening 112 may also be provided on the front housing 11, and a sensor may be provided at the position of the opening 112.
  • the front housing 11 is provided with a contact sensor at the opening 112 for sensing whether the earphone is worn. It is understandable that a sensor may also be provided in the housing to sense whether the earphone is worn. In this case, the front housing 11 may not be provided with an opening 112.
  • Fig. 2 shows a schematic cross-sectional view of the internal structure of the wireless earphone in Fig. 1. It can be understood that the cross-sectional view may be a stepped cross-sectional view.
  • the figure shows the earphone assembly 2 housed in the internal cavity formed by the earphone housing 1.
  • the earphone assembly 2 may include a speaker unit 21, a control unit 22, a sound receiving unit 23, a flexible printed circuit (FPC) 24, a battery 25, a charging unit 26, and a sensor device (not shown in the figure) )Wait.
  • the earphone assembly 2 further includes an auxiliary sound receiving unit 27, which may be a microphone, for example, a microphone that picks up background sound in a call scene.
  • the speaker unit 21 is located in the cavity formed by the front housing 11 and the rear housing 12, and the sound emission direction thereof faces the front housing 11.
  • the loudspeaker unit 21 may be an electro-acoustic transducer device for converting audio electrical signals into sound signals.
  • the loudspeaker unit 21 may be a moving coil unit, a moving iron unit or a ring-iron mixing unit.
  • the loudspeaker unit 21 can also be called a horn or a loudspeaker. Therefore, the aforementioned moving coil unit, moving iron unit or coil-iron mixing unit can also be referred to as a moving coil speaker (or a dynamic speaker), a moving iron speaker, and a coil-iron mixing unit, respectively. Hybrid speakers.
  • loudspeaker unit 21 can usually include diaphragms, voice coils, permanent magnets, support frames, etc. .
  • the voice coil of the speaker receives audio current
  • the voice coil generates an alternating magnetic field under the action of the current
  • the permanent magnet also generates a constant magnetic field with the same size and direction. Since the size and direction of the magnetic field produced by the voice coil are constantly changing with the change of the audio current, the interaction of the two magnetic fields makes the voice coil move perpendicular to the direction of the current in the voice coil. Because the voice coil and the diaphragm are connected, Drive the vibrating membrane to vibrate.
  • the vibration of the vibrating membrane will push the air, compress and expand the air, and generate a pressure on the original atmospheric pressure, which will radiate sound waves outward.
  • the sound pressure acts on the human ear, and what is perceived is sound.
  • the vibration of the vibrating membrane causes the vibration of the air to produce sound.
  • the greater the current input to the voice coil the greater the force of its magnetic field, the greater the amplitude of the vibration of the diaphragm, and the louder the sound.
  • the loudspeaker's high-pitched part is mainly in the center of the diaphragm. The harder the central material of the speaker's diaphragm, the better the sound effect will be reproduced.
  • the bass part of the speaker is mainly on the edge of the diaphragm. If the edge of the diaphragm of the speaker is softer and the diameter of the paper cone is larger, the bass effect of the speaker will be better.
  • the speaker unit 21 can receive audio signals and control signals (such as streaming media control signals) transmitted by the terminal device, and can also transmit the received audio signals and control signals to other speaker units.
  • audio signals and control signals such as streaming media control signals
  • the audio signal and control signal received from the terminal device can be transmitted to the slave speaker, so that the audio is played synchronously in the two separate speakers, thereby achieving a stereo effect.
  • the control unit 22 is located in the cavity formed by the front housing 11 and the rear housing 12. Compared with the speaker unit 21, it is located farther from the front housing 11 and is connected to the speaker unit 21.
  • the control unit 22 may include a motherboard (or called a main chip or a main control chip), a Bluetooth chip, etc., which may be used for charging management, signal transmission, etc., in some embodiments, the control unit 22 may also be used for active noise reduction.
  • the control unit 22 may be a microprocessor.
  • the sound receiving unit 23 is located in the cavity formed by the bottom shell 14 and the earphone handle 13, and the bottom shell 14 and the earphone handle 13 can be snap-connected.
  • the sound receiving unit 23 includes a microphone (microphone, MIC) 231 fixed on a flexible printed circuit (FPC) 24, a waterproof and dustproof film 232, and the like.
  • the flexible circuit board FPC 24 may include multiple parts, and one end of the FPC 24 (for convenience of description, it is represented as the first FPC part 241 in the embodiment of the present application) is located on the bottom shell 14.
  • the first FPC part 241 can be electrically connected to the sound receiving unit 23, the charging unit 26, etc.; the other end of the FPC (for ease of description, it is represented as the second FPC part in the embodiment of the present application) 242, refer to FIG. 11)
  • the second FPC part 242 Located in the cavity formed by the front housing 11 and the rear housing 12, the second FPC part 242 can be electrically connected to the control unit 22 and the speaker unit 21.
  • FIG. 11 Located in the cavity formed by the front housing 11 and the rear housing 12, the second FPC part 242 can be electrically connected to the control unit 22 and the speaker unit 21.
  • the flexible circuit board 24 may be provided with a first bending portion (for example, the first FPC portion 241) at one end close to the bottom case 14, and the microphone is disposed at the first bending portion and the microphone and the flexible circuit board 24 Electrical connection; the flexible circuit board 24 may be provided with a second bending portion at the ear-in end of the earphone shell, and the second bending portion is provided with a speaker unit (such as a speaker) 21.
  • the first FPC part 241 may extend to the second FPC part 242 through the cavity formed by the earphone handle 13.
  • the embodiment of the present application represents the extension part between the first FPC part 241 and the second FPC part 242 as the middle
  • the FPC part, the middle FPC part can be electrically connected to the battery 25, the antenna module (not shown in the figure), and the like.
  • the first FPC part 241, the second FPC part 242, and the middle FPC part may be fixed to the corresponding housing parts of the earphone housing 1.
  • the first FPC portion 241 may be located in the cavity formed by the bottom shell 14 and fixed on the bottom wall 143 of the bottom shell 14.
  • the waterproof and dustproof membrane 232 is in the form of a sheet and is arranged on the side of the first FPC part 241 close to the bottom wall 143 of the bottom shell 14.
  • the upper and lower surfaces of the membrane 232 are covered with adhesive layers such as double-sided tape.
  • the adhesive layer on the upper surface is used to attach the upper surface of the waterproof and dustproof film 232 to the lower surface of the first FPC part 241, and the adhesive layer on the lower surface of the waterproof and dustproof film 232 is used to attach the lower surface of the waterproof and dustproof film 232. It is attached to the bottom wall 143 of the bottom shell 14.
  • the first FPC part 241 can be fixed on the bottom wall 143 of the bottom case 14 through the waterproof and dustproof film 232 and the glue layer thereon.
  • the waterproof and dustproof membrane 232 has a dense mesh, which not only ensures that the sound signal can reach the call microphone 231 through the waterproof and dustproof membrane 232, but also prevents dust and water from entering the interior of the bottom shell 14, and can also prevent external objects from piercing. Break the diaphragm of the call microphone 231.
  • the scope of action of the waterproof and dustproof membrane 232 is mainly the sound inlet 141. External sound signals can only enter the earphone through the sound inlet 141, and impurities such as dust and moisture are trapped outside of the earphone housing 1 by the waterproof and dustproof membrane 232.
  • the sound inlet 141 may be located at the bottom of the bottom shell 14 and arranged opposite to the call microphone 231.
  • the call microphone 231 can be fixed to the first FPC part 241 and electrically connected to the first FPC part 241.
  • the first FPC part 241 is provided with an FPC opening 2411 at a position corresponding to the call microphone 231 for the sound signal to be picked up by the call microphone 231 through the first FPC part 241.
  • the sound inlet hole of the microphone unit, the FPC opening 2411 and the sound inlet hole 141 in the call microphone 231 are used to connect the call microphone 231 and the outside of the earphone housing 1 to form a sound signal transmission channel.
  • the transmission channel of the sound signal may be referred to as a microphone inlet channel or a microphone pickup hole.
  • the microphone pickup hole is used to transmit an external sound signal to the call microphone 231 and be picked up by the call microphone 231.
  • the call microphone 231 may include one or more microphone monomers, each microphone monomer may be an independent component, and multiple microphone monomers may be provided separately, which is not limited in the embodiment of the present application. To facilitate understanding and description, the embodiment of the present application is described by taking the call microphone 231 including a single microphone as an example.
  • each microphone unit includes a sound inlet hole of its corresponding microphone unit, and multiple microphone units can share a sound inlet hole 141. In other words, the sound signal can be reached after entering through one sound inlet hole 141. The sound inlet holes of the multiple microphone units are thus picked up by the multiple microphone units.
  • the call microphone 231 also called microphone, microphone, microphone, microphone, microphone core, etc., is an energy conversion device that converts sound signals into electrical signals, which is the opposite of the function of the speaker unit 21 described above. Devices (the speaker unit 21 is used to convert electrical signals into sound signals).
  • the call microphone 231 can be an electric (moving coil, ribbon) microphone, a condenser microphone, a piezoelectric (crystal, ceramic) microphone, an electromagnetic microphone, a semiconductor microphone, etc. , It can also be a cardioid microphone, a sharp cardioid microphone, a supercardioid microphone, a two-way (8-shaped) microphone, an omnidirectional (omnidirectional) microphone, etc.
  • the call microphone 231 can convert the change of sound into a change of voltage or current through a specific mechanism, and then hand it over to the circuit system for processing.
  • the intensity of the sound can be expressed by sound pressure, corresponding to the amplitude of the voltage or current, and the speed of the sound change corresponds to The frequency of the electrical signal.
  • the call microphone 231 includes a diaphragm, and the premise of its energy conversion is that the sound causes the microphone diaphragm to vibrate.
  • the working principle of a moving coil microphone is to drive the coil to cut the magnetic line of induction through the diaphragm, thereby generating electrical signals.
  • the aluminum ribbon microphone uses an aluminum ribbon as the diaphragm.
  • the aluminum ribbon is placed in a strong magnetic field. When the sound makes the aluminum ribbon vibrate, the aluminum ribbon cuts the magnetic line of induction to generate electrical signals.
  • Condenser microphones use an extremely thin metal diaphragm as the first stage of the capacitor, and another very close metal back plate (about a few tenths of a millimeter) as the other pole, so that the vibration of the diaphragm will cause the capacitance of the capacitor. The change forms an electrical signal.
  • an electret condenser microphone is a special capacitive "acoustic-electrical" conversion device made of electret materials.
  • crystal microphones change their electrical properties when they change shape. By connecting the diaphragm to the crystal, when a sound wave hits the diaphragm, the crystal will generate an electrical signal.
  • the working principle of one type of microphone is briefly introduced below in conjunction with FIG. 3. The working principles of other types of microphones are similar, and will not be listed here.
  • the call microphone 231 is an example of a microelectromechanical system (MEMS) microphone.
  • MEMS refers to a micro-electromechanical system that integrates micro-sensors, actuators, signal processing and control circuits, interface circuits, communications and power supplies.
  • a microphone manufactured based on MEMS technology is a MEMS microphone. Simply put, a capacitor is integrated on a silicon wafer. Therefore, a MEMS microphone can also be called a microphone chip or a silicon microphone.
  • a MEMS microphone is mainly composed of a MEMS microcapacitance sensor, a micro integrated conversion circuit (amplifier), an acoustic cavity, and a radio frequency (RF) anti-noise circuit.
  • RF radio frequency
  • the MEMS microcapacitor pole head part contains a silicon diaphragm and a silicon back electrode that receive sound.
  • the silicon diaphragm can directly transmit the received audio signal to the micro-integrated circuit through the MEMS micro-capacitance sensor.
  • the micro-integrated circuit can transmit high-resistance audio circuits.
  • the signal is converted and amplified into a low-resistance audio electrical signal, and at the same time filtered by the RF anti-noise circuit, an electrical signal matching the front circuit is output to complete the "acoustic-electrical" conversion.
  • FIG. 3(a) shows a schematic structural diagram of a microphone unit.
  • the microphone unit may include a housing formed with a cavity, and a movable diaphragm (also referred to as a sound diaphragm or a sound diaphragm) arranged inside the cavity. Diaphragm), fixed backplane, and application specific integrated circuit (ASIC), etc.
  • the housing is provided with a sound inlet of a microphone unit for picking up sound signals, and sound pressure waves can enter the inside of the microphone unit through the sound inlet of the microphone unit.
  • the diaphragm and the back plate are arranged oppositely.
  • the diaphragm is located near the sound inlet side of the microphone unit. It serves as the bottom condenser plate in the microphone unit.
  • the diaphragm can be a thin solid structure and easy Bending, when sound waves cause changes in air pressure or when sound pressure waves act on the diaphragm, the diaphragm will bend; the back plate is located on the side of the sound inlet away from the microphone unit and serves as the top condenser plate in the microphone unit.
  • the backplane has excellent rigidity, can adopt a through-hole structure, and has excellent ventilation performance.
  • the back plate is thick and porous. When air flows through, the back plate remains stationary. When the diaphragm vibrates, the capacitance between the diaphragm and the back plate will change.
  • the ASIC device can convert this capacitance change into an electrical signal. Specifically, refer to Figure (b).
  • the ASIC device uses a charge pump to place a fixed reference charge on the microphone diaphragm (V 0 in the figure). When the diaphragm movement causes the capacitance between the diaphragm and the back plate to change, the ASIC measures the voltage change (V BIAS in the figure), thereby completing the conversion of the sound signal to the electrical signal.
  • the earphone assembly 2 of the embodiment of the present application further includes a battery 25, a charging unit 26, a sensor device (not shown in the figure), and the like.
  • the headset assembly 2 further includes an auxiliary sound receiving unit 27.
  • the auxiliary sound receiving unit 27 may be a microphone, for example, a microphone that picks up background sounds in a call scene.
  • the battery 25 can be arranged in the cavity formed by the earphone handle 13 and electrically connected to the flexible circuit board 24. Specifically, the positive and negative electrodes of the battery 25 are electrically connected to the flexible circuit board 24, and the circuit in the flexible circuit board 24 can be The charging of the battery 25 and the power supply of the battery 25 to the earphone assembly 2 are realized. Wherein, the cavity formed by the earphone handle 13 may also be provided with an antenna for receiving and sending signals.
  • the charging unit 26 can be arranged at the bottom of the earphone for charging the battery 25. One end is connected to the flexible circuit board 24 in the bottom shell 14, and the other end is outside the earphone and can be contacted with the metal contacts in the charging box to form a charging circuit. . When the battery 25 is charged, the charging contacts of the earphone and the contacts in the charging box are in contact to form an electrical connection. The charging current can pass from the positive charging contact to the positive of the battery 25 through the circuit on the flexible circuit board 24. From the negative electrode of the battery 25 to the negative electrode charging contact, and finally back to the charging box.
  • the sensor components included in the earphone assembly 2 may include an optical sensor, an acceleration sensor, a distance sensor, a bone conduction sensor, etc. These sensor components may be arranged on the flexible circuit board 24 for sensing or receiving external signals and the like.
  • the earphone assembly 2 further includes an auxiliary sound receiving unit 27.
  • the auxiliary sound receiving unit 27 may be another microphone, thereby forming a dual microphone with the sound receiving unit 23, where the sound receiving unit 23 can be used for ordinary users to call.
  • the microphone is used to collect human voices (that is, used to pick up the voice of the call), and the auxiliary sound receiving unit 27 can be a microphone that picks up background sound, and has a background noise collection function for collecting ambient noise.
  • the auxiliary sound receiving unit 27 is far away from the sound receiving unit 23 and can be installed in the cavity formed by the front casing 11 and the rear casing 12 and close to the rear casing 12.
  • the dual-microphone design can effectively resist the environmental noise interference around the earphone, greatly improving the clarity of normal calls.
  • the structure of the wireless headset shown in FIG. 1 is only exemplary. In some other implementations, the wireless headset 100 may also have other shapes, and its size may be smaller or larger than the wireless headset 100.
  • the structure of the earphone housing 1 is only exemplary.
  • the earphone housing 1 may have other shapes.
  • the earphone housing 1 may not include the earphone handle 13 to reduce the overall size of the wireless earphone, or the shape of the earphone handle 13 may be It is cylindrical or quadrangular, or the front housing 11 has a regular cover shape or an asymmetrical shape, etc., which is not limited in the embodiment of the present application.
  • the arrangement and type of the various components of the earphone assembly 2 are also only exemplary.
  • the types and number of components contained in the earphone assembly 2 can be selected according to the design performance of the wireless earphone and the design shape of the earphone.
  • the arrangement of the various components in the earphone assembly 2 can also be designed according to the shape of the earphone housing 1.
  • the battery 25 can be a button battery to adapt to a smaller earphone cavity, and the position of the battery 25 can also be set in the front housing.
  • the cavity formed by the body 11 and the rear housing 12, etc., are not limited in the embodiment of the present application.
  • FIG. 4 shows a schematic exploded view of some components of the earphone assembly 2.
  • a sound receiving unit 23 a charging unit 26 and a flexible circuit board 24 are provided in the cavity formed by the bottom case 14.
  • the charging unit 26 includes two charging contacts (or charging PIN), such as the charging contact 26a and the charging contact 26b as shown in FIG. 2 and FIG. 4, and the bottom shell 14 is provided with There are openings 142, and two charging contacts extend out of the earphone through the two openings 142 respectively.
  • each charging contact is connected to the first FPC portion 241 of the flexible circuit board 24, and the other end is exposed to the bottom shell 14 for contacting with the metal contacts in the charging box to charge the earphone battery 25.
  • One of the two charging contacts is used as a positive charging terminal (or called a positive terminal or a positive charging terminal), and the other charging contact is used as a charging negative terminal (also called a negative terminal or a negative charging terminal). Since the positive and negative electrodes of the battery 25 are also connected to the flexible circuit board 24, when the wireless earphone is placed in the charging box, the two charging contacts of the charging unit 26 will form a charging circuit after contacting the contacts in the charging box, namely The battery 25 in the headset can be charged.
  • the wireless earphone provided by the embodiment of the present application can reduce wind noise.
  • a plurality of sound inlet holes 141 are provided on the bottom shell 14, and the plurality of sound inlet holes 141 may form mutually connected microphone sound inlet channels. This allows the wind signal to enter from one of the plurality of sound inlet holes 141 and then flow out from the other sound inlet holes, thereby reducing the wind signal acting on the diaphragm of the call microphone 231 and achieving the effect of reducing wind noise.
  • FIG. 1 exemplarily shows two sound inlet holes 141, and the two sound inlet holes 141 are arranged between the two opening holes 142 on the bottom shell 14.
  • the plurality of sound inlets 141 may also be arranged on other positions of the bottom shell 14, as long as the voice signal can be picked up by the call microphone through the sound inlets.
  • the multiple sound inlet holes 141 are staggered from the position where the diaphragm is exposed on the call microphone, so that the wind signal will not directly act on the diaphragm of the phone microphone after passing through the sound hole, thereby reducing the wind signal picked up by the microphone. , Reduce wind noise.
  • the "microphone sound channel” in the embodiments of the present application may be a channel used for normal voice signals to be picked up by the microphone inside the earphone, but when the wind sound signal enters the earphone, the wind sound signal may also enter the sound channel through the microphone. Picked up by the microphone.
  • the multiple sound inlet holes provided on the bottom shell form mutually connected microphone sound inlet channels, which can reduce the wind sound signal picked up by the microphone and thus reduce wind noise. That is, part of the wind sound signal entering the earphone may not be received by the microphone. Pick up, and flow out of the earphones through the microphones that are connected to each other into the sound channel.
  • the "microphone inlet channel” in the embodiments of the present application can be used for normal voice signals to be picked up by the microphone, or for wind sound signals to directly flow out of the headset without being picked up by the microphone.
  • the charging unit 26 adopts the form of a charging contact, one end of which is connected to the flexible circuit board 24, and the other end needs to expose the bottom shell 14 to facilitate contact with the contacts in the charging box. Since the charging contacts have to pass through the waterproof and dustproof membrane 232, the bottom shell 14, etc. to expose the outside of the earphone, it is necessary to fully consider how to arrange and arrange the many components in a small space when arranging the charging contacts. Ensure that the installation positions of various components will not interfere. For example, it is necessary to design the connection position and connection method of the charging contact and the flexible circuit board 24, the opening position and size of the multiple sound inlet holes 141 on the bottom shell 14, and waterproof and dustproof.
  • the position and size of the opening of the membrane 232 also need to ensure that the opening of the bottom shell 14 corresponds to the position of the opening of the waterproof and dustproof membrane 232, as well as the assembly gap and sealing between the charging contact and the opening of the bottom shell 14 to ensure dust and Water will not enter the earphone from the assembly gap and so on.
  • the embodiment of the present application provides another wireless headset.
  • the other wireless headset uses the bottom shell 14 as an electrode to replace the charging contacts. Because the design of the charging contacts is omitted, it is also There is no need to provide openings on the circuit board 24, the waterproof and dustproof membrane 232, and the bottom shell 14 for the charging contacts to extend out of the earphone. Therefore, the complexity of structural design and process realization can be reduced, and the space utilization rate inside the earphone housing 1 can be increased, so that the structure of the wireless earphone is more compact, and the portable charging of the wireless earphone can be realized. Similar to the wireless earphone 100 shown in FIG. 1, the bottom shell 14 is provided with a plurality of sound inlets, and at the same time, the effect of reducing wind noise can be achieved.
  • Fig. 5 shows a schematic structural diagram of a wireless headset provided by another embodiment of the present application.
  • the wireless headset 200 also includes a headset housing and a headset assembly housed in the headset housing.
  • the headset housing of the wireless headset 200 includes a headset handle 33 (corresponding to the headset handle 13) and a bottom.
  • the shell 34 (corresponding to the bottom shell 14), wherein part or all of the bottom shell 34 is made of a conductive material (such as a metal material) for directly contacting the contacts of the charging box to charge the earphone battery.
  • the wireless headset 100 and the wireless headset 200 are similar in structure. The differences between the wireless headset 200 and the wireless headset 100 are described below. For the parts that are not described in detail, please refer to the related description of the wireless headset 100 above.
  • a plurality of sound inlet holes 341 are provided on the bottom shell 34.
  • the sound inlet holes 341 are used to connect the outside of the earphone with the inner cavity of the earphone, so that external sound signals can pass through the sound inlet 341 It enters the earphone and is picked up by the call microphone inside the earphone cavity. It should be understood that those skilled in the art can adaptively design and select the number, shape, and location of the multiple sound inlet holes 341 according to actual needs.
  • the number of sound inlets 341 can be set, for example, 2, 3, 4, 6, or even more.
  • the plurality of sound inlets 341 can be arranged at any position of the bottom shell 34.
  • the design of the sound inlet 341 allows the user to speak in all directions and the sound signal of the user can enter the earphone through the sound inlet 341, thereby being picked up by the call microphone.
  • the plurality of sound inlet holes 341 form mutually connected microphone sound inlet channels, and the structural design of the plurality of sound inlet holes and the plurality of mutually connected microphone sound channels enables the wind sound signal to enter the structure behind the sound inlet channel in the bottom shell 34 , Part of the energy is shunted through other sound inlets, which can reduce the wind sound energy acting on the diaphragm of the call microphone, thereby reducing the wind noise picked up by the call microphone and achieving the effect of reducing wind noise.
  • the structure of the wireless earphone 200 in FIG. 5 is only exemplary, and the shape of the bottom shell 34 and the number and positions of the sound inlet holes 341 are also only exemplary, which does not impose any limitation on the embodiment of the present application.
  • the bottom shell 34 and the earphone handle 33 may be two independent components. During assembly, the bottom shell 34 and the earphone handle 33 are buckled and connected to form a cavity inside the earphone. In some other implementations, the bottom shell 34 and the earphone handle 33 may also be one component, that is, the bottom shell 34 and the earphone handle 33 may be an integrated structure, such as injection molding.
  • the bottom shell 34 can have any simple or complex shape, the thickness of the bottom shell 34 can be uniform or uneven, and the cross-sectional shape of the cavity formed by the bottom shell 34 in the bottom view direction can be square, oval, or round.
  • the cavity formed by the bottom shell 34 may be hemispherical, arc-shaped, or cylindrical, etc., which is not specifically limited in the embodiment of the present application.
  • the wireless earphone 200 shown in FIG. 5 and the earphone components in the following embodiments can refer to the related description of the earphone component 2 of the wireless earphone 100 above.
  • the same reference numerals as the earphone components of the wireless earphone 100 are used for description. The detailed description will be given below with reference to Figures 6-12.
  • Fig. 6 shows a schematic structural diagram of a wireless headset provided by an embodiment of the present application.
  • the bottom case 44 has a charging terminal.
  • the charging terminal includes a positive charging terminal and a negative charging terminal.
  • the positive charging terminal and the negative charging terminal are separated by an insulating material.
  • the bottom case can be used as a positive electrode for charging and a negative electrode for charging.
  • the earphone housing includes a bottom case, the bottom case includes a first bottom case part and a second bottom case part separated by an insulating material, the first bottom case part is a charging positive electrode, and the second bottom case part is a charging negative electrode.
  • the bottom shell 44 includes a first bottom shell portion 442, a second bottom shell portion 443, and a third bottom shell portion 444.
  • the first bottom shell portion 442 and the second bottom shell portion 443 are made of conductive material.
  • metal materials such as copper, iron, aluminum, gold, alloys, etc.
  • the third bottom shell portion 444 is made of insulating materials such as plastic materials.
  • the third bottom shell part 444 is located between the first bottom shell part 442 and the second bottom shell part 443.
  • the third bottom case part 444 may separate the first bottom case part 442 and the second bottom case part 443.
  • the first bottom shell part 442 and the second bottom shell part 443 are respectively used as the positive electrode and the negative electrode of the wireless earphone, corresponding to the positive electrode and the negative electrode of the charging spring in the charging box.
  • the first bottom shell part 442 can be the positive electrode for charging, corresponding to the positive electrode spring 801 of the charging box, and the second bottom shell part 443 is the negative electrode for charging, corresponding to the negative electrode spring 802 of the charging box; or the first bottom shell part 442 can be for charging
  • the negative electrode corresponds to the negative charging elastic piece 801 of the charging box
  • the second bottom shell part 443 is the charging positive electrode, corresponding to the charging positive elastic piece 802 of the charging box.
  • the bottom shell portion of the bottom shell 44 used as the positive electrode for charging corresponds to the charging elastic sheet used as the positive electrode in the charging box
  • the portion of the bottom shell used as the negative electrode for charging corresponds to the charging elastic sheet used as the negative electrode in the charging box.
  • each part of the bottom shell 44 can design each part of the bottom shell 44 correspondingly according to the positive and negative poles of the charging shrapnel in the charging box and the charging circuit.
  • the charging shrapnel is only exemplary, and the components provided in the charging box for charging the wireless earphones are not limited to the charging shrapnel, and may also be charging contacts, charging blocks, charging surfaces, and others.
  • the shape of the component that can conduct current is not specifically limited in the embodiment of the present application.
  • a recessed portion may be provided on the outer wall of the bottom shell 44, and the recessed portion may be in mating contact with the charging components in the charging box, such as charging springs, charging contacts, charging blocks, and charging surfaces.
  • the concave portion can also be used to position and/or limit the wireless earphone, and limit the position of the wireless earphone in the charging box.
  • the recessed portion may be a groove, a hole, a concave surface, etc., and the embodiment of the present application does not make any limitation. It should be understood that the recessed portion should be a conductive material.
  • One or more sound inlet holes 441 may be provided on the bottom shell 44.
  • the sound inlet hole 441 may be provided on the third bottom shell portion 444 (ie, insulating material), or may be provided on the first bottom shell.
  • the part 442 or the second bottom shell part 443 is not specifically limited in the embodiment of the present application.
  • a sound inlet 441 is provided on the bottom shell 44.
  • the plurality of sound inlet holes 441 may all be provided in the first bottom shell portion 442, the second bottom shell portion 443, and the third bottom shell. Any one of the shell parts 444 is on the bottom shell part.
  • the plurality of sound inlet holes 441 are provided on the insulating material (that is, the third bottom shell portion 444). For example, if there are two sound inlet holes 441, the two sound inlet holes may both be provided on the first Three bottom shell part 444 on.
  • the plurality of sound inlet holes 441 may also be provided on at least two of the first bottom shell part 442, the second bottom shell part 443, and the third bottom shell part 444, for example, the plurality of sound inlet holes 441 If there are three, one sound inlet hole may be provided in the first bottom shell portion 442, the second bottom shell portion 443, and the third bottom shell portion 444, respectively, which is not specifically limited in the embodiment of the present application.
  • the multiple sound inlet holes 441 can be evenly arranged on the bottom shell, so that voice signals in all directions can be picked up by the wireless earphone, and the call experience can be improved.
  • the plurality of sound inlet holes 441 include two sound inlet holes, and the axes of the two sound inlet holes coincide. Since the wind is generally directional, when the axes of the two sound inlet holes coincide, the wind sound signal is allowed to enter the earphone from one sound inlet hole and then flow out from the other sound inlet hole, which has a better attenuation effect on the wind sound signal. , The wind noise reduction effect is better.
  • the proportions of the first bottom shell portion 442, the second bottom shell portion 443, and the third bottom shell portion 444 in the earphone bottom shell 44 may be the same among the three, or the two may be the same (for example, the first bottom shell portion 442 is The proportion of the earphone bottom shell 44 is the same as the proportion of the second bottom shell part 443 to the earphone bottom shell 44), or it can be completely different. This embodiment of the present application does not specifically limit the first bottom shell.
  • the shapes of the portion 442, the second bottom shell portion 443, and the third bottom shell portion 444 are also not specifically limited.
  • first bottom shell portion 442 and the second bottom shell portion 443 may be the same or different.
  • first bottom shell part 442 and the second bottom shell part 443 can be made of the same metal conductive material, which can ensure the stability of the charging process.
  • the first bottom shell part 442 and the second bottom shell part 443 can also be made of different metal conductive materials, which is not limited in the embodiment of the present application.
  • the third bottom shell portion 444 may include one type of insulating material, or may include multiple types of insulating materials, which is not specifically limited in the embodiment of the present application.
  • the embodiment of the present application takes the outer surface of the bottom shell 44 as an example for description.
  • the bottom shell 44 may also have any other shape, such as the outer surface of the bottom shell 44 (or called The outer wall) is arc-shaped, cylindrical, square, tapered, elliptical, curved, etc.
  • the specific structure used for charging is similar to the structure of the bottom shell 44 in a hemispherical shape, and will not be described in detail here.
  • the bottom shell 44 and the earphone handle 43 may be two independent parts, or may be an integral injection molding part.
  • the charging elastic pieces 801 and 802 may be in the form of charging contacts, charging blocks, charging surfaces, and the like.
  • the earphone components inside the earphone cavity are similar to those described above, and will not be repeated here.
  • the following describes the corresponding differences with respect to some parts of the bottom shell 44 provided in FIG. 6 in conjunction with FIG. 7.
  • FIG. 7 shows an exploded schematic diagram of a wireless headset provided by an embodiment of the present application. Specifically, FIG. 7 may be an exploded schematic diagram of the wireless headset shown in FIG. 6.
  • the first bottom shell portion 442 includes a first connecting portion 4421 for electrically connecting with the flexible circuit board FPC 24.
  • the first connecting portion 4421 can be welded or welded to the FPC 24 (or the first FPC portion 241) Or shrapnel connection, where the welding can be ultrasonic welding and so on.
  • the second bottom shell portion 443 includes a second connecting portion 4431 for electrically connecting with the flexible circuit board FPC 24.
  • the second connecting portion 4431 can be welded, welded or connected to the FPC 24 (or the first FPC portion 241), wherein Ultrasonic welding and the like can be used for welding.
  • the first connecting portion 4421 and the second connecting portion 4431 are not in direct contact.
  • the position of the electrical connection between the first connecting portion 4421 and the FPC 24 and the position of the electrical connection between the second connecting portion 4431 and the FPC 24 are respectively connected to the first bottom shell portion 442 and the second bottom shell portion 443 as a charging positive electrode or a charging negative electrode. correspond.
  • the first connecting part 4421 is connected to the positive electrode of the FPC 24, and when the second bottom shell part 443 is used as the positive electrode for charging, the second connecting part 4431 is connected to the negative electrode of the FPC 24. So as to form a complete loop, and vice versa.
  • the earphone can be placed in the charging case, and the first bottom shell part 442 and the second bottom shell part 443 are correspondingly in contact with the charging positive electrode elastic piece 801 and the charging negative electrode elastic piece 802 in the earphone box to form a complete The charging circuit.
  • the inner wall of the first connecting portion 4421 is welded to the first FPC portion 241, and the inner wall of the second connecting portion 4431 is welded to the first FPC portion 241.
  • the first connecting portion 4421 and the second connecting portion 4431 may be located on the inner wall of the bottom shell 44.
  • the first FPC part 241 may be welded to the inner wall of the bottom case 44. That is, the inner side wall of the bottom shell can be connected to the circuit board, for example, the inner walls of the first bottom shell portion 442 and the second bottom shell portion 443 are electrically connected to the flexible circuit board 24, so that the waterproof inside the earphone can be ensured.
  • the integrity of the dust-proof film, etc. does not need to be designed with holes on it, which simplifies the structural design.
  • the first connecting portion 4421 and the second connecting portion 4431 can be used as the buckling portions of the earphone handle 43 and the bottom shell 44, wherein the first connection The portion 4421 and the second connecting portion 4431 extend along the inner wall of the earphone handle 43 toward the rear housing direction.
  • the third bottom shell portion 444 may include a third connecting portion 4441 for separating the first connecting portion 4421 and the second connecting portion 4431.
  • the third connecting portion 4441 can also be used as a snap-fit portion of the earphone handle 43 and the bottom shell 44.
  • the third connecting portion 4441 extends along the inner wall of the earphone handle 43 toward the rear housing direction.
  • FIG. 8 shows a schematic diagram of the connection relationship of some earphone components of a wireless earphone provided by an embodiment of the present application.
  • the bottom shell 44 in the embodiment of the present application includes a first bottom shell portion 442 and a second bottom shell portion 443 separated by an insulating material.
  • the first bottom shell portion 442 is a charging positive electrode (a positive charging terminal).
  • the second bottom shell part 443 are the negative charging terminals (negative charging terminals), the first bottom shell part 442 and the second bottom shell part 443 are respectively electrically connected to the flexible circuit board 24, and the positive and negative electrodes of the battery 25 are also respectively connected to the flexible circuit
  • the board 24 is electrically connected.
  • the charging current flows from the charging spring 801 to the first bottom shell part 442 (the charging positive electrode), and then from the first bottom shell part 442 to the positive electrode of the battery 25 through the charging circuit in the flexible circuit board 24;
  • the current flows from the negative electrode of the battery 25 through the charging circuit of the flexible circuit board 24 to the second bottom shell part 443 (charging negative electrode), and then flows back to the charging spring 802 from the second bottom shell part 443, and finally forms a charging circuit to realize the connection to the battery 25 Recharge.
  • the connection relationship between the bottom case 44, the flexible circuit board 24 and the battery 25 is shown by the dashed line in FIG. 8.
  • the waterproof and dustproof membrane 232 does not need to be opened, eliminating the need for the opening of the waterproof and dustproof membrane 232 and the alignment of the openings of the charging contacts, which simplifies the processing and assembly process, reduces the complexity of structure and process realization, and increases the bottom The space utilization of the cavity formed by the shell.
  • the installation position of the earphone assembly in the bottom case will be described in conjunction with the accompanying drawings, which will not be described in detail here.
  • FIG. 9 shows a schematic structural diagram of a wireless headset provided by another embodiment of the present application.
  • the bottom case has a charging terminal, the charging terminal is one of the positive charging terminal or the negative charging terminal, and the other of the positive charging terminal or the negative charging terminal is arranged separately from the bottom case.
  • the negative electrode for charging is separated from the bottom case, that is, the negative electrode for charging is not on the bottom case or is not part of the bottom case; or the bottom case can be used as the negative electrode for charging, then the positive electrode for charging is separated from the bottom case.
  • the shell is arranged separately, that is, the charging positive electrode is not on the bottom shell or does not belong to a part of the bottom shell.
  • the earphone housing includes a bottom case, the bottom case is one of the charging positive and negative electrodes, and the other of the charging positive and negative electrodes is separated from the bottom case.
  • the embodiment of the present application is described by taking the outer surface of the bottom shell 54 as a hemispherical shape, and the bottom shell 54 and the earphone handle 53 are buckled and connected as an example.
  • the bottom shell 54 in the embodiment of the present application is all made of a conductive material such as a metal material, and the bottom shell 54 as a whole serves as a charging positive electrode or a charging negative electrode.
  • the part of the bottom shell 54 may be made of a conductive material, and the part of the bottom shell made of the conductive material serves as a charging positive electrode or a charging negative electrode.
  • the bottom shell 54 is made of a conductive material as one of the charging positive and negative electrodes, and the part of the bottom shell 54 is made of a conductive material as one of the charging positive and negative electrodes.
  • One of the charging positive and negative electrodes corresponds to the charging shrapnel 801 and 802 in the charging box. That is, one charging electrode corresponds to the charging shrapnel 801 and 802 in the charging box.
  • the charging elastic pieces 801 and 802 in the charging box are the positive electrode elastic pieces for charging.
  • the charging elastic pieces 801 and 802 in the charging box are the negative electrode elastic pieces for charging.
  • FIG. 9 exemplarily shows two charging springs 801 and 802, but it should be understood that the number of charging springs in the charging box can be one or more, such as 1, 3, 4 or more charging springs .
  • the multiple charging shrapnel help to improve the stability of the earphone in the charging box.
  • the other of the charging positive and negative poles can be in the form of charging contacts, which are arranged in other parts of the earphone shell, such as the front shell 11, the rear shell 12 or the earphone handle shown in FIG. 1 or FIG.
  • one end of the charging contact is connected to the FPC 24, and the other end extends out of the earphone shell to connect with the metal contact pin in the corresponding position in the charging box.
  • the bottom shell 54 is in contact and conduction with the charging shrapnel 801 and 802, and the charging contact of the wireless earphone is in contact and conduction with the metal contact pin in the corresponding position in the charging box, thereby forming a charging circuit.
  • the charging contact serves as the negative electrode for charging.
  • the charging contact serves as the positive electrode for charging.
  • the bottom shell 54 is one of the charging positive and negative electrodes, and the other of the charging positive and negative electrodes is disposed on the rear housing 12.
  • a recessed portion may be provided on the outer wall of the bottom shell 54, and the recessed portion may be in mating contact with the charging components in the charging box, such as charging springs, charging contacts, charging blocks, and charging surfaces.
  • the concave portion can also be used to position and/or limit the wireless earphone, and limit the position of the wireless earphone in the charging box.
  • the recessed portion may be a groove, a hole, a concave surface, etc., and the embodiment of the present application does not make any limitation. It should be understood that the recessed portion should be a conductive material.
  • the bottom shell 54 is provided with one or more sound inlet holes 541.
  • the embodiment of the present application does not specifically limit the location of the one or more sound inlet holes 541.
  • the embodiment of the present application is described by taking the outer surface of the bottom shell 54 as a hemispherical shape as an example.
  • the bottom shell 54 may also have other shapes.
  • the outer surface of the bottom shell 54 is arc-shaped, cylindrical, square, tapered, elliptical, curved, etc., which is a specific structure for charging. It is similar to the structure of the bottom shell 54 as a hemispherical shape, and will not be detailed here.
  • the bottom shell 54 and the earphone handle 53 may be two independent parts, or may be an integral injection molding part.
  • the charging elastic pieces 801 and 802 may be in the form of a charging contact, a charging block, a charging surface and the like made of metal materials.
  • the earphone components inside the earphone cavity are similar to those described above, and will not be repeated here.
  • the following describes the corresponding differences with respect to some parts involved in the bottom shell 54 provided in FIG. 9 in conjunction with FIG. 10.
  • FIG. 10 shows an exploded schematic diagram of a wireless headset provided by another embodiment of the present application.
  • FIG. 10 may be an exploded schematic diagram of the wireless headset shown in FIG. 9.
  • the bottom case 54 includes a fourth connecting portion 542 for electrical connection with the flexible circuit board FPC 24, for example, the fourth connecting portion 542 can be welded, welded or shrapnel to the FPC 24 (or the first FPC portion 241) Connection, where the welding can be ultrasonic welding or the like.
  • the inner wall of the fourth connecting portion 542 is welded to the first FPC portion 241.
  • the fourth connecting portion 542 is located on the inner wall of the bottom case 54.
  • the first FPC part 241 may be welded to the inner wall of the bottom case 54. That is to say, the inner side wall of the bottom case can be connected with the circuit board, which can ensure the integrity of the waterproof and dustproof film inside the earphone, without having to make an opening design on it, simplifying the structural design.
  • the fourth connecting portion 542 can be used as a snap-fit portion of the earphone handle 53 and the bottom shell 54.
  • the fourth connecting portion 542 extends along the inner wall of the earphone handle 53 toward the rear housing direction.
  • FIG. 11 shows an exploded schematic diagram of a wireless headset provided by another embodiment of the present application.
  • the bottom case shown in the figure may be the bottom case 54 shown in FIG. 9 or FIG. 10.
  • the bottom case 54 serves as one of the charging positive and negative electrodes (for example, the charging positive electrode or the charging negative electrode), and the fourth connection
  • the part 542 and the first FPC part 241 may be connected by welding.
  • a charging contact 261 is provided at the bottom position of the wireless earphone head (for example, the position of the rear housing 12 near the bending part shown in FIG. 1).
  • One end of the charging contact 261 is connected to the other end of the FPC 24 (for example, the second FPC part). 242), the other end of the charging contact 261 extends out of the earphone housing.
  • the bottom shell 54 contacts the charging shrapnel 801, 802 in the earphone box, and the charging contact 261 contacts the charging contact pin 803 in the earphone box to form a loop.
  • the earphone box can charge the earphone battery.
  • FIG. 12 shows a schematic diagram of the connection relationship of some earphone components of a wireless earphone provided by another embodiment of the present application.
  • the bottom shell 54 in the embodiment of the present application includes one of the charging positive and negative electrodes.
  • the charging negative electrode and the bottom case 54 are arranged separately, the charging positive electrode and the charging negative electrode are electrically connected to the flexible circuit board 24, and the positive and negative electrodes of the battery 25 are respectively It is electrically connected to the flexible circuit board 24.
  • the charging current flows from the charging spring 802 to the bottom shell 54 (that is, the charging positive electrode), and then from the bottom shell 54 to the positive electrode of the battery 25 through the charging circuit in the flexible circuit board 24; the charging current flows from the negative electrode of the battery 25
  • the charging circuit through the flexible circuit board 24 flows to the charging contact 261 (that is, the charging negative electrode), and then flows back to the charging contact pin 803 from the charging contact 261, and finally forms a charging loop to charge the battery 25.
  • the connection relationship between the bottom case 54, the flexible circuit board 24 and the battery 25 is shown by the dotted line in FIG. 12.
  • the battery 25 is electrically connected to the flexible circuit board 24, one end of the flexible circuit board 24 is electrically connected to the bottom case 54, and the other end of the flexible circuit board 24 is connected to the other one of the charging positive and negative electrodes of the wireless earphone (for example, the charging contact 261) Electric connection.
  • the bottom shell 54 is used as a charging electrode, there is no need to pass through the waterproof and dustproof membrane 232 before exposing the outside of the earphone, so the waterproof and dustproof membrane 232 does not need to be opened, eliminating the need for the opening of the waterproof and dustproof membrane 232 and the alignment of the openings of the charging contacts
  • the process simplifies the processing and assembly process, reduces the complexity of structure and process realization, and increases the space utilization rate of the cavity formed by the bottom shell.
  • the bottom shell is used as a charging electrode, and the bottom shell can be made of conductive materials, which simplifies the processing technology of the shell.
  • FIG. 13 shows an exploded schematic diagram of a wireless headset provided in an embodiment of the present application placed in a charging box.
  • the charging box 8 may include a charging box main body 81 and a charging box cover 82, and the charging box main body 81 is provided There is an accommodating space for accommodating wireless earphones, and the charging case cover 82 is used to cover the accommodating space.
  • the charging box main body 81 and the charging box cover 82 can be connected by rotating or snap-fitting, that is, the charging box main body 81 and the charging box cover 82 can be relatively rotated or the charging box cover 82 can be separated from the charging box main body 81.
  • the charging box 8 can accommodate two wireless earphones, namely a left-ear earphone and a right-ear earphone.
  • one of the wireless earphones can be used as the aforementioned master earphone, and the other wireless earphone can be used as the aforementioned slave earphone, and the master earphone and the slave earphone can be connected by wireless Bluetooth.
  • the charging box main body 81 is provided with charging shrapnel, such as charging shrapnel 801 and charging shrapnel 802, in the accommodating space for accommodating each wireless earphone.
  • the charging spring 801 and the charging spring 802 can be used as the charging positive spring and the negative charging respectively, corresponding to the charging positive and negative electrodes of the bottom shell.
  • the charging positive electrode shrapnel corresponds to the charging positive electrode of the bottom case
  • the charging negative electrode shrapnel corresponds to the charging negative electrode of the bottom case.
  • the charging spring 801 and the charging spring 802 are both positive charging springs or both charging
  • the negative electrode shrapnel corresponds to one of the charging positive and negative electrodes of the bottom case.
  • the bottom case is a positive electrode for charging
  • the charging shrapnel 801 and the charging shrapnel 802 are both positive charging shrapnel
  • the bottom case is a negative electrode for charging
  • the charging shrapnel 801 and The charging shrapnel 802 is a negative charging shrapnel.
  • a charging contact pin 803 is provided in the accommodating space for accommodating each wireless earphone in the main body 81 of the charging box for contact with another charging electrode (ie, the charging contact 261) on the earphone.
  • FIGS. 14 and 15 wherein FIG. 14 shows a schematic diagram of the wireless earphones placed in the charging box, and FIG. 15 shows a schematic perspective view of the wireless earphones placed in the charging box.
  • the present application provides a charging box which includes a charging box main body 81 and a charging box cover 82.
  • the charging box main body 81 is provided with an accommodating space for accommodating wireless earphones, and the charging box cover 82 is used to cover the accommodating space.
  • the accommodating space includes a bottom accommodating groove provided with a charging electrode, and a bottom case for accommodating the wireless earphone.
  • the charging electrode provided in the bottom accommodating groove corresponds to the charging electrode on the bottom case. If the bottom shell of the wireless earphone is used as one of the positive and negative charging electrodes, the accommodating space includes a bottom containing groove provided with a charging electrode corresponding to the bottom shell, that is, the charging electrode in the bottom containing groove is one of the positive and negative electrodes .
  • the charging electrode corresponding to the other one of the charging positive and negative electrodes of the bottom case is not in the bottom containing groove.
  • the bottom case is the positive electrode for charging
  • the positive electrode charging shrapnel 801 and 802 are provided in the bottom containing groove of the charging box, while the negative electrode of the charging box is not placed in the bottom containing groove.
  • it can be placed in the containing space with the wireless earphone.
  • the position corresponding to the head or the position corresponding to the earphone handle is not specifically limited in the embodiment of the present application.
  • the bottom case is the positive electrode for charging
  • the negative electrode for charging of the wireless earphone can be arranged on the rear shell of the earphone
  • the electrode corresponding to the negative electrode for charging of the wireless earphone is arranged on the charging box at a position corresponding to the rear shell.
  • the first bottom shell part is the positive electrode for charging
  • the second bottom shell part is the negative electrode for charging.
  • the part and the second bottom shell part respectively correspond to the bottom accommodating groove of the charging electrode.
  • a positive electrode charging elastic piece 801 and a negative electrode charging elastic piece 802 are provided in the receiving groove at the bottom of the charging box.
  • Fig. 16 shows a schematic structural diagram of a bottom shell of a wireless earphone provided by an embodiment of the present application.
  • the bottom shell may be the bottom shell 44 shown in FIG. 6 or FIG. 7, or the bottom shell 54 shown in FIG. 9 or FIG. 10.
  • the embodiment of the present application takes the bottom shell 54 as an example for introduction .
  • the outer surface of the bottom shell 54 is hemispherical or the outer surface is arc-shaped.
  • the outer surface of the bottom shell 54 can also be any other simple or complex, single or combined surface, such as a bottom
  • the outer surface of the shell 54 may be an elliptical surface, a cone surface, a cylindrical surface, a prism surface, a pyramid surface, a curved surface, and the like.
  • the inner wall of the bottom shell 54 may include a bottom surface 543 and a side surface 544.
  • the bottom surface 543 is substantially flat, and the side surface 544 may be a curved surface or a flat surface. In some implementations, the side surface 544 may be substantially perpendicular to the bottom surface 543.
  • the bottom surface 543 is provided with an opening 5431 communicating with the outside of the earphone for external sound signals to enter the microphone.
  • the bottom surface 543 of the inner wall of the bottom shell 54 and the outer surface of the bottom shell 54 may be filled with the bottom shell material.
  • a sound inlet hole 541 is formed on the outer surface of the bottom shell 54 so that the sound signal enters the earphone through the sound channel between the sound inlet hole 541 and the opening 5431 and is picked up by the microphone.
  • a cavity may be formed between the bottom surface 543 of the inner wall of the bottom shell 54 and the outer surface of the bottom shell 54, and the opening 5431 extends from the bottom surface 543 of the inner wall of the bottom shell 54 to the cavity.
  • the outer surface of the bottom shell 54 forming the cavity is also provided with a sound inlet 541.
  • the sound inlet 541 extends from the outer surface of the bottom shell 54 to the cavity, and the sound signal from the earphone enters through the sound inlet 541.
  • the cavity reaches the opening 5431 and is picked up by the microphone.
  • a protrusion 5441 may be provided on the side surface 544 for supporting and positioning. Still referring to FIGS. 11 and 16, the bottom surface 543 in FIG. 16 is substantially flat, the waterproof and dustproof film 232 may be disposed on the bottom surface 543, the first FPC portion 241 may be disposed on the protrusion 5441, and the waterproof and dustproof film 232 Both sides are covered with adhesive layers, one side of the adhesive layer is attached to the bottom surface 543, and the other side is attached to the first FPC portion 241, so that both the first FPC portion 241 and the waterproof and dustproof film 232 are fixed on the bottom shell 54.
  • the wireless headset provided by the embodiment of the present application combines the bottom shell of the headset and the charging electrode into one.
  • the bottom shell as the charging electrode, the separate design of the charging contact in the cavity formed by the bottom shell is omitted, and the structure is simplified.
  • the design reduces the complexity of structural design and process realization, and realizes one thing with multiple uses.
  • eliminating the need for a separate design of the charging contacts can reduce the arrangement of the contacts on the flexible circuit board, reduce the space occupied by the charging contacts, and increase the space utilization rate.
  • the bottom surface 543 of the inner wall of the bottom shell 54 and the outer surface of the bottom shell 54 may be solid or formed with a cavity, leading from the outside of the earphone to If there is only one sound inlet 54 of the call microphone 231, this single sound inlet design still has the problem of wind noise.
  • the single sound inlet hole on the bottom shell is changed to a structure design of multiple sound inlet holes, that is, multiple sound inlet holes 541 can also be provided, such as 2, 3, 4 or more.
  • the plurality of sound inlet holes form a plurality of microphone sound inlet channels connected to each other.
  • the structural design of the porous sound inlet hole and multiple interconnected microphone sound inlet channels can make the wind signal enter the sound inlet channel in the structure earphone bottom shell, and part of the energy is shunted through other holes, which can reduce the vibration acting on the call microphone.
  • the wind sound energy on the membrane reduces the wind noise picked up by the call microphone and achieves the effect of reducing wind noise.
  • a cavity may be formed between the bottom surface 543 of the inner wall of the bottom shell 54 and the outer surface of the bottom shell 54, and the opening 5431 extends from the bottom surface 543 of the inner wall of the bottom shell 54 to the cavity to form the cavity.
  • the outer surface portion of the bottom shell 54 is also provided with a plurality of sound inlet holes 541 extending from the outer surface of the bottom shell 54 to the cavity, and the plurality of sound inlet holes 541 form interconnected microphone inlets.
  • the sound channel is used for the sound signal outside the earphone to enter the cavity through the multi-entry sound hole 541 and reach the opening 5431 to be picked up by the microphone.
  • the multiple sound inlet holes 541 can be dispersedly arranged (for example, evenly arranged) on the bottom shell 54.
  • the multiple sound inlet holes 541 can enable the voice signals in all directions to be picked up by the call microphone, but will enter the cavity of the wind sound The signal is shunted out to weaken the wind signal picked up by the call microphone.
  • the plurality of sound inlet holes 541 include two sound inlet holes arranged oppositely, that is, two sound inlet holes of the plurality of sound inlet holes are arranged oppositely.
  • the axes of two sound inlet holes in the plurality of sound inlet holes 541 coincide. This is because the wind is generally directional, and the axes of the two sound inlet holes coincide (or are arranged relative to each other), which allows the wind sound signal to enter the cavity from one of the two sound inlet holes and enter the other from the other.
  • the sound hole flows out, which has a better attenuation effect on the wind signal.
  • the path of the sound signal from the sound inlet 541 to the microphone in the embodiment of the present application can also be understood as a microphone sound inlet channel or a sound channel.
  • the opening 5431 extends through the solid part between the bottom surface 543 of the inner wall of the bottom shell 54 and the outer surface of the bottom shell 54
  • a plurality of sound channels may be formed on the outside of the bottom shell 54.
  • the plurality of microphone sound channels communicate with each other.
  • a plurality of sound inlet holes 541 are formed on the outer surface of the bottom shell 54 through which sound signals can pass through. The sound channel of the microphone between the sound hole 541 and the opening 5431 enters the earphone and is picked up by the microphone.
  • the sound signal from the outside of the bottom shell 54 can be led to the opening 5431 through a plurality of microphone sound channels.
  • the plurality of microphone sound inlet channels may diverge from the opening 5431, and the plurality of microphone sound inlet channels may also cross each other through a common sound inlet channel to communicate with the opening 5431.
  • the sound inlet holes 541 formed by the plurality of microphone sound inlet channels on the outer surface of the earphone bottom shell 54 can be distributed (for example, evenly arranged) on the outer surface of the bottom shell 54.
  • the angle between the center lines of the two microphone sound inlet channels of the microphone sound inlet channels connected to each other is 90° ⁇ 180°. In this way, the wind signal can enter from one microphone into the sound channel and flow out from the other microphone into the sound channel, which has a better attenuation effect on the wind signal.
  • the sound inlet channels of the plurality of microphones may have a linear shape, an arc shape, a broken line shape, a curve shape, a wavy line shape, or other shapes.
  • the cross section of the sound inlet channels of the multiple microphones may be at least one of a circular shape, a rectangular shape, a trapezoidal shape, a triangle shape, a diamond shape, an oval shape, or a semicircular shape.
  • the shapes of the sound inlet channels of the multiple microphones may all be the same, or may be completely different, or may not be completely the same.
  • the multiple microphone inlet channels include at least one pair of microphone inlet channels whose center lines coincide.
  • at least one pair of microphone inlet channels among the multiple microphone inlet channels are connected and the The center lines of the at least one pair of microphone sound inlet channels are on a straight line, or it is understood that the at least one pair of microphone sound inlet channels form a linear sound channel.
  • the wind is generally directional, at least one pair of microphone inlet channels are connected and the center lines of the at least one pair of microphone inlet channels are on a straight line, so that the wind signal can enter the sound channel from the pair of microphones.
  • the at least one pair of microphone sound channels may also form sound channels of other shapes, such as a broken line shape, an arc line shape, a wavy line shape, etc., which are not limited in the embodiment of the present application.
  • Fig. 17 shows a schematic structural diagram of a bottom shell of a wireless earphone provided by an embodiment of the present application.
  • the sound signal enters the earphone through the sound channel of the microphone.
  • the figure exemplarily shows two microphone sound inlet channels among the multiple microphone sound inlet channels, the first sound inlet channel 5411 and the second sound inlet channel 5412, the first sound inlet channel 5411 and the second sound inlet channel 5411.
  • the sound inlet channel 5412 is connected.
  • the axes of the first sound inlet channel 5411 and the second sound inlet channel 5412 may be on a straight line, that is, the first sound inlet channel 5411 and the second sound inlet channel 5412 form a linear sound channel.
  • the first sound inlet channel 5411 and the second sound inlet channel 5412 can communicate with the common sound inlet channel 5413, wherein the first sound inlet channel 5411 and the outer surface of the bottom shell 54 are formed with sound inlet holes 541a, and the second sound inlet channel 5412 is connected with A sound inlet hole 541b is formed on the outer surface of the bottom case 54.
  • An opening 5431 is formed between the common sound inlet channel 5413 and the bottom surface 543 of the inner wall of the bottom shell.
  • the first sound inlet channel 5411 and the second sound inlet channel 5412 are connected to the microphone through the common sound inlet channel 5413.
  • FIG. 18 shows a partial schematic exploded view of a wireless headset provided by an embodiment of the present application
  • FIG. 19 shows a partial schematic cross-sectional view of a wireless headset provided by an embodiment of the present application.
  • the bottom shell 54 is provided with a porous sound inlet structure design.
  • the wind sound signal can enter the second sound inlet channel 5412 from the first sound inlet channel 5411, Then from the sound inlet 541b out of the bottom shell 54, part of the energy of the wind sound is shunted by the second sound inlet channel 5412, then enters the common sound inlet channel 5413 and the wind sound energy acting on the call microphone 231 is greatly reduced, thereby reducing the call microphone 231 Wind noise picked up.
  • the voice signal since the voice signal can enter the inside of the bottom case from each sound inlet, the voice signal can be picked up by the call microphone normally.
  • the common sound channel 5413 in the embodiment of the present application can be understood as a channel that an external sound signal must pass when picked up by a microphone.
  • a wind noise reduction structure is designed on the bottom shell of the earphone, and the wind sound signal is shunted and attenuated through the sound structure channel, which can reduce the wind noise flowing into the microphone diaphragm under the wind speed in all directions in the outdoor call environment The signal energy achieves the effect of reducing wind noise during a call.
  • the earphone bottom shell and the charging electrode are combined into one, and the earphone bottom shell is used as the charging electrode, which can realize multiple functions. As the arrangement space of the charging contacts is saved, the interior of the earphone can be increased. The space utilization of the cavity.
  • the earphone bottom shell in the embodiment of the present application not only has the function of reducing wind noise, it can suppress wind noise, reduce wind noise, improve the product call experience, but also realize the function of on-charging, which can simplify the structure design and reduce the complexity of the structure. It reduces the difficulty of the process and increases the space utilization rate.
  • the wireless earphones provided by the embodiments of the present application are generally equipped with an independent charging box, such as the charging box 8 shown in FIGS. 13 to 15.
  • an independent charging box such as the charging box 8 shown in FIGS. 13 to 15.
  • the wireless headset needs to be charged, put the wireless headset into the charging box to charge the wireless headset.
  • the Hall switch on the charging box is turned off, the Bluetooth is disconnected, and the wireless headset is in a low power consumption state.
  • the charging shrapnel in the charging box contacts the bottom shell of the headset (when the bottom shell is used as a charging electrode, the metal contact pin in the charging box will also contact another charging contact of the wireless headset ), the circuit is turned on, and the chip set in the charging box has an internal voltage detection circuit.
  • the charging box When the battery voltage is detected below the threshold, the charging box will charge the headset battery. As the voltage of the charged headset battery gradually rises, the charging current gradually decreases Small, when it is detected that the battery voltage reaches a certain threshold or the charging current is less than a certain threshold, the chip will be in the off state, charging stops, and the headset battery charging process is completed.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, or Integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be a connection between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, or Integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be a connection between two components.

Abstract

本申请提供了一种无线耳机,涉及TWS无线耳机领域。该无线耳机包括耳机壳体和收容于所述耳机壳体内的耳机组件,其中,所述耳机组件包括麦克风;所述耳机壳体包括底壳,所述底壳包括通过绝缘材料相隔的第一底壳部分和第二底壳部分,所述第一底壳部分为充电正极,所述第二底壳部分为充电负极;所述底壳上设置有多个进声孔,所述多个进声孔形成相互连通的麦克风进声通道。上述技术方案能够降低风噪,提升通话体验。

Description

无线耳机
本申请要求于2019年08月26日提交中国专利局、申请号为201910790820.8、申请名称为“无线耳机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及耳机技术领域,具体地,涉及一种无线耳机。
背景技术
无线耳机可以利用无线通信技术(例如蓝牙技术、红外射频技术、2.4G无线技术等)与终端设备进行通信,相比有线耳机来说,无线耳机由于摆脱了物理线材的束缚,使用更加便捷,因而得到迅速发展,无线耳机的左右耳机也可以通过蓝牙连接。
无线耳机一般配置有独立的充电盒,在无线耳机需要充电时将无线耳机放入充电盒内,无线耳机上设置的充电触点与充电盒内的触点接触后可以对无线耳机进行充电。
目前无线耳机的麦克风除了拾取正常的语音信号外,可能还会拾取到能量较强的风声信号,导致风噪声严重。
发明内容
本申请技术方案提供一种无线耳机,能够降低风噪,提升通话体验。
第一方面,提供一种无线耳机,包括:耳机壳体和收容于所述耳机壳体内的耳机组件,其中,所述耳机组件包括麦克风;所述耳机壳体包括底壳,所述底壳包括通过绝缘材料相隔的第一底壳部分和第二底壳部分,所述第一底壳部分为充电正极,所述第二底壳部分为充电负极;所述底壳上设置有多个进声孔,所述多个进声孔形成相互连通的麦克风进声通道。
本申请技术方案提供的无线耳机中,在耳机的底壳上设置多个进声孔,多个进声孔形成相互连通的麦克风进声通道,通过在底壳上设置声音结构通道可以对进入无线耳机内部的风声信号进行分流和衰减,从而达到降低风噪的效果,可以进一步提升通话体验。
其中,以耳机的底壳作为充电正极和充电负极,无需单独设置充电触点,从而可以增加耳机内部的腔体的空间利用率。
因而,本申请技术方案提供的无线耳机的耳机底壳既能够抑制风噪,提升产品通话体验,又能实现导通充电的功能,从而能够简化结构设计,减少结构复杂度,降低工艺难度,增加空间利用率。
应理解,本申请实施例中的“麦克风进声通道”为用于正常的语音信号被耳机内部的麦克风拾取的通道,但当风声信号进入耳机内部时,风声信号也可以通过麦克风进声通道被麦克风拾取。本申请实施例中在底壳上设置的多个进声孔形成相互连通的麦克风进声通道,能够减少被麦克风拾取的风声信号从而降低风噪,即进入耳机内部的部分风声信号可 以不被麦克风拾取,而通过相互连通的麦克风进声通道流出耳机。换言之,本申请实施例中的“麦克风进声通道”可以用于正常语音信号被麦克风拾取,也用于风声信号直接流出耳机而不被麦克风拾取。
结合第一方面,在一种可能的实现方式中,所述多个进声孔均匀设置于所述底壳。
无线耳机的底壳上均布设置多个进声孔,该多个进声孔相互连通,可以使各个方向的语音信号均能够被无线耳机拾取到,提升通话体验。
结合第一方面,在一种可能的实现方式中,所述多个进声孔设置于所述绝缘材料。
在绝缘材料设置多个进声孔不影响第一底壳部分和第二底壳部分作为充电正极和充电负极的结构设计,能够简化结构复杂度,可以降低工艺难度。
结合第一方面,在一种可能的实现方式中,所述多个进声孔包括两个进声孔,所述两个进声孔的轴线重合。
由于风一般都是有方向的,两个进声孔的轴线重合时,允许风声信号从该其中一个进声孔进入耳机后可以从另一个进声孔流出,对风声信号的衰减效果更好,降风噪效果更好。
结合第一方面,在一种可能的实现方式中,所述麦克风进声通道的截面为以下形状的至少一种:圆形、椭圆形、多边形、波浪形。
结合第一方面,在一种可能的实现方式中,所述麦克风进声通道包括相互连通的第一进声通道和第二进声通道,所述第一进声通道和所述第二进声通过公共进声通道连通所述麦克风。
相互连通的第一进声通道和第二进声通道,允许风声信号从第一进声通道进入后从第二进声通道流出,对风声信号的衰减效果更好,降风噪效果更好。其中,第一进声通道和第二进声通过公共进声通道连通麦克风,不影响对正常语音信号的拾取。
结合第一方面,在一种可能的实现方式中,所述底壳的外壁呈圆弧状。
底壳外壁设置为圆弧状,能够方便地以点接触、线接触或面接触的方式与充电电极接触,同时适配于多种形态的充电电极。
结合第一方面,在一种可能的实现方式中,所述耳机组件还包括柔性电路板和与所述柔性电路板电连接的电池,所述第一底壳部分与所述第二底壳部分分别与所述柔性电路板电连接。
第一底壳部分作为充电正极,第二底壳部分作为充电负极,第一底壳部分与第二底壳部分分别与柔性电路板电连接,同时电池也与柔性电路板电连接,形成了电池充电的电路,从而能够为无线耳机进行充电。
结合第一方面,在一种可能的实现方式中,所述柔性电路板在靠近所述底壳设置有第一折弯部,所述麦克风设置于所述第一折弯部,所述麦克风与所述柔性电路板电连接。
麦克风设置于靠近底壳的位置,能够方便拾取声音信号。
结合第一方面,在一种可能的实现方式中,所述柔性电路板在所述耳机壳体的入耳一端设置有第二折弯部,所述第二折弯部设置有扬声器。
第二方面,提供一种无线耳机,包括:耳机壳体和收容于所述耳机壳体内的耳机组件,其中,所述耳机组件包括麦克风;所述耳机壳体包括底壳,所述底壳为充电正负极中的一种,所述充电正负极中的另一种与所述底壳分离设置;所述底壳上设置有多个进声孔,所述多个进声孔形成相互连通的麦克风进声通道。
本申请技术方案提供的无线耳机中,在耳机的底壳上设置多个进声孔,多个进声孔形成相互连通的麦克风进声通道,通过在底壳上设置声音结构通道可以对进入无线耳机内部的风声信号进行分流和衰减,从而达到降低风噪的效果,提升通话体验。
进一步地,以耳机的底壳作为充电正负极中的一种,无需单独设置充电触点,从而可以增加耳机内部的腔体的空间利用率。具体而言,在底壳上设置充电正极或者充电负极,将另一种与底壳分离设置,这样底壳作为充电正负极中的一种,使得底壳的设计例如材料、结构设计等更为灵活。
因而,本申请技术方案提供的无线耳机的耳机底壳既能够抑制风噪,提升产品通话体验,又能实现导通充电的功能,从而能够简化结构设计,减少结构复杂度,可以降低工艺难度,增加空间利用率。
结合第二方面,在一种可能的实现方式中,所述耳机壳体包括前壳体、后壳体和耳机柄,所述前壳体与所述后壳体连接,所述后壳体向下延伸形成所述耳机柄,所述底壳位于所述耳机柄的一端,所述充电正负极中的另一种设置于所述后壳体。
结合第二方面,在一种可能的实现方式中,所述多个进声孔均匀设置于所述底壳。
无线耳机的底壳上均布设置多个进声孔,该多个进声孔相互连通,可以使各个方向的语音信号均能够被无线耳机拾取到,提升通话体验。
结合第二方面,在一种可能的实现方式中,所述多个进声孔包括两个进声孔,所述两个进声孔的轴线重合。
由于风一般都是有方向的,两个进声孔的轴线重合时,允许风声信号从该其中一个进声孔进入耳机内部后能够从另一个进声孔流出,对风声信号的衰减效果更好,降风噪效果更好。
结合第二方面,在一种可能的实现方式中,所述麦克风进声通道的截面为以下形状的至少一种:圆形、椭圆形、多边形、波浪形。
结合第二方面,在一种可能的实现方式中,所述麦克风进声通道包括相互连通的第一进声通道和第二进声通道,所述第一进声通道和所述第二进声通过公共进声通道连通所述麦克风。
相互连通的第一进声通道和第二进声通道,允许风声信号从第一进声通道进入后从第二进声通道流出,对风声信号的衰减效果更好,降风噪效果更好。并且第一进声通道和第二进声通过公共进声通道连通麦克风,不影响对正常语音信号的拾取。
结合第二方面,在一种可能的实现方式中,所述底壳的外壁呈圆弧状。
底壳外壁设置为圆弧状,能够方便地以点接触、线接触或面接触的方式与充电电极接触,同时适配于多种形态的充电电极。
结合第二方面,在一种可能的实现方式中,所述耳机组件还包括柔性电路板和与所述柔性电路板电连接的电池,所述柔性电路板的一端与所述底壳电连接,所述柔性电路板的另一端与所述充电正负极中的另一种电连接。
底壳作为充电正负极中的一种与柔性电路板电连接,充电正负极中的另一种也与柔性电路板电连接,同时电池与柔性电路板电连接,形成了电池充电的电路,从而能够为无线耳机进行充电。
结合第二方面,在一种可能的实现方式中,所述柔性电路板在靠近所述底壳设置有第 一折弯部,所述麦克风设置于所述第一折弯部,所述麦克风与所述柔性电路板电连接。
麦克风设置于靠近底壳的位置,能够方便拾取声音信号。
结合第二方面,在一种可能的实现方式中,所述柔性电路板在所述耳机壳体的入耳一端设置有第二折弯部,所述第二折弯部设置有扬声器。
第三方面,提供一种终端,包括无线耳机和用于容纳所述无线耳机的充电盒,其中,所述无线耳机包括耳机壳体和收容于所述耳机壳体内的耳机组件,其中,所述耳机组件包括麦克风,所述耳机壳体包括底壳,所述底壳包括通过绝缘材料相隔的第一底壳部分和第二底壳部分,所述第一底壳部分为充电正极,所述第二底壳部分为充电负极,所述底壳上设置有多个进声孔,所述多个进声孔形成相互连通的麦克风进声通道;所述充电盒包括充电盒主体和充电盒盖,所述充电盒主体上设置有容纳空间,所述容纳控件用于收容所述耳机。
其中,所述充电盒盖可以用于封盖所述容纳空间,其中,所述容纳空间包括设有与所述第一底壳部分和所述第二底壳部分分别对应的充电电极的底部容纳槽,用于容纳所述无线耳机的底壳。
本申请技术方案提供的终端包括无线耳机和充电盒,无线耳机的底壳既能够抑制风噪,提升产品通话体验,又能实现导通充电的功能,从而能够简化结构设计,减少结构复杂度,可以降低工艺难度,增加空间利用率;充电盒用于容纳无线耳机,同时能够作为电源为无线耳机进行充电。
结合第三方面,在一种可能的实现方式中,所述充电电极为充电触点、充电弹片、充电块或充电面中的任意一种。
结合第三方面,在一种可能的实现方式中,所述充电盒主体和所述充电盒盖转动连接。
第四方面,提供一种终端,包括无线耳机和用于容纳所述无线耳机的充电盒,其中,所述无线耳机包括耳机壳体和收容于所述耳机壳体内的耳机组件,其中,所述耳机组件包括麦克风,所述耳机壳体包括底壳,所述底壳为充电正负极中的一种,所述充电正负极中的另一种与所述底壳分离设置,所述底壳上设置有多个进声孔,所述多个进声孔形成相互连通的麦克风进声通道;所述充电盒包括充电盒主体和充电盒盖,所述充电盒主体上设置有容纳空间,所述充电盒盖用于封盖所述容纳空间,其中,所述容纳空间包括设有与所述底壳对应的充电电极的底部容纳槽,用于容纳所述无线耳机的底壳,与所述充电正负极中的另一种相对应的充电电极不在所述底部容纳槽内。
本申请技术方案提供的终端包括无线耳机和充电盒,无线耳机的底壳既能够抑制风噪,提升产品通话体验,又能实现导通充电的功能,从而能够简化结构设计,减少结构复杂度,降低工艺难度,增加空间利用率;充电盒用于容纳无线耳机,同时能够作为电源为无线耳机进行充电。
结合第四方面,在一种可能的实现方式中,所述耳机壳体还包括前壳体、后壳体和耳机柄,所述前壳体与所述后壳体连接,所述后壳体向下延伸形成所述耳机柄,所述底壳位于所述耳机柄的一端,所述充电正负极中的另一种设置于所述后壳体,与所述充电正负极中的另一种对应的充电电极设置于与所述后壳体对应的位置上。
结合第四方面,在一种可能的实现方式中,所述充电电极为充电触点、充电弹片、充电块或充电面中的任意一种。
结合第四方面,在一种可能的实现方式中,所述充电盒主体和所述充电盒盖转动连接。
附图说明
图1是本申请一个实施例提供的无线耳机的示意性结构图;
图2是图1的无线耳机的示意性剖面图;
图3是一种麦克风工作原理示意图;
图4是图2中耳机组件的分解示意图;
图5是本申请另一个实施例提供的无线耳机的示意性结构图;
图6是本申请一个实施例提供的无线耳机的示意性结构图;
图7是本申请一个实施例提供的无线耳机的分解示意图;
图8是本申请一个实施例提供的耳机组件连接关系示意图;
图9是本申请另一个实施例提供的无线耳机的示意性结构图;
图10是本申请另一个实施例提供的无线耳机的分解示意图;
图11是本申请另一个实施例提供的无线耳机的分解示意图;
图12是本申请另一个实施例提供的耳机组件连接关系示意图;
图13是本申请一个实施例提供的无线耳机置于充电盒内的分解示意图;
图14是本申请一个实施例的无线耳机放置于充电盒中的示意图;
图15是本申请一个实施例的无线耳机放置于充电盒中的示意性透视图;
图16是本申请一个实施例提供的无线耳机的底壳的示意性结构图;
图17是本申请一个实施例提供的无线耳机的底壳的示意性结构图;
图18是本申请一个实施例提供的无线耳机的局部示意性分解图;
图19是本申请一个实施例提供的无线耳机的局部示意性剖视图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例提供一种无线耳机,可以作为终端设备的配件用于通话场景,其中终端设备包括但不限于手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。终端设备可以包括蜂窝电话(cellular phone)、智能手机(smart phone)、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、膝上型电脑(laptop computer)、车载电脑、智能手表(smart watch)、智能手环(smart wristband)、计步器(pedometer)以及其他具有通话功能的终端设备。本申请实施例中终端设备也可以称为终端。通话场景包括但不限于室内通话场景、户外通话场景、车载通话场景。通话场景可以包括安静通话场景、嘈杂通话场景(例如街道、商场、机场、车站、工地、在雨中、看比赛、音乐会等场景)、骑行通话场景、户外有风通话场景、单耳通话场景、双耳通话场景以及其他能够进行通话的场景。
耳机(earphone,又称headphone,head-set,earpiece)可以是一对转换单元,用于接受媒体播放器或接收器所发出的电讯号,利用贴近耳朵的扬声器将其转化成可以听到的音波。
耳机一般可分为有线耳机(wired headphone或wired headset)和无线耳机(wireless  headset)。有线耳机具有两个耳机和连接线,其中左右两个耳机通过连接线连接。有线耳机可能佩戴不方便且需要通过耳机插孔与终端设备连接,工作过程中需要消耗终端设备的电量。而无线耳机可以利用无线通信技术(例如蓝牙技术、红外射频技术、2.4G无线技术、超声波等)与终端设备进行通信,相比有线耳机来说,无线耳机由于摆脱了物理线材的束缚,使用更加便捷,因而得到迅速发展。其中,无线耳机的左耳机可以通过蓝牙连接右耳机。
蓝牙是一种低成本大容量的短间隔无线通信标准,蓝牙标准选用微波频段作业,传输速率可以为每秒1M字节,最大传输间隔可以为10米,经过添加发射功率可到达100米。随着部分终端设备取消了耳机插孔以及蓝牙技术的普及和版本更新,各式各样的无线蓝牙耳机涌入市场,从早期的用于通话场景的商务型单耳式蓝牙耳机,到可支持音乐播放的立体声蓝牙耳机,再到完全摒弃线材的真无线蓝牙耳机,无线耳机的功能越来越丰富,应用场景越来越多。
真无线蓝牙耳机,也叫真无线立体声(true wireless stereo,TWS)耳机,TWS耳机完全摒弃了线材连接的方式,包括两个耳机(例如主耳机和从耳机)。例如,使用时终端设备(也可以称为发射设备,例如手机,平板、带蓝牙输出的音乐播放器等)无线连接主耳机,再由主耳机通过蓝牙无线方式连接从耳机,可以实现真正的蓝牙左右声道无线分离使用。TWS耳机的左右两个耳机通过蓝牙可以组成立体声系统,听歌、通话、佩戴性能都得到提升。另外,两个耳机中的任一个还能够单独工作,例如,在主耳机不连接从耳机的情况下,主耳机可以回到单声道音质。由于TWS耳机的左右耳机无物理连接的特性,几乎所有的TWS耳机都配备了兼具充电和收纳功能的充电盒。充电盒能为无线耳机提供电力以及收纳存放的功能,没电的时候只要把耳机放入盒内,耳机可以自动断开连接,充电盒给耳机充电。
图1示出了本申请实施例的一种无线耳机的示意性结构图。如图1所示,无线耳机100可以包括耳机壳体1和收容于由耳机壳体1形成的内部腔体中的耳机组件(图中未示出),耳机组件将在下文结合图2进行描述,在此暂不详述。
需要说明的是,本申请实施例的描述中,术语“中心”、“上”、“下”、“前”、“后”、“底部”、“顶部”、“内”、“外”等指示方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元器件必须具有的特定的方位、或以特定的方位构造和操作,因此不能理解为对本申请的限定。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
还需说明的是,本申请实施例中以同一附图标记表示同一组成部分或同一零部件,对于本申请实施例中相同的零部件,图中可能仅以其中一个零件或部件为例标注了附图标记,应理解的是,对于其他相同的零件或部件,附图标记同样适用。
参考图1,耳机壳体1可以包括前壳体11、后壳体12、耳机柄13和底壳14,其中前壳体11为无线耳机在使用时面向人耳一侧的壳体,后壳体12为无线耳机在使用时背向人耳一侧的壳体,前壳体11与后壳体12连接,后壳体12向下延伸形成耳机柄13,底壳14位于耳机柄13的一端。前壳体11大致呈罩形,与后壳体12的呈罩形的一端连接,耳机柄13大致呈筒状,与后壳体12的另一端连接,其中后壳体12的两端的延伸线呈一定角度,例如90°。前壳体11和后壳体12可以是扣合连接,也可以是一体式连接。后壳体 12与耳机柄13可以是扣合连接,也可以是一体式连接。底壳14位于耳机柄13的底部,与耳机柄13可以扣合连接,也可以一体式连接。底壳14上设置有进声孔141,用于连通耳机外部与耳机内部腔体,以使外部声音信号通过该进声孔141进入耳机内部并被耳机腔体内部的麦克风拾取。底壳14上还设置有用于露出充电触点的开孔142,无线耳机100的充电触点通过开孔142从耳机腔体内部伸出,以便在为无线耳机100充电时与充电盒中的触点接触从而进行充电。图1中示例性的示出了在进声孔141的两侧设置有两个用于伸出充电触点的开孔142,其中一个开孔142对应的充电触点作为正极,另一个开孔142对应的充电触点作为负极。前壳体11上设置有出声孔(图1中无线耳机视角下未能直接示出),用于连通耳机外部与耳机内部腔体,以使耳机内部腔体中的扬声单元发出的声音信号通过出声孔进入人耳。在一些实现方式中,前壳体11上还可以设置泄压孔111,用以方便空气的流入和流出,平衡耳机内外的压力,使得内置的扬声单元震动更加自如和流畅,从而带来更好的听觉效果。在一些实现方式中,前壳体11上还可设置有开孔112,在开孔112的位置可以设置传感器。例如前壳体11于开孔112处设置有接触感应器,用于感应耳机是否被佩戴。可以理解的,壳体内也可设置传感器,用于感应耳机是否被佩戴,在这种情况下,前壳体11可以不设置开孔112。
图2示出了图1中的无线耳机的内部结构的示意性剖视图。可以理解的,该剖视图可以为阶梯剖视图。图中示出了收容于由耳机壳体1形成的内部腔体中的耳机组件2。
参考图2,耳机组件2可以包括扬声单元21、控制单元22、声音接收单元23、柔性电路板(flexible printed circuit,FPC)24、电池25、充电单元26以及传感器件(图中未示出)等。其中,耳机组件2还包括辅助声音接收单元27,辅助声音接收单元27可以是麦克风,例如拾取通话场景中的背景声的麦克风。
参考图2中(a),扬声单元21位于前壳体11与后壳体12形成的空腔内,其发声方向朝向前壳体11。扬声单元21可以是一种电声换能器件,用于将音频电信号转换成声音信号,扬声单元21可以是动圈单元、动铁单元或圈铁混合单元。扬声单元21也可以称为喇叭或扬声器,因此前述动圈单元、动铁单元或圈铁混合单元分别还可以称为动圈式扬声器(或称电动式扬声器)、动铁式扬声器、圈铁混合式扬声器。扬声单元21有许多类型,但其基本的工作原理是相似的,以扬声单元21为动圈式扬声器为例,动圈式扬声器通常可以包括振动膜、音圈、永久磁铁、支承架等。当扬声器的音圈通入音频电流后音圈在电流的作用下便产生交变的磁场,永久磁铁同时也产生一个大小和方向不变的恒定的磁场。由于音圈所产生磁场的大小和方向随音频电流的变化不断地在改变,这样两个磁场的相互作用使音圈作垂直于音圈中电流方向的运动,由于音圈和振动膜相连,从而带动振动膜产生振动,振动膜振动会推动空气,使空气产生压缩与膨胀,在原有的大气压上产生一个压力,从而向外辐射声波,声压作用于人耳,所感知的就是声音,换句话说,由振动膜振动引起空气的振动而发出声音。当输入音圈的电流越大,其磁场的作用力就越大,振动膜振动的幅度也就越大,声音则越响。扬声器发出高音的部分主要在振动膜的中央,当扬声器振动膜的中央材质越硬,则其重放的声音效果越好。扬声器发出低音的部分主要在振动膜的边缘,如果扬声器的振动膜边缘较为柔软且纸盆口径较大,则扬声器发出的低音效果越好。
在一种实现方案中,扬声单元21能够接收终端设备传输的音频信号和控制信号(例 如流媒体控制信号)等,还可以将接收到的音频信号和控制信号等传输给其他扬声单元,例如扬声单元21作为主扬声器时,可以将从终端设备接收到的音频信号和控制信号等传输给从扬声器,实现音频在两个分离的扬声器中同步播放,进而实现立体声效果。
参考图2中(a),控制单元22位于前壳体11与后壳体12形成的空腔内。相较扬声单元21来说处于距离前壳体11较远的位置并与扬声单元21连接。控制单元22可以包括主板(或称主芯片或主控芯片)、蓝牙芯片等,可用于充电管理、信号传输等,在一些实施例中,控制单元22还可以用于主动降噪。可选地,控制单元22可以为微处理器。
参考图2中(a),声音接收单元23位于底壳14与耳机柄13形成的空腔内,底壳14与耳机柄13可以扣合连接。参考图2中的(b),声音接收单元23包括固定于柔性电路板(flexible printed circuit,FPC)24上的通话麦克风(microphone,MIC)231、防水防尘膜232等。
示例性的,如图2中(b)所示,柔性电路板FPC 24可以包括多个部分,FPC 24一端(为方便描述,本申请实施例中表示为第一FPC部分241)位于底壳14与耳机柄13形成的空腔内,第一FPC部分241可以与声音接收单元23、充电单元26等电性连接;FPC的另一端(为方便描述,本申请实施例中表示为第二FPC部分242,参考图11)位于前壳体11与后壳体12形成的空腔内,第二FPC部分242可以与控制单元22以及扬声单元21等电性连接。例如,参考图11,柔性电路板24在靠近底壳14的一端可以设置有第一折弯部(例如第一FPC部分241),麦克风设置于该第一折弯部且麦克风与柔性电路板24电连接;柔性电路板24在耳机壳体的入耳一端可以设置有第二折弯部,第二折弯部设置有扬声单元(例如扬声器)21。第一FPC部分241可以经由耳机柄13形成的空腔延伸至第二FPC部分242,为方便描述,本申请实施例将第一FPC部分241与第二FPC部分242之间的延伸部分表示为中间FPC部分,中间FPC部分可以与电池25、天线模块(图中未示出)等电性连接。第一FPC部分241、第二FPC部分242与中间FPC部分可以固定于耳机壳体1的相应壳体部分上。
本申请实施例中,第一FPC部分241可以位于底壳14形成的空腔内并固定于底壳14的底壁143上。防水防尘膜232呈片状,设置于第一FPC部分241在靠近底壳14的底壁143的一侧,其上下两个表面上覆有胶层例如双面胶,防水防尘膜232的上表面的胶层用于将防水防尘膜232的上表面与第一FPC部分241的下表面贴合,防水防尘膜232的下表面的胶层用于将防水防尘膜232的下表面与底壳14的底壁143贴合。通过防水防尘膜232及其上的胶层可以将第一FPC部分241固定于底壳14的底壁143上。防水防尘膜232具有密实的网孔,既保证了声音信号能够通过防水防尘膜232到达通话麦克风231,又可以起到防止灰尘和水进入底壳14内部的作用,还可以防止外部物体刺破通话麦克风231的振膜。防水防尘膜232的作用范围主要是进声孔141,外界声音信号只有通过进声孔141才能进入耳机内部,灰尘、水汽等杂质则被防水防尘膜232截留在耳机壳体1的外面。如前所述,进声孔141可以位于底壳14的底部,与通话麦克风231相对设置。
通话麦克风231可以固定于第一FPC部分241并与第一FPC部分241电性连接。第一FPC部分241上与通话麦克风231对应的位置上设有FPC开孔2411,用于声音信号通过第一FPC部分241被通话麦克风231拾取。通话麦克风231中的麦克风单体的入声孔、FPC开孔2411与进声孔141用于连通通话麦克风231和耳机壳体1外部,形成了声音信 号的传输通道。在一些实施例中,该声音信号的传输通道可以称为麦克风进声通道或麦克风拾音孔,麦克风拾音孔用于将外部声音信号传输至通话麦克风231并被通话麦克风231拾取。应理解,通话麦克风231可以包括一个或多个麦克风单体,每个麦克风单体可以是独立的部件,多个麦克风单体可以分开设置,本申请实施例对此不做任何限定。为了方便理解和描述,本申请实施例以通话麦克风231包括一个麦克风单体为例进行描述。还应理解,每个麦克风单体包括各自相应的麦克风单体的入声孔,多个麦克风单体可以共用一个进声孔141,换句话说,声音信号从一个进声孔141进入后可到达多个麦克风单体的入声孔处从而被多个麦克风单体拾取。
通话麦克风231,也称传声器、话筒、微音器、咪头、咪芯等,是一种将声音信号转换为电信号的能量转换器件,与上文所述的扬声单元21功能正好相反的器件(扬声单元21用于将电信号转换为声音信号)。根据麦克风换能原理的不同,通话麦克风231可以是电动式(动圈式、铝带式)麦克风、电容式麦克风、压电式(晶体式、陶瓷式)麦克风、电磁式麦克风、半导体式麦克风等,还可以是心型麦克风、锐心型麦克风、超心型麦克风、双向(8字型)麦克风、无指向(全向型)麦克风等。我们听到的各种不同声音,都是由周围空气的微小压差产生的,空气能将这些压差完好、真实的传输相当长的距离,也就是声音是一种由高低不同的空气压力形成的不可见声波,本申请实施例中将这种不可见声波称为声压波。通话麦克风231可以将声音的变化通过特定的机制转换为电压或电流的变化,再交给电路系统处理,其中声音的强度可以用声压表示,对应电压或电流的幅值,声音变化的快慢对应电信号的频率。通话麦克风231包括振膜,其换能的前提是声音要引起麦克风振膜的振动。
示例性的,动圈式麦克风的工作原理是通过振膜带动线圈做切割磁感线运动,从而产生电信号。铝带式麦克风是用铝带作为振膜,铝带放置于强磁场中,当声音使得铝带振动时,铝带做切割磁感线运动,从而产生电信号。电容式麦克风是用一张极薄的金属振膜作为电容的一级,另一个距离很近的金属背板(零点几毫米左右)作为另一极,这样振膜的振动就会造成电容容量的变化形成电信号,其中驻极体电容麦克风(electret condenser micphone,ECM)是利用驻极体材料制成的一种特殊电容式“声—电”转换器件。晶体式麦克风中,晶体改变形状时会改变它们的电属性,通过将振膜连接到晶体,当声波击打振膜时,晶体将产生电信号。下面结合图3对一种麦克风的工作原理进行简要介绍,其他类型的麦克风的工作原理类似,在此不再一一列举。
如图3所示,以通话麦克风231为微机电系统(micro electromechanical system,MEMS)麦克风为例。MEMS是指集微型传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。基于MEMS技术制造的麦克风即MEMS麦克风,简单来说就是一个电容器集成在硅晶片上,因此MEMS麦克风也可以称为麦克风芯片或硅麦克风。MEMS麦克风主要是由MEMS微电容传感器、微集成转换电路(放大器)、声腔以及射频(radio frequency,RF)抗噪电路组成。MEMS微电容极头部分包含接收声音的硅振膜和硅背极,硅振膜可直接将接收到的音频信号经MEMS微电容传感器传输给微集成电路,微集成电路可将高阻的音频电信号转换并放大成低阻的音频电信号,同时经RF抗噪电路滤波,输出与前置电路相匹配的电信号,完成“声-电”转换。
图3中(a)示出了麦克风单体的示意性结构图,麦克风单体可以包括形成有腔室的 外壳、设置于腔室内部的能够运动的振膜(也可称为声膜或声膜片)和固定的背板、以及专用集成电路(application specific integrated circuit,ASIC)等。外壳上设置有用于拾取声音信号的麦克风单体的入声孔,声压波通过麦克风单体的入声孔可以进入麦克风单体内部。在腔室中,振膜和背板相对设置,振膜位于靠近麦克风单体的入声孔一侧,在麦克风单体中作为底部电容极板,振膜可以是一个很薄的实心结构且容易弯曲,当声波引起气压变化时或者声压波作用于振膜上时,振膜将会弯曲;背板位于远离麦克风单体的入声孔一侧,在麦克风单体中作为顶部电容极板,背板具有优良的刚性,可以采用通孔结构,通风性能优异。当声波引起气压变化时,振膜会随着气压变化而弯曲,背板较厚且多孔,当空气流过时,背板保持静止。当振膜振动时,振膜与背板之间的电容量将会变化。ASIC器件可以将这种电容变化转换成电信号,具体而言,参考图(b),ASIC器件利用电荷泵在麦克风振膜上放置一个固定的参考电荷(如图中的V 0),当振膜运动导致振膜和背板之间的电容量发生变化时,ASIC测量电压变化(如图中的V BIAS),由此完成声音信号到电信号的转换。
仍参考图2,本申请实施例的耳机组件2还包括电池25、充电单元26以及传感器件(图中未示出)等。可选地,耳机组件2还包括辅助声音接收单元27,辅助声音接收单元27可以是麦克风,例如拾取通话场景中的背景声的麦克风。
电池25可以设置于耳机柄13形成的空腔内,与柔性电路板24电连接,具体而言即电池25的正极和负极分别与柔性电路板24电连接,通过柔性电路板24中的电路可以实现对电池25的充电和电池25对耳机组件2的供电。其中,耳机柄13形成的空腔内还可以设置有天线,用于接收和发送信号。
充电单元26可以设置于耳机的底部,用于为电池25充电,其一端在底壳14内与柔性电路板24连接,另一端在耳机外部可以与充电盒内的金属触点接触而形成充电回路。当对电池25进行充电时,耳机的充电触点与充电盒内的触点相接触形成电性连接,充电电流通过柔性电路板24上的电路可以从正极充电触点到电池25的正极,再从电池25的负极到负极充电触点,最终回到充电盒中。
在一些实施例中,耳机组件2包括的传感器件可以包括光学传感器、加速度传感器、距离传感器、骨传导传感器等,这些传感器件可以设置于柔性电路板24上,用于感知或接收外界信号等。
在一些实施例中,耳机组件2还包括辅助声音接收单元27,辅助声音接收单元27可以是另一个麦克风,从而与声音接收单元23形成双麦克风,其中声音接收单元23可以为普通的用户通话使用的麦克风,用于收集人声(即用于拾取通话的语音),而辅助声音接收单元27可以为背景声拾音的麦克风,具备背景噪声采集功能,用于采集周围环境噪音。辅助声音接收单元27远离声音接收单元23,可以安装于前壳体11与后壳体12形成的空腔内且靠近后壳体12的位置。采用双麦克风的设计可以有效地抵御耳机周边的环境噪声干扰,大大提高正常通话的清晰度。
应理解,图1中示出的无线耳机的结构仅仅是示例性的,在一些其他实现方式中,无线耳机100还可以是其他形状,其尺寸可以比无线耳机100更小或更大。耳机壳体1的结构也仅仅是示例性的,耳机壳体1可以是其他形状的,例如耳机壳体1可以不包括耳机柄13从而使无线耳机整体尺寸减少,或者耳机柄13的形状可以为圆柱形或四方形,还或者 是前壳体11呈规则的罩形或呈不对称的形状等,本申请实施例不做任何限定。此外,耳机组件2的各个元器件的布置方式和类型同样也仅仅是示例性的,耳机组件2中所包含的元器件类型和数量可以根据无线耳机的设计性能和耳机的设计形状进行相应选择,耳机组件2中各个元器件的布置方式也可以根据耳机壳体1的形状进行相应设计,例如电池25可以选择纽扣电池从而可以适应更小的耳机内腔,电池25的位置也可以设置在前壳体11与后壳体12形成的空腔内等等,本申请实施例均不做任何限定。
图4示出了耳机组件2的部分元器件的示意性分解图。如图2和图4所示,在底壳14形成的空腔内设置有声音接收单元23、充电单元26和柔性电路板24。本申请实施例的无线耳机中,充电单元26包括两个充电触点(或者称充电PIN),如图2和图4所示的充电触点26a和充电触点26b,底壳14上设置有开孔142,两个充电触点分别通过两个开孔142伸出耳机外部。每个充电触点的一端与柔性电路板24的第一FPC部分241连接,另一端露出底壳14,用于与充电盒内的金属触点相接触为耳机电池25进行充电。两个充电触点中的一个充电触点作为充电正极(或称正极端子或正极充电端子),另一个充电触点作为充电负极(或称负极端子或负极充电端子)。由于电池25的正极和负极也与柔性电路板24连接,当无线耳机置于充电盒内时,充电单元26的两个充电触点与充电盒内的触点相接触后会形成充电回路,即可以为耳机中的电池25进行充电。
本申请实施例提供的一种无线耳机能够降低风噪。仍参考图1,本申请实施例中的无线耳机100中,底壳14上设置有多个进声孔141,该多个进声孔141可以形成相互连通的麦克风进声通道。这样可以使得风声信号从多个进声孔141中的一个进声孔进入后可以从其他进声孔流出,从而使作用于通话麦克风231振膜上的风声信号减少,达到降低风噪的效果。图1中示例性的示出了两个进声孔141,该两个进声孔141设置于底壳14上的两个开孔142之间。可选地,该多个进声孔141也可以设置于底壳14的其他位置上,只要语音信号能够通过进声孔被通话麦克风拾取到即可。可选地,该多个进声孔141与通话麦克风上露出振膜的位置错开,这样风声信号经过进声孔后不会直接作用于通话麦克风的振膜上,进而能够减少麦克风拾取的风声信号,降低风噪。
应理解,本申请实施例中的“麦克风进声通道”可以为用于正常的语音信号被耳机内部的麦克风拾取的通道,但当风声信号进入耳机内部时,风声信号也可以通过麦克风进声通道被麦克风拾取。本申请实施例中在底壳上设置的多个进声孔形成相互连通的麦克风进声通道,能够减少被麦克风拾取的风声信号从而降低风噪,即进入耳机内部的部分风声信号可以不被麦克风拾取,而通过相互连通的麦克风进声通道流出耳机。换言之,本申请实施例中的“麦克风进声通道”可以用于正常语音信号被麦克风拾取,也可以用于风声信号直接流出耳机而不被麦克风拾取。
如上所述,本申请实施例提供的无线耳机中,充电单元26采用充电触点的形式,其一端与柔性电路板24连接,另一端需要露出底壳14便于与充电盒内的触点接触。由于充电触点要穿过防水防尘膜232、底壳14等而露出耳机外部,因此在布置充电触点时需要充分考虑在狭小的空间内如何对众多元器件进行空间排布和布置,以保证各个元器件的安装位置不会发生干涉,例如需要设计充电触点与柔性电路板24的连接位置和连接方式、底壳14上多个进声孔141的开孔位置和大小、防水防尘膜232的开孔位置和大小,还需要保证底壳14的开孔与防水防尘膜232的开孔的位置对应,以及充电触点与底壳14开孔 的装配间隙和密封以保证灰尘和水不会从装配间隙中进入到耳机内部等等。
本申请实施例提供另一种无线耳机,在图1示出的无线耳机的基础上,该另一种无线耳机以底壳14作为电极替换充电触点,由于省去充电触点的设计,也无需在电路板24、防水防尘膜232以及底壳14上设置用于充电触点延伸出耳机外部的开孔。因而能够减小结构设计和工艺实现的复杂度,增加耳机壳体1内部的空间利用率,从而使无线耳机的结构更为紧凑,且实现无线耳机的便携充电。与图1所示的无线耳机100类似,底壳14上设置有多个进声孔,同时能够实现降风噪的效果。
图5示出了本申请另一个实施例提供的无线耳机的示意性结构图。如图5所示,与无线耳机100类似,无线耳机200也包括耳机壳体和收容于耳机壳体内的耳机组件,其中无线耳机200的耳机壳体包括耳机柄33(对应耳机柄13)和底壳34(对应于底壳14),其中,底壳34的部分或全部由导体材料(例如金属材料)制成,用于直接与充电盒的触点进行接触从而对耳机电池进行充电。无线耳机100和无线耳机200结构类似,以下对无线耳机200相对无线耳机100不同之处进行说明,未详细描述的部分可以参见前面对于无线耳机100的相关描述。
为降低风噪,底壳34上设置有多个进声孔341(对应进声孔141),进声孔341用于连通耳机外部与耳机内部腔体,以使外部声音信号通过进声孔341进入耳机内部并被耳机腔体内部的通话麦克风拾取。应理解,本领域的技术人员根据实际需要可以对该多个进声孔341的个数、形状、设置位置进行适应性的设计和选择。
在一些实现方式中,进声孔341的个数可以设置例如2个、3个、4个、6个甚至更多,该多个进声孔341可以设置于底壳34的任意位置上,多个进声孔341的设计可以使用户在各个方向上讲话时其声音信号均可以通过进声孔341进入耳机内部,从而被通话麦克风拾取。该多个进声孔341形成相互连通的麦克风进声通道,多个进声孔和多个相互连通的麦克风进声通道的结构设计,能够使风声信号进入底壳34内的结构进声通道后,部分能量经过其他进声孔分流,能够减少作用在通话麦克风振膜上的风声能量,从而减小通话麦克风拾取到的风噪声,达到降低风噪的效果。应理解,图5中的无线耳机200的结构仅仅是示例性的,底壳34的形状和进声孔341的设置个数、位置也仅仅是示例性的,对本申请实施例不造成任何限定。
可以理解的,底壳34与耳机柄33可以是两个独立的部件。在装配时采用将底壳34与耳机柄33进行扣合连接以形成耳机内部的腔体。在一些其他实现方式中,底壳34和耳机柄33也可以是一个部件,即底壳34与耳机柄33可以是一体化结构,例如注塑成型。底壳34可以为任意的简单或复杂的形状,底壳34的厚度可以是均匀的或者不均匀的,底壳34所形成的空腔在仰视图方向的截面形状可以是方形、椭圆形、圆形、两个半圆与方形的组合图形等等,底壳34形成的空腔可以为半球形、弧形或者圆柱形等,本申请实施例不做具体限定。
为简洁,在未做特殊说明时,图5示出的无线耳机200以及后文实施例中的耳机组件可以参考上文对于无线耳机100的耳机组件2的相关描述。在一些实施方式中,使用与无线耳机100的耳机组件相同的附图标记进行说明。下面结合附图6-12进行详细描述。
图6示出了本申请一个实施例提供的无线耳机的示意性结构图。底壳44具有充电端子,该充电端子包括正极充电端子和负极充电端子,正极充电端子和负极充电端子之间通 过绝缘材料相隔。换句话说,底壳可以作为充电正极和充电负极。具体地,耳机壳体包括底壳,底壳包括通过绝缘材料相隔的第一底壳部分和第二底壳部分,第一底壳部分为充电正极,第二底壳部分为充电负极。
参考图6,为方便理解和描述,本申请实施例以底壳44外表面呈半球形,底壳44与耳机柄43扣合连接为例进行介绍。如图6所示,底壳44包括第一底壳部分442、第二底壳部分443和第三底壳部分444,其中第一底壳部分442和第二底壳部分443的材质为导体材质例如金属材料(如铜、铁、铝、金、合金等),第三底壳部分444为绝缘材质例如塑胶材料。其中,第三底壳部分444位于第一底壳部分442和第二底壳部分443之间。第三底壳部分444可以将第一底壳部分442和第二底壳部分443隔开。本申请实施例中第一底壳部分442和第二底壳部分443分别作为无线耳机的正极和负极,对应充电盒内的充电弹片的正极和负极。例如第一底壳部分442可以为充电正极,对应充电盒的充电正极弹片801,第二底壳部分443为充电负极,对应充电盒的充电负极弹片802;或者第一底壳部分442可以为充电负极,对应充电盒的充电负极弹片801,第二底壳部分443为充电正极,对应充电盒的充电正极弹片802。换句话说,底壳44上用做充电正极的底壳部分对应充电盒内用作正极的充电弹片,用做充电负极的底壳部分对应充电盒内用作负极的充电弹片。本领域技术人员可以根据充电盒内充电弹片的正负极以及充电电路对底壳44的各部分进行相应地设计。应理解,本申请实施例中,充电弹片仅仅是示例性的,设置于充电盒内的用于为无线耳机充电的部件不限于充电弹片,还可以是充电触点、充电块、充电面以及其他形状的可以导通电流的部件,本申请实施例不做具体限定。
在一种实现方案中,底壳44外壁上可以设置有凹陷部,该凹陷部可以与充电盒内的充电部件例如充电弹片、充电触点、充电块、充电面等配合接触。该凹陷部还可以用于对无线耳机进行定位和/或限位,限定无线耳机在充电盒内的位置。该凹陷部可以是凹槽、孔、凹面等形状,本申请实施例不做任何限定。应理解,该凹陷部应为导体材料。
底壳44上可以设置有一个或多个进声孔441。在一种实现方案中,若底壳44上只设置一个进声孔441,则该进声孔441可以设置于第三底壳部分444(即绝缘材料)上,也可以设置于第一底壳部分442或第二底壳部分443上,本申请实施例不做具体限定。在这种实现方案中,底壳44上设置了一个进声孔441,虽然降风噪的效果一般,但由于以底壳作为充电正极和充电负极,能够减小结构设计和工艺实现的复杂度。在另一种实现方案中,若底壳44上设置多个进声孔441,则该多个进声孔441可以均设置于第一底壳部分442、第二底壳部分443、第三底壳部分444中的任意一个底壳部分上。可选地,该多个进声孔441设置于绝缘材料(即第三底壳部分444)上,例如,该多个进声孔441为2个,则2个进声孔可以均设置于第三底壳部分444上。该多个进声孔441也可以设置于第一底壳部分442、第二底壳部分443、第三底壳部分444中的至少两个底壳部分上,例如,该多个进声孔441为3个,则可以在第一底壳部分442、第二底壳部分443、第三底壳部分444分别设置一个进声孔,本申请实施例不做具体限定。
在一种实现方案中,该多个进声孔441可以均匀设置于底壳上,可以使各个方向的语音信号均能够被无线耳机拾取到,提升通话体验。
在一种实现方案中,多个进声孔441包括两个进声孔,该两个进声孔的轴线重合。由于风一般都是有方向的,两个进声孔的轴线重合时,允许风声信号从该其中一个进声孔进 入耳机内部后能够从另一个进声孔流出,对风声信号的衰减效果更好,降风噪效果更好。
应理解,第一底壳部分442、第二底壳部分443与第三底壳部分444所占耳机底壳44的比例可以三者相同,可以其中二者相同(例如第一底壳部分442所占耳机底壳44的比例与第二底壳部分443所占耳机底壳44的比例相同),也可以完全不同,对此本申请实施例不做具体限定,本申请实施例对于第一底壳部分442、第二底壳部分443与第三底壳部分444的形状也不做具体限定。
还应理解,第一底壳部分442与第二底壳部分443的材质可以相同,可以不同。例如第一底壳部分442与第二底壳部分443可以采用相同的金属导电材料,能够保证充电过程稳定。第一底壳部分442与第二底壳部分443也可以采用不同的金属导电材料,本申请实施例不做任何限定。第三底壳部分444可以包括一种绝缘材料,可以包括多种绝缘材料,对此本申请实施例不做具体限定。
需要说明的是,本申请实施例以底壳44外表面为半球形为例进行说明,在其他的实现方式中,底壳44也可以为其他任意形状,例如底壳44的外表面(或称外壁)为圆弧状、圆柱形、方形、锥形、椭圆形、曲面等等,其用于充电的具体结构同底壳44为半球形的结构类似,在此不再一一详述。
在一种实现方案中,底壳44与耳机柄43可以为两个独立部件,也可以为一体化注塑成型的一个部件。
在一种实现方案中,充电弹片801和802可以为采用充电触点、充电块、充电面等形式。
耳机腔体内部的耳机组件与上文描述类似,在此不再赘述。下面结合图7针对图6提供的底壳44所涉及的部分零部件描述相应的不同之处。
图7示出了本申请一个实施例提供的无线耳机的分解示意图,具体地,图7可以是图6所示的无线耳机的分解示意图。参考图7,第一底壳部分442包括第一连接部4421,用于与柔性电路板FPC 24电连接,例如第一连接部4421可以与FPC 24(或者是第一FPC部分241)焊接、熔接或弹片连接,其中焊接可以采用超声焊等等。第二底壳部分443包括第二连接部4431,用于与柔性电路板FPC 24电连接,例如第二连接部4431可以与FPC24(或者是第一FPC部分241)焊接、熔接或弹片连接,其中焊接可以采用超声焊等等。第一连接部4421与第二连接部4431不直接接触。第一连接部4421与FPC 24的电连接的位置、第二连接部4431与FPC 24的电连接的位置分别与第一底壳部分442、第二底壳部分443连接作为充电正极或充电负极相对应。换句话说,第一底壳部分442作为充电正极时,第一连接部4421与FPC 24的正极相连,第二底壳部分443作为充电正极时,第二连接部4431与FPC 24的负极相连,从而形成完整回路,反之同理。当电池25需要充电时,可以将耳机置于充电盒内,第一底壳部分442、第二底壳部分443对应地与耳机盒内的充电正极弹片801、充电负极弹片802相接触,形成完整的充电回路。
在一种实现方案中,第一连接部4421的内壁与第一FPC部分241焊接,第二连接部4431的内壁与第一FPC部分241焊接。在一些实现方式中,第一连接部4421和第二连接部4431可以位于底壳44的内壁上。换句话说,可以将第一FPC部分241焊接于底壳44的内壁上。也就是说,底壳的内侧壁可以与电路板相连接,例如第一底壳部分442与所述第二底壳部分443的内壁分别与柔性电路板24电连接,这样可以保证耳机内部的防水防 尘膜等的完整性,无需在其上做开孔设计,简化结构设计。
在一种实现方案中,若耳机柄43和底壳44采用扣合连接方式,第一连接部4421和第二连接部4431可以作为耳机柄43和底壳44的扣合部,其中第一连接部4421和第二连接部4431沿耳机柄43的内壁向后壳体方向延伸。
在一种实现方案中,第三底壳部分444可以包括第三连接部4441,用于隔离第一连接部4421和第二连接部4431。在耳机柄43和底壳44采用扣合连接方式时,第三连接部4441也可以作为耳机柄43和底壳44的扣合部。其中第三连接部4441沿耳机柄43的内壁向后壳体方向延伸。
图8示出了本申请一个实施例提供的无线耳机的部分耳机组件的连接关系示意图。如图8所示,本申请实施例中的底壳44包括通过绝缘材料相隔的第一底壳部分442和第二底壳部分443,例如第一底壳部分442为充电正极(正极充电端子)和第二底壳部分443为充电负极(负极充电端子),第一底壳部分442和第二底壳部分443分别与柔性电路板24电性连接,电池25的正极和负极也分别与柔性电路板24电性连接。当对电池25进行充电时,充电电流由充电弹片801流向第一底壳部分442(充电正极),再由第一底壳部分442通过柔性电路板24中的充电电路流向电池25的正极;充电电流由电池25的负极通过柔性电路板24的充电电路流向第二底壳部分443(充电负极),再由第二底壳部分443流回充电弹片802,最后形成充电回路,实现对电池25的充电。示例性的,底壳44、柔性电路板24与电池25之间的连接关系如图8中的虚线所示。
由于底壳44所包括的第一底壳部分442和第二底壳部分443分别作为充电正负极,并与柔性电路板24电连接,无需穿过防水防尘膜232后再露出耳机外部,因而防水防尘膜232无需开孔,省去了防水防尘膜232开孔以及充电触点开孔对齐等过程,简化了加工和组装工艺,降低了结构和工艺实现的复杂度,增加了底壳所形成的腔体的空间利用率。下文将结合附图描述耳机组件在底壳内的安装位置,在此暂不详述。
图9示出了本申请另一个实施例提供的无线耳机的示意性结构图。底壳具有充电端子,该充电端子为正极充电端子或负极充电端子中的一种,正极充电端子或负极充电端子中的另一种与底壳分离设置。换句话说,底壳可以作为充电正极,则充电负极与底壳分离设置,也即充电负极不在底壳上或不属于底壳的一部分;或者是底壳可以作为充电负极,则充电正极与底壳分离设置,也即充电正极不在底壳上或不属于底壳的一部分。具体地,耳机壳体包括底壳,底壳为充电正负极中的一种,充电正负极中的另一种与底壳分离设置。
参考图9,为方便理解和描述,本申请实施例以底壳54外表面呈半球形,底壳54与耳机柄53扣合连接为例进行介绍。如图9所示,本申请实施例中的底壳54全部为导体材质例如金属材料,底壳54整体作为充电正极或充电负极。或者底壳54的部分可以为导体材质,该部分导体材质的底壳作为充电正极或充电负极。应理解,底壳54均为导体材质作为充电正负极中的一种和底壳54的部分为导体材质作为充电正负极中的一种,本申请实施例中均可以理解为底壳作为充电正负极中的一种,对应充电盒内的充电弹片801和802。也即,一个充电电极对应充电盒内的充电弹片801和802。换句话说,底壳54作为充电正极时,充电盒内的充电弹片801和802为充电正极弹片。底壳54作为充电负极时,充电盒内的充电弹片801和802为充电负极弹片。充电时底壳54与充电盒内的充电弹片801和802相接触。图9中示例性地示出了两个充电弹片801和802,但应理解,充电盒 内的充电弹片个数可以为一个或多个,例如1个、3个、4个或更多充电弹片,该多个充电弹片有利于提升耳机置于充电盒内的稳定性。充电正负极中的另一种可以采用充电触点方式,该充电触点设置于耳机壳体的其他部分,例如图1或图2所示的前壳体11、后壳体12或耳机柄13上,充电触点的一端与FPC 24连接,另一端伸出耳机壳体外部,用于与充电盒内的对应位置的金属触脚相连。当耳机置于充电盒内时底壳54与充电弹片801和802接触导通、无线耳机的充电触点与充电盒内相应位置的金属触脚接触导通,从而形成充电回路。当底壳54作为充电正极时,该充电触点作为充电负极。或者当底壳54作为充电负极时,该充电触点作为充电正极。
在一种实现方案中,底壳54为充电正负极中的一种,充电正负极中的另一种设置于后壳体12。
在一种实现方式中,底壳54外壁上可以设置有凹陷部,该凹陷部可以与充电盒内的充电部件例如充电弹片、充电触点、充电块、充电面等配合接触。该凹陷部还可以用于对无线耳机进行定位和/或限位,限定无线耳机在充电盒内的位置。该凹陷部可以是凹槽、孔、凹面等形状,本申请实施例不做任何限定。应理解,该凹陷部应为导体材料。
底壳54上设置有一个或多个进声孔541,本申请实施例对该一个或多个进声孔541的设置位置不做具体限定,详细描述可参见上文对底壳44的相关说明,在此不再赘述。
需要说明的是,本申请实施例以底壳54外表面为半球形为例进行说明。在其他的实现方式中,底壳54也可以为其他形状,例如底壳54的外表面为圆弧状、圆柱形、方形、锥形、椭圆形、曲面等等,其用于充电的具体结构同底壳54为半球形的结构类似,在此不再一一详述。
在一种实现方案中,底壳54与耳机柄53可以为两个独立部件,也可以为一体化注塑成型的一个部件。
在一种实现方案中,充电弹片801和802可以为采用金属材质的充电触点、充电块、充电面等形式。
耳机腔体内部的耳机组件与上文描述类似,在此不再赘述。下面结合图10针对图9提供的底壳54所涉及的部分零部件描述相应的不同之处。
图10示出了本申请另一个实施例提供的无线耳机的分解示意图,具体地,图10可以是图9所示的无线耳机的分解示意图。参考图10,底壳54包括第四连接部542,用于与柔性电路板FPC 24电连接,例如,第四连接部542可以与FPC 24(或者是第一FPC部分241)焊接、熔接或弹片连接,其中焊接可以采用超声焊等。
在一种实现方案中,第四连接部542的内壁与第一FPC部分241焊接。在一些实现方式中,第四连接部542位于底壳54的内壁上,换句话说,可以将第一FPC部分241焊接于底壳54的内壁上。也就是说,底壳的内侧壁可以与电路板相连接,这样可以保证耳机内部的防水防尘膜等的完整性,无需在其上做开孔设计,简化结构设计。
在一种实现方案中,若耳机柄53和底壳54采用扣合连接方式,第四连接部542可以作为耳机柄53和底壳54的扣合部。其中第四连接部542沿耳机柄53的内壁向后壳体方向延伸。本申请实施例提供的无线耳机的耳机组件与上文描述类似,具体可参考上文,在此不再赘述。
图11示出了本申请另一个实施例提供的无线耳机的分解示意图。示例性的,图中示 出的底壳可以是图9或图10中示出的底壳54,底壳54作为充电正负极中的一种(例如充电正极或充电负极),第四连接部542与第一FPC部分241可以通过焊接连接。在无线耳机头底部位置(例如图1中所示的后壳体12靠近折弯部分的位置)设置有充电触点261,充电触点261一端连接于FPC 24的另一端(例如第二FPC部分242),充电触点261的另一端伸出耳机壳体。当将无线耳机放入充电盒后,底壳54与耳机盒内的充电弹片801、802接触,充电触点261与耳机盒内的充电触脚803接触,形成回路。例如耳机盒可以为耳机电池进行充电。
图12示出了本申请另一个实施例提供的无线耳机的部分耳机组件的连接关系示意图。如图12所示,本申请实施例中的底壳54包括充电正负极中的一种。以底壳54包括充电正极为例(即底壳54为充电正极),充电负极与底壳54分离设置,充电正极和充电负极分别与柔性电路板24电性连接,电池25的正极和负极分别与柔性电路板24电性连接。当对电池25进行充电时,充电电流由充电弹片802流向底壳54(即充电正极),再由底壳54通过柔性电路板24中的充电电路流向电池25的正极;充电电流由电池25负极通过柔性电路板24的充电电路流向充电触点261(即充电负极),再由充电触点261流回充电触脚803,最后形成充电回路,实现对电池25的充电。示例性的,底壳54、柔性电路板24与电池25之间的连接关系如图12中的虚线所示。电池25与柔性电路板24电连接,柔性电路板24的一端与底壳54电连接,柔性电路板24的另一端与无线耳机的充电正负极中的另一种(例如充电触点261)电连接。
由于底壳54作为一个充电电极,无需穿过防水防尘膜232后再露出耳机外部,因而防水防尘膜232无需开孔,省去了防水防尘膜232开孔以及充电触点开孔对齐等过程,简化了加工和组装工艺,降低了结构和工艺实现的复杂度,增加了底壳所形成的腔体的空间利用率。另外,底壳作为一个充电电极子,底壳可以均采用导体材质,简化了壳体的加工工艺。
图13示出了本申请一个实施例提供的无线耳机置于充电盒内的分解示意图,如图13所示,充电盒8可以包括充电盒主体81和充电盒盖82,充电盒主体81中设置有容纳空间用于容纳无线耳机,充电盒盖82用于封盖该容纳空间。充电盒主体81和充电盒盖82可以转动连接或扣合连接,即充电盒主体81和充电盒盖82可以相对转动或者充电盒盖82可以与充电盒主体81分离。其中,充电盒8内可以容纳两个无线耳机,分别为左耳耳机和右耳耳机。在一些实现方式中,其中一个无线耳机可以作为前文所述的主耳机,另一个无线耳机可以作为前文所述的从耳机,主耳机和从耳机可以无线蓝牙连接。充电盒主体81中用于收容每个无线耳机的容纳空间中设置有充电弹片例如充电弹片801和充电弹片802。在一些实现方式中,若无线耳机的底壳作为充电正极和充电负极时,则充电弹片801和充电弹片802可以分别作为充电正极弹片和充电负极弹片,对应于底壳的充电正极和充电负极,其中,充电正极弹片对应底壳的充电正极,充电负极弹片对应底壳的充电负极。在另一些实现方式中,若无线耳机的底壳作为充电正负极中的一种,例如底壳作为充电正极或充电负极,则充电弹片801和充电弹片802均为正极充电弹片或均为充电负极弹片,对应于底壳的充电正负极中的一种,例如,底壳为充电正极,则充电弹片801和充电弹片802均为正极充电弹片,底壳为充电负极,则充电弹片801和充电弹片802均为充电负极弹片。此外充电盒主体81中用于收容每个无线耳机的容纳空间中还设置充电触脚803, 用于与耳机上的另一个充电电极(即充电触点261)相接触。具体参考图14和图15,其中图14示出了无线耳机放置于充电盒中的示意图,图15示出了无线耳机放置于充电盒中的示意性透视图。
参考图15,本申请实施提供一种充电盒,该充电盒包括充电盒主体81和充电盒盖82。该充电盒主体81上设置有容纳空间,用于收容无线耳机,该充电盒盖82用于封盖该容纳空间。该容纳空间包括设有充电电极的底部容纳槽,用于容纳无线耳机的底壳,底部容纳槽中设置的充电电极对应于底壳上的充电电极。若无线耳机的底壳作为充电正负极中的一种,则容纳空间包括设有与底壳对应的充电电极的底部容纳槽,即底部容纳槽中的充电电极为正负极中的一种。与底壳的充电正负极中的另一种相对应的充电电极不在该底部容纳槽内。例如,底壳为充电正极,则充电盒的底部容纳槽中设置有正极充电弹片801和802,而充电盒的充电负极则不设置在底部容纳槽中,例如可以设置在容纳空间中与无线耳机头部对应的位置或与耳机柄对应的位置,本申请实施例不做具体限定。具体地,底壳为充电正极,无线耳机的充电负极可以设置于耳机的后壳体上,则与无线耳机的充电负极对应的电极设置在充电盒上的与后壳体对应的位置上。在一些可能的方案中,若无线耳机的底壳作为充电正极和充电负极,例如第一底壳部分为充电正极,第二底壳部分为充电负极,则容纳空间包括设有与第一底壳部分和第二底壳部分分别对应的充电电极的底部容纳槽。例如,底壳作为充电正极和充电负极时,则充电盒的底部容纳槽中设置有正极充电弹片801和负极充电弹片802。
上文结合图5-15详细描述了无线耳机的底壳用于充电电极的内容,下面结合图16-19,在前文描述的基础上,详细描述底壳与耳机组件的连接关系和底壳的结构。
图16示出了本申请一个实施例提供的一种无线耳机的底壳的示意性结构图。该底壳可以是图6或图7所示的底壳44,也可以是图9或图10所示的底壳54,为方便理解和描述,本申请实施例以底壳54为例进行介绍。参考图16,底壳54外表面呈半球形或外表面为圆弧状,在一些其他实现方式中,底壳54的外表面也可以是其他任意的简单或复杂、单一或组合面,例如底壳54的外表面可以呈椭圆面、锥面、圆柱面、棱柱面、棱锥面、曲面等等。底壳54的内壁可以包括底面543和侧面544,其中底面543大致为平面,侧面544可以为曲面或平面,在一些实现方式中,侧面544可以与底面543大致垂直。
底面543设置有与耳机外部连通的开孔5431,用于外部声音信号进入麦克风。在一些实现方式中,底壳54的内壁的底面543与底壳54的外表面之间可以是被底壳材料填充的。底壳54的内壁的底面543与底壳54的外表面之间的部分是实体,则开孔5431通过底壳54的内壁的底面543与底壳54的外表面之间实体部分延伸到底壳54外部,在底壳54的外表面形成进声孔541,从而使声音信号通过进声孔541和开孔5431之间的声音通道进入耳机内部而被麦克风拾取。在其他一些实现方式中,底壳54的内壁的底面543与底壳54的外表面之间可以形成有空腔,则开孔5431从底壳54的内壁的底面543延伸至空腔,在用于形成该空腔的底壳54的外表面部分还设置有进声孔541,进声孔541从底壳54的外表面延伸至空腔,用于耳机外部的声音信号通过进声孔541进入空腔并到达开孔5431从而被麦克风拾取。
侧面544上可以设置有突出部5441,用于起到承托和定位作用。仍参考图11和图16,图16中的底面543大致呈平面,防水防尘膜232可以设置于底面543之上,第一FPC部 分241可以设置于突出部5441之上,防水防尘膜232两面覆有胶层,一面胶层与底面543贴合,另一面与第一FPC部分241贴合,从而将第一FPC部分241和防水防尘膜232均固定于底壳54上。
本申请实施例提供的无线耳机,将耳机的底壳和充电电极二合一,通过利用底壳作为充电电极,省去了底壳形成的腔体中的充电触点的单独设计,简化了结构设计,降低了结构设计和工艺实现的复杂度,实现一物多用。另外,省去充电触点的单独设计能够减少柔性电路板上的触点的布置,减少了充电触点占据的空间,增加了空间利用率。仍参考图16中的(a)和(b),上文描述中,底壳54的内壁的底面543与底壳54的外表面之间可以是实体或形成有空腔,从耳机外部通向通话麦克风231的进声孔54若只设置一个,这种单一进声孔的设计仍存在风噪声的问题。本申请实施例中,将底壳上的单一进声孔改为多个进声孔的结构设计,即进声孔541也可以设置多个,例如2个、3个、4个或更多,该多个进声孔形成多个相互连通的麦克风进声通道。多孔式的进声孔和多个相互连通的麦克风进声通道的结构设计,能够使风声信号进入结构耳机底壳内的进声通道后,部分能量经过其他孔分流,能够减少作用在通话麦克风振膜上的风声能量,从而减小通话麦克风拾取到的风噪声,达到降低风噪的效果。
例如,底壳54的内壁的底面543与底壳54的外表面之间可以形成有空腔,则开孔5431从底壳54的内壁的底面543延伸至空腔,在用于形成该空腔的底壳54的外表面部分还设置有多个进声孔541,该多个进声孔541从底壳54的外表面延伸至空腔,该多个进声孔541形成相互连通的麦克风进声通道,用于耳机外部的声音信号通过该多进声孔541进入空腔并到达开孔5431从而被麦克风拾取。该多个进声孔541可以分散设置(例如均匀设置)在底壳54上,多个进声孔541可以使各个方向的语音信号均能被通话麦克风拾取,但是将进入到空腔内的风声信号分流出去而减弱通话麦克风拾取到的风声信号。
在一种实现方案中,该多个进声孔541中包括相对设置的两个进声孔,即多个进声孔中的两个进声孔相对设置。换句话说,该多个进声孔541中的两个进声孔的轴线重合。这是由于风一般都是有方向的,两个进声孔轴线重合(或相对设置),可以允许风声信号从该两个进声孔中的一个进声孔进入空腔后能够从另一个进声孔流出,对风声信号的衰减效果更好。应理解,本申请实施例中将声音信号从进声孔541到达麦克风的路径也可以理解为麦克风进声通道或声音通道。
又如,底壳54的内壁的底面543与底壳54的外表面之间的部分是实体,则开孔5431通过底壳54的内壁的底面543与底壳54的外表面之间实体部分延伸到底壳54外部,可以形成多个声音通道(即麦克风进声通道),该多个麦克风进声通道相互连通,在底壳54的外表面处形成多个进声孔541,声音信号可以通过进声孔541和开孔5431之间的麦克风进声通道进入耳机内部而被麦克风拾取。换句话说,声音信号从底壳54外部可以通过多个麦克风进声通道通向开孔5431。该多个麦克风进声通道可以自开孔5431呈发散状,该多个麦克风进声通道也可以相互之间交叉通过一段公共的进声通道连通开孔5431。该多个麦克风进声通道在耳机底壳54外表面形成的进声孔541可以分散设置(例如均匀设置)于底壳54的外表面。
在一种实现方案中,该相互连通的麦克风进声通道中的两个麦克风进声通道的中心线夹角为90°~180°。这样风声信号可以从一个麦克风进声通道进入,从另一个麦克风进声 通道流出,对风声信号的衰减效果更好。
在一种实现方案中,该多个麦克风进声通道可以是直线形、弧线形、折线形、曲线形、波浪线形或其他形状。
在一种实现方案中,该多个麦克风进声通道的横截面可以是圆形、矩形、梯形、三角形、菱形、椭圆形或半圆形等形状的至少一种。
在一种实现方案中,该多个麦克风进声通道的形状可以均相同,也可以完全不同,可以不完全相同。
在一种实现方案中,该多个麦克风进声通道中包括至少一对麦克风进声通道的中心线重合,换句话说,该多个麦克风进声通道中至少一对麦克风进声通道连通且该至少一对麦克风进声通道的中心线在一条直线上,或者理解为该至少一对麦克风进声通道形成直线型的声音通道。这是由于风一般都是有方向的,至少一对麦克风进声通道连通且该至少一对麦克风进声通道的中心线在一条直线上,可以使风声信号从该一对麦克风进声通道中的一个麦克风进声通道进入后能够从另一个麦克风进声通道流出,对风声信号的衰减效果更好。应理解,该至少一对麦克风进声通道也可以形成其他形状的声音通道,例如折线形、弧线形、波浪线形等,本申请实施例不做限定。
图17示出了本申请实施例提供的一种无线耳机的底壳的示意性结构图。本申请实施例中,以底壳54的外表面与内壁的底面543之间的部分为实体为例,则声音信号通过麦克风进声通道进入耳机内部。参考图17,图中示例性的示出了多个麦克风进声通道中的两个麦克风进声通道,第一进声通道5411和第二进声通道5412,第一进声通道5411和第二进声通道5412连通。第一进声通道5411和第二进声通道5412的轴线可以在一条直线上,即第一进声通道5411和第二进声通道5412形成直线型声音通道。第一进声通道5411和第二进声通道5412可以与公共进声通道5413连通,其中第一进声通道5411与底壳54的外表面形成有进声孔541a,第二进声通道5412与底壳54的外表面形成有进声孔541b。公共进声通道5413与底壳内壁的底面543形成有开孔5431。第一进声通道5411和第二进声通道5412通过公共进声通道5413连通麦克风。
图18示出了本申请实施例提供的无线耳机的局部示意性分解图,图19示出了本申请实施例提供的无线耳机的局部示意性剖视图。参考图18和图19,本申请实施例中将在底壳54上设置为多孔式进声孔的结构设计,在通话过程中,风声信号进入麦克风进声通道后,由于风有方向,因而风声信号从其中一个进声孔进入后能从另一个进声孔流出。具体而言,参考图18和19,假设风声信号从进声孔541a进入第一进声通道5411,风存在方向,因此,风声信号能够从第一进声通道5411进入第二进声通道5412,进而从进声孔541b流出底壳54,风声的部分能量经过第二进声通道5412的分流后,进入公共进声通道5413并作用在通话麦克风231上的风声能量大大减少,从而减少了通话麦克风231拾取到的风噪声。对于语音信号来说,由于语音信号可以从各个进声孔进入底壳内部,所以语音信号可以被通话麦克风正常拾取。应理解,本申请实施例中的公共进声通道5413可以理解为外部声音信号被麦克风拾取时所必经的通道。
本申请实施例中,在耳机的底壳上设计降风噪的结构,通过声音结构通道对风声信号进行分流和衰减,可以降低户外通话环境中在各个方向的风速下流入麦克风振膜上的风声信号能量,达到降低通话过程中的风噪声的效果。进一步地,本申请实施例中将耳机底壳 和充电电极二合一,以耳机的底壳作为充电电极,可以实现一物多用,由于节省出充电触点的排布空间,从而可以增加耳机内部的腔体的空间利用率。因此,本申请实施例中的耳机底壳既有降风噪的功能,能够抑制风噪,降低风噪声,提升产品通话体验,又能实现导通充电的功能,能够简化结构设计,减少结构复杂度,降低工艺难度,增加空间利用率。
本申请实施例提供的无线耳机一般都配备有独立的充电盒,如图13至15中示出的充电盒8。当无线耳机需要充电时,将无线耳机放入充电盒内可以对无线耳机进行充电。具体而言,无线耳机入盒后,充电盒上的霍尔开关关闭,蓝牙断连,无线耳机处于低功耗状态。无线耳机置于充电盒中时,充电盒内的充电弹片与耳机的底壳接触(在底壳作为一个充电电极时,充电盒内的金属触脚还会和无线耳机的另一个充电触点接触),电路导通,充电盒内设置的芯片有内部电压检测电路,当检测到电池电压低于阈值时充电盒给耳机电池进行充电,随着被充电耳机电池的电压逐渐上升,充电电流逐渐减小,当检测到电池电压达到一定阈值或者充电电流小于一定阈值时,芯片将处于关断状态,充电停止,耳机电池充电过程完成。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”“相连”“连接”应做广义理解,例如可以是固定连接,也可以是可拆卸连接,或一体式连接;可以是机械连接,也可以是电连接;可以是直接连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中具体含义。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (20)

  1. 一种无线耳机,其特征在于,包括:耳机壳体和收容于所述耳机壳体内的耳机组件,其中,
    所述耳机组件包括麦克风;
    所述耳机壳体包括底壳,所述底壳包括通过绝缘材料相隔的第一底壳部分和第二底壳部分,所述第一底壳部分为充电正极,所述第二底壳部分为充电负极;
    所述底壳上设置有多个进声孔,所述多个进声孔形成相互连通的麦克风进声通道。
  2. 根据权利要求1所述的无线耳机,其特征在于,所述多个进声孔均匀设置于所述底壳。
  3. 根据权利要求1或2所述的无线耳机,其特征在于,所述多个进声孔设置于所述绝缘材料。
  4. 根据权利要求1至3中任一项所述的无线耳机,其特征在于,所述多个进声孔包括两个进声孔,所述两个进声孔的轴线重合。
  5. 根据权利要求1至4中任一项所述的无线耳机,其特征在于,所述麦克风进声通道的截面为以下形状的至少一种:
    圆形、椭圆形、多边形、波浪形。
  6. 根据权利要求1至5中任一项所述的无线耳机,其特征在于,所述麦克风进声通道包括相互连通的第一进声通道和第二进声通道,所述第一进声通道和所述第二进声通道通过公共进声通道连通所述麦克风。
  7. 根据权利要求1至6中任一项所述的无线耳机,其特征在于,所述底壳的外壁呈圆弧状。
  8. 根据权利要求1至7中任一项所述的无线耳机,其特征在于,所述耳机组件还包括柔性电路板和与所述柔性电路板电连接的电池,所述第一底壳部分与所述第二底壳部分分别与所述柔性电路板电连接。
  9. 根据权利要求8所述的无线耳机,其特征在于,所述柔性电路板在靠近所述底壳设置有第一折弯部,所述麦克风设置于所述第一折弯部,所述麦克风与所述柔性电路板电连接。
  10. 根据权利要求8或9所述的无线耳机,其特征在于,所述柔性电路板在所述耳机壳体的入耳一端设置有第二折弯部,所述第二折弯部设置有扬声器。
  11. 一种无线耳机,其特征在于,包括:耳机壳体和收容于所述耳机壳体内的耳机组件,其中,
    所述耳机组件包括麦克风;
    所述耳机壳体包括底壳,所述底壳为充电正负极中的一种,所述充电正负极中的另一种与所述底壳分离设置;
    所述底壳上设置有多个进声孔,所述多个进声孔形成相互连通的麦克风进声通道。
  12. 根据权利要求11所述的无线耳机,其特征在于,所述耳机壳体包括前壳体、后壳体和耳机柄,所述前壳体与所述后壳体连接,所述后壳体向下延伸形成所述耳机柄,所 述底壳位于所述耳机柄的一端,所述充电正负极中的另一种设置于所述后壳体。
  13. 根据权利要求11或12所述的无线耳机,其特征在于,所述多个进声孔均匀设置于所述底壳。
  14. 根据权利要求11至13中任一项所述的无线耳机,其特征在于,所述多个进声孔包括两个进声孔,所述两个进声孔的轴线重合。
  15. 根据权利要求11至14中任一项所述的无线耳机,其特征在于,所述麦克风进声通道的截面为以下形状的至少一种:
    圆形、椭圆形、多边形、波浪形。
  16. 根据权利要求11至15中任一项所述的无线耳机,其特征在于,所述麦克风进声通道包括相互连通的第一进声通道和第二进声通道,所述第一进声通道和所述第二进声通道通过公共进声通道连通所述麦克风。
  17. 根据权利要求11至16中任一项所述的无线耳机,其特征在于,所述底壳的外壁呈圆弧状。
  18. 根据权利要求11至17中任一项所述的无线耳机,其特征在于,所述耳机组件还包括柔性电路板和与所述柔性电路板电连接的电池,所述柔性电路板的一端与所述底壳电连接,所述柔性电路板的另一端与所述充电正负极中的另一种电连接。
  19. 根据权利要求18所述的无线耳机,其特征在于,所述柔性电路板在靠近所述底壳设置有第一折弯部,所述麦克风设置于所述第一折弯部,所述麦克风与所述柔性电路板电连接。
  20. 根据权利要求18或19所述的无线耳机,其特征在于,所述柔性电路板在所述耳机壳体的入耳一端设置有第二折弯部,所述第二折弯部设置有扬声器。
PCT/CN2020/102242 2019-08-26 2020-07-16 无线耳机 WO2021036560A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20858428.4A EP4013065A4 (en) 2019-08-26 2020-07-16 WIRELESS EARBUDS
US17/638,361 US20220295187A1 (en) 2019-08-26 2020-07-16 Wireless headset

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910790820.8 2019-08-26
CN201910790820.8A CN110519671A (zh) 2019-08-26 2019-08-26 无线耳机

Publications (1)

Publication Number Publication Date
WO2021036560A1 true WO2021036560A1 (zh) 2021-03-04

Family

ID=68627842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102242 WO2021036560A1 (zh) 2019-08-26 2020-07-16 无线耳机

Country Status (4)

Country Link
US (1) US20220295187A1 (zh)
EP (1) EP4013065A4 (zh)
CN (1) CN110519671A (zh)
WO (1) WO2021036560A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD806388S1 (en) * 2016-09-06 2018-01-02 Apple Inc. Case
CN110519671A (zh) * 2019-08-26 2019-11-29 华为技术有限公司 无线耳机
CN112886219B (zh) * 2019-11-30 2022-05-10 华为技术有限公司 无线耳机
CN111262289A (zh) * 2020-01-16 2020-06-09 毛德林 内置蓝牙耳机的移动电源
CN111935576B (zh) * 2020-06-30 2022-05-03 瑞声科技(新加坡)有限公司 耳机及其装配方法
CN114079835A (zh) * 2020-08-18 2022-02-22 华为技术有限公司 一种电子设备及腕部穿戴设备
CN112165666B (zh) * 2020-09-28 2023-11-14 立讯电子科技(昆山)有限公司 一种无线耳机及耳机充电盒
CN112738698A (zh) * 2020-12-25 2021-04-30 深圳羽声电子有限公司 一种tws智能耳机超高灵敏度微型扬声器
CN113451661A (zh) * 2021-06-25 2021-09-28 歌尔科技有限公司 一种耳机
CN114079839B (zh) * 2021-08-30 2024-01-12 广东粤港澳大湾区国家纳米科技创新研究院 一种无线耳机及其制造方法
CN114095833B (zh) * 2021-11-18 2023-04-25 歌尔科技有限公司 基于压感反馈的降噪方法、tws耳机及存储介质
CN117641204A (zh) * 2022-08-11 2024-03-01 北京小米移动软件有限公司 耳机和耳机组件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160309249A1 (en) * 2015-04-16 2016-10-20 Hong Fu Jin Precision Industry (Wuhan) Co., Ltd. Wearable electronic device
CN106551494A (zh) * 2015-09-30 2017-04-05 苹果公司 具有磁性偏心机构的盒
CN107277664A (zh) * 2017-07-13 2017-10-20 江阴思安塑胶防护科技有限公司 噪音滤波器及包括其的耳塞
CN108632694A (zh) * 2018-08-16 2018-10-09 歌尔科技有限公司 一种可衰减麦克风风噪的电子产品
CN208783055U (zh) * 2018-11-09 2019-04-23 吉安市立讯射频科技股份有限公司 一种高稳定的蓝牙耳机
CN209088940U (zh) * 2018-12-07 2019-07-09 深圳市炫乐数码科技有限公司 一种支持nfc功能的户外智能防风减噪型通讯设备
CN209218390U (zh) * 2018-12-27 2019-08-06 深圳市新厚泰塑胶电子有限公司 一种降噪传声器
CN110166866A (zh) * 2019-04-25 2019-08-23 华为技术有限公司 一种无线耳机及耳机盒
CN110519671A (zh) * 2019-08-26 2019-11-29 华为技术有限公司 无线耳机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9854344B2 (en) * 2016-01-03 2017-12-26 Braven, Lc Wireless earphones and earphones charging case

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160309249A1 (en) * 2015-04-16 2016-10-20 Hong Fu Jin Precision Industry (Wuhan) Co., Ltd. Wearable electronic device
CN106551494A (zh) * 2015-09-30 2017-04-05 苹果公司 具有磁性偏心机构的盒
CN107277664A (zh) * 2017-07-13 2017-10-20 江阴思安塑胶防护科技有限公司 噪音滤波器及包括其的耳塞
CN108632694A (zh) * 2018-08-16 2018-10-09 歌尔科技有限公司 一种可衰减麦克风风噪的电子产品
CN208783055U (zh) * 2018-11-09 2019-04-23 吉安市立讯射频科技股份有限公司 一种高稳定的蓝牙耳机
CN209088940U (zh) * 2018-12-07 2019-07-09 深圳市炫乐数码科技有限公司 一种支持nfc功能的户外智能防风减噪型通讯设备
CN209218390U (zh) * 2018-12-27 2019-08-06 深圳市新厚泰塑胶电子有限公司 一种降噪传声器
CN110166866A (zh) * 2019-04-25 2019-08-23 华为技术有限公司 一种无线耳机及耳机盒
CN110519671A (zh) * 2019-08-26 2019-11-29 华为技术有限公司 无线耳机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4013065A4

Also Published As

Publication number Publication date
EP4013065A4 (en) 2022-10-12
CN110519671A (zh) 2019-11-29
US20220295187A1 (en) 2022-09-15
EP4013065A1 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
WO2021036560A1 (zh) 无线耳机
US8014553B2 (en) Ear-mounted transducer and ear-device
US7499555B1 (en) Personal communication method and apparatus with acoustic stray field cancellation
KR101092958B1 (ko) 이어셋
US9762991B2 (en) Passive noise-cancellation of an in-ear headset module
WO2022174413A1 (zh) 耳机、耳机控制方法及系统
KR20160141380A (ko) 넥밴드형 블루투스 스피커
CN214481253U (zh) 一种双动圈微型扬声器
CN113519170A (zh) 扬声器及电子设备
CN112261538A (zh) 一种应用于耳机的扩声装置
WO2023051005A1 (zh) 圈铁喇叭组件及耳机
KR101503821B1 (ko) 양방향 스피커
CN213403429U (zh) 一种耳机
CN216146436U (zh) 耳机、扬声器模组及其前护盖
CN211860488U (zh) 无线耳机
CN213462193U (zh) 磁吸式话务耳机
CN218450447U (zh) 麦克风和扬声器组合模组、耳机及电子设备
CN214591966U (zh) 一种双驱动骨传导喇叭及耳机
EP4354901A1 (en) Dual-diaphragm loudspeaker and electronic device
TWI749988B (zh) 雙振膜雙音圈喇叭單體
WO2022021820A1 (zh) 扬声器及电子设备
CN218830596U (zh) 同轴扬声器及电子设备
CN214101709U (zh) 一种应用于耳机的扩声装置
CN215499487U (zh) 一种骨传导喇叭及耳机
EP4145856A1 (en) Loudspeaker and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020858428

Country of ref document: EP

Effective date: 20220310