WO2021036256A1 - 一种hiv蛋白酶抑制剂中间体化合物的合成方法 - Google Patents

一种hiv蛋白酶抑制剂中间体化合物的合成方法 Download PDF

Info

Publication number
WO2021036256A1
WO2021036256A1 PCT/CN2020/082630 CN2020082630W WO2021036256A1 WO 2021036256 A1 WO2021036256 A1 WO 2021036256A1 CN 2020082630 W CN2020082630 W CN 2020082630W WO 2021036256 A1 WO2021036256 A1 WO 2021036256A1
Authority
WO
WIPO (PCT)
Prior art keywords
cat
protease inhibitor
hiv protease
synthesizing
reaction
Prior art date
Application number
PCT/CN2020/082630
Other languages
English (en)
French (fr)
Inventor
稂琪伟
丁小兵
高爽
Original Assignee
凯特立斯(深圳)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凯特立斯(深圳)科技有限公司 filed Critical 凯特立斯(深圳)科技有限公司
Publication of WO2021036256A1 publication Critical patent/WO2021036256A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/22Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being unsaturated
    • C07C215/28Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being unsaturated and containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/16Preparation of optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/16Preparation of optical isomers
    • C07C231/18Preparation of optical isomers by stereospecific synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/04Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/17Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/18Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/04Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/04Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds
    • C07C27/06Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds by hydrogenation of oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/16Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/36Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
    • C07C303/40Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids by reactions not involving the formation of sulfonamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/15Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C311/16Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the sulfonamide groups bound to hydrogen atoms or to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/15Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C311/16Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the sulfonamide groups bound to hydrogen atoms or to an acyclic carbon atom
    • C07C311/17Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the sulfonamide groups bound to hydrogen atoms or to an acyclic carbon atom to an acyclic carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C315/00Preparation of sulfones; Preparation of sulfoxides
    • C07C315/04Preparation of sulfones; Preparation of sulfoxides by reactions not involving the formation of sulfone or sulfoxide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/40Halogenated unsaturated alcohols
    • C07C33/46Halogenated unsaturated alcohols containing only six-membered aromatic rings as cyclic parts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the technical field of drug synthesis, and in particular relates to a method for synthesizing an HIV protease inhibitor intermediate compound.
  • HIV protease inhibitors are currently the most promising treatment technology.
  • the high drug prices have caused many AIDS patients to give up treatment, so the development of an efficient and cheap
  • the synthesis method of HIV protease inhibitor intermediates is very important.
  • the structures of common HIV protease inhibitors and their intermediates are as follows:
  • the prior art mainly adopts enzymatic catalysis and asymmetric hydrogenation methods to synthesize this intermediate.
  • chiral aminoaldehyde is used as a raw material to synthesize this intermediate chemically, and a large amount of chemical reagent NaBH 4 is required for reduction, and the resulting product is stereoselective
  • the control is poor, and a product with a single configuration must be obtained through recrystallization; in 2001, the B. Moon Kim group reported a natural chiral source as a starting material to synthesize this intermediate through a multi-step complex process; in 2013, Ioannis N. Houpis synthesized the intermediate by asymmetric hydrogenation and enzymatic catalysis. Although it has relatively good stereocontrol, its catalytic activity is poor, and the conversion cannot be completed in most cases, and the loss of raw materials is large. The amount of enzyme is also large.
  • the existing methods for synthesizing HIV protease inhibitor intermediates have the problems of poor stereoselectivity control, low reaction activity, large loss of raw materials and complex synthesis process.
  • the embodiment of the present invention provides a method for synthesizing an HIV protease inhibitor intermediate compound, which aims to solve the existing methods for synthesizing HIV protease inhibitor intermediates, which have poor stereoselectivity control, low reactivity, large loss of raw materials, and synthesis technology. The process is complicated.
  • a method for synthesizing an intermediate compound of an HIV protease inhibitor includes:
  • Compound 1a is added to a reaction solvent, a mixture of catalyst and hydrogen source is added to carry out asymmetric transfer hydrogenation reaction to obtain HIV protease inhibitor intermediate compounds 2a, 2a', and the synthetic route is shown as follows:
  • the group R is one of tert-butoxycarbonyl, benzyloxycarbonyl, p-toluenesulfonyl, acetyl and benzoyl.
  • the method for synthesizing HIV protease inhibitor intermediate compounds uses asymmetric transfer hydrogenation technology. Compared with existing similar intermediates, the synthesized HIV protease inhibitor intermediate compounds have stereoselectivity and yield. The rate can be greatly improved, and the diastereoselectivity ratio of the product reaches 94:6; in addition, the amount of catalyst is small, the catalytic efficiency is high, the reaction activity is improved, the loss of raw materials is small, the overall process is fast and simple, and the cost is greatly reduced.
  • the group R is one of tert-butoxycarbonyl (Boc), benzyloxycarbonyl (CBz), p-toluenesulfonyl (Ts), acetyl (Ac), and benzoyl (Bz).
  • Boc tert-butoxycarbonyl
  • CBz benzyloxycarbonyl
  • Ts p-toluenesulfonyl
  • Ac acetyl
  • benzoyl Bz
  • the structure of the catalyst used in the transfer hydrogenation process is as follows:
  • the molar ratio of the catalyst to the compound 1a is 1:100 ⁇ 5000; the concentration of the compound 1a in the reaction system is 0.1M ⁇ 0.5M.
  • the asymmetric transfer hydrogenation reaction is carried out under the protection of argon or nitrogen.
  • the reaction solvent used is one or more of methanol, tetrahydrofuran, isopropanol, o-dichloroethane, dichloromethane, toluene, water, and N,N-dimethylformamide .
  • the reaction solvent may also be a mixture of tetrahydrofuran and water in a volume ratio of 1:1, a mixture of isopropanol and water in a volume ratio of 1:1, and a volume ratio of N, One of the mixed liquids of N-dimethylformamide and water.
  • the hydrogen source is one or two of triethylamine formate (5:2) azeotropic mixture and sodium formate.
  • the reaction time of the asymmetric transfer hydrogenation reaction is 2 ⁇ 16h.
  • the reaction time used in the system is different in the case of different reaction solvents or different hydrogen sources.
  • the hydrogen source used is triethyl formic acid
  • the reaction solvent is tetrahydrofuran, isopropanol, o-dichloroethane, dichloromethane, toluene
  • the corresponding reaction time is preferably 2h
  • the hydrogen source is triethylamine formate and the reaction solvent is methanol
  • the corresponding reaction time is preferably 12h
  • the hydrogen source used is sodium formate
  • the reaction solvent is water, a mixture of tetrahydrofuran and water, a mixture of isopropanol and water, and a mixture of N,N-dimethylformamide and water.
  • the reaction time is 16h.
  • the reaction temperature of the asymmetric transfer hydrogenation reaction is 25°C; when the reaction temperature is higher than 30°C, the heating system will become complicated, so the embodiments of the present invention are performed at 25°C.
  • the method for synthesizing HIV protease inhibitor intermediate compounds provided in the embodiments of the present invention utilizes asymmetric transfer catalysis technology. Compared with existing similar intermediates, the synthesized HIV protease inhibitor intermediate compounds have stereoselectivity and yield. The rate can be greatly improved, and the diastereoselectivity ratio of the product reaches 94:6; in addition, the amount of catalyst is small, the catalytic efficiency is high, the reaction activity is improved, the loss of raw materials is small, the overall process is fast and simple, and the cost is greatly reduced.
  • the present invention is to investigate the influence of the type of catalyst used in the asymmetric transfer hydrogenation reaction on the conversion rate (conv.) of the HIV protease inhibitor intermediate compound and the ratio of diastereomers (dr), based on Example 1. , Replace the catalyst cat.1 with cat.2, cat.3, cat.4, cat.5, cat.6, cat.7, cat.8, cat.9, cat.10, cat.11, cat in turn .12, ( R,R )-cat.13 and ( S,S )-cat.13, cat.14, cat.15, cat.16, cat.17.
  • the type of catalyst determines the overall stereoselectivity of the reaction.
  • Examples 1-18 used different catalysts.
  • the diastereoselectivity of the reaction was very large, and the difference in activity was also relatively large.
  • the difference in activity relative to the optimal catalyst cat.13 may be that the structure of other catalysts is relatively dispersed and easy to In the catalytic cycle, small molecules are trapped and deactivated.
  • the reason for the poor selectivity may be that the dispersed chiral catalyst cannot provide an excellent chiral pocket for this type of substrate, while the chain structure of cat.13 can.
  • Example 19 THF >99 90:10
  • Example 20 IPA >99 91:9
  • Example 21 DCE >99 93:7
  • Example 22 DCM >99 91:9
  • Example 23 toluene >99 91:9
  • Example 24 MeOH >99 94:6
  • the hydrogen source triethylamine formate was replaced with sodium formate HCOONa (6 eq.), and the reaction time was 16 hours.
  • S/C 1000
  • the reaction solvent is replaced with water, a mixture of tetrahydrofuran and water H 2 O/THF (1:1) with a volume ratio of 1:1, and a mixture of isopropanol and water with a volume ratio of 1:1.
  • Liquid H 2 O/IPA (1:1), the following Examples 25-27 were performed, and the results of the effect on the conversion rate and dr value of the HIV protease inhibitor intermediate compound are shown in Table 4 below.
  • the chiral configuration of the catalyst determines the chiral configuration of the product, that is, from the S, S configuration of the catalyst to the SS configuration of the substrate R, R configuration of the catalyst to S, R-configuration substrate; the catalyst has good compatibility with substrates of different N protecting groups, and has very excellent diastereoselectivity, which can be obtained when the protecting group on the nitrogen is benzoyl The best diastereoselectivity, >99:1 dr.
  • the protective group on the nitrogen is tert-butoxycarbonyl or benzyloxycarbonyl
  • the S, S configuration catalyst has a slightly higher diastereoselectivity than the R, R configuration catalyst. This may be because the substrate itself is in the S configuration, and the chiral pocket matching degree is higher when reacting with the SS catalyst. .
  • the R group in the substrate is a benzoyl group
  • the best catalyst cat.13 is used as the catalyst
  • DCM is used as the reaction solvent
  • triethylamine formate (5:2) is used as the hydrogen source.
  • the amount of hydrogen source and the reaction are changed respectively. Time, substrate concentration in the reaction system, etc., the synthesis route is as follows:
  • the method for synthesizing HIV protease inhibitor intermediate compounds utilizes asymmetric transfer hydrogenation technology.
  • the synthesized HIV protease inhibitor intermediate compounds are stereoselective.
  • the performance and yield can be greatly improved, and the diastereoselectivity ratio of the product reaches 94:6; in addition, the amount of catalyst is small, the catalytic efficiency is high, the reaction activity is improved, the loss of raw materials is small, the overall process is fast and simple, and the cost is greatly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明适用于药物合成技术领域,提供了一种HIV蛋白酶抑制剂中间体化合物的合成方法,包括:在氩气保护下,将化合物1a在反应溶剂中,加入催化剂和氢源混合物进行不对称转移氢化反应,得到HIV蛋白酶抑制剂中间体化合物2a、2a',其合成路线如下所示:(I);所述基团R为叔丁氧羰基、苄氧羰基、对甲苯磺酰基、乙酰基、苯甲酰基中的一种。本发明利用不对称转移氢化技术,所合成的HIV蛋白酶抑制剂中间体化合物与现有的类似中间体相比,其立体选择性和收率能够大幅提高,产物的非对映选择性比例达到94:6;另外,催化剂用量少且催化效率高,改善了反应活性,原料损耗少,整体工艺快速简便、成本大幅下降。

Description

一种HIV蛋白酶抑制剂中间体化合物的合成方法 技术领域
本发明属于药物合成技术领域,尤其涉及一种HIV蛋白酶抑制剂中间体化合物的合成方法。
背景技术
艾滋病是世界上最难治愈的疾病之一。在过去的几十年里,艾滋病的治疗已经取得了重大的进步,HIV蛋白酶抑制剂是目前最有前景的治疗技术,但是高昂的药物价格使得很多艾滋病人放弃治疗,所以发展一种高效廉价的HIV蛋白酶抑制剂中间体的合成方法至关重要,目前常见的HIV蛋白酶抑制剂及其中间体的结构如下所示:
Figure 544640dest_path_image001
现有技术中主要采用酶催化以及不对称氢化方法合成该中间体,其中,采用手性氨基醛为原料采用化学方法合成该中间体,需要大量化学试剂NaBH 4进行还原,得到的产物立体选择性控制较差,必须通过重结晶得到单一构型的产物;2001年,B. Moon Kim小组报道了一种以天然手性源为起始原料,经过多步复杂过程合成该中间体; 2013年,Ioannis N. Houpis分别用不对称氢化和酶催化的方法合成了该中间体,虽然有比较好的立体控制性,但是催化的活性较差,大多数情况下不能够转化完全,原料损耗较大,酶的用量也很大。
技术问题
现有合成HIV蛋白酶抑制剂中间体的方法存在立体选择性控制较差、反应活性低、原料损耗大以及合成工艺过程复杂的问题。
技术解决方案
本发明实施例提供一种HIV蛋白酶抑制剂中间体化合物的合成方法,旨在解决现有合成HIV蛋白酶抑制剂中间体的方法存在立体选择性控制较差、反应活性低、原料损耗大以及合成工艺过程复杂的问题。
本发明实施例是这样实现的,一种HIV蛋白酶抑制剂中间体化合物的合成方法,包括:
将化合物1a在反应溶剂中,加入催化剂和氢源混合物进行不对称转移氢化反应,得到HIV蛋白酶抑制剂中间体化合物2a、2a’,其合成路线如下所示:
Figure 564548dest_path_image002
所述基团R为叔丁氧羰基、苄氧羰基、对甲苯磺酰基、乙酰基、苯甲酰基中的一种。
有益效果
本发明实施例提供的HIV蛋白酶抑制剂中间体化合物的合成方法,利用不对称转移氢化技术,所合成的HIV蛋白酶抑制剂中间体化合物与现有的类似中间体相比,其立体选择性和收率能够大幅提高,产物的非对映选择性比例达到94:6;另外,催化剂用量少且催化效率高,改善了反应活性,原料损耗少,整体工艺快速简便、成本大幅下降。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明实施例提供的HIV蛋白酶抑制剂中间体化合物的合成方法,在氩气保护下,将化合物1a在反应溶剂中,加入催化剂和氢源混合物进行不对称转移氢化反应,得到HIV蛋白酶抑制剂中间体化合物2a、2a’,其合成路线如下所示:
Figure 504822dest_path_image003
化合物1a的命名:
tert-butyl (S)-(4-chloro-3-oxo-1-phenylbutan-2-yl)carbamate。
HIV蛋白酶抑制剂中间体化合物的命名:
2a:tert-butyl ((2S,3R)-4-chloro-3-hydroxy-1-phenylbutan-2-yl)carbamate;
2a’:tert-butyl ((2S,3S)-4-chloro-3-hydroxy-1-phenylbutan-2-yl)carbamate。
在本发明实施例中,所述基团R为叔丁氧羰基(Boc)、苄氧羰基(CBz)、对甲苯磺酰基(Ts)、乙酰基(Ac)、苯甲酰基(Bz)中的一种。
在本发明实施例中,所用催化剂在转移氢化过程中的结构如下所示:
Figure 293787dest_path_image004
 
在本发明实施例中,催化剂与化合物1a的摩尔比为1:100~5000;化合物1a在反应体系的浓度为0.1M~0.5M。
在本发明实施例中,不对称转移氢化反应是在氩气或氮气保护下进行。
在本发明实施例中,所用的反应溶剂为甲醇、四氢呋喃、异丙醇、邻二氯乙烷、二氯甲烷、甲苯、水、N,N-二甲基甲酰胺中的一种或几种。
在本发明实施例中,所述反应溶剂还可以为体积比1:1 的四氢呋喃与水的混合液、体积比1:1的异丙醇与水的混合液、体积比1:1的N,N-二甲基甲酰胺与水的混合液中的一种。
在本发明实施例中,氢源为甲酸三乙胺(5:2)共沸混合物、甲酸钠中的一种或两种。
在本发明实施例中,所述不对称转移氢化反应的反应时间为2~16h,其中,体系在不同反应溶剂或不同氢源的情况下,所用反应时间不同,当所用氢源为甲酸三乙胺,反应溶剂分别为四氢呋喃、异丙醇、邻二氯乙烷、二氯甲烷、甲苯时对应的反应时间优选为2h;当所用氢源为甲酸三乙胺,反应溶剂为甲醇时对应的反应时间优选为12h;当所用氢源为甲酸钠,反应溶剂分别为水、四氢呋喃与水的混合液、异丙醇与水的混合液、N,N-二甲基甲酰胺与水的混合液时对应的反应时间为16h。
在本发明实施例中,不对称转移氢化反应的反应温度为25℃;当反应温度高于30℃,加热体系会变得复杂,故本发明实施例都是在25℃下进行。
本发明实施例提供的HIV蛋白酶抑制剂中间体化合物的合成方法,利用不对称转移催化技术,所合成的HIV蛋白酶抑制剂中间体化合物与现有的类似中间体相比,其立体选择性和收率能够大幅提高,产物的非对映选择性比例达到94:6;另外,催化剂用量少且催化效率高,改善了反应活性,原料损耗少,整体工艺快速简便、成本大幅下降。
以下通过具体实施例对本发明的HIV蛋白酶抑制剂中间体化合物的合成方法的技术效果做进一步的说明。
实施例1
在温度为25℃下,在氩气保护下,将化合物1a(0.2mmol)在甲醇(2mL)中,加入催化剂cat.1和甲酸三乙胺(5:2)(40uL)混合物(催化剂是0.002M的甲醇溶液取用100uL),进行不对称转移氢化反应16h,,得到HIV蛋白酶抑制剂中间体化合物2a、2a’,其合成路线如下所示:
Figure 723631dest_path_image005
 
实施例2-18
本发明为考察不对称转移氢化反应所用催化剂的种类对HIV蛋白酶抑制剂中间体化合物的转化率 (conv.)以及非对映异构体的比例(dr)的影响,在实施例1的基础上,将催化剂cat.1依次替换为cat.2、cat.3、cat.4、cat.5、cat.6、cat.7、cat.8、cat.9、cat.10、cat.11、cat.12、( R,R)-cat.13和( S,S)-cat.13、cat.14、cat.15、cat.16、cat.17。
实施例1-18中不同催化剂对HIV蛋白酶抑制剂中间体化合物的转化率以及dr值的影响结果见下表1所示;其中,转化率由LC测得(反相C18柱),dr值由LC和核磁共振氢谱及碳谱所确定。
表1
  催化剂种类 conv.(%) dr (2a:2a’)
实施例1 cat.1 14 87:13
实施例2 cat.2 4 87:13
实施例3 cat.3 13 80:20
实施例4 cat.4 19 73:27
实施例5 cat.5 21 54:46
实施例6 cat.6 23 87:13
实施例7 cat.7 45 82:18
实施例8 cat.8 29 79:21
实施例9 cat.9 8 78:22
实施例10 cat.10 9 80:20
实施例11 cat.11 8 77:23
实施例12 cat.12 11 73:27
实施例13 ( R,R)-cat.13 >99 94.2:5.8
实施例14 ( S,S)-cat.13 >99 4:96
实施例15 cat.14 >99 93.7:6.3
实施例16 cat.15 >99 93.5:6.5
实施例17 cat.16 >99 92.4:7.6
实施例18 cat.17 >99 93.5:6.5
 
综上,从表1中可知,催化剂的种类决定了反应整体的立体选择性。实施例1-18分别使用了不同催化剂,反应的非对映选择性很大,同时活性的差别也比较大,相对于最优催化剂cat.13活性的差别可能是其他催化剂结构比较分散,容易在催化循环中被小分子捕获而失活,选择性差的原因可能是分散的手性催化剂对该类底物不能够提供一个比较优秀的手性口袋,而cat.13的链式结构可以提供。
进一步,经研究发现催化剂在不同的溶剂环境中的表现不一,为考察不对称转移氢化反应所用反应溶剂的种类对HIV蛋白酶抑制剂中间体化合物的转化率以及非对映异构体的比例的影响,在实施例13的基础上,反应时间为3h,S/C=1000,并依次将反应溶剂甲醇替换为四氢呋喃(THF)、异丙醇(IPA)、邻二氯乙烷(DCE)、二氯甲烷(DCM)、甲苯(toluene)、甲醇(MeOH),其他组分、含量,工艺条件均不变,进行实施例19-24;以及在实施例14的基础上, 其合成路线如下所示:
Figure 168519dest_path_image006
 
不同反应溶剂种类对HIV蛋白酶抑制剂中间体化合物的转化率以及dr值的影响结果见下表2所示。
                       表2
  反应溶剂种类 conv.(%) dr (2a:2a’)
实施例19 THF >99 90:10
实施例20 IPA >99 91:9
实施例21 DCE >99 93:7
实施例22 DCM >99 91:9
实施例23 toluene >99 91:9
实施例24 MeOH >99 94:6
 
综上,从表2可知,在实施例13的基础上,反应时间为2h,S/C=1000,并依次将反应溶剂甲醇替换为四氢呋喃(THF)、异丙醇(IPA)、邻二氯乙烷(DCE)、二氯甲烷(DCM)、甲苯(toluene)、甲醇(MeOH),对HIV蛋白酶抑制剂中间体化合物的转化率影响较小,对dr值影响较大;其中,实施例19-24中HIV蛋白酶抑制剂中间体化合物的转化率均高于99%,实施例24所得HIV蛋白酶抑制剂中间体化合物中非对映异构体的比例为94:6,即相对现有技术提高了反应的立体控制能力。
进一步,为获得非对映异构体比例更高的HIV蛋白酶抑制剂中间体化合物,在实施例13的基础上,将氢源甲酸三乙胺替换为甲酸钠HCOONa (6 eq.),反应时间16h,S/C = 1000,反应溶剂依次替换为水、体积比1:1 的四氢呋喃与水的混合液H 2O/THF (1:1)、体积比1:1的异丙醇与水的混合液H 2O/IPA (1:1),进行以下实施例25-27,对HIV蛋白酶抑制剂中间体化合物的转化率以及dr值的影响结果见下表4所示。
表4
  氢源 反应溶剂 conv.(%) dr (2a:2a’)
实施例25 HCOONa (6 eq.) H 2O 20 83:17
实施例26 HCOONa (6 eq.) H 2O/THF(1:1) 90 92:8
实施例27 HCOONa (6 eq.) H 2O/IPA(1:1) >99 89:11
 
综上,从表4可知,当氢源选用甲酸钠时,反应溶剂种类的选择对HIV蛋白酶抑制剂中间体化合物的转化率以及非对映异构体的比例影响显著,其中,反应溶剂为水时,转化率与立体控制性均较差,说明在S/C=1000时,实施例25-27所得HIV蛋白酶抑制剂中间体化合物的转化率以及非对映异构体的比例均不如氢源选用甲酸三乙胺的实施例。
进一步,为考察不对称转移氢化反应中不同R基团对HIV蛋白酶抑制剂中间体化合物的转化率以及非对映异构体的比例的影响,在实施例13-14的基础上,S/C=1000,反应溶剂为DCM,改变底物,将底物化合物I的R基团依次变为Boc、Bz、Ac、Ts、CBz基团,其合成路线如下所示:
Figure 709222dest_path_image007
对HIV蛋白酶抑制剂中间体化合物的转化率以及dr值的影响结果见下表5所示。
表5
R cat. conv.(%) (S,R)-2/(S,S)-2’(yield%)
Boc ( R,R)-cat.13 >99 94/6(92)
Boc ( S, S)-cat.13 >99 4/96(93)
Bz ( R, R)-cat.13 >99 >99/1(98)
Bz ( S, S)-cat.13 >99 <1/99 (99)
Ac ( R, R)-cat.13 >99 98/2(96)
Ac ( S, S)-cat.13 >99 2/98(97)
Ts ( R, R)-cat.13 >99 98/2(97)
Ts ( S, S)-cat.13 >99 2/98(97)
CBz ( R, R)-cat.13 >99 94/6(92)
CBz ( S, S)-cat.13 >99 3/97(92)
 
综上,从表5可知,催化剂的手性构型决定了产物的手性构型,即S,S构型的催化剂的到SS构型的底物R,R构型的催化剂的到S,R构型的底物;催化剂对不同N保护基团的底物有很好的兼容性,有非常优异的非对映选择性,其中当氮上的保护基团是苯甲酰基的时候可以得到最佳的非对映选择性,>99:1 dr。另外,当氮上的保护基团是叔丁氧羰或者苄氧羰基的时候,S,S构型的催化剂比R,R构型催化剂的非对映选择性略高一点。这可能是底物本身是S构型,在与SS催化剂进行反应的时候,手性口袋匹配度更高一些。。
进一步,底物中R基团为苯甲酰基,以最佳催化剂cat.13作为催化剂、以DCM作为反应溶剂,以甲酸三乙胺(5:2)作为氢源,分别改变氢源用量、反应时间、底物在反应体系中浓度等,合成路线如下所示:
Figure 555955dest_path_image008
 
对HIV蛋白酶抑制剂中间体化合物的转化率以及dr值的影响结果见下表6所示。
表6
Figure 156701dest_path_image009
 
综上,从表6中可知,在S/C=5000 的时候,甲酸三乙胺的量从1eq~100eq的改变对反应的转化率的影响不大,但是大大过量的氢源会使产物的dr值略微降低。另外,在0.1M~0.5M的浓度范围,反应体系中底物的浓度对反应的影响比较小,所以在小量反应的时候用0.1M的浓度,放大反应的时候采用0.5M的浓度。
综上,本发明实施例提供的HIV蛋白酶抑制剂中间体化合物的合成方法,利用不对称转移氢化技术,所合成的HIV蛋白酶抑制剂中间体化合物与现有的类似中间体相比,其立体选择性和收率能够大幅提高,产物的非对映选择性比例达到94:6;另外,催化剂用量少且催化效率高,改善了反应活性,原料损耗少,整体工艺快速简便、成本大幅下降。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种HIV蛋白酶抑制剂中间体化合物的合成方法,其特征在于,包括:
    将化合物1a在反应溶剂中,加入催化剂和氢源混合物进行不对称转移氢化反应,得到HIV蛋白酶抑制剂中间体化合物2a、2a’,其合成路线如下所示:
    Figure 810354dest_path_image001
    所述基团R为叔丁氧羰基、苄氧羰基、对甲苯磺酰基、乙酰基、苯甲酰基中的一种。
  2. 如权利要求1所述的HIV蛋白酶抑制剂中间体化合物的合成方法,其特征在于,所述催化剂为以下cat.1、cat.2、cat.3、cat.4、cat.5、cat.6、cat.7、cat.8、cat.9、cat.10、cat.11、cat.12、( R,R)-cat.13、( S,S)-cat.13、cat.14、cat.15、cat.16、cat.17中的一种或几种:
    Figure 511593dest_path_image002
  3. 如权利要求1所述的HIV蛋白酶抑制剂中间体化合物的合成方法,其特征在于,所述氢源为甲酸三乙胺、甲酸钠中的一种或两种。
  4. 如权利要求1所述的HIV蛋白酶抑制剂中间体化合物的合成方法,其特征在于,所述反应溶剂为甲醇、四氢呋喃、异丙醇、邻二氯乙烷、二氯甲烷、甲苯、水、N,N-二甲基甲酰胺中的一种或几种。
  5. 如权利要求4所述的HIV蛋白酶抑制剂中间体化合物的合成方法,其特征在于,所述反应溶剂为体积比1:1的四氢呋喃与水的混合液、体积比1:1的异丙醇与水的混合液、体积比1:1的N,N-二甲基甲酰胺与水的混合液中的一种。
  6. 如权利要求1所述的HIV蛋白酶抑制剂中间体化合物的合成方法,其特征在于,所述不对称转移氢化反应在氩气或者氮气氛围下进行。
  7. 如权利要求1所述的HIV蛋白酶抑制剂中间体化合物的合成方法,其特征在于,所述催化剂与化合物1a的摩尔比为1:1000~5000。
  8. 如权利要求1所述的HIV蛋白酶抑制剂中间体化合物的合成方法,其特征在于,所述化合物1a在反应体系的浓度为0.1M~0.5M。
  9. 如权利要求1所述的HIV蛋白酶抑制剂中间体化合物的合成方法,其特征在于,所述不对称转移氢化反应的反应时间为2~48h。
  10. 如权利要求1所述的HIV蛋白酶抑制剂中间体化合物的合成方法,其特征在于,所述不对称转移氢化反应的反应温度为25℃。
PCT/CN2020/082630 2019-08-30 2020-03-31 一种hiv蛋白酶抑制剂中间体化合物的合成方法 WO2021036256A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910812648.1 2019-08-30
CN201910812648.1A CN112441864B (zh) 2019-08-30 2019-08-30 一种hiv蛋白酶抑制剂中间体化合物的合成方法

Publications (1)

Publication Number Publication Date
WO2021036256A1 true WO2021036256A1 (zh) 2021-03-04

Family

ID=74685445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082630 WO2021036256A1 (zh) 2019-08-30 2020-03-31 一种hiv蛋白酶抑制剂中间体化合物的合成方法

Country Status (2)

Country Link
CN (1) CN112441864B (zh)
WO (1) WO2021036256A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113185429B (zh) * 2021-04-12 2023-06-06 江苏海洋大学 一种抗hiv蛋白酶抑制剂中间体的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040082820A1 (en) * 2000-12-25 2004-04-29 Takayoshi Torii Process for producing optically active halohydrin compound
US20100022795A1 (en) * 2006-09-26 2010-01-28 Tatsuya Honda Process for producing optically active beta-hydroxy-alpha-aminocarboxylic acid ester
CN104024218A (zh) * 2011-10-31 2014-09-03 高砂香料工业株式会社 用于生产光学活性的β-羟基-α-氨基羧酸酯的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107641072B (zh) * 2016-07-22 2020-07-21 江苏威凯尔医药科技有限公司 一种制备(s)-2-氯-1-(3,4-二氟苯基)乙醇的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040082820A1 (en) * 2000-12-25 2004-04-29 Takayoshi Torii Process for producing optically active halohydrin compound
US20100022795A1 (en) * 2006-09-26 2010-01-28 Tatsuya Honda Process for producing optically active beta-hydroxy-alpha-aminocarboxylic acid ester
CN104024218A (zh) * 2011-10-31 2014-09-03 高砂香料工业株式会社 用于生产光学活性的β-羟基-α-氨基羧酸酯的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FANGYUAN WANG ET AL.: "Rh(III)-Catalyzed Diastereoselective Transfer Hydrogenation: an Efficient Entry to Key Intermediates of HIV Protease Inhibitors.", CHEM. COMMUN., vol. 56, no. 21, 22 February 2020 (2020-02-22), pages 3119 - 3122, XP055785844, ISSN: 1359-7345 *
LONG-SHENG ZHENG ET AL.: "Rhodium-Mediated Asymmetric Transfer Hydrogenation: a Diastereo- and Enantioselective Synthesis of Syn-α-amido β-Hydroxy Esters.", CHEMICAL COMMUNICATIONS, vol. 54, no. 3, 7 December 2017 (2017-12-07), pages 283 - 286, XP055785849, ISSN: 1359-7345 *
TAKAYUKI HAMADA ET AL.: "Asymmetric Transfer Hydrogenation of α-Aminoalkyl α'-Chloromethyl Ketones with Chiral Rh Complexes.", JOURNAL OF ORGANIC CHEMISTRY, vol. 69, no. 21, 17 September 2004 (2004-09-17), XP055785846, ISSN: 0022-3263 *

Also Published As

Publication number Publication date
CN112441864A (zh) 2021-03-05
CN112441864B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
Ma et al. Access to 2-arylquinazolines via catabolism/reconstruction of amino acids with the insertion of dimethyl sulfoxide
Zhou et al. Design and synthesis of highly selective pyruvate dehydrogenase complex E1 inhibitors as bactericides
WO2021036256A1 (zh) 一种hiv蛋白酶抑制剂中间体化合物的合成方法
CN105624128A (zh) 一种固定化单胺氧化酶及其在合成手性氮杂双环化合物中的应用
Wu et al. Development of highly enantioselective new Lewis basic N-formamide organocatalysts for hydrosilylation of imines with an unprecedented substrate profile
CN106732770A (zh) 在温和条件下将co2转化为环状碳酸酯的催化剂及方法
WO2012121079A1 (ja) 化合物、及びその製造方法、並びにリン酸オセルタミビルの製造方法
CN107488133B (zh) 一种氮化碳光催化合成氨基甲酸酯类化合物的方法
CN107011190A (zh) 一种1,2‑环氧环己烷开环制备β‑氨基环己醇的新工艺
Walker et al. Improved synthesis of (R)-glycine-d-15N
CN110975939A (zh) 一种碳酸乙烯酯加氢多相催化剂及其制备方法和应用
CN117305258B (zh) 手性内酯化合物的合成方法及羰基还原酶ChKRED20突变体和应用
KR101890979B1 (ko) 알카인을 이용한 아마이드 화합물의 제조방법 및 이를 이용한 펩타이드 제조 방법
CN110862434A (zh) 一种可促进TGF-β1蛋白靶向降解的化合物及其制备方法与应用
CN113754605B (zh) 一种含氮配体及其制备方法和应用
Kalita et al. Synthesis of peptides containing oxo amino acids and their crystallographic analysis
CN104045583B (zh) 一种制备取代氨基脲化合物的方法
CN114105961B (zh) 一种ido1抑制剂(ly-3381916)制备方法
CN113754604B (zh) 一类含氮手性配体及其在硫醚的不对称氧化反应中的应用
CN101928310A (zh) 3,2&#39;,6&#39;-三-N-乙酰基庆大霉素C1a的制备方法
KR102364604B1 (ko) 복합효소 기반의 Mn-효소 하이브리드 캐스케이드 반응을 이용한 메탄올 생산용 조성물 및 이를 이용하여 이산화탄소로부터 메탄올을 생산하는 방법
JPH0381255A (ja) ビス(アミノメチル)ノルカンファン類の製造方法
CN117264152A (zh) 一种基于Mannich反应合成的共价有机框架及其制备方法与应用
CN112575042A (zh) 一种制备盐酸乙胺丁醇的新方法
CN114433127A (zh) 加氢催化剂及其制备方法和应用以及顺酐加氢制丁二酸的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858749

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20858749

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20858749

Country of ref document: EP

Kind code of ref document: A1